- |

L}
.I '|
- 4 |“ l

— — =
R =

avaOne

java.sun.com/javaone

D-I-Y (Diagnose-It-Yourself):
Adaptive Monitoring for
Sun Java™ Real-Time System

Frédéric Parain, Olivier Lagneau, Carlos Lucacius
Java Real-Time Group

Sun Microsystems, Inc.
http://java.sun.com/javase/technologies/realtime/

JavaOne

Agenda

> Need for a Real-Time Monitoring Tool

> Sun Java™ Real-Time System Solaris™ Dynamic Tracing Provider
> Test Cases

> Troubleshooting Tools

> Conclusion

ik 2008 JavaOne’™ Conference | java.sun.com/javaone |

= JavaOne

Need for a Real-Time Monitoring Tool

> Complexity of real-time scheduling
Run-to-block scheduling policy
Priority Inheritance
Real-Time Garbage Collection (RTGC)

> Tracking of fleeting events
Polling is unadapted
“Exact” monitoring

> Computation-oriented rather than method-oriented
CPU time / non-running time per period
Behavior variations
Priority

Iszupte

2008 JavaOne" Conference | java.sun.com/javaone |

3

S JavaOne

The Observer Effect

> Definition
Changes that the act of observing will make to the phenomenon being
observed

> Inevitable in a real system

Monitoring code needs:
Memory

CPU
Synchronizations
> Example with dynamic bytecode instrumentation
redefineClass

New class loaded
Compilation of modified methods
De-optimization of running threads

icsarisen 2008 JavaOne" Conference | java.sun.com/javaone | 4

= JavaOne

Observer Effect and Real-Time

> Acceptable in many non-real-time cases
Throughput measurement: pessimistic values
Memory consumption: over-estimate memory requirement
> Impact on real-time application behavior
Additional CPU consumption can cause deadline misses
Additional memory consumption can require RTGC reconfiguration
Code modification will impact compilation scheme (ITC)

» Consequence
Real-time application switching to error management mode

Sckrpdans 2008 JavaOne" Conference | java.sun.com/javaone |

JavaOne

WANTED

> Real-Time Monitoring tool
> Low overhead
> No synchronization

Siceyptem

> Supported in production
> No heap allocations
> No application code modification

2008 JavaOne" Conference | java.sun.com/javaone | 6

JavaOne

Agenda

> Need for a Real-Time Monitoring Tool

> Sun Java™ Real-Time System Solaris” Dynamic Tracing Provider
> Test Cases

> Troubleshooting Tools

> Conclusion

ik 2008 JavaOne’™ Conference | java.sun.com/javaone |

S JavaOne

Solaris Dynamic Tracing (DTrace)

> DTrace components
Probes
Activation mechanism
D language
> Dynamic Tracing
No overhead if probes not enabled
Safe in production mode
Dynamic activation
Low overhead
> D language
Predicates
Aggregates
Speculative tracing

oempem 2008 JavaOne" Conference | java.sun.com/javaone | 8

= JavaOne

DTrace Script Example

#!'/usr/bin/dtrace -q

jrts$target:: :thread-wfnp-exit wW————— OrObe

Claus

deadlinemiss[tid]++;
}

jrts$target: : :thread-end

/deadlinemiss[tid] >0/

{
printf (“Thread %d missed %d deadlines\n”,
tid,deadlinemiss[tid]) ;

Iszupte

2008 JavaOne" Conference | java.sun.com/javaone | 9

JavaOne

DTrace with the Java Real-Time System (Java RTS)/
Solaris Operating System (Solaris OS) Stack

Application (JSDT)
new feature of JDK7, early access in Java RTS

One script, one language, to monitor everything
from the application to the OS

sy 2008 JavaOne*™ Conference | java.sun.com/javaone

JavaOne

Agenda

> Need for a Real-Time Monitoring Tool
= Sun Java™ Real-Time System Solaris™ Dynamic Tracing Provider

> Test Cases
» Deadline Miss Analysis
* Profiling

> Troubleshooting Tools
> Conclusion

ik 2008 JavaOne’™ Conference | java.sun.com/javaone |

11

& JavaOne

First Test Case: Deadline Miss Analysis

—> Frrrren

Vector

ConsumerThread

RealTimeProducer
java.lang.Thread

RealtimeThread

Period: 500ms Loop:

Adds 10 values to the Sort Vector's data
Vector at each period Sleep ~500ms

Problem: The RealTimeProducer thread misses some of its deadlines.

Sun. . .
Q 2008 JavaOne" Conference | java.sun.com/javaone | 12

Slocupteny

S JavaOne

First Step: Scheduling Recording

> Objective
Find a hint about the cause of the deadline misses
> DTrace monitoring script
Scheduling events (threads getting and leaving a CPU)
Priority changes
Log of events generated for off-line analysis
> Scheduling visualization
External tool
Post-mortem analysis

Iszupte

2008 JavaOne" Conference | java.sun.com/javaone |

13

JavaOne

. Thread Scheduling Visualizer - /net/mackdrive france/exportfrts/work/fpl48s11,/WORK/Tools/example/log265L jrt3

File Bookmarks

0.000000000000 s 9.690000000
Zoom factor: 1.0000

L

|Set by priorities |v| Chooser Randomizer |
Base Level Time: 7sec 143ms 674us 999ns
L ' Thread ID: 18 (18)
OfTE pass T InFTh = .
Done pass:1 thrd 7 | Thread Name: ConsumerThread
Done pass:1 thrlg Thread Priority: 158 (RTSJ priority 649
Found 3242 intervals Scheduling Class RT
Found 18 threads CPU ID: o
Found max depth of 2)
number of rec = G257 Messane:
irme_rmin= 0.0 || Function:
ime_max=41.775877189356834 —| Timestamp: 2205641289562782
MFinfo.run done; calling new draw || Lewel i
Interval #: 1520

@ Sun

St 2008 JavaOne" Conference | java.sun.com/javaone | 14

= JavaOne
Third Step: Lock Contention Investigation

> Objective
Confirm the hypothesis of the lock contention issue
Identify the problematic lock

> New DTrace script

Focused on the RealtimeProducer thread
jrts$target: : :thread-start
Predicate: /thr id == tid/

Tracking lock contention
jrts$target: : :monitor-contended-enter
jrts$target:: :monitor-contended-entered

Tracking priority boosting
sched: : :change-pri

Deadline miss notification
jrts$target: : :user-event

Slocupteny

2008 JavaOne" Conference | java.sun.com/javaone |

15

JavaOne

Too many events!

3642445575887862
3642445575932205
3642445796606949
3642446575892966
3642446575943118
3642446767605273
3642447575882614
3642447575924705
3642447753314551
3642448575929562
3642448575986579
3642448779819289
3642449575885886
3642449575936830
3642449821475798
3642450575887460
3642450575939881
3642450875563014
3642451575890636
3642451575944081
3642451924810593
3642452575889523
3642452575940020

@ Sun

[JRTS] RealTimeProducer tries to enter contended monitor java/util/Vector@81cl10d8
[SOLARIS] RealTimeProducer is changing ConsumerThread's priority to 158

[JRTS] RealTimeProducer enters a contended monitor (after 220719 microseconds)
[JRTS] RealTimeProducer tries to enter contended monitor java/util/Vector@81lcl0d8
[SOLARIS] RealTimeProducer is changing ConsumerThread's priority to 158

[JRTS] RealTimeProducer enters a contended monitor (after 191712 microseconds)
[JRTS] RealTimeProducer tries to enter contended monitor java/util/Vector@81cl0d8
[SOLARIS] RealTimeProducer is changing ConsumerThread's priority to 158

[JRTS] RealTimeProducer enters a contended monitor (after 177431 microseconds)
[JRTS] RealTimeProducer tries to enter contended monitor java/util/Vector@81cl0d8
[SOLARIS] RealTimeProducer is changing ConsumerThread's priority to 158

[JRTS] RealTimeProducer enters a contended monitor (after 203889 microseconds)
[JRTS] RealTimeProducer tries to enter contended monitor java/util/Vector@81c10d8
[SOLARIS] RealTimeProducer is changing ConsumerThread's priority to 158

[JRTS] RealTimeProducer enters a contended monitor (after 245589 microseconds)
[JRTS] RealTimeProducer tries to enter contended monitor java/util/Vector@81cl0d8
[SOLARIS] RealTimeProducer is changing ConsumerThread's priority to 158

[JRTS] RealTimeProducer enters a contended monitor (after 299675 microseconds)
[JRTS] RealTimeProducer tries to enter contended monitor java/util/Vector@81lcl0d8
[SOLARIS] RealTimeProducer is changing ConsumerThread's priority to 158

[JRTS] RealTimeProducer enters a contended monitor (after 348919 microseconds)
[JRTS] RealTimeProducer tries to enter contended monitor java/util/Vector@81lc10d8

[SOLARIS] RealTimeProducer is changing ConsumerThread's priority to 158

2008 JavaOne" Conference | java.sun.com/javaone |

16

= JavaOne
Fourth Step: Speculative Tracing

> Objective:
Reduce the output to the faulty periods

Time
- | -
Period Period

> Beginning of the period: creation of a speculative buffer
> During the period: all events are logged into this buffer

> At the end of the period:

If no deadline miss occurred, buffer is discarded.
If a deadline miss is detected, buffer is flushed to the output.

Iszupte

2008 JavaOne" Conference | java.sun.com/javaone | 17

= JavaOne

Focused Output from Speculative Tracing

> Qutput from faulty periods

Deadline miss at iteration 14

3216035761543004 : [JRTS] RealTimeProducer tries to enter contended monitor java/util/Vector@8lc2a78
3216035761604293 : [SOLARIS] RealTimeProducer is changing ConsumerThread's priority to 158
3216036277599464 : [JRTS] RealTimeProducer enters a contended monitor (after 516056 microseconds)
3216036278548215 : [USER] RealTimeProducer is notifying: Deadline miss at iteration 14

Deadline miss at iteration 23

3216040261484198 : [JRTS] RealTimeProducer tries to enter contended monitor java/util/Vector@81lc2a78
3216040261532375 : [SOLARIS] RealTimeProducer is changing ConsumerThread's priority to 158
3216040791348997 : [JRTS] RealTimeProducer enters a contended monitor (after 529864 microseconds)

3216040791528654 : [USER] RealTimeProducer is notifying: Deadline miss at iteration 23

> The class of the lock is known.
> Is It possible to get the method name?
Call stack inspection: jstack ()

Siceyptem

2008 JavaOne" Conference | java.sun.com/javaone | 18

JavaOne

Final Step: Call Stack Inspection

Deadline miss at iteration 16

3554713806699954 : [JRTS] RealTimeProducer tries to enter contended monitor java/util/Vector@8lc2a78

libjvm.
libjvm.
libjvm.
libjvm.

so “void
so “void
so “void

so void

ObjectMonitor: :enter_ interruptible(int,Thread*)+0x284
ObjectSynchronizer::instance_slow_enter (Handle,BasicLock*,int,Thread*)+0xl6a
ObjectSynchronizer::slow_enter interruptible (Handle,BasicLock*,int,Thread*)+0x37

InterpreterRuntime: :monitorenter (JavaThread*,BasicObjectLock*)+0x63

java/util/Vector.add

synchronizedvector/Main$RealTimeProducer.run
StubRoutines (1)

libjvm.
libjvm.
libjvm.
libjvm.
libjvm.
libjvm.
libjvm.
libjvm.
libjvm.

so “void
so void
so “void
so “void
so “void
so " void
so “void

so void

JavaCalls::call_helper (JavaValue* ,methodHandle*, 6 JavaCallArguments*, Thread*)+0xlal
o0s::0s_exception wrapper (void(*) (JavaValue* methodHandle*, JavaCallArguments*, Thre
JavaCalls: :call (JavaValue* ,methodHandle,JavaCallArguments* , Thread*) +0x28
JavaCalls::call_virtual (JavaValue* K KlassHandle,6 symbolHandle,symbolHandle, JavaCall
JavaCalls::call_virtual (JavaValue*, Handle,KlassHandle,symbolHandle, symbolHandle,T
thread entry(JavaThread*,Thread*)+0x12b

RealtimeThread: :thread main inner () +0x154

JavaThread: :run () +0x163

so void*_start(void*)+0x4c

libc.so.1l _thr setup+0x4e

libc.so.l _1lwp_start
3554713807556194 : [SOLARIS] RealTimeProducer is changing ConsumerThread's priority to 158
3554714315214592 : [JRTS] RealTimeProducer enters a contended monitor (after 508514 microseconds)
3554714316098828 : [USER] RealTimeProducer is notifying: Deadline miss at iteration 16

@ Sun

2008 JavaOne" Conference | java.sun.com/javaone | 19

JavaOne

0.000000000000 S

Zoom factor: 1.0000

14.535000000000 s

|Set by priorities | - | Chooser Randomizer |
Base Lewvel T
U ' Thread ID:
one pass T METE =

Done pass:1 thel 7
Done pass:1 thr1g
Found 3925 intervals
Found 18 threads
Found max depth of 1
number of rec = 7702
ime_min= 0.0

ime_tmax= 31 506805857643485
MFinfo.run done; calling new draw

— Thread Name:
Thread Priority:
Scheduling Class
CPU ID:
Message:
Function:
Timestamp:
Level:

@ Sun

ioamtems

Interval #:

Szec 10ms 946us 474ns
18018
ConsumerThread

10

TENAF SSF R

1

34696021 70325407
0
4991

2008 JavaOne" Conference | java.sun.com/javaone | 20

= JavaOne
First Test Case Solved

» Cause of deadline misses found
Synchronized method of class Vector

Replacement of the Vector instance by a WaitFreeWriteQueue
instance solves the issue

> What has been achieved with DTrace
Overview of the application scheduling

Tracking of Java environment events: lock contention on Java object
Focused tracing on faulty behavior using speculative tracing
Inspection of call stacks including Java code

Siceyptem

2008 JavaOne" Conference | java.sun.com/javaone | 21

= JavaOne

Second Test Case: Profiling

> Real-Time measurements are often “computation-based” and
not “method-based”

> Execution time has two components:
CPU time
Non-running time (waiting, blocked, preempted)

> DTrace script to profile periodic execution

Measure execution for each periodic execution (whatever methods are
called)

Measure elapsed time and CPU time
timestamp, vtimestamp

Display results with distribution graphs
@exectime[tid] = quantize (end[tid]-begin[tid]) ;

ity 2008 JavaOne" Conference | java.sun.com/javaone | 22

- JavaOne

Profiling : Test Case Description

> Same computation code executed in three different contexts:
High Priority RealtimeThread
High Real-Time priority
using waitForNextPeriod ()
Low Priority RealtimeThread
Low Real-Time priority (same priority as RTGC)
using waitForNextPeriod ()
java.lang.Thread
Time-Sharing priority
Emulating waitForNextPeriod () with sleep ()
Using user-events to emulate waitForNextPeriod () DTrace probes

Sun. . .
Q 2008 JavaOne" Conference | java.sun.com/javaone |

Siceyptem

23

JavaOne

Execution Times per Period
Per thread, expressed in microseconds

. . . . RegularJavaThread
HighPriorityRealtimeThread gu
value ------------- Distribution ------------- count
value ------------- Distribution ------------- count 22000 | 0
22000 | 0 23000 |@@EEEREEEREERREERREERREERREERRERRRER 178
23000 |GRRRRERERRRERRRRRLRRLRLRLRRRRRRRRRRRRRRRRRRRR 200 24000 | 1
24000 | 0 25000 | 0
26000 | 1
. . . 27000 | 2
LowPriorityRealtimeThread 28000 |@ 6
29000 | 0
value ------------- Distribution ------------- count 30000 1 °
22000 | 0 31000 | 1
32000 | 0
23000 |QRRRRRRRRRRRRRRRRRRRRRRRRRERRRQRRRRRRRRRE 195 33000 | 0
24000 | 1 34000 | 0
25000 | 0 35000 | 0
26000 | 0 36000 | 0
27000 | 1 37000 1 0
38000 | 0
28000 | 1
39000 | 0
29000 | 0 40000 | 0
30000 | 2 41000 | 0
31000 | 0 42000 | 0
43000 | 0
44000 | 0
45000 | 0
46000 |@ 6
Each thread sh diff t 1 :
- E£dC read snows a dirreren as000 | 0

behavior
@ Sun

Sceras 2008 JavaOne" Conference | java.sun.com/javaone | 24

JavaOne

CPU Times per Period

Per thread, expressed in microseconds

HighPriorityRealtimeThread

value ------------- Distribution ------------- count
22000 | 0
el dcdddedddeddedaedaedaedaedaedecideacdeeiaeciaurigy
24000 | 0

LowPriorityRealtimeThread

value ------------- Distribution -----------—- count > But CPU times are
22000 | 0

23000 |GRRERRERREGRECRECRRERRCRRCEREERRRRRERRRAERE 200 the same

24000 | 0

RegularJavaThread

value --------—----- Distribution ------——----- count
22000 | 0
23000 |CRRRRRRRERERRRLRRRRRLREARRRRRARRERERRRRARRRE 190
24000 |@@ 9
25000 | 1
26000 | 0

Siceyptem

2008 JavaOne" Conference | java.sun.com/javaone | 25

JavaOne

Blocked+Preempted Times per Period
Per thread, expressed in microseconds

HighPriorityRealtimeThread

value ------------- Distribution ------------- count
<0 | 0
0 |GRRERREREREERRRERREQRERRERELRRRERRRRRRERRRRRE 200
1000 | 0

LowPriorityRealtimeThread

value ------------- Distribution ------------- count

<0 | 0
0 |GRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 196

1000 |
2000
3000
4000
5000
6000

|
|
|
|
|
7000 |

> Differences come from the
scheduling

@ Sun

RegularJavaThread

value
<0

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
21000
22000
23000
24000

------------- Distribution ------------- count
[0
Reldeddcldeldeldeldeddedeldeldeddddeldeldededd 179

|

|
|ee

©O © © ©O O O O O O O ©O © © © O © H O O ® K o

@
@
=
[

(=]

2008 JavaOne" Conference | java.sun.com/javaone | 26

JavaOne

Agenda

> Need for a Real-Time monitoring tool

= Sun Java™ Real-Time System Solaris™ Dynamic Tracing Provider
> Test cases

> Troubleshooting Tools

> Conclusion

osepaar 2008 JavaOne" Conference | java.sun.com/javaone | 27

= JavaOne

Java RTS Troubleshooting Tools

» Java 2 Platform Standard Edition 5.0 Serviceability Agent tools
have been modified:

Need for memory-related statistics (jmap) and stack traces (jstack)

They suspend the live process and real-time behavior is unavailable.
To be used on core files (generated using gcore).

jmap: memory information on heap, immortal, scoped areas.

jstack: stack trace and nature of all type of threads provided.
(Thread, RealtimeThread, NoHeapRealtimeThread)

ity 2008 JavaOne" Conference | java.sun.com/javaone | 28

& JavaOne

Memory Area Dump

> Jmap dumps memory objects in HPROF binary format

“jmap -heap:format=b “ generates heap.bin file that follows
HPROF binary format.

All memory areas are dumped : Heap, Immortal memory and Scoped
memory.

heap.bin can be browsed using jhat or hat (hat.dev.java.net), or
even VisualVM.

Sun. . .
0 ’’’’’ 2008 JavaOne" Conference | java.sun.com/javaone | 29

= JavaOne

jstack Sample Output

javax.realtime.RealtimeThread t@1l8: (state = IN JAVA)

- Fibonacci2.computeFib () @bci=17, line=35
(Interpreted frame)

- Deterministic.computeFibs (int, int) @bci=35, line=99
(Interpreted frame)

- Deterministic$RealTimeFibonacciloops.run() @bci=90,
line=184 (Interpreted frame)

java.lang.Thread t@l: (state = BLOCKED)

- java.lang.Object.wait(long) @bci=-977304266
(Interpreted frame)

- java.lang.Object.wait(long) @bci=0 (Interpreted frame)

- java.lang.Thread.join(long) @bci=38, line=1302
(Interpreted frame)

- java.lang.Thread.join() @bci=2, 1ine=1355
(Interpreted frame)

- Deterministic.main(java.lang.String[]) @bci=1428, line=409
(Interpreted frame)

T 2008 JavaOne" Conference | java.sun.com/javaone | 30

mailto:t@18

jmap -heap Sample Output

Immortal memory block:
capacity = 33554432 (32.0MB)
used 33554424 (31.99MB)
free 8 (8B)
99.99997615814209% used

RT Collected Heap:

capacity = 67108864 (64.0MB)
used = 67101344 (63.99MB)
free = 7520 (7.34375KB)

99.98879432678223% used
Scoped memory block 1:
capacity = 16777216 6.0MB)
used = 7838344 (7.47MB)
free 8938872 (8.52MB)
46.720170974731445% used
Scoped memory block 2:

capacity = 16777216 (16.0MB)
used = 7788872 (7.43MB)
free = 8988344 (8.57MB)

46.42529487609863% used
Unallocated scoped memory chunk:
size = 33554432 (32.0MB)
Total unallocated scoped memory:
size = 33554432 (32.0MB)

Siceyptem

JavaOne

Immortal Memory

2008 JavaOne" Conference | java.sun.com/javaone |

31

JavaOne

VisualVM Heap Dump Screenshot

i :j-l':l:nr__é.ﬂ 3203 x| [4]}][=][D]

[[@ overview | [threadoump-1205430939323 toump = | 17 heapdump-1205431 066244 hprof x

Core dump core.13203 (pid 0)
Heap dump
& O summary |) Classes | © Instances i
Claszes =
Clazz MName | Instances [] ¥ | Inztances | Size =]
Fibonacci1 = 3537 (22 SE592 (5 | A
Fibonacci2 = 3537 (22%) 5592 (5% |
char|] = 1825 (11%) 192150 (17%)
igva lang String . 1751 (11%) 42024 (4%
int[] i 858 (5%) 187868 (16%)
short[] i g24 (5%) 35264 (3N
byte] | 574 (44) 145543 (13%)
java lang . Object]] | 333 2% 12884 (1%
java lang integer | ATE (2% 3312 0%
iarva.Litil HashMap$Entry | 218 (1%) 5232 (0%)
isrva.util Hashtable$Entry | 153 (1%) 3672 (0%)
irva lang Stringl] | 132 (1% 3044 D
iava lang StringBuilder | 115 (1% 1840 (0%
janva Ltil regex Pattern$Ctype | 105 (1%) 1680 (0%) |
"5—.5;-, |[Class Mame Filter] | b |

@ Sun

Sceras 2008 JavaOne" Conference | java.sun.com/javaone | 32

= JavaOne

Conclusion

> DTrace is a fantastic tool to monitor the Solaris OS/Java RTS
stack

Low impact on real-time behavior
Generic scheduling overview
Focused tracing

Precise measurement

> |t's up to you to write THE script that will solve your problem
Your imagination is the limit

> But sometimes DTrace is not enough

Troubleshooting tools updated for Java RTS
jstack

Jmap
Visual VM

e 2008 JavaOne" Conference | java.sun.com/javaone | 33

D-I-Y (Diagnose-It-Yourself):
Adaptive Monitoring for

Sun Java Real-Time System
Frederic Parain, Olivier Lagneau, Carlos Lucacius
http://java.sun.com/javase/technologies/realtime/

TS-5716

2008 JavaOne*™ Conference | java.sun.com/javaone

