
JavaFX
Incorporating Media Assets Into JavaFX Applications 

Release  8 

E51258-01

March 2014

This tutorial describes the JavaFX media functionality 
available through the Java APIs for JavaFX, including the 
formats of media files that are currently supported.
 



JavaFX Incorporating Media Assets Into JavaFX Applications, Release  8 

E51258-01

Copyright © 2011, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Cindy Castillo

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it 
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed on 
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to 
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other 
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, 
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly 
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle 
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your 
access to or use of third-party content, products, or services.



Contents

Preface .................................................................................................................................................................    v

About This Tutorial.....................................................................................................................................     v
Audience.......................................................................................................................................................     v
Documentation Accessibility .....................................................................................................................     v
Related Documents .....................................................................................................................................     v
Conventions .................................................................................................................................................    vi

1 Introduction to JavaFX Media

Supported Media Codecs.......................................................................................................................... 1-1
HTTP Live Streaming Support ................................................................................................................ 1-2
Creating a Media Player............................................................................................................................ 1-3

2 Embedding Media Into a Web Page 

To Get Started.............................................................................................................................................. 2-1
Create the Application............................................................................................................................... 2-1

3 Controlling Media Playback

Creating Controls ....................................................................................................................................... 3-1
Add the Functional Logic Code ............................................................................................................... 3-4
Modify the EmbeddedMediaPlayer.java ............................................................................................... 3-7
Compile and Run the EmbeddedMedia ................................................................................................ 3-7
iii



iv



Preface

This preface describes the document accessibility features and conventions used in this 
tutorial - Incorporating Media Assets Into JavaFX Applications.

About This Tutorial
This tutorial describes the JavaFX media functionality available through the Java APIs 
for JavaFX, including the formats of media files that are currently supported.

The document contains the following chapters:

■ Introduction to JavaFX Media

■ Embedding Media Into a Web Page

■ Controlling Media Playback

Audience
This document is intended for JavaFX developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle 
Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For 
information, visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are 
hearing impaired.

Related Documents
For more information, see the following documents in the JavaFX documentation set:

■ What Is JavaFX?

■ Getting Started with JavaFX
v



Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.
vi



1

1Introduction to JavaFX Media

The active growth of media content on the web has made video and audio an essential 
part of rich Internet applications. The idea of broadening the horizons of traditional 
media usage led to the creation of the JavaFX media functionality that is available 
through a set of Java APIs. The javafx.scene.media package enables developers to 
create media applications that provide media playback in the desktop window or 
within a web page on supported platforms.

Figure 1–1 demonstrates a variety of possible media usages in JavaFX applications.

Figure 1–1 Samples of Media Usages

The operating systems and Java Runtime Environments (JREs) supported by JavaFX 
media features are the same as those listed in the Certified System Configurations 
page, which is linked from the Java SE download page at 
http://www.oracle.com/technetwork/java/javase/downloads/.

Supported Media Codecs
The formats currently supported are the following: 

■ Audio: MP3; AIFF containing uncompressed PCM; WAV containing 
uncompressed PCM; MPEG-4 multimedia container with Advanced Audio 
Coding (AAC) audio

■ Video: FLV containing VP6 video and MP3 audio; MPEG-4 multimedia container 
with H.264/AVC (Advanced Video Coding) video compression
Introduction to JavaFX Media 1-1



HTTP Live Streaming Support
The FLV container is supported by the media stack on the platforms supported by the 
JavaFX SDK. A single movie encoded in this format works seamlessly on supported 
platforms. Standard FLV MIME settings are required on the server side to enable 
media streaming.

The MPEG-4 multimedia container is also supported on all operating systems 
supported by the JavaFX SDK. On the Mac OS X and Windows 7 platforms, playback 
will be functional without requiring additional software. However, the Linux 
operating system and versions of Windows older than Windows 7 require the 
installation of readily available third party software packages, as documented in the 
Certified System Configurations page, which is linked from the Java SE download 
page at http://www.oracle.com/technetwork/java/javase/downloads/. 
AAC and H.264/AVC decoding have certain platform-dependent limitations, as 
described in the Release Notes available at 
http://www.oracle.com/technetwork/java/javase/downloads/.

Decoding of some audio and video compression types relies on operating 
system-specific media engines. The JavaFX media framework does not attempt to 
handle all multimedia container formats and media encodings supported by these 
native engines. Instead, the framework attempts to provide equivalent and well-tested 
functionality across all platforms on which JavaFX is supported.

Some of the features supported by the JavaFX media stack include the following:

■ FLV container with MP3 and VP6

■ MP3 audio

■ MPEG-4 container with either AAC, H.264, or both

■ HTTP, FILE protocol support

■ Progressive download

■ Seeking

■ Buffer progress

■ Playback functions (Play, Pause, Stop, Volume, Mute, Balance, Equalizer)

HTTP Live Streaming Support
With the addition of HTTP live streaming support, you can now download the playlist 
file and playback video or audio segments using JavaFX Media. Media players are 
now able to switch to alternate streams, as specified in the playlist file and based on 
network conditions. For a given stream, there is a playlist file and a set of segments 
into which the stream is broken. The stream can be either an MP3 raw stream or an 
MPEG-TS containing multiplexed AAC audio and H.264 video. The stream can be 
played on demand when the stream is a static file or played live when the stream is 
actually a live feed. In both cases, the stream can adjust its bit rate and for video, its 
resolution can be adjusted.

Note: You may not integrate the On2 VP6 video decoder in the 
design of a semiconductor or register transfer level (RTL) or any other 
similar level necessary for development of semiconductor 
implementation of the On2 VP6 video decoder.
1-2 JavaFX Incorporating Media Assets with JavaFX Applications



Creating a Media Player
Creating a Media Player
The JavaFX media concept is based on the following entities.

■ Media – A media resource, containing information about the media, such as its 
source, resolution, and metadata

■ MediaPlayer – The key component providing the controls for playing media

■ MediaView – A Node object to support animation, translucency, and effects

Each element of the media functionality is available through the JavaFX API. 
Figure 1–2 shows the classes that reside in the javafx.scene.media package. These 
classes are interdependent and are used in combination to create an embedded media 
player.

Figure 1–2 Classes in the javafx.scene.media Package

The MediaPlayer class provides all the attributes and functions needed to control 
media playback. You can either set the AUTO_PLAY mode, call the play() function 
directly, or explicitly specify the number of times that the media should play. The 
VOLUME variable and the BALANCE variable can be used to adjust the volume level and 
left-right settings, respectively. The volume level range is from 0 to 1.0 (the maximum 
value). The balance range is continuous from -1.0 on the far left, 0 at the center, and 1.0 
at the right.

The play(), stop(), and pause() functions control media playback. Additionally, a 
bundle of functions handles specific events when the player does one of the following:

■ Buffers data

■ Reaches the end of media

■ Stalls because it has not received data fast enough to continue playing

■ Encounters any of the errors defined in the MediaErrorEvent class

The MediaView class extends the Node class and provides a view of the media being 
played by the media player. It is responsible mostly for effects and transformations. Its 
mediaPlayer instance variable specifies the MediaPlayer object by which the 
Introduction to JavaFX Media 1-3



Creating a Media Player
media is being played. Other Boolean attributes serve to apply the particular effect 
provided by the Node class, for example, to enable the media player to be rotated.

For more information about the javafx.scene.media package, see the API 
documentation.
1-4 JavaFX Incorporating Media Assets with JavaFX Applications

http://docs.oracle.com/javafx/2/api/index.html
http://docs.oracle.com/javafx/2/api/index.html


2

2Embedding Media Into a Web Page

In this section, you’ll explore how to add animated media content to your web page by 
creating a simple media panel. To create a media player you need to implement the 
structure of the three nested objects that is shown in Figure 2–1.

Figure 2–1 Structure of the Embedded Media Player

To Get Started
You can build a JavaFX application using any development tool designed for creating 
a Java application. The tool used in this document is the NetBeans IDE. Do the 
following steps before continuing to build this document’s sample application that 
uses the JavaFX Media features:

1. Download and install the JDK 8 and the latest NetBeans IDE releases from the Java 
SE Downloads page at 
http://www.oracle.com/technetwork/java/javase/downloads/.

2. If necessary, see the Getting Started with JavaFX document to get an overview of 
the JavaFX features and create simple JavaFX applications.

Create the Application
1. From the NetBeans IDE, set up your JavaFX project as follows:

a. From the File menu, choose New Project.

b. In the JavaFX application category, choose JavaFX Application. Click Next.

c. Name the project EmbeddedMediaPlayer and ensure the Create 
Application Class field has the value of 
embeddedmediaplayer.EmbeddedMediaPlayer. Click Finish.
Embedding Media Into a Web Page 2-1



Create the Application
2. Copy the import statements in Example 2–1 and paste them in the 
EmbeddedMediaPlayer.java file, replacing all of the import statements that 
were automatically generated by the NetBeans IDE. 

Example 2–1 Replace Default Import Statements

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.media.Media;
import javafx.scene.media.MediaPlayer;
import javafx.scene.media.MediaView;
import javafx.stage.Stage;

For now, ignore the warnings on the margin since the lines of code that use the 
Media classes will be added in the next few steps.

3. Specify the media file source to be used and the String variable by adding the lines 
in bold in Example 2–2. For this example, use the animated video located at 
download.oracle.com or specify your own file. Add the lines after the public 
class EmbeddedMediaPlayer line.

Example 2–2 Specify the Media File Source

public class EmbeddedMediaPlayer extends Application {

     private static final String MEDIA_URL =
 "http://download.oracle.com/otndocs/products/javafx/oow2010-2.flv";

4. Modify the start method so that it looks like Example 2–3. This is will create an 
empty scene with a group root node and dimension of 540 wide by 210 height.

Example 2–3 Modify the start Method

@Override
    public void start(Stage primaryStage) {
        primaryStage.setTitle("Embedded Media Player");
        Group root = new Group();
        Scene scene = new Scene(root, 540, 210);

        primaryStage.setScene(scene);
        primaryStage.sizeToScene();
        primaryStage.show();
    }

5. Now, define the Media and the MediaPlayer objects by adding the code in 
Example 2–4 before the primaryStage.setScene(scene) line. Set the 
autoPlay variable to true so that the video can start immediately.

Example 2–4 Add media and mediaPlayer Objects

// create media player
Media media = new Media(MEDIA_URL);
MediaPlayer mediaPlayer = new MediaPlayer(media);
mediaPlayer.setAutoPlay(true);

6. Define the MediaView object and add the media player to the Node-based viewer 
by copying the comment and two lines of code in Example 2–5 and pasting it right 
after the mediaPlayer.setAutoPlay(true) line.
2-2 JavaFX Incorporating Media Assets with JavaFX Applications



Create the Application
Example 2–5 Define MediaView Object

// create mediaView and add media player to the viewer
MediaView mediaView = new MediaView(mediaPlayer);
((Group)scene.getRoot()).getChildren().add(mediaView);

7. Right-click on any whitespace and select Format to fix the line formatting after 
adding the lines of code.

8. Right-click the EmbeddedMediaPlayer project node in the Projects pane and select 
Clean and Build.

9. After a successful build, run your application by right-clicking the project node 
and selecting Run. 

Note: If you are using the media file source used in this tutorial and 
you are running the application behind a firewall, you might need to 
set the application’s proxy in order for the application to be able to 
access the media source file. Right-click the EmbeddedMediaPlayer 
project node in the Project window, select Properties, and in the 
Project Properties dialog, select Run. Set the VM Options field with 
something similar to -Dhttp.proxyHost=yourproxyhost.com 
-Dhttp.proxyPort=somePort#, where yourproxyhost.com is your 
company’s proxy server and somePort# is a port number you are 
assigned to use.
Embedding Media Into a Web Page 2-3



Create the Application
2-4 JavaFX Incorporating Media Assets with JavaFX Applications



3

3Controlling Media Playback

In this section you create a full-functional media player with graphical UI elements 
that control the playback.

To create a media player you need to implement the structure of the three nested 
media objects, encode graphical controls, and add some logic for playback functions, 
as illustrated in the Figure 3–1 below.

Figure 3–1 Structure of Media Player with Playback Controls

You step through adding playback controls to the media player that you created in 
Chapter 2, "Embedding Media Into a Web Page". If you haven’t already done so, 
complete that media player application before proceeding with the rest of this chapter. 
The media control panel you add consists of three elements: playButton, progress, and 
volumeControl. 

Creating Controls
In this section you create a new JavaFX source file, MediaControl.java, that will 
contain the pane and UI controls for the play/pause, progress, and volume features.

1. With the EmbeddedMediaPlayer opened as the main project in the NetBeans IDE, 
create a new JavaFX file to add to the project. 

a. Use Ctrl+N or select File > New File from the IDE’s main menu.

b. Select Category JavaFX and file type JavaFX Main class. Click Next.
Controlling Media Playback 3-1



Creating Controls
c. In the Name and Location dialog, type MediaControl in the Class Name 
field. 

d. In the Package field, select embeddedmediaplayer from the drop-down list 
and click Finish.

2. In the MediaControl.java source file, delete all the lines after package 
embeddedmediaplayer line.

3. Add the import statements that are shown in Example 3–1 to the top of the file.

Example 3–1 Import Statements to Add 

import javafx.scene.control.Label;
import javafx.scene.control.Slider;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Pane;
import javafx.scene.media.MediaPlayer;
import javafx.scene.media.MediaView;
import javafx.util.Duration;

4.  Copy and paste the lines of code in Example 3–2 to create the BorderPane that will 
hold the controls.

Example 3–2 Add MediaControl Class Code

public class MediaControl extends BorderPane {

    private MediaPlayer mp;
    private MediaView mediaView;
    private final boolean repeat = false;
    private boolean stopRequested = false;
    private boolean atEndOfMedia = false;
    private Duration duration;
    private Slider timeSlider;
    private Label playTime;
    private Slider volumeSlider;
    private HBox mediaBar;

    public MediaControl(final MediaPlayer mp) {
        this.mp = mp;
        setStyle("-fx-background-color: #bfc2c7;");
        mediaView = new MediaView(mp);
        Pane mvPane = new Pane() {

        };
        mvPane.getChildren().add(mediaView);
        mvPane.setStyle("-fx-background-color: black;"); 
        setCenter(mvPane);
     }
}

5. Copy the lines of code in Example 3–3 and paste them immediately after the line 
that says setCenter(mvPane). This code adds the Media toolbar and the Play 
button.

Example 3–3 Add Media Toolbar and Play Button

        mediaBar = new HBox();
        mediaBar.setAlignment(Pos.CENTER);
3-2 JavaFX Incorporating Media Assets with JavaFX Applications



Creating Controls
        mediaBar.setPadding(new Insets(5, 10, 5, 10));
        BorderPane.setAlignment(mediaBar, Pos.CENTER);
 
        final Button playButton  = new Button(">");
        mediaBar.getChildren().add(playButton);
        setBottom(mediaBar); 
     }
}
6. Add the import statements shown in Example 3–4 to the top of the list of import 

statements.

Example 3–4 Add More Import Statements

import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.control.Button;

7. Add the remainder of the UI controls to the control pane. Put the lines of code in 
Example 3–5 after the mediaBar.getChildren().add(playButton); line and 
before the setBottom(mediaBar) line.

Example 3–5 Add the Rest of the UI Controls

// Add spacer
Label spacer = new Label("   ");
mediaBar.getChildren().add(spacer);
 
// Add Time label
Label timeLabel = new Label("Time: ");
mediaBar.getChildren().add(timeLabel);
 
// Add time slider
timeSlider = new Slider();
HBox.setHgrow(timeSlider,Priority.ALWAYS);
timeSlider.setMinWidth(50);
timeSlider.setMaxWidth(Double.MAX_VALUE);
mediaBar.getChildren().add(timeSlider);

// Add Play label
playTime = new Label();
playTime.setPrefWidth(130);
playTime.setMinWidth(50);
mediaBar.getChildren().add(playTime);
 
// Add the volume label
Label volumeLabel = new Label("Vol: ");
mediaBar.getChildren().add(volumeLabel);
 
// Add Volume slider
volumeSlider = new Slider();        
volumeSlider.setPrefWidth(70);
volumeSlider.setMaxWidth(Region.USE_PREF_SIZE);
volumeSlider.setMinWidth(30);
 
mediaBar.getChildren().add(volumeSlider);

8. Add more import statements shown in Example 3–6 to the top of the file.
Controlling Media Playback 3-3



Add the Functional Logic Code
Example 3–6 Add More Import Statements

import javafx.scene.layout.Priority;
import javafx.scene.layout.Region;

Add the Functional Logic Code
After all the controls have been created and added to the control panel, add the 
functional logic to manage the media playback and make your application interactive.

1. Add the event handler and listener for the Play button. Copy and paste the lines of 
code in Example 3–7 after the final Button playButton = new 
Button(">") line and before the 
mediaBar.getChildren().add(playButton) line.

Example 3–7 Add Play Button’s Event Handler and Listener

playButton.setOnAction(new EventHandler<ActionEvent>() {
    public void handle(ActionEvent e) {
        Status status = mp.getStatus();
 
        if (status == Status.UNKNOWN  || status == Status.HALTED)
        {
           // don't do anything in these states
           return;
        }
 
          if ( status == Status.PAUSED
             || status == Status.READY
             || status == Status.STOPPED)
          {
             // rewind the movie if we're sitting at the end
             if (atEndOfMedia) {
                mp.seek(mp.getStartTime());
                atEndOfMedia = false;
             }
             mp.play();
             } else {
               mp.pause();
             }
         }
   });
2. The import statements used by the code you just added from Example 3–7 could 

have been added beforehand to avoid getting errors. But this time, to eliminate all 
of marked errors, press Ctrl+Shift+I or right-click anywhere and select Fix 
Imports. From the Fix All Imports dialog, select 
javafx.scene.media.MediaPlayer.Status, 
javafx.event.ActionEvent, and javafx.event.EventHandler from the 
drop-down menus. Click OK.

3. Add the following lines of code immediately after the lines of code you added 
from Example 3–7 and before the line that says 
mediaBar.getChildren().add(playButton). This code will handle the 
listener.

Example 3–8 Add Listener Code

        mp.currentTimeProperty().addListener(new InvalidationListener() 
        {
3-4 JavaFX Incorporating Media Assets with JavaFX Applications



Add the Functional Logic Code
            public void invalidated(Observable ov) {
                updateValues();
            }
        });
 
        mp.setOnPlaying(new Runnable() {
            public void run() {
                if (stopRequested) {
                    mp.pause();
                    stopRequested = false;
                } else {
                    playButton.setText("||");
                }
            }
        });
 
        mp.setOnPaused(new Runnable() {
            public void run() {
                System.out.println("onPaused");
                playButton.setText(">");
            }
        });
 
        mp.setOnReady(new Runnable() {
            public void run() {
                duration = mp.getMedia().getDuration();
                updateValues();
            }
        });
 
        mp.setCycleCount(repeat ? MediaPlayer.INDEFINITE : 1);
        mp.setOnEndOfMedia(new Runnable() {
            public void run() {
                if (!repeat) {
                    playButton.setText(">");
                    stopRequested = true;
                    atEndOfMedia = true;
                }
            }
       });

Note that the errors that appear will be fixed by adding more code in the next 
steps.

4. Add listener for the time slider by adding the following code snippet after the line 
that says timeSlider.setMaxWidth(Double.MAX_VALUE) and before the 
line that says mediaBar.getChildren().add(timeSlider).

Example 3–9 Add Listener for Time Slider

timeSlider.valueProperty().addListener(new InvalidationListener() {
    public void invalidated(Observable ov) {
       if (timeSlider.isValueChanging()) {
       // multiply duration by percentage calculated by slider position
          mp.seek(duration.multiply(timeSlider.getValue() / 100.0));
       }
    }
});
5. Add listener for the volume slider control by adding the following code snippet 

after the line that says volumeSlider.setMinWidth(30) and before the 
mediabar.getChildren().add(volumeSlider).
Controlling Media Playback 3-5



Add the Functional Logic Code
Example 3–10 Add Listener for the Volume Control

volumeSlider.valueProperty().addListener(new InvalidationListener() {
    public void invalidated(Observable ov) {
       if (volumeSlider.isValueChanging()) {
           mp.setVolume(volumeSlider.getValue() / 100.0);
       }
    }
});
6. Create Method updateValues used by the playback controls. Add it after the 

public MediaControl() method.

Example 3–11 Add UpdateValues Method

protected void updateValues() {
  if (playTime != null && timeSlider != null && volumeSlider != null) {
     Platform.runLater(new Runnable() {
        public void run() {
          Duration currentTime = mp.getCurrentTime();
          playTime.setText(formatTime(currentTime, duration));
          timeSlider.setDisable(duration.isUnknown());
          if (!timeSlider.isDisabled() 
            && duration.greaterThan(Duration.ZERO) 
            && !timeSlider.isValueChanging()) {
              timeSlider.setValue(currentTime.divide(duration).toMillis()
                  * 100.0);
          }
          if (!volumeSlider.isValueChanging()) {
            volumeSlider.setValue((int)Math.round(mp.getVolume() 
                  * 100));
          }
        }
     });
  }
}
7. Add the private method formatTime() after the updateValues() method. 

The formatTime() method calculates the elapsed time the media has been playing 
and formats it to be displayed on the control toolbar.

Example 3–12 Add Method for Calculating Elapsed Time

private static String formatTime(Duration elapsed, Duration duration) {
   int intElapsed = (int)Math.floor(elapsed.toSeconds());
   int elapsedHours = intElapsed / (60 * 60);
   if (elapsedHours > 0) {
       intElapsed -= elapsedHours * 60 * 60;
   }
   int elapsedMinutes = intElapsed / 60;
   int elapsedSeconds = intElapsed - elapsedHours * 60 * 60 
                           - elapsedMinutes * 60;
 
   if (duration.greaterThan(Duration.ZERO)) {
      int intDuration = (int)Math.floor(duration.toSeconds());
      int durationHours = intDuration / (60 * 60);
      if (durationHours > 0) {
         intDuration -= durationHours * 60 * 60;
      }
      int durationMinutes = intDuration / 60;
      int durationSeconds = intDuration - durationHours * 60 * 60 - 
          durationMinutes * 60;
      if (durationHours > 0) {
3-6 JavaFX Incorporating Media Assets with JavaFX Applications



Compile and Run the EmbeddedMedia
         return String.format("%d:%02d:%02d/%d:%02d:%02d", 
            elapsedHours, elapsedMinutes, elapsedSeconds,
            durationHours, durationMinutes, durationSeconds);
      } else {
          return String.format("%02d:%02d/%02d:%02d",
            elapsedMinutes, elapsedSeconds,durationMinutes, 
                durationSeconds);
      }
      } else {
          if (elapsedHours > 0) {
             return String.format("%d:%02d:%02d", elapsedHours, 
                    elapsedMinutes, elapsedSeconds);
            } else {
                return String.format("%02d:%02d",elapsedMinutes, 
                    elapsedSeconds);
            }
        }
    }
8. Lastly, fix the imports. Right-click in any white space and select 

javafx.application.Platform and javafx.beans.Observable from the 
Fix All Imports dialog. Click OK.

Modify the EmbeddedMediaPlayer.java
To add the control, modify the EmbeddedMediaPlayer.java file that you created in 
the previous chapter and add the code to add the MediaControl object.

1. Copy the lines of code in Example 3–13 and paste them right after the         
mediaPlayer.setAutoPlay(true) line.

Example 3–13 Add the Source Code to Create MediaControl Object

MediaControl mediaControl = new MediaControl(mediaPlayer);
scene.setRoot(mediaControl);

2. Delete the three lines shown in Example 3–14, which previously created the 
mediaView and mediaPlayer objects.

Example 3–14 Delete Lines of Code

 // create mediaView and add media player to the viewer
 MediaView mediaView = new MediaView(mediaPlayer);
     ((Group)scene.getRoot()).getChildren().add(mediaView);

3. Delete the import statement for the MediaView:  import 
javafx.scene.media.MediaView;

4. Adjust the size of the scene’s height to accommodate the addition of the media 
controls.

Example 3–15 Change the Scene’s Height

Scene scene = new Scene(root, 540, 241);

Compile and Run the EmbeddedMedia
Now build the application you just created in the previous section and run it.

1. Right-click the EmbeddedMediaPlayer project node and select Clean and Build.
Controlling Media Playback 3-7



Compile and Run the EmbeddedMedia
2. If there are no build errors, right-click the node again and select Run. The media 
player with control appears, similar to Figure 3–2 and begins to play.

Figure 3–2 Media Player with Playback Controls

3. Stop and resume the video using the play/pause control button. Move forwards or 
backwards through the video using the progress bar. Adjust the volume using the 
volume control button.

Find the complete application code in the EmbeddedMediaPlayer.zip file.
3-8 JavaFX Incorporating Media Assets with JavaFX Applications


