Oracle® Java ME Embedded
Getting Started Guide for the Windows 32 Platform

Release 3.2
E35132-01

September 2012

This book describes how to install and run Oracle Java ME
Embedded software on the Windows 32 platform.

ORACLE

Oracle Java ME Embedded Getting Started Guide for the Windows 32 Platform, Release 3.2
E35132-01
Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PPEIACE ...t vii
AUAIEIICE ...ttt ettt e et e et ta e e e te e s s e ess e beesaesseeasesbeessesbeesbenbeessese et benteeseeeteenaenaeeneenres Vi
Documentation AcCeSSIDILItYccciiiiiiiiiiiiiiii s Vi
Related DOCUIMENTSccevviiiiiieieieieitettettet et te e ste st et et et eseesaesessessassessessessessassassessssessessessessensensessons vii
Operating System COMMANScccueiiiiiiiiiiicce e Vi
SRELL PTOMIPLS ...ttt viii
CONVEINTIONS ..evvevieiieeieieetietietesteetesesstesseetesseessesseessesseessesssansesseessesseessesseensesseensesseensesseessesseensesseensessenns viii

1 Running the Oracle Java ME Embedded Software on Windows

Verifying the Java SE Platform ... 1-1
Finding the Java ME Embedded Emulator...............ccccccooviiiiininiininn, 1-1
Using the Java ME Embedded EMulatorccccoooiiiiiiiiniiiiicccccces 1-2
The GPIO Tab ..ot 1-3
The I2C TaD ..ot 1-3
ThE SPITAD ..ot 1-4
The MMIO Tabcoiiiiiiiiiiic s 1-5
Configuring the Emulated Device ..o 1-6
Using the Device MAanagerccccoviieuiiniriicininieeetteteeeet et sees 1-8
Running Sample Projects with the Emulator ... 1-8
GPIODEINO ..ottt s 1-9
T2CDIEIMNO .t 1-9
NetworkDemoIMPING ... s 1-9
PDAPDEMOIMPNGcociiiiiiiiiiiiiiiiiiiiiiccs s 1-10
Other Common Emulator Commands...........c.cccoeueiiininiicinniiciiineceieeeeeeeee e 1-10

2 Using the Oracle Java ME Embedded Software with NetBeans

Installing on NetBeans..............ccccciiiiiiiiii s 2-1
Creating a NeW Project ... 2-2
Including the Oracle Java ME Embedded Class Libraries............ccccccovviiiiiiinnniniin 2-5
Glossary
Index

List of Examples
2-1 Skeleton Code for an Oracle Java ME Embedded Project

List of Figures

1-1 The Java ME Embedded Emulator Screen on Windows........cccecveeeerinenenienienieneeseenees 1-2
1-2 Emulator General Purpose I/O (GPIO) Tab ..o 1-3
1-3 Inter-Integrated Circuit (I2C) Tab........ccccoiiiiiiiiiiiiiiic s 1-4
1-4 Serial Peripheral Interface Tabccccooooiii e, 1-5
1-5 Memory-Mapped IO (MMIO) Tabccccooiriiiiiiic e 1-6
1-6 GPIO Tab of the External Events Generatorcccocooorieiiiiricieiiiceecci e, 1-7
1-7 MMIO Tab of the External Events Generatorccccooeeiiiirrieiiiiccieecccecee 1-8
2-1 NetBeans Plugins Dialogccooeuiiiiiiiiiiiici e 2-1
2-2 Add Java Platform Dialog.........ccccoumurieiiiiicieiicicicici s 2-2
2-3 New Project DIialog......ccocoeuiiiiiiiiiiect e 2-3
2-4 New Embedded Application Dialog........ccccoeeiirieiiiiiiiiieiciccie e 2-3
2-5 Modifying the Project Properties...........ccooouiriiiiicicieiccc e 2-5

vi

Audience

Preface

This book describes how to install Oracle Java ME Embedded software onto the
Windows 32 platform. Readers using this guide should be familiar with the Information
Module Profile - Next Generation (IMP-NG) 1.0 Specification.

This document is intended for developers who want to run Oracle Java ME Embedded
on a Windows platform.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For a complete list of documents with the Oracle Java ME Embedded software, see the
Release Notes.

Operating System Commands

This document does not contain information on basic commands and procedures such
as opening a terminal window, changing directories, and setting environment
variables. See the software documentation that you received with your system for this
information.

vii

Shell Prompts

Shell Prompt

Bourne shell and Korn shell $

Windows directory>
Conventions

viii

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Running the Oracle Java ME Embedded
Software on Windows

The Windows emulation environment provides you with a platform for testing and
running IMP-NG IMlet suites without having to install those IMlet suites onto an
embedded device. This chapter describes running the emulation environment.

This chapter also shows you how to run the software on a Microsoft Windows system
using the emulation environment that is provided in the reference binary. It assumes
that you have downloaded the reference binary onto a Windows-based desktop
platform.

Verifying the Java SE Platform

The first step is to verify your current Java SE Platform. Tools that are provided with
the software are based on the Java Platform, Standard Edition (Java SE), Version 7,
Update 5. To properly use these tools, you must have a compatible version of the Java
Runtime Environment (JRE) installed on your computer and set as the default version.

To check if you have an appropriate version of the Java SE platform installed on your
computer, use the java -version command, as shown here:

C:\>java -version

java version "1.7.0_03"

Java (TM) SE Runtime Environment (build 1.7.0_03-b05)

Java HotSpot (TM) Client VM (build 22.1-b02, mixed mode, sharing)

The version number shown in the output should be version 1.7.0_01 or higher.

If you need to install a compatible version of the Java SE platform, you can download
it from the following address:

http://www.oracle.com/technetwork/java/index.html

Finding the Java ME Embedded Emulator

You can find the Java ME Embedded emulator within the bin directory of the Java ME
SDK 3.2 installation.

For example, if the Java ME SDK 3.2 is installed in C: \Java_ME platform_SDK_3.2,
then the emulator would be located at: C:\Java_ME_platform_SDK_
3.2\bin\emulator.exe

Running the Oracle Java ME Embedded Software on Windows 1-1

Using the Java ME Embedded Emulator

Using the Java ME Embedded Emulator

To start the emulator and open an emulator window, enter the following command
from the bin directory:

EmulatorDir>emulator.exe -Xdevice:IMPNGPhonel -Xdescriptor:location of_jad file

The emulator's main screen appears as shown in Figure 1-1. The first tab in the
emulator, AMS (Application Management System), displays which Java ME
Embedded applications are installed, including those that are currently running or
stopped. You can use the buttons on the right side to install or update additional
applications, obtain information about the currently selected application, start or stop
an application, or remove (uninstall) an application from the AMS.

The current status of each Java ME Embedded application is shown in the panel on the
left side as shown in Figure 1-1.

Figure 1-1 The Java ME Embedded Emulator Screen on Windows

[l IMPNGPhone1

Application Device Wiew Help

Device ID: O Phone number: 123456791

aMs | gpro || 1z | spr | Mmio)

EmbeddedTest2 frunning) Inskall

Ipdate

Info

i

Run
Skop

Femove

Note: You can run the emulator command without the .exe
extension. It works both ways, with the extension and without.

1-2 Oracle Java ME Embedded Getting Started Guide for the Windows 32 Platform

Using the Java ME Embedded Emulator

The GPIO Tab

The I12C Tab

If no -Xdevice option is specified, the IMPNGPhonel device is started by default.

For information on other emulator commands and options, see "Other Common
Emulator Commands" on page 1-10.

The GPIO tab lists the emulator’s current General Purpose I/O (GPIO) pins and ports,
and their directional states (input or output). For GPIO pins, the current value is
shown as a color-coded circle on the right side: high is colored green, while low is red.
For GPIO ports, the maximum and current value is shown. If a GPIO port or pin is
named, it is shown in this tab as well.

The GPIO tab is shown in Figure 1-2:

Figure 1-2 Emulator General Purpose I/O (GPIO) Tab

Il IMPNGPhonet

Device IDy O Phone number: 123456791

| ams | GPIO | 12c | 5P1| MMIO|

Porks

Marne Oukput | Maximom Ya... | Yalue
1|LEDS 3| o

Fins

Marmne Output | Malue
LED 1
LED 2
EUTTOMN 1
ELUTTON 2
BUTTOM 3

e ML= B

o eee

The Inter-Integrated Circuit (12C) tab emulates a simple peripheral slave device that
echoes back any data that is sent to it. Both the sent and received data are shown in
their appropriate window panes, as shown in Figure 1-3:

Running the Oracle Java ME Embedded Software on Windows 1-3

Using the Java ME Embedded Emulator

Figure 1-3 Inter-Integrated Circuit (I2C) Tab

[IMPNGPhone1

Application Device Wiew Help

Device ID: O Phone number: 123456791

ams | GP1o| 12C | sp1 | mmro |

Slave: |ID: 1, Name: 12C_ECHO v

Sent Data:

Received Diata;

The SPI Tab

The Serial Peripheral Interface (SPI) tab is similar to the I2C tab. It emulates a simple
peripheral slave device that echoes back any data that is sent to it. Both the sent and
received data are shown in their appropriate tabs, as shown inFigure 1-4:

1-4 Oracle Java ME Embedded Getting Started Guide for the Windows 32 Platform

Using the Java ME Embedded Emulator

The MMIO Tab

Figure 1-4 Serial Peripheral Interface Tab

C! IMPNGPhonet

Application Device Wiew Help

Device ID: O Phone number: 123456791

| ams | GP1o | 12| SPL | Mo |

Slave: |

Sent Data:

Received Diata;

Finally, the MMIO tab emulates the Memory-Mapped I/O (MMIO) interface bus. The
MMIO interface creates four separate devices that can be used for testing: TEST_
DEVICE, WDOG_LOG, RTC, and BIG_ENDIAN_DEVICE. Each type of device
displays its appropriate block configuration in an information table, as shown in
Figure 1-5:

Running the Oracle Java ME Embedded Software on Windows 1-5

Using the Java ME Embedded Emulator

Figure 1-5 Memory-Mapped 10 (MMIO) Tab

[IMPMGPhone1

Device ID: O Phone number: 123456791

| ams | Gp1o | 12¢ | sP1| MMIO |

Device: IIZZI: 1, Mame: TEST_DEYICE

Byte ordering: Little endian

Block name = Type
BLOCE Block.
BYTE Eivte
EVEMT _TRIGGER Evte
INT Inkt
LOMG Long
SHORT Shaork

Configuring the Emulated Device

Selecting the Device menu allows the user to configure several items on the device.
The Access Points tab allows the user to configure the settings returned by various
methods of the Access Point API, including Wi-Fi and carrier networks.

The File Connection tab allows the user to mount external file systems. In addition, the
Location tab allows the device to specify the simulated location, orientation, and speed
of the device. The SIM 0 and SIM 1 tabs allow the user to specify the hardware values
of one of two subscriber identity module (SIM) cards that are typically installed in
mobile devices.

To generate input events for General Purpose I/O (GPIO), select the GPIO menu item
under the Device menu. This action raises the External Events Generator window.
Here, you can toggle the value of each of the pins from high to low and vice versa, and
use a wave generator to simulate a more complex signal to the emulator. The GPIO
External Events Generator is shown in Figure 1-6:

1-6 Oracle Java ME Embedded Getting Started Guide for the Windows 32 Platform

Using the Java ME Embedded Emulator

Figure 1-6 GPIO Tab of the External Events Generator

External Events Generator

Access Points| Contactless Communication |File Connectlon! GPIOiLocatlonfMMIOiMobl\e [51M 0] | Mabile [SIM 1]

Input Pins

Pin & Pin 7

Input Ports

In addition, selecting the MMIO tab of the External Events Generator allows the user
to simulate sending input event IDs from one of the four different peripheral device
types. This tab is shown in Figure 1-7:

Running the Oracle Java ME Embedded Software on Windows 1-7

Using the Device Manager

Figure 1-7 MMIO Tab of the External Events Generator

External Events Generator

#ccess Paints| Contactless Communication| File Connection| GPIO | Location MMIO | Mobile [SIM 0] | Mobile [SIM 1]

Device!

1 Marne: BIG_ENDIAN_DEVICE

EvertID: |

Using the Device Manager

The Device Manager is started the first time the emulator is started. Its purpose is to
manage multiple devices and device storage, so that multiple devices can be emulated
without overwriting or colliding with each other.

When the Device Manager is started, it stays running as an icon in your system tray. To
interact with the Device Manager, right-click the icon to display the Device Manager
menu.

Running Sample Projects with the Emulator

The Oracle Java ME Embedded platform comes with a number of sample applications.
This section describes how to use demos created specifically for the Oracle Java ME
Embedded platform. Because IMP-NG is headless, the only user interface is to observe
application status in the emulator’s external events generator, or in the Output
window (or the console if you execute the demo from the command line).

With the exception of I2CDemo, the sample projects provided with the Oracle Java ME
Embedded release can be run on the emulator or on a real device.

Note that in the _policy.txt file of the distribution (typically located in the
runtimes/impng/1ib directory), the developer may need to add the following entries
to avoid security exceptions when running the samples:

To both the domains:
domain: untrusted, unsecured

domain: unidentified_third_party, unsecured

1-8 Oracle Java ME Embedded Getting Started Guide for the Windows 32 Platform

Running Sample Projects with the Emulator

Add the following entry:

allow: device_access

GPIODemo

This demo can be run on an IMP-NG emulator using the external events generator:

12CDemo

Click the GPIO tab. This view approximates the device actions.

Choose Device > GPIO to open the external events generator, and click the GPIO
tab. A single click on a button turns on LEDs indicating the button pushed and the
pin affected. This information is also written to the Output window.

Beneath each pin you can click the blue wave button to open the wave generator.
The wave generator simulates the frequency and duration of the signal to the LED.

Press Pin 5 (button 1) to turn on LED 1, press again to turn off LED 1.
Press Pin 6 (button 2) to turn on LED 2, press again to turn off LED 2.

Press Pin 7 (button 3) and check whether PORT 1's output value is 3. Press PIN 7
and check whether PORT 1's output value is 0.

This demo is designed to work with the IMP-NG runtime for Windows 32. It has no
user interaction.

Launch the I2C demo.
In the emulator, click the I12C tab.

The demo acquires a slave named 12C_Echo, writes data to the slave, and retrieves
it. The demo is successful if the Sent Data and Received Data matches.

NetworkDemolMPNG

This demo can be configured as a server or as a client by editing the application
descriptor. You launch two instances of this demo, the first one acts as a server and the
second one acts as a client. The client instance attempts to connect to the server
instance and if the connection is successful they exchange a message.

Create two instance projects of the NetworkDemoIMPNG sample project.

Right click on the first project and select Properties. In the Platform category
choose the device IMPNGPhonel. In the Application Description category set the
value of the property Oracle-Demo-Network-Mode to Server and click OK.

Launch the first project. It opens on the emulator IMPNGPhonel and waits for a
connection.

Right click on the second project and select Properties. In the Platform category
choose the device IMPNGPhone?2. In the Application Description category set the
value of the property Oracle-Demo-Network-Mode to Client and click OK.

Launch the second project. It opens on the emulator IMPNGPhone?2.

The client attempts to connect to the server. If successful, you see the following in
the output tab of the first project (the server):

Connection accepted
Message received - Client messages

Running the Oracle Java ME Embedded Software on Windows 1-9

Other Common Emulator Commands

The output of the second project (the client) shows the following:

Connected to server localhost on port 5000
Message received - Server String

PDAPDemolMPNG

Follow these steps to run the demo on the IMP-NG emulator:

Create test files and directories inside the emulator’s file system:

Documents and Settings\user\javame-sdk\version\work\IMPNGPhonel\appdb\fi
lesystem\rootl

Right click on the project and select Properties. In the Platform category choose the
device IMPNGPhonel and click OK.

Launch the project. It runs on IMPNGPhonel.

On the emulator menu, select Device > File Connection to see a list of mounted file
systems.

Open a terminal emulator and create a raw connection to localhost on port 5001.

A command line opens where you can browse the emulator’s file system. You can
use the following commands:

- cd - change directory

- 1s - list information about the FILEs for the current directory)
— new - create new file or directory

- prop - show properties of a file

- rm-remove the file

— view-View a file's content

Other Common Emulator Commands

This section provides emulator commands.

Note: For a full list of Emulator commands, type: emulator -help.

To show a list of installed IMlets, use the -Xjam:1ist subcommand:
EmulatorDir>emulator -Xjam:list

To see a list of all supported devices, use the -Xquery subcommand:
EmulatorDir>emulator -Xquery

To install a JAD over the air (OTA) and execute a IMlet, use the -Xjam:install
subcommand:

EmulatorDir>emulator -Xjam:install=<JAD_ file_ URL>
For example:
EmulatorDir>emulator -Xjam:install=http://www.appstore.com/TestJAD.jad

To run an installed IMlet, use the -Xjam: run subcommand:

1-10 Oracle Java ME Embedded Getting Started Guide for the Windows 32 Platform

Other Common Emulator Commands

EmulatorDir>emulator -Xjam:run=[storage_name | storage_number]

Provide either the storage name or storage number for the IMlet to run. You can
get the storage name and storage number from the list of IMlets shown by the
-Xjam:list subcommand.

To remove an installed IMlet, use the -Xjam: remove subcommand:
EmulatorDir>emulator -Xjam:remove=[storage_name | storage_ number | all]

Provide either the storage name or storage number for the IMlet to remove. To
remove all IMlets, use all. You can get the storage name and storage number from
the list of IMlets shown by the -Xjam:1ist subcommand.

To install a JAD file, execute the IMlet locally, and remove the IMlet when
completed, use the -Xdescriptor subcommand:

EmulatorDir>emulator -Xdescriptor:<JAD file name>

To set an IMlet's security domain, use the -Xdomain subcommand:
EmulatorDir>emulator -Xdomain:<domain_ name>

To run in autotest mode, use the -Xautotest subcommand:
EmulatorDir>emulator -Xautotest:<JAD file URL>

For example:

EmulatorDir>emulator -Xautotest:http://127.0.0.1:8080/getNextApp.jad

Running the Oracle Java ME Embedded Software on Windows 1-11

Other Common Emulator Commands

1-12 Oracle Java ME Embedded Getting Started Guide for the Windows 32 Platform

Using the Oracle Java ME Embedded
Software with NetBeans

This chapter discusses how to install the Oracle Java ME Embedded software for the
Windows platform on the NetBeans Integrated Development Environment (IDE).

The examples below use NetBeans 7.1, although it works with NetBeans 7.0 as well.
With the NetBeans integrated development environment, you can create and test
mobile applications using a graphical development environment.

Installing on NetBeans
This section walks you through installing the Oracle Java ME Embedded software.
1. Start the NetBeans IDE and choose the Tools>Plugins menu item.

A dialog box appears, as shown in Figure 2-1:

Figure 2—-1 NetBeans Plugins Dialog

| Updates | Avaiable Plugins (53) | Downloaded | Installed (10} | Settings |

[] shaw details Search: |
| Select | Mame Category Ackive :
i Features B Java ME
[Developing NetBeans Features @ VerGiBred
o ersion: 1.11.
[l Javase Feakures 9 || Source: NetBeans IDE 7.0.1 (Build 201107262000}
0 Feat @
roovy eatures

[] BaselIDE Features (V]
[] 21avaweb and EE Features @ ||Plugin Description
] PHP Features ("]
[] web Applications Features @ Mobility

Java Card™ Features -
E C/C++ Featuris g Java Mobile Edition Build System Core, Provides infrastructure to create, build and manage |

Mobility projects. Ant build scripts, project configurations management, preprocessor and
project logical view are all parts of this package

Modules installed:
Ant, Java, Java Persistence, Hibernate, Mobility, GUI Builder, MetBeans Plugin
Development, Maven, Java Debugger, Spring Beans

2. Choose the Installed tab, and ensure that the Java ME plugin is activated.

Using the Oracle Java ME Embedded Software with NetBeans 2-1

Creating a New Project

If it is not, select Java ME from the list and press the Activate button. Activating
the Java ME plugin requires installing the Java Profiler plugin as well.

3. Close the NetBeans Plugin dialog box when completed.
4. Install the Oracle Java ME Embedded platform in NetBeans.
a. Choose the Tools>Java Platforms menu item.

b. Add the new Oracle Java ME Embedded platform by pressing the “Add
Platform...” button in the lower-left corner of the dialog.

This step shows the dialog in Figure 2-2:

Figure 2-2 Add Java Platform Dialog

W Add Java Platform

X

Steps Select platform type

1. Select platform type
2. Platform Folders Select platform bype to install:
3. Detected Platforms

() Java Standard Edition

() Custam Java ME MIDP Platform Emulatar

() Java ME CDC Platfarm Emulator

c. Choose the second option, “Java ME MIDP Platform Emulator”, as the Oracle
Java ME Embedded is a Java ME MIDP Platform Emulator, and press the Next
button.

d. NetBeans lists all known Java ME MIDP platforms. If the Oracle Java ME
Embedded is not shown, press the "Find More Java ME Platform Folders..."
button near the bottom. Then, select the distribution folder and press the Open
button.

NetBeans automatically detects the Oracle Java ME Embedded platform.
e. Press the Next button.

If successful, NetBeans presents a report of the detected platform.
f. Press the Finish button.

The platform is added to the Java Platform Manager.
g. Finally, close the Java Platform Manager dialog.

Creating a New Project

This section walks you through creating a new project using the Oracle Java ME
Embedded platform.

2-2 Oracle Java ME Embedded Getting Started Guide for the Windows 32 Platform

Creating a New Project

1. Choose File>New Project. The New Project dialog appears, as shown inFigure 2-3:

Figure 2-3 New Project Dialog

@ New Project

Steps Choose Project

1. Choose Project Categaries: Pro;

=) Java _E Mobile Application
Java Web [Mobile Class Library
b B E] IMobile Project with Existing MIDP Sources
Javacard E] Import Wireless Toolkit Project

E coc application
Sl B CDC Class Library
Maven Bl Import CDC Pack 5.5 Project
FHP E] Import COC Toolkit Project
Grooyy @5 Mabile Designer Components
CiC++
MNetBeans Modules
#-12) Samples

Description:

Creates a new MIDP application in a standard IDE project. You can also generate a MIDIet in the
project. This project uses an IDE-generated Ant build script and special tasks to preprocess,
build, obfuscate, preverify, run, debug, and deploy vour application in the Java ME environment,

2. Choose Java ME from the Categories list, and Mobile Application from the Projects
list, then press the Next button.

The dialog shows the “Name and Location” panel.

3. Choose an appropriate name and location for the project. Be sure to uncheck the
"Create Hello MIDlet" option, as this may create a sample project that uses the
mobile libraries, and then press Next to arrive at the panel shown in Figure 2—4:

Figure 2-4 New Embedded Application Dialog

® New Mobile Application

Steps Default Platform Selection
1. Choose Project Emulator Platform: | o e =)
2. Mame and Location !
3. Default Platform Selection
4, More Configurations Selection Devis: IIMPNGPhonel = i
Device Configuration: | [(%) CLDC-1.1 Ci 5 0 4 0
Device Profile: OMMP-1.0 () IMP-NG
< Back] [Mext =] [Finish] [Cancel] [Help

Using the Oracle Java ME Embedded Software with NetBeans 2-3

Creating a New Project

Here, you can choose the desired platform for the Java Wireless Client project.

Choose “Oracle Java ME Embedded 3.2” in the drop-down selection at the top of
the dialog.

Press Finish.

A new Oracle Java ME Embedded project is created. At this point, you can use the
skeleton code shown in Example 2-1 to start building an embedded project.

Example 2-1 Skeleton Code for an Oracle Java ME Embedded Project

import com.oracle.deviceaccess.PeripheralTypeNotSupportedException;
import javax.microedition.midlet.MIDlet;

public class GPIODemo extends MIDlet ({

Note that in the _policy.txt file of the Oracle Java ME Embedded distribution
(typically located in the runtimes/impng/1ib directory), the developer must add the

boolean bFirst = false;
boolean loopFlag = true;

public void startApp() {

if (bFirst == false) {

try {
// Perform startup operations
} catch (PeripheralTypeNotSupportedException ex) {
ex.printStackTrace() ;
return;
} catch (Exception ex) {
ex.printStackTrace() ;
return;

bFirst = true;
} else {
System.out.println("GPIO Demo is already started..");

// Start program here, including accessing peripheral devices

public void pauseApp() {

// Pause the application

public void destroyApp (boolean unconditional) {

bFirst = false;

// Close all resources that have been opened

following entries to avoid security exceptions when running the example:

2-4 Oracle Java ME Embedded Getting Started Guide for the Windows 32 Platform

Including the Oracle Java ME Embedded Class Libraries

To both the domains:

domain: untrusted, unsecured

domain: unidentified_third_party, unsecured
Add the following entry:

allow: device_access

Including the Oracle Java ME Embedded Class Libraries

The final step involves modifying the project properties to include the desired Oracle
Java ME Embedded class definitions. The following packages are available.

= Application Management System (AMS) API

s CLDC Logging API

» File Connection and PIM Optional Packages 1.0

s Location Based API

s OMDA Access Point API

= Security and Trust Services API for J2ME

= Wireless Messaging API

Here are the steps to include optional packages.

1. Choose File>Project Properties for the project you just created.

You should see a dialog similar to Figure 2-5:

Figure 2-5 Modifying the Project Properties

® TestEmbeddedApplication

Project Configuration: I::IEeFauItl::u:nnfin;urati|:|r| v|[Manage Configurations. ..]

Cateqgary:
Ej General
2] Platform s
_____ Eﬂ abilities Select Platform Type: |CLDC,|’MIDP |
[& application Descriptor s |
i Iéi‘ p.p H Ermulator Platform: | Oracle Java ME Embedded 3.2 * || Manage Emulators. ..]
Ly Build L =l
[Sources Filtering
|_°—ﬁ Compiling Device: IMPMNGPhonel V|
ﬁ' Libraries & Resources
l::' obfuscating Device Configuration: i Eo s (®) CLDC-1.1
-3 Creating JaR
[signing Device Profile: O IMP-1.0 (3 IMP-NG
= G ting Jawad
Eﬂ PSS IEaNEtos Optional Packages:
-+ [» Running :
..... &8 Deploying | [#] &MS5 API 1.0

|
| [#] CLDC Logging APT 1.0

Device Access 1.0

File Connection and PIM Optional Packages 1.0

Lacation Based APIs 1.0

i OMDA Access Point APT 1.0

Security and Trust Services AP For J2ME(TM) 1.0, Security and Trust Services APIs 1.0
‘Wireless Messaging &PI 1.1

[OF][Cancel H Help

Using the Oracle Java ME Embedded Software with NetBeans 2-5

Including the Oracle Java ME Embedded Class Libraries

2. Select the Platform option from the list on the left side, and note the optional
packages on the bottom right side of the dialog.

3. Ensure that any libraries used by the embedded application are checked.
4. Click OK to close the dialog.

At this point, you can compile and run the newly-created Oracle Java ME
Embedded project. If it is successful, you should see the Oracle Java ME
Embedded emulator.

2-6 Oracle Java ME Embedded Getting Started Guide for the Windows 32 Platform

Glossary

3GPP

Third Generation Partnership Project. A collaboration between groups of
telecommunications associations, for the purpose of making a globally applicable third
generation (3G) mobile phone system specification.

Access Point

A network-connectivity configuration that is predefined on a device. An access point
can represent different network profiles for the same bearer type, such as different
cellular network access point names (APN), or for different bearers that may be
available on a device, such as WiFi or bluetooth.

AID

Application Identifier. A string used to uniquely identify card applet applications and
certain types of files in card file systems. An AID consists of two distinct pieces: a
5-byte RID (resource identifier) and a 0 to 11-byte PIX (proprietary identifier
extension).

AMS

Application Management Service. The system functionality that completes tasks such
as installing applications, updating applications, and switching foregrounds.

APDU

Application Protocol Data Unit. A communication mechanism used by SIM Cards and
smart cards to communicate with card reader software or a card reader device.

API

Application Programming Interface. A set of classes used by programmers to write
applications that provide standard methods and interfaces and eliminate the need for
programmers to reinvent commonly used code.

Applet

A small program that runs in the APDU application environment.

Application list

The screen that lists all of the installed applications. The user gets to this screen by
pressing the Apps soft key on the home screen. The application list uses text color to
show which applications are running. It also provides a system menu that enables the
user to perform application management tasks on the highlighted application.

Glossary-1

ARM

Glossary-2

ARM

A reduced instruction set computer (RISC) instruction set architecture (ISA) developed
by ARM Holdings.

AXF

ARM Executable Format is an ARM executable image generated by ARM tools.

Background

An application state in which the application does not receive events from its input
stream and its display is not rendered to the screen.

BIP

Bearer Independent Protocol. Allows an application on the SIM Card to establish a
data channel with a terminal (that is, an Oracle Java Wireless Client-enabled handset),
and through the terminal to a remote server in the network.

CDC

Connected Device Configuration. A Java ME platform configuration for devices. It
requires a minimum of 2 megabytes of memory and a network connection that is
always on.

CDMA

Code Division Multiple Access. A mobile telephone network standard used primarily
in the United States and Canada as an alternative to GSM.

CLDC

Connected Limited Device Configuration. A Java ME platform configuration for
devices with limited memory and network connectivity. It uses a low-footprint Java
virtual machine such as the CLDC HotSpot Implementation, and several minimalist
Java platform APISs for application services.

Configuration

Defines the minimum Java runtime environment (for example, the combination of a
Java virtual machine and a core set of Java platform APIs) for a family of Java ME
platform devices.

ETSI

European Telecommunications Standards Institute. An independent, non-profit
standardizations group responsible for the standardization of Information and
Communication Technologies (TCI) within Europe. Although based in Europe, it
carries worldwide influence in the telecommunications industry.

Foreground
The application state in which the application is rendered to the device display and the
input stream is passed to it.

Foreground switching

Changing which application is in the foreground by shifting the focus from one
application to another.

JAR file

GCF

Generic Connection Framework. A part of CLDC, it is a Java ME API consisting of a
hierarchy of interfaces and classes to create connections (such as HTTP, datagram, or
streams) and perform I1/0O.

GSM

Global System for Mobile Communications. A 3G mobile telephone network standard
used widely in Europe, Asia, and other parts of the world.

HTTP

HyperText Transfer Protocol. The most commonly used Internet protocol, based on
TCP/IP that is used to fetch documents and other hypertext objects from remote hosts.

HTTPS

Secure HyperText Transfer Protocol. A protocol for transferring encrypted hypertext
data using Secure Socket Layer (SSL) technology.

ICCID

Integrated Circuit Card Identification. The unique serial number assigned to an
individual SIM Card.

IMP-NG

Information Module Profile Next Generation. A profile for embedded "headless"
devices, the specification for JSR 228, is a subset of MIDP 2.0 that leverages the latest
security and networking types and APIs of MIDP 2.0 but does not include UI APIs.

IMEI

International Mobile Equipment Identifier. A number unique to every mobile phone. It
is used by a GSM or UMTS network to identify valid devices and can be used to stop a
stolen or blocked phone from accessing the network. It is usually printed inside the
battery compartment of the phone.

IMlet

An application written for IMP-NG. An IMlet does not differ from MIDP 2.0 MIDlet,
except by the fact that an IMlet can not refer to MIDP classes that are not part of
IMP(-NG). An IMlet can only use the APIs defined by the IMP(-NG) and CLDC
specifications.

IMSI

International Mobile Subscriber Identity. A unique number associated with all GSM
and UMTS network mobile phone users. It is stored on the SIM Card inside a phone
and is used to identify itself to the network.

JAD file

Java Application Descriptor file. A file provided in a MIDlet suite that contains
attributes used by application management software (AMS) to manage the MIDlet's
life cycle, and other application-specific attributes used by the MIDlet suite itself.

JAR file

Java Archive file. A platform-independent file format that aggregates many files into
one. Multiple applications written in the Java programming language and their
required components (class files, images, sounds, and other resource files) can be
bundled in a JAR file and provided as part of a MIDlet suite.

Glossary-3

Java ME platform

Glossary-4

Java ME platform

Java Platform, Micro Edition. A group of specifications and technologies that pertain
to running the Java platform on small devices, such as cell phones, pagers, PDAs, and
set-top boxes. More specifically, the Java ME platform consists of a configuration (such
as CLDC or CDC) and a profile (such as MIDP or Personal Basis Profile) tailored to a
specific class of device.

Java Specification Request (JSR)

A proposal for developing new Java platform technology, which is reviewed,
developed, and finalized into a formal specification by the JCP program.

Java Virtual Machine

A software “execution engine” that safely and compatibly executes the byte codes in
Java class files on a microprocessor.

KVM

A Java virtual machine designed to run in small devices, such as cell phones and
pagers. The CLDC configuration was initially designed to run in a KVM.

LCDUI

Liquid Crystal Display User Interface. A user interface toolkit for interacting with
Liquid Crystal Display (LCD) screens in small devices. More generally, a shorthand
way of referring to the MIDP user interface APIs.

LWUIT

Lightweight User Interface Toolkit (LWUIT). A versatile and compact API for creating
attractive mobile user interfaces. LWUIT provides sophisticated Swing-like capabilities
and employs a similar design as Swing, but without the tremendous power and
complexity. LWUIT makes it easy to apply consistent look-and-feel's, called themes,
across disparate devices using an advanced graphical user interface (GUI)
customization tool.

MiDlet
An application written for MIDP.

MIDlet suite

A way of packaging one or more midlets for easy distribution and use. Each MIDlet
suite contains a Java application descriptor file (. jad), which lists the class names and
files names for each MIDlet, and a Java Archive file (. jar), which contains the class
files and resource files for each MIDlet.

MIDP

Mobile Information Device Profile. A specification for a Java ME platform profile,
running on top of a CLDC configuration that provides APIs for application life cycle,
user interface, networking, and persistent storage in small devices.

MSISDN

Mobile Station Integrated Services Digital Network. A number uniquely identifying a
subscription in a GSM or UMTS mobile network. It is the telephone number to the
SIM Card in a mobile phone and used for voice, FAX, SMS, and data services.

RMS

Obfuscation

A technique used to complicate code by making it harder to understand when it is
decompiled. Obfuscation makes it harder to reverse-engineer applications and
therefore, steal them.

Optional Package
A set of Java ME platform APIs that provides additional functionality by extending the
runtime capabilities of an existing configuration and profile.

Oracle Java Device Test Suite

A set of Java programming language tests developed specifically for the wireless
marketplace, providing targeted, standardized testing for CLDC and MIDP on small
and handheld devices.

Preemption

Taking a resource, such as the foreground, from another application.

Preverification

Due to limited memory and processing power on small devices, the process of
verifying Java technology classes is split into two parts. The first part is preverification
which is done off-device using the preverify tool. The second part, which is
verification, occurs on the device at runtime.

Profile

A set of APIs added to a configuration to support specific uses of a mobile device.
Along with its underlying configuration, a profile defines a complete and
self-contained application environment.

Provisioning

A mechanism for providing services, data, or both to a mobile device over a network.

Push Registry

The list of inbound connections, across which entities can push data, maintained by
the Oracle Java Wireless Client software. Each item in the list contains the URL
(protocol, host, and port) for the connection, the entity permitted to push data through
the connection, and the application that receives the connection.

RL-ARM

Refers to the Real-Time Library that is a group of tightly coupled libraries designed to
solve the real-time and communication challenges of embedded systems based on
ARM processor-based microcontroller devices.

RMI

Remote Method Invocation. A feature of Java SE technology that enables Java
technology objects running in one virtual machine to seamlessly invoke objects
running in another virtual machine.

RMS

Record Management System. A simple record-oriented database that enables a MIDlet
to persistently store information and retrieve it later. MIDlets can also use the RMS to
share data.

Glossary-5

RTSP

Glossary-6

RTSP

Real Time Streaming Protocol. A network control protocol designed to control
streaming media servers and media sessions.

SCWS

Smart Card Web Server. A web server embedded in a smart card (such as a SIM Card)
that allows HTTP transactions with the card.

SIM

Subscriber Identity Module or Subscriber Identification Module. An integrated circuit
embedded into a removable SIM card that securely stores the International Mobile
Subscriber Identity (IMSI) and the related key used to identify and authenticate
subscribers on mobile telephony devices such as mobile phones and computers.

Smart Card

A card that stores and processes information through the electronic circuits embedded
in silicon in the substrate of its body. Smart cards carry both processing power and
information. A SIM Card is a special kind of smart card for use in a mobile device.

SMS

Short Message Service. A protocol allowing transmission of short text-based messages
over a wireless network. SMS messaging is the most widely-used data application in
the world.

SMSC

Short Message Service Center. The SMSC routes messages and regulates SMS traffic.
When an SMS message is sent, it goes to an SMS center first, then gets forwarded to
the destination. If the destination is unavailable (for example, the recipient’s handset is
turned off), the message is stored in the SMSC until the recipient becomes available.

SOAP

Simple Object Access Protocol. An XML-based protocol that enables objects of any
type to communicate in a distributed environment, it is most commonly used to
develop web services.

SSL

Secure Sockets Layer. A protocol for transmitting data over the Internet using
encryption and authentication, including the use of digital certificates and both public
and private keys.

SVM

Single Virtual Machine. A software mode that can run only one MIDlet or IMlet at a
time.

Task

At the platform level, each separate application that runs within a single Java virtual
machine is called a task. The API used to instantiate each task is a stripped-down
version of the Isolate API defined in JSR 121.

TCP/IP

Transmission Control Protocol/Internet Protocol. A fundamental Internet protocol that
provides for reliable delivery of streams of data from one host to another.

WMA

Terminal Profile

Device characteristics of a handset (terminal) passed from the handset to the SIM Card
along with the IMEI at SIM Card initialization. The terminal profile tells the SIM Card
what values are supported by the device.

uicC

Universal Integrated Circuit Card. The smart card used in mobile terminals in GSM
and UMTS networks. The UICC ensures the integrity and security of personal data on
the card.

UMTS

Universal Mobile Telecommunications System. A third-generation (3G) mobile
communications technology. It utilizes the radio spectrum in a fundamentally different
way than GSM.

URI

Uniform Resource Identifier. A compact string of characters used to identify or name
an abstract or physical resource. A URI can be further classified as a uniform resource
locator (URL), a uniform resource name (URN), or both.

USAT

Universal SIM Application Toolkit. A software development kit intended for 3G
networks. It enables USIM to initiate actions that can be used for various value-added

services, such as those required for banking and other privacy related applications.
USAT is defined in standard 3GPP 31.111 for 3G.

USIM

Universal Subscriber Identity Module. An updated version of a SIM designed for use
over 3G networks. USIM is able to process small applications securely using better
cryptographic authentication and stronger keys. Larger memory on USIM enables the
addition of thousands of contact details including subscriber information, contact
details, and other custom settings.

WAE

Wireless Application Environment. It provides an application framework for small
devices, by leveraging other technologies such as Wireless Application Protocol
(WAP), Wireless Transaction Protocol (WTP), and Wireless Session Protocol (WSP).

WAP

Wireless Application Protocol. A protocol for transmitting data between a server and a
client (such as a cell phone) over a wireless network. WAP in the wireless world is
analogous to HTTP in the World Wide Web.

WCDMA

Wideband Code Division Multiple Access. A detailed protocol that defines how a
mobile phone communicates with the tower, how its signals are modulated, how
datagrams are structured, and how system interfaces are specified.

WMA

Wireless Messaging API. A set of classes for sending and receiving Short Message
Service (SMS) messages.

Glossary-7

XML Schema

XML Schema

A set of rules to which an XML document must conform to be considered valid.

Glossary-8

Index

D

device manager, 1-8

E

emulator
commands, 1-10
starting, 1-1

Index-1

Index-2

	Contents
	List of Examples
	List of Figures
	Preface
	1 Running the Oracle Java ME Embedded Software on Windows
	Verifying the Java SE Platform
	Finding the Java ME Embedded Emulator
	Using the Java ME Embedded Emulator
	The GPIO Tab
	The I2C Tab
	The SPI Tab
	The MMIO Tab
	Configuring the Emulated Device

	Using the Device Manager
	Running Sample Projects with the Emulator
	GPIODemo
	I2CDemo
	NetworkDemoIMPNG
	PDAPDemoIMPNG

	Other Common Emulator Commands

	2 Using the Oracle Java ME Embedded Software with NetBeans
	Installing on NetBeans
	Creating a New Project
	Including the Oracle Java ME Embedded Class Libraries

	Glossary
	Index
	D
	E

