
[image: Oracle Corporation]

Oracle® Fusion Middleware

Configuring and Managing JDBC Data Sources for Oracle WebLogic Server 10.3.6

11g Release 1 (10.3.6)

E13737-16

November 2017

This document provides JDBC data source configuration and administration information for WebLogic Server 10.3.6.

Oracle Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle WebLogic Server 10.3.6, 11g Release 1 (10.3.6)

E13737-16

Copyright © 2007, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

	Documentation Accessibility
	Conventions

1 Introduction and Roadmap

	Document Scope and Audience
	Guide to this Document
	Related Documentation
	JDBC Samples and Tutorials
	Avitek Medical Records Application (MedRec) and Tutorials
	JDBC Examples in the WebLogic Server Distribution

	New and Changed JDBC Data Source Features in This Release
	CapacityIncrement Attribute
	MinCapacity Attribute
	Define Fatal Error Codes
	Data Source Profile Logging
	Application-scoped Drivers
	Oracle BI Server Support
	Keep Connection After Global Transaction
	Session Affinity Policy
	Secure RMI Driver Communication
	Proxy Authentication
	Set Database Credentials on a Connection
	Connection Harvesting
	Connection Labeling
	New Debug Scopes
	ONS Debugging

2 Configuring WebLogic JDBC Resources

	Understanding JDBC Resources in WebLogic Server
	Ownership of Configured JDBC Resources
	Data Source Configuration Files
	JDBC System Modules
	JDBC Application Modules
	Including Drivers in EAR/WAR Files

	JDBC Module File Naming Requirements
	JDBC Modules in Versioned Applications
	JDBC Schema

	JMX and WLST Access for JDBC Resources
	JDBC MBeans for System Resources
	JDBC Management Objects in the Java EE Management Model (JSR-77 Support)
	Using WLST to Create JDBC System Resources
	How to Modify and Monitor JDBC Resources
	Best Practices when Using WLST to Configure JDBC Resources

	Creating High-Availability JDBC Resources

3 Configuring JDBC Data Sources

	Understanding JDBC Data Sources
	Types of WebLogic Server JDBC Data Sources
	Creating a JDBC Data Source
	JDBC Data Source Properties
	Data Source Names
	JNDI Names
	Selecting a Database Type
	Selecting a JDBC Driver

	Configure Transaction Options
	Configure Connection Properties
	Configuring Connection Properties for Oracle BI Server

	Test Connections
	Target the Data Source

	Configuring Connection Pool Features
	Enabling JDBC Driver-Level Features
	Enabling Connection-based System Properties
	Initializing Database Connections with SQL Code

	Advanced Connection Properties
	Define Fatal Error Codes

	Configuring Oracle Parameters
	Configuring an ONS Client
	Tuning Generic Data Source Connection Pools
	Setting Database Security Credentials
	Types of Data Source Pools
	Using a User Name/Password
	Set Client ID On Connection
	Identity-based Connection Pooling
	How Heterogeneous Connections are Created
	Using Identity-based Pooling with Global Transactions
	Using Identity-based Pooling with LLR

	JDBC Data Source Factories (Deprecated)

4 Using GridLink Data Sources

	What is a GridLink Data Source
	Fast Connection Failover
	Runtime Connection Load Balancing
	Graceful Handling for Oracle RAC Outages
	Handling for Oracle RAC Outages Prior to Oracle RAC 11.2

	GridLink Affinity
	Session Affinity Policy
	XA Affinity Policy

	SCAN Addresses
	Secure Communication using Oracle Wallet

	Creating a GridLink Data Source
	JDBC Data Source Properties
	Data Source Names
	JNDI Names
	Select an XA or Non-XA Driver

	Configure Transaction Options
	Configure Connection Properties
	Enter Connection Properties
	Enter a Complete URL

	Test Connections
	Configure an ONS Client Configuration
	Secure ONS Client Communication

	Test ONS Client Configuration
	Target the Data Source

	Using Socket Direct Protocol
	Configuring Runtime Load Balancing

	Configuring Connection Pool Features
	Enabling JDBC Driver-Level Features
	Enabling Connection-based System Properties
	Initializing Database Connections with SQL Code

	Configuring Oracle Parameters
	Configuring an ONS Client
	Enabling FAN Events
	Configuring Generic Data Source Connection Testing
	Using a Wallet File

	Configuring Oracle Parameters
	Tuning GridLink Data Source Connection Pools
	Setting Database Security Credentials
	Using a User Name/Password
	Set Client ID On Connection

	Monitoring GridLink JDBC Resources
	Viewing Run-Time Statistics
	JDBCOracleDataSourceInstanceRuntimeMBean
	JDBCDataSourceRuntimeMBean
	ONSDaemonRuntimeMBean

	Debug GridLink Data Sources
	JDBC Debugging Scopes
	UCP JDK Logging
	Enable Debugging Using the Command Line

	Best Practices for GridLink Data Sources
	Catch and Handle Exceptions

5 Configuring JDBC Multi Data Sources

	Multi Data Source Features
	Removing a Database Node
	Adding a Database Node

	Creating and Configuring Multi Data Sources
	Choosing the Multi Data Source Algorithm
	Failover
	Load Balancing

	Multi Data Source Fail-Over Limitations and Requirements
	Test Connections on Reserve to Enable Fail-Over
	No Fail-Over for In-Use Connections

	Multi Data Source Failover Enhancements
	Connection Request Routing Enhancements When a Data Source Fails
	Automatic Re-enablement on Recovery of a Failed Data Source within a Multi Data Source
	Enabling Failover for Busy Data Sources in a Multi Data Source
	Controlling Multi Data Source Failover with a Callback
	Callback Handler Requirements
	Callback Handler Configuration
	How It Works—Failover

	Controlling Multi Data Source Failback with a Callback
	How It Works—Failback

	Deploying JDBC Multi Data Sources on Servers and Clusters

6 Advanced Configurations for Oracle Drivers and Databases

	Options to Improve Driver Performance
	Proxy Authentication for Oracle Databases
	How to Configure Proxy Authentication

	Setting Database Credentials on a Connection
	Considerations When Setting Database Credentials on a Connection

	Configuring Connection Harvesting
	Enable Connection Harvesting
	Make Connections Harvestable
	Recover Harvested Connections

	Labeling Connections
	Implementing Labeling Callbacks
	Creating a Labeling Callback
	Example Labeling Callback

	Registering a Labeling Callback
	Removing a Labeling Callback
	Applying Connection Labels

	Reserving Labeled Connections
	Checking Unmatched labels
	Removing a Connection Label

7 JDBC Data Source Transaction Options

	Enabling Support for Global Transactions with a Non-XA JDBC Driver
	Understanding the Logging Last Resource Transaction Option
	Advantages to Using the Logging Last Resource Optimization
	Enabling the Logging Last Resource Transaction Optimization
	Programming Considerations and Limitations for LLR Data Sources
	Administrative Considerations and Limitations for LLR Data Sources

	Understanding the Emulate Two-Phase Commit Transaction Option
	Limitations and Risks When Emulating Two-Phase Commit Using a Non-XA Driver
	Heuristic Completions and Data Inconsistency
	Cannot Recover Pending Transactions
	Possible Performance Loss with Non-XA Resources in Multi-Server Configurations
	Multiple Non-XA Participants

8 Using Roles and Policies to Secure JDBC Data Sources

	Setting Security Policies for JDBC Resources
	Security Roles for JDBC MBeans
	JDBC Domain Configuration MBeans
	JDBC System Module MBeans

9 Deploying Data Sources on Servers and Clusters

	Deploying Data Sources on Servers and Clusters
	Minimizing Server Startup Hang Caused By an Unresponsive Database

10 Tuning Data Source Connection Pools

	Increasing Performance with the Statement Cache
	Statement Cache Algorithms
	LRU (Least Recently Used)
	Fixed

	Statement Cache Size
	Usage Restrictions for the Statement Cache
	Calling a Stored Statement After a Database Change May Cause Errors
	Using setNull In a Prepared Statement
	Statements in the Cache May Reserve Database Cursors

	Connection Testing Options for a Data Source
	Database Connection Testing Semantics
	Connection Testing When Database Connections are Created
	Periodic Connection Testing
	Testing Reserved Connections
	Minimized Connection Test Delay After Database Connectivity Loss
	Minimized Connection Request Delay After Connection Test Failures
	Minimized Connection Request Delays After Loss of DBMS Connectivity
	Minimizing Connection Request Delay with Seconds to Trust an Idle Pool Connection

	Database Connection Testing Configuration Recommendations
	Default Test Table Name

	Enabling Connection Creation Retries
	Enabling Connection Requests to Wait for a Connection
	Connection Reserve Timeout
	Limiting the Number of Waiting Connection Requests

	Automatically Recovering Leaked Connections
	Avoiding Server Lockup with the Correct Number of Connections
	Limiting Statement Processing Time with Statement Timeout
	Using Pinned-To-Thread Property to Increase Performance
	Changes to Connection Pool Administration Operations When PinnedToThread is Enabled
	Additional Database Resource Costs When PinnedToThread is Enabled

	Using Unwrapped Data Type Objects
	How to Disable Wrapping
	Disable Wrapping using the Administration Console
	Disable Wrapping using WLST

11 Using WebLogic Server with Oracle RAC

	Overview of Oracle Real Application Clusters
	Software Requirements
	JDBC Driver Requirements
	Hardware Requirements
	WebLogic Server Cluster
	Oracle RAC Cluster
	Shared Storage

	Configuration Options in WebLogic Server with Oracle RAC
	Choosing a WebLogic Server Configuration for Use with Oracle RAC
	Validating Connections when using WebLogic Server with Oracle RAC
	Additional Considerations When Using WebLogic Server with Oracle RAC

12 Using JDBC Drivers with WebLogic Server

	JDBC Driver Support
	JDBC Drivers Installed with WebLogic Server
	Using Third-Party JDBC Drivers
	Adding or Updating JDBC Drivers
	Globalization Support for the Oracle 11g Thin Driver
	Using the Oracle Thin Driver in Debug Mode
	Using the Oracle Thin Driver Over SSL

13 Monitoring WebLogic JDBC Resources

	Viewing Run-Time Statistics
	Data Source Statistics
	Prepared Statement Cache Statistics

	Profile Logging
	Collecting Profile Information
	Profile Types
	Connection Usage (PROFILE_TYPE_CONN_USAGE_STR)
	Connection Reservation Wait (PROFILE_TYPE_CONN_RESV_WAIT_STR)
	Connection Reservation Failed (PROFILE_TYPE_CONN_RESV_FAIL_STR)
	Connection Leak (PROFILE_TYPE_CONN_LEAK_STR)
	Connection Last Usage (PROFILE_TYPE_CONN_LAST_USAGE_STR)
	Connection Multithreaded Usage (PROFILE_TYPE_CONN_MT_USAGE_STR)
	Statement Cache Entry (PROFILE_TYPE_STMT_CACHE_ENTRY_STR)
	Statements Usage (PROFILE_TYPE_STMT_USAGE_STR)
	Connection Unwrap (WEBLOGIC.JDBC.CONN.UNWRAP)
	Example Profile Information Record Log

	Accessing Diagnostic Data
	Callbacks for Monitoring Driver-Level Statistics (Deprecated)

	Debugging JDBC Data Sources
	Enabling Debugging
	Enable Debugging Using the Command Line
	Enable Debugging Using the WebLogic Server Administration Console
	Enable Debugging Using the WebLogic Scripting Tool
	Changes to the config.xml File

	JDBC Debugging Scopes
	Setting Debugging for UCP/ONS
	Debugging UCP
	Debugging ONS

	Request Dyeing

14 Managing WebLogic JDBC Resources

	Testing Data Sources and Database Connections
	Managing the Statement Cache for a Data Source
	Clearing the Statement Cache for a Data Source
	Clearing the Statement Cache for a Single Connection

	Shrinking a Connection Pool
	Resetting a Connection Pool
	Suspending a Connection Pool
	Resuming a Connection Pool
	Shutting Down a Data Source
	Starting a Data Source
	Managing DBMS Network Failures

A Configuring JDBC Application Modules for Deployment

	Packaging a JDBC Module with an Enterprise Application: Main Steps
	Creating Packaged JDBC Modules
	Creating a JDBC Data Source Module Using the Administration Console
	JDBC Packaged Module Requirements
	JDBC Application Module Limitations
	Creating a JDBC Data Source Module
	Creating a JDBC Multi Data Source Module
	Encrypting Database Passwords in a JDBC Module
	Deploying JDBC Modules to New Domains

	Application Scoping for a Packaged JDBC Module

	Referencing a JDBC Module in Java EE Descriptor Files
	Packaged JDBC Module References in weblogic-application.xml
	Packaged JDBC Module References in Other Descriptors

	Packaging an Enterprise Application with a JDBC Module
	Deploying an Enterprise Application with a JDBC Module
	Getting a Database Connection from a Packaged JDBC Module

B WebLogic Server 10.3.6 Support for Oracle 12c Database

	Using an Oracle 12c Database with WebLogic Server 10.3.6
	Using 11g Drivers with Oracle 12c Database
	Using 12c Drivers with Oracle 12c Database
	Required Oracle 12c Driver Files
	Download Oracle 12c Database Files
	Update the WebLogic Server CLASSPATH
	Other Considerations

	JDBC 4.1 Support for JDK 7
	Using Application Continuity
	How Application Continuity Works
	Requirements and Considerations
	Configuring Application Continuity
	Selecting the Driver for Application Continuity
	Using a Connection Callback
	Disabling Application Continuity for a Connection
	Configuring Logging for Application Continuity

	Global Database Services
	Requirements and Considerations
	Creating a GridLink DataSource for GDS Connectivity

	Container Database with Pluggable Databases
	Creating Service for PDB Access
	Setting the PDB using JDBC

	Automatic ONS Listener Support
	Database Resident Connection Pooling Support

C Using Multi Data Sources with Oracle RAC

	Overview of Oracle Real Application Clusters
	Oracle RAC Scalability with WebLogic Server Multi Data Sources
	Oracle RAC Availability with WebLogic Server Multi Data Sources
	Oracle RAC Load Balancing with WebLogic Server Multi Data Sources

	Software Requirements
	JDBC Driver Requirements
	Hardware Requirements
	WebLogic Server Cluster
	Oracle RAC Cluster
	Shared Storage

	Configuring Multi Data Sources with Oracle RAC
	Choosing a Multi Data Source Configuration for Use with Oracle RAC
	Configuring Multi Data Sources for use with Oracle RAC
	Attributes of a Multi Data Source

	Configuration Considerations for Failover
	Multi Data Source-Managed Failover and Load Balancing
	Delays During Failover
	Failure Handling Walkthrough for Global Transactions

	Configuring the Listener Process for Each Oracle RAC Instance
	Configuring Multi Data Sources When Remote Listeners are Enabled or Disabled
	Additional Configuration Considerations

	Using Multi Data Sources with Global Transactions
	Rules for Data Sources within a Multi Data Source Using Global Transactions
	Required Attributes of Data Sources within a Multi Data Source Using Global Transactions
	Sample Configuration Code

	Using Multi Data Sources without Global Transactions
	Attributes of Data Sources within a Multi Data Source Not Using Global Transactions
	Sample Configuration Code

	Configuring Connections to Services on Oracle RAC Nodes
	Configuring a Data Source to Connect to a Service
	Service Connection Configurations
	Workload Management
	Load Balancing

	Connection Pool Capacity Planning

	XA Considerations and Limitations when using multi Data Sources with Oracle RAC
	Oracle RAC XA Requirements when using multi Data Sources
	Use Multi Data Sources
	A Global Transaction Must Be Initiated, Prepared, and Concluded in the Same Instance of the Oracle RAC Cluster
	Transaction IDs Must Be Unique Within the Oracle RAC Cluster

	Known Limitations When Using Oracle RAC with multi Data Sources
	Potential for Data Deadlocks in Some Failure Scenarios
	Potential for Transactions Completed Out of Sequence

	Known Issue Occurring After Database Server Crash

	JDBC Store Recovery with Oracle RAC
	Configuring a JDBC Store for Use with Oracle RAC
	Automatic Retry

D Using Connect-Time Failover with Oracle RAC (Deprecated)

	Using Connect-Time Failover without Global Transactions
	Attributes of a Connect-Time Failover Configuration without Global Transactions
	Sample Configuration Code

E Using Fast Connection Failover with Oracle RAC

	JDBC Driver Configuration for use with Oracle Fast Connection Failover

Preface

This preface describes the document accessibility features and conventions used in this guide—Oracle Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle WebLogic Server 10.3.6.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 Introduction and Roadmap

This chapter describes the contents and organization of this guide—Oracle Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle WebLogic Server 10.3.6.

This chapter includes the following sections:

	
Document Scope and Audience

	
Guide to this Document

	
Related Documentation

	
JDBC Samples and Tutorials

	
New and Changed JDBC Data Source Features in This Release

Document Scope and Audience

This document is a resource for software developers and system administrators who develop and support applications that use the Java Database Connectivity (JDBC) API. It also contains information that is useful for business analysts and system architects who are evaluating WebLogic Server. The topics in this document are relevant during the evaluation, design, development, pre-production, and production phases of a software project.

This document does not address specific JDBC programming topics. For links to WebLogic Server documentation and resources for this topic, see Related Documentation.

It is assumed that the reader is familiar with Java EE and JDBC concepts. This document emphasizes the value-added features provided by WebLogic Server.

Guide to this Document

	
This chapter, Chapter 1, "Introduction and Roadmap," introduces the organization of this guide and lists new features in the current release.

	
Chapter 2, "Configuring WebLogic JDBC Resources," provides an overview of WebLogic JDBC resources.

	
Chapter 3, "Configuring JDBC Data Sources," describes WebLogic JDBC data source configuration.

	
Chapter 4, "Using GridLink Data Sources," describes WebLogic JDBC GridLink data source configuration.

	
Chapter 5, "Configuring JDBC Multi Data Sources," describes WebLogic JDBC multi data source configuration.

	
Chapter 6, "Advanced Configurations for Oracle Drivers and Databases," provides advanced configuration options that can provide improved data source and driver performance when using Oracle drivers and databases.

	
Chapter 7, "JDBC Data Source Transaction Options," provides information on XA, non-XA, and Global Transaction options for WebLogic data sources.

	
Chapter 8, "Using Roles and Policies to Secure JDBC Data Sources," provides information on how WebLogic Server uses roles and policies to secure JDBC data sources.

	
Chapter 9, "Deploying Data Sources on Servers and Clusters," provides information on how to deploy data sources on servers and clusters.

	
Chapter 10, "Tuning Data Source Connection Pools," provides information on how to properly tune the connection pool attributes in JDBC data sources in your WebLogic Server domain to improve application and system performance.

	
Chapter 11, "Using WebLogic Server with Oracle RAC," describes how to configure WebLogic Server for use with Oracle Real Application Clusters.

	
Chapter 12, "Using JDBC Drivers with WebLogic Server," describes how to use JDBC drivers from other sources in your WebLogic JDBC data source configuration.

	
Chapter 13, "Monitoring WebLogic JDBC Resources," describes how to monitor JDBC resources, gather profile information about database connection usage, and enable JDBC debugging.

	
Chapter 14, "Managing WebLogic JDBC Resources," describes how to administer data sources.

	
Appendix A, "Configuring JDBC Application Modules for Deployment," describes how to configure generic data sources for use with Oracle Real Application Clusters.

	
Appendix C, "Using Multi Data Sources with Oracle RAC," provides information on how to configure and use multi data sources when using Oracle Real Application Clusters (RAC) with WebLogic Server.

	
Appendix D, "Using Connect-Time Failover with Oracle RAC (Deprecated)," provides information on how WebLogic Server provides Connect-Time Failover (deprecated) for legacy applications that use data sources configured to use connect-time failover and load balancing.

	
Appendix E, "Using Fast Connection Failover with Oracle RAC," provides information on how to use WebLogic server with Oracle Fast Connection Failover.

Related Documentation

This document contains JDBC data source configuration and administration information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server applications, see the following documents:

	
Programming JDBC for Oracle WebLogic Server is a guide to JDBC API programming with WebLogic Server.

	
Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic Server applications.

	
Deploying Applications to Oracle WebLogic Server is the primary source of information about deploying WebLogic Server applications in development and production environments.

JDBC Samples and Tutorials

In addition to this document, Oracle provides a variety of JDBC code samples and tutorials that show configuration and API use, and provide practical instructions on how to perform key JDBC development tasks.

Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server that simulates an independent, centralized medical record management system. The MedRec application provides a framework for patients, doctors, and administrators to manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-recommended best practices. MedRec is included in the WebLogic Server distribution, and can be accessed from the Start menu on Windows machines. For Linux and other platforms, you can start MedRec from the WL_HOME\samples\domains\medrec directory, where WL_HOME is the top-level installation directory for WebLogic Platform.

JDBC Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in WL_HOME\samples\server\examples\src\examples, where WL_HOME is the top-level directory of your WebLogic Server installation. You can start the examples server, and obtain information about the samples and how to run them from the WebLogic Server Start menu.

New and Changed JDBC Data Source Features in This Release

This release includes the following new and changed features:

	
CapacityIncrement Attribute

	
MinCapacity Attribute

	
Define Fatal Error Codes

	
Data Source Profile Logging

	
Application-scoped Drivers

	
Oracle BI Server Support

	
Keep Connection After Global Transaction

	
Session Affinity Policy

	
Secure RMI Driver Communication

	
Proxy Authentication

	
Set Database Credentials on a Connection

	
Connection Harvesting

	
Connection Labeling

	
New Debug Scopes

	
ONS Debugging

For a comprehensive listing of the new WebLogic Server features introduced in this release, see What's New in Oracle WebLogic Server.

CapacityIncrement Attribute

In WebLogic Server 10.3.1 and higher releases, the capacityIncrement attribute is no longer configurable and is set to a value of 1.

MinCapacity Attribute

The MinCapacity attribute sets the minimum number of physical connections that a connection pool can contain after it is initialized.

The InitialCapacity value that previously handled both the initial and minimum capacity for the pool this has been split into two attributes:

	
MinCapacity defaults to InitialCapacity if not set; InitialCapacity continues to default to 1.

	
MinCapacity is only used for shrinking calculations only. It is lazy in that the minimum connections are not created when the server starts up; InitialCapacity is used for this function.

	
For upward compatibility, InitialCapacity is used if MinCapacity is not set.

	
After a data source goes through a suspend/resume, the greater of MinCapacity or InitialCapacity is used.

	
Example: You set InitialCapacity to 0 to start up database and then set InitialCapacity to 50 to keep at least 50 connections in the pool at all times. With the rules above, MinCapacity is initially be treated as 0 and then treated as 50 so there will be at least 50 connections in the pool at all times.

See Shrinking a Connection Pool.

Define Fatal Error Codes

For each data source, you can define fatal error codes that indicate that the back-end database with which the data source communicates is no longeraccessible on a connection. See Define Fatal Error Codes.

Data Source Profile Logging

Prior to WebLogic Server 10.3.6, data source profile records were recorded as WLDF events. To provide better usability and performance, WebLogic Server now uses a data source profile log to store events. See Monitoring WebLogic JDBC Resources.

Application-scoped Drivers

You can include a database driver in the EAR/WAR file that contains an application-scoped data source. This allows you to deploy a self-contained EAR file that has both the data source and driver required for an application. See Including Drivers in EAR/WAR Files.

Oracle BI Server Support

WebLogic Server 10.3.6.0 and higher supports the Oracle BI Server. Select Oracle BI Server as the database type when creating a new generic data source to interoperate with the Oracle BI Server. See Creating a JDBC Data Source.

Keep Connection After Global Transaction

This release provides a new attribute, Keep Connection After Global Transaction, that enables WebLogic Server to keep a physical database connection associated with a logical connection when committing or rolling back a global transaction. See KeepConnAfterGlobalTx in the Oracle WebLogic Server MBean Reference.

Session Affinity Policy

WebLogic Server GridLink data sources use the session affinity policy to improve performance by directing the database operations of a servlet session to the same RAC instance in a RAC cluster. See GridLink Affinity.

Secure RMI Driver Communication

Secure RMI driver client communication with DataSource objects at the server level by setting the RMI JDBC Security parameter, see "Security Considerations for WebLogic RMI Drivers" in Programming JDBC for Oracle WebLogic Server.

Proxy Authentication

You can configure a WebLogic data source to allow a client to connect to an Oracle database through an application server as a proxy user. See Proxy Authentication for Oracle Databases.

Set Database Credentials on a Connection

You can configure a WebLogic data source to allow a connection to set database credentials when connecting to an Oracle database. See Setting Database Credentials on a Connection.

Connection Harvesting

You can specify a number of reserved connections to be released when a data source reaches a specified number of available connections. Harvesting helps to ensure that a specified number of connections are always available in the pool and improves performance by minimizing connection initialization. See Configuring Connection Harvesting.

Connection Labeling

Labeling allows an application to attach arbitrary name/value pairs (labels) to a connection that has a particular initialization state. This allows the application to improve performance by minimizing the time and cost of re-initializing a connection. See Labeling Connections.

New Debug Scopes

This release provides the following new debug scopes:

	
weblogic.jdbc.rac.DebugJDBCONS - low-level ONS debugging

	
weblogic.jdbc.rac.DebugJDBCRAC - RAC debugging

	
weblogic.jdbc.rac.DebugJDBCUCP - low-level UCP debugging

	
weblogic.jdbc.rac.DebugJDBCREPLAY - REPLAY debugging

	
weblogic.jdbc.transaction.DebugJTAJDBC - transaction debugging

See JDBC Debugging Scopes.

ONS Debugging

For WebLogic Server releases 10.3.6.0 and higher, the package names for UCP and ONS are no longer repackaged. This affects debugging for these components, see Setting Debugging for UCP/ONS.

2 Configuring WebLogic JDBC Resources

This chapter describes WebLogic JDBC resources, how they are configured, and how those resources apply to a WebLogic domain in WebLogic Server 10.3.6.

This chapter includes the following sections:

	
Understanding JDBC Resources in WebLogic Server

	
Ownership of Configured JDBC Resources

	
Data Source Configuration Files

	
JMX and WLST Access for JDBC Resources

	
Creating High-Availability JDBC Resources

Understanding JDBC Resources in WebLogic Server

In WebLogic Server, you can configure database connectivity by configuring JDBC data sources and multi data sources and then targeting or deploying the JDBC resources to servers or clusters in your WebLogic domain.

Each data source that you configure contains a pool of database connections that are created when the data source instance is created—when it is deployed or targeted, or at server startup. Applications lookup a data source on the JNDI tree or in the local application context (java:comp/env), depending on how you configure and deploy the object, and then request a database connection. When finished with the connection, the application calls connection.close(), which returns the connection to the connection pool in the data source. For more information about data sources in WebLogic Server, see Configuring JDBC Data Sources and Using GridLink Data Sources.

A multi data source is an abstraction around a selected list of data sources that provides load balancing or failover processing between the data sources associated with the multi data source. Multi data sources are bound to the JNDI tree or local application context just like data sources are bound to the JNDI tree. Applications lookup a multi data source on the JNDI tree or in the local application context (java:comp/env) just like they do for data sources, and then request a database connection. The multi data source determines which data source to use to satisfy the request depending on the algorithm selected in the multi data source configuration: load balancing or failover. For more information about multi data sources, see Configuring JDBC Multi Data Sources.

Ownership of Configured JDBC Resources

A key to understanding WebLogic JDBC data source configuration and management is that who creates a JDBC resource or how a JDBC resource is created determines how a resource is deployed and modified. Both WebLogic Administrators and programmers can create JDBC resources:

	
WebLogic Administrators typically use the Administration Console or the WebLogic Scripting Tool (WLST) to create and deploy (target) JDBC modules. These JDBC modules are considered system modules. See JDBC System Modules for more details.

	
Programmers create modules in a development tool that supports creating an XML descriptor file, then package the JDBC modules with an application and pass the application to a WebLogic Administrator to deploy. These JDBC modules are considered application modules. See JDBC Application Modules for more details.

Table 2-1 lists the JDBC module types and how they can be configured and modified.

Table 2-1 JDBC Module Types and Configuration and Management Options

	Module Type	Created with	Add/Remove Modules with Administration Console	Modify with JMX (remotely)	Modify with JSR-88 (non-remotely)	Modify with Administration Console
	
System

	
Administration Console or WLST

	
Yes

	
Yes

	
No

	
Yes—via JMX

	
Application

	
Oracle Enterprise Pack for Eclipse (OEPE), Oracle JDeveloper, another IDE, or an XML editor

	
No

	
No

	
Yes—via a deployment plan

	
Yes—via a deployment plan

Data Source Configuration Files

WebLogic JDBC data source configurations are stored in XML documents that conform to the jdbc-data-source.xsd schema (available at http://xmlns.oracle.com/weblogic/jdbc-data-source/1.2/jdbc-data-source.xsd).

You create and manage JDBC resources either as system modules or as application modules. JDBC application modules are a WebLogic-specific extension of Java EE modules and can be configured either within a Java EE application or as stand-alone modules.

Regardless of whether you are using JDBC system modules or JDBC application modules, each JDBC data source or multi data source is represented by an XML file (a module).

JDBC System Modules

When you create a JDBC resource (data source or multi data source) using the Administration Console or using the WebLogic Scripting Tool (WLST), WebLogic Server creates a JDBC module in the config/jdbc subdirectory of the domain directory, and adds a reference to the module in the domain's config.xml file. The JDBC module conforms to the jdbc-data-source.xsd schema (available at http://xmlns.oracle.com/weblogic/jdbc-data-source/1.2/jdbc-data-source.xsd).

JDBC resources that you configure this way are considered system modules. System modules are owned by an Administrator, who can delete, modify, or add similar resources at any time. System modules are globally available for targeting to servers and clusters configured in the domain, and therefore are available to all applications deployed on the same targets and to client applications. System modules are also accessible through JMX as JDBCSystemResourceMBeans.

Data source system modules are included in the domain's config.xml file as a JDBCSystemResource element, which includes the name of the JDBC module file and the list of target servers and clusters on which the module is deployed. Figure 2-1 shows an example of a data source listing in a config.xml file and the module that it maps to.

Figure 2-1 Reference from config.xml to a Data Source System Module

[image: Description of Figure 2-1 follows]

In this illustration, the config.xml file lists the examples-demo data source as a jdbc-system-resource element, which maps to the examples-demo-jdbc.xml module in the domain\config\jdbc folder.

Similarly, multi data source system modules are included in the domain's config.xml file as a jdbc-system-resource element. The multi data source module includes a data-source-list parameter that maps to the data source modules used by the multi data source. The individual data source modules are also included in the config.xml. Figure 2-2 shows the relationship between elements in the config.xml file and the system modules in the config/jdbc directory.

Figure 2-2 Reference from config.xml to Multi Data Source and Data Source System Modules

[image: Description of Figure 2-2 follows]

In this illustration, the config.xml file lists three JDBC modules—one multi data source and the two data sources used by the multi data source, which are also listed within the multi data source module. Your application can look up any of these modules on the JNDI tree and request a database connection. If you look up the multi data source, the multi data source determines which of the other data sources to use to supply the database connection, depending on the data sources in the data-source-list parameter, the order in which the data sources are listed, and the algorithm specified in the algorithm-type parameter. For more information about multi data sources, see Configuring JDBC Multi Data Sources.

JDBC Application Modules

JDBC resources can also be managed as application modules, similar to standard Java EE modules. A JDBC application module is simply an XML file that conforms to the jdbc-data-source.xsd schema (available at http://xmlns.oracle.com/weblogic/jdbc-data-source/1.2/jdbc-data-source.xsd) and represents a data source or a multi data source.

JDBC modules can be included as part of an Enterprise Application as a packaged module. Packaged modules are bundled with an EAR or exploded EAR directory, and are referenced in all appropriate deployment descriptors, such as the weblogic-application.xml and ejb-jar.xml deployment descriptors. The JDBC module is deployed along with the enterprise application, and can be configured to be available only to the enclosing application or to all applications. Using packaged modules ensures that an application always has access to required resources and simplifies the process of moving the application into new environments. With packaged JDBC modules, you can migrate your application and the required JDBC configuration from environment to environment, such as from a testing environment to a production environment, without opening an EAR file and without extensive manual data source reconfiguration.

In contrast to system resource modules, JDBC modules that are packaged with an application are owned by the developer who created and packaged the module, rather than the Administrator who deploys the module. This means that the Administrator has more limited control over packaged modules. When deploying a resource module, an Administrator can change resource properties that were specified in the module, but the Administrator cannot add or delete modules. (As with other Java EE modules, deployment configuration changes for a resource module are stored in a deployment plan for the module, leaving the original module untouched.)

By definition, packaged JDBC modules are included in an enterprise application, and therefore are deployed when you deploy the enterprise application. For more information about deploying applications with packaged JDBC modules, see Deploying Applications to Oracle WebLogic Server.

A JDBC application module can also be deployed as a stand-alone resource using the weblogic.Deployer utility or the Administration Console, in which case the resource is typically available to the server or cluster targeted during the deployment process. JDBC resources deployed in this manner are called stand-alone modules and can be reconfigured using the Administration Console or a JSR-88 compliant tool, but are unavailable through JMX or WLST.

Stand-alone JDBC modules promote sharing and portability of JDBC resources. You can create a data source configuration and distribute it to other developers. Stand-alone JDBC modules can also be used to move data source configuration between domains, such as between the development domain and the staging domain.

	
Note:

When deploying JDBC modules as standalone modules, a multi data source needs to have a deployment order that is greater than the deployment orders of its member data sources.

For more information about JDBC application modules, see Configuring JDBC Application Modules for Deployment.

For information about deploying stand-alone JDBC modules, see "Deploying JDBC, JMS, WLDF Application Modules" in Deploying Applications to Oracle WebLogic Server."

Including Drivers in EAR/WAR Files

In WebLogic Server 10.3.6 and higher releases, you can include a database driver in the APP-INF/lib directory of the EAR/WAR file that contains an application--scoped data source. This allows you to deploy a self-contained EAR/WAR file that has both the data source and driver required for an application.

	
Note:

You do not need to update the Classpath of the manifest file to include the driver location.

An EAR has its own classloader and it is shared across all of the nested applications so any of them can use it. You can deploy multiple EAR/WAR files, each with a different driver version. However, if there are other versions of the driver in the system classpath, set PREFER-WEB-INF-CLASSES=true in the web.xml file to ensure the application uses the driver classes that it was packaged with.

JDBC Module File Naming Requirements

All WebLogic JDBC module files must end with the -jdbc.xml suffix, such as examples-demo-jdbc.xml. WebLogic Server checks the file name when you deploy the module. If the file does not end in -jdbc.xml, the deployment will fail and the server will not boot.

JDBC Modules in Versioned Applications

When you use production redeployment (versioning) to deploy a version of an application that includes a packaged JDBC module, WebLogic Server identifies the data source defined in the JDBC module with a name in the following format:

application_id#version_id@module_name@data_source_name

This name is used for data source run-time MBeans and for registering the data source instance with the WebLogic Server transaction manager.

If transactions in a retiring version of an application time out and the version of the application is then undeployed, you may have to manually resolve any pending or incomplete transactions on the data source in the retired version of the application. After a data source is undeployed (in this case, with the retired version of the application), the WebLogic Server transaction manager cannot recover pending or incomplete transactions.

For more information about production redeployment, see:

	
"Developing Applications for Production Redeployment" in Developing Applications for Oracle WebLogic Server

	
"Using Production Redeployment to Update Applications" in Deploying Applications to Oracle WebLogic Server

JDBC Schema

In support of the modular deployment model for JDBC resources in WebLogic Server, Oracle provides a schema for WebLogic JDBC objects: weblogic-jdbc.xsd. When you create JDBC resource modules (descriptors), the modules must conform to the schema. IDEs and other tools can validate JDBC resource modules based on the schema.

The schema is available at http://xmlns.oracle.com/weblogic/jdbc-data-source/1.2/jdbc-data-source.xsd.

	
Note:

The scope in the jdbc-data-source-params element of the schema may only be set to Application for application-scoped packaged data sources. The value Application is not valid for:
	
System resources in config/jdbc, including generic, multi-data sources, and GridLink data sources.

	
Stand-alone data sources that are deployed dynamically or statically using the <app-deployment> element in the config.xml file.

For these data source types, there is no application to scope the data source and no associated module. WebLogic Server does not generate a scope of Application. This omission was not flagged as an error in releases of prior to WebLogic Server 10.3.6.0 and is displayed in the console with an invalid name similar to ds0@null@ds0. For WebLogic Server 10.3.6.0 and higher, an Error message is logged for this configuration error and the system attempts to set the scope to Global and display the data source name as ds0. In future releases, this error may be treated as fatal.

JMX and WLST Access for JDBC Resources

When you create JDBC resources using the Administration Console or WLST, WebLogic Server creates MBeans (Managed Beans) for each of the resources. You can then access these MBeans using JMX or the WebLogic Scripting Tool (WLST). See Developing Custom Management Utilities With JMX for Oracle WebLogic Server and Oracle WebLogic Scripting Tool for more information.

	
JDBC MBeans for System Resources

	
JDBC Management Objects in the Java EE Management Model (JSR-77 Support)

	
Using WLST to Create JDBC System Resources

	
How to Modify and Monitor JDBC Resources

	
Best Practices when Using WLST to Configure JDBC Resources

JDBC MBeans for System Resources

Figure 2-3 shows the hierarchy of the MBeans for JDBC objects in a WebLogic domain.

Figure 2-3 JDBC Bean Tree

[image: Description of Figure 2-3 follows]

The JDBCSystemResourceMBean is a container for the JavaBeans created from a data source module. However, all JMX access for a JDBC data source is through the JDBCSystemResourceMBean. You cannot directly access the individual JavaBeans created from the data source module.

JDBC Management Objects in the Java EE Management Model (JSR-77 Support)

The WebLogic Server JDBC subsystem supports JSR-77, which defines the Java EE Management Model. The Java EE Management Model is used for monitoring the run-time state of a Java EE Web application server and its resources. You can access the Java EE Management Model to monitor resources, including the WebLogic JDBC subsystem as a whole, JDBC drivers loaded into memory, and JDBC data sources.

To comply with the specification, Oracle added the following run-time MBean types for the WebLogic JDBC subsystem:

	
JDBCServiceRuntimeMBean—Which represents the JDBC subsystem and provides methods to access the list of JDBCDriverRuntimeMBeans and JDBCDataSourceRuntimeMBeans currently available in the system.

	
JDBCDriverRuntimeMBean—Which represents a JDBC driver that the server loaded into memory.

	
JDBCDataSourceRuntimeMBeans—Which represents a JDBC data source deployed on a server or cluster.

	
Note:

WebLogic JDBC run-time MBeans do not implement the optional Statistics Provider interfaces specified by JSR-77.

For more information about using the Java EE management model with WebLogic Server, see Monitoring and Managing With the Java EE Management APIs for Oracle WebLogic Server.

Using WLST to Create JDBC System Resources

Basic tasks you need to perform when creating JDBC resources with the WLST are:

	
Start an edit session.

	
Create a JDBC system module that includes JDBC system resources, such as pools, data sources, multi data sources, and JDBC drivers.

	
Target your JDBC system module.

Example 2-1 WLST Script to Create JDBC Resources

#--
Create JDBC Resources
#--

import sys
from java.lang import System

print "@@@ Starting the script ..."
global props

url = sys.argv[1]
usr = sys.argv[2]
password = sys.argv[3]

connect(usr,password, url)
edit()
startEdit()

servermb=getMBean("Servers/examplesServer")
 if servermb is None:
 print '@@@ No server MBean found'
else:
 def addJDBC(prefix):

 print("")
 print("*** Creating JDBC resources with property prefix " + prefix)

Create the Connection Pool. The system resource will have
generated name of <PoolName>+"-jdbc"

 myResourceName = props.getProperty(prefix+"PoolName")
 print("Here is the Resource Name: " + myResourceName)

 jdbcSystemResource = wl.create(myResourceName,"JDBCSystemResource")
 myFile = jdbcSystemResource.getDescriptorFileName()
 print ("HERE IS THE JDBC FILE NAME: " + myFile)

 jdbcResource = jdbcSystemResource.getJDBCResource()
 jdbcResource.setName(props.getProperty(prefix+"PoolName"))

Create the DataSource Params
 dpBean = jdbcResource.getJDBCDataSourceParams()
 myName=props.getProperty(prefix+"JNDIName")
 dpBean.setJNDINames([myName])

Create the Driver Params
 drBean = jdbcResource.getJDBCDriverParams()
 drBean.setPassword(props.getProperty(prefix+"Password"))
 drBean.setUrl(props.getProperty(prefix+"URLName"))
 drBean.setDriverName(props.getProperty(prefix+"DriverName"))

 propBean = drBean.getProperties()
 driverProps = Properties()
 driverProps.setProperty("user",props.getProperty(prefix+"UserName"))

 e = driverProps.propertyNames()
 while e.hasMoreElements() :
 propName = e.nextElement()
 myBean = propBean.createProperty(propName)
 myBean.setValue(driverProps.getProperty(propName))

Create the ConnectionPool Params
 ppBean = jdbcResource.getJDBCConnectionPoolParams()
 ppBean.setInitialCapacity(int(props.getProperty(prefix+"InitialCapacity")))
 ppBean.setMaxCapacity(int(props.getProperty(prefix+"MaxCapacity")))

 if not props.getProperty(prefix+"ShrinkPeriodMinutes") == None:
 ppBean.setShrinkFrequencySeconds(int(props.getProperty(prefix+"ShrinkPeriodMinutes")))
 if not props.getProperty(prefix+"TestTableName") == None:
 ppBean.setTestTableName(props.getProperty(prefix+"TestTableName"))

 if not props.getProperty(prefix+"LoginDelaySeconds") == None:
 ppBean.setLoginDelaySeconds(int(props.getProperty(prefix+"LoginDelaySeconds")))

Adding KeepXaConnTillTxComplete to help with in-doubt transactions.
 xaParams = jdbcResource.getJDBCXAParams()
 xaParams.setKeepXaConnTillTxComplete(1)

Add Target
 jdbcSystemResource.addTarget(wl.getMBean("/Servers/examplesServer"))
.
.
.

How to Modify and Monitor JDBC Resources

You can modify or monitor JDBC objects and attributes by using the appropriate method available from the MBean.

	
You can modify JDBC objects and attributes using the set, target, untarget, and delete methods.

	
You can monitor JDBC run-time objects using get methods.

For more information, see "Navigating MBeans (WLST Online)" in Oracle WebLogic Scripting Tool.

Best Practices when Using WLST to Configure JDBC Resources

This section provides best practices information when using WLST to configure JDBC resources:

	
Trap for Null MBean objects (such as pools, data sources, drivers) before trying to manipulate the MBean object.

	
When using WLST offline, the following characters are not valid in names of management objects: period (.), forward slash (/), or backward slash (\). See "Syntax for WLST Commands" in Oracle WebLogic Scripting Tool.

Creating High-Availability JDBC Resources

You can target or deploy a JDBC resource (a generic data source, multi data source, or GridLink data source) to the members of a cluster using the Administration Console to improve the availability your JDBC resource and load balance communication between resources. However, connections do not fail over in the event that a cluster member becomes unavailable for any reason. New connections are created as needed on available cluster members. See Deploying Data Sources on Servers and Clusters.

	
Note:

A multi data source can only use generic data sources that are deployed on the same cluster member (in the same JVM).

3 Configuring JDBC Data Sources

This chapter provides information on how to configure and tune JDBC data sources in WebLogic Server 10.3.6.

This chapter includes the following sections:

	
Understanding JDBC Data Sources

	
Types of WebLogic Server JDBC Data Sources

	
Creating a JDBC Data Source

	
Configuring Connection Pool Features

	
Advanced Connection Properties

	
Configuring Oracle Parameters

	
Configuring an ONS Client

	
Tuning Generic Data Source Connection Pools

	
Setting Database Security Credentials

	
JDBC Data Source Factories (Deprecated)

Understanding JDBC Data Sources

In WebLogic Server, you configure database connectivity by adding data sources to your WebLogic domain. WebLogic JDBC data sources provide database access and database connection management. Each data source contains a pool of database connections that are created when the data source is created and at server startup. Applications reserve a database connection from the data source by looking up the data source on the JNDI tree or in the local application context and then calling getConnection(). When finished with the connection, the application should call connection.close() as early as possible, which returns the database connection to the pool for other applications to use.

Types of WebLogic Server JDBC Data Sources

WebLogic Server provides three types of data sources:

	
Generic Data Sources—Generic data sources and their connection pools provide connection management processes that help keep your system running efficiently.You can set options in the data source to suit your applications and your environment.

	
GridLink Data Sources—An event-based data source that adaptively responds to state changes in an Oracle RAC instance. See Using GridLink Data Sources.

	
Multi data sources—A multi data source is an abstraction around a group of generic data sources that provides load balancing or failover processing. See Configuring JDBC Multi Data Sources.

Creating a JDBC Data Source

You can create JDBC data sources in your WebLogic domain using the Administration Console or the WebLogic Scripting Tool (WLST):

	
"Create a JDBC Data Source" in the Oracle WebLogic Server Administration Console Help.

	
The sample WLST script SAMPLES_HOME\server\examples\src\examples\wlst\online\jdbc_data_source_creation.py, where SAMPLES_HOME refers to the main examples directory of your WebLogic Server installation. See "WLST Online Sample Scripts" in Oracle WebLogic Scripting Tool

The following sections provide an overview of the basics steps used in the data source configuration wizard to create a data source using the Administration console:

	
JDBC Data Source Properties

	
Configure Transaction Options

	
Configure Connection Properties

	
Test Connections

	
Target the Data Source

JDBC Data Source Properties

JDBC Data Source Properties include options that determine the identity of the data source and the way the data is handled on a database connection.

Data Source Names

JDBC data source names are used to identify the data source within the WebLogic domain. For system resource data sources, names must be unique among all other JDBC system resources, including data sources and multi data sources. To avoid naming conflicts, data source names should also be unique among other configuration object names, such as servers, applications, clusters, and JMS queues, topics, and servers. For JDBC application modules scoped to an application, data source names must be unique among JDBC data sources and multi data sources that are similarly scoped.

JNDI Names

You can configure a data source so that it binds to the JNDI tree with a single or multiple names. You can use a multi-JNDI-named data source in place of legacy configurations that included multiple data sources that pointed to a single JDBC connection pool. For more information, see "Programming JNDI for Oracle WebLogic Server."

Selecting a Database Type

Select a DBMS. For information about supported databases, see "Supported Configurations" in What's New in Oracle WebLogic Server.

Selecting a JDBC Driver

When creating a JDBC data source using the Administration Console, you are prompted to select a JDBC driver class. The Administration Console provides most of the more common driver class names and in most cases tries to help you construct the URL as required by the driver. You should verify, however, that the URL is as you want it before asking the console to test it. The driver you select must be in the classpath on all servers on which you intend to deploy the data source. Some but not all JDBC drivers listed in the Administration Console are shipped (and/or are already in the classpath) with WebLogic Server:

	
Oracle Thin Driver

	
Oracle Thin Driver XA

	
Oracle Thin Driver non-XA

	
Oracle BI Server's Driver (Type 4): Any

	
Third-party JDBC drivers (see Using JDBC Drivers with WebLogic Server):

	
MySQL (non-XA)

	
WebLogic-branded DataDirect drivers for the following database management systems (see Using WebLogic-branded DataDirect Drivers):

	
DB2

	
Informix

	
Microsoft SQL Server

	
Sybase

All of these drivers are referenced by the weblogic.jar manifest file and do not need to be explicitly defined in a server's classpath.

When deciding which JDBC driver to use to connect to a database, you should try drivers from various vendors in your environment. In general, JDBC driver performance is dependent on many factors, especially the SQL code used in applications and the JDBC driver implementation.

For information about supported JDBC drivers, see "Supported Configurations" in What's New in Oracle WebLogic Server.

	
Note:

JDBC drivers listed in the Administration Console when creating a data source are not necessarily certified for use with WebLogic Server. JDBC drivers are listed as a convenience to help you create connections to many of the database management systems available.
You must install JDBC drivers in order to use them to create database connections in a data source on each server on which the data source is deployed. Drivers are listed in the Administration Console with known required configuration options to help you configure a data source. The JDBC drivers in the list are not necessarily installed. Driver installation can include setting system Path, Classpath, and other environment variables. See Using Third-Party JDBC Drivers.When a JDBC driver is updated, configuration requirements may change. The Administration Console uses known configuration requirements at the time the WebLogic Server software was released. If configuration options for your JDBC driver have changed, you may need to manually override the configuration options when creating the data source or in the property pages for the data source after it is created.

Configure Transaction Options

When you configure a JDBC data source using the Administration Console, WebLogic Server automatically selects specific transaction options based on the type of JDBC driver:

	
For XA drivers, the system automatically selects the Two-Phase Commit protocol for global transaction processing.

	
For non-XA drivers, local transactions are supported by definition, and WebLogic Server offers the following options

Supports Global Transactions: (selected by default) Select this option if you want to use connections from the data source in global transactions, even though you have not selected an XA driver. See Enabling Support for Global Transactions with a Non-XA JDBC Driver for more information.

When you select Supports Global Transactions, you must also select the protocol for WebLogic Server to use for the transaction branch when processing a global transaction:

	
Logging Last Resource: With this option, the transaction branch in which the connection is used is processed as the last resource in the transaction and is processed as a local transaction. Commit records for two-phase commit (2PC) transactions are inserted in a table on the resource itself, and the result determines the success or failure of the prepare phase of the global transaction. This option offers some performance benefits and greater data safety than Emulate Two-Phase Commit, but it has some limitations. See Understanding the Logging Last Resource Transaction Option.

	
Note:

Logging Last Resource is not supported for data sources used by a multi data source except when used with Oracle RAC version 10G Release 2 (10GR2) and greater versions as described in Administrative Considerations and Limitations for LLR Data Sources..

	
Emulate Two-Phase Commit: With this option, the transaction branch in which the connection is used always returns success for the prepare phase of the transaction. It offers performance benefits, but also has risks to data in some failure conditions. Select this option only if your application can tolerate heuristic conditions. See Understanding the Emulate Two-Phase Commit Transaction Option.

	
One-Phase Commit: (selected by default) With this option, a connection from the data source can be the only participant in the global transaction and the transaction is completed using a one-phase commit optimization. If more than one resource participates in the transaction, an exception is thrown when the transaction manager calls XAResource.prepare on the 1PC resource.

For more information on configuring transaction support for a data source, see JDBC Data Source Transaction Options.

Configure Connection Properties

Connection Properties are used to configure the connection between the data source and the DBMS. Typical attributes are the database name, host name, port number, user name, and password.

	
Note:

You can use a Single Client Access Name (SCAN) address to represent the host name. When using Oracle RAC 11.2 and higher, consider the following:
	
If the Oracle RAC REMOTE_LISTENER your data source connects to is set to SCAN, the data source connection url can only use a SCAN address.

	
If the Oracle RAC REMOTE_LISTENER your data source connects to is set to List of Node VIPs, the data source connection url can only use a list of VIP addresses.

	
If the Oracle RAC REMOTE_LISTENER your data source connects to is set to Mix of SCAN and List of Node VIPs, the data source connection url can use both SCAN and VIP addresses.

For more information on using SCAN addresses, see "Introduction to Automatic Workload Management" in Real Application Clusters Administration and Deployment Guide 11g Release 2 (11.2).

Configuring Connection Properties for Oracle BI Server

If you selected Oracle BI Server as your DBMS, configure the additional connection properties on the Connection Properties page as described in "Connection String" in Oracle Business Intelligence Publisher Administrator's and Developer's Guide.

Test Connections

Test Database Connection allows you to test a database connection before the data source configuration is finalized using a table name or SQL statement. If necessary, you can test additional configuration information using the Properties and System Properties attributes.

Target the Data Source

You can select one or more targets to deploy your new JDBC data source. If you don't select a target, the data source will be created but not deployed. You will need to deploy the data source at a later time.

Configuring Connection Pool Features

Each JDBC data source has a pool of JDBC connections that are created when the data source is deployed or at server startup. Applications use a connection from the pool then return it when finished using the connection. Connection pooling enhances performance by eliminating the costly task of creating database connections for the application.

	
Note:

Certain Oracle JDBC extensions, and possibly other non-standard methods available from other drivers may durably alter a connection's behavior in a way that future users of the pooled connection will inherit. WebLogic Server attempts to protect connections against some types of these calls when possible.

The following sections include information about connection pool options for a JDBC data source.

	
Enabling JDBC Driver-Level Features

	
Enabling Connection-based System Properties.

	
Initializing Database Connections with SQL Code

	
Advanced Connection Properties

You can see more information and set these and other related options through the:

	
JDBC Data Source: Configuration: Connection Pool page in the Administration Console. See "JDBC Data Source: Configuration: Connection Pool" in the Oracle WebLogic Server Administration Console Help

	
JDBCConnectionPoolParamsBean, which is a child MBean of the JDBCDataSourceBean

Enabling JDBC Driver-Level Features

WebLogic JDBC data sources support the javax.sql.ConnectionPoolDataSource interface implemented by JDBC drivers. You can enable driver-level features by adding the property and its value to the Properties attribute in a JDBC data source. Driver-level properties in the Properties attribute are set on the driver's ConnectionPoolDataSource object.

Enabling Connection-based System Properties

WebLogic JDBC data sources support setting driver properties using the value of system properties. The value of each property is derived at runtime from the named system property. You can configure connection-based system properties using the Administration Console by editing the System Properties attribute of your data source configuration.

Initializing Database Connections with SQL Code

When WebLogic Server creates database connections in a data source, the server can automatically run SQL code to initialize the database connection. To enable this feature, enter SQL followed by a space and the SQL code you want to run in the Init SQL attribute on the JDBC Data Source: Configuration: Connection Pool page in the Administration Console. Alternatively, you can specify simply a table name without SQL and the statement SELECT COUNT(*) FROM tablename is used. If you leave this attribute blank (the default), WebLogic Server does not run any code to initialize database connections.

WebLogic Server runs this code whenever it creates a database connection for the data source, which includes at server startup, when expanding the connection pool, and when refreshing a connection.

You can use this feature to set DBMS-specific operational settings that are connection-specific or to ensure that a connection has memory or permissions to perform required actions.

Start the code with SQL followed by a space. An Oracle DBMS example:

SQL alter session set NLS_DATE_FORMAT='YYYY-MM-DD HH24:MI:SS'

or an Informix DBMS:

SQL SET LOCK MODE TO WAIT

The SQL statement is executed using JDBC Statement.execute(). Options that you can set using InitSQL vary by DBMS. See the documentation for your database vendor for supported statements. If you want to execute multiple statements, you may want to create a stored procedure and execute it. The syntax is vendor specific. For example, to execute an Oracle stored procedure:

SQL CALL MYPROCEDURE()

Advanced Connection Properties

WebLogic JDBC data sources support setting driver properties using the value of system properties. The value of each property is derived at runtime from the named system property. You can configure connection-based system properties using the Administration Console by editing the System Properties attribute of your data source configuration.

You can see more information and set these and other related options through the:

	
JDBC Data Source: Configuration: Connection Pool page in the Administration Console. See "JDBC Data Source: Configuration: Connection Pool" in the Oracle WebLogic Server Administration Console Help

	
JDBCConnectionPoolParamsBean, which is a child MBean of the JDBCDataSourceBean

Define Fatal Error Codes

You can define fatal error codes that indicate that the back-end database with which the data source communicates is no longer accessible on a connection. The connection is marked invalid and taken out of the pool but the data source is not suspended. These errors include deployment errors that cause a server to fail to boot and connection errors that prevent a connection from being put back in the connection pool.

When specified as the exception code within a SQLException (retrieved by sqlException.getErrorCode()), it indicates that a fatal error has occurred and the connection is no longer good and is removed from the connection pool. For Oracle databases the following fatal error codes are predefined within WLS and do not need to be placed in the configuration file:

	Error Code	Description
	3113	end-of-file on communication channel
	3114	not connected to ORACLE
	1033	ORACLE initialization or shutdown in progress
	1034	ORACLE not available
	1089	immediate shutdown in progress - no operations are permitted
	1090	shutdown in progress - connection is not permitted
	17002	I/O exception

To define fatal error codes in the Administration Console, see "Define Fatal Error Codes" in Oracle WebLogic Server Administration Console Help.

Configuring Oracle Parameters

WebLogic Server provides several attributes that provide improved Data Source performance when using Oracle drivers, for more information, see Advanced Configurations for Oracle Drivers and Databases.

Configuring an ONS Client

Configuring an ONS client changes a generic data source to a GridLink data source. For more detailed configuration information and additional environment requirements, see Using GridLink Data Sources.

Tuning Generic Data Source Connection Pools

By properly configuring the connection pool attributes in JDBC data sources in your WebLogic Server domain, you can improve application and system performance. For more information, see Tuning Data Source Connection Pools.

Setting Database Security Credentials

The following sections provide information on how to pass security credentials to a DBMS:

	
Types of Data Source Pools

	
Using a User Name/Password

	
Set Client ID On Connection

	
Identity-based Connection Pooling

Types of Data Source Pools

Weblogic Server provides two types of data source pools based on security privileges:

	
Homogeneous—Regardless of the end user of the application, all connections in the pool use the same security credentials to access the DBMS.

	
Heterogeneous—Allows applications to use a JDBC connection with a specific DBMS credential by pooling physical connections with different DBMS credentials.

This section compares methods of passing security credentials to a DBMS.

Table 3-1 Comparing Methods of Passing Security Credentials

	Method	Type of Connection Pool
	
Using a User Name/Password

	
Homogeneous pool of connections.

	
Set Client ID On Connection

	
Homogeneous pool of connections.

	
Identity-based Connection Pooling

	
Heterogeneous pool of connections.

Using a User Name/Password

The simplest type of credential is to provide the connection pool a user account name and password for the DBMS. All the connections in the pool then use the same credentials to access a DBMS. See "Create JDBC data sources" in Oracle WebLogic Server Administration Console Help.

	
Note:

You can enter the password as a name-value pair in the Properties field (not permitted for production environments) or you can enter it in the Password field. The value in the Password field overrides any password value defined in the Properties passed to the JDBC Driver when creating physical database connections. Oracle recommends that you use the Password attribute in place of the password property in the properties string because the Password value is encrypted in the configuration file (stored as the password-encrypted attribute in the jdbc-driver-params tag in the module file) and is hidden in the administration console.

Set Client ID On Connection

If the Set Client ID On Connection attribute is enabled on the data source, when an application requests a database connection from the data source, the WebLogic Server instance determines the current WebLogic user ID and then sets the mapped database ID as a light-weight client ID. All the connections in the pool have the same credentials to access a DBMS. Basic configuration steps are:

	
Select Set Client ID On Connection, see "Enable Set Client ID On Connection for a JDBC data source" in Oracle WebLogic Server Administration Console Help.

	
Note:

Credential mapping to map the WebLogic user ID and the database ID is only supported on the Oracle database with the Oracle Thin driver. This feature is not supported with the Oracle DMS driver.

	
Map the WebLogic user ID and the database ID. See "Configure credential mapping for a JDBC data source" in the Oracle WebLogic Server Administration Console Help.

This feature relies on features in the JDBC driver and DBMS. It is only supported for use with Oracle and DB2 databases using a vendor extension method:

	
oracle.jdbc.OracleConnection.setClientIdentifier(String id)

	
com.ibm.db2.jcc.DB2Connection.setDB2ClientUser(String user)

	
Note:

Set Client ID On Connection and Enable Identity Based Connection Pooling are mutually exclusive. If you think you need both mechanisms to pass security credentials in your application environment, create separate data sources—one for with Set Client ID On Connection and one with Enable Identity Based Connection Pooling.

Identity-based Connection Pooling

Identity-based connection pooling allows applications to use a JDBC connection with a specific DBMS credential by pooling physical connections with different DBMS credentials.

If the Enable Identity Based Connection Pooling attribute is enabled on the data source, when an application requests a database connection, the WebLogic Server instance selects an existing physical connection or creates a new physical connection with requested DBMS identity based on a map of WebLogic user credentials and DBMS credentials. Basic configuration steps are:

	
Select Enable Identity Based Connection Pooling, see "Enable identity-based connection pooling for a JDBC data source" in Oracle WebLogic Server Administration Console Help.

	
Map WebLogic user credentials and DBMS credentials. See "Configure credential mapping for a JDBC data source" in the Oracle WebLogic Server Administration Console Help.

	
Note:

Set Client ID On Connection and Enable Identity Based Connection Pooling are mutually exclusive. If you think you need both mechanisms to pass security credentials in your application environment, create separate data sources—one for with Set Client ID On Connection and one with Enable Identity Based Connection Pooling.

How Heterogeneous Connections are Created

The following section provides information on how heterogeneous connections are created:

	
At connection pool initialization, the physical JDBC connections are created with the default DBMS credential of the data source.

	
An application tries to get a connection from a data source.

	
The current server instance credential is mapped to a DBMS credential. See "Configure credential mapping for a JDBC data source"" in the Oracle WebLogic Server Administration Console Help.

	
If no match is found, the default DBMS credential is used.

	
Note:

The default DBMS credential should have minimum DBMS privileges, such as the ability to execute XA transactions and perform connection test operations.

	
If a match is found, it is used to find physical connections matching the DBMS credential.

	
If a match is found, the connection is reserved and returned to the application.

	
If no match is found, a connection is created or reused based on the maximum capacity of the pool:

	
If the maximum capacity has not been reached, a new connection is created with the DBMS credential, reserved, and returned to the application.

	
If the pool has reached maximum capacity, based on the least recently used (LRU) algorithm, a physical connection is selected from the pool and destroyed. A new connection is created with the DBMS credential, reserved, and returned to the application.

Regardless of how physical connections are created, each physical connection in the pool has its own DBMS credential information maintained by the pool. Once a physical connection is reserved by the pool, it does not change its DBMS credential even if the current thread changes its WebLogic user credential and continues to use the same connection.

Using Identity-based Pooling with Global Transactions

When executing inside a global transaction, an application may change the credential on the current thread and get multiple JDBC connections under different credentials. However, the Identity-based Pooling feature maps multiple logical JDBC connections of a WebLogic JDBC data source inside of a global transaction into a single physical JDBC connection. This means that only one DBMS credential per WebLogic JDBC data source per WebLogic server instance is honored for a global transaction.

Using Identity-based Pooling with LLR

You must make the following changes to use Logging Last Resource (LLR) transaction optimization with Identity-based Po