ORACLE

Oracle® Java Micro Edition Embedded Client
Architecture Guide

Release 1.1.1

E23813-02

May 2013

Documentation for all application developers and
customizers. This document is the prerequisite to other
Oracle Java Micro Edition Embedded Client documentation.
It describes fundamental product concepts and facilities.

Oracle Java Micro Edition Embedded Client Architecture Guide, Release 1.1.1
E23813-02
Copyright © 2012, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

ATUAIEIICEeeeeeietiettete ettt ettt et e et et e s e e tesbesbesbesbessessasteseaseaseasaeseesesessessansassassaseasaasaseasensassassensensansans vii
Documentation AccesSibility ..o Vi
Related DOCUIMIENESc..oovieeiiiieiecieceeeeeteee ettt ettt et ete et e steeaaesbeesbesbeesseeseesbesseessesseensesssenseseas Vi
CONVEINTIONS ..evveveeeientieiesieetenttetesttetesseetesstessesseessesseessesseessenseessesseensesssessesssessesseessessesssensesssensesssensenssesses Vi

1 Overview

DoMaiNS ANd DEVICES........coovieieiieieiieieiee ettt ettt e e st et e s seetesreessesseessesseessesssesseessensenssenseenes 1-1
Users and Documentationc.oouieiiiiiiiinieiieeeteeeete st ete et e e e steeee e eeesteessesseessesreessesssessessenns 1-2
COMPONENLS.......ooiiiiiiiiiiic et r et a e sa s n e eaes 1-2
g T 0 o' =S PS 1-3
Developing Applications.............cccocoviiiiiiiiiiiiiiii s 1-3

2 Connected Device Configuration and Foundation Profile

VITtUAl IMACRINE ..ottt sttt e e et e te e beessesteessesseessesrsenbesssensesseans 2-1
INEEIPIOLET ..o 2-1
Dynamic COmMPILET ... 2-1
Memory Management ..o 2-1
SECUTILY v 2-2

CDC Class LiDIaries.........cccocuieieiiieieeiieiestiete st et et etesteesesteessesseessesseessesseessesssessesssessesssessesssessesssensesnes 2-2

Foundation Profile Class LiDIariescccocoeviiiiiiiiiieiiceecceeeeete ettt ve e s ve b e v ereens 2-2

3 Optional Packages

J2ME Remote Method Invocation (RMI, JSR 66)cccoueiruiiminineinieiniieieneeeneeeeeeeeeveeeneneenes 3-1
Java Database Connectivity for CDC/FP (JDBC, JSR 169)ccccoeiinininiimiiininecceneeenecereeeeaenes 3-1
XML API (JSR 280) ...vviuiiiieiininieieieetntnieteicat sttt sttt bttt b sese s eb et s bbbt sesaebes e st b beaesestebesenensnes 3-2
Security Optional Package ... 3-2

4 Customization

Removable and Installable COMPONENtSccccceuiuiiiiiiiiiiiiiiiiiis 4-1
Locales and Character SEtsoccoiiriiiiiininieiiirccere ettt 4-1
S@CUTIEY ..o 4-1
TUINIIG .ot 4-1

5 Application Development

ApPpPlication Modelccoiiiiiiiiiiiiiiii s 5-1
Using the NetBeans Integrated Development Environment (IDE)ccccooiiinniinnn. 5-1
Using Command Line ToOls.............cccccoviiiiiiiiiiiiiiii e 5-1
6 Tools

CVIN LAUNCRET ... 6-1
Launching a Java APplcationccoirieiiiiiii 6-1

Class Search Path BasiCs........cccccccuieieiiiiiiiiiiiccceciccceeeeeeeeee e 6-2

Java Class SEarch Pathi........c.cociiiiiie ettt 6-2

Native Method Search Path............cccccocoiiiiiiiiii, 6-3

Memory INSPECION ... 6-3

A cvm Reference

SYINOPSIS ..ot A-1
DIESCIIPHION ..ottt ettt et bbbt ettt et n et n et A-1
OPLIOMS ..ot A-1

B System Properties

C Serial Port Configuration Notes

Serial POrt SEtUP ..o C-1
OS-Level Testing

List of Tables

vi

1-1
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
B-1
B-2
C—1

Headless Configuration Main COmMPONENtsccceueviieieiiiiicieiecceec e 1-2
Java SE Command-Line OPptions ... A-2
CDC-Specific Command-Line Options ... A-4
=X GC: SUDOPHIONS ...ttt A-4
-XOPt: SUDOPHIONS.ovviiiiiiicicc s A-5
-Xtrace: Flags (Not Enabled in Binary EAition) ... A-5
JVMTT OPHONS ..ottt A-6
XJIE: OPIONIS . s A-6
-Xjit:inline= SUDOPHIONS........coiiiiiiiiiicciic s A-7
-Xjit:compile= SUDOPHIONSccoeviviiiiiiiiiiiiiciiccc s A-8
-Xjititrace= OPtONS. ..ot A-8
Oracle Java Micro Edition Embedded Client System Properties............cccoceveiirueieinnnen. B-1
Base Java SE System Properties in Oracle Java Micro Edition Embedded Client........... B-3
Serial Communications References ... C-1

Audience

Preface

This guide describes concepts that are fundamental to successful use of the Oracle Java
Micro Edition Embedded Client.

This document is intended for all Oracle Java Micro Edition Embedded Client users.
All Oracle Java Micro Edition Embedded Client guides (see "Related Documents")
assume their readers are familiar with the concepts and features described in this
guide.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

For more information, see the following documents in the Oracle Java Micro Edition
Embedded Client documentation set:

» Oracle Java Micro Edition Embedded Client Customization Guide
» Oracle Java Micro Edition Embedded Client Developer’s Guide

Note: The Oracle Java Micro Edition Embedded Client Architecture Guide
is a prerequisite for all Oracle Java Micro Edition Embedded Client
guides. It defines concepts that are mentioned in the other guides.

Conventions

The following text conventions are used in this document:

vii

viii

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

1

Overview

This chapter describes essential Oracle Java Micro Edition Embedded Client terms and
concepts, including the kinds of devices that are the domain of the product, the roles
that product users play, host and target platforms, and options for application
development.

This chapter includes the following topics:
s Section 1.1, "Domains and Devices"

m Section 1.2, "Users and Documentation”
= Section 1.3, "Components"

s Section 1.4, "Platforms"

= Section 1.5, "Developing Applications"

1.1 Domains and Devices

The benefits of writing applications in the Java programming language can be realized
across a range of computing domains from corporate applications running on large
servers to personal applications hosted by small mobile phones. In all of these
environments, a Java virtual machine executes Java bytecodes, which are the basis of
Java application portability. However, to exploit the resources of large computers and
accommodate the constraints of very small ones, there must be more than one Java
platform — a virtual machine and set of libraries that provide services to Java
applications.

Oracle Java Micro Edition Embedded Client is one of a family of Java platforms
available from Oracle. Other family members include Java Standard Edition (Java SE,
for desk- and laptop computers and servers), and Oracle Java Wireless Client, typically
used for feature phones. Oracle Java Micro Edition Embedded Client falls between the
Standard Edition and the Wireless Client. It is designed for devices whose
computational resources are between those of phones and laptop computers. Typical
application domains are televisions, Blu-ray Disc players, and set-top boxes; printers,
IP phones, ebook readers, and smart utility meters.

Oracle Java Micro Edition Embedded Client and the applications that use it run on a
device. A device is usually a specialized computer and peripheral components
embedded in a machine or appliance whose users do not think of as a computer. A
device is called a target device when it is necessary to distinguish it from a host device (or
host computer), which is a personal computer that is used for developing Oracle Java
Micro Edition Embedded Client or Oracle Java Micro Edition Embedded Client
applications. A device consists of a CPU, memory, peripheral hardware, and an

Overview 1-1

Users and Documentation

operating system. The peripheral hardware might include device-specific components
in addition to those found on a typical small embedded computer.

1.2 Users and Documentation

The Oracle Java Micro Edition Embedded Client documentation set distinguishes the
following users:

= Device users: These are the end users of the device that incorporates Oracle Java
Micro Edition Embedded Client. They are not aware of Oracle Java Micro Edition
Embedded Client’s presence. They use the device as a smart meter, a printer, an
eBook reader, and so on. Device user documentation is written by the organization
that uses Oracle Java Micro Edition Embedded Client to create a device.

= Application developers: Java programmers who build the software that uses
Oracle Java Micro Edition Embedded Client and interacts with device users. These
developers know about Oracle Java Micro Edition Embedded Client’s Java
programming interfaces but not its implementation. The primary document for
application developers is the Oracle Java Micro Edition Embedded Client
Developer’s Guide.

» Customizer: Customizers adjust the Oracle Java Micro Edition Embedded Client to
fit requirements for memory footprint, performance, special hardware, and so on.
The primary document for customizers is the Oracle Java Micro Edition
Embedded Client Customization Guide.

One person might act as multiple users. For example, a customizer might also be an
application developer.

1.3 Components

Oracle Java Micro Edition Embedded Client includes the components shown in
Table 1-1. As noted in the table, some components can be removed to reduce device
memory requirements.

Table 1-1 Headless Configuration Main Components

Spec
Component Version Description
Connected Device JSR 218 Java virtual machine with interpreter and compiler,
Configuration (CDC) 1.1.2 plus basic libraries.
Foundation Profile (FP) JSR 219 Input/output, utility, security classes that
1.1.2 supplement the CDC APISs to the functional level of

the Java SE 1.4 platform.
Security Optional Package JSR 219 Optional component of Foundation Profile that

(SecOp) 1.0.1 defines cryptographic APIs. Removable.
J2ME Remote Method JSR 66 Remote invocation of Java methods. Removable.
Invocation (RMI) 1.0
Java Data Base Connection JSR 169 Relational database query and update, subset of
for CDC/FP (JDBC) 1.0 full JDBC. Removable.
XML API JSR 280 Subsets of XML parsing APIs. Removable.

1.0

1-2 Oracle Java Micro Edition Embedded Client Architecture Guide

Developing Applications

1.4 Platforms

Besides distinguishing among the Java editions (SE, and so on, see Section 1.1), in the
context of Oracle Java Micro Edition Embedded Client, there is a second meaning for
"platform". An Oracle Java Micro Edition Embedded Client platform is a computer on
which an Oracle Java Micro Edition Embedded Client binary runs. The Oracle Java
Micro Edition Embedded Client Release Notes describe the platforms supported in this
release. There are both host and target platforms. The target platforms for the headless
configuration differ from those for the headful configuration, because the latter must
include graphics support.

1.5 Developing Applications

Oracle Java Micro Edition Embedded Client application development is
cross-platform. Target devices run Oracle Java Micro Edition Embedded Client
applications, but their limited resources are too limited for application development.
Developers code and compile on a host computer. They test by transferring their code
to a device or emulator. Debugging and profiling is performed across a network, using
the host computer as a console and instrumentation on the device.

Oracle Java Micro Edition Embedded Client applications can be developed with
standard command-line tools, such as javac and make or ant. You can also use the
NetBeans or Eclipse Integrated Development Environments (IDEs).

Overview 1-3

Developing Applications

1-4 Oracle Java Micro Edition Embedded Client Architecture Guide

2

Connected Device Configuration and
Foundation Profile

This chapter describes the fundamental components of the Oracle Java Micro Edition
Embedded Client, the virtual machine that executes Java applications, two sets of the
libraries that applications can use. Together, the virtual machine and core libraries
described in this chapter are called the Connected Device Configuration (CDC).
Supplementing CDC is the set of libraries called the Foundation Profile.

This chapter includes these topics:
s Section 2.1, "Virtual Machine"
s Section 2.2, "CDC Class Libraries"

m Section 2.3, "Foundation Profile Class Libraries"

2.1 Virtual Machine

Java programs are compiled on a host computer into a portable intermediate form
called Java bytecodes. In Oracle Java Micro Edition Embedded Client, files containing
bytecodes are loaded to the target device where the resident CDC virtual machine
(CVM) inspects, decodes, and executes them.

2.1.1 Interpreter

Java compilers generate machine-independent bytecodes instead of machine
instructions. The interpreter is like a CPU implemented in software. It decodes and
executes bytecodes, independent of what computer they were compiled on.

2.1.2 Dynamic Compiler

As the interpreter executes blocks of bytecodes, it tracks the number of times a block is
executed. Frequently executed blocks are called hot spots. Periodically during
execution, the dynamic compiler creates machine-language versions of hot spots,
which are thereafter invoked instead of the interpreter. Compiled code runs about 10
times as fast as interpretation, so the investment in compilation pays off quickly.

For details on how the dynamic compiler works and how you can adjust its operation,
see the Customization Guide’s Tuning chapter.

2.1.3 Memory Management

Automatic reclamation of unusable heap objects (garbage collection) is central to the
Java virtual machine. By automating memory reclamation, the garbage collector

Connected Device Configuration and Foundation Profile 2-1

CDC Class Libraries

prevents common and difficult-to-diagnose programmer errors. Failing to release
unneeded memory, and prematurely releasing needed memory can stop a system,
which is especially serious for an embedded device. The CDC garbage collector is
efficient and can be adjusted to minimize interference with user-visible activities.

For details on how the heap works and how you can adjust its configuration, see the
Customization Guide’s Tuning chapter.

2.1.4 Security

Virtual machine security features include:

= Verifying the integrity of class (bytecode) files

= Preventing access to unauthorized data and code
= Preventing stack overflows

= Executing code in a "sandbox" that prevents unauthorized access to system
resources.

2.2 CDC Class Libraries

The CDC class libraries implement a minimal Java API, including subsets of these Java
SE packages:

= Jjava.lang: virtual machine system classes, including thread
s Jjava.util:]Java utilities

s java.net: UDP, InetAddress, and URLI/O

= Jjava.io:]Java file input/output

= Jjava.text: minimal support for internationalization

= Jjava.security: minimal security and encryption

For CDC class library details, see
http://www.oracle.com/technetwork/java/embedded/documentation/in
dex.html.

2.3 Foundation Profile Class Libraries

The Foundation Profile (FP) supplements the CDC class libraries described in
Section 2.2. FP gives Oracle Java Micro Edition Embedded Client application
developers approximately the same APIs available in Java SE 1.4.2, minus graphical
user interface features.

FP adds classes to CDC’s java.lang, java.io, java.net, java.security,
java.text,and java.util. It also adds HTTP networking to
javax.microedition.io. For FP class library details, see
http://www.oracle.com/technetwork/java/embedded/documentation/in
dex.html.

2-2 Oracle Java Micro Edition Embedded Client Architecture Guide

http://www.oracle.com/technetwork/java/embedded/documentation/index.html
http://www.oracle.com/technetwork/java/embedded/documentation/index.html
http://www.oracle.com/technetwork/java/embedded/documentation/index.html
http://www.oracle.com/technetwork/java/embedded/documentation/index.html

3

Optional Packages

This chapter describes optional packages that provide useful functions for some, but
not all, deployments. Optional packages support remote method invocation, database
connectivity, XML processing, and encryption. The Customization Guide describes how
to remove and install these optional packages to optimize the use of device memory.

This chapter includes the following topics:

= Section 3.1, "J2ME Remote Method Invocation (RMI, JSR 66)"

» Section 3.2, "Java Database Connectivity for CDC/FP (JDBC, JSR 169)"
= Section 3.3, "XML API (JSR 280)"

= Section 3.4, "Security Optional Package"

3.1 J2ME Remote Method Invocation (RMI, JSR 66)

The RMI interface enables distributed applications to invoke each other’s methods
across a network. The Oracle Java Micro Edition Embedded Client RMI API is a subset
of the Java SE RMI AP]I, and includes the following capabilities:

s Full RMI call semantics

= Marshalled object support

= RMI wire protocol

= Export of remote objects

s Client- and server-side distributed garbage collection

» The Activator interface and the client-side activation protocol
= Registry interfaces and export of a Registry remote object

For a complete description, including differences from Java SE RMI, see
http://jcp.org/en/jsr/detail?id=66

3.2 Java Database Connectivity for CDC/FP (JDBC, JSR 169)

JDBC is a Java interface for querying and updating a relational database with SQL
statements. JDBC for CDC/FP (which is supplied with Oracle Java Micro Edition
Embedded Client) is a subset defined at
http://download.oracle.com/javame/config/cdc/opt-pkgs/api/jsrl69
/index.html.

To use JDBC, you must logically connect the interface to an actual database as
described in the Oracle Java Micro Edition Embedded Client Customization Guide.

Optional Packages 3-1

XML API (JSR 280)

3.3 XML API (JSR 280)

The XML API supports the XML data format in mobile and embedded devices. It
consists of subsets of the following:

» Java API for XML Processing (JAXP)

= Simple API for XML Processing (SAX)
= Streaming API for XML (StAX, JSR 173)
= Document Object Model (DOM) Core

= DOM Events and View

The API definition is at
http://download.oracle.com/javame/config/cldc/opt-pkgs/api/xml/j
sr280/index.html.

3.4 Security Optional Package

The security optional package included with Oracle Java Micro Edition Embedded
Client consists of javax.crypto classes that perform encryption, key generation, key
agreement, and Message Authentication Code (MAC) generation. Support for
encryption includes symmetric, asymmetric, block, and stream ciphers. This package
also supports secure streams and sealed objects.

3-2 Oracle Java Micro Edition Embedded Client Architecture Guide

4

Customization

This chapter describes how you can customize an Oracle Java Micro Edition
Embedded Client binary to fit device and market requirements. You can install and
delete components, adjust the security policies, and tune memory consumption and
performance. For detailed descriptions refer to the Customization Guide.

This chapter includes the following topics:

» Section 4.1, "Removable and Installable Components"
s Section 4.2, "Locales and Character Sets"

= Section 4.3, "Security"

= Section 4.4, "Tuning"

4.1 Removable and Installable Components

If your deployment does not need the following components, you can remove them
and save memory:

» RMI (see Section 3.1)

s JDBC (see Section 3.2)

s XML (see Section 3.3)

= Security Optional Package (see Section 3.4)

4.2 Locales and Character Sets

Oracle Java Micro Edition Embedded Client’s default definitions of locales and
character sets are contained in user-modifiable files. You can add locales and character
sets to these files.

4.3 Security

4.4 Tuning

When the Security Optional Package is in place (not removed), Oracle Java Micro
Edition Embedded Client’s security model and is identical to that of Java SE 1.4. The
Oracle Java Micro Edition Embedded Client Customization Guide has more information
on configuring the security features.

When you launch the virtual machine, you can specify dozens of options that affect
performance. For example, you can set the limit for the size of the heap (which affects

Customization 4-1

Tuning

the frequency of garbage collection), the amount of memory the compiler can use for
compiled code, and so on.

4-2 Oracle Java Micro Edition Embedded Client Architecture Guide

O

Application Development

This chapter briefly describes application development in the Java language. Software
development with Oracle Java Micro Edition Embedded Client is always
cross-platform. You write and build code on a host computer, install and test the result
on the target device.

This chapter includes these topics:
= Section 5.1, "Application Model"
= Section 5.2, "Using the NetBeans Integrated Development Environment (IDE)"

= Section 5.3, "Using Command Line Tools"

5.1 Application Model

Oracle Java Micro Edition Embedded Client supports the main and Xlet. The main
application model, in which the virtual machine runs a single application. Here is a
trivial example:

public class HelloWorld ({
public static void main(String[] args) {

System.out.println("Hello, World");
}

5.2 Using the NetBeans Integrated Development Environment (IDE)

You can write, compile, and remotely debug and profile applications with the
NetBeans IDE. The Developer’s Guide has instructions for configuring NetBeans to work
with Oracle Java Micro Edition Embedded Client.

5.3 Using Command Line Tools

You can use conventional command-line tools provided in the Java Developer’s Kit
(Javac, the Java compiler), and chosen by yourself, for example, a programming
editor and source code repository.

Application Development 5-1

Using Command Line Tools

5-2 Oracle Java Micro Edition Embedded Client Architecture Guide

6

Tools

This chapter describes tools provided with the Oracle Java Micro Edition Embedded
Client that assist application and system development tasks, for example, launching
applications and diagnosing memory leaks.

This chapter includes these topics:
s Section 6.1, "cvim Launcher"

= Section 6.2, "Memory Inspection”

6.1 cvm Launcher

The cvm launcher is a command line tool that starts the Oracle Java Micro Edition
Embedded Client running an application. Each compiled application is a class file that
has a method called main (). After initializing itself, the virtual machine invokes the
application’smain (). Whenmain () returns, the virtual machine and cvm exit.

cvm has many options that can affect performance, enable debugging, and so on. They
are documented in Appendix A.

6.1.1 Launching a Java Application

cvm, the CDC application launcher is similar to java, the Java SE application
launcher. For the Oracle (Java ME) Embedded Client, see the Oracle Java Micro Edition
Embedded Client Reference Guide for detailed information about using cvm to launch
Java applications for the Oracle Java ME Embedded Client.

Many of cvm's command-line options are borrowed from java. The basic method of
launching a Java application is to specify the top-level application class containing the
main () method on the cvim command-line. For example,

% cvm HelloWorld
By default, cvm looks for the top-level application class in the current directory.
Alternatively, the synonymous -cp and -classpath command-line options specify

a list of locations where cvm searches for application classes instead of the current
directory. For example,

% cvm -cp /mylib/archive.zip HelloWorld

Here cvm searches for HelloWor1ld in an archive file /mylib/archive/ . zip. See
Section 6.1.2 for more information about class search paths.

The -help option displays a brief description of the available command-line options.
Appendix A provides a complete description of the command-line options available
for cvm.

Tools 6-1

cvm Launcher

6.1.2 Class Search Path Basics

The Java runtime environment uses various search paths to locate classes, resources
and native objects at runtime. This section describes the two most important search
paths: the Java class search path and the native method search path.

6.1.2.1 Java Class Search Path

Java applications are collections of Java classes and application resources that are built
on one system and then potentially deployed on many different target platforms.
Because the file systems on these target platforms can vary greatly from the
development system, Java runtime environments use the Java class search path as a
flexible mechanism for balancing the needs of platform-independence against the
realities of different target platforms.

The Java class search path mechanism allows the Java virtual machine to locate and
load classes from different locations that are defined at runtime on a target platform.
For example, the same application could be organized in one way on a MacOS system
and another on a Linux system. Preparing an application's classes for deployment on
different target systems is part of the development process. Arranging them for a
specific target system i s part of the deployment process.

The Java class search path defines a list of locations that the Java virtual machine uses
to find Java classes and application resources. A location can be either a file system
directory or a jar or Zip archive file. Locations in the Java class search path are
delimited by a platform-dependent path separator defined by the path.separator
system property. The Linux default is the colon ":" character.

The Java SE documentation' describes three related Java class search paths:

» The system or bootstrap classes comprise the Java platform. The system class search
path is a mechanism for locating these system classes. The default system search
path is based on a set of jar files located in JRE/11ib.

» The extension classes extend the Java platform with optional packages like the JDBC
Optional Package. The extension class search path is a mechanism for locating these
optional packages. cvm uses the -Xbootclasspath command-line option to
statically specify an extension class search path at launch time and the
sun.boot.class.path system property to dynamically specify an extension
class search path. The CDC default extension class search path is CVM/11ib,
except for some of the provider implementations for the security optional
packages described in Section 3.4 which are stored in CVM/1ib/ext. The Java SE
default extension class search path is JRE/1ib/ext.

n The user classes are defined and implemented by developers to provide application
functionality. The user class search path is a mechanism for locating these
application classes. Java virtual machine implementations like the CDC Java
runtime environment can provide different mechanisms for specifying an Java
class search path. cvm uses the ~classpath command-line option to statically
specify an Java class search path at launch time and the java.class.path
system property to dynamically specify an user class search path. The Java SE
application launcher also uses the CLASSPATH environment variable, which is not
supported by the CDC Java runtime environment.

1 See the tools documentation at
http://download.oracle.com/javase/1l.4.2/docs/tooldocs/tools.html fora
description of the J25DK tools and how they use Java class search paths.

6-2 Oracle Java Micro Edition Embedded Client Architecture Guide

Memory Inspection

6.1.2.2 Native Method Search Path

The CDC HotSpot Implementation virtual machine uses the Java Native Interface?
(JNI) as its native method support framework. The JNI specification leaves the
platform-level implementation of native methods up to the designers of a Java virtual
machine implementation. For the Linux-based CDC Java runtime environment
described in this runtime guide, a JNI native method is implemented as a Linux shared
library that can be found in the native library search path defined by the
java.library.path system property.

Note: The standard mechanism for specifying the native library
search path is the java.library.path system property. However,
the Linux dynamic linking loader may cause other shared libraries to
be loaded implicitly. In this case, the directories in the LD_LIBRRARY_
PATH environment variable are searched without using the
java.library.path system property. One example of this issue is
the location of the Qt shared library. If the target Linux platform has
one version of the Qt. shared library in /usr/1ib and the CDC Java
runtime environment uses another version located elsewhere, this
directory must be specified in the LD_LIBRRARY_PATH environment
variable.

Here is a simple example of how to build and use an application with a native method.
The mechanism described below is very similar to the Java SE mechanism.

1.

Compile a Java application containing a native method.

% javac -source 1.4 -target 1.4 -bootclasspath lib/btclasses.zip HelloJNI.java

Generate the JNI stub file for the native method.

% javah -bootclasspath lib/btclasses.zip HelloJNI

Compile the native method library.

% gcc HellodNI.c -shared -I${CDC_SRC}/src/share/javavm/export \
-I${CDC_SRC}/src/linux/javavm/include -o libHelloJNI.so

This step requires the CDC-based JNI header files in the CDC source release.

Relocate the native method library in the test directory.

mkdir test
% mv libHelloJNI.so test

oe

Launch the application.

o)

% cvm -Djava.library.path=test HelloJNI

If the native method implementation is not found in the native method search
path, the CDC Java runtime environment throws an UnsatisfiedLinkError.

6.2 Memory Inspection

If you suspect a memory leak, you can use Oracle Java Micro Edition Embedded Client
tools to diagnose the problem. jhat (Java heap analysis tool), displays memory
objects in form that can be explored with a web browser. You can use cvmsh to send

2 See the Java Native Interface: Programmer’s Guide and Specification.

Tools 6-3

Memory Inspection

virtual machine diagnostic commands to a running Oracle Java Micro Edition
Embedded Client. Refer to the Developer’s Guide describes for more information about
both tools.

6-4 Oracle Java Micro Edition Embedded Client Architecture Guide

A

cvm Reference

This appendix describes the cvm command in detail.
This appendix includes these topics:

= Section A.1, "Synopsis"

= Section A.2, "Description”

= Section A.3, "Options"

A.1 Synopsis

cvm [-options] class [options ...]
cvm [-options] -jar jarfile [options ...]

A.2 Description

cvm launches a Java application. It does this by starting a Java virtual machine,
loading its system classes, loading a specified application class, and then invoking that
class's main method, which must have the following signature:

public static void main(String args(])

The first non-option argument to cvm is the name of the top-level application class
with a fully qualified class name that contains the main method. The Java virtual
machine searches for the main application class, and other classes used, in three
locations: the system class path, the extension class path and the user class path. See the
Oracle Java Micro Edition Embedded Client Customization Guide for more information
about Java class paths. Non-option arguments after the main application class name
are passed to the main method.

If the -jar jarfile command-line option is used, cvm launches the application in the
jar file. The manifest of the jar file must contain a line of the form

MainClass :package.classname. The classname string identifies the class having the
main method which serves as the application's starting point.

The Oracle Java Micro Edition Embedded Client Developer’s Guide has more
information about launching Java applications with cvm.

A.3 Options

cvm borrows some of its command-line options from java, the Java SE application
launcher. Other options are unique to cvm and may require certain build options to
enable the necessary run-time features. For command-line options that take a size

cvm Reference A-1

Options

parameter, the default units for size are bytes. Append the letter k or K to indicate
kilobytes, or m or M to indicate megabytes.

Table A-1 describes the command-line options that are shared with the Java SE

application launcher.

Table A-1 Java SE Command-Line Options

Option Description

~help Display usage information and exit.

-showversion Display product version information and continue.

-version Display product version information and exit.

-fullversion Display build version information and exit.

-Dproperty=value Set a system property value. See Appendix B for a description of

security properties for Oracle Java Micro Edition Embedded Client.

-classpath classpath
-cp classpath

Specify an alternate user class path. The default user class path is the
current directory. See Section 6.1.2 for more information on
classpaths.

-Xbootclasspathl[/a | /p] :classpath

Specify the extension class path. /a appends classpath list to the
default path. /p prepends classpath list to the default path. See
Section 6.1.2 for more information on classpaths.

-Xmssize Set the start size of the memory allocation pool (heap). This value
must be greater than 1000 bytes.
The default value is 2M.
-Xmxsize Set the maximum heap size.
The default value is 7M.
-Xmnsize Set the minimum heap size.
The default value is 1M.
-Xsssize Each Java thread has two stacks: one for Java code and one for native

code. The maximum native stack size of the main thread is
determined by the native application launcher (for example, shell or
operating system.). For subsequent threads, the maximum native
stack size is set by the -Xss option, although this can be ignored by
the underlying operating system. See Table A—4 for a description of
the command-line options for controlling the size of the Java stack.

The default value is 0 which indicates that the value is actually set by
the native environment.

A-2 Oracle Java Micro Edition Embedded Client Architecture Guide

Options

Table A-1 (Cont.) Java SE Command-Line Options

Option

Description

-enableassertions [:<package>.. |
:<class> |
-ea [:<package>... | :<class>]

Enable Java assertions. These are disabled by default. With no
arguments, this switch enables assertions for all user classes. With
one argument ending in ..., the switch enables assertions in the
specified package and any subpackages. If the argument is simply ...,
the switch enables assertions in the unnamed package in the current
working directory. With one argument not ending in ..., the switch
enables assertions in the specified class.

If a single command line contains multiple instances of these
switches, they are processed in order before loading any classes. So,
for example, to run a program with assertions enabled only in the
package com.wombat . fruitbat (and any subpackages), the
following command could be used:

% cvm -ea:com.wombat.fruitbat .. <MainClass>

The -enableassertions and -ea switches apply to all class
loaders and to system classes (which do not have a class loader).
There is one exception to this rule: in their no-argument form, the
switches do not apply to system. This makes it easy to turn on
assertions in all classes except for system classes. The
-enablesystemassertions option enables asserts in all system
classes (that is, it sets the default assertion status for system classes to
true). To run a program with assertions enabled in the package
com.wombat . fruitbat but disabled in class

com.wombat . fruitbat .Brickbat, the following command could
be used:

% cvm -ea:com.wombat.fruitbat.. \

-da:com.wombat . fruitbat.Brickbat <MainClass>

-disableassertions [:<package>.. |
:<class> 1]
-da [:<package>... | :<class>]

Disable Java assertions. This is the default behavior.

With no arguments, -disableassertions or -da disables
assertions. With one argument ending in .., the option disables
assertions in the specified package and any subpackages. If the
argument is simply ..., the switch disables assertions in the unnamed
package in the current working directory. With one argument not
ending in .., the switch disables assertions in the specified class.

The -disableassertions and -da switches apply to all class
loaders and to system classes that do not have a class loader. There is
one exception to this rule: in their no-argument form, the switches do
not apply to system. This makes it easy to turn on assertions in all
classes except for system classes. A separate switch is provided to
enable assertions in all system classes. See the description of the
-disablesystemassertions option.

-enablesystemassertions
-esa

Enable assertions in all system classes (sets the default assertion
status for system classes to true).

-disablesystemassertions
-dsa

Disable assertions in all system classes.

Table A-2 describes the Oracle Java Micro Edition Embedded Client-specific
command-line options.

cvm Reference A-3

Options

Table A-2 CDC-Specific Command-Line Options

Option Description

-XbuildOptions Display build options and exit.

-XshowBuildOptions Display build options and continue.

-XappName=value Specify the application name for QPE. This is used to identify the cvm

process for native application management and control.

-Xverify:[all | remote | nonel Perform class verification.

= all verify all classes.

= remote verify all but preloaded and system classes.

= none do not perform class verification.

The default value is remote. If -Xverify is used without any
arguments, the value is all.

-XfullShutdown Make sure all resources are freed and the VM destroyed upon exit.
This is the default for non-process-model operating systems, but is
not needed for process-model operating systems, such as Linux.

-Xgc : suboption Specify GC-specific options. The default GC is the generational
garbage collector described in the Oracle Java Micro Edition
Embedded Client Customization Guide. See Table A-3 for a description

of the suboptions.

Other garbage collectors are unsupported.

-Xopt : suboption Control the Java stack. See Table A—4 for a description of the
suboptions. The different suboptions can be appended into a single
argument with name/value pair separated by commas.

-XtimeStamping Enable timestamping.

-Xtrace:flags Turn on trace flags. Table A-5 shows the hexadecimal values to turn
on each trace flag. To turn on multiple flags, bitwise-OR the values of
all the flags you want to turn on, and use that result as the -Xtrace
value. Requires the CVM_TRACE=true build option. (Not enabled in

binary edition.)

-Xjnicheck -Xjnicheck performs additional checks for Java Native Interface
(JNI) functions. Specifically, the virtual machine validates the
parameters passed to the JNI function as well as the runtime
environment data before processing the JNI request. Any invalid data
encountered indicates a problem in the native code, and the Java
Virtual Machine will terminate with a fatal error in such cases.

This feature is useful when many new native entry points have been
added. It can help avoid crashes from mismatched parameters to

native routines.

Expect a performance degradation when this option is used.

Table A-3 describes the suboptions for the -Xgc command-line option.

Table A-3 -Xgc: Suboptions

Option Description

maxStackMapsMemorySize=size Set the size of the stack map cache. The default value is OxFFFFFFFF.
stat Collect and display garbage collection statistics.

youngGens=size Set the size of the young object generation.

NOTE: this option is specific to the default generational collector.

The default value is 1M.

A-4 Oracle Java Micro Edition Embedded Client Architecture Guide

Options

Table A—4 describes the suboptions for the -Xopt command-line option.

Table A-4 -Xopt: Suboptions

Suboption Description

stackMinSize=size Set the initial size of the Java stack, from <32...65536>.

The default for JIT-based systems is 3K and the default for non-JIT
based systems is 1K.

stackMaxSize=size Set the maximum size of the Java stack, from <1024..1048576>. The
default is 128K.

stackChunkSize=size Set the amount the Java stack grows when it must expand
<32..65536>. The default for JIT-based systems is 2K and the default
for non-JIT based systems is 1K.

forceDoubleRounding Applicable only to x86 platforms. If true (the default)
double-precision floating point results are rounded.

useStrictFP Applicable only to x86 platforms. Enable or disable Java SE
strictfp semantics, which improves portability of applications
that use floating point, possibly reducing precision on some
platforms. The default is true.

useSSE Applicable only to x86 platforms. Enable Streaming SIMD
Extensions, which improves the speed of floating point add, sub,
mul, div and a few other operations. The default is "2' which means
SSE extension version 2. The value '0' disables the extensions. All
other values map to 2'.

Table A-5 describes the flags used by the -Xtrace command-line option. This option
is useful for run-time development purposes only and is not enabled in the binary
edition.

Table A-5 -Xtrace: Flags (Not Enabled in Binary Edition)

Value Description

0x00000001 Opcode execution.

0x00000002 Method execution.

0x00000004 Internal state of the interpreter loop on method calls and returns.

0x00000008 Fast common-case path of Java synchronization.

0x00000010 Slow rare-case path of Java synchronization.

0x00000020 Mutex locking and unlocking operations.

0x00000040 Consistent state transitions. Garbage Collection (GC)-safety state
only.

0x00000080 GC start and stop notifications.

0x00000100 GC root scans.

0x00000200 GC heap object scans.

0x00000400 GC object allocation.

0x00000800 GC algorithm internals.

0x00001000 Transitions between GC-safe and GC-unsafe states.

0x00002000 Class static initializers.

0x00004000 Java exception handling.

cvm Reference A-5

Options

Table A-5 (Cont.) -Xtrace: Flags (Not Enabled in Binary Edition)

Value Description

0x00008000 Heap initialization and destruction, global state initialization, and
the safe exit feature.

0x00010000 Read and write barriers for GC.

0x00020000 Generation of GC maps for Java stacks.

0x00040000 Class loading.

0x00080000 Class lookup in VM-internal tables.

0x00100000 Type system operations.

0x00200000 Java code verifier operations.

0x00400000 Weak reference handling.

0x00800000 Class unloading.

0x01000000 Class linking.

Table A—6 describes the command-line options available with the CvM_JVMTI build
option. See the Oracle Java Micro Edition Embedded Client Developer’s Guide for an
example of how to use these command-line options.

Table A-6 JVMTI Options

Option Description

-Xdebug Enable VM-level debugging support.

-Xrunlib: [help] | [option=value, ...] Enable feature in shared library. For example, hprof profiling
support.

Table A-7 describes the command-line options available with the CVM_JIT=true
build option. The Oracle Java Micro Edition Embedded Client Customization Guide
describes these options and the concepts behind them.

Table A-7 -Xjit: Options

Option Default Description
bcost=cost 4 Cost of a backward branch, between <0. . .32767>.
climit=cost 20000 The popularity threshold for a given method,

between <0. . . 65535>. The VM compares a
per-method count based on bcost, icost and
mcost against this threshold to determine when to
compile a given method.

codeCacheSize=value 512k Size of code cache where compiled methods are
stored, between <0. . .32M>.

compile=suboption policy When to compile methods. See Table A-9 for
descriptions of the suboptions for compile. The
default policy is based on the suboption defaults
listed in this table.

icost=cost 20 Cost of an interpreted-to-interpreted method call,
between <0...32767>.

inline=suboption all Perform method inlining when compiling. See
Table A-8 for descriptions of the suboptions for
inline.

A-6 Oracle Java Micro Edition Embedded Client Architecture Guide

Options

Table A-7 (Cont.) -Xjit: Options

Option Default Description

lowerCodeCacheThreshold=percentage 90% Lower code cache threshold, between <0%. .100%>.
The dynamic compiler decompiles methods until the
code cache reaches this threshold.

maxCompiledMethodSize=value 65535 Maximum size of a compiled method, between
<0...64K>.
maxInliningCodeLength=value 68 Maximum size of an inlined method, between

<0...1000>. This value is used as a threshold that
proportionally decreases with the depth of inlining.
Therefore, shorter methods are inlined at deeper
depths. In addition, if the inlined method is less than
value/ 2, the dynamic compiler allows unquickened
opcodes in the inlined method.

maxInliningDepth=value 12 Maximum inlining depth of inlined
methods/frames, between <0...1000>.

maxWorkingMemorySize=value 512k Maximum working memory size for the dynamic
compiler, between <0. . . 64M>.

mcost=cost 50 Cost for transitioning between a compiled method
and an interpreted method, and vice versa. Between
<0..32767>.

minInliningCodeLength=value 16 The floor value for maxInliningCodeLength
when its size is proportionally decreased at greater
inlining depths.

policyTriggeredDecompilations=boolean true Policy triggered decompilations. If false, then

never decompiles a method to make room for more
compilations. Methods remain compiled until the
class is unloaded, even if the code cache is full.

trace=suboption Set dynamic compiler trace options. See Table A-10.

upperCodeCacheThreshold=percentage 95 Upper code cache threshold, between
<0%...100%>. The dynamic compiler starts
decompiling methods during a GC when the code
cache passes this threshold unless
policyTriggeredDecompilations=false.

XregisterPhis=boolean true Unsupported.
XcompilingCausesClassLoading=boolean false Unsupported.
Xpmi=boolean true Unsupported.
XregisterLocals=boolean true Unsupported.

Table A-8 describes the command-line options for selecting when to inline methods.

Table A-8 -Xjit:inline= Suboptions

Suboption Description

all Enable all the options listed below to perform inlining whenever possible. The default.
none Do not perform inlining.

virtual Perform inlining on virtual methods.

nonvirtual Perform inlining on nonvirtual methods.

vhints Virtual hints. Use hints gathered while interpreting a method to choose a target

method to get inlined when an invokevirtual opcode is compiled.

cvm Reference A-7

Options

Table A-8 (Cont.) -Xjit:inline= Suboptions

Suboption Description

ihints Interface hints. Use hints gathered while interpreting a method to choose a target
method for inlining when an invokeinterface opcode is compiled.

Xvsync Inline virtual synchronized methods. Off by default. Unsupported.

Xnvsync Inline non-virtual synchronized methods. Off by default. Unsupported.

Xdopriv Inline privileged methods specified by
java.security.AccessController.doPrivileged (). On by default.
Unsupported.

Table A-9 describes the top-level command-line options that control dynamic compiler
policies.

Table A-9 -Xjit:compile= Suboptions

Suboption Description

policy Compile according to existing compilation policy parameters such as icost and
climit. The default.

all Compile all methods aggressively. Note: this hurts performance and should be used
only for testing the dynamic compiler.

none Do not compile any methods.

Table A-10 describes the command-line options for controlling dynamic compiler
tracing. These options require a build with CVM_TRACE_JIT=true. These options are
experimental and unsupported.

Table A-10 -Xjit:trace= Options

Suboption Description

bctoir Print information regarding the conversion of Java bytecodes to the JIT internal
representation (IR), including a complete dump of all IR nodes.

codegen Print the generated code in a format similar to the assembler language of the target
processor. If the build option CVM_JIT_DEBUG=true, then this also prints the
JavaCodeSelect rule used to generate the code interspersed with the generated

code.

inlining Print method inlining information during the bytecode to IR pass, such as which
methods were inlined and which ones were not.

iropt Print information about optimizations done in the bytecode to IR pass.

osr Print a message when compilation of a method is triggered by on stack replacement
(OSR).

stats Print statistics gathered during compilation.

status Print a line of status each time a method is compiled. The output includes the name of

the method and whether it was compiled successfully.

A-8 Oracle Java Micro Edition Embedded Client Architecture Guide

B

System Properties

This appendix describes system properties supported by the Oracle Java Micro Edition
Embedded Client.

In addition to the standard base Java SE system properties (see Table B-2), Oracle Java
Micro Edition Embedded Client supports the additional system properties described

in Table B-1.

Table B-1

Oracle Java Micro Edition Embedded Client System Properties

System Property

Default Value

Description

cdcams .decorations false Display native window
decorations.

cdcams .presentation No default Top-level presentation mode class.

cdcams .repository CVMHOME /repository Location of application repository.

cdcams.verbose false Display extra diagnostic
information.

com.sun.midp.implementati No default For dual-stack builds only, a

on space-separated list of jar files that
provide a MIDP implementation.

com.sun.package.spec.vers "1.4.2" Indicates the Java SE equivalent

ion version for core class interfaces.
Example: "1.4.2"

file.encoding UTE-8 Character encoding for the default
locale.

file.encoding.pkg sun.io Package that contains the
converters that handle converting
between local encodings and
Unicode.

java.ext.dirs CVMHOME/1ib Specifies one or more directories to

search for installed optional
packages, each separated by
File.pathSeparatorChar.

java.vm.info

"mixed mode"

Indicates if virtual machine was
built with just-in-time-compiler
support.

Values: "mixed mode" or
"interpreter loop"

microedition.commports

No default

Comma-delimited list of available
communications ports

System Properties

B-1

Table B-1 (Cont.) Oracle Java Micro Edition Embedded Client System Properties

System Property

Default Value

Description

microedition.configuratio
n

cdc

Java ME configuration

microedition.encoding

ISO_LATIN_1

Unicode character encoding

microedition.hostname No default Host platform
microedition.locale en-US System locale
microedition.platform j2me Java platform
microedition.profiles No default Java ME profile
microedition.securerandom false Disable the mechanism that allows

.nofallback

the CDC Java run-time
environment to fallback to using
/dev/urandomif /dev/random
does not have enough entropy to
work properly. See the Oracle Java
Micro Edition Embedded Client
Customization Guide for more
information.

sun.arch.data.model

Platform-specific

Platform word size.

Examples: "32", "64",
"unknown"

sun.boot.class.path

No default

Default boot class path. In
particular, includes jar files from
the 1ib directory. It includes jar
files for removable modules.
Read-only property.

sun.boot.library.path

Specified on command
line

From here, the VM loads VM
libraries (like those related to
JVMTI) and any libraries needed
for classes on the
-bootclasspath. Read-only

property.

sun.cpu.endian

Platform-specific

Endianess of CPU, "little" or
" big " .

sun.io.unicode.encoding

Platform-specific, follows
sun.cpu.endian

For example "unicodeLittle".

sun.java2d. fontpath

No default

User-defined path to fonts. Prefix
the path value with "append: " or
"prepend: " to specify if it should
be searched before or after the
JRE-defined font directories.
Read-only property.

sun.misc.product "Oracle Java Micro Edition "Oracle Java Micro Edition
Embedded Client" Embedded Client"

user.country us Country (system dependent).

user.language en Two-letter language code of the

default locale (system dependent).

B-2 Oracle Java Micro Edition Embedded Client Architecture Guide

Table B-1 (Cont.) Oracle Java Micro Edition Embedded Client System Properties

System Property

Default Value

Description

user.region Us Two-letter country code of the
default locale (system dependent).

user.timezone UTC Time zone (system dependent)

user.variant No default Variant (more specific than country

and language).

Table B-2 lists the base Java SE properties defined by the CDC specification and
supported by Oracle Java Micro Edition Embedded Client. These properties have no
default values.

Table B-2 Base Java SE System Properties in Oracle Java Micro Edition Embedded
Client

System Property

Description

file.
java.
java.
java.

java.

java

java.

java.

java.
java.

java.

separator
class.path
class.version
compiler

ext.dirs

.home

io.tmpdir

library.path

specification.name
specification.vendor

specification.version

java.vendor

java.

java.

java

java

java.

java

java.

line.

.vim.

.vi.

vendor.url

version

.Vin. name

specification.name
vm.specification.vendor
vendor

vm.version

separator

os.arch

Oos.name

os.version

path.
user.

user.

separator
dir

home

File separator ("/" on UNIX)

Java class path

Java class format version number

Name of JIT compiler to use

Path of extension directory or directories
Java installation directory

Default temp file path

Path from which to load native libraries. Default is
absolute path to 1ib directory.

Java Runtime Environment specification name
Java Runtime Environment specification vendor
Java Virtual Machine specification version
Java Runtime Environment vendor

Java vendor URL

Java Runtime Environment version

Java Virtual Machine implementation name
Java Virtual Machine specification name

Java Virtual Machine specification vendor
Java Virtual Machine implementation vendor
Java Virtual Machine implementation version
Line separator ("\n" on UNIX)

Operating system architecture

Operating system name

Operating system version

Path separator (":" on UNIX)

User's current working directory

User's home directory

System Properties

Table B-2 (Cont.) Base Java SE System Properties in Oracle Java Micro Edition
Embedded Client

System Property Description

user.name User's account name

B-4 Oracle Java Micro Edition Embedded Client Architecture Guide

C

Serial Port Configuration Notes

This appendix describes how to configure an OS-level serial port on a Linux device so
that a Java application can use the javax.microedition.io.CommConnection
interface to access the corresponding logical serial port connection.

This appendix includes these topics:
= Section C.1, "Serial Port Setup"
» Section C.2, "OS-Level Testing"

Note: While this example is based on the RS-232 serial interface
implementation of CommConnection in
com.sun.cdc.io.j2me.comm.Protocol, an alternate
implementation could use the CommConnection interface to support
other forms of serial communication such as IrDA.

Table C-1 Serial Communications References

Interface Document

RS-232 serial http://tldp.org/HOWTO/Serial ~-HOWTO-4 .html
communications

minicom serial minicom

communications program

Serial port configuration setserialport

Serial port driver interface ttys

C.1 Serial Port Setup

1. Setup a serial cable connection between two Linux computers.
2. Become super user, then configure the serial port to use IRQ 4.

setserial /dev/ttySO irqg 4

3. Change the file access permissions for the serial port and the lock file.

chmod 777 /dev/ttyS0 /var/lock

This allows other users to access the serial port.
4. Launch the minicom serial communications program in setup mode.

minicom -s

Serial Port Configuration Notes C-1

http://www.tldp.org/HOWTO/Serial-HOWTO-4.html

OS-Level Testing

a. Select Serial port setup from the [configuration] menu.
b. In the setup menu, type A to change the Serial Device setting.

If the Serial Device setting is /dev/modem, then change it to
/dev/ttySO.

Press <ENTER> to confirm the change.

a o

Press <ENTER> again to exit the setup menu.

e. Select the Save setup as dfl menu option.

=h

Select the Exit menu option.
This initializes the serial port.
g. Type <CONTROL>-a q to finally exit minicom.

Follow a similar configuration procedure with the other computer connected to
the serial cable.

C.2 OS-Level Testing

The serial connection between the two computers can be tested with the minicom
serial communications program.

1.
2
3.
4.

Remotely login to each computer.
Launch the minicom(1) serial communications program on each computer.
Type some text into a minicom window.

Type <CONTROL>-a q to finally exit minicom.

This should determine that the serial connection is correct.

C-2 Oracle Java Micro Edition Embedded Client Architecture Guide

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Overview
	1.1 Domains and Devices
	1.2 Users and Documentation
	1.3 Components
	1.4 Platforms
	1.5 Developing Applications

	2 Connected Device Configuration and Foundation Profile
	2.1 Virtual Machine
	2.1.1 Interpreter
	2.1.2 Dynamic Compiler
	2.1.3 Memory Management
	2.1.4 Security

	2.2 CDC Class Libraries
	2.3 Foundation Profile Class Libraries

	3 Optional Packages
	3.1 J2ME Remote Method Invocation (RMI, JSR 66)
	3.2 Java Database Connectivity for CDC/FP (JDBC, JSR 169)
	3.3 XML API (JSR 280)
	3.4 Security Optional Package

	4 Customization
	4.1 Removable and Installable Components
	4.2 Locales and Character Sets
	4.3 Security
	4.4 Tuning

	5 Application Development
	5.1 Application Model
	5.2 Using the NetBeans Integrated Development Environment (IDE)
	5.3 Using Command Line Tools

	6 Tools
	6.1 cvm Launcher
	6.1.1 Launching a Java Application
	6.1.2 Class Search Path Basics
	6.1.2.1 Java Class Search Path
	6.1.2.2 Native Method Search Path

	6.2 Memory Inspection

	A cvm Reference
	A.1 Synopsis
	A.2 Description
	A.3 Options

	B System Properties
	C Serial Port Configuration Notes
	C.1 Serial Port Setup
	C.2 OS-Level Testing

