Oracle® Java Micro Edition Software
Development Kit

Developer's Guide
Release 3.0.5 for Windows
E24265-04

March 2012

This document describes how to use the Java ME SDK plugin
for NetBeans.

ORACLE

Java ME SDK Developer's Guide, Release 3.0.5 for Windows
E24265-04
Copyright © 2009, 2012, Oracle and/ or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUrOIACE ...ttt Xi
BN e =Y o Ul ISR Xi
Documentation Accessibility ... Xi
(@0 077=) 115 o) 2 1= J RPN Xi
ReElated DOCUIMENTESooeviiiieeiiieieeeeeeeeeee ettt e e ettt e et e ettt e e saaeeesaaeesasaeessnteessnressnseesssseeeesnes Xi

1 Getting Started

QUICK SEATE ...ttt ettt et a et b e st b e e ae bt s be b e st et et et et ent et e st ebeebeebenaens 1-1
Tips for Legacy Toolkit USers.............cccooiiiiiiiiiiiiiiiiiic e 1-2
Java ME SDK Update Centerccoueiriiieiinieiieieiecineeeneeteeeeteee et neses s s nenes 1-3

2 Platforms

Emulation Platforms............ccoooiiiiiiiiiii 2-1
CLDC and MIDP StacK........ccccceuviniiuiiiiiiiiiiiiisisiesicie s 2-1
CDIC SEACKS ...ttt 2-2

Managing Java Platforms............ccooiiiiiiiii s 2-3
Java ME Platforms (CLDC and MIDP)ccccoveiniiniinniinieineenetneesrccereeere s seene e 2-3
Java SE and CDC PIatfOrImS.coveiiieiiriireniisesiesteiesteteteseeteeseesessessessessessessessessessessessesessessessensenes 2-3
Create a Platform for Legacy CDC Projectscocovvrririnnirreririrnrrecreree e 2-4

3 Using Sample Projects

RUunning a Project ... 3-1
TroubleShooting...........cccccoiiiiiiiiiii s 3-2
Sample Project OVEIVIEWcccccoiiiiiiiiiiiiiiiiic 3-3
Configuring the Web Browser and Proxy Settings...............ccccoviiiniiiiniiic, 3-5
Resolving Reference Problems..............ccccooiiiiiiiiiiiiii s 3-6
Running MIDP and CLDC Sample Projects.............cccccccoviviiiiininiiiiiiiiicceccns 3-6
Running the AdvancedMultimediaSupplements Sample Project.........c.ccoeveeveeirircencnccncnennc. 3-7
IMage Effects. ... e 3-7
CAIMNETA. ... 3-7
MoVIng HElICOPLETccuiiiiiiiiiiiiiiiii s 3-8

IMUSIC EFfOCES ..ottt 3-8
Running the Demos Sample ProJectccccvvriiiiiinrniir e 3-8
COLOTS ottt 3-9
PIOPEITIES c.oveieiitect e s 3-9

FONETESEIE ... e 3-10
SEOCK e 3-10
TACKEES .o 3-11
MaNYBaLLS......cooiie s 3-12
MINICOLOT . 3-12
CROOSET ... 3-12
HHPEXAMPIE.....vieieei s 3-12
HEPVIEW o 3-12
PUSREXAMIPIE ... 3-12
RUNNINg FPDEMIOviviiiiitcniiitctctcc et 3-13
RUNNING GAIMES ... 3-13
Running Network DEmMO ..o s 3-13
SOCKEE DIEIMNO ... 3-13
Datagram DEemOccciiiiiiiiiiiiii s 3-14
Running PhOtOAIDUINccccoviiiiiiiiiiiiiiiiiii s 3-14
RUunning UIDEMOcooviiiiiiiiiiiciciictccs ettt 3-14

4 Creating and Editing Projects

PrOJect TYPESoooviiniiiiccc e 4-1
CLDC PIOJECLS.....viuiiiiiiiiiiiiicti s 4-1
CDC PIOJECES «.vvveveiiieietctecetetc ettt sen s 4-2

The Project WIzard ... 4-2
Project TemMPlate PAGEccceueuiiuiuiiiiiiciciceeiceeeeee ettt 4-2
Name and Location Pageccccouoiiuiiiiiiiic e 4-3
Choose Project (CDC) ..o 4-3
Platform Selection (CDIC)ccuiieierieieieieieeerestisteste e stestesseseesaesaeseesessesessessessessessessessasseseasessensens 4-3
WTK MIDP Project LOCAtIONcovoviviviiiiiiiiiiecccctcc s 4-4
CDC Toolkit Project LOCtON........ccouviviiiiiiiiiiiiiiiiic e 4-4
Platform Selection Page (CLDC/MIDP)......cccovvvinrniinrrccrreriees st 4-4
Create @ CLDC ProJect......coiiiiiiiiiiiiitcect st 4-4
Create @ CDC PIOJECtcvoiiviiiiiiiiictcc st 4-5

Working With Projects...........ccccoooiiiiiiiiiiiiiic s 4-6

VieWw Project FIles ... 4-7

Create @ INEW MIDIEtccooiiiiiiiiireene ettt st st s st 4-8
Import a Legacy MIDP Project ..o 4-8
Import a Legacy CDC ProOject ..ottt 4-8

Add Files to @ Projectcccovviiiiiiiiiiiiiiiiiiici s 4-9

Search Project FAles ... 4-9

5 Viewing and Editing Project Properties

General Project Properties............cccocoiiiiiiiiiiiiiicc 5-1
Platform Selection ... 5-1
Editing Application Descriptor Properties.............ccccccoviiiiiiiiiniiiiiics 5-2
CDC AIIDULES ... 5-2
MIDP ATIDULES ...ttt 5-2
Add an ATIDULE ..o s 5-2

206 FE=Y UAN w1 L <SRRI 5-3

Remove an AIIDULE ... 5-3
IMIDIELS ...t 5-3
Add @ MIDIEL ...t 5-3
Edit @ MIDIEtooiiiiiiiiiiiicenii e 5-3
Remove @ MIDIet ... s 5-3
Change MIDlet Display Order..........cccvirrinnininnniicnreee e 5-4
PUSH REGISEIY ...t 5-4
Add a Push Re@istry ENEIYcccoviiiiiiiiic e 5-4
Edit a Push Registry ENEIY.......ccooiiiiiiiiii e 5-4
Remove a Push Registry ENtIyccccooiiiiiiiiiiiiiiiicccccs 5-4
Change Push Registry Display Order..........ccocccceiiiiiiiiiicrccicereeeeeeeeeeeeneeneenes 5-4
API PEIMUISSIONS ...ttt 5-4
Adding Permission ReqUESES ..o 5-4
Building a Project ... 5-5
ConfigUring ANtccovviiiiiiiiiiiiiii s 5-5
COMPILNG ..ottt 5-6
Adding Libraries and RESOUICES...........ccoeuvirriririririeirirrerree et 5-6
Creating JAR and JAD Files (Packaging).........ccccocovvnininininiiiiinccccccccns 5-7
ODFUSCALINEG ...t 5-7
SIEIIING ..ot 5-7
Signing CDC ProJects......cooiiiiiiiiiiiieiciieetcetctc st 5-8
EXpOrting @ Keycooioiiiiiiii s 5-8
RUnning Settings ... 5-8
MIDP Project RUN OPtioNScovoviiiiiiiiciiictceccs et 5-8
CDC Project RUN OPtiONSc.coviiiiiiiiiiitccicctctecctc st 5-9

6 Running Projects in the Emulator

Emulating Devices ... s 6-1
The Device Manager 0n WINAOWS ...t 6-1
Viewing Device Properties ... 6-1
Platform Properties ... 6-2
Device INfOrmMationc.ovvuviiiiiiiiiccrrr e 6-2
Device PTOPerties ..o 6-2
Setting Device Properties ..o 6-2
Opening a Serial POrt ... 6-3
Running a Project from the Device Selector ... 6-3
Running Projects Simultaneously on a Single Devicecccccoviiiiiie, 6-4
Emulator Features............cccoiiiiiiiiiiii 6-4
EMUIAtOr MIEIUS ..ot 6-5
APPLCALION......oiiiiiiiiii s 6-5
DIEVICE. ...ttt 6-6
IMESSAZES......ocvevitiiite e 6-6
Orientationccoouiiiiiiiiii e 6-6
External Events Generator ... 6-7

Bt oo 6-7
VIBW ettt 6-7

7 Searching the WURFL Device Database

WURFL S@ArCh O D@VICESoooneeiiiieieeee ettt ettt ettt e st e e st e s aae e senteeesseeeesaeeesareeeas 7-1
WUREFL Search FIltering ... 7-2

8 Finding Files in the Multiple User Environment

SWIChING USEIS ..ot 8-1
INStallation DIr@CEOTIES.cc.ecieiieeieiieeeeeee ettt e et e et et et e ssesseessesssessesssessenssensenssensennes 8-1
NetBeans UsSer DIreCtOries. ... ccccoeuiiiuiiiiieiiiesiteeciesieeteeste et esteesteesteeesaeesstessseessaessseesssesssessssesssesssesans 8-2
Java ME SDK USEr DIr@CEOTIESccueeuveiieieiieieriieieeeeiesteesteeetesseessesseessesseessesseessesssessessessessesssenseens 8-3

9 Profiling Applications

Collecting and Saving Profiler Datain the IDE...............cccccocoiiiiiniic, 9-1
Loading a .nps File ... 9-3

10 Network Monitoring

MONItor NetWOTK TraffiC......c.ocvcviiiiiiiiieceieect ettt e e e ere e te s e saeesae b e eanereens 10-1
Filter or SOIt M@SSAZEScocooviiiiiiiiiiic s 10-2
Save and Load Network Monitor INnformation.............ccecueeierieninneninie e 10-3
Clear the Message Tree.............cooiiiiiiiiiiic e 10-3

11 Lightweight Ul Toolkit

LWUIT and the Java ME SDKc.ocociiiiiiiiiinincnencrtetet ettt sttt seere e 11-1
LWUIT ReSOUICE EAILOToeimiiiiiiiieieeee ettt ettt sttt ettt et b e sbeebesbe e 11-1
Add a Different LIWUIT Libraryccccooiiiiiiiiiiiiiiiiiiccn s 11-2
LWUIT DEIMOS.iiuiiiiiieitieiieiteet ettt ettt ettt b e b e b sb et e e st et e et e sbe s st e sheeabesbeembe bt et e ebeenteeneenseenie 11-2

12 Security and MiDlet Signing

Security DOmMAainScoiiiii s 12-2
Setting Security DOmMainSccooooiiiiiiiiic s 12-2
Specify the Security Domain for an Emulator ... 12-2
Specify the Security Domain for a Projectocooeiiic, 12-2
SigNING @ PrOJect.... ..o s 12-3
Sign a CLDC Project With @ Key Pair........ccccccovviiiiiiiriiiiirrcncreeceeeeeeeeeeeeee s 12-3
Sign @ CDC PIOJECtcvimiiiiciciicctcc ettt 12-3
Managing Keystores and Key Pairscccccooviiiiiiiiiiiiiiiiccccns 12-3
Working With Keystores and Key Pairsc..ccccccciiiiiicniciiceccreeeeeeeeeeeeenes 12-4
Create @ KeYStOreooiiiiiiiiiicc s 12-4

Add an Existing Keystore ..o 12-4

Create a New Key Pair ... 12-5
Remove a Key Pair........ccooiiiiiic s 12-5

Import an Existing Key Paircccoooiiiiiii 12-5
Managing Root Certificates..............cccocoooiiiiiiiiiii e 12-6

vi

13

14

15

16

17

18

Command Line Reference
Run the Device Managerccccooiviiiiiiiiiiii s 13-1
Manage Device Addresses (device-address)..............cocooeeiiiiiiiiiiiiiieiii 13-1
Emulator Command Line OPtions..........c.cccoeireiriiininniiinenceteeeeeeeeeeee et saenens 13-2
MIDIet OPtiONS......cooviiiiiiiiiicic s 13-2
CDC OPHONS. ..ottt s 13-3
Debugging and Tracing OPtiONSccovuvvvieiriririiiiirreeerrreeee e 13-4
Command Line Profiling ... 13-4
Build a Project from the Command Line............ccccoiiiiniiiiie 13-5
Check Prerequisites..........couvviiiiiiiiiiiiiiici s 13-5
Compile Class Files.........cccovvniiiiiiiiiiiiiic s 13-5
Preverify Class Files........oo s 13-5
Packaging a MIDLet Suite (JAR and JAD)........cccooiiiiiiiiee e 13-6
Command Line Security Features ... 13-7
Change the Default Protection Domain...........cccoevverirriiiinnrncirrrnccrreereeeeeeeeeas 13-7
Sign MIDlet Suites (JAAtOOL)..........ccovvriiiiiiiiiiiiiiiiiiiiii 13-7
Manage Certificates (MEKeYTOOL)..........ccccviiiiiiiiniiiiiiiiiiiiiiicss 13-8
Generate Stubs (WSCOMPILE)ccovviiiiiiiiiieiicccre et 13-9
Logs
Device Manager LOZScccooiiiiiiiiii s 14-1
Device INStance LOEScocviiiiiiiiiiiic s 14-1
JSR Support
JOP APIS ... 15-1
JSR 75: PDA Optional Packages
FileConnection APL.............ccocooiiiiiiii e 16-1
PIM AP ..o et 16-2
Running PDAPDEMOcccooiiiiiiiiiiii st 16-2
Browsing FAles.........ccccoviiiiiiiiiiiiiii s 16-2
The PIM AP ..o 16-3
JSR 82: Bluetooth and OBEX Support
Setting OBEX and Bluetooth Properties ..o 17-1
Running the Bluetooth Demo..............ccccooiiiiiiiii s 17-2
Running the OBEX Demo............ccocooiiiiiiiiiiiiic e 17-3
JSR 135: Mobile Media API Support
Media TYPESoviiiiiiiic s 18-1
Media CaptUre......ccovviiiiiiiiiiiiiiii s 18-2
MMAPI MIDlet BERaVIOT ..o 18-2
RING TOMES ..ottt ettt 18-2
Download Ring TONESccccoviiiiiiiiiiiiiiiiiiicic s 18-2

Vii

19

20

21

22

viii

Ring Tone FOImMatsccovviuiiiiiiiiiiiic s 18-2

Running AudioDemo ... 18-4
Running MMAPIDEMOS. ... 18-4
SIMPLE TOMES ... 18-4
SIMPLE PIAYET ...t 18-5
VAA@O ettt s 18-6
Attributes for MobileMediaAPL.............ccccooiiiiiiiiiiiii 18-7

JSR 172: Web Services Support

Generating Stub Files from WSDL Descriptors............ccccovuiuiiniiiiiiiniiiiicccecennes 19-1
Creating a New Mobile Web Service Client ... 19-2
RUN JSRITZ2IDI@IMOceeenvieiieiieiieeteeiesteestesetetestetesseessassaesesssesseessesseessessesssessssnsessesssenseessesseensessensesses 19-2

JSR 177: Smart Card Security (SATSA)

Card Slots in the EMUIAtorcccoooiniiiiiiiiiceeeee e 20-1
Java Card Platform Simulator (Cref)cocooirriniiniiiiniiiccee e 20-2
Adjusting Access CONIolcccocoviiiiiiiiiiiiiniiiii s 20-2
Specifying PIN PrOpPerties.o 20-2
Specifying Application Permissions.............ccccvviiviiiiiininiiniiinns 20-3
Access Control File EXamplecccccooviiiiiiiiiiiiii s 20-4
Running SATSADEMOScccccoiiiiiiiiiiiiii s 20-6
APDUMIDIEL ..ottt ettt st st st s b e sttt et se ettt be e 20-7
SATIMIDIEE ..ottt ettt et a ettt ettt st b st b bbb neene 20-7
CIYPLOMIDIEL ..ottt s 20-7
IMORNGITIMIDIEL ...ttt b ettt b e ettt et et e st et e st eb e e e eseeteebesaesseean 20-8
Running SATSAJCRMIDEIMO.cccoiiiiiiiiiiiiiiiiiiiicss s 20-8

JSR 179 and 293: Location APl Support

Setting the Emulator's Location at Runtime ... 21-1
Running the CityGuide Sample Project............ccccoviiiiniiiiniiicce, 21-3
Running the CityGuide2_0 Sample Project ... 21-4

JSRs 120 and 205: Wireless Messaging

Using the WMA Console to Send and Receive Messages...............cccocovviniiiiniinnnniinnennn, 22-1
Launching the WMA CONSO0le..........ccccoviiiiiiiiiiiniiiiiiiis s 22-1
WMA Console INerfacecooviuiiiiiiiiiiiiiiicc e 22-1
Emulator Phone NUMDETSccciiiiiiiiiicrcc s 22-2
Sending a Text or Binary SMS Message.........c..couceueiiiinicieiiiiee e 22-2
Sending Text or Binary CBS MeSSages..........ccccviviviiiiiiiniiiiiiiicicciesescescsennes 22-2
Sending MIMS MESSAGES........c.ceuiviiiiiiiiiiiiiiiiiiiii s 22-3
Receiving Messages in the WMA Console ..o 22-3

Running WIMADEINOccooiiiiiiiiiin s 22-3
WMADemo Push Registry Valuescccooeuiiiiiiiii 22-3
Running WMADEMO OTAco.oiriiiiic s 22-3
Sending SMS Messages From WMA Console to an Emulator and Back..........ccccccceceveuneennee. 22-4
Sending CBS Messages from WMA Console to an Emulator............ccccccoovvviinnnnninnne, 22-4

Sending MMS Messages from WMA Console to an Emulator ..o 22-5

Running WIMA TOOL...........cooiiiiiiiiiii st 22-5
SINISTECEIVE ..uvevveeieeteeteesteeetestesetestesstesesseeseeseesseessasseassesssassesssansesssensesssessenssensesssensesssesseessessenssesses 22-5
CDSTECEIVE ...ttt ettt ettt ettt e e et e st e st et e e se s st asaesseessesseensesseenseessenseensenseessenseensesseensessenn 22-6
TIIIYISTECEIVE 1. uieeiniieeeetieeeeitte ettt e sttt eesbteseatteestteeesateesasbaeeansaeeenseeesasbaeenssaeenasseesssbeesnsaessnseesensaeenssens 22-6
530111 <1 Lo TSRS 22-6
o] o113 o o SRS 22-7
INUNISSEINA. .. .eeuvieeietieeteete ettt e ste s et esbeesaesbeete e taesseeseessasseessesseassesssessesssesseesaesbesssasseessenseessesseasaesssessessens 22-7

23 JSR 184: Mobile 3D Graphics

Choosing a Graphics Mode............cccoiiiiiiiiiiiii e 23-1
Immediate MOde ... s 23-1
Retained MOe.......coouiimiiiiii s 23-1

Quality Versus Speed ... 23-2

Content for Mobile 3D Graphics........c.cocooeiriiirieinieirinerereeeeeee e 23-2

Running Demo3D Samples............ccccooiiiiiiiiiiiiiii e 23-2
LILE3DD ettt 23-2
RetaiNedMOMeccoooviiiiiiiicrce s 23-3
POGOROO ...ttt 23-3

24 JSR 180: SIP Communications

Understanding the SIP Registrar and Proxycccovviiiiiinninncs 24-1
Running SIPDEIO ...ttt sttt 24-1

25 JSR 211: Content Handler API (CHAPI)

Using Content Handlers ..o s 25-1
Defining Content Handler Properties.............cccccooviiiiiiiniiiininiiiicc 25-2
Defining Content Handler Actions ..o 25-3
Running the CHAPIDemo Content BroWSer...........ccoccovoioiiiiiiiiiiiiiicce e 25-4

26 JSR 226: Scalable 2D Vector Graphics

RUnning SVGDEMO...........ccoooiiiiiiii st 26-1
SV G BIOWSET ..c.veetietieieeiett ettt ete et te et e e e et e st e s s e ess e s st e st eseessesseessesneensesseessensaensenseensenssensennsens 26-1
Render SVG IMAGE.......coviiiiiiiiiiiiiiiciicic s 26-2
Play SVG ANIMation......ccocovviiiiiiiiiiiiiiiiiiiis s 26-2
Create SVG Image from SCratCh..........cccoeviviriiiiiininiicrr s 26-2
Bouncing Ballscoiiiii 26-2
OptmizZed MENUc.oviieiiciii et e 26-2
PiCtUre DECOTAOT ..vveevieiieeieie ettt ettt ettt et e st e s e st e s e sseesbeesaesseensenseeneesseensesnesnsensens 26-3
LoCation Based SEIVICEccccviiieieiieieiieeeee ettt ettt saesrtesae st teebaesbesesesaeesbenseeseesseesaesesensessens 26-4
Running SVGCoNtactListccoouiuiiiiiiiiiiiicec s 26-5

27 JSR 229: Payment API Support

Running the Payment Console...............ccccoooiiiiiiiiiiiic e 27-1
Running JBIICKS ... 27-2

28

29

30

31

32

33

JSR 238: Mobile Internationalization API (MIA)

Setting the Emulator's Locale...............cccoooiiiiiic e 28-1
Using the Resource Manager ..o s 28-1
Working With LOCALEScoiiiiiiiiicc e e 28-2
Working With Resource Files...........ccooiiiiiiiiiiiis 28-2
Working With RESOUICESc.cciuiiiiiiiiiiiiiiiiiicceicceeee e 28-2
Running il8NDemo ..o s 28-3

JSR 239: Java Bindings for Open GL ES
OPEN GL OVEIVIEWooviiiiiiiiiiieiireeeree ettt ettt ettt st st st sae e saenesaene s 29-1

JSR 256: Mobile Sensor API Support

Creating a Mobile Sensor Project.............cooiiiiiiiiiiiiiie e 30-1
Using a Mobile Sensor Project.............ccoovviiviiiiiiiiiiiinnscss 30-2
Creating a Sensor Script File ... 30-2
SeNSOIBIOWSEToeiiiiiitc s 30-3
IMAATDBIES ... s 30-3

JSR 253: Mobile Telephony API

The MTA Implementation ..o 31-1
Running the MtaDemo ... 31-1

JSR 257: Contactless Communication API

Using ContactleSSDemOccccoiiiiiiiiiiiiii s 32-1
Tag File FOImMats..........ccccoooiiiiiiiiiiiiiic s 32-2
Script FOIMat ... s 32-3

JSR 258: Mobile User Interface Customization API

Running the Customization Sample Project..............cccoooiiiiiiiiiiiiiic 33-1
Revising Sample Project Appearances.............ccccoiiiiniiiiiiiiiiiic s 33-1

Preface

The Oracle® Java ME SDK is mobile application development tool available as a
plugin to the NetBeans IDE.

Audience

This document is intended for Java ME application developers.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Related Documents
For more information, see the following documents:

= The supported API documentation links can be found in Table 15-1, " Supported
JCP APIs".

Xi

= To see documentation for the Oracle Java Wireless Client and CLDC Hotspot go to
http://download.oracle.com/javame/mobile.html and look under
Documentation for Device Makers

= For SDK, LWUIT, and legacy Sun Java Wireless Toolkit documentation see
http://download.oracle.com/javame/developer.html.

Xii

1

Getting Started

The Oracle Java Micro Edition (Java ME) Software Development Kit (SDK) is a natural
starting point for learning and using Java ME technology. The focus of the SDK is to
provide emulation and deployment assistance during the development process. Using
this simple yet powerful tool you can create, edit, compile, package, and sign an
application. After testing your application in the Java ME SDK emulation
environment, you can move to deploying and debugging on a real device.

This SDK provides supporting tools and sample implementations for the latest in Java
ME technology. The SDK provides support for recent versions of the Connected
Limited Device Configuration (CLDC) and Connected Device Configuration (CDC)
platforms.

s Section 1.1, "Quick Start"
= Section 1.2, "Tips for Legacy Toolkit Users"
= Section 1.3, "Java ME SDK Update Center"

As of version 3.0.5, the Java ME SDK is plugin to the NetBeans IDE. In NetBeans the
Mobility Pack is a prerequisite to installing the Java ME SDK.

1.1 Quick Start

The Java ME SDK plugin uses NetBeans technology, as described in the online help.
These tips offer some hints for getting started as quickly as possible.

= Access the documentation. The online help is the primary documentation for the
SDK. Many windows and dialogs feature a help button that opens
context-sensitive help in the help viewer.

Select Help > Help Contents to open the JavaHelp Online Help viewer. You can
also type F1. Remember to use the search capability and the index to help you find
topics.

Note: If you require a larger font size, the help topics are also
available as a printable PDF and a set of HTML files.

= Run sample projects. Running sample projects is a good way to become familiar
with the SDK.

See Section 3.1, "Running a Project" for a general overview of how to run a project.

= See the Projects window and the Files window for a visual overview of the logical
and physical layout of a project. When viewing items in the tree, use the context

Getting Started 1-1

Tips for Legacy Toolkit Users

menu (right-click) to see the available actions. See Section 4.3, "Working With
Projects".

A project has a default device platform property that is used if you run from the
toolbar (the green arrow), the Run menu, or the project's context menu. To see a
project’s default device, right-click the project and select Properties. Choose the
Platform category and you see the default device displayed in the Device field. To
reset the Device make another choice from the dropdown menu.

To run an application on different devices without changing the default device,
right-click on the project and select Run With. Choose a different device and click
OK.

The emulator is an independent process, and once it has started it is a separate
process from the build process running in NetBeans. Stopping the build process or
closing a project does not always affect the application running in the emulator.
You must be sure to terminate the application (the emulator can remain open). See
Section 3.1, "Running a Project".

The SDK provides two unique instances for most devices. For example,
DefaultCldcPhonel and DefaultCldcPhone? are the same except for the phone
number. This means you can perform tests that require two devices (messaging,
for example) without customization. If you want to run more than two emulators
you can easily make a copy that preserves the settings you require. See Section 6.9,
"Adding a Device Instance".

1.2 Tips for Legacy Toolkit Users

If you used the Sun Java Wireless Toolkit for CLDC or the CDC Toolkit in the past, the
advice in Section 1.1, "Quick Start" still applies because although the user interface is
quite different, the project concept is similar. These tips apply legacy terms and ideas
to the SDK.

Runtime focus is less on the project and more on device capabilities and the
emulation process.

In legacy toolkits you had to be careful to match the platforms, the APIs, and the
capability of the output device. The SDK matches project requirements and device
capabilities for you, so mismatches do not occur.

As mentioned in the Section 1.1, "Quick Start", clicking the green arrow runs the
main project. You can right-click any project and select run.

In the device selector you can test many devices without changing the project
properties. Right-click any device and choose Run. Only projects that are
compatible with the device are shown in the context menu.

Import applications from legacy toolkits to SDK projects. The installation of the
legacy toolkit must exist.

See Section 4.2.4, "Platform Selection (CDC)" and Section 4.2.6, "CDC Toolkit
Project Location".

Toolkit settings are Application Descriptors in the SDK. Right-click on a project
and select Properties. Choose the Application Descriptor category.

Toolkit utilities are generally accessible from Tools > Java ME submenu in the
NetBeans IDE. For example, the WMA console, the Java ME SDK Update Center
and more can be started from the Tools > Java ME submenu.

1-2 Java ME SDK Developer's Guide

Java ME SDK Update Center

Select Window > Output in the NetBeans IDE to see the output of the WMA
Console or the Payment Console.

Profiling and Network monitoring utilities are accessed from the Profile > Java ME
submenu in the NetBeans IDE.

The emulator is familiar, but there are some fundamental differences.

It's important to realize that the emulator is a remote process, and once it starts it is
independent of the build process running in NetBeans. Stopping the build process
or closing a project does not always affect the application running in the emulator.
You must be sure to terminate the application from the emulator. For more on this,
see Section 3.1, "Running a Project” and Section 4.3, "Working With Projects".

In the Wireless Toolkit you could simultaneously run multiple versions of a device
because the toolkit would increment the phone number automatically each time
you launched a project. Because the emulator is now a remote process, the phone
number is a property that must be set explicitly for the device instance.

The SDK provides two unique instances for most devices. For example,
DefaultCldcPhonel and DefaultCldcPhone? are the same except for the phone
number. This means you can perform tests that require two devices (messaging,
for example) without customization. If you want to run more than two emulators
you can easily make a copy that preserves the settings you require. See Section 6.9,
"Adding a Device Instance".

The emulator has additional display functionality. See Section 6.7, "Emulator
Features".

1.3 Java ME SDK Update Center

The Java ME SDK Update Center supports automatic updating of the entire Java ME
SDK plugin, and individual modules within the Java ME SDK. To access the update
center, select Tools > Java ME > Java ME SDK Update Center. The update center uses
the same technology as the NetBeans Plugins Manager. The update manager works
independently so the plugin can be renewed as necessary.

To detect updates, select Tools > Java ME > Java ME SDK Update Center and choose
the Available tab. Any available updates will be listed. Choose an update and click
Install to update the plugin.

Java ME SDK Update Center

Available | Installed | Updates | Settings

[Reload Catalog |

Install

Mame

Version | Category @ Icon

Java ME SDK Tools NetBeans Update Site

Version: 1.0

Package Description

Provides ability to update Java ME SDK Tools MetBeans [
MetBeans IDE must be restarted.

Getting Started 1-3

Java ME SDK Update Center

1-4 Java ME SDK Developer's Guide

2

Platforms

The Java ME SDK supports two technology platforms, also called stacks. They are:
Section 2.1.1, "CLDC and MIDP Stack", and Section 2.1.2, "CDC Stacks", as discussed in
Section 2.1, "Emulation Platforms".

A project runs on a particular emulation platform. The device manager determines
whether a device is appropriate for your project based on the platform, the APIs your
application uses, and a set of device properties. If you run an application and an
appropriate emulator or device is already running, the SDK automatically installs and
runs your application. You don't have to launch the emulator over and over.

On all operating system platforms, you can use the SDK to deploy to a real device
using a wireless connection.

2.1 Emulation Platforms

An emulator simulates the execution of an application on one or more target devices.
An emulation platform allows you to understand the user experience for an
application and test basic portability. For example, a platform enables you to run
applications on several sample devices with different features, such as screen size,
keyboard, runtime profile and other characteristics.

Java ME SDK provides three well-known emulation platforms: Connected Limited
Device Configuration (CLDC) with MIDP, Connected Device Configuration (CDC)
with AGUI, and CDC with Personal Basis Profile (PBP). All three platforms include
predefined devices with different screen sizes, runtime profiles, and input methods.
See Section 2.1.1, "CLDC and MIDP Stack" and Section 2.1.2, "CDC Stacks".

2.1.1 CLDC and MIDP Stack

CLDC/MIDP applications conform to both the Connected Limited Device
Configuration and Mobile Information Device Profile (MIDP -
http://jcp.org/en/jsr/detail?id=139). The CLDC/MIDP stack is based on the
open source phoneME Feature project at http://java.net/projects/phoneme. It
supports these technologies:

= CLDC 1.1 and MIDP 2.1

= Optimized Mobile Service Architecture (MSA) stack with extensions
(http://jcp.org/en/jsr/detail?id=248)

= Java Technology for the Wireless Industry (JTWI) stack
(http://jcp.org/en/jsr/detail?id=185)

m All the JSRs listed in Table 15.1, "JCP APIs".

Platforms 2-1

Emulation Platforms

CLDC/MIDP applications are targeted for devices that typically have the following
capabilities:

= A 16-bit or 32-bit processor with a clock speed of 16MHz or higher

= Atleast 160 KB of non-volatile memory allocated for the CLDC libraries and
virtual machine

= Atleast 192 KB of total memory available for the Java platform
= Low power consumption, often operating on battery power

= Connectivity to some kind of network, often with a wireless, intermittent
connection and limited bandwidth

Typical devices might be cellular phones, pagers, low-end personal organizers, and
machine-to-machine equipment. In addition, CLDC can also be deployed in home
appliances, TV set-top boxes, and point-of-sale terminals.

The SDK provides four default emulators to support CLDC:
» ClamshellCldcPhonel
CLDC 1.1, MIDP 2.1, MSA 1.1 and extensions for 256, 280, 239 and 229
s DefaultCldcJtwiPhonel and 2
CLDC 1.1, MIDP 2.0, JTWI 1.0
» DefaultCldcMsaPhonel and 2
CLDC 1.1, MIDP 2.1, MSA 1.1
s DefaultCldcPhonel, 2, and 3
CLDC 1.1, MIDP 2.1, MSA 1.1 and extensions for 256, 239 and 229

See Section 4.2.8, "Create a CLDC Project” and Chapter 6, "Running Projects in the
Emulator".

2.1.2 CDC Stacks

A Java ME Platform, Connected Device Configuration (CDC)
(http://jcp.org/en/jsr/detail?id=218) application is an application targeted for
network-connected consumer and embedded devices, including high-end mobile
phones, smart communicators, high-end PDAs, and set-top boxes.

Devices that support CDC typically include a 32-bit microprocessor or controller and
make about 2 MB of RAM and 2.5 MB of ROM available to the Java application
environment.

CDC is based upon the open source project phoneME Advanced, found at
http://java.net/projects/phoneme. A CDC application conforms to the Connected
Device Configuration with a set of profiles that include Personal Basis Profile,
Foundation Profile, and AGUTI:

» CDC1.1with PBP 1.1 (http://jcp.org/en/jsr/detail?id=217)

» Foundation Profile 1.1
(http://jcp.org/aboutJava/communityprocess/final/jsr219/index.html)

s AGUI1.0 (http://www.jcp.org/en/jsr/detail?id=209)
The SDK provides three default emulators to support CDC:
s Default CdcPbpPhonel

2-2 Java ME SDK Developer's Guide

Managing Java Platforms

CDC 1.1, PBP 1.1, Foundation Profile (FP) 1.1
= VgaAGUIPhonel

CDC1.1,PBP 1.1, FP 1.1 and AGUI 1.0
= VgaCdcPhonel

CDC1.1,PBP1.1,FP1.1

See Section 4.1, "Project Types" and Section 6.2, "Viewing Device Properties".

2.2 Managing Java Platforms

To view the Java Platform Manager, select Tools > Java Platforms. Alternatively,
right-click on a project, choose Properties from the context menu, select Platform, and
select the Manage Emulators button.

The Java Platform Manager is a tool for managing different versions of the Java
Development Kit (JDK) and customizing Java platforms that your applications depend
on. You can add source files and Javadoc documents to the existing platforms. For Java
ME purposes, the platforms are emulators or SDK platforms for mobile devices.

The Java ME SDK pre-registers CDC, J2ME (CLDC and MIDP) and Java SE (the JDK
serves as the default platform) for version 3.0.5. Because the Mobility pack is also
installed the current Oracle platforms coexist with the legacy Java platforms.

See Section 2.2.1, "Java ME Platforms (CLDC and MIDP)" and Section 2.2.2, "Java SE
and CDC Platforms".

2.2.1 Java ME Platforms (CLDC and MIDP)

To view the Java Platform Manager, select Tools > Java Platforms. The Java ME
platform supports CLDC projects. Tabs display the following information for the
current platform.

Devices. View all the CLDC devices that the Device Manager has discovered. Click
Refresh to reconfigure the platform and refresh the list.

Sources. Add JAR files or source files to the Sources tab to register source code.

Javadoc. Add Javadoc documentation to support any new classes or sources files you
have added.

Tools & Extensions. View the tools and extensions for this platform.

2.2.2 Java SE and CDC Platforms

To view the Java Platform Manager, select Tools > Java Platforms. The Java SE
platform supports the Java ME SDK. The CDC platform supports the CDC Stack. In
the standard Java ME SDK installation the Java SE and CDC platforms have the same
options:

Classes. View the platform's classpaths. Add a JAR or folder containing additional
classes, moving the classes up and down in the list determines their place in the
classpath.

Sources. Add JAR files or source files to the Sources tab to register source code.

Javadoc. Add Javadoc documentation to support any new classes or sources files you
have added.

See Section 2.1.2, "CDC Stacks".

Platforms 2-3

Managing Java Platforms

2.2.3 Create a Platform for Legacy CDC Projects

The Java ME SDK version 3.0.5 platform name for CDC does not match the name in
the legacy CDC toolkit and the CDC Mobility Pack. The legacy name is "Sun Java
Toolkit 1.0 for Connected Device Configuration" while the SDK name is "CDC Oracle
Java(TM) Platform Micro Edition SDK 3.0.5". To ensure a successful import, you can
create a new platform and give it the legacy name.

The following procedure allows you to import legacy CDC projects without Reference
errors (see Section 3.5, "Resolving Reference Problems").

1. Select Tools > Java Platforms. Select "CDC Oracle Java(TM) Platform Micro Edition
SDK 3.0.5", and in the Classes tab, note the libraries required for the platform.

Click Add Platform... and click Next.
Select Java ME CDC Platform Emulator and click Next.
On the Choose Platform page, select the SDK installation directory. Click Next.

AN

On the Platform Name page, type "Sun Java Toolkit 1.0 for Connected Device
Configuration” in the Name field. In the Sources tab, add the following libraries:
agui.jar,cdc_l.1.jar, fp_1.1.jar,pbp_1.1.jar,and secop_1.0.jar.

Click Finish, and Close.

See Section 4.5.2, "Import a Legacy CDC Project” and Section 3.5, "Resolving Reference
Problems".

2-4 Java ME SDK Developer's Guide

3

Using Sample Projects

The Java ME SDK sample projects introduce you to the emulator's API features and
the SDK features, tools, and utilities that support the various APIs. These features can
help you customize the sample projects or create applications of your own.

The source code for every demonstration application is available in the installation's
\apps directory. Subdirectories contain projects, and each project has a src directory
that contains Java programming language source code.

For example, if the SDK is installed in installdir, the source code for the SMS sender
MIDlet (example. sms.SMSSend) in WMADemo resides in the following location:

installdir\apps\WMADemo\src\example\sms\SMSSend. java

For instructions on running projects, see the following topics:

Section 3.1, "Running a Project”

Section 3.2, "Troubleshooting"

Section 3.3, "Sample Project Overview"

Section 3.4, "Configuring the Web Browser and Proxy Settings"
Section 3.5, "Resolving Reference Problems"

Section 3.6, "Running MIDP and CLDC Sample Projects"

3.1 Running a Project

To run a sample project, go to the Java ME SDK Start Page tab and single-click a
sample project name. The project opens in the Project window and starts running in
the emulator.

Note: If you can't see the Project window choose Window >
Projects. To see console output, select Window > Output > Output.

Follow these steps to run your own projects.

1.

Select File > Open Project, and browse to select a project.
The project is added to the Projects window.
To run a project, right-click the project and select Run from the context menu.

To run the main project (which is shown in bold text in the Projects window), click
the green Run button in the toolbar or press Fé.

To set a project as main, right-click the project name and select Set as Main Project.

Using Sample Projects 3-1

Troubleshooting

: Device Selector

@ Cikyicuidez _0

= LD, ava(TM) ME Platform SDK 3.0.5

To run the project on a different device, choose the device in the Device Selector
window. Right-click on a device and select Run Project from the context menu.
Pull right to see a listing of open projects. Projects that cannot run on the current
device are grayed out.

= CikyiGuide

ZontactlessDemo

Cuskorization
Run Projeck Derno3l
Defaulk] n " =
Run Project wia OTA # Demos
Defaulk] Run AR of 14D
Defaultcl un ar FPDemo
[Defaukd] properties W
DefaultCldcPhonel 118nDem
DefaulkCldcPhonez JBricks
DefaultCldcPhones J5R17ZDemo

The device emulator window opens with the demo application running.

As the sample project runs, you might need to press one of the soft keys below the
screen on the left or right side.

You use soft keys to install or launch an application, open a menu, exit, or perform
some other action. Some demos include these instructions in the application.

For instructions on running samples, see Table 3-1 or Table 3-2.

When you are finished viewing the application, go to the emulator's Application
menu and select Exit to close the emulator and stop the execution of the project's
build script.

Once the emulator is launched, it is an independent process.

Pressing the red stop button in the Output window terminates the build script, but it
does not close the emulator.

Likewise, closing the NetBeans IDE does not affect the emulator. In the emulator, select
Application > Exit or press the emulator’s exit button (the X) on the upper right.

This ensures that both the emulator process and the project build process close.

3.2 Troubleshooting

Sometimes even a "known good" application, such as a sample project, does not run
successfully. The problem is usually your environment.

Some demonstrations require specific setup and instructions. For example, if a
sample uses web services and you are behind a firewall, you must configure the
emulator's proxy server settings or web access will fail. See Section 3.4,
"Configuring the Web Browser and Proxy Settings".

If an application must run over the air (OTA), the SDK automatically installs it in
the device instance.

MIDIet Suites use runMIDlet to perform the installation.
installdir\runtimes\cldc-hi\bin\runMidlet.exe
CDC platforms install applications as follows:

installdir\runtimes\cdc-hi\bin\cvm.exe

3-2 Java ME SDK Developer's Guide

Sample Project Overview

Because these programs are launched remotely, virus checking software can
prevent them from running. If this happens, the project compiles, but the emulator
never opens. In the console you see warnings that the emulator cannot connect.

Consider configuring your antivirus software to exclude runMidlet and cvm from

checking.

3.3 Sample Project Overview

The Java ME SDK includes demonstration applications that highlight some of the
technologies and APIs that are supported by the emulator.

Most demonstration applications are simple to run. Section 3.1, "Running a Project"
contains instructions for running most demonstrations. Sample projects usually have
some additional operation instructions.

Table 3-1 lists all the MIDP /CLDC demonstration applications that are included in

this release.

Table 3-1 MIDP/CLDC Sample Projects
Optional
Sample Package Description Instructions
Advanced JSR 234 Demonstrates 3D audio, reverberation, image Section 3.6.1, "Running the
Multimedia processing, and camera control. AdvancedMultimediaSupplem
Supplements ents Sample Project”
AudioDemo MMAPI 1.1 Demonstrates audio capabilities, including Section 18.4, "Running
mixing and playing audio with an animation. AudioDemo"
BluetoothDemo JSR 82 Demonstrates device discovery and data Section 17.2, "Running the
exchange using Bluetooth. Bluetooth Demo"
CHAPIDemo JSR 211 A content viewer that also uses Section 25.4, "Running the
MediaHandler. CHAPIDemo Content
Browser"
CityGuide JSR 179 A city map that displays landmarks based on Section 21.2, "Running the
the current location. CityGuide Sample Project"
CityGuide2_0 JSR 293 Similar to CityGuide, but with additional Section 21.3, "Running the
Location API 2.0 features. CityGuide2_0 Sample Project”
ContactlessDemo ~ JSR 257 Emulates detection of RFID tags. Section 32.1, "Using
ContactlessDemo"
Customization JSR 258 Demonstrates the use of a device’s Ul Section 33.1, "Running the
themes. Customization Sample Project”
Demo3D JSR 184 Contains MIDlets that demonstrate how to Section 23.4, "Running
use 3D graphics, both immediate mode and =~ Demo3D Samples”
retained mode.
Demos MIDP 2.0 Includes various examples: animation, color, ~Section 3.6.2, "Running the
networking, finance, and others. Demos Sample Project"
FPDemo CLDC1.1 Simple floating point calculator. Section 3.6.3, "Running
FPDemo"
Games MIDP 2.0 Includes TilePuzzle, WormGame, and Section 3.6.4, "Running
PushPuzzle. Games".
[18nDemo JSR 238 Includes string sorting, number formatting, Section 28.3, "Running
and a phrase translator. i18nDemo”
JBricks JSR 229 A game that uses the Payment API for Section 27.2, "Running JBricks"

buying extra lives or levels.

Using Sample Projects 3-3

Sample Project Overview

Table 3-1 (Cont.) MIDP/CLDC Sample Projects

Optional
Sample Package Description Instructions
JSR172Demo JSR 172 Demonstrates how to use the JSR 172 APIto Section 19.3, "Run
connect to a web service from a MIDlet. JSR172Demo"
LWUITBrowser N/A Demonstrates LWUIT features. Chapter 11, "Lightweight UI
Toolkit"
LWUITDemo N/A Demonstrates LWUIT features. Chapter 11, "Lightweight UI
Toolkit"
LWUITIODemo N/A Demonstrates LWUIT features. Chapter 11, "Lightweight UI
Toolkit"
LWUITMakeover N/A Demonstrates LWUIT features. Chapter 11, "Lightweight UI
Toolkit"
LWUITSpeed N/A Demonstrates LWUIT features. Chapter 11, "Lightweight UI
Toolkit"
LWUITTimeZone N/A Demonstrates LWUIT features. Chapter 11, "Lightweight UI
Toolkit"
LWUITTipster N/A Demonstrates LWUIT features. Chapter 11, "Lightweight UI
Toolkit"
MMAPIDemos MMAPI Demonstrates MMAPI features, including Section 18.5, "Running
tone sequences, MIDI playback, sampled MMAPIDemos"
audio playback, and video.
MtaDemo JSR 253 Demonstrates how MTA features can be used Section 31.2, "Running the
to simulate telephony actions. MtaDemo"
Multimedia MMAPI Demonstrates different video playback Section 18.5.2.1, "Video"
formats.
NetworkDemo MIDP 2.0 Demonstrates how to use datagrams and Section 3.6.5.1, "Socket Demo"
serial connections. and Section 3.6.5.2, "Datagram
Demo"
ObexDemo JSR 82 Demonstrates device discovery and data Section 17.3, "Running the
exchange using Bluetooth. OBEX Demo"
PDAPDemo JSR 75 Demonstrates how to manipulate contacts, Section 16.3, "Running
calendar items, and to-do items. PDAPDemo"
Demonstrates accessing local files.
PhotoAlbum MIDP 2.0 Demonstrates a variety of image formats. Section 3.6.6, "Running
PhotoAlbum”
SATSADemos JSR 177 Demonstrates communication with a smart Section 20.4, "Running
card and other features of SATSA. SATSADemos"
SATSAJCRMIDemo JSR 177 Shows how to use the SATSA-Java Card Section 20.4.5, "Running
Remote Invocation method. SATSAJCRMIDemo"
Sensors JSR 256 The SensorBrowser and Marbles game Section 30.4, "SensorBrowser"
demonstrate sensor input. and Section 30.5, "Marbles"
SIPDemo JSR 180 Simple message exchange using SIP. Section 24.2, "Running
SIPDemo"
SVGContactList JSR 226 Uses SVG to create a contact list displayed Section 26.1.9, "Running
with different skins. SVGContactList"
SVGDemo JSR 226 Uses different SVG rendering techniques. Section 26.1, "Running

SVGDemo"

3-4 Java ME SDK Developer's Guide

Configuring the Web Browser and Proxy Settings

Table 3-1 (Cont.) MIDP/CLDC Sample Projects

Optional
Sample Package Description Instructions
UIDemo MIDP 2.0 Showcases the breadth of MIDP 2.0's user Section 3.6.7, "Running
interface capabilities. UIDemo"
WMADemo WMA 2.0 Shows how to send and receive SMS, CBS, Section 22.2.3, "Sending SMS
and MMS messages. Messages From WMA Console
to an Emulator and Back"
XMLAPIDemo JSR 280 Uses DOM and STAX APIs to create an XML Follow the instructions the

sample and SAX, DOM and StAX APIs to
parse the sample.

application provides.

Table 3-2 lists the CDC sample projects available in this release.

Table 3-2 CDC Sample Projects

Sample

Optional
Package

Description Instructions

AGUIJava2zDDemo JSR 209

This stand-alone application is a Java Click the blue arrows to page
SE application adapted for the CDC through the various images and

environment. It demonstrates the animations. The applications focus
graphical and animation capabilities of on curves. Click the AA icon to see
the Java 2D™ APL how antialiasing affects
appearance.
AGUISwingSet2 JSR 209 Functional tools such as buttons, Click through the tabs to view the

sliders, and menus implemented with controls and animations.

Swing.

3.4 Configuring the Web Browser and Proxy Settings

If you are behind a firewall you might need to configure the proxy server so that MIDP
applications using web services can succeed.

Note:

CDC emulators do not work through a proxy.
Communications such as downloading images from the Internet
fail on CDC emulators.

The settings are typically the same as those you are using in your web browser.

1.
2.
3.

Select Tools > Options.

Select the General options icon.

In the Web Browser field, choose the browser that will be affected by these proxy
settings. Click Edit to add or remove a browser from the dropdown list.

Choose a Proxy Setting;:

= No Proxy

= Use System Proxy Settings

= Manual Proxy Settings

To set the HTTP Proxy, fill in the proxy server address field and the port
number.

Using Sample Projects 3-5

Resolving Reference Problems

The HTTP Proxy is the host name or numeric IP address of the proxy server
used to connect to HTTP and FTP sites. The Proxy Port is the port number of
the proxy server.

To set the HTTPS or Socks proxy, click More and fill out the Advanced Proxy
Options form.

3.5 Resolving Reference Problems

Sometimes when you open a project you can see it has a reference warning. In the
Projects tab the project name is red, and the icon shows a warning symbol, as seen
below:

& B CHAPIDemo

Usually this warning means the project refers to a file or library that cannot be found.
Right-click on the project and choose Resolve Reference Problems.

B Resolve Reference Problems - "CHAPIDemo" Project E|

Feference Problems:

Description:

Problem: The project uses the file/folder called
"keystore. ks", but this fileffolder was naok Found.
Solution: Click Resolve and locate the missing
FilefFolder,

Close

The window displays the missing file, the problem, and a possible solution. In this
case the project probably used a literal path to the file keystore.ks. Clicking the
Resolve... button opens a file browser so you can find the missing keystore file. The
default location is as follows:

installdir\runtimes\cldc-hi\lib

Locate and select the file. You receive confirmation that the problem is resolved, and
you can now click Close.

3.6 Running MIDP and CLDC Sample Projects

This topic gathers MIDP and CLDC samples that aren't discussed in separate chapters.
This is the case when a sample uses many JSRs, or when a supported JSR doesn’t have
any special implementation details.

= Section 3.6.1, "Running the AdvancedMultimediaSupplements Sample Project"

3-6 Java ME SDK Developer's Guide

Running MIDP and CLDC Sample Projects

= Section 3.6.2, "Running the Demos Sample Project”
= Section 3.6.3, "Running FPDemo"

= Section 3.6.4, "Running Games"

= Section 3.6.5, "Running Network Demo"

= Section 3.6.6, "Running PhotoAlbum"

= Section 3.6.7, "Running UIDemo"

For other CLDC demos, see Table 3-1.

3.6.1 Running the AdvancedMultimediaSupplements Sample Project

This MIDlet suite demonstrates the power of JSR 234 Advanced Multimedia
Supplements (AMMS). It consists of the following MIDlets:

Section 3.6.1.1, "Image Effects"
Section 3.6.1.2, "Camera"

Section 3.6.1.3, "Moving Helicopter"
Section 3.6.1.4, "Music Effects"

3.6.1.1 Image Effects

This MIDlet demonstrates standard image processing operations.
= Select the Image Effects MIDlet and press the Launch soft button.

s Choose input and output image formats, and press Done. The input image and
output images are displayed simultaneously.

= Choose an effect from the Menu and click the Done button to apply a
transformation, effect or overlay. The source image is shown above and the
processed image is shown below. Note that some items, Set Transforms, for
example, can perform several operations in a single transaction.

The menu options are as follows:

1. Set Effect Order - Specify the order in which transforms, effects and overlays
are applied.

Set Transforms - Change width and height scale, border, and rotation options.
Set Overlays - Specify the color and orientation of a color block overlay.
Reset - Set transforms, effects, and overlays to the initial state.

Monochrome Effects - Activate grayscale rendering.

o a & 0N

Negative Effect -Reverse dark and light areas.

3.6.1.2 Camera

This MIDlet demonstrates how the Advanced Multimedia Supplements provide
control of a device’s camera. The screen shows the viewfinder of the camera
(simulated with a movie). You can use commands in the menu to change the camera
settings and take and manage snapshots.

1. Exit - Close this MIDlet and return to the initial window.

2. Snapshot setting - Set whether to display the snapshot on the screen or print it to a
file. If the picture is saved to a file, set the snapshot action: Freeze the viewfinder,
Freeze and confirm (soft button prompts you to save and you get a confirmation),

Using Sample Projects 3-7

Running MIDP and CLDC Sample Projects

Save without freezing (set the picture number). Snapshots are stored in
userhome\ javame-sdk\3.0.5\work\emulator_number\appdb\filesystem\root1l.

3. Disable/Enable shutter feedback.

4. Choose exposure modes - Preset modes are auto, landscape, snow, beach, sunset,
night, fireworks, portrait, backlight, spotlight, sports, text.

5. Change F_Stop number - 0, 400, 560, 800, 1600.

6. Set flash mode - Off, AUTO, AUTO_WITH_REDEYEREDUCE, FORCE, FORCE _
WITH_REDEYEREDUCE, FILLIN.

7. View gallery - View the snapshots stored in:
userhome\ javame-sdk\3.0.5\work\emulator_number\appdb\filesystem\root1l.

8. Zoom settings - digital and optical zoom settings 100-300 in increments of 20.

3.6.1.3 Moving Helicopter

Simulates a helicopter (red dot) flying around a stationary observer (blue dot). Use
headphones for best results. You can control the parameters of the simulation with the
soft menu options: Volume, Location settings, Spectator orientation, and Distance
Attenuation settings. After viewing menu options, press the close button (the X on the
right) to return to the helicopter scenario.

With the Location settings be aware that supplying large values for the screen width or
flight altitude means the helicopter might be out of range - that is, it will fly off the
screen and you might not be able to hear it.

For spectator orientation stereo headphones or speakers will help detect the difference
in position, assuming your volume and location settings put the helicopter in audible
range. The same is true for the Distance Attenuation settings, which allow you to
control the doppler effect.

3.6.1.4 Music Effects

Demonstrates the advanced audio capabilities of the Advanced Multimedia
Supplements. As an audio file loops continuously, you can adjust the volume, and
reverberation settings.

3.6.2 Running the Demos Sample Project

This demo contains several MIDlets that highlight different MIDP features. Click or
use the navigation keys to highlight a MIDlet, then choose the Launch soft key.

s Section 3.6.2.1, "Colors"

= Section 3.6.2.2, "Properties"

= Section 3.6.2.3, "Http"

m Section 3.6.2.4, "FontTestlet"

s Section 3.6.2.5, "Stock"

m Section 3.6.2.6, "Tickets"

= Section 3.6.2.7, "ManyBalls"

s Section 3.6.2.8, "MiniColor"

s Section 3.6.2.9, "Chooser"

= Section 3.6.2.10, "HttpExample"

3-8 Java ME SDK Developer's Guide

Running MIDP and CLDC Sample Projects

= Section 3.6.2.11, "HttpView"
= Section 3.6.2.12, "PushExample"

3.6.2.1 Colors

This application displays a large horizontal rectangle that runs the width of the screen.
Below, ten small vertical rectangles span the screen. Finally, three horizontal color bars
indicate values for blue, green, and red (RGB). Values are expressed as decimal (0-255)
or hexadecimal (00-ff) based on the first menu selection.

= To select a vertical bar to change, use the up navigation arrow to move to the color
bars. Use the right navigation arrow to highlight a color bar. The large rectangle
becomes the color of the selected bar.

= Use the up or down selection arrows to choose the value to change (red, green, or
blue). Use the left or right arrow keys to increase or decrease the selected value.
The second menu item allows you to jump in increments of 4 (Fine) or 32 (coarse).

= You can change the color on any or all of the vertical bars.

3.6.2.2 Properties

This MIDlet displays your system property values. The output is similar to the
following values:

Free Memory = 2333444
Total Memory = 4194304

microedition.configuration = "CLDC-1.1"
microedition.profiles = "MIDP-2.1"
microedition.platform = "j2me"
microedition.platform = "en-US"

microedition.platform = "IS08859_1"

3.6.2.3 Http

This test application uses an HTTP connection to request a web page. The request is
issued with HTTP protocol GET or POST methods. If the HEAD method is used, the head
properties are read from the request.

Preparing to Run the Demo
Before beginning, examine your settings as follows.
= Right-click on Demos and select Properties.
= Select the Running category.
= Select Regular Execution.
» Check Specify the Security Domain and select Maximum.
= Click OK.

= If you are using a proxy server, you must configure the emulator's proxy server
settings as described in Section 3.4, "Configuring the Web Browser and Proxy
Settings". The HTTP version must be 1.1.

» If you are running antivirus software, you might need to create a rule that allows
this MIDlet to allow connections to and from a specific web site. See Section 3.2,
"Troubleshooting".

Using Sample Projects 3-9

Running MIDP and CLDC Sample Projects

Running the Demo

Launch the Http MIDlet. To test, choose the Menu soft key and choose Get, Post, or
Head to test the selected URL.

Http Test returns the information it is able to obtain. If the information fills the screen
use the down arrow to scroll to the end. The amount of information depends on the
type of request and on the amount of META information the page provides. To provide
body information or content, the page must declare CONTENT-LENGTH as described in
RFC 2616.

Using Menu Options

Use the Menu soft key to choose an action. The Menu items vary depending on the
screen you are viewing.

» Choose Querty to set the input type. This activates a submenu with the options
Qwerty, 123, Abc, Predict, and Symbols. This choice is present if you have the
option to edit a URL (select Choose, then click the Add soft button).

= Choose GET or press the Get soft key to retrieve data from the selected URL

= Choose POST to retrieve the post information from the server handling the selected
page.

s Choose HEAD to retrieve only the META information from the headers for the
selected URIL.

= Select Choose to bring up the current list of web pages. You can chose a different
page or add your own page to the list. To specify a new URL, choose the Add soft
button. The screen displays http://. Type in the rest of the URL. If necessary
select Qwerty on the menu and choose a different input method. Make sure to end
with a slash (/). For example http://www.internetnews.com/. Press the OK soft
button. The Http Test screen shows your new URL and prompts for an action.

3.6.2.4 FontTestlet

This MIDlet shows the various fonts available: Proportional, Regular, Regular Italic,
Bold Plain, and Bold Italic. Choose 1 or 2 from the menu to toggle between the system
font (sans serif) and the monospace font.

3.6.2.5 Stock

Like the Http demonstration, this sample uses an HTTP connection to obtain
information. Use the same preparation steps as Section 3.6.2.3, "Http".

Run the Demos project and launch the Stock MIDlet.

By default, the screen displays an empty ticker bar at the top. Below the ticker, the
menu list shows four applications: Stock Tracker, What If? Alerts, and Settings. You
must add stock symbols before you can use the first three applications.

Add Stock Symbols to the Ticker
To add a stock symbol to the ticker, use the navigation arrows to select Settings.
Select Add Stock.

The display prompts you to enter a stock symbol. Type ORCL and select the Done soft
key. The stock you added and its current value is now displayed in the ticker. Add a
few more stock symbols, such as IBM and HPQ.

Change the Update Interval

3-10 Java ME SDK Developer's Guide

Running MIDP and CLDC Sample Projects

By default the update interval is 15 minutes. Select Updates to change the interval. Use
the navigation arrows to select one of Continuous, 15 minutes, 30 minutes, one hour,
or three hours. Select the Done soft key.

Remove a Stock

Select Remove a Stock. You see a list of the stocks you have added. Use the navigation
keys to select one or more stocks to remove. Choose the Done soft key.

Stock Tracker

Stock Tracker displays a list of the stocks you added and their current values. Stock
tracker displays additional information about the selected stock, for example, the last
trade and the high and low values.

Choose a stock and press Select.

What If?

What If? is an application that asks for the original purchase price and the number of
shares you own. It calculates your profit or loss based on the current price.

Select a stock symbol.
Enter the purchase price and the number of shares, then press Calc.
Alerts

This application sends you a notification when the price changes to a value you
specify.

From the main menu, select Alerts.
Select Add.

Choose a Stock. The screen prompts, "Alert me when a stock reaches". Enter an
integer.

The alert is placed on the Current Alerts list. To remove an alert, press Remove and
select the alert. Choose the Done soft key.

When the value is reached you will hear a ring and receive a message. For example,
Symbol has reached your price point of $value and is currently trading at $Scurrent_value.
Once the alert is triggered it disappears from the Current Alerts list.

3.6.2.6 Tickets

This demonstrates how an online ticket auction application might behave. The home
screen displays a ticket ticker across the top. Click Done to continue to the Welcome To
Tickets page. The Choose a Band field displays BootWare & Friends by default.

Choose a band from the dropdown menu. The available auction appears.

Select Make a Bid from the menu. Use the arrow keys to move from field to field. Fill
out each field, then select the Next soft key. The application asks you to confirm your
bid. Press the Submit soft key or use the arrow keys to highlight Submit then press
Select. You receive a Confirmation number. Click Bands to return to the Bands page.

Select set an alert, select Set an Alert from the soft Menu. In the bid field type in a
value higher than the current bid and click the Save soft key. You are returned to the
Choose a Band page. You can trigger the alert by making a bid that exceeds your alert
value. Your settings determine how often the application checks for changes, so the
alert may not sound for a few minutes.

To add a band to the Choose a Band dropdown list, select the Menu soft key and
choose Add Bands. Type in a band name or a comma-separated list of names. Choose

Using Sample Projects 3-11

Running MIDP and CLDC Sample Projects

the Save soft key. After confirmation you are returned to the Welcome To Tickets page.
The added band(s) are displayed at the end of the Choose a Band drop-down menu.

Note, this is only a demonstration. To fully describe the band you must edit the
following file:

installdir\apps\Demos\src\example\auction\NewTicketAuction. java.

To remove a band, select the Menu soft key and Remove Bands. Check a box for one or
more bands. Choose the Save soft key.

To display the current settings for ticker display, updates, alert volume, and date,
select the Menu soft key and choose 6. If desired, use the arrow keys and the select key
to change these values. Choose the Save soft key.

3.6.2.7 ManyBalls

This MIDlet starts with one ball traveling the screen. Use the up and down arrows to
accelerate or decelerate the ball speed (fps). Use the right or left arrows to increase or
decrease the number of balls.

3.6.2.8 MiniColor

This MIDlet sets an RGB value. Use navigation keys to change color values.

Keyboard controls work as you would expect. First cursor up or down to highlight a
color, and then use left and right keys to lower and raise the value of the selected color.

3.6.2.9 Chooser

The Chooser application uses a variety of controls to change text color, background
color, and fonts.

s Choose Menu > Text Color. Change the color as described for MiniColor and select
the OK soft button.

s Choose Menu > Background Color. Change the color as described for MiniColor
and select the OK soft button.

= Choose Menu > Fonts. You can change the font Face, Style, and Size.

Cursor up and down to highlight a property, then select. The left and right keys
jump between lists. Up and down keys move item by item.

Click OK to continue.

3.6.2.10 HttpExample

This sample makes an HTTP communication. A popup confirms the transaction was
successful.

3.6.2.11 HttpView
This application displays three predefined URLs.

Choose a URL, and press the soft buttons to cycle through Head, Headers, Requests,
and Errors.

Alternatively, Use the menu options.

3.6.2.12 PushExample

This application simulates a feed. As soon as you connect, you receive and display a
graphic. Select Done to continue.

3-12 Java ME SDK Developer's Guide

Running MIDP and CLDC Sample Projects

3.6.3 Running FPDemo

FPDemo is a simple floating point calculator.
1. Enter a number in the first field.

2. To choose an operator, highlight the drop-down list and click to select. Cursor
down to highlight an operator, then click to make a selection.

3. Enter a second value.

4. From the Menu, select Calc or choose 2 to calculate the result.

3.6.4 Running Games

This application features three games: TilePuzzle, WormGame, and PushPuzzle.

TilePuzzle. The desired result, "Rate your mind pal” is shown first. From the soft
Menu, select 1, Start. The scrambled puzzle is displayed. The arrow keys move the
empty space, displacing tiles accordingly (the arrow key indicates which tile to swap
with the space). From the menu you can Reset, or change options.

WormGame. From the soft Menu, select 1, Launch. Use the arrow keys to move the
worm to the green box without touching the edge of the window. Once the game is
launched, use the soft menu to change game options.

PushPuzzle. Use the blue ball to push the orange boxes into the red squares in the
fewest number of moves.

3.6.5 Running Network Demo

This demo has two MIDlets: Socket Demo and Datagram Demo. Each demo requires
you to run two emulator instances so that you can emulate the server and client
relationship. For example, run the demo on DefaultCldcMsaPhonel and
DefaultCldcMsaPhone?2.

3.6.5.1 Socket Demo

In this application one emulator acts as the socket server, and the other as the socket
client.

1. In the first emulator, launch the application, then select the Server peer. Choose
Start. Depending on your security settings, you might see a message explaining
that the demo wants to send and receive data over the network and it might ask,
"Is it OK to use network?" Choose Yes. The Socket Server displays a status message
when the connection is accepted.

2. In the second emulator, launch the application, select the Client peer, then choose
Start. Depending on your security settings, you might see a message explaining
that the demo wants to send and receive data over the network and it might ask,
"Is it OK to use network?" Choose Yes. Choose Start to launch the client. The
Socket Client displays a status message that indicates it is connected to the server.
Use the down navigation arrow to highlight the Send box. Type a message in the
Send box, then choose the Send soft key.

For example, in the client, type Hello Server in the Send box. Choose Send from
the menu. The server emulator activates a blue light when the message is received.

3. On the emulator running the Socket Server, the status reads: Message received -
Hello Server. You can use the down arrow to move to the Send box and type a
reply. For example, Hello Client, I heard you. From the menu, select Send.

Using Sample Projects 3-13

Running MIDP and CLDC Sample Projects

4. Back in the Socket Client, the status is: Message received - Hello Client, I
heard you. Until you send a new message, the Send box contains the previous
message you sent.

3.6.5.2 Datagram Demo

This demo is similar to Socket Demo. Run two instances of the emulator. One acts as
the datagram server, and the other as the datagram client.

1. In the first emulator, launch Datagram Demo, then select the Server peer. Choose
Start. Depending on your security settings, you might see a message explaining
that the demo wants to send and receive data over the network and it might ask,
"Is it OK to use network?" Choose Yes. Initially, the Datagram Server status is
Waiting for connection, and the Send box is empty.

2. In the second emulator, launch Datagram Demo, select the Client peer, then choose
Start. Depending on your security settings, you might see a message explaining
that the demo wants to send and receive data over the network and it might ask,
"Is it OK to use network?" Choose Yes. The Datagram Client status is: Connected
to server on port 5555. Use the down navigation arrow to highlight the Send
box. Type a message in the Send box, then choose the Send from the menu. For
example, type Hello datagram server.

3. On the emulator running the Datagram Server, the status displays: Message
received - Hello datagram server. You can use the down arrow to move to the
Send box and type a reply to the client.

4. In the Datagram Client, the status field displays the message received from the
server. The Send box contains the last message you sent.

3.6.6 Running PhotoAlbum

The PhotoAlbum demo displays both static and animated images. When you are
displaying an image, you can use the Options soft menu to change the borders. If the
image is animated, you can change the speed of the playback.

3.6.7 Running UlDemo

UlIDemo showcases a variety of MIDP user interface element implementations. Most
elements have some interactive capability (navigate and select) and some allow
keypad or keyboard input.

Input interaction is similar across demos. You can choose items from lists or type in
data.

This demo implements three list selection methods:
s Exclusive (radio buttons)

= Multiple (check boxes)

= Pop-Up (a drop list).

When entering data, you can use the soft menu to apply one of the following input
types to text boxes and fields (note, some elements do not use all input types). When a
field is selected, the soft Menu label displays Qwerty. Open the menu and you see the
input types numbered 1 through 5.

1. Qwerty. Any character on the keyboard
2. 123. Any numeral

3-14 Java ME SDK Developer's Guide

Running MIDP and CLDC Sample Projects

3. ABC. Any letter

4. Predict. Predicts next character based on prior input

5. Symbols. Opens a list of symbols; click to make a selection.
6. Virtual. Click on a virtual keyboard to enter data.

The Qwerty, 123, and ABC categories act as filters. For example, if you assign 123 to a
field and you type "abc", nothing is entered in the field.

When you finish a demo, select the home button to return to the UIDemo launch page:

CustomItem. This demo features text fields, and text fields in table form. To type in
the table, select a cell, then click to open a text entry panel and type your input. From
the menu, select OK.

Stringltem. Displays labels, a hyperlink, and a button. The soft menu action varies
depending on the selected element.

Gauge. Interactive, non-interactive, indefinite and incremental gauges.

Alert. Uses pop-ups to display alerts. Set the alarm type and the length of the timeout
from drop lists. Select the alert type and select the Show soft button.

ChoiceGroup. Radio buttons, check boxes, and pop-ups on one screen.

List. Select exclusive, implicit, or multiple to display the list type on a subsequent
screen.

TextBox. Use text fields, radio buttons, check boxes, and pop-ups. Select a text box
type and press the Show button.

TextField. Text fields with the six input types.
DateField. Set date and time using drop lists.
Ticker. A scrolling ticker.

Using Sample Projects 3-15

Running MIDP and CLDC Sample Projects

3-16 Java ME SDK Developer's Guide

4

Creating and Editing Projects

A project is a group of files comprising a single application. Files include source files,
resource files, XML configuration files, automatically generated Apache Ant build
files, and a properties file.

When a project is created, the SDK performs these tasks:

= Creates a source tree you can examine in the Section 4.3, "Working With Projects"
or Section 4.4, "View Project Files".

= Sets the emulator platform for the project.
= Sets the project run and compile-time classpaths.

s Creates a build script that contains actions for running, compiling, debugging, and
building Javadoc. The build process is controlled by project properties, as
described in Section 5.4, "Building a Project". See also Section 13.4, "Build a Project
from the Command Line".

Java ME SDK and NetBeans create their project infrastructure directly on top of
Apache Ant. Java ME SDK projects can be opened and edited in NetBeans, and
vice-versa. With the Ant infrastructure in place, you can build and run your projects
within the SDK or from the command line.

The SDK provides two views of the project:
s The Projects window provides a logical view of the project.
= The Files window displays a physical view of the project.

Project settings are controlled in the project Properties window. Typically, you
right-click on an item or subitem in a tree (a project, a file, or a device) and select
Properties.

4.1 Project Types

The CLDC/MIDP platform implements the Mobile Information Device Profile and
Connected Limited Device Configuration (JSRs 118 and 139).

The CDC platform is implemented to support Advanced Graphics and User Interface
Optional Package for the J2ME Platform, Personal Basis Profile 1.1, and the Connected
Device Configuration (JSRs 209, 217 and 218). The AGUI API combines the PBP API
and a subset of Java Platform, Standard Edition (Java SE) Swing capabilities.

4.1.1 CLDC Projects

A MIDP application (a MIDlet), is deployed as a MIDlet suite. A MIDlet suite is
distributed as a Java archive (JAR) file and a Java Application Descriptor (JAD) file.

Creating and Editing Projects 4-1

The Project Wizard

The JAR file includes the Java classes for each MIDlet in the suite, Java classes shared
between MIDlets, resource files, and other supporting files. The JAR file also includes
a manifest describing the JAR contents and specifying attributes the application
management software (AMS) uses to identify and install the MIDlet suite.

The JAD file contains attributes that allow the AMS to identify, retrieve, and install the
MIDlets in a project. The SDK automatically creates JAD and JAR files when you build
the project.

To create a new project, see the NetBeans help topic "New MIDP Project Wizard."

4.1.2 CDC Projects

The CDC platform is implemented to support Advanced Graphics and User Interface
Optional Package for the]2ME Platform, Personal Basis Profile 1.1, and the Connected
Device Configuration (JSRs 209, 217 and 218). The AGUI API combines the PBP API
and a subset of Java Platform, Standard Edition (Java SE) Swing capabilities.

Java ME SDK version 3.0.5 supports CDC projects running as standalone applications.
This means the CDC project structure and behavior are much the same as that of
CLDC projects.

Note: An Xlet cannot be run standalone. It depends upon an
application manager to manage its life cycle (its state) and system
services. Xlets are not supported in this release.

A standalone CDC project requires a main application class that includes a method
named main () that handles class loading, object creation, and method execution. The
application interacts directly with the Java runtime environment to manage its own
life cycle and system resource needs. When the main () method exits, the standalone
application terminates.

4.2 The Project Wizard

The project provides a basic infrastructure for development. You provide source files,
resource files, and project settings as needed. The SDK provides a wizard for creating
new projects quickly and easily using an application template. Most project properties
can be edited later by changing the project properties. For more on project properties,
see Chapter 5, "Viewing and Editing Project Properties".

4.2.1 Project Template Page
This is the first page in the New Project wizard.

For MIDP the project options are as follows:
= MIDP Application. Create a new MIDP application in a CLDC/MIDP project.

= Import Wireless Toolkit Project. Create a project by importing a Sun Java Wireless
Toolkit project from an existing toolkit installation.

See Section 4.2.8, "Create a CLDC Project".
For CDC the project options are as follows:
= CDC Application. Create a new CDC application in a CDC project.

s Import CDC Toolkit Project. Create a project by importing a CDC Toolkit project
from an existing toolkit installation.

4-2 Java ME SDK Developer's Guide

The Project Wizard

See Section 4.2.9, "Create a CDC Project".

4.2.2 Name and Location Page

Use this form to enter project information. This form is the second page in the New
Project wizard. The name and location cannot be changed, but you can view a project’s
name and location.

Project Name. Enter a project name. If you are importing an existing project this field
is pre-populated with the old filename prefixed.

Project Location. The default location is:
C:\Documents and Settings\user\My Documents\NetBeansProjects

Project Folder. The Project Folder value is extrapolated from Project Name and Project
Location.

Set as Main Project. Check this box to make the project the Main Project when it is
first opened. The Main project is automatically the focus of all actions initiated from
the user interface (for example, the actions on the Run menu, which provide the same
functionality as clicking icons on the main tool bar).

Create Hello MIDlet. This check box is only visible for a new MIDP project. It inserts
sample MIDlet code as a template for your development. You can compile and run the
MIDlet immediately.

Create Main Class. This check box is only visible for a new CDC project. Enter the
fully qualified name of the main class without the . java extension. For example:
com.me.MyClass.

See Section 4.2.9, "Create a CDC Project".

4.2.3 Choose Project (CDC)

You can view this page in the New Project wizard. The CDC project options are as
follows:

CDC Application. Create a new CDC application in a CLDC project.

Import CDC Toolkit Project. Create a project by importing a CDC Toolkit project from
an existing toolkit installation.

See Section 4.2.6, "CDC Toolkit Project Location". See Section 4.2.9, "Create a CDC
Project".

4.2.4 Platform Selection (CDC)

You can view this form in the New Project wizard, or, in the Projects view, right-click a
project, select Properties, and select Platform.

These settings help you test how your project runs on devices with different
capabilities. Your choice of device limits your choice of Device Configuration and
Device Profile.

Emulator Platform. By default you will see two CDC platforms - the 3.0 version
installed with the Mobility pack and the 3.0.5 version installed with the Java ME SDK
plugin. For the Java ME SDK plugin, choose the 3.0.5 version.

Device. Select a device. Only devices appropriate for the platform appear in the
Device drop-down menu. The device selection determines the remaining options.

Device Profile. PBP-1.1 is the only option.

Creating and Editing Projects 4-3

The Project Wizard

See Section 4.2.9, "Create a CDC Project".

4.2.5 WTK MIDP Project Location

To see this form, start the New Project wizard and select Import Wireless Toolkit
Project.

WTK Location. Browse to select the location of your Sun Java Wireless Toolkit
installation. Choose the installation directory.

Detected Applications. When the WTK Location is selected the Detected Applications
window displays the available projects. Highlight a project, and click Next.

See Section 4.5.1, "Import a Legacy MIDP Project".

4.2.6 CDC Toolkit Project Location
To see this form, start the New Project wizard and select Import CDC Toolkit Project.
Project Location. Browse to select the location of your legacy CDC Toolkit project.

See Section 4.5.2, "Import a Legacy CDC Project".

4.2.7 Platform Selection Page (CLDC/MIDP)

You can view this form in the New Project wizard, or in the Projects view. Right-click a
project, select Properties, and select Platform.

These settings help you test how your project runs on devices with different
capabilities. Your choice of device limits your choice of Device Configuration, Device
Profile, and Optional Packages (if applicable).

Emulator Platform. By default you will see two CLDC platforms - the 3.0 version
installed with the Mobility pack and the 3.0.5 version installed with the Java ME SDK
plugin. For the Java ME SDK plugin, choose the 3.0.5 version.

Device. Select a device. Only devices appropriate for the platform appear in the
Device drop-down menu. The device selection determines the remaining options.

Device Configuration. Select a CLDC version.

Device Profile. Select a MIDP version. The available selections are determined by the
Device Configuration.

Optional Packages. This pane is visible when you are viewing an existing project. You
can check or uncheck optional packages to approximate device capabilities.

See Section 4.2.8, "Create a CLDC Project".

4.2.8 Create a CLDC Project

1. Select File > New Project.
The New Project wizard opens. Java ME SDK is the only category.
2. Follow the prompts in the New Project wizard, consulting Help if necessary.

3. To run the new project, follow the steps in Section 3.1, "Running a Project”, except
select your new project instead of a sample project.

4. Be sure to exit or close the application when you are finished.

4-4 Java ME SDK Developer's Guide

The Project Wizard

Once the emulator is launched, it runs as an independent process. Pressing the red
stop button in the SDK user interface or closing the SDK does not stop the
application running in the emulator.

Applications usually provide a way to terminate. For example, most of the
samples offer an Exit soft key, or an option in the soft menu. You can close the
application and leave the emulator running (so you do not have to wait for the
emulator to open the next time you run the project).

If you want to close the emulator and stop the project build process, select
Application > Exit.

4.2.9 Create a CDC Project

The SDK provides a wizard for creating new projects quickly and easily. Most project
properties can be edited later on. CDC core, FP, and PBP APIs are automatically
included in every CDC project.

1.

Select File > New Project.
The New Project wizard opens.

Follow the prompts in the New Project wizard, consulting help if necessary. See
Section 4.2.4, "Platform Selection (CDC)", and Section 4.2.6, "CDC Toolkit Project
Location".

The Name and Location page has the following fields:

Project Location. Browse to the project location. See the default locations in the
table "File Locations".

Project Name. The name you supply is the default name for the Main class, if you
use one.

Project Folder. This value is extrapolated from the Name and Location entries.

Set as Main Project. Check this box to set this project as main. Toolbar actions,
such as Build and Run, operate on the main project. The main project is displayed
in bold font in the project tree.

Create Main Class. If you want to create a sample Main class in the project, check
the box and supply a project name. If the box is not checked, the project will not
have a Main class.

Select platform.
Select the platform, a device, and the profile. Click Finish.
If an AGUI device is selected, the AGUI API is added to the project.

To run the new project follow the steps in Section 3.1, "Running a Project”, except
you can select your new project instead of a sample project.

When you are finished viewing the application, go to the emulator's Application
menu and select Exit to close the emulator and stop the execution of the project's
build script.

The SDK provides a wizard for creating new projects quickly and easily. Most
project properties can be edited later on. CDC core, FP, and PBP APIs are
automatically included in every CDC project.

Creating and Editing Projects 4-5

Working With Projects

Note: Once the emulator is launched, it runs as an independent
process. Pressing the red stop button in the Output window
terminates the build script, but it does not close the emulator.
Likewise, closing the SDK does not affect the emulator. In the
emulator, select Application > Exit to ensure that both the emulator
and the project build process close.

To modify the project, right-click on the project node and select Properties. For
more information on project properties, see Chapter 5, "Viewing and Editing
Project Properties”.

4.3 Working With Projects

The logical view of the project, shown in the Projects window, provides a hierarchy of
sources and resources. Right-click on the project node to see actions related to the
project.

New. Opens a form to build a new object for the current project. The new object is
placed in the project's file structure by default, but you can control the file name and
location. The possible objects are dependent on the currently selected project. For
example, if the project is CLDC, the options are MIDlet, Java class, Java package, or
Java interface. Selecting New > Other allows you to add different types of files to the
project. For a sample procedure, see Section 19.1, "Generating Stub Files from WSDL
Descriptors".

Build. Builds a distribution Java archive (JAR) file. The build process is controlled by
project properties, as described in Section 5.4, "Building a Project".

Clean & Build. Cleans, then builds a distribution JAR file.

Clean. Cleans the build files.

Generate Javadoc. See the online help topic Generating Javadoc Documentation.
Deploy. See the online help topic "Deploying Java ME Applications".

Batch Build..., Batch Clean & Build..., Batch Clean..., Batch Deploy... See the online
help topic "About Java ME MIDP Projects".

Run. Runs the project with the default device, as specified on the Platform property
page. See Section 5.2, "Platform Selection".

Run With... Run the selected project with a device you choose. This option can
override the default device specified in the project properties.

Debug. See the online help topic "Debugging Tasks: Quick Reference".

Profile. Attach the profiler to the selected project. See Chapter 9, "Profiling
Applications".

Set as Main Project. Make the current project the new main project. Toolbar actions,
such as clicking the green Run button, act upon the main project by default.

Unset as Main Project. This option is visible if the selected project is already the main
project.

Open Required Projects. Open any projects that the current project is dependent
upon.

Close. Close the current project. Be sure that any processes are stopped, as closing a
project might not stop the emulator.

4-6 Java ME SDK Developer's Guide

View Project Files

The Source Packages node encapsulates all the Java packages in the project.
Right-click on the Source Packages node and choose New to add a new MIDlet to your
application.

The Resources node encapsulates all resources and libraries of the active
configuration. Right-click the Resources node to add Projects, JARs, folders, and
libraries as resources for your application. You cannot add or remove inherited
resources.

4.4 View Project Files

The Files window displays a physical view of all project files. Right-click to view
project properties or choose an action related to the project.

build. The output directory for the compiled classes listed below. This directory also
contains manifest.mf, the manifest file that will be added to the JAR file.

= compiled. Contains all compiled classes.
m obfuscated. Holds the obfuscated versions of the class files.

= preprocessed. Holds the source files after they are preprocessed. The files will
differ from the original source files if you are using project configurations.

= preverified. Holds the preverified versions of the class files. These files are
packaged into your project's distribution JAR.

= preverifysrc. Versions of the source files before they are preverified.

dist. The output directory of packaged build outputs (JAR files and JAD files). The
dist directory also contains generated Javadoc documentation.

lib. Contains libraries you have added to the project. See Section 5.4.3, "Adding
Libraries and Resources".

nbproject. The directory that contains the project Ant script and other metadata.This
directory contains the following files:

= build-impl.xml. The SDK-generated Ant script. Do not edit build-impl.xml
directly. Always override its targets in build.xml.

m private/private.properties. Properties that are defined for you alone. If you are
sharing the project, any properties you define in this file are not checked in with
other project metadata and are only applied to your SDK installation.

m project.properties. Ant properties used to configure the Ant script. This file is
automatically updated when you configure the project's properties. Manual
editing is possible, but it is not recommended.

s project.xml and genfiles.properties. Generated metadata files. It is possible to
edit project.xml manually, but it is not recommended. Do not edit
genfiles.properties.

res. Resource files you have added to the project. See Section 5.4.3, "Adding Libraries
and Resources".

src. The project source files.

build.xml. The build script. This build script only contains an import statement that
imports targets from nbproject/build-impl.xml. Use the build.xml to override
targets from build-impl.xml or to create new targets.

See also: Section 4.2.8, "Create a CLDC Project", and Section 4.2.9, "Create a CDC
Project".

Creating and Editing Projects 4-7

Create a New MIDlet

4.5 Create a New MIDlet

To create a new MIDlet from the Files view, right-click a project and select New >
MIDlet. With this form you can specify the name of the MIDlet and its location within
the selected project.

MIDlet Name. The name of the new MIDP class.
MIDlet Class Name. The name that users see when the application runs on a device.

MIDlet Icon. The path to an icon associated with the MIDlet. Users see the icon when
the application runs on a device.

Project. Displays the name of the project.

Package. Specifies the location of the MIDlet class. You can select an existing package
from the drop down menu, or type in the name of a new package. The new package is
created along with the class.

Created File. Displays the name and location of the MIDlet.

When the new MIDlet is created the SDK automatically adds it to the project's
Application Descriptor File.

4.5.1 Import a Legacy MIDP Project

If you created a project using the Sun Java Wireless Toolkit for CLDC on Windows or
Linux you can import your MIDlets into Java ME SDK projects. You can also use this
procedure to create a project based upon a legacy sample project.

1. Select File > New Project.
2. In the Projects area, select Import Wireless Toolkit project. Click Next.
3. Specify the WTK project location.
Use browse to open the directory containing the legacy project.
4. Select a project and click Next.
5. Supply the Project Name, Location, and Folder for the new project.

Note that the default name, project name and folder name are based on the name
of the project you are importing. Click Next.

6. Select the Platform type, the default device, and the configuration and profile, if
applicable. Click Finish.

Your new project opens in the Projects window.

7. If the legacy project used signing, you must configure the signing properties as
described in Section 12.4, "Managing Keystores and Key Pairs".

4.5.2 Import a Legacy CDC Project

If you created a project using the CDC Toolkit, you can import your applications into
Java ME SDK projects. You can also use import to create a project based upon a sample
project.

Note: Standalone projects created in the CDC Toolkit can be
imported. Xlets cannot be imported.

4-8 Java ME SDK Developer's Guide

Search Project Files

The CDC platform name for the Java ME SDK version 3.0.5 does not match the legacy
platform name in the CDC Toolkit 1.0 and the CDC Mobility Pack. Consequently, you
get a reference error when you import a legacy CDC project.

Note: To avoid the reference error, create a platform with the
legacy name, as described in Section 2.2.3, "Create a Platform for
Legacy CDC Projects". You only need to do this once.

1. Select File > New Project.
2. In the Projects area select Import CDC Toolkit Project. Click Next.
3. Browse to select the project location.

The wizard detects any applications in the legacy installation and displays their
locations on disk. Select a project and click Next.

4. Supply the Project Name, Location, and Folder for the new project. Note, the
default name project name and folder name are based on the name of the project
you are importing. Click Finish.

The imported project opens in the Projects window.

See also: Section 2.2.3, "Create a Platform for Legacy CDC Projects”, Section 4.4,
"View Project Files".

4.6 Add Files to a Project

For all projects, right-click to use the context menu to add files to a project. Using this
method places files in the proper location in project source or resources.

To add a MIDlet, Java class, Java package, Java interface or Other files, right-click the
project name or the Source Packages node, choose New, and select the file type.

To add files by format (Project, JAR, Folder, Library) right-click the Resources node
and select a format. See Section 5.4.3, "Adding Libraries and Resources".

4.7 Search Project Files
To search a project's files, right-click on the project and select Find...

The Find in Files utility supports searching a project's file contents or file names. The
search input fields supports simple text matching and regular expressions.

Containing Text. The string you are looking for. If File Name Patterns is empty, all files
are searched.

File Name Patterns. The files you are searching in. If the Containing Text field is
empty you get a listing of files that match the pattern.

The options Whole Words, Match Case, and Regular Expression further restrict the
search. Regular Expression Constructs are fully explained in:

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#
sum

Creating and Editing Projects 4-9

Search Project Files

4-10 Java ME SDK Developer's Guide

O

Viewing and Editing Project Properties

All projects have properties. Some properties, such as the project's name and location
cannot be changed, but other properties can be freely edited as work on your project
progresses. To view or edit a project's properties, right-click the project node and select
Properties. In the resulting window, you can view and customize the project
properties. See the following topics:

= Section 5.1, "General Project Properties"

m Section 5.2, "Platform Selection"

= Section 5.3, "Editing Application Descriptor Properties"
= Section 5.4, "Building a Project"

= Section 5.5, "Running Settings"

5.1 General Project Properties

To view the General property page, right-click on a project, choose Properties, and
select the General category. The general properties page displays basic project
properties. You can set application versioning here, but all other values cannot be
edited.

The project name, folder, and source location are set when the project is created. The
Application Version Number field displays the version number of the current build.

Application Versioning

The Application Version Counter field displays the next version number to be used.
The default advance is 0.0.1. To advance the number beyond this, use the dropdown
menu to select a new digit, or enter the value into the field. For example, changing the
value to 3 results in a build number of 0.0.3. Changing the value to 100 results in the
version number 0.1.0.

Required Projects

This area displays projects you have added to this project. It might be a dependent
project or an external library. See Section 5.4.3, "Adding Libraries and Resources".

5.2 Platform Selection

An emulator platform simulates the execution of an application on one or more target
devices. To view this property page, right-click on a project and choose Properties and
select the Platform category.

Viewing and Editing Project Properties 5-1

Editing Application Descriptor Properties

Platform types are listed in the Select Platform Type dropdown. The emulator platform
is supplied based on the platform type.

Select a platform type from the dropdown menu.

By default, the devices in the device menu are also suitable for the platform type and
emulator platform. The device you select is the default device for this project. It is used
whenever you use the Run command. Your device selection influences the Device
Configuration and Device Profile options, and the available optional packages.

For CLDC, select the optional packages you want to include in this project. The
selected APIs are automatically added to the project's classpath. See Section 4.2.8,
"Create a CLDC Project".

5.3 Editing Application Descriptor Properties

To view this property page, right-click on a project, choose Properties, and select the
Application Descriptor category. The Application Descriptor properties page enables
adding, editing, or deleting project attributes.

5.3.1 CDC Attributes

To view this property page, right-click on a CDC project and choose Properties. Select
the Application Descriptor category.

Application Name. The display name of the application on the target device.
ApplicationVendor. The company name or author name for the application.
Description. A concise description of the application.

Detail Description. A detailed description of the application.

5.3.2 MIDP Attributes

To view this property page, right-click on a MIDP project and choose Properties. Select
the Application Descriptor category, and select the Attributes tab.

The General Attributes table lists the attributes currently contained in the JAD and
JAR manifest files:

Type. Lists whether the attribute is required or optional.
Name. The name of the attribute.

Value. The values for each attribute.

To avoid errors in verification:

= Make sure all required attributes have a defined value.

= Do not begin user-defined attribute keys with MIDlet- or MicroEdition-.

5.3.2.1 Add an Attribute

Follow these steps to add an attribute.
1. Click Add... to open the Add Attribute window.

2. Choose an attribute from the Name combo box, or delete the current entry and
add your own custom entry.

5-2 Java ME SDK Developer's Guide

Editing Application Descriptor Properties

5.3.3 MiDlets

Note: Do not begin a user-defined attribute name with MIDlet- or
MicroEdition-.

3. Enter a value for the attribute.

4. Click OK.

5.3.2.2 Edit an Attribute

1. Select an attribute.

2. Click Edit... to open the Edit Attribute window.
3. Enter a value for the attribute.

4. Click OK.

API permissions, Push Registry Entries, and API Permissions have their own property
pages.

5.3.2.3 Remove an Attribute

Select an Attribute and click Remove to delete it from the list.

To view this page, right-click on a project and choose Properties. Select the Application
Descriptor category, and select the MIDlets tab.

The MIDlets table lists the MIDlets contained in the suite and the following properties:

Name. The displayable name of the MIDlet that the user sees when the MIDlet is run
on a mobile device.

Class. The Java class for the MIDlet.

Icon. Anicon (a .png file), representing the MIDlet that the user sees when the MIDlet
is run on a mobile device.

5.3.3.1 Add a MIDlet
1. Click Add... to open the Add MIDlet window.

The window lists the MIDLets available in the project.
2. Enter a name, then select a MIDlet class from the dropdown menu.

You can also choose an icon for the MIDlet from the MIDlet icon dropdown menu.

3. Click OK.

5.3.3.2 Edit a MiDlet
1. Select a MIDlet.

2. Click Edit... to open the Edit MIDlet window.
3. Enter a value for the attribute.

4. Click OK. The revised values are listed in the table.

5.3.3.3 Remove a MiDlet
Select a MIDlet and click Remove to delete it from the list.

Viewing and Editing Project Properties 5-3

Editing Application Descriptor Properties

5.3.3.4 Change MiDlet Display Order
The list order determines the order in which the MIDlets are displayed.

Select a MIDLet and select Move Up or Move Down to change its position.

5.3.4 Push Registry

To view this page, right-click on a project and choose Properties. Select the Application
Descriptor category, and select the Push Registry tab.

See also Section 5.3.4.1, "Add a Push Registry Entry", Section 5.3.4.2, "Edit a Push
Registry Entry", Section 5.3.4.3, "Remove a Push Registry Entry", and Section 5.3.4.4,
"Change Push Registry Display Order".

5.3.4.1 Add a Push Registry Entry
1. Click Add... to open the Add Push Registry window.

2. Enter Class Name, Sender IP, and Connection String values.
s Class Name. The MIDlet's class name.

s Sender IP. A valid sender that can launch the associated MIDlet. If the value is
the wildcard (*), connections from any source are accepted. If datagram or
socket connections are used, the value of Allowed Sender can be a numeric IP
address.

= Connection String. A connection string that identifies the connection protocol
and port number.

3. Click OK.

The new values are listed in the table. A push registration key is automatically
generated and shown as an attribute in the MIDlet suite's Java Application
Descriptor (JAD) file.

5.3.4.2 Edit a Push Registry Entry

To make use of the Push Registry, you must also have permission to access the Push
Registry API, javax.microedition.io.PushRegistry. API permission, are handled in
the API Permissions property page (Section 5.3.5, "API Permissions").

5.3.4.3 Remove a Push Registry Entry

Select an entry and click Remove to delete it from the list.

5.3.4.4 Change Push Registry Display Order

The list order determines the order in which the MIDlets are displayed. Select an entry
and select Move Up or Move Down to change its position.

5.3.5 API Permissions

These properties set permission attributes for protected APIs called by the MIDlet
suite. To view this property page, right-click on a project and choose API Permissions.
Select the Application Descriptor category, and select the Attributes tab.

See Section 5.3.5.1, "Adding Permission Requests".

5.3.5.1 Adding Permission Requests
1. Click the Add Button.

5-4 Java ME SDK Developer's Guide

Building a Project

The API Permission for API dialog opens.

2. Choose an API from the dropdown list or enter an API into the combo box and
click OK.

3. (Optional) In the Requested Permissions table, check the Required box if you want
installation to fail in the event that permission cannot be granted.

For more information, see Security for MIDP Applications in the MIDP 2.0 (JSR 118)
specification, available at:
http://developers.sun.com/techtopics/mobility/midp/articles/pushreg/.

5.4 Building a Project

When you build a project, the SDK compiles the source files and generates the
packaged build output (a JAR file) for your project. You can build the main project and
all of its required projects, or build any project individually.

In general you do not need to build the project or compile individual classes to run the
project. By default, the SDK automatically compiles classes when you save them. You
can use properties to modify the following build tasks:

= Section 5.4.2, "Compiling"

= Section 5.4.3, "Adding Libraries and Resources"

= Section 5.4.5, "Obfuscating"

= Section 5.4.4, "Creating JAR and JAD Files (Packaging)"
= Section 5.4.6, "Signing"

5.4.1 Configuring Ant

To view this form, select Tools > Options, select Miscellaneous, and click the Ant tab.

Ant Home. The installation directory of the Ant executable the SDK uses. To change
Ant versions, type the full path to a new Ant installation directory in this field or click
Browse to find the location. You can only switch between versions 1.5.3 and higher of
Ant. The Ant installation directory must contain a 1ib subdirectory which contains the
ant. jar binary. For example, for the standard Ant 1.7.1 release, the Ant installation
directory is ant\lib\apache-ant-1.7.1. If you enter a directory that does not match
this structure, the SDK gives you an error.You can also specify the following options:

Save All Modified Files Before Running Ant. If selected, saves all unsaved files in the
SDK before running Ant. It is recommended to leave this property selected because
modifications to files in the SDK are not recognized by Ant unless they are first saved
to disk.

Reuse Output Tabs from Finished Processes. If selected, writes Ant output to a single
Output window tab, deleting the output from the previous process. If not selected,
opens a new tab for each Ant process.

Always Show Output. If selected, the SDK displays the Output window for all Ant
processes. If not selected, raises the Output window tab only if the Ant output requires
user input or contains a hyperlink. Output that contains hyperlinks usually denotes an
error or warning.

Verbosity Level. Sets the amount of compilation output. Set the verbosity lower to
suppress informational messages or higher to get more detailed information.

Viewing and Editing Project Properties 5-5

Building a Project

Classpath. Contains binaries and libraries that are added to Ant's classpath. Click Add
Directory or Add JAR/ZIP to open the Classpath Editor.

Properties. Configures custom properties to pass to an Ant script each time you call
Ant. Click Manage Properties to edit the properties in the property editor. This
property is similar to the Ant command-line option, -Dkey=value. The following
default properties are available:

${build.compiler.emacs}. Setting this property to true enables Emacs-compatible error
messages.

5.4.2 Compiling

To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Compiling.

This page enables you to set the following options:

Generate Debugging Info. If checked, the compiler generates line numbers and
source files information. This is the —g option in javac. If unchecked, no debugging
information is generated (the -g:none option in javac).

Compile with Optimization. If checked, the compiled application is optimized for
execution. This is the -0 option in javac. Optimizing can slow down compilation,
produce larger class files, and make the program difficult to debug.

Report Uses of Deprecated APIs. If checked, the compiler lists each use or override of
a deprecated member or class. This is the -deprecated option in javac. If unchecked,
the compiler shows only the names of source files that use or override deprecated
members or classes.

Encoding. Overrides default encoding used by preprocessor and compiler. The default
value is the default encoding used by your VM.

5.4.3 Adding Libraries and Resources

To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Libraries and Resources.

This page allows you to add a dependent project, libraries, and other supporting files
to the current project.

Add Project. The JAR file produced by another project, as well as the associated source
files and Javadoc documentation. Adding this item to a classpath sets up a
dependency between the current project and the selected JAR file.

Add Library. A Library is a collection of JAR files or folders with compiled classes,
which can optionally have associated source files and Javadoc documentation. If the
Package checkbox is checked the library is included in the application's JAR file. If it is
not checked, the library is copied into the 1ib directory.

Add JAR file. A JAR file created by another project.
Add Folder. The root of a package or directory containing files.

Once a library or resource is added, it is visible in the Libraries and Resources table,
which reflects the order of the libraries and resources in the classpath. To change the
order in the classpath, select the listing and click Move Up or Move Down. You can

also remove libraries and resources from this page.

5-6 Java ME SDK Developer's Guide

Building a Project

Each row in the table has a Package check box. If Package is checked, the library or
resource is bundled and added to the project JAR file. If Package is not checked, the
library or resource is copied to the 11ib subdirectory at build time.

5.4.4 Creating JAR and JAD Files (Packaging)

To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Creating JAR.

You can set the following options:

JAD File Name. Name of the JAD file created by the project sources. The file name
must have a . jad extension.

JAR File Name. Name of the JAR file created by the project sources. The file name
must have a . jar extension.

Compress JAR. If checked, the JAR file is compressed.

5.4.5 Obfuscating

5.4.6 Signing

To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Obfuscating.

Use the Obfuscation properties page to set the level of obfuscation for project files.

Move the Obfuscation slider to set the level. The Level Description window describes
the impact each level has.

You can add more obfuscation parameters in the Additional Obfuscation Settings
window.

To view this property page, right-click on a project and choose Properties. In the
Properties window Build category, choose Signing. These properties allow you to
enable signing and assign key pairs to a CLDC project. See Section 12.1, "Security
Domains".

Sign Distribution. Check this box to enable signing for the MIDlet suite. If it is
unchecked, this page is disabled.

Keystore. A file that stores one or more key pairs as a keystore (.ks) file. The
dropdown menu lists all available keystores. Click the Unlock button to unlock a
keystore for use.

Alias. A name assigned to a key pair within a keystore. The dropdown menu lists the
aliases available for the selected keystore. Click the Unlock button to unlock a key pair
for use.

The Certificate Details window provides information about the certificate assigned to
the key pair.

Click Open Keystores Manager to manage keystores and key pairs. See Section 12.4,
"Managing Keystores and Key Pairs" and Section 5.4.8, "Exporting a Key".

Note: CDC projects cannot be signed with the Signing tool. See
Section 5.4.7, "Signing CDC Projects".

Viewing and Editing Project Properties 5-7

Running Settings

5.4.7 Signing CDC Projects

To sign a CDC project use the JDK jarsigner command from the command line. For
example:jarsigner .exe -keystore keystore.ks -storepass keystorepwd
MyCdcApp.jar dummyCA

5.4.8 Exporting a Key

Follow these steps to export a key into an emulator:
= Select Tools > Keystores. This opens the Keystores Manager.

You can add a keystore to the Keystores list at this time. Click the Add Keystore
button. After you create the keystore, click New to create a key pair.

= In the Keys area, select a key, and click Export. This opens the dialog Export Key
into Java ME SDK/Platform/Emulator.

= Select the target emulator from the Emulator list.
= Select the Security Domain.
= Click Export to export your key pair to the selected emulator.
Your key is added to the bottom of the list in Keys Registered in the Emulator.
The Export window has the following components:

Keystore File. Displays the name of the keystore file to which the key pair belongs.
This field cannot be edited.

Key Pair Alias. The name given to the key pair within the keystore. This field cannot
be edited.

Certificate Details. Displays the details of the certificate of the key to be exported.

Emulator. The drop-down menu lists all the device emulators available. See
Section 12.1, "Security Domains".

Security Domain. Enables you to select a security domain for the key pair. The menu
lists all domains supported by the selected emulator platform.

Keys Registered in the Platform. Lists all keys that have been registered in the
selected platform. Click to select the key you want to export.

Delete Key. Deletes a selected key from the Keys Registered in the Emulator window.

Export. Exports the selected key to the selected emulator. The export button is enabled
if it is possible to export the key. If a specific key is installed it cannot be installed
again.

5.5 Running Settings

To view this property page, right-click on a project and choose Properties. In the
Properties window, choose Running. The options shown depend on the platform. See
Section 5.5.1, "MIDP Project Run Options".

5.5.1 MIDP Project Run Options

To set emulator command line options for a MIDP project, type in the command line
switches. See Section 13.3, "Emulator Command Line Options".

5-8 Java ME SDK Developer's Guide

Running Settings

Category:

----- El General

----- =] Platform
..... | Abiities
----- | & Application Descriptor

+-[95 Build

----- [Running
..... &% Deploying Spedfy the Security Domain: | maximum w

Emulator Command Line Options: | -Xvberbose
(e.g. -Xverbose)

(") Execute through OTA (Over The Air Provisioning)

Debugger timeout (in miliseconds):

For CLDC projects, the Regular execution button is enabled by default. This means the
setting for "Specify the Security Domain" applies when the project is run on an
emulator. It does not apply for OTA provisioning or an external emulator platform.

If you do not check Specify the Security Domain the project runs with the default that
was assigned when the project was created. If you check the box, you can select a
domain from the dropdown list. See Section 12.1, "Security Domains" and

Section 12.2.2, "Specify the Security Domain for a Project".

5.5.2 CDC Project Run Options

For CDC projects you must enter the name of the entry point Java file in the Main
Class field. The Main Class Browse button only shows executable classes in the
project's source folders. For a CDC project this means all classes with a static main
method, or classes extending the Applet or Xlet classes.

Arguments are passed only to the main class, not to individual files. If an Xlet is
executed, all arguments are passed to all the Xlets you specify.

For VM options, see Section 13.3.2, "CDC Options".

Viewing and Editing Project Properties 5-9

Running Settings

5-10 Java ME SDK Developer's Guide

6

Running Projects in the Emulator

The Java ME SDK emulator simulates a CLDC or CDC device on your desktop
computer. The emulator does not represent a specific device, but it provides correct
implementations of its supported APIs. The SDK uses the device manager to detect
devices and displays the available devices in the Device Selector window. See
Section 13.1, "Run the Device Manager".

The Java ME SDK provides default device skins. A skin is a thin layer on top of the
emulator implementation that defines the appearance, screen characteristics, and input
controls.

If the Device Selector window is not visible, select Window > Device Selector.

6.1 Emulating Devices

The emulator runs applications on an emulated device or a real device. Before you can
run an application from the SDK, the Device Manager, which manages both emulated
and real devices, must be running. When the Java ME SDK runs, the Device Manager
automatically launches and starts detecting devices. The default devices shipped with
the SDK are automatically found and displayed in the Device Selector window.

6.1.1 The Device Manager on Windows

The Device Manager is a service and you can see it running in your Windows system
tray. In the task manager, the process is labeled device-manager.exe.

Lo

The Device Manager icon resides in the Windows system tray.

You can right-click on the icon and select Exit to stop the service.

[Manage Device Addresses

Exit

6.2 Viewing Device Properties

The Device Selector window lists all available devices grouped by platform. If this
window is not visible, select Window > Device Selector.

Running Projects in the Emulator 6-1

Setting Device Properties

If no Java ME platform is registered in NetBeans, the Device Selector displays a node
labeled No Device Found. If you see this message at startup, it typically means device
discovery is incomplete and you just need to wait a few seconds.

Each sub node represents an emulator skin for a device. Two instances are provided
for some CLDC devices, for example, DefaultCldcMsaPhonel and
DefaultCldcMsaPhone2 (DefaultCldcPhone has three default instances). Instances of
the same device have the same capabilities but unique phone numbers, making it easy
for you to test communication between devices of the same type. If you need an
additional device instance, see Section 6.9, "Adding a Device Instance".

For Device names, see Section 8.4, "Java ME SDK User Directories". The properties for
each device skin are stored in XML files in your user work directory. See Table 8-1.

See also: Section 6.2.1, "Platform Properties”, Section 6.2.2, "Device Information”, and
Section 6.2.3, "Device Properties"

6.2.1 Platform Properties

To view platform properties from the device selector, click on the platform node (for
example, CLDC or CDC). The Properties window is, by default, docked in the upper
right portion of the user interface. If the Properties window is not visible, select
Windows > Properties.

To view the platform properties in a separate window, right-click on the platform node
and select Properties. The information in the docked properties window and the
separate window is the same.

6.2.2 Device Information

In the Device Selector window, click on a device node. The Device Information tab
opens in the central Main window. It displays a picture of the device and displays
details, supported hardware capabilities, keyboard support, supported media formats,
and the supported runtimes.

6.2.3 Device Properties

In the Device Selector window, click on a device node (such as VgaCdcPhonel) to
display the device properties. The Properties window is, by default, docked in the
upper right portion of the user interface. If the Properties window is not visible, select
Windows > Properties.

6.3 Setting Device Properties

In the Device Selector Window, right-click on a device and select Properties. Any
properties shown in gray font cannot be changed. You can adjust the device properties
shown in black. Only CLDC options can be adjusted. The CDC options cannot be
changed.

Phone Number. You can set the phone number to any appropriate sequence,
considering country codes, area codes, and so forth. If you reset this value, the setting
applies to future instances. The number is a base value for the selected device.

Heapsize. The heap is the memory allocated on a device to store your applications's
objects. The Heapsize property is the maximum heap size for the emulator. You can
choose a new maximum size from the dropdown menu.

6-2 Java ME SDK Developer's Guide

Running a Project from the Device Selector

JAM storage size in KB. The amount of space available for applications installed over
the air.

Security Domain. Select a security setting from the dropdown menu. See Section 12.1,
"Security Domains". Applies to CLDC platforms.

Locale. Type in the locale as defined in the MIDP 2.0 specification:
http://jcp.org/en/jsr/detail?id=118

Remove MIDlet Suite in execution mode. If this option is enabled, record stores and
other resources created by the MIDlet are removed when you exit the MIDlet
(assuming the MIDlet was started in execution (non-OTA) mode).

Monitor. Checkboxes for Trace GC (garbage collection), Trace Class Loading, Trace
Exceptions, Trace Method Calls, and Enable Tracing for System Classes activate tracing
for the device the next time the emulator is launched. The trace output is displayed at
runtime in the user interface Output window. Note that Trace Method Calls and
Enable Tracing for System Classes return many messages, and emulator performance
can be affected.

SATSA. See Section 20.1, "Card Slots in the Emulator".
Bluetooth. See Section 17.1, "Setting OBEX and Bluetooth Properties".

Payment. The properties are MCC (mobile country code), MNC (mobile network
code), and Passed Transactions Limit. See Section 27.2, "Running JBricks".

6.4 Opening a Serial Port

In application code, you can use Connector.open ("comm:COM1") to open a port on the
device. On Windows, you can open a serial port such as COM1 or COM2.

6.5 Running a Project from the Device Selector

The SDK determines which open projects are suitable for a device. Right-click on the
device and select a project from the context menu. If projects are not suitable they are

displayed in gray font.
DefaultCldcItwiPhone 1 £ MetworkDemo
DefaultCldcItwiPhone2 g ObexDemo
DefaultCldcMsaPhone 1 POAPDemo
DefaultCldcMsaPhone2 Fhotoalbum

e NN
DefaultCldcPh SATSAJCRMIDemo

DefaultCldceh Run Project via OTA bk
efau
Run JAR or JAD... SIPDemo

{ .
Clean database SVGContactlist
SVGDemo

Properties Sensors
UIDemao
WMADemo
¥MLAFIDemo

You can also launch the emulator to run a project from the command line, as explained
in Section 13.3, "Emulator Command Line Options".

Running Projects in the Emulator 6-3

Running Projects Simultaneously on a Single Device

6.6 Running Projects Simultaneously on a Single Device

CLDC-based devices are capable of running multiple virtual machines.You can test
this behavior in the emulator. Be sure the output window is visible in the SDK (select
Window > Output > Output). To test this feature, follow these steps:

1. Open the sample projects Games and AudioDemo.

2. In the device selector, choose an MSA-compliant device and run Games. When the
emulator launches run AudioDemo on the same device.

As each MIDlet loads, the AMS automatically installs it.
3. In AudioDemo, launch the Audio Player, and play the JavaOne theme.

Select AudioPlayer, then from the soft menu, select 1, Launch. Select JavaOne
Theme and press the Play soft button.

4. In the emulator, choose Application > AMS Home, or press F4.

Select Games. From the soft menu, select 1, Open. The music continues to play
while you are able to simultaneously launch and play games.

5. Select Application > AMS Home, or press F4. Highlight AudioSamples, and from
the soft menu, select 2, Bring to foreground. Press the Pause soft key. The music

stops playing.
6. Select Application > AMS Home, or press F4. Highlight AudioSamples and from

the soft menu, select 1, Open. Select Bouncing Ball from the list and press the
Launch soft button. Select MIDI background and press the Play soft button.

7. Select Application > AMS Home, or press F4. Select Application > Switch Running
MIDIet. Select Audio Player and press the Switch to soft button. You can press the
Play soft button to resume the Audio Player.

6.7 Emulator Features

Figure 6-1, "Emulator Features" shows common emulator features available on
emulators for the CLDC platform.

Device Name. Shown in the upper window frame. See Table 8-1, " Device Names".

Transmission Indicator. On the upper left of the emulator image, this blue light turns
on when a transmission is occurring. Typically you see it when an application is
installed over-the-air, or when a message is being sent or received. For example, when
you receive a message from the WMA console.

Menus. See Section 6.8, "Emulator Menus".
Device ID. See Table 8-1, " Device Names".

Exit Button. Pushing the button on the upper right of the emulator image has the same
effect as selecting Application > Exit.

Emulator Status Bar. Information about the current system state is shown in the status
bar at the bottom of the emulator window.

6-4 Java ME SDK Developer's Guide

Emulator Menus

Figure 6—-1 Emulator Features

[] DefaultCldc JtwiPhone1 |
Application Device Edit View Ng=

Device ID: 2 Phone number: 123456802

ORACLE’

e to [aunch:

& &

FileBrowser | JSRTI FIM OF

@

Emulator

Vibration is off | Status Bar

6.8 Emulator Menus

The emulator for the CLDC platform has Application, Device, Edit, View, and Help

menus.

The emulator for the CDC platform has Application, Device, View, and Help menus.
The View and Help menus are the same on CDC and CLDC platforms. For CDC, the

Device menu is not populated, and Application menu contains only the Exit option.

6.8.1 Application

The Application menu is fully populated for the CLDC platform. The Application

options are as follows:

Running Projects in the Emulator

6-5

Emulator Menus

6.8.2 Device

Option Accelerator Description

Run MIDlet suite Emulator interface for launching MIDlets. To run sample
applications, choose the apps*\dist*. jar file.

AMS Home F4 Exit the current application and return to the Application
Management Software home.

Stop F10 Stops the currently running MIDlet.

Change Locale This option only works with localized MIDlets.

Enter a locale identifier. The format is similar to Java SE 6, as
follows:

2-letter-lang-code separator 2-letter-country-code

For example, en-US, cs-CZ, zh-CN, ja-JP. The separator can
be a dash or an underscore.

Resume F6 Resume a suspended application.

Suspend F5 Pause a running application.

Switch Running ~ F7 When you have multiple MIDlets running, toggle between
MIDlet them. You see a list of running MIDlets and you can chose

the one you want to view. See Section 6.6, "Running Projects
Simultaneously on a Single Device".

Exit Exit button Close the emulator process and stop the build process (or
onemulator processes).
upper right

This menu is available on CLDC platforms. For CDC emulators the menu exists, but it
is empty.

6.8.2.1 Messages

Choose Device > Messages to see what is written in the message area. This is the
emulator's Inbox. The Inbox displays messages that are addressed to the device, not an
application on the device. The

= MMS messages without an AppID in the address
= SMS messages without a port in the address

= SMS text messages with a port in the address, provided there is not a Java ME
application listening on the specified port.

To test sending messages to the inbox use the WMA Console in Netbeans, or from the
command line, use wma-tool.exe. Note that wma-tool.exe requires an AppID for
MMS, so it can't be used to send a message. For SMS a port number is required, but
you can use 0 for the port to send a message to the inbox.

6.8.2.2 Orientation

Use this feature to test your application's ability to display in portrait and landscape
formats. The default is 0 degrees. Change the orientation to 90, 180, or 270 degrees.
You can also rotate 90 degrees clockwise (F8) or counterclockwise (F9) from the current
position.

6-6 Java ME SDK Developer's Guide

Adding a Device Instance

6.8.3 Edit

6.8.4 View

6.8.5 Help

6.8.2.3 External Events Generator

The External Events Generator allows you to interact with an application by injecting
events. The interaction may be through a user interface, or through a script file. The
following menu options each have a tab on the External Events Generator. The use of
the External Events Generator is addressed in the discussion for each JSR.

= Contactless Communication. See Section 32.1, "Using ContactlessDemo".
= Customization. Section 33.2, "Revising Sample Project Appearances".

s File Connection. Section 16.1, "FileConnection API".

= Location. Section 21.1, "Setting the Emulator's Location at Runtime".

= Mobile Telephony. Section 31.2, "Running the MtaDemo".

= Payment Transactions. Section 27.2, "Running JBricks".

= Sensors. Section 30.2, "Using a Mobile Sensor Project”, Section 30.3, "Creating a
Sensor Script File".

The Edit menu provides basic editing utilities for the CLDC platform.

Option Accelerator Description

Copy CTRL-C Copy selected material to the paste buffer.
Cut CTRL-X Move selected material to the paste buffer.
Paste CTRL-V Insert the contents of the paste buffer.

The View menu is available for both CLDC and CDC platforms. The only View option
available is Always On Top.

Option Description

Always OnTop Keeps the emulator in the foreground. This is especially useful when you
are running multiple emulator instances and you want to see them all and
send messages between devices.

The Help menu displays an abbreviated helpset specifically for the emulator window.

6.9 Adding a Device Instance

As described in Section 6.2, "Viewing Device Properties”, a particular device emulator
can have more than one instance, and each instance is differentiated by a number
appended to the emulator name, as seen in Table 8-1. Each device instance is stored in
a numbered directory. See Section 8.4, "Java ME SDK User Directories".

To create your own instance, follow these steps:

1. Close the Java ME SDK.

Running Projects in the Emulator 6-7

Adding a Device Instance

5.

In the device-adapter directory (see Section 8.3, "NetBeans User Directories"), copy
a numbered directory and rename it with the next number in the sequence, for
example, 11 (see Table 8-1).

In the copied directory, open the properties.xml file and change the name
property string to a unique name.

You can also change the values in device.properties.

In the system tray, right-click on the Device Manager icon and select Exit from the
context menu.

Start the Java ME SDK.

In the Device Selector you see a new node named Other. All your custom devices are
listed here. To assign this device to a project, right-click the project, select Properties,
and choose Platform. Your instance appears in the Device drop list.

You can also edit the device adaptor to create a new instance. For example, to create a
second instance of the ClamshellCldcPhone, follow these steps:

1.

A

Go to the device adapter directory (see Section 8.4, "Java ME SDK User
Directories").

Make a copy of 1.bean, and name it 2.bean.

Edit 2.bean to change the device number to 2. For example, ClamshellCldcPhone?2.
Exit the SDK and exit the Device Manager.

Start the SDK. ClamshellCldcPhone? is listed in the Other category.

6-8 Java ME SDK Developer's Guide

7

Searching the WURFL Device Database

The Wireless Universal Resource File (WURFL) is an XML file that acts as a global
database of mobile device capabilities. WURFL is an open source project at
http://wurfl.sourceforge.net/. The WURFL DB (http://www.wurflpro.com/)is a
web-based interface that allows WURFL contributors to add or change device
information in the WURFL.

The SDK uses a WURFL module to discover devices based on API support or on
physical characteristics such as physical memory size or display size.

7.1 WURFL Search for Devices

Follow these instructions to search for devices.

1.

Select Tools > Java ME > Device Database Search.
The WURFL Device Search tab opens in the main window.
Check Use Filter to see search options.

If you do not check Use Filter, all devices in the database are listed. See Section 7.2,
"WURFL Search Filtering".

Make a selection from the dropdown menu on the left.

If applicable, the center dropdown displays a list of conditions. The menu on the
right displays a value.

To add another search criteria, click the + button.
Click the - button to remove a search setting.
Click the Search button.

The search returns devices that match all the chosen criteria. The results are not
case sensitive.

Click on a device to view its properties on the right, as shown below.

Searching the WURFL Device Database 7-1

WURFL Search Filtering

Worfl Device Search x] Start Page = [4] »] E] @
Use Filter
Filter ~
|Suppu:urteu:| &PIs w MIDP 2.0 L =
[]cpcia =
|Hea|:| Size V| |is greaker than v| |g|:||:||:||:||:| | [-] [+]
16 devices found Pa00
Device Yendar Property Yalue
ZF75 Siemens ma_image_width 136
SKES Siemens maz_image_height 227
72 Siemens colars BE536
SGH-DE00 Samsung jeme_midp_2_0 true
A1000 Maotorola j2rme_jtwi true
4750 Maotorola j2rme_rmapi_1_0 true
i730 Maotorola j2re_wmapi_1_0 true
i&30 Maotorola jeme_btapi krue
E6&S0 jeme_heap_size 16777216
E1000 jeme_canvas_height 253
IS0 jerme_bits_per_pixel 16
5700 jerme_bits_per_pixel 16
Z1010 jeme_https krue
Z500 jerme_socket krue
P30 Eend)

See Section 7.2, "WURFL Search Filtering".

7.2 WURFL Search Filtering

As discussed in Section 7.1, "WURFL Search for Devices", you can use the filter to set
search constraints. If Use Filter is not checked all devices are listed. If Use Filter is
checked, you must set at least one constraint.

Supported Properties

This utility searches on a predefined list of constraints that have corresponding

properties in the Java ME SDK.

Supported APIs

You can check the APIs you want. Note, checking an API does not exclude APIs

that are not checked.
=« MIDP 1.0, MIDP 2.0

= CLDC1.0,CLDC 1.1IMMAPI 1.0, MMAPI 1.1
= WMAPI1.0, WMAPI 1.1, WMAPI 2.0

7-2 Java ME SDK Developer's Guide

WURFL Search Filtering

s Bluetooth API

= 3DAPI

= Localization API
= Vendor
m Device

= Resolution Width/Height
The device resolution.
» Maximum Image Width/Height
The maximum image size that the device can display.
= Physical Memory Size
The built-in memory size.
= Heap Size
Memory limit in bytes at runtime.
= Number of Colors
The number or colors the device's display supports.
= Supports Wi-Fi
= Supported Image Formats

Check the image type. Unchecked types might still be supported.

[] bmp
= jpeg

To see the full list of WURFL constraints, go to:
http://wurfl.sourceforge.net/help_doc.php.

See also Section 7.1, "WURFL Search for Devices".

Searching the WURFL Device Database 7-3

WURFL Search Filtering

7-4 Java ME SDK Developer's Guide

8

Finding Files in the Multiple User
Environment

The Java ME SDK can be installed on a system running a supported operating system
version. All users with an account on the host machine can access the SDK. This
feature is called the Multiple User Environment.

Note: The Multiple User Environment supports access from
several accounts. It does not support multiple users accessing the
SDK simultaneously. See Section 8.1, "Switching Users".

To support multiple users the SDK creates an installation directory that is used as a
source for copying. This document uses the variable work to represent the SDK
working directory and installdir to represent the installation directory. Each user's
personal files are maintained in a separate working directory named javame-sdk that
has a subdirectory for each version installed.

» Section 8.2, "Installation Directories"
» Section 8.3, "NetBeans User Directories"

To locate logs, see Section 14.1, "Device Manager Logs", and Section 14.2, "Device
Instance Logs".

8.1 Switching Users

Multiple users cannot run the SDK simultaneously, but, you can run the SDK from
different user accounts on the SDK host machine. When you switch users, you must
close the SDK and exit the Device Manager, as described in Section 6.1.1, "The Device
Manager on Windows". A different user can then launch the SDK and own all
processes.

8.2 Installation Directories

The Java ME SDK installation directory structure conforms to the Universal Emulator
Interface Specification (http://java.sun.com/j2me/docs/uei_specs.pdf), version
1.0.2. This structure is recognized by all IDEs and other tools that work with the UEL
The installation directory has the following structure:

= apps. Contains examples for supported platforms:
s CDC and AGUI: AGUIJava2DDemo and AGUISwingSet2.
s CLDC and MIDP: all other applications.

Finding Files in the Multiple User Environment 8-1

NetBeans User Directories

bin. The bin directory contains the following command line tools. The default
location of the bin directory is:

installdir\bin

- cref.Java Card simulator for working with SATSA JSR 177. See Section 20.2,
"JTava Card Platform Simulator (cref)".

- device-address is a tool for viewing, adding, and removing devices that the
SDK is not able to discover automatically. See Section 13.2, "Manage Device
Addresses (device-address)".

- device-manager. The device manager is a component that must be running
when you work with Java ME SDK. After installation it starts as a service, and
it will automatically restart every time your computer restarts. See Section 6.1,
"Emulating Devices".

— emulator. UEI compliant emulator. See Section 13.3, "Emulator Command
Line Options".

— jadtool. Tool for signing MIDlets. See Section 13.6.2, "Sign MIDlet Suites
(jadtool)".

— mekeytool. Management of ME keystores. See Section 13.6.3, "Manage
Certificates (MEKeyTool)".

- payment-console. Minimalistic console for viewing payment transactions. An
equivalent tool exists in the Java ME SDK user interface.

— preverify. The Java ME preverifier.

— resourcesmanager. A tool for managing JSR 238 resource bundles. An
equivalent tool exists in the Java ME SDK user interface.

- wma-tool. A command line tool for sending and receiving SMS, CBS, and MMS
messages. See Section 22.3, "Running WMA Tool".

- wscompile. Compiles of stubs and skeletons for JSR 172. See Section 13.7,
"Generate Stubs (wscompile)".

docs. Release documentation.

ide-support. The NetBeans integration file for Java ME SDK Plugin.
legal. License and copyright files.

lib. JSRJAR files for compilation.

pkg-toolkit. Packaging utility files.

runtimes. CDC and CLDC runtime files.

toolkit-1ib. Java ME SDK files for configuration and definition of devices and Ul
elements. Executables and configuration files for the device manager and other
SDK services and utilities.

8.3 NetBeans User Directories

These are the default NetBeans user directories.

NetBeans default project location:
C:\Documents and Settings\user\My Documents\NetBeansProjects

To see the NetBeans Userdir, select Help > About in the main window. The
location is:

8-2 Java ME SDK Developer's Guide

Java ME SDK User Directories

C:\Documents and Settings\user\.netbeans\version

8.4 Java ME SDK User Directories

= This documentation sometimes uses userhome to represent the root location of user
files.

The javame-sdk directory contains device instances and session information. If
you delete this directory, it will be recreated automatically when the device
manager is restarted.

C:\Documents and Settings\user\javame-sdk\version
= Device working directories
C:\Documents and Settings\user\javame-sdk\version\work

The numbered subdirectories each correspond to an emulator, as described in
Table 8-1.

Table 8-1 Device Names

Emulator # Device Platform
0 ClamshellCldcPhonel CLDC
1 DefaultCdcPbpPhonel CDC
2 DefaultCldcJtwiPhonel CLDC
3 DefaultCldcJtwiPhone2 CLDC
4 DefaultCldcMsaPhonel CLDC
5 DefaultCldcMsaPhone2 CLDC
6 DefaultCldcPhonel CLDC
7 DefaultCldcPhone2 CLDC
8 DefaultCldcPhone3 CLDC
9 VgaAGUIPhonel CDC
10 VgaCdcPhonel CDC

= Device instances (device definitions). You can make a copy of a device instance, as
described in Section 6.9, "Adding a Device Instance". Go to:

installdir\toolkit-1lib\process\device-manager\device-adapter

Finding Files in the Multiple User Environment 8-3

Java ME SDK User Directories

8-4 Java ME SDK Developer's Guide

9

Profiling Applications

The Java ME SDK supports performance profiling for Java ME applications. The
profiler keeps track of every method in your application. For a particular emulation
session, it figures out how much time was spent in each method and how many times
each method was called.

The SDK supports offline profiling. Data is collected during the emulation session.
After you close the emulator you can export the data to a . nps file you can load and
view later. As you view the snapshot you can investigate particular methods or classes
and save a customized snapshot (a .png file) for future reference.

You can start a profiling session from the NetBeans IDE, as described in Section 9.1,
"Collecting and Saving Profiler Data in the IDE", or from the command line, as
discussed in Section 13.3.4, "Command Line Profiling". It's important to note that
profiling data produced from the command line has a different format (*.prof) than
data produced from the NetBeans profiler (a.nps file).

The NetBeans IDE has a Profiling window. Because only performance profiling is
supported for Java ME, this feature has limited usefulness for Java ME applications.

Note: This feature might slow the execution of your application.

9.1 Collecting and Saving Profiler Data in the IDE

This procedure describes interactive profiling. (To run and profile an application from
the command line, see Section 13.3.4, "Command Line Profiling".)

Note: The profiler maintains a large amount of data, so profiled
MIDlets place greater demands on the heap. To increase the Heapsize
property. See Section 6.3, "Setting Device Properties".

1. In the Projects widow, right-click on the project you want to profile and select
Profile.

2. If this is the first time profiling this application you are prompted to integrate the
profiler with the project. Click OK to perform the integration.

Profiling Applications 9-1

Collecting and Saving Profiler Data in the IDE

® Enable Profiling of AudioDemo

i Profiler is not integrated with project AudioDemo.
\\‘) Click OK to perform the integration.

As part of the integration, the project build script will be modified.
The original file will be badked up as build-before-profiler. xmil.

Mote: You can undo the profiler integration at any time by invoking
Profile | Advanced Commands | Unintegrate Profiler from the main menu,

ok || cance

The profiler attaches. You are prompted for the running options.

Profile System Classes

<’:I e oni
|:l,> {3 Metwork Monitor

| [* Run || Cancel H Help

Choose the CPU Profiler, and optionally check Profile System Classes. Press Run.
3. Start your application.

Interact with the application as you normally would.
4. Exit the MIDlet.

The profile data is automatically displayed in a tab labeled CPU:time, where time is
the time the data was displayed.

9-2 Java ME SDK Developer's Guide

Loading a .nps File

...age | Device Information x | Java ME SDK StartPage x | () CPU: 05:53:17PM x|

= View: ||:|_:| Packages V| |@|| Q&

OnalE

Call Tree - Package Time [%] Time Invocations
=3 [| 2509ms (6.3%) 1.
-- % com.sun.midp. util | SO0 me (1.5%) 137
E com.sun.midp.chameleon. skins. | 545ms [1.5%) 408
--E javax.microedition. bodui | 499 ms (1.4%) 854
--E com.sun. theme | 245ms (0.7%) 673
- 3 java. util | 179ms (0.5%) 349
E com.sun.midp.io.jZme. http 128 ms (0.4%) 52| o
dis — ! L. D T
Hot Spots - Package & Self time [3%] Self time Invocations
java. security 0.000ms (0%) 193 | &8
java. util 37.0ms (0.1%) 5551
javax. microedition. content 0.000 ms [09:) 1
javax.microedition. o 0.000ms (0%) 9
javax.microedition. kodui 512ms (1.4%) 1048
javax. microedition. midlet 0.000ms (09%) 2
javax. microedition. theme 0.000ms (09) 136 v
er,l [Package Mame Filter] e

| Bg Call Tree | [Hot Spots | 7 combined | @ Infol

5. To export the profile data, press the Export icon and supply a .nps file name and
location. This data can be reloaded at a later time. See Section 9.2, "Loading a .nps

F' File".
6. To the save the current view to a .png file, press the "Save current view to image"
icon and supply a file name and location.

9.2 Loading a .nps File

A previously exported .nps file (Section 9.1, "Collecting and Saving Profiler Data in

the IDE") can be loaded at a later time.

Follow these steps to retrieve profile data:

1. Select Profile > Load Snapshot...
2. Choose the .nps file.

The Profiler opens in its own tab labeled CPU:time.

Note: The profiling values obtained from the emulator do not
reflect actual values on a real device.

Profiling Applications 9-3

Loading a .nps File

9-4 Java ME SDK Developer's Guide

10

Network Monitoring

MIDP applications, at a minimum, are capable of HTTP network connections, but
many other types of network connections are also possible. The network monitor
provides a convenient way to see the information your application is sending and
receiving on the network. This is helpful if you are debugging network interactions or
looking for ways to optimize network traffic.

Networking monitoring works for emulators only (it is not supported for real devices).
m Section 10.1, "Monitor Network Traffic"

= Section 10.2, "Filter or Sort Messages"

s Section 10.3, "Save and Load Network Monitor Information"

= Section 10.4, "Clear the Message Tree"

10.1 Monitor Network Traffic

Follow these steps to activate the network activity for an application.

1. Make the project you want to profile the main project, and from the Profile Menu,
choose Profile Main Project. Alternatively, right click on the project in the Projects
widow, and select Profile.

2. If this is the first time profiling this application you are prompted to integrate the
profile with the main project. Click OK to perform the integration.

In the Profile window, select Network Monitor, and click Run.

Profile AudioDemo x|

P
|\;/| (") CPU Profiler

[[+ Run H Cancel H Help

3. Start your application.

When the application makes any type of network connection, information about
the connection is captured and displayed in the Network Monitor tab.

Network Monitoring 10-1

Filter or Sort Messages

StartPage x | Device Information x | JavaME SDKStartPage x | g NetworkMonitor= x| |4 ' |[=](0)

B QS 4
Mao. Protocol Phone URL Time Size 2 Active
] s DefaultCldcPhonel datagram://:5555 0 ms 7 o
1 E DefaultCldcPhonel datagram://:5555 0 ms 19 o
2 | DefaultCldcPhonel socket://:5000 05m 56 s 871 ms 34 o
3 E DefaultCldcPhonel socket://:5000 05m 56 s 871 ms 51 o
[=| Dptions
x| Hex View
0z 6l 20 6D &5 73 73 61 &7 65 20 66 72 6F 6D 20 &4 &5 a message from de
11: Ta 20 36 20 74 6F 20 &4 65 76 20 37 0D OA 57 &8 61 v 6 to dev 7..Wha
22: T4 20 75 70 3F 0D ORA t up?..
[Select Devices] - [Select Protocols] w | URL Filter: W

The top frame displays a list of messages. Click a message to display its details in
the bottom frame.

In the Hex View, message bodies are shown as raw hexadecimal values with the
equivalent text. To avoid memory issues, the Hex view is currently limited to 16kB
of data.

Note: You can examine messages that are still in the process of
being sent. Incomplete messages are indicated by bold highlighting
in the message tree.

10.2 Filter or Sort Messages
Filters are useful for examining some subset of the total network traffic.
s In the [Select Devices] list check only the devices you want to view.

= In the [Select Protocols] list check only the protocols you want to view. The
supported protocols are datagram, socket, http, and https.

» Click the magnifying glass in the Network Monitor toolbar to search for a specific
string in the data in the Phone or URL columns.

To arrange the message tree in a particular order, click on the Sort By combo box and
choose a criteria.

Time. Messages are sorted in chronological order of time sent or received.

URL. Messages are sorted by URL address. Multiple messages with the same address
are sorted by time.

10-2 Java ME SDK Developer's Guide

Clear the Message Tree

Note: Sorting parameters are dependent on the message protocol
you choose. For instance, sorting by time is not relevant for socket
messages.

10.3 Save and Load Network Monitor Information

To save your network monitor session, click the blue disk icon at the left of the
Network Monitor toolbar.

B AT 8

Choose a file name. The default file extension is .nmd (network monitor data).

To load a network monitor session, choose Profile > Java ME > Load Network Monitor
Snapshot... and browse to the .nnd file you saved.

Note: To avoid memory issues, the Hex view display is currently
limited to 16kB of data.

10.4 Clear the Message Tree

To remove all messages from the network monitor choose the clear icon (the broom
icon on the right of the Network Monitor tool bar).

Network Monitoring 10-3

Clear the Message Tree

10-4 Java ME SDK Developer's Guide

11

Lightweight Ul Toolkit

The Lightweight UI Toolkit (LWUIT) is a lightweight widget library inspired by Swing
but designed for constrained devices such as mobile phones and set-top boxes.
Lightweight Ul Toolkit supports pluggable theme-ability, a component and container
hierarchy, and abstraction of the underlying GUI toolkit. The term lightweight
indicates that the widgets in the library draw their state in Java source without native
peer rendering.

11.1 LWUIT and the Java ME SDK

LWUIT is an open source project whose source is available at http://lwuit. java.net.

Java ME SDK 3.0.5 ships with the LWUIT 1.5 library, which is installed as a NetBeans
package. For information on this release, see the product page at:

http://www.oracle.com/technetwork/java/javame/javamobile/download/lwuit/in
dex.html

The Lightweight UI Toolkit Developer’s Guide is available in PDF and HTML formats:

PDEF: nhttp://download.oracle.com/javame/dev-tools/lwuit-1.5/LWUIT_
Developer_Guide.pdf

HTML:
http://download.oracle.com/javame/dev-tools/lwuit-1.5/devguide/toc.htm

As an open source project, LWUIT has an independent release schedule. The Java ME
SDK Update Center will update LWUIT when an official binary is released.

It’s possible that you might want to use a development version of the LWUIT library.
You can add a newer version as described in Section 11.3, "Add a Different LWUIT
Library".

11.2 LWUIT Resource Editor

The Resource Editor is an independent GUI tool for opening, creating, and editing
resource packages for LWUIT.

To use the resource editor, select a project that uses the LWUIT library and select
Java ME > LWUIT Resource Editor.

The Resource Editor has its own help, and tutorials that are accessed from the
Resource Editor’s Help menu. These articles link back to the LWUIT blog maintained
by Shai Almog. For traditional documentation, see the "Resources” chapter in the
Developer’s Guide mentioned in Section 11.1, "LWUIT and the Java ME SDK".

Lightweight Ul Toolkit 11-1

Add a Different LWUIT Library

11.3 Add a Different LWUIT Library

The LWUIT library can be added to any CLDC/MIDP or CDC/PBP Project. A library
has typically been installed as a NetBeans module.

1.
2.

Right-click on a project and select Properties.

In the Build category, select Libraries & Resources, and click the Add Library...
button.

In the Add Libraries window, scroll down and select LWUIT and click Add
Library.

You can see the package under Libraries and Resources.

If you have a created a Zip or JAR from the unreleased LWUIT source you can add it
in a similar fashion by pressing the Add Jar/Zip button.

11.4 LWUIT Demos

This release provides new and updated demos and sample code. Most of these demos
are self-evident user interface samples.

Note: Many LWUIT demos access common internet sites and
services through publicly available APIs. To see the demos working as
intended you might have to change your proxy settings or create an
exception in your antivirus software.

LWUITBrowser
From the menu, select Help for an explanation of this demo.
LWUITDemo

This application has demos for many features. From the Menu choose About for a
description of the demo. Choose a subdemo and press the Help soft button for an
explanation.

LWUITIODemo

This application implements IO features. For example, type LWUIT in the Search
box, choose blog from the Type menu, and press Go. Click the search results to
load the page into your system’s default browser.

LWUITMakeover

This demo features a search performed by distance, title, rating, or relevance.
Search results can be mapped. To "makeover" the demo by choose a different them
from the Menu.

LWUITSpeed

This demo tests drawing speed for different components. Press the Start button to
cycle through a series of animations. To change the performance you can edit the
frame rate in SpeedMIDlet.java. You can also affect the performance by changing
the emulator’s heap size. In the Device Selector, right-click on the device, select
Properties from the context menu, and change the Heapsize value.

LWUITTimeZone

This application shows a contacts list and provides date and time information for
contacts displayed on the home page. Use + to add contacts and - to remove them.

11-2 Java ME SDK Developer's Guide

LWUIT Demos

Press the sun symbol to toggle the time format between 24 hour time and civilian
time.

LWUITTipster

The demo is a simple tip calculator. The default service is restaurant staff. To
change the service type, click the up arrow to highlight the service types.Use the
right or left arrows to highlight a service type, then click the select button.

Lightweight Ul Toolkit 11-3

LWUIT Demos

11-4 Java ME SDK Developer's Guide

12

Security and MiDlet Signing

The Java ME SDK supports the security policies and domains defined by both JSR 185
(Java Technology for the Wireless Industry or JTWI) and JSR 248 (Mobile Service
Architecture or MSA). The SDK provides tools to sign MIDlet suites, manage keys, and
manage root certificates. The security domains are further described in Section 12.1,
"Security Domains".

MIDP 2.0 (JSR 118) includes a comprehensive security model based on protection
domains. MIDlet suites are installed into a protection domain that determines access to
protected functions. The MIDP 2.0 specification also includes a recommended practice
for using public key cryptography to verify and authenticate MIDlet suites.

The general process to create a cryptographically signed MIDlet suite is as follows:

1. The MIDlet author, probably a software company, buys a signing key pair from a
certificate authority (the CA).

2. The author signs the MIDlet suite with the signing key pair and distributes their
certificate with the MIDlet suite.

3. When the MIDlet suite is installed on the emulator or on a device, the
implementation verifies the author's certificate using its own copy of the CA's root
certificate. Then it uses the author's certificate to verify the signature on the MIDlet
suite.

4. After verification, the device or emulator installs the MIDlet suite into the security
domain that is associated with the CA's root certificate.

For definitive information, consult the MIDP 2.0 specification. For an overview of
MIDlet signing using the Java ME SDK, read the article Understanding MIDP 2.0’s
Security Architecture, which is available at
http://developers.sun.com/techtopics/mobility/midp/articles/permissions/.

If you need more background on public key cryptography, try the article MIDP
Application Security 1: Design Concerns and Cryptography, which is available at
http://developers.sun.com/techtopics/mobility/midp/articles/securityl/. See
the following topics:

= Section 12.1, "Security Domains"

= Section 12.2, "Setting Security Domains"

= Section 12.3, "Signing a Project"

= Section 12.4, "Managing Keystores and Key Pairs"
= Section 12.5, "Managing Root Certificates"

Security and MIDlet Signing 12-1

Security Domains

12.1 Security Domains

The SDK supports five security domains for MSA:

unidentified_third_party. Provides a high level of security for applications whose
origins and authenticity cannot be determined. The user is prompted frequently when
the application attempts a sensitive operation.

identified_third_party. Intended for MIDlets whose origins were determined using
cryptographic certificates. Permissions are not granted automatically, but the user is
prompted less often than for the unidentified_third_party domain.

manufacturer. Intended for MIDlet suites whose credentials originate from the
manufacturer's root certificate.

minimum. All permissions are denied to MIDlets in this domain.

maximum. All permissions are granted to MIDlets in this domain. Maximum is the
default setting.

The SDK includes four JTWI security domains:

untrusted. Provides a high level of security for applications whose origins and
authenticity cannot be determined. The user is prompted frequently when the
application attempts a sensitive operation.

trusted. All permissions are granted to MIDlets in this domain.
minimum. All permissions are denied to MIDlets in this domain.

maximum. All permissions are granted to MIDlets in this domain (equivalent to
trusted.) Maximum is the default value.

12.2 Setting Security Domains

In the SDK, when you use Run via OTA your packaged MIDlet suite is installed
directly into the emulator where it is placed in a security domain. The emulator uses
public key cryptography to determine the appropriate security domain.

s If the MIDlet suite is not signed, it is placed in the default security domain.

= If the MIDlet is signed, it is placed in the protection domain that is associated with
the root certificate of the signing key's certificate chain. See Section 12.3, "Signing a
Project".

12.2.1 Specify the Security Domain for an Emulator

1. In the Device Selection window, right-click on the device and select Properties.
2. Find the Security Domain setting and make a selection from the context menu.

The SDK knows the runtimes the device can support and supplies only possible
domains. The default for both MSA and JTWI is Maximum. See the topic "Setting
Device Properties".See Section 6.3, "Setting Device Properties".

12.2.2 Specify the Security Domain for a Project

1. Right-click on a project and select Properties.
2. In the Category area, select Running (the green triangle).

3. Select Regular Execution and check the Security domain box.

12-2 Java ME SDK Developer's Guide

Managing Keystores and Key Pairs

In this context regular execution means you are running in the emulator, as
opposed to running OTA.

4. Select the domain from the drop-down menu.

12.3 Signing a Project

Devices use signing information to check an application's source and validity before
allowing it to access protected APIs. For test purposes, you can create a signing key
pair to sign an application. The keys are as follows:

= A private key that is used to create a digital signature, or certificate.
= A public key that anyone can use to verify the authenticity of the digital signature.

You can create a key pair with the Keystores Manager as described in Section 12.4,
"Managing Keystores and Key Pairs".

12.3.1 Sign a CLDC Project With a Key Pair

1. Right-click on a project and select Properties.
2. From the Build hierarchy, select Signing.

3. Check the Sign Distribution checkbox.
4

Choose a keystore from the Keystores drop-down menu, or click Open Keystores
Manager to create a new keystore.

The Certificate Details area displays the Alias, Subject, Issuer, and validity dates
for the selected keystore.

5. Choose a key pair alias from the drop-down menu.

A keystore might be accessed by several key pairs, each with a different alias. If
you prefer to use a unique key pair, select Open Keystores Manager and create a
new key pair. See Section 12.4.1.1, "Create a Keystore".

6. Click OK.
See Section 5.4.5, "Obfuscating".

12.3.2 Sign a CDC Project

To sign a CDC project use the JDK jarsigner command from the command line. For
example:

jarsigner.exe -keystore keystore.ks -storepass keystorepwd MyCdcApp.jar dummyCA

12.4 Managing Keystores and Key Pairs

For test purposes, you can create a signing key pair to sign a MIDLet. The Keystores
Manager administers this task, as described in the remainder of this topic.The key pair
consists of two keys:

= A private key that is used to create a digital signature, or certificate.
= A public key that can be used by anyone to verify the authenticity of the signature.

To deploy on a device, you must obtain a signing key pair from a certificate authority
recognized by the device. You can also import keys from an existing Java SE platform
keystore.

Security and MIDlet Signing 12-3

Managing Keystores and Key Pairs

The following topics describe the user interface:

ms Section 12.1, "Security Domains"

» Section 12.4.1.3, "Create a New Key Pair"

= Section 12.4.1.4, "Remove a Key Pair"

= Section 12.4.1.5, "Import an Existing Key Pair"

You can also use the command line tools described in Section 13.6, "Command Line
Security Features".

12.4.1 Working With Keystores and Key Pairs

The Keystores Manager handles creating and using keystores. The keystores known to
the Keystores Manager are listed when you sign a project, as described in Section 5.4.6,
"Signing".

Keystores contain key pairs, which you can also manage from this dialog. You must
select a keystore to access the key pair tools.

»s Section 12.1, "Security Domains"

» Section 12.4.1.3, "Create a New Key Pair"

= Section 12.4.1.4, "Remove a Key Pair"

= Section 12.4.1.5, "Import an Existing Key Pair"

12.4.1.1 Create a Keystore

1. Select Tools > Keystores.
The Keystores Manager opens.
2. Click Add Keystore.
The Add Keystores window opens.
3. Choose Create Keystore.
4. Supply a name, location, and password.
C:\Documents and Settings\user\My Documents
5. Click OK.

The new keystore appears in the Keystores list.

12.4.1.2 Add an Existing Keystore

1. Select Tools > Keystores.
The Keystores Manager opens.

2. Click Add Keystore.
The Add Keystores window opens.

3. Choose Add Existing Keystore.

4. Browse to the location of the keystore and select the keystore file. Click OK.
C:\Documents and Settings\user\My Documents

5. Click OK.

The new keystore appears in the Keystores list.

12-4 Java ME SDK Developer's Guide

Managing Keystores and Key Pairs

12.4.1.3 Create a New Key Pair

1.

Select Tools > Keystores.
The Keystores Manager opens.
Select a Keystore in the Keystores area on the left.

If you prefer a different keystore, select Add Keystore to create a new keystore or
add an existing keystore.

Click the New button.
Fill in the Create Key Pair dialog.
You must provide an alias to refer to this key pair.

The six Certificate Details fields are provisionally optional. You must complete at
least one field.

Key Pair Alias. The name used to refer to this key pair.

Common Name. Common name of a person, such as "Jane Smith"
Organization Unit. Department or division name, such as "Development"
Organization Name. Large organization name, such as "Sun Microsystems Inc."
Locality Name. Locality (city) name, such as "Santa Clara"

State Name. State or province name, such as "California"

Country. Two-letter country code, such as "US"

The password is optional. If you do provide a password, it must have at least six
characters.

Click OK.

The new key is displayed in the Keys area under its alias. You can now select this
keypair when you sign a project. See Section 12.3, "Signing a Project".

12.4.1.4 Remove a Key Pair

1.
2.
3.

Select Tools > Keystores.
In the Keys area, click on a Key Pair.

Select Delete.

12.4.1.5 Import an Existing Key Pair

If you have keys in a Java SE platform keystore that you would like to use for MIDlet
signing, you can import the signing keys to the Java ME SDK.

1.
2.

Select Tools > Keystores.

Click Add Keystores.

The Add Keystores window opens.
Click Add Existing Keystore.
Browse to the keystore location.

Click OK.

Security and MIDlet Signing 12-5

Managing Root Certificates

12.5 Managing Root Certificates

The Java ME SDK command line tools described in Section 13.6.3, "Manage Certificates
(MEKeyTool)" manage the emulator's list of root certificates.

Real devices have similar lists of root certificates, although you typically cannot
modify them. When you deploy your application on a real device, you must use
signing keys issued by a certificate authority whose root certificate is present on the
device. This makes it possible for the device to verify your application.

Each emulator instance has its own _main.ks file located in its appdb directory. For
example: userhome\ javame-sdk\3. 0. 5\work\emulator-instance-id \appdb.

The micro keystore, _main.ks resides in the following directory:
installdir\runtimes\cldc-hi\appdb\
The default keystore keystore.ks resides in installdir\runtimes\cldc-hi\1lib.

You can use the —-import option to import certificates from these keystores as described
in Section 13.6.3, "Manage Certificates (MEKeyTool)".

12-6 Java ME SDK Developer's Guide

13

Command Line Reference

This topic describes how to operate the Java ME SDK from the command line and
details the command line tools required to build and run an application.

= Section 13.1, "Run the Device Manager"

= Section 13.2, "Manage Device Addresses (device-address)"
= Section 13.3, "Emulator Command Line Options"

= Section 13.4, "Build a Project from the Command Line"

= Section 13.5, "Packaging a MIDLet Suite (JAR and JAD)"

= Section 13.6, "Command Line Security Features"

= Section 13.7, "Generate Stubs (wscompile)"

13.1 Run the Device Manager

The device manager is a component that runs as a service. It detects devices (real or
emulated) that conform\ to the Universal Emulator Interface Specification
(http://java.sun.com/j2me/docs/uei_specs.pdf), version 1.0.2. The Device
Manager automatically restarts every time you use the SDK. You can manually launch
the device manager from a script or a command line.

installdir\bin\device-manager.exe

To see a log of activities, launch the device manager with the -XenableOutput option.

13.2 Manage Device Addresses (device-address)

installdir\bin\device-address is a tool for viewing, adding, and removing devices
that the SDK is not able to discover automatically. The Microsoft device emulator is an
example of such a device. The syntax is:

Table 13-1 Device Address Commands

Command Action

add address_type address Add the specified address.

del address_type address Delete the specified address.
list List all address types.

list address_type List the specified address type.

For example, the following command adds a device:

Command Line Reference 13-1

Emulator Command Line Options

installdir\bin\device-address.exe add ip 192.168.1.2

13.3 Emulator Command Line Options

You can launch the emulator independent of the GUI using bin\emulator. The syntax
is as follows:

emulator options
The general options are as follows:

Table 13-2 Emulator Commands

Command Action

-classpath path Specifies a search path for application classes. The path consists
—cp path of directories, ZIP files, and JAR files separated by colons.
-Dproperty=value Sets a system property value.

-help Display a list of valid options.

-version Display version information about the emulator.
-Xdevice:instance-name Run an application on the emulator using the given device

instance name.

-Xquery Print emulator skin information on the standard output stream
and exit immediately. The information includes the skin name,
screen size, and other capabilities.

This is a simple example of running the emulator from the command line:
emulator.exe -Xdescriptor:C:\Java_ME_platform_SDK_3.0.5\apps\Games\dist\Games. jad

emulator.exe also supports Section 13.3.1, "MIDlet Options", Section 13.3.2, "CDC
Options", and Section 13.3.3, "Debugging and Tracing Options".

13.3.1 MIDlet Options
Options for running MIDlets in the emulator are as follows:
= —Xautotest:JAD-file-URL

Run in autotest mode. This option installs a MIDlet suite from a URL, runs it,
removes it, and repeats the process. The purpose is to run test compatibility kits
(TCKs) with the emulator, using a test harness such as JT Harness
(http://jtharness.java.net), or Java Device Test Suite (JDTS
http://java.sun.com/products/javadevice/overview.html. For example:

emulator -Xautotest:http://localhost:8080/test/getNextApp.jad

Given the above command, -Xautotest causes the emulator to repeatedly install,
run, and remove the first MIDlet from the MIDlet suite provided through the
HTTP URL. Once the emulator starts, it queries the test harness, which then
downloads and installs the TCK MIDletAgent.

s -Xdescriptor:jad-file
Install a MIDlet, run it, and uninstall it after it finishes.
m -Xdomain:domain-name

Set the MIDlet suite's security domain.

13-2 Java ME SDK Developer's Guide

Emulator Command Line Options

The Xjam argument runs an application remotely using the Application Management
Software (AMS) to run OTA provisioning. If no application is specified with the
argument, the graphical AMS is run.

m -Xjam[:=<JAD-file-url> |force|list]|storageNames |
run=[<storageNames> | <StorageNumber>] |remove=[<storage name>|<storage
number> | all]]

Installs the application with the specified JAD file onto a device.

= force.If an existing application has the same storage name as the application
to be installed, force removes the existing application before installing the
new application.

= list. Listall the applications installed on the device and exit. The list is
written to standard output before the emulator exits.

» storageNames. List all applications installed on the device. The list is written
to standard output before the emulator exits. Each line contains one storage
name in numerical order. The list contains only the name so the order is
important. For example the first storage name must be storage number 1.

» -Xjam:run=[<storage-name> | <storage-number>)

Run a previously installed application. The application is specified by its valid
storage name or storage number.

m -Xjam:remove=[<storage-name> | <stomge—number> | all]

Remove a previously installed application. The application is identified by its
valid storage name or storage number. If a1l is supplied, all previously installed
applications are removed.

= transient=jad-file-url

If specified, transient is an alias for installing, running, and removing the
application with the specified JAD file.

This example illustrates OTA installation:

emulator -Xjam:install=http://www.myserver.com/apps/MyApp.jad
-Xdevice:DefaultCldcMsaPhone?2

The above command returns the ID of the installed application. Once you obtain the

ID you can run it with: emulator=Xjam:run=ID

See also Section 13.3, "Emulator Command Line Options" and Section 13.3.3,
"Debugging and Tracing Options".

13.3.2 CDC Options
The following options apply to CDC projects.

= —Xmain:main-class-name
Run the main method of a Java class, as in Java SE.

= —Xxlet:classpath=class-path, class=fully-qualified-name, [arg=arqument] *
Run an Xlet application.

See also Section 13.3, "Emulator Command Line Options" and Section 13.3.3,
"Debugging and Tracing Options".

Command Line Reference 13-3

Emulator Command Line Options

13.3.3 Debugging and Tracing Options

You can use the following options with the emulator for debugging and tracing CLDC
projects.

-Xdebug

Enable runtime debugging. The -Xrunjdwp option must be called to support
-Xdebug.

-Xrunjdwp:debug-settings

Start a Java debug wire protocol session, as specified by a list of comma-separated
debug settings. Both -Xrunjdwp and -Xdebug must be called.

Valid debug settings include the following:

= transport=transport-mechanism - Transport mechanism used to communicate
with the debugger. The only transport mechanism supported is dt_socket.

= address=host:port - Transport address for the debugger connection. If host is
omitted, localhost is assumed to be the host machine.

= server={y|n}- Starts the debug agent as a server. The debugger must connect
to the port specified. The possible values are y and n. Currently, only y is
supported (the emulator must act as a server).

= suspend=(y | n} - The possible values are y and n.

When suspend is set to 7, the application starts immediately and the debugger
can be attached at any time during its run.

When suspend is set to y, the application does not start until a debugger
attaches to the debugging port and sends a resume command. This means that
an application can be debugged from the very beginning.

This example shows debugging:

emulator.exe -Xdevice:DefaultCldcPhone2 -Xdebug -Xrunjdwp:transport=dt_socket, suspend=n,
server=y,address=51307 -Xdescriptor:..\apps\Games\dist\Games.jad -Xdomain:maximum

With the emulator running you can attach a debugger.

To attach a graphical debugger from NetBeans, select Debug > Attach Debugger.

To attach a command line debugger, see:
http://download.oracle.com/javase/6/docs/technotes/tools/windows/jdb.ht
ml

A sample command would be:

jdb -connect com.sun.jdi.SocketAttach:hostname=1localhost,port=51307

13.3.4 Command Line Profiling

To add profiling to an emulator session, use:

-Xprofile:file=filename.prof

For example:

emulator.exe -Xdevice:DefaultCldcPhonel -Xprofile:file=D:\Temp\Games.prof
-Xdescriptor:..\apps\Games\dist\Games. jad

13-4 Java ME SDK Developer's Guide

Build a Project from the Command Line

When you launch the emulator and profile an application from the command line the
data profile you save has a different format than .nps files created with the Profile
option in the NetBeans IDE.

Files created from the command line should be given the extension .prof to
distinguish them from IDE profiler files.

To view .prof files in the IDE, select Profile > Java ME > Import CPU Profiler
Snapshot. Your file is displayed in a tab labeled with the time the snapshot was taken.

Once the file is loaded in the IDE you can export the data in . nps form, using the
Export to... feature as described in Section 9.1, "Collecting and Saving Profiler Data in
the IDE", step 5. These files can be loaded using Profile > Java ME > Load Snapshot...

13.4 Build a Project from the Command Line

In the user interface, building a project is a single step. Behind the scenes, however,
there are two steps. First, Java source files are compiled into Java class files. Next, the
class files are preverified, which means they are prepared for the CLDC VM. See the
following topics:

= Section 13.4.1, "Check Prerequisites”
= Section 13.4.2, "Compile Class Files"
= Section 13.4.3, "Preverify Class Files"

13.4.1 Check Prerequisites

Before building and running an application from the command line, verify that you
have a version no earlier than 1.5 of the Java SE software development kit. Make sure
the jar command is in your path. To find the version of the development kit, run java
-version at the command line.

13.4.2 Compile Class Files

Use the javac compiler from the Java SE development kit to compile Java source files.
You can use the existing Java ME SDK project directory structure. Use the
-bootclasspath option to tell the compiler to use the MIDP APIs, and use the -d
option to tell the compiler where to put the compiled class files.

The following example demonstrates how you might compile a MIDP 2.0 application,
taking source files from the src directory and placing the class files in the tmpclasses
directory. Newlines have been added for clarity.

javac -target 1.3 -source 1.3
-bootclasspath ..\..\lib\cldc_10.jar;..\..\lib\midp2.0. jar
-d tmpclasses
src*.java

For more information on javac, consult the Java SE documentation.

13.4.3 Preverify Class Files

The next step is to preverify the class files. The bin directory of the Java ME SDK
includes the preverify utility. The syntax for the preverify command is as follows:

preverify files | directories
Some of the options are as follows:

Command Line Reference 13-5

Packaging a MIDLet Suite (JAR and JAD)

-classpath classpath Specify the directories or JAR files (given as a semicolon-delimited
list) from which classes are loaded.

-d output-directory Specify the target directory for the output classes. This directory
must exist before preverifying. If this option is not used, the
preverifier places the classes in a directory called output.

Following the example for compiling, use the following command to verify the
compiled class files. As before, newlines are added for clarity.

preverify.exe

—-classpath ..\..\lib\cldcapilO.jar;..\..\lib\midpapi20.jar

-d classes

tmpclasses
As a result of this command, preverified class files are placed in the classes directory.
If your application uses WMA, MMAP], or other versions of CLDC or MIDP, be sure
to include the relevant . jar files in the classpath.

13.5 Packaging a MIDLet Suite (JAR and JAD)

To package a MIDlet suite manually you must create a manifest file, an application
JAR file, and finally, a MIDlet descriptor (also known as a Java Application Descriptor
or JAD).

Create a manifest file containing the appropriate attributes as specified in the MIDP
specification. You can use any text editor to create the manifest file. For example, a
manifest might have the following contents:

MIDlet-1: My MIDlet, MyMIDlet.png, MyMIDlet
MIDlet-Name: MyMIDlet

MIDlet-Vendor: My Organization
MIDlet-Version: 1.0
MicroEdition-Configuration: CLDC-1.1
MicroEdition-Profile: MIDP-2.1

Create a JAR file containing the manifest as well as the suite's class and resource files.
To create the JAR file, use the jar tool that comes with the Java SE software
development kit. The syntax is as follows:

jar cfm file manifest -C class-directory . -C resource-directory .
The arguments are as follows:

= file- JAR file to create.

= manifest - Manifest file for the MIDlets.

» class-directory - Directory containing the application's classes.

» resource-directory - Directory containing the application's resources.

For example, to create a JAR file named MyApp. jar whose classes are in the classes
directory and resources are in the res directory, use the following command:

jar cfm MyApp.jar MANIFEST.MF -C classes . -C res .

Create a JAD file containing the appropriate attributes as specified in the MIDP
specification. You can use any text editor to create the JAD file. This file must have the
extension . jad.

13-6 Java ME SDK Developer's Guide

Command Line Security Features

Note: You must set the MIDlet-Jar-Size entry to the size of the
JAR file created in the previous step.

For example, a JAD file might have the following contents:

MIDlet-Name: MyMIDlet
MIDlet-Vendor: My Organization
MIDlet-Version: 1.0
MIDlet-Jar-URL: MyApp.jar
MIDlet-Jar-Size: 24601

13.6 Command Line Security Features

The full spectrum of the Java ME SDK's security features are also available from the
command line. You can adjust the emulator's default protection domain, sign MIDlet
suites, and manage certificates.

= Section 13.6.1, "Change the Default Protection Domain"
= Section 13.6.2, "Sign MIDlet Suites (jadtool)"
= Section 13.6.3, "Manage Certificates (MEKeyTool)"

13.6.1 Change the Default Protection Domain

To adjust the emulator's default protection domain, use the following option with the
emulator command:

-Xdomain:domain-type

Assigns a security domain to the MIDlet suite. Enter an appropriate security domain
as described in Section 12.1, "Security Domains". For example, -Xdomain:maximum.

13.6.2 Sign MIDlet Suites (jadtool)

jadtool is a command-line interface for signing MIDlet suites using public key
cryptography according to the MIDP 2.0 specification. Signing a MIDlet suite is the
process of adding the signer certificates and the digital signature of the JAR file to a
JAD file. jadtool is also capable of signing payment update (JPP) files.

jadtool only uses certificates and keys from Java SE platform keystores. Java SE
software provides keytool, the command-line tool to manage Java SE platform
keystores.

jadtool is packaged in a JAR file. To run it, open a command prompt, change the
current directory to installdir\bin, and enter the following command:

jadtool command
The commands are as follows:

m -help
Prints the usage instructions for jadtool.

= -addcert -aliasalias [-keystore keystore] [-storepass password] [-storetype
PKCS11] [-certnum number] [-chainnumnumber] [-encoding encoding]
-inputjad | inputjpp input-file -outputjad | outputjpp output-file

Command Line Reference 13-7

Command Line Security Features

Adds the certificate of the key pair from the given keystore to the JAD file or JPP
file.

s -addjarsig [-jarfile <filename>] -keypass <password> -alias <key alias>
-storepass <password> [-keystore <nonel|keystore>] [-storetype <PKCS11>]
[-encoding <encoding>] -inputjad <filename> -outputijad <filename>

Adds the digital signature of the given JAR file to the specified JAD file. The
default value for -jarfile is the MIDlet-Jar-URL property in the JAD file.

m -showcert [([-certnum <number>] [-chainnum <number>]) | [-all]]
[-encoding <encoding>]-inputjad filename | -inputjpp <filename>

Displays information about certificates in JAD and JPP files.

» -addjppsig -keypass <password> -alias <key alias> [-storepass <password>]
[-keystore <none|keystore>] [-storetype <PKCS11>] [-encoding
<encoding>] -inputjpp <filename> -outputjpp <filename>

Adds a digital signature of the input JPP file to the specified output JPP file.
The default values are as follows:
m -encoding - UTF-8
s -jarfile-MIDlet-Jar-URL property in the JAD file
m -keystore - $HOME\.keystore
m -certnum-1

n —chainnum- 1

13.6.3 Manage Certificates (MEKeyTool)

MEKeyTool manages the public keys of certificate authorities (CAs), making it
functionally similar to the keytool utility that comes with the Java SE SDK. The keys
can be used to facilitate secure HTTP communication over SSL (HTTPS).

Before using MEKeyTool, you must first have access to a Java Cryptography Extension
keystore. You can create one using the Java SE keytool utility (found in the \bin
directory for your JDK). See:

http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html

To run MEKeyTool, open a command prompt, change the current directory to
installdir\bin, and enter the following command:

installdir\bin\mekeytool.exe -command
The command keywords follow.

The Java ME SDK contains a default ME keystore named _main.ks, which is located
in:

installdir\runtimes\cldc-hi\appdb

This keystore includes all the certificates that exist in the default Java SE platform
keystore that comes with the Java SE installation.

Also, each emulator instance has its own _main.ks file located in

userhome\ javame-sdk\3. 0. 5\work \emulator-instance-id\appdb . If you do not specify a
value for MEkeystore, a new key is added to the default ME key for this emulator
instance.

If you do not specify a value for -keystore, the default keystore is used:

13-8 Java ME SDK Developer's Guide

Generate Stubs (wscompile)

C:\Documents and Settings\user\.keystore.ks

-help
Prints the usage instructions for MEKeyTool.

-import -alias alias [-keystore JCEkeystore] [-MEkeystore filename] [-storepass
storepass] -domain domain-name

Imports a public key into the ME keystore from the given JCE keystore using the
given Java Cryptography Extension keystore password. and the default Java
Cryptography Extension keystore is userhome\ .keystore.

-list [-MEkeystore filename]

Lists the keys in the ME keystore, including the owner and validity period for
each.

-delete (-owner owner | -number key-number)[-MEkeystore filename]

Deletes a key from the given ME keystore with the given owner.

13.7 Generate Stubs (wscompile)

Mobile clients can use the Stub Generator to access web services. The wscompile tool
generates stubs, ties, serializers, and WSDL files used in Java API for XML (JAX) RPC
clients and services. The tool reads a configuration file, that specifies either a WSDL
file, a model file, or a compiled service endpoint interface. The syntax for the stub
generator command is as follows:

wscompile [options] configuration-files

Table 13-3 lists the wscompile options:

Table 13-3 wscompile Options

Option Description

-d output directory Specifies where to place generated output files

-£: features Enables the given features

-features:features Same as -f:features

-9 Generates debugging info

-gen Same as -gen:client

-gen:client Generates client artifacts (stubs, etc.)

-httpproxy : host:port Specifies a HTTP proxy server (port defaults to 8080)

—-import Generates interfaces and value types only

-model file Writes the internal model to the given file

-0 Optimizes generated code

-s directory Specifies where to place generated source files

-verbose Outputs messages about what the compiler is doing

-version Prints version information

-cldcl.0 Sets the CLDC version to 1.0 (default). Float and double
become String.

-cldcl.1 Sets the CLDC version to 1.1 (float and double are OK)

-cldcl.0info Shows all CLDC 1.0 information and warning messages.

Command Line Reference 13-9

Generate Stubs (wscompile)

Note: Exactly one -gen option must be specified. The -f option
requires a comma-separated list of features.

Table 13-4 lists the features (delimited by commas) that can follow the -f option. The
wscompile tool reads a WSDL file, compiled service endpoint interface (SEI), or model
file as input. The Type of File column indicates which of these files can be used with a

particular feature.

Table 13-4 Command Supported Features (-f) for wscompile

Option Description Type of File
explicitcontext Turns on explicit service context mapping WSDL
nodatabinding Turns off data binding for literal encoding ~ WSDL
noencodedtypes Turns off encoding type information WSDL, SEI, model
nomultirefs Turns off support for multiple references WSDL, SEI, model
novalidation Turns off full validation of imported WSDL = WSDL
documents
searchschema Searches schema aggressively for subtypes = WSDL
serializeinterfaces Turns on direct serialization of interface WSDL, SEI, model
types
wsi Enables WSI-Basic Profile features (default) WSDL
resolveidref Resolves xsd: IDREF WSDL
nounwrap No unwrap. WSDL
Examples

wscompile -gen -d generated config.xml
wscompile -gen -f:nounwrap -O -cldcl.l -d generated config.xml

13-10 Java ME SDK Developer's Guide

14

14.1

Logs

Java ME SDK uses the log4j logging facility to manage Device Manager and Device
Instance logs.

Device Manager Logs

The device manager log is placed into:

C:\Documents and Settings\user\javame-sdk\version\log
Logging levels can be configured in the following XML file:
installdir\toolkit-1lib\process\device-manager\conf\log4j.xml

A priority value for the categories com. sun or VM can be set to the following levels:
ERROR, WARN, INFO, DEBUG, TRACE (ordered from least to most verbose).

<category name="com.sun">
<priority value="DEBUG"/>
<appender-ref ref="CONSOLE-ALL"/>
<appender-ref ref="FILE"/>
</category>

<category name="VM">
<priority value="INFO"/>
<appender-ref ref="CONSOLE-ALL"/>
<appender-ref ref="FILE"/>
</category>

14.2 Device Instance Logs

Each device (or emulator) instance writes its own log into its directory. See Table 8-1 to
correlate the directory number and the device name.

C:\Documents and Settings\user\javame-sdk\version\work\device-#\device.log

The verbosity of the device instance log is controlled by the 1og4j.xml file, as
described in Section 14.1, "Device Manager Logs".

A priority value for the categories com. sun or VM can be set to the following levels:
ERROR, WARN, INFO, DEBUG, TRACE (ordered from least to most verbose. The
verbosity of the device instance log is controlled by log47j.xml.

Logs 14-1

Device Instance Logs

14-2 Java ME SDK Developer's Guide

15

JSR Support

The Java ME SDK supports many standard Application Programming Interfaces
(APIs) defined through the Java Community Process (JCP) program. JCP APIs are
often referred to as JSRs, named after the Java Specification Request process.

See Table 15-1 for a full list of supported APIs. The Java ME SDK provides
documentation describing how certain APIs are implemented in the SDK. Many
supported APIs do not require special implementation considerations, so they are not
discussed in this help set.

The CLDC/MIDP platform is based on the Mobile Information Device Profile and
Connected Limited Device Configuration (JSRs 118 and 139).

JSRs that are not part of the platform are referred to as "optional packages."All optional
packages are supported on the CLDC/MIDP Platform on Windows.

15.1 JCP APIs

Table 15-1 Supported JCP APIs

JSR, API Name, URL

JSR75,PIM and File =~ PDA Optional Packages for the J2ME Platform
http://jcp.org/en/jsr/detail?id=75

JSR 82, Bluetooth and Java APIs for Bluetooth
OBEX

http://jcp.org/en/jsr/detail?id=82
JSR 118, MIDP 2.0 Mobile Information Device Profile
http://jcp.org/en/jsr/detail?id=118
JSR 135, MMAPI 1.1 Mobile Media API
http://jcp.org/en/jsr/detail?id=135
JSR 139, CLDC 1.1 Connected Limited Device Configuration
http://jcp.org/en/jsr/detail?id=139
JSR 172, Web Services J2ME Web Services Specification
http://jcp.org/en/jsr/detail?id=172
JSR 177, SATSA Security and Trust Services API for Java ME
http://jcp.org/en/jsr/detail?id=177

JSR 179, Location Location API for Java ME
http://jcp.org/en/jsr/detail?id=179

JSR Support 15-1

JCP APIs

Table 15-1 (Cont) Supported JCP APIs

JSR, API Name, URL

JSR 180, SIP SIP API for Java ME
http://jcp.org/en/jsr/detail?id=180

JSR 184, 3D Graphics =~ Mobile 3D Graphics API for [2ME
http://jcp.org/en/jsr/detail?id=184

JSR 185, JTWI 1.0 Java Technology for the Wireless Industry
http://jcp.org/en/jsr/detail?id=185

JSR 205, WMA 2.0 Wireless Messaging API

http://jcp.org/en/jsr/detail?id=205

JSR 209, AGUI 1.0

Advanced Graphics and User Interface Optional Package for the J2ME

Platform

http://www.jcp.org/en/jsr/detail?id=209

JSR 211, CHAPI

Content Handler API
http://jcp.org/en/jsr/detail?id=211

JSR 217, PBP 1.1

Personal Basis Profile 1.1

http://www.jcp.org/en/jsr/detail?id=217

JSR 218, CDC Connected Device Configuration
http://jcp.org/en/jsr/detail?id=218
JSR 226, SVG Scalable 2D Vector Graphics API for J2ME
http://jcp.org/en/jsr/detail?id=226
JSR 229, Payment Payment API
http://jcp.org/en/jsr/detail?id=229
JSR 234, AMMS Advanced Multimedia Supplements
http://jcp.org/en/jsr/detail?id=234
JSR 238, MIA Mobile Internationalization API
http://jcp.org/en/jsr/detail?id=238
JSR 239 Java Binding for OpenGL ES API
http://jcp.org/en/jsr/detail?id=239
JSR 248, MSA 1.0 Mobile Service Architecture
http://jcp.org/en/jsr/detail?id=248
JSR 253, MTA Mobile Telephony API (MTA)
http://jcp.org/en/jsr/detail?id=253
JSR 256 Mobile Sensor API
http://jcp.org/en/jsr/detail?id=256
JSR 257 Contactless Communication API
http://jcp.org/en/jsr/detail?id=257
JSR 258 Mobile User Interface Customization API
http://jcp.org/en/jsr/detail?id=258
JSR 280, XML API XML API for Java ME

http://jcp.org/en/jsr/detail?id=280

15-2 Java ME SDK Developer's Guide

JCP APIs

Table 15-1 (Cont) Supported JCP APIs
JSR, API Name, URL

JSR 293, Location Location API 2.0
http://jcp.org/en/jsr/detail?id=293

JSR Support 15-3

JCP APIs

15-4 Java ME SDK Developer's Guide

16

JSR 75: PDA Optional Packages

The Java ME SDK supports JSR 75, the PDA Optional Packages (PDAP) for the J2ME
Platform. JSR 75 includes two independent APlIs:

= The FileConnection optional package allows MIDlets access to a local device file
system.

s The Personal Information Management (PIM) optional package includes APIs for
manipulating contact lists (address book), calendars, and to-do lists.

This chapter describes how the Java ME SDK implements the FileConnection and PIM
APIs.

16.1 FileConnection API

On a real device, the FileConnection API typically provides access to files stored in the
device's memory or on a memory card.

In the Java ME SDK emulator, the FileConnection API enables MIDlets to access files
stored on your computer's hard disk.

The files that can be accessed using the FileConnection optional package are stored in
the following subdirectory:

Documents and Settings\user\javame-sdk\3.0.5\work\emulator-instance\appdb\file
system

For example, the DefaultCldcPhonel emulator instance comes with a root directory
installed called root1, which contains a Readne file and an empty directory named
photos.

Each subdirectory of filesystemis called a root. The Java ME SDK provides a
mechanism for managing roots. While the emulator is running, choose Device > File
Connection. The opens with the File Connection tab selected.

In the File Connection panel you can mount, unmount, or delete filesystem roots.
Mounted roots are displayed in the top list, and unmounted roots are moved to the
bottom list. Mounted root directories and their subdirectories are available to
applications using the FileConnection API. Unmounted roots can be remounted in the
future.

= Toadd a new empty filesystem root directory, click Mount Empty and fill in a
name for the directory.

= To mount a copy of an existing directory, click Mount Copy, and browse to choose
a directory you want to copy. When the File System Root Entry dialog opens, enter
the name for this root. A deep copy of the selected directory is placed into the
emulator's filesystem with the specified root name.

JSR 75: PDA Optional Packages 16-1

PIM API

= To make a directory inaccessible to the FileConnection AP]I, select it in the list and
click Unmount. The selected root is unmounted and moved to the Unmounted
roots list.

= To completely remove a mounted directory, select it and click Unmount & Delete.

= To remount an unmounted directory, select it and click Remount. The root is
moved to the mounted roots list.

= To delete an unmounted directory, select it and click Delete. The selected root is
removed from the list.

16.2 PIM API

The Java ME SDK emulator stores contact, calendar, and to-do information in standard
files on your desktop computer's hard disk. All information is stored in:

Documents and Settings\user\javame-sdk\3.0.5\work\emulator-instance\appdb\PIM

Each device instance has its own data. Lists are stored in subdirectories of the
contacts, events, and todo directories. For example, a contact list called Contacts is
contained in \appdb\PIM\Contacts:

Inside the list directory, items are stored in vCard (.vcs) or vCalendar (.vcf) format
(see http://www.imc.org/pdi/). Contacts are stored in vCard format, while calendar
and to-do items are both stored in vCalendar format.

16.3 Running PDAPDemo

PDAPDemo shows how to use the PIM and FileConnection APIs that are part of the JSR
75 specification.

16.3.1 Browsing Files

To run the file browser, you'll need to give the MIDlet appropriate security
authorization, if you have not already done so. Right-click on your project, choose
Properties, and select Specify the Security Domain. If necessary, select the maximum
domain and press OK.

Now open and run the PDAPDemo project. Launch the FileBrowser MIDlet. You see a
directory listing, and you can browse through the available directories and files. By
default there is one directory, root1. This directory is located at:

Documents and Settings\user\javame-sdk\version\work\instance\appdb\filesystem
\rootl

16-2 Java ME SDK Developer's Guide

Running PDAPDemo

Select the directory and press the View soft button to enter it.

The directories photos and private are empty by default. You can add files and root
directories and they will be visible to the JSR 75 File APL (This demo shows a
README and some JPEGs that were added to the local photos directory.)

Using the Menu commands you can view a file or see its properties. Try selecting the
file and choosing Properties or View from the menu.

16.3.2 The PIM API

The JSR75 PIM APIs example demonstrates how to access personal information, like
contact lists, calendars, and to-do lists. After you launch the example, choose a type of
list from the main menu.

JSR 75: PDA Optional Packages 16-3

Running PDAPDemo

In this example application, each type of list works the same way and each list type
contains a single list. For example, if you choose Contact Lists, there is a single contact
list called Contacts. Event Lists contains a single list called Events, and To Do Lists
contains a single list named To Do.

Select a list type

Contact Lists

Once you've selected a list type and chosen the specific list, you can view all the items
in the list. If this is the first time you've run the example, the list is probably empty.

To add an item, choose New from the menu. The application prompts you for a
Formatted Name for the item. You can add more data fields to this item using option 3,
Add Field, in the menu. You see a list of field names. Pick as many as you like. You can
fill in the field at any time.

16-4 Java ME SDK Developer's Guide

Running PDAPDemo

PIM ltem

ME SDK Address Feedback
mesdk-feedback@sun. cor|

To save the list item, choose Commit (option 5) from the menu.

To return to the list, choose the Back command. You'll see the item you just created in
the list.

The items that you create are stored in standard vCard or vCalendar format in the
device\pim directory.

The PIM API allows for exporting contact, calender, and to-do items in a standard
format. The exact format depends on the list type. When you are viewing an item in
any list, the menu contains a command for viewing the exported item.

For example, when you are viewing a contact list item, the menu contains Show
vCard. When you choose this command, the exported item is shown on the screen.
Calendar items and to-do items both get exported as vCalendar.

JSR 75: PDA Optional Packages 16-5

Running PDAPDemo

16-6 Java ME SDK Developer's Guide

17

JSR 82: Bluetooth and OBEX Support

The Java ME SDK emulator supports JSR 82, the Java APIs for Bluetooth. The emulator
is fully compliant with version 1.1 of the specification, which describes integration
with the push registry. JSR 82 includes two independent APIs:

s The Bluetooth API provides an interface to Bluetooth wireless networking,
including device discovery and data exchange.

The Java ME SDK emulator enables you to develop and test applications that use
Bluetooth without having actual Bluetooth hardware. The SDK simulates a
Bluetooth environment for running emulators. Multiple emulator instances can
discover each other and exchange data using the Bluetooth API.

For an example, see Section 17.2, "Running the Bluetooth Demo".

= The OBEX API allows applications to use the Object Exchange (OBEX) protocol
over Bluetooth or other communication channels.

The Java ME SDK implements OBEX transfer over simulated Bluetooth and TCP
connections.

For an example, see Section 17.3, "Running the OBEX Demo".

This chapter describes how the Java ME SDK implements the Bluetooth and OBEX
APIs.

17.1 Setting OBEX and Bluetooth Properties

The Java ME SDK enables you to configure the Bluetooth and OBEX simulation
environment. Because the simulation requires a sender and receiver, Bluetooth settings
are configured separately for each device. Follow these steps to set device properties.

1. In the device selector right-click on a CLDC device.

The device properties are displayed in the Properties window. If you don’t see this
window, select Window > Properties from the NetBeans toolbar.

2. Scroll down to see the Bluetooth and OBEX properties. When you click a property
a description is shown in the description area. If you can’t see this area, right click
a property and select Show Description Area.

The System Properties can be retrieved in an application using the getProperty ()
method in javax.bluetooth.LocalDevice. The Bluetooth properties are fully
described in the JSR 82 specification.

s bluetooth.sd.trans.max

The maximum number of concurrent service discovery transactions.

JSR 82: Bluetooth and OBEX Support 17-1

Running the Bluetooth Demo

The default is 8.
= bluetooth.sd.attr.retrievable.max

The maximum number of service attributes to be retrieved per service record.
= bluetooth.master.switch

Enable/disable a master/slave switch.
= bluetooth.]2cap.receiveMTU.max

The maximum ReceiveMTU size in bytes supported in L2CAP. This is the
maximum payload size this connection can accept.

The default value is 672.
= OBEX Maximum Packet Length
The default is 4096 bytes.

The maximum packet length affects how much data is sent in each packet between
emulators. Shorter packet values result in more packets and more packet
overhead.

s IrDA OBEX Discovery Timeout
The default is 10000 milliseconds.

Devices using IrDA in the real world discover other devices by listening. At the
APl level, the discovery timeout value determines how long a call to
Connector.open("irdaobex://discover...") blocks before it returns or throws an
exception.

17.2 Running the Bluetooth Demo

This application contains MIDlets that demonstrate the use of JSR 82's Bluetooth APL.
It shows how images can be transferred between devices using Bluetooth.

You must run two emulator instances to see this process, and each device must have a
different phone number.

1. Use DefaultCldcPhonel to launch Bluetooth Demo, then launch Bluetooth Demo
on DefaultCldcPhone2.

2. The demo gives you a choice of Server or Client.
3. On the first emulator, highlight Server and use the left softbutton to choose OK.

The server starts and displays a list of images. At the beginning, none of the
images are available on the Bluetooth network.

Select the image you want to make available.

Press Publish image (the left soft button). The icon color changes from purple to
green, indicating it is published.

4. On the second emulator running the Bluetooth Demo, highlight Client and choose
OK. The MIDlet displays "Ready for images search". Click the Find soft button.
The MIDlet finds the other emulator and gets a list of published images. Select one
from the list and choose Load.

» If you are running the demonstration in a trusted protection domain, the
image is transferred using simulated Bluetooth and is shown on the client
emulator.

17-2 Java ME SDK Developer's Guide

Running the OBEX Demo

» If you are not running in a trusted protection domain, the first emulator (the
server) displays a prompt asking if you want to authorize the connection from
the client. Choose Yes. The image is displayed in the client emulator.

17.3 Running the OBEX Demo

This application shows how to transfer image files between emulator instances using
the OBEX API. This demonstration shows the use of OBEX over a simulated infrared
connection.

1.

Launch two instances of the emulator. One listens for incoming connections, while
the other attempts to send an image.

For example, right- click ObexDemo, select Run With... and choose the device
DefaultCldcPhonel. Repeat and choose DefaultCldcPhone?2.

In the first emulator, launch the application then choose Receive Image.
(Depending on your security level, the application warns that an OBEX
connection allows other devices to talk to yours and asks, "Is it OK to make the
connection?" Choose Yes.) Choose Start to run the application. The listener
emulator displays a screen reading "Waiting for connection".

In the second emulator (the sender), choose Send Image and press the Start soft
key. Select an image from the list and choose Send. (Depending on your security
level, the application warns that the demo wants to make an outgoing client
connection, and asks if it is OK. Choose Yes.) The Send Image utility uploads the
image.

In the listening emulator, the utility displays information about the incoming
image and asks "Would you like to receive it?" Choose yes.

The image you selected is transferred over the simulated infrared link and
displayed on the first emulator.

JSR 82: Bluetooth and OBEX Support 17-3

Running the OBEX Demo

17-4 Java ME SDK Developer's Guide

18

JSR 135: Mobile Media APl Support

JSR 135, the Mobile Media API (MMAPI), provides a standard API for rendering and
capturing time-based media, like audio or video. The API is designed to be flexible
with respect to the media formats, protocols, and features supported by various
devices. See the following topics:

Section 18.1, "Media Types"

= Section 18.1.1, "Media Capture"
Section 18.2, "MMAPI MIDlet Behavior"
Section 18.3, "Ring Tones"

= Section 18.3.1, "Download Ring Tones"
= Section 18.3.2, "Ring Tone Formats"
Section 18.4, "Running AudioDemo"

Section 18.5, "Running MMAPIDemos"

For information on programming with MMAPI, see the following articles:

Mobile Media API Overview:
http://developers.sun.com/techtopics/mobility/apis/articles/mmapi_
overview/

The J[2ME Mobile Media API: http://www.jcp.org/en/jsr/detail?id=135

18.1 Media Types

The emulator's MMAPI implementation supports the following media types.

MIME Type Description

audio/amr* Adaptive Multi-Rate Narrow Band
audio/midi MIDI files

audio/mpeg* MP3 files

audio/mp4* MP4 Audio files

audio/sp-midi Scalable Polyphony MIDI
audio/x-tone-seq MIDP 2.0 tone sequence
audio/x-wav* WAV PCM sampled audio
image/gif GIF 89a (animated GIF)

JSR 135: Mobile Media API Support 18-1

MMAPI MIDlet Behavior

MIME Type Description

video/3gpp* Third generation mobile broadband with video
video/mpeg* MPEG video

video/mp4* MP4 video files

video/avi* Video capture emulation and Audio-Video Interleaved files

In the previous table, an asterisk (*) indicates a media type that requires corresponding
DirectShow filters to be installed on your system. For example, MP3 support might
require an MP3 Splitter and an MP3 Decoder (these might be two separate DirectShow
filters, or they might be combined in one filter). Any appropriate filters can be used,
but Java ME SDK 3.0.5 has only been tested with filters from the K-Lite Mega Codec
Pack 4.8.0. If no appropriate DirectShow filters are found on your system, JSR 135
Player creation for the media type might fail.

18.1.1 Media Capture

The Java ME SDK emulator supports audio and video capture. Audio capture is
supported using the capture capabilities of the system upon which the emulator runs.

Video capture is supported by simulating a camera input.

Consult the MobileMediaAPI example application for details and source code that
demonstrates how to capture audio and video.

18.2 MMAPI MiDlet Behavior

MIDlets have a lifecycle that is defined in the MIDP specification. MIDlets can be
paused by events such as incoming phone calls. A well-behaved MIDlet releases
important device resources when it is paused and reallocates or restarts those
resources when the MIDlet is resumed. In the MMAPI arena, stop any Players that are
rendering content when a MIDlet is paused.

The Java ME SDK prints a message to the console if you pause a MIDlet and it does
not stop its running Players. You can test this feature using the Pausing Audio Test
MIDIet in the MobileMediaAPI demonstration application.

The warning message is printed only once for each running emulator.

18.3 Ring Tones

MMAPI can be used to play ring tones, as demonstrated in Section 18.5.1, "Simple
Tones" and Section 18.5.2, "Simple Player". The ring tone formats mentioned here are
in common use. You can download ring tones or create your own.

18.3.1 Download Ring Tones

Ring tone files can be downloaded from many internet sites, including the following;:
s http://www.convertyourtone.com/

s http://www.phonezoo.com

18.3.2 Ring Tone Formats

This section provides samples of several formats

18-2 Java ME SDK Developer's Guide

Ring Tones

RTTTL, the Ringing Tones text transfer language format, is explained at
http://www.convertyourtone.com/rtttl.html

Nokia Composer

This is a rendition of Beethoven's 9th symphony in Nokia Composer format:
16g1,16g1,16g1, 4#d1,16£1,16£1,16£1,4d1,16gl,16ql,16qgl, 16#d1,
16#g1,16#q1, 16491, 16g1,16#d2, 164d2, 16#d2, 4c2, 1691, 1691, 1691,
l16dl,164#qgl,16#gl,16#gl, 16gl,16£2,16£2,16£2,4d2

Ericsson Composer

Beethoven's Minuet in G:
ab+cb+cb+cb+Cp+daBp+cglhd
pfgagagagApbfGpacetF

Beethoven's 9th symphony theme:

fff#CcHtdtdtdCpffftctf#f #f£f+#c+#tc+#ctA
fffc#f 44 fFf+4d+#d+ #d

Siemens Composer Format

Inspector Gadget theme:

C2(1/8) D2(1/16) Dis2(1/8) F2(1/16) G2(1/8)

P(1/16) Dis2(1/8) P(1/16) Fis2(1/8) P(1/16)

D2(1/8) P(1/16) F2(1/8) P(1/16) Dis2(1/8)

P(1/16) C2(1/8) D2(1/16) Dis2(1/8) F2(1/16)

G2(1/8) P(1/16) C3(1/8) P(l/16) B2(1/2) P(1l/4)
C2(1/8) D2(1/16) Dis2(1/8) F2(1/16) G2(1/8) P(1/16)
Dis2(1/8) P(1/16) Fis2(1/8) P(1/16) D2(1/8) P(1/16)
F2(1/8) P(1/16) Dis2(1/8) P(1/16) C3(1/8) B2(1/16)
Ais2(1/8) A2(1/16) Gis2(1/2) G2(1/8) P(1/16) C3(1/2)
Motorola Composer

Beethoven's 9th symphony:

4 F2 F2 F2 C#4 D#2 D#2 D#2 C4 R2 F2 F2 F2 C#2 F#2 F#2
F#2 F2 C#+2 C#+2 C#+2 A#4 F2 F2 F2 C2 F#2 F#2 F#2 F2
D#+2 D#+2 D#+2

Panasonic Composer

Beethoven's 9th symphony:

444xx 444 444** 1111* 4444** 4444** 4444 T]1]1*
0% 444x* 444xx 444*x]111** 4444%x L444%x L444%%
444%* 11%* 11xx 11%* 6666* 444** 444%* 444x* [J11**
A4444%% L444%x L444%* AL4%* 22%% 2Px% QDK%

Sony Composer

JSR 135: Mobile Media API Support 18-3

Running AudioDemo

Beethoven's 9th symphony:
444****444****444****111#*****444#****444#****444#****
111x%%*% (JD) 00004 44***x* 44 4%k x X fA 4%k x*]] fHxxkf4q4*x%%
444#****444#****444****11#****1l#****ll#****666#*****
444****444****444****111****444#****444#****
444#****444****22#****22#****22#****

18.4 Running AudioDemo

Demonstrates audio capabilities, including mixing and playing audio with an
animation. Select a MIDlet from the list, and from the menu, select 1, Launch.

= Audio Player.

Select a sound clip and press the Play soft button. Click Back to return to the list of
clips.

= Bouncing Ball. Select No Background and press the Play soft button. Two balls
randomly bounce in the screen, emitting a tone whenever they contact a wall.

Wave background, tone seq background, and MIDI background play the same
two-ball audio visual sequence with the additional audio background.

= Mix Demo shows that different audio formats can play simultaneously. Select a
MIDlet and press the Play soft button.

Tone+Wav - The audio clip starts playing and the Tone soft button is displayed.
Press the Tone button to hear a tone playing over the original audio clip.

Tone+ToneSeq - The audio clip starts playing and the Tone soft button is
displayed. Press the Tone button to hear a tone playing over the original audio
clip.

ToneSeq+Wav - The tone sequence and the wav sequence play simultaneously.
Press the Pause soft button to interrupt, and press Play to resume.

18.5 Running MMAPIDemos

The MMAPIDemos application contains four MIDlets that showcase the SDK's
multimedia capabilities:

18.5.1 Simple Tones

Simple Tones demonstrates how to use interactive synthetic tones. Select a sample,
then click Play on the lower right.

= Short Single Tone and Long Single Tone use Manager.playTone () to play tones
with different pitch.

= Short MIDI event plays a chord on the interactive MIDI device (locator
"device://midi"). The shortMidiEvent () method of MIDIControl is used to
trigger the notes of the chord.

s To run the MMAPI Drummer demo, click or type number keys (0-9). Each number
plays a different sound.

18-4 Java ME SDK Developer's Guide

Running MMAPIDemos

18.5.2 Simple Player

The Simple Player application demonstrates the range of audio and video capabilities
of the emulator. It includes sample files in a variety of formats and can play files from
the emulator's persistent storage or from HTTP URLs.

The player portion uses a generic javax.microedition.media.Player interface. The
player displays duration, media time, and controls for running the media file. If
metadata is available in a file, the player enables you to view the information, such as
author and title. In the case of MIDI files, if karaoke text is present in the file, it
displays on the screen during play. Graphical user interface controls can be viewed on
the display screen if applicable. You can access these controls by selecting one of the
media samples in Simple Player, then pressing the Menu button to view and select the
desired command.

Select Simple Player then click Launch. The demo includes the following media
samples:

= Bong plays a short WAV file. You can adjust certain playback features, as described
later in this document. The display shows the duration of the sound in
minutes:seconds:tenths of a second, for example 00:17:5. This audio sample is a
resource file in the MIDlet suite JAR file.

= MIDI Scale plays a sample musical scale. The display shows the title of the
selected music file, the duration of the song, the elapsed time during playback,
and the current tempo in beats per minute (bpm). This MIDI file is stored in the
MIDlet suite JAR file.

= Simple Ring Tone plays a short sequence of Beethoven's Fifth Symphony. The
display shows the title of the selected music file, the duration of the song, the
elapsed time in seconds and tenths of a second during playback, and the current
tempo in beats per minute (bpm). This ringtone file (.jts format) is stored in the
MIDlet suite JAR file.

= WAV Music plays a brief audio file. The display shows the title of the audio file,
the duration of the audio the elapsed time during playback, and the playback rate
in percent. This WAV file is retrieved from an HTTP server.

= MIDI Scale plays a MIDI file that is retrieved from an HTTP server.

s The Animated GIF example shows an animated GIF that counts from 1 to 5. The
file is stored in the MIDlet suite JAR file.

= Audio Capture from a default device lets you capture audio from a microphone or
connected device. The sound is captured and played back on the speaker. To avoid
feedback, use a headset.

= Video Capture Simulation simulates viewing input video such as might be
possible on a device equipped with a camera.

= MPEGI Video [http]. Plays an MPEG video found at
http://java.sun.com/products/java-media/mma/media/test-mpeqg.mpg.

= [enter URL] allows you to play back media files from arbitrary HTTP servers.
Type a valid URL at the insertion point and click OK to play a file. If you want to
open an HTTP directory from which to select media, be sure to add a slash to the
end of the URL.

In addition, Simple Player parses ring tones in Ringing Tones text transfer language
(RTTTL). See http://www.convertyourtone.com/rtttl.html for information on
RTTTL.

JSR 135: Mobile Media API Support 18-5

Running MMAPIDemos

The Simple Player includes a common set of commands that control media playback.
The commands are available from the Simple Player menu, and some have associated
keypad buttons. Table 18-1 describes these commands, their availability, and their
keypad equivalents. The commands may or may not be available depending on the
media type that Simple Player is playing.

Note that a short list of commands and the corresponding keypad buttons is available
in the Simple Player application itself. Just choose the Quick Help command from the
menu.

Table 18-1 Simple Player Commands

Menu

Command Item Description

Mute/Unmute 1 Turns off sound but the file continues to play. This command
toggles to Unmute.

Play 2 Play.

Volume 3 Increases or decreases loudness.

META Data 4 Displays information provided by the media file such as
copyright information, title, and track list.

Stop in 5 5 Pauses the audio play in five seconds when set during playback.

seconds

Loopmode 6 After playing, repeat.

Rate 7 Alters the rate of speed of playback.

Tempo 8 Increases or decreases the tempo of the tone sequence or MIDI
file.

Pitch 9 Lowers or raises the notes in a MIDI file.

Skip Forward Skips forward five percent of the duration of the media file. The
sound track syncs to the video

Skip Backward Skips backward five percent of the duration of the media file. The
sound track syncs to the video.

Rewind Returns to the start time of the audio playback.

Quick Help Displays a list of commands and keypad buttons.

18.5.2.1 Video

The Video application illustrates how the emulator is capable of playing animated GIF
files and capturing video. On a real device with a camera, video capture can be used to
show the user what the camera sees.

Animated GIFs and video capture can be implemented using either a Form Itemor a
Canvas. The Video demonstration includes all the possibilities. Animated GIF - Form
[jar] shows an animated GIF as a Form Item. The form also includes some information
about the playback, including the current time. Choose the Snapshot command to take
a snapshot of the running animation. The snapshot will be placed in the form
following the animated GIFE.

= Animated GIF - Canvas [jar] shows an animated GIF in a Canvas. A simple
indicator shows the progress through the animation. Choose Snapshot to get a still
image of the current appearance. The snapshot is shown briefly, then the display
goes back to the animation.

= Video Capture - Form simulates capturing video from a camera or other source
and showing it as an Item in a Form. Choose the Snapshot command to take a

18-6 Java ME SDK Developer's Guide

Running MMAPIDemos

snapshot of the captured video. The snapshot will be placed in the form following
the video capture.

Video Capture - Canvas simulates capturing video from a camera or other source
and showing it in a Canvas. Choose Snapshot to get a still image of the current
appearance. The snapshot is shown briefly, then the display goes back to the video

capture.

s MPEGI1 Video - Form, MPEG1 Video - Canvas

The MPEGI1 applications obtain MPEGs from the web, so if you are behind a
firewall, you must configure the emulator's proxy server settings, as described in
the topic "Section 3.4, "Configuring the Web Browser and Proxy Settings".

When you play the demo, expect to wait a few seconds while the demo obtains the
data. The MPEG1 demos have the same behavior as Video Capture - Form and
Video Capture - Canvas, respectively.

18.5.2.2 Attributes for MobileMediaAPI

The MobileMediaAPI applications have the following editable attributes. Right-click on
the project and select Properties. Select Application Descriptor and view the Attributes

tab.

Table 18-2 Descriptions of MMAPI-specific MIDlet attributes

Attribute

Description

PlayerTitle-n

Name of the nth media title to be played back by the Simple Player
MIDlet.

PlayerURL-n

Location of the nth media title, PlayerTitle-n, to be played back by
the Simple Player MIDlet.

VideoTest-n

The name of the nth media title to be played back by the Video
application.

VideoTest-URLn

Location of the nth media title, VideoTest-n, to be played back by
the Video application.

JSR 135: Mobile Media API Support 18-7

Running MMAPIDemos

18-8 Java ME SDK Developer's Guide

19

JSR 172: Web Services Support

The Java ME SDK emulator supports JSR 172, the J2ME Web Services Specification. JSR
172 provides APIs for accessing web services from mobile applications. It also includes
an API for parsing XML documents.

See also:

Section 19.1, "Generating Stub Files from WSDL Descriptors"
Section 19.2, "Creating a New Mobile Web Service Client"
Section 19.3, "Run JSR172Demo"

19.1 Generating Stub Files from WSDL Descriptors

The NetBeans IDE provides a stub generator that automates creating source code for
accessing web services that conform to the J2ME Web Services Specification. You can
add stubs to any MIDP application.

Note: If you are using NetBeans 6.9.1, the "Mobility End to End"
plugin must be installed.

If you are using NetBeans 7 or higher the "SOAP Web Services"
plugin must be installed.

The following is a general procedure for adding stubs:
1. In the Projects window, expand the tree for a project.
2. Launch the Java ME Web Service Client wizard:

Right-click on the Source Packages node and select New > Java ME Web Service
Client...

3. In the Generate J2ME Webservice Stub page, you can either:
s Click Running Web Service and enter the URL for the WSDL

s Click Specify the Local filename for the retrieved WSDL and browse to a file
on your system.

In either case, you must enter a Package name, then click Finish. The new package
appears in the project and includes an interface file and a stub file.

4. You can now edit your source files to call the content the stub provides, then build
and run.

See Section 19.2, "Creating a New Mobile Web Service Client" for a step by step
process, or see Section 19.3, "Run JSR172Demo" and view the demo source files.

JSR 172: Web Services Support 19-1

Creating a New Mobile Web Service Client

19.2 Creating a New Mobile Web Service Client

This sample procedure creates a new project and adds a web service client. However,
you can add a web service client to any MIDP project, it does not have to be new.

1. Select File > New Project, choose MIDP application, and click Next. Name your
project and ensure Create Hello MIDlet is checked. Click Finish.

2. Right-click on the Source Packages node and select New > Java ME Web Service
Client...

3. In the Generate J2ME Webservice Stub page:
s Click Running Web Service and in the WSDL URL field, enter:
http://www.xmlme.com/WSShakespeare.asmx?WSDL
= In the Package field, enter testws. This is the package name.

Click Finish. The new package appears in Source Packages and includes
Shakespeare. java and Shakespeare_Stub. java

4. EditHelloMIDlet.java as follows:
= At the beginning, add the following import declaration:
import testws.*

= Locate the startapp () method and replace its contents with the following
code:

String text;
Shakespeare s = new Shakespeare_Stub();
try
{

text = s.GetSpeech("Romeo");
}catch(java.rmi.RemoteException rex)

{
text = "error";
System.out.println(rex.getMessage());

}
TextBox t = new TextBox ("Hello", text, 2048, 0);

t.addCommand (exitCommand) ;
t.setCommandListener (this);
display.setCurrent (t);

5. Build and run the project. You see a quote from Shakespeare's Romeo and Juliet on
the device screen.

You can vary the above procedure to use a local WSDL file. Open the following
web page in a browser:

http://www.xmlme.com/WSShakespeare.asmx?WSDL

Save it to a local file. For example, c: \ws\WSShakespeare.wsdl. Follow the
procedure above, except at Step 4, specify the local file name.

19.3 Run JSR172Demo

JSR172Demo shows how to access a web service from a MIDlet. The web service is
already running on an Internet server, and it conforms to the J2ME Web Services
Specification.

19-2 Java ME SDK Developer's Guide

Run JSR172Demo

If you are using a proxy server, you must configure the emulator's proxy server
settings as described in Section 3.4, "Configuring the Web Browser and Proxy Settings".
Build and run the example.

JSR172Demo contains a single MIDlet named Server Script. Launch it and follow the
prompts. You can browse through simulated news headlines, all of which are retrieved
from the web service.

JSR 172: Web Services Support 19-3

Run JSR172Demo

19-4 Java ME SDK Developer's Guide

20

JSR 177: Smart Card Security (SATSA)

The Security and Trust Services APIs (SATSA) provide smart card access and
cryptographic capabilities to applications running on small devices. JSR 177 (the
SATSA specification) defines four distinct APIs as optional packages:

= SATSA-APDU - Enables applications to communicate with smart card
applications using a low-level protocol.

= SATSA-JCRMI - Provides an alternate method for communicating with smart
card applications using a remote object protocol.

= SATSA-PKI -Enables applications to use a smart card to digitally sign data and
manage user certificates.

= SATSA-CRYPTO - A general-purpose cryptographic API that supports message
digests, digital signatures, and ciphers.

The Java ME SDK emulator fully supports SATSA. This topic describes how you can
use the Java ME SDK to work with SATSA in your own applications.

For a more general introduction to SATSA and using smart cards with small devices,
see the SATSA Developer’s Guide, which is available at
http://download.oracle.com/javame/config/cldc/opt-pkgs/api/security/satsa-
dg.

If you need to develop your own Java Card applications, download the Java Card
Development Kit, available at
http://www.oracle.com/technetwork/java/javacard/overview/index.html. This kit
is for Windows.

20.1 Card Slots in the Emulator

Real SATSA devices are likely to have one or more slots that house smart cards.
Applications that use SATSA to communicate with smart cards need to specify a slot
and a card application.

The Java ME SDK emulator is not a real device and, therefore, does not have physical
slots for smart cards. Instead, it communicates with a smart card application using a
socket protocol. The other end of the socket might be a smart card simulator or it
might be a proxy that talks with real smart card hardware.

The Java ME SDK emulator includes two simulated smart card slots. Each slot has an
associated socket that represents one end of the protocol that is used to communicate
with smart card applications.

The default card emulator host name is localhost, and the default ports are 9025 for
slot 0 and 9026 for slot 1. These port defaults are a property of the device. To change

JSR 177: Smart Card Security (SATSA) 20-1

Java Card Platform Simulator (cref)

the defaults in the user interface, right click on the device in the Device Selector, and
select Properties. By default the Properties window is docked on the upper right of the
Java ME SDK interface. You can also change them in the device’s property file:

userhome\Rpplication Data\javame-sdk\3.0.5\directory-number
Edit the device.properties file and modify this line:

runtime.internal.com.sun.io.j2me.apdu.hostsandports =
localhost:9025, localhost:9026

20.2 Java Card Platform Simulator (cref)

The Java ME SDK includes the Java Card Platform Simulator, which you can use to
simulate smart cards in the Java ME SDK emulator's slots. The Java Card Platform
Simulator is found in the following location:

installdir\bin\cref .exe

Hereafter we refer to it as simply cref. The basic procedure for testing SATSA
applications with the Java ME SDK is as follows:

1. Start cref with a Java Card platform application.
2. Start the emulator.

When a SATSA application attempts to communicate with a smart card, it uses a
socket connection to communicate with cref.

It's important, therefore, to make sure that you start cref with the same port
number as one of the slot port numbers you specified in the Java ME SDK
preferences.

For example, to run cref on port 9025 with a prebuilt memory image, use a command
line similar to this:

start cref -p 9025 -i memory_image.eeprom

The Java ME SDK includes a demonstration application, Mohair, which illustrates how
to use SATSA. For detailed instructions on running Mohair, see Section 20.4.4,
"MohairMIDlet".

20.3 Adjusting Access Control

Access control permissions and PIN properties can be specified in text files. When the
first APDU or Java Card RMI connection is established, the implementation reads the

ACL and PIN data from the acl_slot-number in the workdir\emulator-instance\appdb
directory. For example, an access control file for slot 0 might be:

Documents and Settings\user\javame-sdk\3.0.5\work\emulator-instance\appdb\acl_
0

If the file is absent or contains errors, the access control verification for this slot is
disabled.

The file can contain information about PIN properties and application permissions.

20.3.1 Specifying PIN Properties

PIN properties are represented by a pin_data record in the access control file.

pin_data {

20-2 Java ME SDK Developer's Guide

Adjusting Access Control

id number
label string

type bed | ascii | utf | half-nibble | iso

min minLength

max maxLength

stored storedLength

reference byte

pad byte - optional

flag case-sensitive | change-disabled | unblock-disabled

needs-padding | disable-allowed | unblockingPIN

20.3.2 Specifying Application Permissions

Application permissions are defined in access control file (acf) records. The record
format is as follows:

acf AID fnumbers separated by blanks {
ace {
root CA name

apdu {

eight numbers separated by blanks
}
jermi |
classes {
classname
}
hashModifier string
methods {
method name and signatiure
}
}
pin_apdu {

id number
verify | change | disable | enable | unblock
four hexadecimal numbers

pin_jcrmi {
id number
verify | change | disable | enable | unblock
method name and signature

The acf record is an Access Control File. The AID after acf identifies the application.
A missing AID indicates that the entry applies to all applications. The acf record can

JSR 177: Smart Card Security (SATSA) 20-3

Adjusting Access Control

contain ace records. If there are no ace records, access to an application is restricted by
this acft.

The ace record is an Access Control Entry. It can contain root, apdu, jcrmi, pin_apdu,
and pin_jcrmi records.

The root record contains one CA name. If the MIDlet suite was authorized using a
certificate issued by this CA, this ace grants access to this MIDlet. A missing root field
indicates that the ace applies to all identified parties. One principal is described by one
line. This line must contain only the word root and the principal name, for example:

root CN=thehost;0U=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US
The apdu or jecrmi record describes an APDU or Java Card RMI permission. A missing
permission record indicates that all operations are allowed.

An APDU permission contains one or more sequences of eight hexadecimal values,
separated by blanks. The first four bytes describe the APDU command and the other
four bytes are the mask, for example:

apdu {
020 082 020 0 82
80 20 0 O ff f£f 0 O

}

The Java Card RMI permission contains information about the hash modifier
(optional), class list, and method list (optional). If the list of methods is empty, an
application is allowed to invoke all the remote methods of interfaces in the list of
classes, for example:

jermi {
classes {
com.sun. javacard.samples.RMIDemo.Purse

}

hashModifier zzz

methods {
debit (S5)V
setAccountNumber ([B)V
getAccountNumber () [B

}

All the numbers are hexadecimal. Tabulation, blank, CR, and LF symbols are used as
separators. Separators can be omitted before and after symbols { and }.

The pin_apdu and pin_jcrmi records contain information necessary for PIN entry
methods, which is the PIN identifier and APDU command headers, or remote method
names.

20.3.3 Access Control File Example

pin_data {
label
id
type
min
stored
max

reference 33

Unblock pin

20-4 Java ME SDK Developer's Guide

Adjusting Access Control

pad ff
flag needs-padding
yflag unblockingPIN
}
pin_data {
label Main pin
id 55
type half-nibble
min 4
stored 8
max 8
reference 12
pad ff
flag disable-allowed
flag needs-padding

acf a0 0 0 0 62 ff 1 {
ace {
root CN=thehost;0U=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

pin_jcrmi {
id 55
verify enterPIN([B)S
change changePIN([B[B)S
disable disablePIN([B)S
enable enablePIN([B)S
([B

unblock unblockPIN [B)S

acf a0 0 0 0 62 ee 1 {
ace {
root CN=thehost;0U=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

pin_apdu {
id 55
verify 1 1
change 4 2
disable 1 11 3
enable 5 5 5 4
unblock 7 7 7 5

23
32

acf a0 0 0 0 623 1 c 81 {
ace {
root CN=thehost;0U=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

jermi {
classes {
com.sun.javacard.samples.RMIDemo.Purse

hashModifier xxx
methods {
setAccountNumber ([B)V
getBalance()S
credit (S)V

JSR 177: Smart Card Security (SATSA)

20-5

Running SATSADemos

}
}

ace {

jermi {

}

acf a0 00 00
ace {

root

apdu

apdu

}
}
acf a0 00 00

ace {
apdu {
0 20
}

}
acf a0 00 00
ace {
apdu {

0 20
}

classes {
com.sun.javacard.samples.RMIDemo.Purse

}

debit (S5)V
getAccountNumber () [B

00 62 03 01 Oc 02 01 {

CN=thehost;0U=JCT; O=dummy CA;L=Santa Clara;ST=CA;C=US
{

020 082 020 082

80 20 0 O ff ff 0 O
}

{
80 22 0 O ff ff 0 O

}

00 62 03 01 Oc 02 01 {

0 82 ff ff ff ff

00 62 03 01 Oc 06 01 {

0 82 ff ff ff ff

20.4 Running SATSADemos

SATSADemos includes demonstrations of SATSA, the Security and Trust Services APlIs.
Most of the demonstrations show how to communicate with a smart card. The
emulator can communicate with a simulated smart card using a socket protocol. The
smart card simulator, cref, is included with the SDK, as discussed in Section 20.2,
"Java Card Platform Simulator (cref)".

For each SATSA demo, start with this sequence:
1. Start the instance(s) of cref from the command line.

2. Be sure to set the project security domain to maximum.

20-6 Java ME SDK Developer's Guide

Running SATSADemos

3.

Right-click on the project, select Properties and choose Running. Enable Regular
execution and check Specify the Security Domain. Choose maximum from the list.

Run the project.

20.4.1 APDUMIDIlet

This MIDlet demonstrates communication with a smart card using Application
Protocol Data Units (APDUs), small packets of data. APDUMIDlet expects to find two
simulated smart cards. You can run the smart card simulator using cref, which is part
of the Java Card Development Kit. See Section 20.2, "Java Card Platform Simulator
(cref)".

The Mohair application includes pre-built memory images that you can use with cref.
The memory images contain Java Card applications with which Mohair interacts. The
memory images are in the root directory of the Mohair project.

1.

20.4.2 SATMIDIlet

Right-click on the project, select Properties, and choose Running. Enable Regular
execution and check Specify the Security Domain. Choose maximum from the list.

Start up two instances of cref, one for each simulated card slot (assuming the
current directory is the SDK installation directory):

start installdir\bin\cref -p 9025 -i apps\SATSADemos\demo2.eeprom
start installdir\bin\cref -p 9026 -i apps\SATSADemos\demo2.eeprom

Once you have the two smart card simulators running, run SATSADemos. Select
APDUMIDIet, select the Menu soft key and select Launch (1). Press Go when
prompted.

SATMIDlet demonstrates smart card communication with a slight variation on APDU
communication.

1.

To set up the simulated smart card, use cref, very much like you did for
APDUMIDlet. This time you don't have to specify a port number, and the memory
image is different:

Right-click on the project, select Properties, and choose Running. Enable Regular
execution and check Specify the Security Domain. Choose maximum from the list.

Start cref:
start installdir\bin\cref -i apps\SATSADemos\sat.eeprom

Note that the port number arguments (9025 and 9026 in this example) must match
the SATSA port numbers. Also, make sure you use the correct path to sat.eeprom.

Once you have the smart card simulator running, run SATSADemos. Select
SATMIDlet, select the Menu soft key and select Launch (1). Press Go when
prompted.

20.4.3 CryptoMiDlet

CryptoMIDlet demonstrates the general cryptographic features of SATSA. It does not
interact with a smart card in any way. Choose the MIDLet and launch it to see the
cryptography results. Use the up and down navigation keys to scroll the display.

JSR 177: Smart Card Security (SATSA) 20-7

Running SATSADemos

20.4.4 MohairMIDlet

MohairMIDlet has two functions. The first, "Find slots", displays all the available card
slots. Each slot has a number followed by 'C' or 'H' indicating whether the slot is
cold-swappable or hot-swappable. After viewing the slots select Back to return to the
first screen.

The second part of MohairMIDlet, SATSA-PKI Sign test, uses a smart card to generate a
digital signature. As with the earlier demonstrations, you need to run cref with the
right memory image to prepare for the connection from MohairMIDlet.

1. Right-click on the project, select Properties, and choose Running. Enable Regular
execution and check Specify the Security Domain. Choose maximum from the list.

2. Type the following from the SDK installation directory:
start installdir\bin\cref -i apps\SATSADemos\sat.eeprom

3. In the emulator, select SATSA-PKI Sign test. The following confirmation message
appears:

This certificate will be used: MohairAuth
Select the OK soft key.
4. TFor PIN 1, type: 1234
Select the OK soft key. The following confirmation message appears:
This string will be signed: JSR 177 Approved
5. Select the OK soft key. The following confirmation message appears:
This certificate will be used: MohairAuth
Select the OK soft key.
6. For non repudiation key 1 PIN, type: 2345
Select the soft menu and choose OK (option 2).

20.4.5 Running SATSAJCRMIDemo

This application contains a single MIDlet, JCRMIMIDlet, which shows how to
communicate with a card application using Java Card RMI, a card-friendly remote
object protocol. As with some of the MIDlets in SATSADemos, you need to start up cref
with an appropriate memory image.

1. Right-click on the project, select Properties, and choose Running. Enable Regular
execution and check Specify the Security Domain. Choose maximum from the list.

2. Start cref from the SDK installation directory as follows:
start installdir\bin\cref -p 9025 -i apps\SATSADemos\demo2.eeprom

3. Now run JCRMIMIDlet to see how your application can communicate with a
distributed object on the card.

20-8 Java ME SDK Developer's Guide

21

JSR 179 and 293: Location APl Support

The JSR 179 Location API gives applications the opportunity to use a device's location
capabilities. For example, some devices include Global Positioning System (GPS)
hardware. Other devices might be able to receive location information from the
wireless network. The Location API provides a standard interface to location
information, regardless of the underlying technique.

In the Location AP, a location provider encapsulates a positioning method and supplies
information about the device's location. The application requests a provider by
specifying required criteria, such as the desired accuracy and response time. If an
appropriate implementation is available, the application can use it to obtain
information about the device's physical location.

JSR 293 extends 179, supporting all 179 capabilities.

The Java ME SDK includes a simulated location provider. You can use the emulator's
External Events Generator to specify where the emulator should think it is located. In
addition, you can configure the properties of the provider itself, and you can manage a
database of landmarks.

The JSR 293 implementation supports extended landmark features including the
LandmarkStore 2.0 database which has access to a native database of landmarks. This
implementation includes:

= increased search capabilities

= private and public landmark stores
= LandmarkStore listener

= global landmark categories

For an explanation of this implementation, see the Oracle Java Wireless Client Porting
Guide and the Location API 2.0 at http://jcp.org/en/jsr/detail?1d=293.

21.1 Setting the Emulator's Location at Runtime

You can specify the simulated location of the emulator while it is running. To do this,
choose Device > Location. This raises the external events generator with the Location
tab selected.

In the Location area of the tab, you can fill in values for the latitude, longitude,
altitude, speed, and course. Applications that use the Location API can retrieve these
values as the location of the emulator.

For more elaborate testing, you can set up a location script that describes motion over
time. Location scripts are XML files consisting of a list of locations, called waypoints,
and associated times. The Java ME SDK determines the current location of the

JSR 179 and 293: Location APl Support 21-1

Setting the Emulator's Location at Runtime

emulator by interpolating between the points in the location script. Here, for example,
is a simple location script that specifies a starting point (time="0") and moves to a new

point in ten seconds:

<waypoints>
<waypoint time="0"

latitude="14" longitude="50" altitude="310" />

<waypoint time="10000"

latitude="14.5" longitude="50.1" altitude="215" />

</waypoints>

External Events Generator

Location Provider

State | Available

Orientation

State | Supported

—
Azimuth Y 1 1 1 | 1 1 1 | 1 1 1
[} ol 120

-180 -120 -6
[] Magnetic Orientation

Location

Latitude |14.391565509

Longitude |50. 100354532

Altitude |310.0

Speed |255.824172974

Course |0.0

Saript |C:‘|,Jaua_ME_|:ilatForTn_SDK_3.U. Stapps\CityGuide2_0\dtywalk. xml

Time: 00:17.500

The altitude measurement is in meters, and the time values are in milliseconds.

21-2 Java ME SDK Developer's Guide

Running the CityGuide Sample Project

Use a text editor to create your location script. You can load it into the external event
window by pressing the Browse button next to the Script field. Immediately below are
controls for playing, pausing, stopping, and moving to the beginning and end of the
location script. You can also drag the time slider to a particular point.

Some devices are also capable of measuring their orientation. To make this kind of
information available to your application, change the State field in the Orientation box
to Supported and fill in values for azimuth, pitch, and roll. The Magnetic Orientation
check box indicates whether the azimuth and pitch measurements are relative to the
Earth's magnetic field or relative to true north and gravity.

To test how your application handles unexpected conditions, try changing the State
field in the Location Provider box to Temporarily Unavailable or Out of Service. When
your application attempts to retrieve the emulator's location, an exception is thrown
and you can see how your application responds.

21.2 Running the CityGuide Sample Project

CityGuide demonstrates how to use the Location API (JSR 179). It shows a walker's
current position superimposed on a city map. The walker moves around the city and
landmarks are highlighted and identified as the walker approaches. In this demo we
get the walker's location from an XML script named citywalk.xzml (the event file) that
submits the device location information.

Because location prompts occur frequently, it is best to run this demonstration in
manufacturer (trusted) mode, as explained in "Section 12.1, "Security Domains". In the
user interface, right-click on your project and select the Running category. Select
Specify the Security Domain, and select manufacturer or maximum.

1. Open and run the CityGuide project. In the emulator, launch the CityGuide
MIDIet. Click Load to view the map page.

Megasport

JSR 179 and 293: Location API Support 21-3

Running the CityGuide2_0 Sample Project

2. In the emulator, choose Device > Location. On the Location tab, click the Browse
button. Select the following event file: installdir\apps\CityGuide\citywalk.xml.

The player buttons at the bottom of the window are now active. Press the green
play button (right-pointing triangle) to run the script.

3. The display shows four types of landmarks: restaurants, museums, shops, and
theaters.

To adjust the landmark display, open the soft menu and choose the Settings
command. Use the navigation keys to highlight a category, then use Select to check
or uncheck an item.

When you are near a landmark (shown highlighted on the map), open the soft
menu and choose the Detail command to see more information.

settings

i

21.3 Running the CityGuide2_0 Sample Project

The City Guide2_0 example works much like the CityGuide sample project. The
difference is that it implements the Landmark export function, which exports
landmarks using an MMS text message.

1. Open and run the CityGuide2_0 project. In the emulator, launch the CityGuide
MIDJet. Click Load to view the map page.

2. In the emulator, choose Device > Location. On the Location tab, click the Browse
button. Select the following event file:.

installdir\apps\CityGuide2_0\citywalk.xml

The player buttons at the bottom of the window are now active. Press the green
play button (right-pointing triangle) to run the script.

21-4 Java ME SDK Developer's Guide

Running the CityGuide2_0 Sample Project

3. The display shows five types of landmarks: gc_public_service, restaurants,
museums, shops, and theaters. gc_public_service indicates wireless service is
detected and landmark export is possible.

When running the script you can see the wireless service detected between 28
seconds and one minute twenty seconds.

4. Run the CityGuide2_0 project in a second emulator. At the introduction page,
press the Import soft button. The application displays "Waiting for MMS".

5. In the first emulator, open the menu and choose option 3, Export. Set the phone
number to point to the second emulator.

e Expart [andrarks By MMS

Send your favarites to your friend

Phone #: [123 456 791| |
123

Export selected:

[z] 1go_public_service
[z] i MUSELm

[z] M restaurant

[z] w shop

[+ thestre

Back Menu

From the menu, select option 2, Send.

6. In the second emulator, the message changes to Importing MMS and you see a
progress bar as the transmission completes.

JSR 179 and 293: Location API Support 21-5

Running the CityGuide2_0 Sample Project

21-6 Java ME SDK Developer's Guide

22

JSRs 120 and 205: Wireless Messaging

The Java ME SDK supports the Wireless Messaging API (WMA) with a sophisticated
simulation environment. WMA 1.1 (JSR 120) enables MIDlets to send and receive Short
Message Service (SMS) or Cell Broadcast Service (CBS) messages. WMA 2.0 (JSR 205)
includes support for MMS messages as well.

This chapter describes the tools you can use to develop WMA applications. It begins
by showing how to configure the emulator's support of WMA. Next, it describes the
WMA console, a tool for testing WMA applications.

Many of the tasks in this topic can also be accomplished from the command line. See
Section 22.3, "Running WMA Tool" and Section 22.2.3, "Sending SMS Messages From
WMA Console to an Emulator and Back".

22.1 Using the WMA Console to Send and Receive Messages

The WMA console is a tool that enables you to send messages to and receive messages
from applications that use JSRs 120 or 205. You can, for example, use the WMA console
to send SMS messages to a MIDlet running on the emulator.

See Section 22.1.2, "WMA Console Interface".

22.1.1 Launching the WMA Console

To launch the WMA console, select Tools > Java ME > WMA Console. Messages can be
sent from the WMA Console to an emulator instance.

To open the WMA Output window, select Window > Output > WMA Console Output.
This window displays messages received from an emulator.

Note, WMA console operations can also be performed from the command line. See
Section 22.3, "Running WMA Tool".

22.1.2 WMA Console Interface

The console has a phone number, and it is displayed as part of the WMA Console tab
label (for example, 987654321).

The WMA Console user interface has a tab for sending messages and an output
window that displays incoming messages.

JSRs 120 and 205: Wireless Messaging 22-1

Using the WMA Console to Send and Receive Messages

.E'r WA Console - 987654321 = | StartPage = (=]
| serdsws || Sendces || Sendmms
To Clients

123456739 123456739 Add Cliert: |
[DefaultCldcMsaPhone A=

Application Wiew Help

Phone number: 123456739

Park: [SO000

Text Message | Binary Message

S5 Eo 123456739

“WHMA Output Window
L_-l’ WMA Consalz is running, using phone number 987654321
7

40

SMS Receive
Waiting for SMS on port S0000....

To set the phone number, select Tools > Options > Miscellaneous. On the WMA
Console tab, edit the Assigned Phone Number field and click OK. If the number is
available it is assigned to the console immediately. If the number is in use it is assigned
to the console the next time you restart the SDK.

22.1.3 Emulator Phone Numbers

Each running instance of the emulator has a simulated phone number that is shown in
the emulator window. The phone numbers are important because they are used as
addresses for WMA messages.

22.1.4 Sending a Text or Binary SMS Message

To launch the WMA console, select Tools > Java ME > WMA Console. To open the
WMA Output window, select Window > Output > WMA Console Output. .

To send a text SMS message, click Send SMS. The send window appears. The window
automatically lists the phone numbers of all running emulator instances. Select one or
more destinations and enter a port number if you wish (the default is 50000). Type
your message and click Send.

To send the contents of a file as a binary message, click Send SMS to bring up the send
window. Click the Binary SMS tab. Selecting recipients is the same as for sending text

SMS messages. You can type in the path of a file directly, or click Browse to open a file
chooser.

22.1.5 Sending Text or Binary CBS Messages

Sending CBS messages is similar to sending SMS messages except that you don't need
to choose recipients. To send a text or binary CBS message, click Send CBS in the
WMA console. Specify a message identifier and enter the content of your message.

22-2 Java ME SDK Developer's Guide

Running WMADemo

22.1.6 Sending MMS Messages

MMS messages consist of one or more files, usually images or sounds. An MMS
message can be sent to multiple recipients. To send an MMS message from the WMA
console, click the Send MMS button.

The window for composing MMS messages has two tabs, one for recipients and one
for content. On the Header tab, begin by filling in a subject and recipient.

To add more recipients, click the Add button. For example, to send a message to a
running emulator whose number is 5550001, type 5550001 in the To field.

To remove a recipient, first select its line, then click Remove.

To add optional media files (Parts) to the message, click the Parts tab and click Add.
Most media files will have information to fill the Content Location, Content ID,
Mime-Type (text/plain for simple MMS), and Encoding fields, but you can edit these
fields as well. The default ID for the demo is example.mms . MMSDemo.

To remove a part, select it and press Remove.

22.1.7 Receiving Messages in the WMA Console

The WMA console window has its own phone number displayed on the WMA
Console tab. You can send messages from your applications running on the emulator
to the WMA console.

Received messages are displayed in the WMA output window.

22.2 Running WMADemo

The WMADemo sample project shows how to send and receive SMS, CBS, and MMS
messages. Messages can be exchanged between emulator instances and can be
generated or received using the WMA console utility.

22.2.1 WMADemo Push Registry Values

The push registry determines how the demo establishes certain types of connections.
This information is set in the Application Descriptor. To view it, right-click on the
WMA Demo project and select properties. In the properties window, select the
Application Description category and view the Push Registry tab.

= For SMS messages the port number is 50000.
= For CBS Messages, the Message Identifier is 50001.

s For MMS messages, the application ID is example.mms.MMSDemo.

22.2.2 Running WMADemo OTA

Because this sample makes use of the push registry, you can't see all of its features with
the standard Run process. Use the Run via OTA feature to install the application into
the emulator using a process that mirrors how applications are installed on real
devices.

1. Right-click the WMADemo project and select Properties from the context menu.

2. Select the Running Category and choose the Execute through OTA radio button.
Click OK.

JSRs 120 and 205: Wireless Messaging 22-3

Running WMADemo

Now run WMADemo in an emulator. There will be a download, then you see an
alert that reads, "Is it OK to automatically start the application? WMA Demo
wants to register itself to be automatically started. Is it OK to be automatically
started?" To proceed, choose Yes.

Wait a few seconds for the application to download to the emulator and register
itself.

The application home screen shows the MIDlets you can launch: SMS Send, SMS
Receive, CBS Received, MMS Send and MMS Receive.

22.2.3 Sending SMS Messages From WMA Console to an Emulator and Back

In this demo you send messages between the WMA Console and the client demo
application running on the emulator. Using the WMA console to send messages to the
emulator exercises the push registry.

1.

To launch the WMA console, select Tools > Java ME > WMA Console. To open the
WMA Output window, select Window > Output > WMA Console Output. The
WMADemo should be running in the emulator, as described in Section 22.2.2,
"Running WMADemo OTA".

Click on the Send SMS button in the WMA console window.

Choose the number that corresponds to the emulator, by default this means
checking the box in front of 123456789. If you're not sure what number the
emulator is using, look for a number above the emulator screen.

Fill in a port number of 50000.
Type your text message in the Message field and click on Send.

The emulator asks if it is OK if the WMADemo interrupts and if it can be started. You
might receive several permission requests based on your firewall settings.

Choose Yes. The sMSReceive MIDlet is launched and immediately displays the
incoming SMS message.

To type a return message, press the Reply soft button. Type a message and select
Send. You are asked to give permission because there is a cost to your phone
number. In the IDE, look in the WMA Output Window to confirm that your reply
has been received. (The output window is typically displayed below the WMA
Console. Be sure to click the WMA Output Window tab.)

22.2.4 Sending CBS Messages from WMA Console to an Emulator

This process is similar to sending SMS Messages. Instead of specifying a port number
you specify a Message Identifier.

1.

TTo launch the WMA console, select Tools > Java ME > WMA Console. To open
the WMA Output window, select Window > Output > WMA Console Output.

Click on the Send CBC button in the WMA console window.
Supply a Message Identifier of 50001.
Type your text message or attach a binary message and click on Send.

The emulator asks if it is OK if the WMADemo interrupts and if it can be launched.
You might receive several permission requests based on your firewall settings.

Choose Yes. The CBSReceive MIDlet is launched and immediately displays the
incoming message. Click Exit to close the MIDlet.

22-4 Java ME SDK Developer's Guide

Running WMA Tool

22.2.5 Sending MMS Messages from WMA Console to an Emulator

To send an MMS message from the WMA console to the emulator, make sure that
WMADemo has been installed using Run via OTA.

1.

From the WMADemo home screen, choose MMS Receive. The emulator displays:
Receiving... Waiting for MMS on applicationID example.mms.MMSDemo...

In the WMA console, click on Send MMS to open the MMS composition window.
The Header tab is open by default. Supply any message subject, the application ID
example.mms.MMSDemo, and the telephone number of the running emulator. If only
one emulator is running, that number is displayed in the To field by default. If you
don’t see your number, click the Add button to add it.

Click on the Parts tab. The WMA console allows you to select files to send as parts
of the MMS message. Click Add and use the file browser to find the file you want
to send. Click OK.

Click on Send to send the message.

The image and its information are displayed in the emulator.

22.3 Running WMA Tool

To send and receive SMS, CBS, and MMS messages from the command line, use

installdir\bin\wma-tool

The device manager must be running before you launch wma-tool.

When the tool is started, it outputs the phone number it is using.

Each protocol has send and receive commands. The requested command is passed to
the tool as a first argument. Possibilities are:

receive

smsreceive - receives SMS messages
cbsreceive - receives CBS messages
mmsreceive - receives MMS messages
smssend - sends SMS message
cbssend - sends CBS message

mmssend - sends MMS message

The *send commands send the specified message and exit. The *receive commands
print incoming messages until they are explicitly stopped.

Each command has its own arguments.

22.3.1 smsreceive

smsreceive [-ooutputDir] [-t timeout] [-q]

-o outputDir. Store binary contents to outputDir.

-t timeout. Non-interactive mode, waits only timeout seconds for messages.

-f Store text contents as files instead of printing them.

-g Quiet mode.

JSRs 120 and 205: Wireless Messaging 22-5

Running WMA Tool

Example
Start the emulator from the bin directory:

emulator.exe -Xdevice:DefaultCldcPhonel
-Xdescriptor:..\apps\WMADemo\dist \WMADemo. jar

Start wma-tool from the bin directory:

C:\Java_ME_platform_SDK_3.0.5\bin>wma-tool smsreceive
WMA tool started with phone number: 123456803
press <Enter> to exit.

In the emulator run the SMS Send MIDlet and send a message to the WMA console.
The console receives the message as follows:

SMS Received:
From: 123456789
Port: 50000
Content type: Text
Encoding: GSM7BIT
Content: from emulator to wma-tool
Waiting for another message, press <Enter> to exit.

22.3.2 chsreceive

cbsreceive [-ooutputDir] [-t timeout] [-q]

-o outputDir. Store binary contents to outputDir.

-t timeout. Non-interactive mode, waits only timeout seconds for messages.
-f Store text contents as files instead of printing them.

-g Quiet mode.

22.3.3 mmsreceive

mmsreceive [-ooutputDir] [-t timeout] [-q]

-o outputDir. Store binary contents to outputDir.

-t timeout. Non-interactive mode, waits only timeout seconds for messages.
-f Store text contents as files instead of printing them.

-g Quiet mode.

22.3.4 smssend

smssend target_phone target_port message_content
= target_phone
Phone number of the target phone. Mandatory first argument.
m target_port
Port of the target phone. Mandatory second argument.
m message_content
Mandatory third argument. Can have one of these two forms:

= text:text of the text message

22-6 Java ME SDK Developer's Guide

Running WMA Tool

= -f file: sends content of the specified file as a binary message.

22.3.5 chssend

cbssend message_id message_content

» message_id
ID of the message. Mandatory first argument.

m message_content
Mandatory second argument. Can have one of these two forms:
= text:text of the text message

= -f file: sends content of the specified file as a binary message.

22.3.6 mmssend

mmssend <application id> <subject>

[-to <targetphone>]* [-cc <target phone>]* [-bcc <targetphone>]*

[-part { <part_from file> | <part_from text> }]*

"on

Each part is defined by name=value pairs delimited by a semicolon ";" separator.

Part Variables
To create part_from_file, define the following variables.
m file
File to send as a message part.
s mimeType
Mime type of the file.
To create part_from_text, define the following variable:
= text
Text to send as a message part. mimeType will be set to text/plain.

= —to target_phone

"to" target phone number. Any number of these options can be used.

» —cc target_phone

"cc" target phone number. Any number of these options can be used.

= -bec target_phone

"bec” target phone number. Any number of these options can be used.

Part from Text Options
Separate options with semicolons. For example:

= -part contentId=content ID; encoding=encoding; text=text

Appends text part to the message. Any number of these arguments can be used.

Contains the following options:

= content ID: content ID of this message part

= encoding: Sent text encoding. Only relevant for "text/plain. " Mime type

defaults to UTFS.
Part from File Options

JSRs 120 and 205: Wireless

Messaging 22-7

Running WMA Tool

-part mimeType=mime type; contentId=content ID; file=file name

= Appends binary part to the message with content loaded from the given file. Any
number of these arguments can be used.

Separate the options with a semicolon.

= content id: content ID of this message part

= mime type: mime type of this message part

» file name: file with content of this message part

» fileEncoding: Encoding of text in the file, only relevant for "text/plain"”, only
applies if the file argument is present. Defaults to the value of the encoding
variable.

Example:

mmssend MyAppId MySubject -to 987654321
-part text="text part" -part file=Duke.png:mimeType=image/png

22-8 Java ME SDK Developer's Guide

23

JSR 184: Mobile 3D Graphics

The Mobile 3D Graphics API for J2ME, (JSR 184) provides 3D graphics capabilities
with a low-level API and a high-level scene graph API. This chapter provides a brief
overview and general guidelines for working with JSR 184.

JSR 184 is a specification that defines the Mobile 3D Graphics (M3G) API for the J2ME.
This API provides 3D functionality in a compact package that's appropriate for
CLDC/MIDP devices. The API provides two methods for displaying 3D graphics
content:

The immediate mode API makes it possible for applications to directly create and
manipulate 3D elements.

Layered on top of this is a scene graph AP], also called retained mode, that makes it
possible to load and display entire 3D scenes that are designed ahead of time.

For more information, consult the JSR 184 specification at
http://jcp.org/en/jsr/detail?id=184.

23.1 Choosing a Graphics Mode

Applications are free to use whichever approach is most appropriate or to use a
combination of the retained mode and immediate mode APIs.

JSR 184 provides a standard API for CLDC/MIDP devices, enabling a new generation
of 3D applications. The immediate mode AP], in turn, is compatible with OpenGL ES,
a standard lightweight API for 3D graphics. See http://khronos.org/ for more
information on OpenGL ES.

23.1.1 Immediate Mode

Immediate mode is appropriate for applications that generate 3D graphics content
algorithmically, such as scientific visualizations or statistical graphs. The application
creates 3D objects and manipulates them directly.

For an example of immediate mode, see the Life3D MIDlet in the Demo3D example
application.

23.1.2 Retained Mode

Most applications, particularly games, use the retained mode or scene graph APIL. In
this approach, a graphic designer or artist uses 3D modeling software to create a scene
graph. The scene graph is saved in the JSR 184 file format. The scene graph file is
bundled with the application. At runtime, the application uses the scene graph API to
load and display the file.

JSR 184: Mobile 3D Graphics 23-1

Quality Versus Speed

Applications can manipulate parts of a loaded scene graph to animate characters or
create other effects. The basic strategy is to do as much work as possible in the
modeling software. At runtime, the application can grab and manipulate parts of the
scene graph, which can also include paths for animation or other effects.

For an example of retained mode, see the retainedmode MIDlet in the Demo3D example
application.

23.2 Quality Versus Speed

One of the challenges of MIDP development is the constrained environment of typical
devices. Compared to desktop computers, MIDP devices have slow processors and
little memory. These challenges extend into the arena of 3D graphics. To accommodate
a wide variety of implementations, the JSR 184 specification provides various
mechanisms to make the display of a 3D scene as efficient as possible.

One approach is scoping, a technique where you tell the 3D graphics implementation
when objects are not going to interact with each other. For example, if you defined a
scene graph for a house, you could use scoping to specify that the light in the
basement doesn't affect the appearance of the bedroom on the second floor. Scoping
simplifies the implementation's task because it reduces the number of calculations
required to show a scene.

In general, the best way to improve the rendering speed of 3D scenes is to make some
compromises in quality. The Mobile 3D Graphics API includes rendering hints so that
applications can suggest how the implementation can compromise quality to improve
rendering speed.

23.3 Content for Mobile 3D Graphics

Most mobile 3D applications use scene graphs in resource files to describe objects,
scenes, and characters. Usually it is not programmers but graphic designers or artists
who create the scene graphs, using standard 3D modeling tools.

Several vendors offer tools for authoring content and converting files to the JSR 184
format.

Because it is relatively difficult to create and manipulate 3D graphics content in an
application using the immediate mode API, most applications rely as much as possible
on a scene graph file. By putting as much as possible into the scene graph file at design
time, the application's job at runtime is considerably simplified.

23.4 Running Demo3D Samples

23.4.1 Life3D

Demo3D contains MIDlets that demonstrate JSR 184 features.

Life3D implements the popular Game of Life in three dimensions. Live cells are
represented by cubes. Each cell has 26 possible neighbors (including diagonals). For
each step of the animation, cells with fewer than four neighbors die of loneliness,
while cells with more than five neighbors die of overcrowding. An empty cell with
exactly four neighbors becomes a new live cell.

The view of the playing board rotates slowly so you can view the board from all
angles.

The keypad buttons in Table 23-1 provide control over the game.

23-2 Java ME SDK Developer's Guide

Running Demo3D Samples

Table 23-1 Controls for L.ife3D

Button Description

0 Pause the animation.

1 Resume the animation at its default speed.

2 Speed up the animation.

3 Slow down the animation.

4 Choose the previous preset configuration from an arbitrary list. The name of the

configuration is shown at the top of the screen.

5 Choose the next preset configuration from the list.

* Generate a random configuration and animate until it stabilizes or dies. If it dies,
generate a new random configuration.

The source code for this example can be found at:

installdir\apps\Demo3D\src\com\superscape\m3g\wtksamples\life3d\Life3D. java.

23.4.2 RetainedMode

The RetainedMode MIDlet plays a scene file that shows a skateboarder in an endless
loop.

23.4.3 PogoRoo

PogoRoo displays a kangaroo bouncing up and down on a pogo stick. To steer the
kangaroo, use the arrow keys. Press up to go forward, down to go backward, and left
and right to change direction. You might need to hold down the key to see an effect.

JSR 184: Mobile 3D Graphics 23-3

Running Demo3D Samples

23-4 Java ME SDK Developer's Guide

24

JSR 180: SIP Communications

The Java ME SDK supports the SIP API for J2ME (JSR 180) with a proxy server,
registrar, and network monitor support.

Session Initiation Protocol (SIP) is defined by RFC 3261, available at
http://www.ietf.org/rfc/rfc3261.txt.

SIP provides a standard way for applications to set up communications. The
application determines what communication actually takes place. SIP can be used to
set up instant messaging, text chat, voice chat, video conferencing, or other types of
sessions.

24.1 Understanding the SIP Registrar and Proxy

A SIP registrar enables client applications to associate a user name with a specific
network address. Client registration informs the SIP proxy server that the client exists.

A SIP proxy server is an entry point into a larger network of proxy servers. SIP
messages that arrive at one proxy are routed to an appropriate destination, which is
usually another proxy server or an end point, such as a desktop computer or a mobile
device. Although SIP messages can be sent directly between devices, they are usually
routed through a proxy server.

For example, suppose Doug wants to start a video conference with Polly. Polly is on
the road and her mobile phone sends a message to a registrar that associates her name
with the mobile phone's network address. When Doug tries to set up the video
conference with Polly, his application uses SIP to ask the registrar for Polly's current
network location.

24.2 Running SIPDemo

This application is a very simple example of using SIP (JSR 180) to communicate
directly between two devices. Usually devices will use SIP with a proxy server to set
up direct communications of some kind.

To see how SIPDemo works, run two instances of the emulator. In the first, choose
Receive message. You can use the default port, 5070, and choose Receive. The first
emulator is now listening for incoming messages.

In the second emulator, choose Send message. Fill in values for the recipient, port
number, subject, and message, or accept the defaults, and choose Send. Your message
will be displayed in the first emulator. The first emulator's response is displayed in the
second emulator.

JSR 180: SIP Communications 24-1

Running SIPDemo

Try it again with the network monitor turned on. You can see the communication
between the emulators in the network monitor SIP tab.

24-2 Java ME SDK Developer's Guide

25

JSR 211: Content Handler API (CHAPI)

JSR 211 defines the Content Handler API (CHAPI). The basic concept is that MIDlets
can be launched in response to incoming content (files). Modern mobile phones can
receive content using SMS, infrared, Bluetooth, e-mail, and other methods. Most
content has an associated content type. CHAPI specifies a system by which MIDlets
can be launched in response to specific types of content.

See Section 25.1, "Using Content Handlers" and Section 25.4, "Running the
CHAPIDemo Content Browser".

25.1 Using Content Handlers

In the Java ME SDK Content Handlers are integrated in a project as application
descriptors. Content Handlers you define are packaged with the application.

Follow these steps to work with content handlers.

1. In the Projects window, right-click CHAPIDemo and choose Properties from the

context menu.

2. In the Category pane, select Application Descriptor, and click the Content

Handlers tab.

3. In the Content Handlers table, each line in the list represents the settings for a

content handler.

Attributes | MIDlets | Push Registry | APT Permissions | Content Handlers

Caontent Handlers

Key | Class D Types Suffixes
1 ecample, text, TextYiswer excample.text. Te. .. kext/plain bty ket
2 example.image, Imagetiewer |example.image.l... image/pnag; image/qif |.png; .qif

= To create a new content handler, press Add, or to edit an existing content
handler, press Edit. Both actions open the Content Handler Properties
window. See Section 25.2, "Defining Content Handler Properties".

» To adjust the order of the content handlers, select one and using the Move Up
and Move Down buttons. To remove a content handler from the list, select it

and press Remove.

JSR 211: Content Handler API (CHAPI) 25-1

Defining Content Handler Properties

= See Section 25.2, "Defining Content Handler Properties" and Section 25.4,
"Running the CHAPIDemo Content Browser"

25.2 Defining Content Handler Properties

In the Projects window, right-click on a project and choose Properties from the context
menu. In the Category pane, select Application Descriptor, and click the Content
Handler tab. Pressing Add or Edit opens the Content Handler Properties window.

W Content Handler Properties [X|

Content Handler | .ﬁ.cﬁons.'

Class: | example. text, TextViewer w |

ID: |Examp|e.b(t.Text\ﬂewer |

Content types:

text/plain Add Type

Suffixes:

ot Add Suffix
Jdext

Access allowed to:

Add Access

| ok H[Z'.ancel][Help

s In the Class field, choose a class name from the dropdown menu.

» IDis an identification string that can be used to invoke a content handler and
control access.

= In Content types, list the content types for which this content handler is
responsible. Use Add Type and Remove to manage the list.

» In Suffixes, provide a list of URL suffixes that act as a substitute for an explicit
content type.

s In Access allowed to, list IDs for content handlers that are allowed access to this
content handler. If the list is empty, access to this content handler is granted to
every content handler.

25-2 Java ME SDK Developer's Guide

Defining Content Handler Actions

25.3 Defining Content Handler Actions

Content handler actions give invoking applications a choice about how to handle
content. An Action is associated with an existing content handler. An image viewer
content handler, for example, might include an action for viewing the image at its
original size and another action that makes the image fill the available screen space.

In the Projects window, right-click on a project and choose Properties from the context
menu. In the Category pane, select Application Descriptor, and click the Content
Handler tab. Press Add or Edit to open the Content Handler Properties window and
click on the Actions tab, as shown here.

W Content Handler Properties

Content Handler | Actions |

Actions: Locales:
open en_US
Add Action] [Remove] [Add Locale] [Remove

Localized Actions:

open

0K H Cancel H Help

The Actions list contains the internal names of the actions for this content handler.
Locales is a list of all the locales for which human-readable action names will be
provided. Localized actions is a grid which contains the human-readable action names
for various locales. Each locale is represented by a row, while the actions are listed as
columns. You can see all the human-readable action names for a particular locale by
reading across a single row.

JSR 211: Content Handler APl (CHAPI) 25-3

Running the CHAPIDemo Content Browser

25.4 Running the CHAPIDemo Content Browser

This demo is a content browser that takes advantage of the content handler registry. it
allows you to view different types of content from different sources.

1. In the user interface, select File > Open Sample Project > CHAPIDemo.

In the device selector, right-click on a device, select Run Project OTA, and choose
CHAPIDemo.

= You are asked to enter the password for the keystore. Type: keystorepwd

= You are asked to enter the password for the "dummyca" key pair alias within
the keystore. Type: keypwd

= On the Favorite Links page, choose CHAPI Demo. Press the menu soft button
and choose 1, Go.

The Text Viewer displays a Media Player URL and links to various media files.

2. Select Duke.png. Use the arrows to highlight the link, then select the file. Using
CHAPI], the Imageviewer MIDlet runs and displays the Duke image. Select the
Back soft key to return to the Text Viewer.

3. Install the Media Player to view media.
m Select the URL http:handlers/MediaHandler. jad.
Select the Menu soft button and select item 1, Go.

= The application asks, "Are you sure you want to install Media Handler?" Select
the Install soft key. For the rest of this demo, click Install if you are asked for
confirmation.

The installation finishes and you return to the Text Viewer.
4. View different media files.

Select a URL from the list, select the Menu soft button and select item 1, Go.

25-4 Java ME SDK Developer's Guide

26

JSR 226: Scalable 2D Vector Graphics

JSR 226, Scalable 2D Vector Graphics for J2ME, supports rendering sophisticated and
interactive 2D content.

Scalable Vector Graphics (SVG) is a standard defined by the World Wide Web
Consortium. It is an XML grammar for describing rich, interactive 2D graphics.

The Scalable Vector Graphics (SVG) 1.1 specification (available at
http://www.w3.org/TR/SVG11/) defines a language for describing two-dimensional
graphics in XML.

SVG Tiny (SVGT) is a subset of SVG that is appropriate for small devices such as
mobile phones. See http://www.w3.0rg/TR/SVGMobile/. SVGT is a compact, yet
powerful, XML format for describing rich, interactive, and animated 2D content.
Graphical elements can be logically grouped and identified by the SVG markup.

Java ME applications using SVG content can create graphical effects that adapt to the
display resolution and form factor of the user's display.

SVG images can be animated in two ways. One is to use declarative animation, as
illustrated in Section 26.1.3, "Play SVG Animation". The other is to repeatedly modify
the SVG image parameters (such as color or position), through API calls.

While it is possible to produce SVG content with a text editor, most people prefer to
use an authoring tool. Here are two possibilities:

s Ikivo Animator: http://www.ikivo.com/animator/

s Adobe Illustrator: http://www.adobe.com/products/illustrator/main.html

26.1 Running SVGDemo

This project contains MIDlets that demonstrate different ways to load manipulate,
render, and play SVG content.

26.1.1 SVG Browser

The SVGBrowser MIDlet displays SVG files residing in the phone file system. Before
running this demo, place an SVG file in your device skin's file structure at:

device\appdb\filesystem\rootl

For your device location, see Section 8.4, "Java ME SDK User Directories" and
Table 8-1. Launch the demo. The application displays the contents of root1. Select
your SVG file and choose the Open soft key.

JSR 226: Scalable 2D Vector Graphics 26-1

Running SVGDemo

26.1.2 Render SVG Image

Render SVG Image loads an SVG image from a file and renders it. Looking at the
demo code you can see that the image is sized on the fly to exactly fit the display area.
The output is clear and sharp.

26.1.3 Play SVG Animation

This application plays an SVG animation depicting a Halloween greeting card. Press 8
to pause, 5 to start or resume, and 0 to stop.

The SVG file contains a description of how the various image elements evolve over
time to provide this short animation.

In the following code sample, the JSR 226 javax.microedition.m2g.SVGImage class is
used to load the SVG resource. Then, the javax.microedition.m2g.SVGAnimator class
can take all the complexity of SVG animations and provides a java.awt.Component or
javax.swing.JComponent which plays the animation. The SVGAnimator class provides
methods to play, pause and stop the animation.

import javax.microedition.m2g.ScalableGraphics;
import javax.microedition.m2g.SVGImage;

String svgURI = ...;
SVGImage svgImage = (SVGImage) SVGImage.createImage (svgURI, null);
SVGAnimator svgAnimator = SVGAnimator.createAnimator (svgImage);

// If running a JSE applet, the target component is a JComponent.
JComponent svgAnimationComponent = (JComponent) svgAnimator.getTargetComponent ();

svgAnimator.play();
svgAnimator.pause();

svgAnimator.stop();

26.1.4 Create SVG Image from Scratch

This demo builds an image using API calls. It creates an empty SVGImage, populates
it with a graphical content, and then displays that content.

26.1.5 Bouncing Balls

Bouncing Balls plays an SVG animation. Press 8 to play, 5 to start, and 0 to stop. If you
press 8, pressing 5 resumes the animation. If you press 0, pressing 5 starts the
animation from the beginning.

26.1.6 Optimized Menu

In this demo, selected icons have a yellow border. As you move to a new icon, it
becomes selected and the previous icon flips to the unselected state. If you navigate off
the icon grid, selection loops around. That is, if the last icon in a row is selected,
moving right selects the first icon in the same row.

26-2 Java ME SDK Developer's Guide

Running SVGDemo

This demo illustrates the flexibility that combining UI markup and Java offers: a rich
set of functionality (graphics, animations, high-end 2D rendering) and flexibility in
graphic manipulation, pre-rendering or playing.

In this example, a graphic artist delivered an SVG animation defining the transition
state for the menu icons, from the unselected state to the selected state. The program
renders each icon's animation sequence separately into off-screen buffers (for faster
rendering later on), using the JSR 226 APIL

With buffering, the MIDlet is able to adapt to the device display resolution (because
the graphics are defined in SVG format) and still retain the speed of bitmap rendering.
In addition, the MIDlet is still leveraging the SVG animation capabilities.

The task of defining the look of the menu items and their animation effect (the job of
the graphic artist and designer) is cleanly separated from the task of displaying the
menu and starting actions based on menu selection (the job of the developer). The two
can vary independently as long as both the artist and the developer observe the SVG
document structure conventions.

26.1.7 Picture Decorator
In this sample you use the phone keys to add decorations to a photograph. The key

values are:

Key Action

1 key shrink

2 key next picture

3 key grow

4 key help

5 key horizontal flip

6 key vertical flip

7 key rotate counter-clockwise
8 key previous picture

9 key rotate clockwise

display picker options

This demo provides 16 pictures for you to decorate.
Use the 2 and 8 keys to page forward and back through the photos.

To decorate, press # to display the picker. Use the arrow keys to highlight a graphic
object. The highlighted object is enlarged. Press Select to choose the current graphic or
press the arrow keys to highlight a different graphic. Press Select again to add the
graphic to the photo. When the decoration is added you see a red + on the graphic.
This means it is selected and can be moved, resized, and manipulated.

JSR 226: Scalable 2D Vector Graphics 26-3

Running SVGDemo

Use the navigation arrows to move the graphic. Use 1 to shrink the graphic, and 3 to
enlarge the graphic. Use 5 or 6 to flip, and 7 or 9 to rotate. When you are satisfied with
the position, press Select. Note that a green triangle appears. This is a cursor. Use the
navigation keys to move the green triangle around the picture. When the cursor is over
an object it is highlighted with a red box. Press Select. The red + indicates the object is
selected.

To remove a decoration (a property), select an object, then click the Menu soft key.
Press 2 to remove a property.

26.1.8 Location Based Service

Launch the application. A splash screen (also used as the help) appears. The initial
view is a map of your itinerary - a walk through San Francisco. The bay (in blue) is on
the right of your screen. Press 1 to start following the itinerary. The application zooms
in on your location on the map. Turn-by-turn directions appear in white boxes on the
horizontal axis. While the itinerary is running, Press 7 to rotate the map
counter-clockwise. Note, the map rotates and the text now appears on the vertical axis.
Press 7 again to restore the default orientation. Press 4 to display the help screen.

26-4 Java ME SDK Developer's Guide

Running SVGDemo

Right on Drumm

26.1.9 Running SVGContactList

This application uses different skins to display the same contact list information and a
news banner. The skins have different colors and fonts.

Select SVGContactlist(skin 1) or SVGContactlist(skin 2), then click Launch.

Use the up and down arrows to navigate the list of contacts. The highlighted name is
marked with a special character (a > or a dot) and is displayed in a larger font.

Allan Shaw

Andrew Smith
Archie Stoddart

® Arthur Warner

Aubrey Read
Betty Archdale
Betty Edwards

Press the select button to see more information for the highlighted name.

JSR 226: Scalable 2D Vector Graphics 26-5

Running SVGDemo

arthur Warner - £

email
Arthur.Warner@example.com
cell phone

441 162 74 57

work phone

404 33270 b1

home phone

201 23112 44

address

435 Cupertino Avenue
70155 San Francisco, USA

Press select again to return to the contact list.

26-6 Java ME SDK Developer's Guide

27

JSR 229: Payment API Support

JSR 229, the Payment AP, enables applications to make payments on behalf of their
users. The Payment API supports different payment mechanisms through payment
adapters. A device that implements the Payment API has one or more adapters. MIDlet
suites use descriptor attributes to specify what types of payment adapters they can
use.

The Java ME SDK implements the Payment API with a sample payment adapter that
simulates both Premium Priced SMS (PPSMS) and credit card payments. In addition,
the SDK makes it easy to set the necessary attributes in the MIDlet's descriptor and
JAR file manifest. Finally, a payment console enables you to easily track payments
made or attempted by an application.

Because the Payment APl is closely tied to provisioning and external device payment
mechanisms, and because payments can only succeed in a trusted protection domain,
always test and debug your Payment API applications using the Run via OTA feature.

= Section 27.1, "Running the Payment Console"

= Section 27.2, "Running JBricks"

27.1 Running the Payment Console

The Payment Console is a simple monitoring tool that displays payment related
transactions sent from a mobile application using the Payment API (JSR 229). The
payment console monitors Payment Update File requests and Premium Priced SMS
payments.

The Payment Console is implemented as an Http server running within the Device
Manager process. The root for the Http server is installdir\apps.

Note: The Device Manager must be running before you launch the
Payment Console.

To launch the Payment Console in NetBeans, select Windows > Output > Payment
Console. The console opens as a window at the bottom of the IDE.

The initial message is:

Payment Console is running
using phone number 5550000
listening on http://localhost:54465

You can also launch the Payment console from the command line:

JSR 229: Payment API Support 27-1

Running JBricks

installdir\bin\payment-console.exe
To close the Payment Console launched from the command line, press Enter.

To change the Payment Console Phone number, go to the Device Selector and
right-click the platform node (CDC or CLDC). Reset the Payment Console Phone
Number property from the platform Properties window.

27.2 Running JBricks

JBricks is a game that demonstrates the use of the JSR 229 Payment API. The game
itself resembles Breakout or Arkanoid. In JBricks, you can buy another life or a new
game level. Behind the scenes, the Payment API handles the details.

1. Right-click the JBricks project and select Properties from the context menu.

2. Select the Running Category and choose the Execute through OTA radio button.
Click OK.

3. Run the]JBricks demo. The first time you run the game it will be installed over the
air. If the game is already installed, select JBricks from the AMS, and wait for the
game home page to load (you see a list of actions where the first item is Start
Game).

On the game home page, select the level if necessary, then select Start Game and
click again to begin the round.

4. Use the left and right arrow keys to move the paddle to keep the bar from hitting a
wall.

To see how JBricks uses the Payment API, choose either Buy Life or Buy Level from
the game's main menu. Next, choose whether you want to buy a single life or three
lives for a lower bulk price.

When you choose the Buy transaction you are asked to confirm the Premium Priced
SMS carrier. The JBricks demo supports three different carriers. To change carriers, set
the Payment properties for the device running the demo. In the Device Selector,
right-click the device and select Properties. You can set the payment property values as
follows to change the carrier:

SONERA: MCC=999, MNC=99
DNSDNA: MCC=380, MNC=77
RADIOG: MCC=747, MNC=88

To view your transactions in the emulator, select Device > Payment Transactions tab.
Transactions for this specific instance of the emulator are displayed.

27-2 Java ME SDK Developer's Guide

Running JBricks

External Events Generator

|Con13cﬂess Cmmunimﬁoﬂ"ﬂustﬁni:ﬁﬁoﬂ"ﬁle Connecﬁon"Lomﬁon"Mobile"Mobile Telephony| Payment Transactions Sensor%
Past Transactions
Date Application Feature State
a/21/11 10:22 FM 1Bricks Buy Level Successful '
8/21/11 10:22 PM JBricks Buy Life Successful B
"
Missed Transactions
Date Application Feature State
”
"

In addition, you can view all transactions passing through the SDK's payment system.
Choose Windows > Output > Payment Console. A transaction in the console looks

something like the following:

PSP Console running, using phone number +5550001.

PSP Server running at https://localhost:-1

Received Payment Request from 127.0.0.1
Credit card issued by: VISA
Credit Card type: 0
Credit Card Number: 4111111111111111
Credit Card Holder: Jonathan Knudsen
Feature ID: 3_lives
Credit Card Verification Number (CCV): 123
Payload: null

Response to 127.0.0.1

HTTP/1.1 200 OK

Content-Length: 0

Pay-Response: SUCCESSFUL

Pay-Timestamp: 1156282954734

JSR 229: Payment API Support 27-3

Running JBricks

27-4 Java ME SDK Developer's Guide

28

JSR 238: Mobile Internationalization API
(MIA)

JSR 238, the Mobile Internationalization API, is designed for applications that are to be
displayed in multiple languages and used in multiple countries. The combination of
country (or region) and language is a locale.

The central concept of JSR 238 is a resource, which is a string, image, or other object that
is suitable for a particular locale. For example, an application that is to be distributed
in Europe might include resources for Italian-speaking people living in Italy,
Italian-speaking people living in Switzerland, Spanish-speaking people living in Spain
and so on.

Resources are stored in files in a format defined in JSR 238. The resource files are
bundled as part of the MIDlet suite JAR file. The Java ME SDK provides a resource
manager that simplifies the job of creating and maintaining resource files.

28.1 Setting the Emulator's Locale

Alternatively, while the emulator is running, select Application > Change Locale and
type in the locale you want to use.

You can change an emulator's locale from the Device Selector.
1. Right-click on a device and choose Properties.

2. In the Properties window, find the Locale property and click ... to open the Locale
window.

3. Select the locale from the dropdown list.

28.2 Using the Resource Manager

To launch the resource manager, select a project, then choose Tools >
Internationalization > Java ME Internationalization Resources Manager.

All the resources for the selected project are displayed in the Resource Manager. See
the sample project i18nDemo described in Section 28.3, "Running i18nDemo".

See also: Section 28.2.1, "Working With Locales" and Section 28.2.2, "Working With
Resource Files".

JSR 238: Mobile Internationalization APl (MIA) 28-1

Using the Resource Manager

28.2.1 Working With Locales

Locales are represented as folders under the top-level global node. The locale
directories contain resource files which, in turn, hold the actual resources that can be
used by the application.

Locales are represented by standard language and country codes as described in the
MIDP 2.0 specification. For example, pt-BR represents Portuguese-speaking people
living in Brazil.

To add a locale, right-click on the top-level global node and choose Add Locale.
Choose the locale from the combo box, or type it directly, and click OK.

To rename a locale, right-click the locale directory and choose Rename.

To remove a locale and all its contained resource files, right-click the locale
directory and choose Delete.

28.2.2 Working With Resource Files

Resource files can be global (at the top level) or specific to a locale.

To create a new global resource file, right-click the top-level global directory and
choose Add new resource file. Choose a name for the file.

To rename a resource file, right-click the file and choose Rename.

You can copy, cut, and paste entire resource files. Right-click a file and choose
Copy or Cut. Then right-click the locale directory (or the top-level global) and
choose Paste.

To remove a resource file, right-click the file and choose Delete.

28.2.3 Working With Resources

Click on a resource file to display its contents.

To add an image or another type of binary data, click the Add button.

= In the Configure New Resource window, select Add string resource.
= Browse to select the file you want to add.

= The automatically supplied Identifier value can be changed.

s Click OK to add the resource.

Identifier: |110

(") Add binary resource

(*) Add string resource

String: |Mo more beer

[QK l [Cancel

28-2 Java ME SDK Developer's Guide

Running i18nDemo

s To edit a resource, double-click in the resource field.
= For strings you can edit an existing value.

= Double-clicking a binary file opens a file chooser.

28.3 Running i18nDemo

This MIDlet suite demonstrates the JSR 238 Mobile Internationalization API. The
MIDlets String Comparator and Formatter show how to sort strings and display
numbers appropriately for different locales. The third MIDlet, MicroLexicon, is a small
phrase translator that comes in handy if you need to ask for a beer in Prague, Herzliya,
Beijing, Milan, or several other locations.

Note: The default fonts for the Java ME SDK do not support
Chinese and Japanese. To use these languages, follow these steps
before running this demo: 1. Install a True Type font that supports
Chinese or Japanese. 2. Modify
installdir\toolkit-lib\devices\skin-directory\conf\skin.properti
es to specify that font.

To run a MIDlet, highlight the MIDlet, then use the Launch soft button to run the
MIDlet.

String Comparator

The String Comparator MIDlet demonstrates how strings (city names) are sorted
differently depending on locale. Launch the MIDlet. Use the Menu soft button to view
the menu. Click or Type 2 to select Sort - default, and the list is sorted alphabetically.
Click or Type 3 to select Sort - slovak. It's easy to see the difference in the cities that
begin with the letter Z, with and without the mark on top. Click Exit to return to the
list of MIDlets.

Formatter

The second MIDlet, Formatter, simply displays times and numbers formatted for
different locales. Click next to view all four screens. Click Exit to return to the list of
MIDlets.

MicroLexicon

The final MIDlet, MicroLexicon, translates phrases from one language to another
language. To set the source language, follow the steps in Section 28.1, "Setting the
Emulator's Locale".

To select the target language from the list, use the navigation arrows to highlight
Choose Language. Click the Select button to view the language drop down. Use the
navigation arrows to choose a language and then click Select. Click the Next soft
button.

MicroLexicon displays a list of phrases. Highlight one and press the Select button on
the emulator.

MicroLexicon displays the flag of the target language and the translated phrase.

MicroLexicon is powered by MIDlet resources. To understand how you can use the
Java ME SDK to localize an application, choose Tools > Internationalization > Java ME
Internationalization Resources Manager. All the resources, both text and images, used
by MicroLexicon, appear. You can edit the resources and run MicroLexicon again to
see what happens.

JSR 238: Mobile Internationalization APl (MIA) 28-3

Running i18nDemo

StartPage x | JavaMESDK StartPage x| [op Internationalization - 118nDemo x| [»|[(=](3)

=3 global

B[=<z
#- [deDE
-3 en

#- [ends

- [E3 esES

- 3 he-IL

- 3 itIT

w0 ja-IP
e phrases

[+ 3 sk-5K

-3 zh-CN

S common

id resource
1 MicrolLexicon lets you easily translate usefu...
2 MicroLexicon & co.,
3 Choose language
4 Choose phrase
5 Translated phrase
101
102
103
104
105
106
107
108
109
201 endalish
202 czech
203 slovak
204 hebrew
205 chineze
206 japanese
207 \german
208 italian
209 spanish
110 Mo more beer

Remove

To practice creating and editing resources, see Section 28.2.2, "Working With Resource

Files".

The resources are stored in the project's JAR file.

28-4 Java ME SDK Developer's Guide

29

JSR 239: Java Bindings for Open GL ES

JSR 239 provides a Java language interface to the open standard OpenGL ES graphics
APIL.

29.1 Open GL Overview

JSR 239 defines the Java programming language bindings for two APIs, OpenGL for
Embedded Systems (OpenGL ES) and EGL. OpenGL ES is a standard API for 3D
graphics, a subset of OpenGL, which is pervasive on desktop computers. EGL is a
standard platform interface layer. Both OpenGL ES and EGL are developed by the
Khronos Group http://khronos.org/opengles/.

While JSR 184 (which is object oriented) requires high level functionality, OpenGL is a
low-level graphics library that is suited for accessing hardware accelerated 3D
graphics.

Explore the OpenGL ES Demo sample project code.

JSR 239: Java Bindings for Open GLES 29-1

Open GL Overview

29-2 Java ME SDK Developer's Guide

30

JSR 256: Mobile Sensor APl Support

The JSR 256 Mobile Sensor API allows Java ME application developers to fetch data
from sensors. A sensor is any measurement data source. Sensors can vary from
physical sensors such as magnetometers and accelerometers to virtual sensors that
combine and manipulate the data they have received from various kinds of physical
sensors. An example of a virtual sensor might be a level sensor indicating the
remaining charge in a battery or a field intensity sensor that measures the reception
level of the mobile network signal in a mobile phone.

JSR 256 supports many different types of sensor connection (wired, wireless,
embedded and more) but this SDK release only provides preconfigured support for
sensors embedded in the device.

The SDK GUI provides sensor simulation. The emulator's External Events Generator
Sensors tab allows you to run a script that simulates sensor data.

You can use the custom API available with the SDK to create a custom sensor
implementation with additional capabilities and support for different connection

types.

The Sensors demonstration has two MIDlets, SensorBrowser and Marbles that
demonstrate the SDK's implementation of the Mobile Sensor API. Use the Run via
OTA feature to install the application into the emulator.

30.1 Creating a Mobile Sensor Project

To use this API, create a project with the target platform Custom. You must select
MIDP 2.0 or higher and CLDC 1.1 before you can select the Mobile Sensor API
optional package.

To set permissions, click the Settings button and choose the Permissions icon.

A sensor project freely detects sensors, but this does not imply you can get data from
the sensors you find. You might need to explicitly set permissions in your project so
you can interact with certain sensors.

The following permissions work with the preconfigured embedded sensors shipped
with the SDK:

m Jjavax.microedition.io.Connector.sensor

Required to open a sensor connection and start measuring data.
m Jjavax.microedition.sensor.ProtectedSensor

Required to access a protected sensor.

m Jjavax.microedition.sensor.PrivateSensor

JSR 256: Mobile Sensor APl Support 30-1

Using a Mobile Sensor Project

Required to access a private sensor.

A sensor is private or protected if the sensor's security property has the value private
or protected. The security property is an example of a sensor property you might
create for yourself in your own sensor configuration. You can create your own optional
properties using com. sun. javame.sensorN.proplist and

com. sun. javame.sensorN.prop.any_name, where N is the sensor number and any_
name is the name of your property. The security sensor property was created as
follows:

add security into proplist

com.sun. javame.sensor<N>.proplist: security

add security property value

com.sun. javame.sensor<N>.prop.security: private

30.2 Using a Mobile Sensor Project

A Sensor project can be installed over the air. In the emulator window, select Device >
Sensors. In this tab you can view all sensors currently available in the emulator, with
the sensor ID, name, and availability. If the sensor supports change to availability you
can click on the check box to change it. As mentioned earlier, the provided
implementation does not support availability change, but a custom implementation
you create might do so.

When you select a sensor row the bottom of the dialog displays any custom sensor

controls. For example, the acceleration sensor, has three channels: axis_x, axis_y, and
axis_z. Each channel has a slider that changes the current channel value, and an edit
box you can use to input a value. The channel unit label is displayed on the far right.

Under the channels there is script player control that allows you to play sensor value
events from a script file of the format discussed in Section 30.3, "Creating a Sensor
Script File". See Section 30.4, "SensorBrowser" for a description of how to use the
Sensors demo.

30.3 Creating a Sensor Script File

30-2

To simulate sensor inputs, provide a sensor script. The file format is as follows:

<sensors>
<value time="0">
<channel id="0" value="0" />
<channel id="1" value="0" />
</value>
<value time="100">
<sensor active="false"/>
</value>
<value time="100">
<channel id="0" value="-50" />
<channel id="1" value="10" />
<sensor active="true"/>
</value>
</sensors>

The file installdir\apps\Sensors\marbles.xml is an example of a sensor script file. The
attributes are as follows:

Java ME SDK Developer's Guide

Marbles

The attribute time in the value tag is the delay from the previous command in
milliseconds.

The channel tag sets the value of the channel with the specified id value, to value.
The channel ignores the id if the value of id is not specified or if the value is out of
the channel range.

The sensor tag is a true or false value that makes the sensor available or
unavailable. The pre-configured sensors provided with this release are embedded,
so they cannot be deactivated. If you configure your own sensor that is not
embedded, it will be possible to deactivate it.

30.4 SensorBrowser

The SensorBrowser application displays the sensor detail information for reach
channel defined for the demo.

1.

In the emulator select SensorBrowser and use the soft key to select Launch the
application.

The emulator displays a list of sensors.
Use the navigation keys to highlight a sensor, then use the soft key to select Detail.

For example, the following screen shows the details for the acceleration sensor.

I " .
Sensor detail: acceleration (accll...

Cluantity: acceleration
hlodel: accOl

Context type: device
Connection type: embedded

LIRL:
sensoracceleration; contextType=davi
ce; model=accOl

Description: Sample Gui Acceleration
SEensor

Channel: E —

Current “alue: 0.0
nit: mfso2

Srala M

[»

-

30.5 Marbles

Click Back, then click Exit to return to the application menu.

This demonstration uses the Marbles game to provide visual feedback for sensor
inputs provided in a script.

1.

2.

From the application menu select Marbles and use the soft key to launch the
application.

In the emulator, select Device > Sensors.

JSR 256: Mobile Sensor APl Support 30-3

Marbles

The emulator displays a list of the sensors in this application.

3. Click the Browse button and choose the following file:
installdir\apps\Sensors\marbles.xml.

4. Observe the movement of the marbles on the emulator screen. On the external
events screen you can see the sliders move as the script runs. You can use the
familiar controls to play, pause, and stop the script.

30-4 Java ME SDK Developer's Guide

31

JSR 253: Mobile Telephony API

The Mobile Telephony API (MTA) specification
(http://www.jcp.org/en/jsr/summary?id=253) defines a set of functions for
controlling voice calls and using network services. Because the MTA is optimized for
small devices with limited memory and processing power, these functions are effective
for Java ME applications written for many devices.

31.1 The MTA Implementation

Although JSR 253 can be based on any available telephony protocol, the specification
describes only the GSM, UMTS and CDMA protocols. The OJWC implementation
provides the ability to add support of any protocol. For details on the implementation,
see the Oracle® Java Wireless Client Porting Guide at
http://download.oracle.com/javame/config/cldc/cldc-opt—impl/ojwc
-3.0.

In the Java ME SDK the reference implementation is only able to receive external MTA
events generated by the Mobile Telephony panel. In the SDK, launch an emulator and
select Device > Mobile Telephony. The controls on this external events generator tab
are reserved for TCK testing.

The Java ME SDK integrates a server and other infrastructure so that you can exchange
MTA events between emulators without using the external events generator. See
Section 31.2, "Running the MtaDemo".

31.2 Running the MtaDemo

This sample project demonstrates how the Java ME SDK MTA features can be used to
simulate telephony actions. JSR 253 does not address presentation issues and Ul
issues. The behaviors described here are those of the sample application. Also, this
sample focuses on call functionality and call state changes. It has no audio capability.

Note: In this simulation, when the caller terminates a connection the
destination device connection is not terminated automatically. Both the caller
and the call recipient must manually terminate the connection. This is
necessary because of a bug in the OJWC implementation.

1. In the Projects tab, Right-click MtaDemo and select Run With... and select
DefaultCldcPhonel (Device 6) from the dropdown menu.

Repeat this process to launch MtaDemo on DefaultCldcPhone2 and
DefaultCldcPhone3 (Devices 7 and 8, respectively).

JSR 253: Mobile Telephony APl 31-1

Running the MtaDemo

2. In each emulator, select the MtaDemo MIDIet to install the application. The initial
screen shows this control

| v MTA Deannc

Phone: ||

123

Active sessions

Connect Menu

3. From the Device 6 emulator place a call to Device 7. Type 123456790 in the Phone
field, and press Connect.

4. The Device 7 emulator displays a notification to accept or reject the call. Press the
Accept soft button.

The Active sessions dropdown is shown on Devices 6 and 7. The active session is
shown in bold font.

Note the state change and address are recorded in the Output window for both
emulator sessions.

5. From Device 8 place a call to Device 7.

6. The Device 7 emulator displays a prompt to accept or reject the call. Press the
Accept soft button.

The initial call is automatically set on hold. The held connection is shown in italics
in the Active sessions dropdown.

31-2 Java ME SDK Developer's Guide

Running the MtaDemo

v MTA Deannc

Phone: |123436731

Active sessions | 123456790 |5
123456790 %

123456791

Connect Menu

7. On Device 7, select the active session from device 8 (123456791) and from the soft
Menu, choose Terminate.

8. On Device 8, terminate the active session.

9. On Device 7, choose the held active session (123456790) and from the soft Menu,
select Set on Active.

This covers the basic transactions in the MtaDemo. At this point you can manually put
a call on hold by choosing Set on Hold, and then initiate a call to a device that has no
active sessions. If the device has an active session, you will see the error "Maximum
number of active calls reached" in the emulator and in the output window.

JSR 253: Mobile Telephony APl 31-3

Running the MtaDemo

31-4 Java ME SDK Developer's Guide

32

JSR 257: Contactless Communication API

The Contactless Communication API (http://jcp.org/en/jsr/detail?id=257)isa
Java ME optional package that allows applications to access information on contactless
targets, such as Radio Frequency Identification (RFID) tags and bar codes. RFID tags
are often used in business for item identification, article surveillance, and inventory.
Each RFID contains a unique identification number used to identify a tagged object.

Using the JSR 257 API, an RFID reader can be built into a Java Wireless Client software
phone stack, allowing the handset to read data from a tagged target and write data
back to it. RFID readers use the 13.56 MHz radio frequency and the communication
distance is usually less than 10 centimeters.

The Near Field Communication (NFC) Forum defines the NFC Data Exchange Format
(NDEF) data packaging format. NDEF facilitates communication with an RFID tag, or
between one NFC device and another. The Contactless Communication API provides a
connection to any physical target that supports the NDEF standard, allowing
applications to exchange data with any target tagged with NDEF formatting,
regardless of actual physical type.

For an explanation of this implementation, see the Oracle Java Wireless Client Porting
Guide.

32.1 Using ContactlessDemo

The Java ME SDK provides a way to test contactless communication. The MIDlet
running on the emulator waits to detect an RFID tag. You can simulate the tag
communication using the emulator’s external events generator to detect and attach the
tag. You can use one of the tags included in the sample, or create tag files of your own,
as described in Section 32.2, "Tag File Formats".

1. Launch the ContactlessDemo. The MIDlet notifies you that it is waiting for a tag.

2. In the emulator, choose Device > Contactless Communication. In the external
events generator the tag emulator supplies three tags by default: hello, nested, and
vcard.

3. To test the connection, select an available tag and press the Attach tag button.

In the emulator the MIDlet notifies you that the NDEF target is detected, displays
the tag information, and prints the payload if it is a text record.

In the external events generator, press the Detach tag button to end the session.

Events are recorded in the log area. To clear the log, right-click and select delete
text. To clear the emulator screen press the Clear soft button.

JSR 257: Contactless Communication APl 32-1

Tag File Formats

4. To create your own tag, create a tag file according to the NFC Data Exchange
Format (NDEF). For a sample, see Section 32.2, "Tag File Formats".

In the external events generator, press the Create tag button, browse to select your
tag file, and press Open. If the file is properly formed, the new tag is added to the
available tags list.

You can use the Remove tag button to remove any tag from the list. If it’s a tag you
created, the original file on disk is not affected. If the default tags are removed,
they will reappear when you restart the demo.

5. Optional. Instead of performing interactive actions in the external events
generator, you can use a script to do the same thing.

Create a file as directed in Section 32.3, "Script Format". In the external events
generator, click the Browse button to locate your script, then press Play.

32.2 Tag File Formats

Tags are created in XML format in accordance with the NFC and NDEF standards. To
see how the sample files are formed, see:
installdir\toolkit-1lib\modules\emulator-ui-window-external-events\jsr257\conf
\tags.

A sample file with several records might look like this:

<?xml version="1.0" encoding="UTF-8"?>
<jsr257client>
<UID>12-CD-45-67-89-AB-CD</UID>
<TargetProperties>
<TargetProperty>NDEF</TargetProperty>
</TargetProperties>
<NDEFMessage>
<NDEFRecord>
<Format>MIME</Format>
<Name>text/example</Name>
<Id>urn:company:product:ndef:payload:3</Id>
<Payload>payload</Payload>
</NDEFRecord>
<NDEFRecord>
<Format>MIME</Format>
<Name>text/plain</Name>
<Id>mimeid</Id>
<Payload>Hello, MIME World!</Payload>
</NDEFRecord>
<NDEFRecord>
<Format>URI</Format>
<Name>http://www.oracle.com/technetwork/java/javame/index.html</Name>
<Id>jme</Id>
<Payload>Java ME</Payload>
</NDEFRecord>
<NDEFRecord>
<Format>NFC_FORUM_RTD</Format>
<Name>urn:nfc:wkt:Sp</Name>
<Id></Id>
<Payload>smart-poster</Payload>
</NDEFRecord
<NDEFRecord>
<Format>MIME</Format>
<Name>text/x-vCard</Name>
<Id>duke</Id>

32-2 Java ME SDK Developer's Guide

Script Format

<Payload>BEGIN:VCARD VERSION:2.1 FN:Oracle TEL:+1-650-506-7000
ADR:500 Oracle Parkway;City: Redwood Shores;
State: CA;94065 END:VCARD
</Payload>
</NDEFRecord>
</NDEFMessage>
</jsr257client>

32.3 Script Format

You can use the external events generator buttons to attach and detach a tag, or you
can write a script to perform these actions. The script syntax is as follows:

Comment:
this is a comment
Tag definition:
tag <tag name> <path to the tag xml file>
Attach tag:
attach <tag name>
Delay. Ensures the tag is attached before other actions.
wait <time in ms>
Print tag information:
print <tag name>
Detach tag:
detach <tag name>

This is a sample script:

tag C D:\MyTags\ccomtag.xml
attach C

print C

wait 10000

detach C

JSR 257: Contactless Communication APl 32-3

Script Format

32-4 Java ME SDK Developer's Guide

33

JSR 258: Mobile User Interface
Customization API

JSR 258 (http://jcp.org/en/jsr/detail ?id=258) defines a standardized Java
ME API for querying and manipulating themes and skins on a device. It also defines a
file format for describing theme and skin data.

As specified in the JSR, you can define the theme (the appearance) in an XML file with
local references to resource files (images, sounds and more) or it can be a JAR file that
contains the XML file, its resources, and a properly defined manifest file.

You can use named colors or color values expressed in ARGB format.

= Named colors must be recognized color keywords as found in the SVG 1.1
specification. See:
http://www.w3.0rg/TR/SVG/types.html#ColorKeywords

s Color values must be a numeric constant in the form #AARRGGBB, where the
components RR, GG and BB are 8-bit values expressed as hexadecimal constants.
AA is the opacity level, FF being fully opaque, and 00 fully transparent. For
example, the ARGB value for white is #FFFFFFFE. See JSR 258 for a full
explanation.

33.1 Running the Customization Sample Project

This MIDlet is a color converter that can be viewed using one of three appearances.
The converter accepts a hexadecimal, decimal, or octal color specification and converts
it to RGB format.

Follow these steps to run the demo:
1. Select a theme from the radio button list and press the Demo soft key.

2. Choose a system and enter a value in that format in the Enter Color field. The
Alpha value is optional.

From the soft menu, choose option2, Process. The color converter displays the RGB
value.

33.2 Revising Sample Project Appearances

Appearances are associated with the device, in this case, the emulator. To see the XML
files for this sample, go to the working directory for the current emulator. For example,
see:

C:\Documents and Settings\user\javame-sdk\3.0.5\work\device-#\appdb
\customization

JSR 258: Mobile User Interface Customization APl 33-1

Revising Sample Project Appearances

The demo allows you to override these sample themes.

1.

Make a copy of a theme file and store it in a different directory.

The sample expects the file names theme_green.xml and theme_red.xml.
When a theme is revised it is overwritten in the emulator’s working directory, so
your edited copy must reside elsewhere.

Experiment with changing color values, fonts, or other settings, and save your
changes. As mentioned earlier, color values must specified in ARGB format, or
you can use an SVG 1.1 color keyword.

Run the demo, and in the emulator, choose Device > Customization. The external
events generator opens with the Customization tab selected.

In the Appearances area, select the theme you have edited and press the Deinstall
button. This does not delete the theme, it merely unloads it from this session.

Press the Install button and browse to select your edited theme. Installing
overwrites the theme in the emulator’s working directory.

Close the emulator.

Run the Customization project, and choose the revised theme. Verify that your
changes are visible.

To restore the original themes, run the project and in the emulator, choose Device >
Customization. Press Reset. This overwrites the current themes with the project’s
original themes.

33-2 Java ME SDK Developer's Guide

A

AMS, 4-2
appearances, 33-1
application versioning, 5-1

Bluetooth, 17-1
building (command line), 13-5

Cc

CBS message, sending, 22-2
CDC stack, 2-2
certificate management, 12-6
-classpathoption, 13-6
CLDC and MIDP stack, 2-1
command line operations, 13-1
command path, 13-5
Common Name, 12-5
Contactless Communication API, 32-1
content handler, 25-1

actions, 25-3

properties, 25-2
cref, 20-2

D

data.prof, 8-3
debugging
from command line, 13-4
options, 13-4
demonstration applications, 3-3
device
information, 6-2
device manager, 2-1,13-1

E

emulation platform, 2-1
emulator, 2-1,6-1
default protection domain, 13-7
skins, 6-1
emulator phone number, 22-2
emulator proxy server, 3-2

Index

F

FileConnection API, 16-1
Files window, 4-7
font size, 1-1

G

generating stub from command line, 13-9

H

heap size, 6-2,7-3
-help option, 13-2
hex view, 10-2

immediate mode, 23-1
-import command, 13-9

J

J2ME Web Services Specification, 19-1
JAD file, 4-1
creating, 5-7
JadTool, 13-7
JAR file, 4-1
add, 5-6
creating and compressing, 5-7
Java Cryptography Extension (JCE) keystore, 13-8
javame-sdk, 8-3
JCP, 15-1
JSR, 15-1
JSR 118, 12-1
JSR 120, 22-1
JSR 135, 18-1
JSR 172, 19-1,19-2
JSR 177, 20-1
JSR 179, 21-1,21-3
JSR 180, 24-1
JSR 184, 23-1,23-2
JSR 185, 12-1
JSR 205, 22-1
JSR 211, 25-4
JSR 229, 27-1,27-2
JSR 238, 28-1,28-3

Index-1

JSR 239, 29-1

JSR 248, 12-1

JSR 253, 31-1

JSR 257, 32-1

JSR 258, 33-1

JSR75, 16-1,16-2,16-3

JSR 82, 17-1,17-2

JTWI security domains, 12-2

K

key

exporting, 5-8
key management, 12-3
key pair

alias, 12-5

creating, 12-5

importing, 12-5
keystore, JCE, 13-8
keystore.ks, 3-6
keytool utility, 13-8

L

locale, 6-3
Location API, 21-1
logical view, 4-6

LWUIT, 11-1
M
M3G, 23-1

managing certificates from command line,

manifest file, 13-6

MEKeyTool, 13-8

messages tree sorting, 10-2

method profiling, 9-1

MIA, 28-1

MMAPI, 18-1,18-4

Mobile 3D Graphics API, 23-1

Mobile Internationalization API, 28-1

Mobile Media API, 18-1

Mobile Media API (MMAPI), 18-1
capture, 18-2

Mobile User Interface Customization API,

multiple user environment, 8-1

N

13-8

33-1

NDEF, 32-1

network monitor
filtering, 10-2
sorting messages, 10-2

NFC, 32-1
o)
OBEX, 17-1

obfuscate project, 5-7
OpenGLES, 29-1
Organization Name, 12-5

Index-2

Organization Unit, 12-5

P

packaging, 5-7
packaging using command line, 13-6
Payment API, 27-1,27-2
PDA Optional Packages, 16-1
PDAP, 16-1
permissions, 12-2
Personal Information Management (PIM) AP,
phone number, 6-2
phoneME, 2-1
physical view, 4-7
PIM API, 16-2
preverifying, 13-5

example from command line, 13-6
profiler, 9-1,13-4
project, 4-1

add, 5-6

build, 4-6

clean, 4-6

close, 4-6

import, 4-8

new, 4-6

run, 4-6

set as main, 4-6
Projects window, 4-6
properties

device, 6-2

enable profiler, 9-2

platform, 6-2

searchable in WURFL, 7-2
protection domains, 12-1
proxy server, 3-2

R

16-1

reference problem, 3-6

resolve reference problems, 3-6
resources, 4-7

retained mode, 23-1

RFID, 32-1

ring tones, 18-2

roots in the FileConnection API, 16-1
run options, 13-2

Run via OTA, 12-2

S

SATSA, 20-1

SATSA demos, 20-6

Scalable 2D Vector Graphics API, 26-1
scene graph, 23-1

SDK, running from command line, 13-1
serial port, 6-3

settings, 1-2,4-1

signed MIDlet suites, 12-1

signing MIDlet suites, 12-3, 13-7

SIP API, 24-1

SMS text message, sending, 22-2

source packages, 4-7

stub generator for web services, 19-1
SVG, 26-1

SVGDemo, 26-1

SVGT, 26-1

switch users, 8-1

T
toolbar, running from the command line, 13-1
U

UEI, 8-1

update center, 1-3
user switching, 8-1
userhome, 8-3
utilities, 1-2

V'

-version option, 13-2
versioning applications, 5-1

w

Web Services specification, 19-1
web services, stub generator, 19-1
Wireless Messaging API, 22-1
WMA, 22-1

WMA console, 22-1

wscompile, 13-9

WURFL, 7-1

WUREFL search, 7-1

WUREFL search filter, 7-2

X

-Xdebug option, 13-4
-Xrunjdwp option, 13-4

Index-3

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions
	Related Documents

	1 Getting Started
	1.1 Quick Start
	1.2 Tips for Legacy Toolkit Users
	1.3 Java ME SDK Update Center

	2 Platforms
	2.1 Emulation Platforms
	2.1.1 CLDC and MIDP Stack
	2.1.2 CDC Stacks

	2.2 Managing Java Platforms
	2.2.1 Java ME Platforms (CLDC and MIDP)
	2.2.2 Java SE and CDC Platforms
	2.2.3 Create a Platform for Legacy CDC Projects

	3 Using Sample Projects
	3.1 Running a Project
	3.2 Troubleshooting
	3.3 Sample Project Overview
	3.4 Configuring the Web Browser and Proxy Settings
	3.5 Resolving Reference Problems
	3.6 Running MIDP and CLDC Sample Projects
	3.6.1 Running the AdvancedMultimediaSupplements Sample Project
	3.6.1.1 Image Effects
	3.6.1.2 Camera
	3.6.1.3 Moving Helicopter
	3.6.1.4 Music Effects

	3.6.2 Running the Demos Sample Project
	3.6.2.1 Colors
	3.6.2.2 Properties
	3.6.2.3 Http
	3.6.2.4 FontTestlet
	3.6.2.5 Stock
	3.6.2.6 Tickets
	3.6.2.7 ManyBalls
	3.6.2.8 MiniColor
	3.6.2.9 Chooser
	3.6.2.10 HttpExample
	3.6.2.11 HttpView
	3.6.2.12 PushExample

	3.6.3 Running FPDemo
	3.6.4 Running Games
	3.6.5 Running Network Demo
	3.6.5.1 Socket Demo
	3.6.5.2 Datagram Demo

	3.6.6 Running PhotoAlbum
	3.6.7 Running UIDemo

	4 Creating and Editing Projects
	4.1 Project Types
	4.1.1 CLDC Projects
	4.1.2 CDC Projects

	4.2 The Project Wizard
	4.2.1 Project Template Page
	4.2.2 Name and Location Page
	4.2.3 Choose Project (CDC)
	4.2.4 Platform Selection (CDC)
	4.2.5 WTK MIDP Project Location
	4.2.6 CDC Toolkit Project Location
	4.2.7 Platform Selection Page (CLDC/MIDP)
	4.2.8 Create a CLDC Project
	4.2.9 Create a CDC Project

	4.3 Working With Projects
	4.4 View Project Files
	4.5 Create a New MIDlet
	4.5.1 Import a Legacy MIDP Project
	4.5.2 Import a Legacy CDC Project

	4.6 Add Files to a Project
	4.7 Search Project Files

	5 Viewing and Editing Project Properties
	5.1 General Project Properties
	5.2 Platform Selection
	5.3 Editing Application Descriptor Properties
	5.3.1 CDC Attributes
	5.3.2 MIDP Attributes
	5.3.2.1 Add an Attribute
	5.3.2.2 Edit an Attribute
	5.3.2.3 Remove an Attribute

	5.3.3 MIDlets
	5.3.3.1 Add a MIDlet
	5.3.3.2 Edit a MIDlet
	5.3.3.3 Remove a MIDlet
	5.3.3.4 Change MIDlet Display Order

	5.3.4 Push Registry
	5.3.4.1 Add a Push Registry Entry
	5.3.4.2 Edit a Push Registry Entry
	5.3.4.3 Remove a Push Registry Entry
	5.3.4.4 Change Push Registry Display Order

	5.3.5 API Permissions
	5.3.5.1 Adding Permission Requests

	5.4 Building a Project
	5.4.1 Configuring Ant
	5.4.2 Compiling
	5.4.3 Adding Libraries and Resources
	5.4.4 Creating JAR and JAD Files (Packaging)
	5.4.5 Obfuscating
	5.4.6 Signing
	5.4.7 Signing CDC Projects
	5.4.8 Exporting a Key

	5.5 Running Settings
	5.5.1 MIDP Project Run Options
	5.5.2 CDC Project Run Options

	6 Running Projects in the Emulator
	6.1 Emulating Devices
	6.1.1 The Device Manager on Windows

	6.2 Viewing Device Properties
	6.2.1 Platform Properties
	6.2.2 Device Information
	6.2.3 Device Properties

	6.3 Setting Device Properties
	6.4 Opening a Serial Port
	6.5 Running a Project from the Device Selector
	6.6 Running Projects Simultaneously on a Single Device
	6.7 Emulator Features
	6.8 Emulator Menus
	6.8.1 Application
	6.8.2 Device
	6.8.2.1 Messages
	6.8.2.2 Orientation
	6.8.2.3 External Events Generator

	6.8.3 Edit
	6.8.4 View
	6.8.5 Help

	6.9 Adding a Device Instance

	7 Searching the WURFL Device Database
	7.1 WURFL Search for Devices
	7.2 WURFL Search Filtering

	8 Finding Files in the Multiple User Environment
	8.1 Switching Users
	8.2 Installation Directories
	8.3 NetBeans User Directories
	8.4 Java ME SDK User Directories

	9 Profiling Applications
	9.1 Collecting and Saving Profiler Data in the IDE
	9.2 Loading a .nps File

	10 Network Monitoring
	10.1 Monitor Network Traffic
	10.2 Filter or Sort Messages
	10.3 Save and Load Network Monitor Information
	10.4 Clear the Message Tree

	11 Lightweight UI Toolkit
	11.1 LWUIT and the Java ME SDK
	11.2 LWUIT Resource Editor
	11.3 Add a Different LWUIT Library
	11.4 LWUIT Demos

	12 Security and MIDlet Signing
	12.1 Security Domains
	12.2 Setting Security Domains
	12.2.1 Specify the Security Domain for an Emulator
	12.2.2 Specify the Security Domain for a Project

	12.3 Signing a Project
	12.3.1 Sign a CLDC Project With a Key Pair
	12.3.2 Sign a CDC Project

	12.4 Managing Keystores and Key Pairs
	12.4.1 Working With Keystores and Key Pairs
	12.4.1.1 Create a Keystore
	12.4.1.2 Add an Existing Keystore
	12.4.1.3 Create a New Key Pair
	12.4.1.4 Remove a Key Pair
	12.4.1.5 Import an Existing Key Pair

	12.5 Managing Root Certificates

	13 Command Line Reference
	13.1 Run the Device Manager
	13.2 Manage Device Addresses (device-address)
	13.3 Emulator Command Line Options
	13.3.1 MIDlet Options
	13.3.2 CDC Options
	13.3.3 Debugging and Tracing Options
	13.3.4 Command Line Profiling

	13.4 Build a Project from the Command Line
	13.4.1 Check Prerequisites
	13.4.2 Compile Class Files
	13.4.3 Preverify Class Files

	13.5 Packaging a MIDLet Suite (JAR and JAD)
	13.6 Command Line Security Features
	13.6.1 Change the Default Protection Domain
	13.6.2 Sign MIDlet Suites (jadtool)
	13.6.3 Manage Certificates (MEKeyTool)

	13.7 Generate Stubs (wscompile)

	14 Logs
	14.1 Device Manager Logs
	14.2 Device Instance Logs

	15 JSR Support
	15.1 JCP APIs

	16 JSR 75: PDA Optional Packages
	16.1 FileConnection API
	16.2 PIM API
	16.3 Running PDAPDemo
	16.3.1 Browsing Files
	16.3.2 The PIM API

	17 JSR 82: Bluetooth and OBEX Support
	17.1 Setting OBEX and Bluetooth Properties
	17.2 Running the Bluetooth Demo
	17.3 Running the OBEX Demo

	18 JSR 135: Mobile Media API Support
	18.1 Media Types
	18.1.1 Media Capture

	18.2 MMAPI MIDlet Behavior
	18.3 Ring Tones
	18.3.1 Download Ring Tones
	18.3.2 Ring Tone Formats

	18.4 Running AudioDemo
	18.5 Running MMAPIDemos
	18.5.1 Simple Tones
	18.5.2 Simple Player
	18.5.2.1 Video
	18.5.2.2 Attributes for MobileMediaAPI

	19 JSR 172: Web Services Support
	19.1 Generating Stub Files from WSDL Descriptors
	19.2 Creating a New Mobile Web Service Client
	19.3 Run JSR172Demo

	20 JSR 177: Smart Card Security (SATSA)
	20.1 Card Slots in the Emulator
	20.2 Java Card Platform Simulator (cref)
	20.3 Adjusting Access Control
	20.3.1 Specifying PIN Properties
	20.3.2 Specifying Application Permissions
	20.3.3 Access Control File Example

	20.4 Running SATSADemos
	20.4.1 APDUMIDlet
	20.4.2 SATMIDlet
	20.4.3 CryptoMIDlet
	20.4.4 MohairMIDlet
	20.4.5 Running SATSAJCRMIDemo

	21 JSR 179 and 293: Location API Support
	21.1 Setting the Emulator's Location at Runtime
	21.2 Running the CityGuide Sample Project
	21.3 Running the CityGuide2_0 Sample Project

	22 JSRs 120 and 205: Wireless Messaging
	22.1 Using the WMA Console to Send and Receive Messages
	22.1.1 Launching the WMA Console
	22.1.2 WMA Console Interface
	22.1.3 Emulator Phone Numbers
	22.1.4 Sending a Text or Binary SMS Message
	22.1.5 Sending Text or Binary CBS Messages
	22.1.6 Sending MMS Messages
	22.1.7 Receiving Messages in the WMA Console

	22.2 Running WMADemo
	22.2.1 WMADemo Push Registry Values
	22.2.2 Running WMADemo OTA
	22.2.3 Sending SMS Messages From WMA Console to an Emulator and Back
	22.2.4 Sending CBS Messages from WMA Console to an Emulator
	22.2.5 Sending MMS Messages from WMA Console to an Emulator

	22.3 Running WMA Tool
	22.3.1 smsreceive
	22.3.2 cbsreceive
	22.3.3 mmsreceive
	22.3.4 smssend
	22.3.5 cbssend
	22.3.6 mmssend

	23 JSR 184: Mobile 3D Graphics
	23.1 Choosing a Graphics Mode
	23.1.1 Immediate Mode
	23.1.2 Retained Mode

	23.2 Quality Versus Speed
	23.3 Content for Mobile 3D Graphics
	23.4 Running Demo3D Samples
	23.4.1 Life3D
	23.4.2 RetainedMode
	23.4.3 PogoRoo

	24 JSR 180: SIP Communications
	24.1 Understanding the SIP Registrar and Proxy
	24.2 Running SIPDemo

	25 JSR 211: Content Handler API (CHAPI)
	25.1 Using Content Handlers
	25.2 Defining Content Handler Properties
	25.3 Defining Content Handler Actions
	25.4 Running the CHAPIDemo Content Browser

	26 JSR 226: Scalable 2D Vector Graphics
	26.1 Running SVGDemo
	26.1.1 SVG Browser
	26.1.2 Render SVG Image
	26.1.3 Play SVG Animation
	26.1.4 Create SVG Image from Scratch
	26.1.5 Bouncing Balls
	26.1.6 Optimized Menu
	26.1.7 Picture Decorator
	26.1.8 Location Based Service
	26.1.9 Running SVGContactList

	27 JSR 229: Payment API Support
	27.1 Running the Payment Console
	27.2 Running JBricks

	28 JSR 238: Mobile Internationalization API (MIA)
	28.1 Setting the Emulator's Locale
	28.2 Using the Resource Manager
	28.2.1 Working With Locales
	28.2.2 Working With Resource Files
	28.2.3 Working With Resources

	28.3 Running i18nDemo

	29 JSR 239: Java Bindings for Open GL ES
	29.1 Open GL Overview

	30 JSR 256: Mobile Sensor API Support
	30.1 Creating a Mobile Sensor Project
	30.2 Using a Mobile Sensor Project
	30.3 Creating a Sensor Script File
	30.4 SensorBrowser
	30.5 Marbles

	31 JSR 253: Mobile Telephony API
	31.1 The MTA Implementation
	31.2 Running the MtaDemo

	32 JSR 257: Contactless Communication API
	32.1 Using ContactlessDemo
	32.2 Tag File Formats
	32.3 Script Format

	33 JSR 258: Mobile User Interface Customization API
	33.1 Running the Customization Sample Project
	33.2 Revising Sample Project Appearances

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

