

[image: Oracle Corporation]

Oracle® Fusion Middleware

Developing Applications with Oracle ADF Data Controls

12c (12.1.2)

E23516-02

December 2013

Documentation for Oracle Application Development Framework (Oracle ADF) developers that describes how to create and configure data controls for Enterprise JavaBeans (EJB) and plain Java objects and for SOAP and REST web services.

Oracle Fusion Middleware Developing Applications with Oracle ADF Data Controls12c (12.1.2)

E23516-02

Copyright © 2013 Oracle and/or its affiliates. All rights reserved.

Primary Author: Patrick Keegan

Contributing Author:

Contributors: Jon Wetherbee, Jim Pham, Vinay Agarwal

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Preface

Welcome to Developing Applications with Oracle ADF Data Controls.

Audience

This document is intended for developers who use ADF data controls to abstract business services such as EJBs, plain Java classes, and web services to simplify data binding between those services and UI components.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents:

	
Understanding Oracle Application Development Framework

	
Developing Fusion Web Applications with Oracle Application Development Framework

	
Developing Web User Interfaces with Oracle ADF Faces

	
Developing Swing Applications with Oracle Application Development Framework

	
Developing Applications with Oracle JDeveloper

	
Creating ADF Skins with Oracle ADF Skin Editor

	
Administering Oracle ADF Applications

	
Developing Applications with Oracle ADF Desktop Integration

	
Developing Oracle ADF Mobile Browser Applications

	
Tuning Performance

	
High Availability Guide

	
Installing Oracle JDeveloper

	
Installing Oracle ADF Skin Editor

	
Oracle JDeveloper Online Help

	
Oracle JDeveloper Release Notes, included with your JDeveloper installation, and on Oracle Technology Network

	
Java API Reference for Oracle ADF Model

	
Java API Reference for Oracle ADF Controller

	
Java API Reference for Oracle ADF Lifecycle

	
Java API Reference for Oracle ADF Faces

	
Java API Reference for Oracle ADF Data Visualization Components

	
Java API Reference for Oracle ADF Share

	
Java API Reference for Oracle ADF Model Tester

	
Java API Reference for Oracle ADF Business Components Generic Domains

	
Java API Reference for Oracle ADF Business Components interMedia Domains

	
Java API Reference for Oracle Metadata Service (MDS)

	
Tag Reference for Oracle ADF Faces

	
Tag Reference for Oracle ADF Faces Skin Selectors

	
Tag Reference for Oracle ADF Faces Data Visualization Tools

	
Tag Reference for Oracle ADF Data Visualization Tools Skin Selectors

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	
monospace

	
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in This Guide

This is a new guide that is being introduced in Release 12c (12.1.2).

This book consolidates information about different data controls that previously appeared in other guides and adds new content. It includes information about EJB data controls that was formerly in the Java EE Developer's Guide for Oracle ADF, which has been discontinued. It also contains information on web service data controls and URL service data controls that was formerly included in Developing Fusion Web Applications with Oracle Application Development Framework. It also features new content on the bean data control.

New and Changed Features for Release 12c (12.1.2)

Oracle Fusion Middleware Release 12c (12.1.2) of Oracle JDeveloper and Oracle Application Development Framework (Oracle ADF) includes the following new and changed development features, which are described in this guide:

	
New wizards for the creation of EJB and bean data controls and other enhancements to make the behavior of these data controls more consistent with that of ADF Business Components. See Section 3.3, "Exposing Session Bean Services with ADF Data Controls" and Section 4.3, "Exposing Java Collections and Methods With Bean Data Controls."

	
Enhancements in the range paging support for JPA-based data controls. See Section 3.4, "Paginated Fetching of Data in EJB Data Controls."

	
New REST web service data control. See Section 5.2.2, "How to Create a Data Control for a RESTful Web Service."

	
New LOV support in adapter data controls. See Section 7.7, "Creating List of Values Objects."

For other changes made to Oracle JDeveloper and Oracle Application Development Framework (Oracle ADF) for this release, see the What's New page on the Oracle Technology Network at http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html.

Other Significant Changes in this Document for Release 12c (12.1.2)

For Release 12c (12.1.2), this document incorporates changes to content previously published in other guides and adds new content. Following are sections that have been added or significantly changed.

	
Added a new chapter introducing adapter data controls. See Chapter 1, "Introduction to ADF Model."

	
Added content on preparing EJB services and plain Java classes in a way that best takes advantage of data control features. See Section 3.2, "Preparing a Session Bean to Use With a Data Control" and Section 4.2, "Preparing a Bean to Expose with a Data Control."

	
Added content on using failover support for EJB and bean data controls. See Section 4.5, "Enabling Failover in a Bean Data Control."

	
Did not include content from the discontinued Java EE Developer's Guide for Oracle ADF about creation of databound components. Instead, readers are referred to the corresponding chapters in Developing Fusion Web Applications with Oracle Application Development Framework.

1 Introduction to ADF Model

This chapter provides a brief overview of data controls and binding data from business services to user interfaces in Oracle ADF applications. It includes information on types of data controls and then using those data controls to create databound UI components.

This chapter includes the following sections:

	
Section 1.1, "About ADF Model"

	
Section 1.2, "Data Control Types"

	
Section 1.3, "Data Controls Not Covered By This Guide"

	
Section 1.4, "What You May Need to Know About Non-Adapter Framework Data Controls"

1.1 About ADF Model

ADF Model is a declarative data binding facility that enables a unified approach to binding user interfaces to business services without requiring code. ADF Model implements two concepts that enable the decoupling of the user interface technology from the business service implementation: data controls and declarative bindings. Figure 1-1 shows how the elements of ADF Model fit within an application architecture.

Figure 1-1 ADF Architecture with ADF Model

[image: ADF architecture with ADF Model binding and data controls]

Data controls abstract the implementation technology of a business service by using standard metadata interfaces to describe the service's operations and data collections, including information about the properties, methods, and types involved. These operations and collections are exposed as data control objects that developers and UI designers can use to create databound UI components, largely without having to consider the type of underlying business service.

Declarative bindings abstract the details of accessing data from data collections in a data control and of invoking its operations. There are three basic categories of declarative binding objects:

	
Value bindings: Used by UI components that display data. Value bindings range from the most basic variety that work with a simple text field to more sophisticated list and tree bindings that support the additional needs of list, table, and tree UI controls.

	
Action bindings: Used by UI components like hyperlinks or buttons to invoke built-in or custom operations on data collections or a data control without writing code.

	
Executable bindings: Included in executable bindings are iterator bindings, which simplify the building of user interfaces that allow scrolling and paging through collections of data and drilling-down from summary to detail information. Executable bindings also include bindings that allow searching and nesting a series of pages within another page, as well as bindings that cause operations to occur immediately.

At runtime, the ADF Model layer reads the information describing the data controls and bindings from the appropriate XML files and then implements the two-way connection between the user interface and the business service.

To use the ADF Model layer to bind data, you need to create a data control for your services. The data control will then appear as a tree hierarchy in the Data Controls panel where each subnode in the tree represents an element such as a collection, operation, method or attribute. You then create databound components by dragging and dropping those subnodes onto the visual editor for a web page or other user interface component. When you drag a subnode from a data control to a page, JDeveloper automatically creates the metadata that describes the bindings from the page to the services.

For example, in an application that uses an EJB session facade, developers can create data controls for the facade. Developers can then use the representation of the data control displayed in JDeveloper's Data Controls panel (as shown in Figure 1-2) to create UI components that are automatically bound to the session facade.

Figure 1-2 Data Controls Panel

[image: OrdersSessionEJBLocal data control and its children]

The group of bindings supporting the UI components on a page are described in a page-specific XML file called the page definition file. The ADF Model layer uses this file at runtime to instantiate the page's bindings. These bindings are held in a request-scoped map called the binding container.

In a JSF application, the binding container is accessible during each page request using the EL expression #{bindings}. This expression always evaluates to the binding container for the current page.

Example 1-1 shows the code used for binding a checkbox in a form to the orderFilled attribute of the OrdersSessionEJBLocal data control.

Example 1-1 Binding Code for a Checkbox in a JSF Web Page

<af:selectBooleanCheckbox value="#{bindings.orderFilled.inputValue}"
 label="#{bindings.orderFilled.label}"
 shortDesc="#{bindings.orderFilled.hints.tooltip}" id="sbc1"/>

1.2 Data Control Types

There are various data control implementations and they can be divided into these categories:

	
ADF Business Components application modules

In an application that uses ADF Business Components, a data control is automatically created when you create an application module, and it contains all the functionality of the application module.

For a complete guide to using ADF Business Components application modules, see "Implementing Business Services with Application Modules" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
Data controls that both extend the adapter data control framework ("adapter data controls")

These include the data controls for EJBs, beans, web services (SOAP-based and RESTful), and URLs, which are covered in this guide.

	
Custom data controls based on the bean data control type

	
Custom data controls based on the adapter data control framework that do not extend the bean data control

	
Custom data controls that do not extend the adapter data control framework

This category primarily consists of data controls that were developed before the adapter framework was developed.

This guide will primarily focus on creating and using adapter data controls, though much of the information also applies to ADF Business Components data controls.

1.3 Data Controls Not Covered By This Guide

The following are some of the types of data controls that are not covered in this guide:

	
Placeholder data controls, which are empty data controls used to help design databound pages for users who do not yet have concrete business services to work with. After you design databound components with the placeholder data control and the business services have been provided, you can rebind the components to those business services. For more information, see "Designing a Page Using Placeholder Data Controls" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
JMX data controls, which enable you to create a data control based on Java Management Extension (JMX) MBeans.

	
JavaBean data controls, which are not to be confused with bean data control. The JavaBean data control is a data control type that was developed before the adapter data control framework. It is missing many of the key features that have since been built into bean data controls, such as support for queryable collections.

	
Other data controls within the broader Fusion Middleware stack, such as BAM data controls.

1.4 What You May Need to Know About Non-Adapter Framework Data Controls

If you are working with legacy data controls, you might want to consider migrating to new data controls based on the adapter data control framework. This framework incorporates a number of useful features, such as validation rules and list of value objects. You can use the adapter framework to create a new data control type from scratch, or you can extend one of the existing data control types, such as the bean data control type.

2 Using ADF Data Controls

This chapter describes how to create data controls to abstract business services and use the Data Controls panel to create databound pages. It also includes information on the way declarative binding is specified at design time and implemented at runtime.

This chapter contains the following sections:

	
Section 2.1, "Core Development Steps For Data Control Applications"

	
Section 2.2, "Exposing Business Services with Data Controls"

	
Section 2.3, "Creating Databound UI Components from the Data Controls Panel"

2.1 Core Development Steps For Data Control Applications

At a high level, the declarative development process for an application that contains data controls usually involves the following core steps:

	
Creating an application workspace in JDeveloper: Using a wizard, JDeveloper automatically adds the libraries and configuration needed for the technologies you select, and structures your application into projects with packages and directories. For more information, see the "Creating Applications and Projects" section of Developing Applications with Oracle JDeveloper.

	
Creating the business services: These can be ADF Business Components, EJB session beans, POJOs, web services, or other services. For more information on developing these services in JDeveloper, see Developing Applications with Oracle JDeveloper.

	
Creating data controls for your services: Once you have created your business services, you create the data controls that use metadata interfaces to abstract the implementation of those services and describe their operations and data collections, including information about the properties, methods, and types involved. These data controls are displayed in the Data Controls panel and can be dragged to pages to create databound UI components. For more information, see Section 2.2, "Exposing Business Services with Data Controls."

	
Adding declarative metadata to your data controls: You can augment your data controls with UI control hints, validation rules, criteria for use in search forms, and other features. For more information, see Chapter 7, "Adding Business Logic to Data Controls."

	
Implementing the user interface: JDeveloper's Data Controls panel contains a representation of the services for your application. You can drag an object from the Data Controls panel onto a page and select the UI component you want to display the underlying data. For UI components that are not databound, you use the Components window to drag and drop components. JDeveloper creates all the page code for you.

For information about creating databound web pages, see "Creating a Databound Web User Interface" in Developing Fusion Web Applications with Oracle Application Development Framework.

As part of creating the user interface, you are likely to also want to define task flows to organize the user's workflow within the application. For more information, see "Creating ADF Task Flows" in Developing Fusion Web Applications with Oracle Application Development Framework.

For more detailed information on the UI components themselves, see the "Implementing the User Interface with JSF" section in Developing Fusion Web Applications with Oracle Application Development Framework.

	
Deploying the application: You use wizards and editors to create and edit deployment descriptors, JAR files, and application server connections. For more information, see "Deploying Fusion Web Applications" in Developing Fusion Web Applications with Oracle Application Development Framework.

2.2 Exposing Business Services with Data Controls

Once you have your application's services in place, you can use JDeveloper to create data controls that provide the information needed to declaratively bind UI components to those services.

For example, in a Java EE application, you normally create entity beans that represent tables in a database and then create a session facade over all the EJBs. This facade provides a unified interface to the underlying entities. In an Oracle ADF application, you can create a data control for the session bean, and that data control will contain representation of all the EJBs under the session bean.

You generate data controls with the Create Data Control menu item. Data controls consist of one or more XML metadata files that define the capabilities of the services that the bindings can work with at runtime. The data controls work in conjunction with the underlying services.

2.2.1 How to Create ADF Data Controls

You create adapter-based data controls from within the Applications window of JDeveloper.

	
Note:

For applications based on ADF Business Components, the data controls are created automatically when you create an application module. For more information, see "Implementing Business Services with Application Modules" in Developing Fusion Web Applications with Oracle Application Development Framework.

Before you begin:

It may be helpful to have a general understanding of using data controls. For more information, see Section 2.2, "Exposing Business Services with Data Controls."

You will need to complete this task:

	Create an application workspace and add the business services on which you want to base your data control. For information on creating an application workspace, see "Creating Applications and Projects" in Developing Applications with Oracle JDeveloper.

To create a data control:

	
Right-click the top-level node for the data model project in the application workspace and choose New and then From Gallery.

	
In the New Gallery, expand Business Tier, select Data Controls, select the type of data control that you want to create, and click OK.

	
Complete the remaining steps of the wizard.

For information on creating adapter-based data controls, see subsequent chapters of this guide for the different types of data controls.

	
Note:

In some cases, you can create a data control by right-clicking the class or object on which the data control will be based and choosing Create Data Control.

2.2.2 What Happens in Your Project When You Create a Data Control

When you create a data control, JDeveloper creates the data control definition file (DataControls.dcx), opens the file in the overview editor, and displays the file's hierarchy in the Data Controls panel. This file enables the data control to work directly with the services and the bindings.

You can see the code from the corresponding XML file by clicking the Source tab in the editor window.

2.2.2.1 DataControls.dcx Overview Editor

The overview editor for the DataControls.dcx file provides a view of the hierarchies of data control objects and exposed methods of your data model.

See Table 2-1 for a description of the icons that are used in the overview editor and Data Controls panel.

You can change the settings for a data control object by selecting the object and clicking the Edit icon. For more information about editing a data control, see Section 7.2, "Configuring Data Controls."

Figure 2-1 shows the overview editor for an EJB data control.

Figure 2-1 DataControls.dcx File in the Overview Editor

[image: customerFindAll collection and its attributes displayed]

2.2.2.2 Data Controls Panel

The Data Controls panel serves as a palette, from which you can create databound UI components by dragging nodes from the Data Controls panel to the design editor for a web page. The Data Controls panel appears in the Applications window once you have created a data control. Figure 2-2 shows the Data Controls panel for an EJB data control.

Figure 2-2 Data Controls Panel

[image: OrdersSessionEJBLocal data control and top-level children]

2.2.3 Display of Business Services in the Data Controls Panel

The Data Controls panel lists all the data controls that have been created for the application's business services and exposes the hierarchies of collections (row sets of data objects), attributes, methods, and built-in operations that are available for binding to UI components.

For example, Figure 2-3 shows the Data Controls panel with the OrdersSessionEJBLocal data control. The collection nodes (such as customerFindAll, customerFindById, empFindAll) represent data collections that are returned by query methods (in this case, getter methods in the session facade). These collection objects can be dropped on to pages to create UI components such as forms and tables.

Other service methods (in the case of JPA-based data controls, methods that are not prefixed with get) are represented by method icons. These objects can be dropped on a form as a command button or link. If a method accepts arguments, those arguments appear in a Parameters node as parameters nested inside the method's node. Objects that are returned by the methods appear as well.

Figure 2-3 Data Controls Panel Main Nodes

[image: OrdersSessionEJBLocal data control and its children]

	
Tip:

If the Data Controls panel is not visible, see "How to Open the Data Controls Panel" in Developing Fusion Web Applications with Oracle Application Development Framework.

Each returned object displays any attributes, methods, and nested collections that were defined on the associated object. Figure 2-4 shows the attributes and methods defined on the Item bean that is returned by the itemFindAll collection.

	
Note:

Whenever changes are made to the services on which a data control is based, the data control incorporates those changes. If changes to the services are not immediately reflected in the Data Controls panel, you can refresh the panel manually. For more information, see "How to Refresh the Data Controls Panel" in Developing Fusion Web Applications with Oracle Application Development Framework.

Figure 2-4 Child Nodes to Returned Collections

[image: ordFindAll collection and its children]

Depending on data control type, various built-in operations are exposed. For some data controls, declarative named criteria are also available, which you can use to create search forms.Figure 2-5 shows operations and the default named criteria for an EJB data control.

Figure 2-5 Data Control Panel Operations and Named Criteria

[image: Built-in operations for a data control]

2.2.4 Data Control Built-in Operations

The data control framework defines a standard set of operations for data controls. These operations are implemented using functionality of the underlying business service. At runtime, when one of these data collection operations is invoked by name by the data binding layer, the data control delegates the call to an appropriate service method to handle the built-in functionality. For example, in EJB and bean data controls, the Next operation relies on the bean collection's iterator.

Most of the built-in operations affect the current row. However, the execute operation refreshes the data control itself, and the commit and rollback operations affect all changes made within the boundaries of a transaction.

The operations available vary by data control type and the functionality of the underlying business service. Here is the full list of built-in operations:

	
Create: Creates a new row that becomes the current row. For JPA-based data controls, this new row is also added to the row set.

	
CreateInsert: Creates a new row that becomes the current row and inserts it into the row set. Available only for ADF Business Components application modules.

	
Create With Parameters: Uses named parameters to create a new row that becomes the current row and inserts it into the row set. Available only for ADF Business Components application modules.

	
Delete: Deletes the current row.

	
Execute: Refreshes the data collection by executing or reexecuting the accessor method.

ExecuteWithParams: Refreshes the data collection by first assigning new values to variables that passed as parameters, then executing or reexecuting the associated query. This operation is only available for data control collection objects that are based on parameterized queries.

	
First: Sets the first row in the row set to be the current row.

	
Last: Sets the last row in the row set to be the current row.

	
Next: Sets the next row in the row set to be the current row.

	
Next Set: Navigates forward one full set of rows.

	
Previous: Sets the previous row in the row set to be the current row.

	
Previous Set: Navigates backward one full set of rows.

	
removeRowWithKey: Tries to find a row using the serialized string representation of the row key passed as a parameter. If found, the row is removed.

	
setCurrentRowWithKey: Tries to find a row using the serialized string representation of the row key passed as a parameter. If found, that row becomes the current row.

	
setCurrentRowWithKeyValue: Tries to find a row using the primary key attribute value passed as a parameter. If found, that row becomes the current row.

	
commit: Persists to the database all changes that are made in the current transaction.

	
rollback: Reverts all changes made within the context of the current transaction.

2.3 Creating Databound UI Components from the Data Controls Panel

You can design a databound user interface by dragging an item from the Data Controls panel and dropping it on a page as a specific UI component. When you use data controls to create a UI component, JDeveloper automatically creates the various code and objects needed to bind the component to the data control you selected.

In the Data Controls panel, each data control object is represented by a specific icon. Table 2-1 describes what each icon represents, where it appears in the Data Controls panel hierarchy, and what components it can be used to create.

Table 2-1 Data Controls Panel Icons and Object Hierarchy

	Icon	Name	Description	Used to Create...
	
[image: Data control icon]

	
Data Control

	
Represents a data control.

	
Serves as a container for the other objects and is not used to create anything.

	
[image: Collection icon]

	
Collection

	
Represents a named data collection returned by an accessor method or operation.

	
Forms, tables, graphs, trees, range navigation components, and master-detail components.

For more information about using collections on a data control to create forms, see "Creating a Basic Databound Page" in Developing Fusion Web Applications with Oracle Application Development Framework.

For more information about using collections to create tables, see "Creating ADF Databound Tables" in Developing Fusion Web Applications with Oracle Application Development Framework.

For more information about using master-detail relationships to create UI components, see "Displaying Master-Detail Data" in Developing Fusion Web Applications with Oracle Application Development Framework.

For information about creating graphs, charts, and other visualization UI components, see "Creating Databound Graph and Gauge Components" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
[image: Structured attribute icon]

	
Structured Attribute

	
Represents a returned object that is neither a Java primitive type (represented as an attribute) nor a collection of any type.

	
Label, text field, date, list of values, and selection list components.

	
[image: Attribute icon]

	
Attribute

	
Represents a discrete data element in an object (for example, an attribute in a row).

	
Label, text field, date, list of values, and selection list components.

For information about using attributes to create fields on a page, see "Creating Text Fields Using Data Control Attributes" in Developing Fusion Web Applications with Oracle Application Development Framework.

For information about creating lists, see "Creating Databound Selection Lists and Shuttles" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
[image: icon for key attribute]

	
Key Attribute

	
Represents an object attribute that has been declared as a primary key attribute, either in data control structure file or in the business service itself.

	
Label, text field, date, list of values, and selection list components.

	
[image: method icon]

	
Method

	
Represents a method or operation in the data control or one of its exposed structures that may accept parameters, perform some business logic and optionally return single value, a structure, or a collection.

	
Command components.

For methods that accept parameters: command components and parameterized forms.

For information about creating command components from methods, see "Using Command Components to Invoke Functionality in the View Layer" in Developing Fusion Web Applications with Oracle Application Development Framework.

For information about creating parameterized forms, see "Using Parameters to Create a Form" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
[image: icon for method return]

	
Method Return

	
Represents an object that is returned by a method or other operation. The returned object can be a single value or a collection.

A method return appears as a child under the method that returns it. The objects that appear as children under a method return can be attributes of the collection, other methods that perform actions related to the parent collection, or operations that can be performed on the parent collection.

	
For single values: text fields and selection lists.

For collections: forms, tables, trees, and range navigation components.

When a single-value method return is dropped, the method is not invoked automatically by the framework. You need either to create an invoke action as an executable, or to drop the corresponding method as a button to invoke the method. For more information about executables, see "Executable Binding Objects Defined in the Page Definition File" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
[image: icon for operation]

	
Operation

	
Represents a built-in data control operation that performs actions on the parent object.

	
UI command components, such as buttons, links, and menus.

For more information, see "Creating Command Components Using Data Control Operations" and "Creating a Form to Edit an Existing Record" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
[image: icon for parameter]

	
Parameter

	
Represents a parameter value that is declared by the method or operation under which it appears.

	
Label, text, and selection list components.

	
[image: icon for named criteria]

	
Named criteria

	
Represents a metadata-based query from which you can create a user search form. Named criteria are available for EJB and (JPA-based) bean data controls.

You can create custom view criteria and add them to the Data Controls panel. See Section 7.6, "Filtering Result Sets with Named Criteria."

	
Search forms.

For information on creating search forms, see "Creating ADF Databound Search Forms" in Developing Fusion Web Applications with Oracle Application Development Framework.

2.3.1 How to Use the Data Controls Panel

JDeveloper provides you with a predefined set of UI components from which to choose for each data control item you can drop.

Before you begin:

It may be helpful to have an understanding of the different objects in the Data Controls panel. For more information, see Section 2.3, "Creating Databound UI Components from the Data Controls Panel."

You will need to complete these tasks:

	
Create a data control as described in Section 2.2.1, "How to Create ADF Data Controls."

	
Create a web page as described in "Creating a Web Page" in Developing Fusion Web Applications with Oracle Application Development Framework.

To use the Data Controls panel to create UI components:

	
Select an item in the Data Controls panel and drag it onto the visual editor for your page. For a definition of each item in the panel, see Table 2-1.

	
Tip:

If you need to drop an operation or method onto a method activity in a task flow, you can simply drag and drop it onto the activity in the diagram.

	
From the ensuing context menu, choose a UI component.

When you drag an item from the Data Controls panel and drop it on a page, JDeveloper displays a context menu of all the default UI components available for the item you dropped. The components displayed are based on the libraries in your project.

Figure 2-6 shows the context menu displayed when a data collection from the Data Controls panel is dropped on a page.

Figure 2-6 Dropping Component From Data Controls Panel

[image: ADF Table selected in context menu]

Depending on the component you select from the context menu, JDeveloper may display a dialog that enables you to define how you want the component to look. For example, if you select ADF Table from the context menu, the Edit Table Columns dialog launches.

The UI components selected by default are determined first by any UI control hints set on the corresponding business object. If no control hints have been set, then JDeveloper uses input components for standard forms and tables, and output components for read-only forms and tables. Components for lists are determined based on the type of list you chose when dropping the data control object.

Once you select a component, JDeveloper inserts the UI component on the page in the visual editor. For example, if you drag a collection from the Data Controls panel and choose ADF Table from the context menu, a table appears in the visual editor, as shown in Figure 2-7.

Figure 2-7 Databound UI Component: ADF Table

[image: Sample databound UI component]

By default, the UI components created when you use the Data Controls are bound to attributes in the ADF data control and may have built-in features, such as:

	
Databound labels

	
Tooltips

	
Formatting

	
Basic navigation buttons

	
Validation, if validation rules are attached to a particular attribute.

The default components are fully functional without any further modifications. However, you can modify them to suit your particular needs. Each component and its various features are discussed further in "Creating a Databound Web User Interface" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
Tip:

If you want to change the type of ADF databound component used on a page, the easiest method is to use either the visual editor or the structure window to delete the component, and then drag and drop a new one from the Data Controls panel. When you use the visual editor or the structure window to delete a databound component from a page, if the related binding objects in the page definition file are not referenced by any other component, JDeveloper automatically deletes those binding objects for you (automatic deletion of binding objects will not happen if you use the source editor).

2.3.2 What Happens When You Use the Data Controls Panel

When a web application is built using the Data Controls panel, JDeveloper does the following:

	
Creates a DataBindings.cpx file in the default package for the project (if one does not already exist), and adds an entry for the page.

A DataBindings.cpx files defines the binding context for the application. The binding context is a container object that holds a list of available data controls and data binding objects. For more information, see "What Happens at Runtime: How the Binding Context Works" in Developing Fusion Web Applications with Oracle Application Development Framework. The DataBindings.cpx file maps individual pages to the binding definitions in the page definition file and registers the data controls used by those pages. For more information, see "Working with the DataBindings.cpx File" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
Creates the adfm.xml file in the META-INF directory. This file creates a registry for the DataBindings.cpx file, which allows the application to locate it at runtime so that the binding context can be created.

	
Registers the ADF binding filter in the web.xml file.

The ADF binding filter preprocesses any HTTP requests that may require access to the binding context. For more information about the binding filter configuration, see "Configuring the ADF Binding Filter" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
Adds several libraries to the view project, including the following:

	
ADF Faces Databinding Runtime

	
ADF Model Runtime

	
MDS Runtime

	
Adds a page definition file (if one does not already exist for the page) to the page definition subpackage. The default subpackage is view.pageDefs in the adfmsrc directory.

	
Tip:

You can set the package configuration (such as name and location) in the ADF Model settings page of the Project Properties dialog (accessible by double-clicking the project node).

The page definition file (pageNamePageDef.xml) defines the ADF binding container for each page in an application's view layer. The binding container provides runtime access to all the ADF binding objects for a page. For more information about the page definition file, see "Working with Page Definition Files" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
Tip:

The current binding container is also available from AdfContext for programmatic access.

	
Configures the page definition file, which includes adding definitions of the binding objects referenced by the page.

	
Adds the given component to the page.

These prebuilt components include ADF data binding expression language (EL) expressions that reference the binding objects in the page definition file. For more information, see "Creating ADF Data Binding EL Expressions" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
Adds all the libraries, files, and configuration elements required by the UI components. For more information on the artifacts required for ADF Faces databound components, see the "ADF Faces Configuration" appendix in Developing Web User Interfaces with Oracle ADF Faces.

2.3.3 What You May Need to Know About Iterator Result Caching

When a data control modifies a collection, the data control must instantiate a new instance of the collection in order for the ADF Model layer to understand that it has been modified. In other words, although some action in the client may change the collection, that change will not be reflected in the UI unless a new instance of the collection is created. However, for performance reasons, accessor and method iterators cache their results set (by default, the cacheResults attribute on the iterator is set to true). This setting means that the iterator is refreshed and a new instance of the collection is created only when the page is first rendered. The iterator is not refreshed when the page is revisited, for example, if the page is refreshed using partial page rendering, or if the user navigates back to the page.

For example, say you want to allow sorting on a table on your page. Because you want the page to refresh after the sort, you add code to the listener for the sort event that will refresh the table using partial page rendering (for more information, see the "Rerendering Partial Page Content" chapter of Developing Web User Interfaces with Oracle ADF Faces). Because the instance of the collection for the table has already been instantiated and is cached, the accessor iterator will not reexecute, which means that a new instance of the collection with the new sort order will not be created, so the sort order on the page will remain the same.

To work around this issue, you can either configure the iterator so that it does not cache the results, or you can place a button on the page that can be used to reexecute the iterator when the page is refreshed.

	
Note:

If your page uses the navigation operations to navigate through the collection, do not set CacheResults to false, as that will cause navigation to stop working. You must use a button to reexecute the iterator. For more information about using the navigation operations, see "Incorporating Range Navigation into Forms" in Developing Fusion Web Applications with Oracle Application Development Framework.

2.3.3.1 Setting an Iterator to Not Cache Its Result Set

To set an iterator to not cache its result set:

	
Open the page definition file, and in the Structure window, select the iterator whose results should not be cached.

	
In the Properties window, expand the Advanced section and select false from the CacheResults dropdown list.

2.3.3.2 Using a Button to Reexecute the Iterator

To use a button to reexecute the iterator:

	
In the ADF Faces page of the Components window, expand the General Controls panel, and drag a Button onto the page.

	
In the Structure window, right click the button and choose Bind to ADF Control.

	
In the Bind to ADF Control dialog, expand the collection associated with the iterator to reexecute, expand that collection's Operations node, and select Execute.

3 Creating and Configuring EJB Data Controls

This chapter describes how to create data controls for EJB session beans and also includes information on paging and failover support.

This chapter includes the following sections:

	
Section 3.1, "About EJB Data Controls"

	
Section 3.2, "Preparing a Session Bean to Use With a Data Control"

	
Section 3.3, "Exposing Session Bean Services with ADF Data Controls"

	
Section 3.4, "Paginated Fetching of Data in EJB Data Controls"

	
Section 3.5, "Enabling Failover in an EJB Data Control"

3.1 About EJB Data Controls

Data controls are an abstraction provided by ADF Model than enable you to work with data and business services in a declarative manner and easily create UI components. For more general information, see Section 1.1, "About ADF Model."

You can create data controls for EJB session beans to simplify the creation of web applications that rely on database access. In addition to the features that are common for all adapter data controls (such as declarative UI hints and validation rules), EJB data controls have the following features built in:

	
Range paging in order to improve performance of queries to large data sets

	
Declarative named criteria to simplify creation of search-by-example forms

	
Transactional operations (based on transactional business methods in the session bean)

	
Failover support (based on failover methods that you implement)

3.1.1 EJB Data Control Use Cases and Examples

You can use EJB data controls to do the following kinds of things:

	
Create highly functional web pages that are bound to an EJB session facade, without manually writing any binding code

	
Create an application that integrates existing EJB business services with ADF features such as ADF Model data binding, ADF Faces, and ADF task flows

	
Take advantage of UI hints, validation rules, and other declarative metadata to provide consistent application of prompts, tooltips, format masks, and error messages throughout the application

	
Take advantage of ADF Model features to declaratively add query-by-example forms and list-of-value (LOV) components to pages

	
Enable MDS customization on the application, which allows customers to customize an application without modifying the source code

3.1.2 Additional Functionality for EJB Data Controls

You may find it helpful to understand other ADF and JDeveloper features before you implement your data controls. Following are links to other sections that may be useful.

	
ADF Model and data binding: When you create forms in an ADF web application, you use ADF Model and data binding. For more information, see "Using ADF Model in a Fusion Web Application" in Developing Fusion Web Applications with Oracle Application Development Framework and Java API Reference for Oracle ADF Model

	
ADF Faces: When you create databound UI components, they are likely to be from the ADF Faces component set. For more information, see "Creating a Databound Web User Interface" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
ADF task flows: Task flows extend JSF page flows to provide a modular and transaction-aware approach to navigation and application control. For more information, see "Creating ADF Task Flows" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
Java EE support in JDeveloper: JDeveloper provides support for creating Java EE components in a way that is optimized for use with EJB data controls. For more information, see "Developing with EJB and JPA Components"

3.2 Preparing a Session Bean to Use With a Data Control

An EJB data control encapsulates an EJB session bean and exposes the bean's code elements as data control objects, which can then be used to bind those code elements to UI components. When you create a data control based on an EJB session bean, the data control relies on coding patterns in the bean. This section shows the mapping between given code patterns and data control objects and shows patterns that you can use in your beans to maximize the data control features.

	
Note:

The data control does not replace the bean code. Rather, it serves as a thin adapter layer between the bean and the binding layer. The methods in your bean are used at runtime as you have coded them. Any declarative metadata that you specify in the data control, such as UI hints or validation rules, augments the session bean's business logic. Likewise, if you add or change methods after you have created the data control, the data control works with those new or revised methods.

3.2.1 Supported Types and Constructs in EJB Data Controls

EJB (and bean) data controls are compatible with classes that use the following Java types and constructs:

	
Java primitive types and arrays

	
Complex Java types, such as your own beans

	
Java scalar types, including types from the java.math, java.sql, and java.util packages

	
Collection types encompassed by the java.util.Collection, java.util.List, and java.util.Map packages

	
Generics, strongly-typed collections, and wildcards

	
Java Persistence API (JPA) features such as:

	
@Id annotations to determine primary keys

	
@NamedQuery annotations and the full range of JPQL syntax for named queries

	
@JoinColumn annotations to denote master-detail and list-of-value (LOV) relationships.

3.2.2 EJB Data Control Objects

When you create a data control based on an EJB session bean (or a POJO bean), the data control exposes several different types of objects, each of which you can bind to a variety of UI components.

For EJB and bean data controls, data control objects are exposed for collections, complex types, and primitives that are returned by any public method starting with get. In these cases, the name of the data control object typically matches the name of the get method, but with the leading get removed from the name.

If a returned object has a relationship to another object defined through a JoinColumn annotation, then a child object is displayed in the Data Controls panel.

If the fields of a bean are exposed with public get methods, those fields are exposed as child attributes of the collection or structured attribute in the Data Controls panel. For get methods that return arrays and simple collections composed of primitives or strings, a child attribute node called element is exposed the Data Controls panel.

For methods that are not pre-pended with get, the methods are exposed as method objects in the Data Controls panel. Returns of these methods are exposed as method return objects.

In addition, built-in data control operations become available for many of those objects. See Section 2.2.4, "Data Control Built-in Operations" for the full list of those operations.

	
Note:

EJB and bean data controls also expose bean constructors, which you can use to create buttons in the UI for creating new instances of the bean. This provides an alternative to using the data control's Create operation for creating instances. Buttons created from constructor nodes in the Data Controls enable the user to create a new object instance without adding that object to the persistence context (which using the Create operation does). You can declaratively access that object instance by binding to the result property of the binding object for the constructor.

Table 3-1 shows how the various data control objects map to the elements of EJB classes. For information on using these objects, see Section 2.3, "Creating Databound UI Components from the Data Controls Panel."

Table 3-1 Important EJB and Bean Data Control Objects

	Icon	Name	Description
	
[image: icon for collection]

	
Collection

	
Is exposed for any public get method that returns a collection (any object implementing java.util.Collection).

The children under a collection may be attributes of the collection, related collections, custom methods that return a value from the collection, or built-in operations that can be performed on the collection.

	
[image: icon for structured attribute]

	
Structured Attribute

	
Is exposed for any public get method that returns a complex Java type that is not a collection.

	
[image: icon for attribute]

	
Attribute

	
Is exposed for any public get method that returns a Java primitive or String, such as a column in an entity bean).

	
[image: icon for key attribute]

	
Key Attribute

	
Is exposed for any attribute that is marked as the primary key (or which is part of a composite primary key). A key attribute can be designated with an @Id annotation in the entity bean class or in the data control structure file for a bean. For more information, see Section 3.2.4.1, "Recommended Entity Bean Elements" and Section 7.3.1, "How to Designate an Attribute as Primary Key."

	
[image: icon for method]

	
Method

	
Represents methods that are not pre-pended with get. These methods may return single values, structures, or collections.

	
[image: icon for method return]

	
Method Return

	
Represents an object that is returned by a method or other operation. The returned object can be a single value or a collection.

A method return appears as a child under the method that returns it. The objects that appear as children under a method return can be attributes of the collection, other methods that perform actions related to the parent collection, or operations that can be performed on the parent collection.

	
[image: icon for operation]

	
Operation

	
Represents a built-in data control operation that performs actions on the parent object. Data control operations are located in an Operations node under collections or method returns, and also under the root data control node. The operations that are children of a particular collection or method return operate on those objects only, while operations under the data control node operate on all the objects in the data control.

If an operation requires one or more parameters, they are listed in a Parameters node under the operation.

	
[image: icon for parameter]

	
Parameter

	
Represents a parameter value that is declared by the method or operation under which it appears. Parameters appear in the Parameters node under a method or operation.

	
[image: icon for named criteria]

	
Named criteria

	
Represents a metadata-based query from which you can create a user search form.

You can create custom view criteria and add them to the Data Controls panel. See Section 7.6, "Filtering Result Sets with Named Criteria."

	
[image: icon for constructor]

	
Constructor

	
Represents a constructor for one of the creatable types encompassed by a bean or EJB data control. You can use this data control object to create a command control that the user can click to create a new instance of that type.

3.2.3 About the Session Facade Pattern

EJB data controls are based on the EJB session facade design pattern, in which a session bean mediates access to individual entity beans, which contain the code to query database tables. When you create a data control based on a session bean, the data control exposes top-level objects based on the session bean's methods and lower level objects based on the detail in the entity beans that is retrieved by the session bean's accessor methods.

3.2.4 EJB Data Control Prerequisites and Considerations

In order to take advantage of the full functionality of EJB data controls, you need to include some elements in your classes that the data controls can use to present the structure of the services.

Your project should contain the following types of classes:

	
JPA entity classes for every database table that your application needs to query.

	
One or more session beans that contain accessor methods to the entity beans and other business methods. EJB data controls are based on sessions beans.

	
Optionally, (POJO) service facade classes that mirror the structure of the session beans. These service facade classes are useful for testing the services without having to run them in an application server container. You can also create data controls for service facade classes in order to test the services with the data control.

3.2.4.1 Recommended Entity Bean Elements

Your entity beans should contain the following elements:

	
@NamedQuery annotations containing queries that return each row of the collection. You can also take advantage of the constructs of the Java Persistence Query Language (JPQL) to add more selective queries. For more information on JPQL, see http://docs.oracle.com/javaee/6/tutorial/doc/bnbtg.html.

	
@JoinColumn annotations for any columns that reference other tables (or other columns in the same table) by foreign key. The generated data control will then expose these joined columns as master-detail relationships and simplify the creation of UI components that rely on those relationships.

	
addEntityBeanName(CollectionType collectionParam) and removeEntityBeanName(CollectionType collectionParam) methods for each of the collections represented by the entity beans. The data control's Create and Delete operations rely on these methods to add and remove rows in a collection.

	
Primary keys designated for each entity bean. This is necessary for the Create operation to function properly when creating new rows at runtime.

You can designate primary key columns in entity beans by adding (or generating) @Id annotations for the appropriate columns.

	
A strategy for generating primary key values when creating new records. This is particularly important when you are using explicit commit models where you need to persist a new record upon its creation but before the user fills in the details for the other fields. For more information, see Section 3.2.8, "About Generating IDs for Primary Keys with the @GeneratedValue Annotation."

3.2.4.2 Recommended Session Facade Elements

It is recommended that your session beans (and/or Java service facade classes) contain the elements in the following list in order to integrate with data control features. If you use JDeveloper's wizards to create your classes, these elements are generated for you by default.

	
Getter methods that return the results of named queries specified in the entity beans. For example, the method shown in Example 3-1 would return the results of a named query called Customer.findById.

When you create a query that includes named parameters, the data control object that is created for that query includes the ExecuteWithParams built-in operation, which you can use to quickly create forms that are based on parameters that are supplied at runtime.

	
Tip:

If you have multiple named queries for an entity bean, you can create a getter method for each named query to create distinct data control collection objects for each query.

	
The queryByRange(String jpqlStmt, int firstResult, int maxResults) method, in order to take advantage of built-in support for JPA named queries, named criteria metadata, scrollable access mode, and range paging access mode. The data control will use this method to perform all named queries, instead of invoking the getter methods for the queries in the session bean.

Example 3-2 shows the code that is generated for the queryByRange(String jpqlStmt, int firstResult, int maxResults) method when you use JDeveloper to generate a session bean (or a plain Java facade using the Java Service Facade wizard). You can change the implementation of this method, but you need to keep the signature as is, since that's what the ADF Model runtime looks for.

	
(If your bean has transactional behavior), the following methods with these exact signatures:

	
public boolean isTransactionDirty()

	
public void rollbackTransaction()

	
public void commitTransaction()

These methods are used to implement the data control's commit and rollback operations. When you use the JDeveloper wizards for creating Java service facade classes and EJB stateful container-managed session beans, working implementations of these three methods are generated in the classes by default.

Example 3-1 Getter Method That Returns the Results of a Named Query

/** <code>select o from Customer o where o.id = :custId</code> */
public List<Customer> getCustomerFindById(BigDecimal custId) {
 if (custId != null) {
 Long custIdLong = new Long(String.valueOf(custId));
 return em.createNamedQuery("Customer.findById").setParameter("custId", custIdLong).getResultList();
 } else {
 return getCustomerFindAll();
 }

Example 3-2 Code Listing for queryByRange() Method

public Object queryByRange(String jpqlStmt, int firstResult, int maxResults) {
 Query query = em.createQuery(jpqlStmt);
 if (firstResult > 0) {
 query = query.setFirstResult(firstResult);
 }
 if (maxResults > 0) {
 query = query.setMaxResults(maxResults);
 }
 return query.getResultList();
}

3.2.5 Creating EJBs for a Data Control in JDeveloper

JDeveloper's wizards enable you to create EJB entity classes and session beans that are optimized for use with data controls. For more information, see "How to Work with an EJB Business Services Layer" in Developing Applications with Oracle JDeveloper.

3.2.6 What You May Need to Know About How EJB and Bean Data Controls Use Getter Methods

When you use the queryByRange(String jpqlStmt, int firstResult, int maxResults) in your session bean (and the data control uses the oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler handler), the data control will use this method to perform all named queries, instead of invoking the getter methods for the queries in the session bean. If you have custom logic that you have added to the getter methods, it will not be called when the query is run. If you need that custom logic to run, you can incorporate it into the queryByRange(String jpqlStmt, int firstResult, int maxResults) method.

When you do not include the queryByRange(String jpqlStmt, int firstResult, int maxResults) in your session bean, the data control based on that bean is generated with the oracle.adf.model.adapter.bean.DataFilterHandler handler. In this case, the data control will invoke the session bean's getter methods directly, but you will not be able to use declarative named criteria on objects in the data control and you will need to manually implement methods for scrollable and range paging to work. For more information on the use of named criteria, see Section 7.6, "Filtering Result Sets with Named Criteria." For more information on paging, see Section 3.4, "Paginated Fetching of Data in EJB Data Controls."

3.2.7 About Commit Models for EJB Session Beans

EJB data controls can be used for different varieties of EJB session beans, whether they are bean-managed or container managed or whether they are stateful or stateless. JDeveloper's Create Session Bean wizard can generate code for the following types of session beans on which you can create a data control for updating data:

	
stateless container-managed transactions (CMT) with implicit commit

	
stateless bean-managed transactions (BMT) with implicit commit

	
stateful CMT with implicit commit

	
stateful BMT with implicit commit

	
stateful CMT with explicit commit

	
stateful BMT with explicit commit

3.2.7.1 Implicit Commit Models

For data controls based on any of the implicit commit variants, the transactional operations Commit and Rollback are not provided. For these beans, any use of the persistEntity or mergeEntity methods update the data in the underlying data source.

3.2.7.2 Explicit Commit Models

When you work with beans with an explicit commit model, the underlying data source is not updated until the Commit operation is called. This enables a user to create or make changes to multiple rows in multiple tables and then later commit them all to the data source with one click.

For data controls based on any of the explicit commit variants, you still might need to add steps to merge or persist changes to the persistence context before those changes can be committed. For example, you might need to have the user click buttons both to persist new rows and to commit the group of changes.

However, for some session beans, it is possible to configure the data control so that its Create operation automatically calls the entity's persist method when it is invoked. This is the default behavior for data controls for session beans created with JDeveloper's Create Session Bean wizard that are configured as stateful with container-managed transactions and an explicit commit model. For more information, see Section 3.3.8, "About Automatically Persisting New Rows."

Where it is not possible to persist new rows immediately upon their creation, you can use a managed bean to override or combine operations and methods. For more information, see "Overriding Declarative Methods" in Developing Fusion Web Applications with Oracle Application Development Framework.

Also for many beans, and particularly for stateful CMT beans with explicit commit, you need to implement ID generation for the primary key columns. For more information, see Section 3.2.8, "About Generating IDs for Primary Keys with the @GeneratedValue Annotation."

3.2.8 About Generating IDs for Primary Keys with the @GeneratedValue Annotation

In general it is convenient to let JPA auto-generate primary key values when you create a new instance of an entity. For many data models, you must generate values to populate the primary key columns of your tables to avoid constraint violation errors when the user tries to persist a new row. In JPA entity classes that use a simple primary key type (like Integer, long, String, etc.), you can use @GeneratedValue annotation for an entity's primary key column to designate how and from where the new record obtains that value. You then need to ensure that those values are generated by the database.

The Create Entities from Tables wizard in JDeveloper can help you configure your entities to have their primary key values automatically generated and assigned. This option is available to entities which use a simple primary key type, such as Integer, String, long, int, etc. When this option is enabled, the entity's primary key field is annotated with @GeneratedValue, which indicates how the key value should be generated. The wizard enables you to choose between the SequenceGenerator and TableGenerator strategies.

Once your classes have the @GeneratedValue annotation, you need to make sure that the values are generated by the database upon creation of a new row and passed to the entity. You can do this in one of the following ways:

	
Update the persistence unit for the entities to have the schema objects automatically created upon deployment by setting the eclipselink-ddl-generation property to create-tables or drop-and-create-tables. For more information, see Section 3.2.9, "How to Change a Persistence Unit's Schema Generation Behavior."

	
Manually update the online database schema to incorporate the ID generation objects specified in the @GeneratedValue annotations.

When you use the Create Entities from Tables wizard in JDeveloper, schema objects for any sequence or table generators are created and displayed under the Offline Database Sources node for the data model project in the Applications window. You can add the object to the online schema by right-clicking the node for the object, choosing Generate to > ConnectionName, and completing the ensuing Generate Database Objects from Database wizard.

	
If you already have ID generation objects in the live database schema, manually change the annotation attributes to refer to those objects. For example, for the @SequenceGenerator annotation, you would change the sequenceName attribute.

3.2.9 How to Change a Persistence Unit's Schema Generation Behavior

By default, when you use the Create Entities from Tables wizard to create entities, it creates a persistence unit with the eclipselink-ddl-generation property configured to use its default value (none). This means that EclipseLink, which is the default persistence provider for the generated entities, will not generate any Data Definition Language (DDL) statements or schema changes at runtime.

However, when you are developing the application, it might be useful to configure this property so that schema objects are created or re-created in the database schema each time that you test deploy the application. That will save you from having to manually keep the database schema in sync with incremental changes that you make as you develop the data model. For example, if you set the eclipselink-ddl-generation property to create-tables, EclipseLink will try to generate any schema objects that are specified by the entities and which do not yet exist in the schema, including sequences and tables for ID generation.

To change a persistence unit's schema generation behavior:

	
In the Applications window, expand the data model project and double-click the persistence unit file (which is located at Application Sources > META-INF > persistence.xml by default).

	
If there are multiple persistence units, in the overview editor for the persistence unit file, select the persistence unit for your project and click the Go to the Persistence Unit icon.

	
In the overview editor for the persistence unit, select the Schema Generation page.

	
From the Generation Type dropdown list, select the type of schema generation that you want.

For more information on the eclipselink-ddl-generation options, see the EclipseLink documentation at http://www.eclipse.org/eclipselink/documentation/2.4/jpa/extensions/p_ddl_generation.htm.

	
WARNING:

Before deploying your finished application to a production environment, the database schema should be finalized, and you should change the eclipselink-ddl-generation property back to none.

3.2.10 How to Automatically Update a Session Facade

If you change an entity bean, you can use JDeveloper to quickly update the session bean and, if applicable, its remote and local interfaces. The Edit Session Facade wizard enables you to generate code in the session bean to expose named queries and methods that have been added to your entity classes. If you have a data control based on that session bean, any newly added methods become available to you in the Data Controls panel immediately after you refresh the panel.

To update a session facade based on updated entity beans:

	
In the Applications window, right-click the session bean and choose Edit Session Facade.

	
In the Specify Session Facade Options dialog, select any methods that you would like generated in the session bean.

3.2.11 What You May Need to Know About Refreshing JPA Queries

By default, when a JPA query is run, the results of the query are cached and that cache is used if the query is re-issued from the same session. Therefore, if a change occurs to the database from a second user's session after the first user's initial query, the first user might not see the changes made by the second user when re-running the query (e.g. when refreshing a page).

To make sure that a fresh JPA query is always run, you can use a hint on the query to refresh the cache.

In JPA 2.0, you can apply the following hint to the query:

setHint("javax.persistence.cache.storeMode", "REFRESH")

For the getCustomerFindAll() method, this would look like the following:

public List<Customer> getCustomerFindAll() {
 return em.createNamedQuery("Customer.findAll").
 setHint("javax.persistence.cache.storeMode", "REFRESH").
 getResultList();
}

In JPA 1.0, you can apply the following hint (assuming TopLink is your persistence provider):

setHint("eclipselink.refresh", "true")

3.3 Exposing Session Bean Services with ADF Data Controls

Once you have your application's services in place, you can use JDeveloper to create data controls that provide the information needed to declaratively bind UI components to those services.

In a standard Java EE application, you normally create entity beans that represent tables in a database and then create a session facade over all the EJBs. This facade provides a unified interface to the underlying entities. You then would typically use other classes to coordinate the interaction between the user interface and the services exposed by the session facade.

In an Oracle ADF application, you can eliminate the need to programmatically coordinate the model and view layers by creating a data control to encapsulate the services represented by the service facade and enable declarative data binding between the layers. You then create UI components that are declaratively bound to the services through the data control. The bindings take the form of EL expressions that reference the data control. Figure 3-1 illustrates the coordination between UI components and data control objects that is possible with declarative bindings.

Figure 3-1 Binding Between View and Service

[image: shows mapping from data control objects to UI components]

Data controls consist of one or more XML metadata files that define the capabilities of the services that the bindings can work with at runtime. The data controls work in conjunction with the underlying beans without changing the implementation of the beans.

For example, Figure 3-2 shows an EJB data model project in the Applications window. The project has a number of entity beans that represent database tables, such as the Customer bean, the Product bean, the Order bean, and so on. The project also contains a session bean, OrdersSessionEJBBean, which is used to access the beans created from tables. This session bean also contains service methods for persisting, merging, and removing records. There is a data control for the session bean, which allows developers to declaratively create UI pages based on the methods of the session bean and the entity beans that the session bean encapsulates. In addition, there are XML files in the persdef.model package that correspond with the Customer, Product, and Order beans that contain additional metadata such as UI hints and validation rules. These additional XML files are only needed if you are adding metadata for a given data collection.

Figure 3-2 EJB Model Project

[image: Applications window showing beans and data control files]

3.3.1 How to Create EJB Data Controls

You create data controls from within the New Gallery or the Applications window.

Before you begin:

It may be helpful to have a general understanding of using EJB data controls. For more information, see Section 3.3, "Exposing Session Bean Services with ADF Data Controls".

You may also find it helpful to understand the code patterns and constructs in your session bean that the data control uses. For more information, see Section 3.2, "Preparing a Session Bean to Use With a Data Control."

You need to complete this task:

Create an application workspace, JPA/EJB 3.0 entities, and one or more session beans for the entities. For more information, see "How to Work with an EJB Business Services Layer" in Developing Applications with Oracle JDeveloper.
To create an EJB data control:

	
In the Applications window, right-click the session bean for which you want to create a data control and choose Create Data Control.

	
In the Choose Session EJB page of the Create EJB Data Control wizard, specify a name for the data control instance.

	
Note:

You can create multiple data control instances with different behavior for the same bean. For more information, see Section 3.3.11, "How to Create Different Data Controls for a Single Bean."

	
In the Choose Session EJB Business Interface page of the wizard, choose Local or Remote. For web applications, typically you would choose Local.

	
In the Choose ADF Data Controls Features page, select any of the following checkboxes for additional data control features that you would like to use in your application. (This page of the wizard only appears when you are creating the data control over a stateful session bean.)

Methods will be added to the session bean to implement the selected data control features.

	
Transactions. Selecting this feature generates the commitTransaction(), rollbackTransaction(), and isTransactionDirty() methods in your session bean and maps them with the data control's commit and rollback operations. If you have used JDeveloper to create a stateful and container-managed session bean, these methods should already be implemented, in which case the Transactions checkbox would be selected by default.

	
Custom CRUD. This feature enables you to provide your own implementation of persistence behavior. EJB data controls already have CRUD functionality from JPA, so you would only select this feature if you want to override JPA's functionality. For more information, see Section 3.3.5, "What You May Need to Know About CRUD Operations in an EJB Data Control."

	
Failover. For more information, see Section 3.5, "Enabling Failover in an EJB Data Control."

	
In the EJB Data Control Options page, select any additional options.

	
Access Mode. Enables you to set how the data control fetches and stores data in memory. For more information, see Section 3.4, "Paginated Fetching of Data in EJB Data Controls." The Support Named Criteria option must be selected for you to be able to select an access mode.

	
Support Named Criteria. When selected, the data control includes built-in support for declarative named criteria, which can be used to create quick search forms. For more information, see Section 7.6, "Filtering Result Sets with Named Criteria."

	
WARNING:

If you deselect this option, built-in options for scrollable paging and range paging access modes are also turned off. For more information, see Section 3.3.4, "What You May Need to Know About the Support Named Criteria Option."

The Support Named Criteria option is only available for JPA-based beans that also contain a queryByRange() method. The data control uses the bean's queryByRange() method to handle all queries that otherwise would be carried out by individual getter methods on the bean. For more information, see Section 3.2.6, "What You May Need to Know About How EJB and Bean Data Controls Use Getter Methods."

	
Generate Metadata. You can select this option to automatically generate metadata files for all of the beans represented by the data control upon the creation of the data control. This option is not necessary, since metadata files are created on demand when you edit a data control. However, this option might be useful if you plan to make the application available for MDS customization. For more information, see Section 7.2.4, "What You May Need to Know About MDS Customization of Data Controls."

	
Click Finish.

	
Note:

If you later rename the bean on which a data control is based, you must again use the Create Data Control command in order to regenerate the data control's metadata. When doing so, you can keep the same data control instance name.

If you merely make changes to a bean after the data control is created, you do not have to regenerate the data control. The data control incorporates any changes made to the bean. However, you might need to close and reopen the project in order for the data control to incorporate the changes to the underlying beans.

3.3.2 What Happens in Your Project When You Create an EJB Data Control

When you create a data control based on an EJB session bean, JDeveloper does the following things:

	
Creates the data control definition file (DataControls.dcx) and opens the file in the overview editor.

Depending on the configuration of the bean on which the data control is based and the options that you have chosen in the wizard, various elements and properties are configured in the DataControls.dcx file and can be seen in its source view. These elements and properties include:

	
<CreatableTypes>, which specifies the entities that are encompassed by the facade class and for which declarative metadata can be created.

	
DataControlHandler, which specifies a handler class that implements various features for the data control, including support for paging and named criteria.

	
AccessMode, which determines how the data control fetches data in the running application. For more information, see Section 3.4, "Paginated Fetching of Data in EJB Data Controls."

	
EagerPersist, which determines whether new rows are added to the persistence context when created. For more information, see Section 3.3.8, "About Automatically Persisting New Rows."

	
Displays the hierarchy of the resulting data control objects in the Data Controls panel.

	
If you have selected any features on the ADF Data Controls Features page, adds methods to implement those features to the session bean.

	
If you have selected Generate Metadata, generates XML data control structure files for the high-level data control objects. These files hold any declarative metadata, such as UI hints and validation rules, that you define for given data control objects. If you have not selected this option, the data control structure files are created on demand when you use the DataControls.dcx overview editor to add declarative metadata to data control objects. For more information, see Chapter 7, "Adding Business Logic to Data Controls."

For general information on the overview editor and Data Controls panel, see Section 2.2.2, "What Happens in Your Project When You Create a Data Control." For information specific to EJB and bean data controls, see Section 3.3.3, "How EJB and Bean Data Controls Appear in the IDE."

3.3.3 How EJB and Bean Data Controls Appear in the IDE

Once you have created an EJB or bean data control, you can use the overview editor for the DataControls.dcx file to further configure the data control, and you can use the Data Controls panel to create databound UI components.

3.3.3.1 DataControls.dcx Overview Editor for EJB and Bean Data Controls

The overview editor for the DataControls.dcx file provides a view of the master-detail hierarchies of your data model as well as methods from the session facade. When you select a node, you can view the fields that can be mapped to database columns in the corresponding entity class in the Attributes tab. In the Accessors tab, you can view fields for the corresponding entity class that have entity relationships defined (such as OneToMany and ManyToOne). In the Operations tab for collections, you can view entity methods that the data control uses for standard operations, such as the add and remove methods of the collection accessors.

See Table 2-1 for a description of the icons that are used in the overview editor and Data Controls panel.

You can change the settings for a data control by selecting an element and clicking the Edit icon. For more information about editing a data control, see Chapter 7, "Adding Business Logic to Data Controls."

3.3.3.2 Data Controls Panel for EJB and Bean Data Controls

The Data Controls panel serves as a palette, from which you can create databound UI components by dragging nodes from the Data Controls panel to the design editor for a web page. For information on the contents of the Data Controls panel, see Section 2.2.3, "Display of Business Services in the Data Controls Panel."

In addition for EJB and JPA-based bean data controls, nodes for named criteria appear, as shown in Table 2-1. Named criteria are used to create quick search forms. By default, an implicit named criteria called All Queriable Attributes appears for each queriable collection when you create the data control. You can create additional declarative named criteria for each collection as described in Section 7.6, "Filtering Result Sets with Named Criteria."

For information on creating databound UI components from a data control, see Section 2.3, "Creating Databound UI Components from the Data Controls Panel."

3.3.3.3 EJB and Bean Data Control Built-in Operations

EJB data controls also provide standard built-in data control operations that you can use to create command components in your user interface for page navigation and data operations.

For information on all of the operations available to data controls, see Section 2.2.4, "Data Control Built-in Operations."

3.3.4 What You May Need to Know About the Support Named Criteria Option

The Support Named Criteria option that is offered when you create an EJB or JPA-based bean data control affects more than named criteria. In addition, selecting this option enables support for the scrollable and range paging access modes as described in Section 3.4, "Paginated Fetching of Data in EJB Data Controls." If you deselect this option, the data control is generated to use the oracle.adf.model.adapter.bean.BeanDCHandler handler class, which does not contain support for either the paginated or scrollable access modes.

3.3.5 What You May Need to Know About CRUD Operations in an EJB Data Control

When you create an EJB data control, CRUD (Create/Read/Update/Delete) features rely on the session bean's service methods and the entity beans encompassed by the session bean.

For example, a session bean's persist and merge methods are represented in the Data Controls panel and you can use them to create buttons that allow the user to persist and merge the current instance of the object.

There are also built-in data control operations available that you can use to bind data operations to the UI. These operations in turn call the appropriate methods in the session facade and entity classes. In addition, they may update the state of the ADF iterator. For example, when invoked, the Create operation for a data collection calls the constructor of the entity class that represents that collection to create the instance and then calls the appropriate persist method in the session bean to add the new instance to the JPA persistence context. Then the newly created instance is added to the ADF iterator.

	
Tip:

Where applicable, it is generally best to use these built-in operations, because they handle communication with both the JPA entity manager and the ADF iterators, keeping the two in sync.

You can also implement your own logic for CRUD (Create/Read/Update/Delete) operations if you do not wish to rely on JPA for these features. For more information on implementing custom CRUD operations, see Section 4.6, "Enabling Custom CRUD Operations in a Bean Data Control."

3.3.6 What You May Need to Know About the Merge and Persist Methods

If, when you created your session bean, you chose to expose merge and persist methods, then those methods appear in the Data Controls panel and you can use them to create buttons that allow the user to merge and persist the current instance of the object. Which you use depends on whether the page will need to interact with the instance once updates are made. If you want to be able to continue to work with the instance, then you need to use the persist method.

The merge methods are implementations of the JPA EntityManager.merge method. This method takes the current instance, copies it, and passes the copy to the PersistenceContext. It then returns a reference to that persisted entity and not to the original object. This means that any subsequent changes made to that instance will not be persisted unless the merge method is called again.

The persist methods are implementations of the JPA EntityManager.persist method. Like the merge method, this method passes the current instance to the PersistenceContext. However, the context continues to manage that instance so that any subsequent updates will be made to the instance in the context.

3.3.7 What You May Need to Know About Remove Methods

When you have a data control that is based on a session bean or a Java service facade that contains remove methods (to remove objects from the JPA persistence context), those methods are exposed in the Data Controls panel along with other facade methods. However, when deleting an entity from a form or table bound to an ADF iterator, you should generally use the Delete operation instead of a remove method. The Delete operation calls the remove method on the facade and also notifies the ADF iterator of the changes, ensuring that the iterator and the persistence context stay in sync. If you call the remove methods directly in order to take advantage of any custom behavior that you have coded within them, you also need to provide the code to refresh the ADF iterator.

3.3.8 About Automatically Persisting New Rows

For most variants of EJB (and JPA-based bean) data controls, the Create operation creates a new row and inserts it into the row set. However, it does not add the newly created object to the persistence context. That is generally the desired behavior for stateless and implicit-commit data models, since attempting to persist the instance immediately upon creating it may violate constraint violations due to mandatory fields being empty.

However, some models support the option of calling the persist method during the Create operation, because the underlying DML to persist the row is deferred until commit time. When the Create Session Bean wizard in JDeveloper is used to generate a stateful session bean using CMT and explicit commit behavior, it generates a model that supports this eager persist behavior. The advantage this model has in a conversational web application is that the application can combine these steps of create and persist into a single gesture (typically a button). After creating multiple instances, the user can click a commit button to apply all of the pending changes, at which point a transaction is begun and the DML statements are executed in the database to perform any pending INSERT, UPDATE or REMOVE operations.

When you create a data control for an EJB or a bean, the class is scanned to see if it is a candidate for this "eager persist" behavior. If so, the data control's EagerPersist property is set to true. You can override the initial value to enable or disable this option as you wish.

Calling an entity's persist method eagerly is generally desirable only when the following conditions are met:

	
The session bean has explicit commit behavior (since implicit commit behavior would mean that the object would be committed as soon as it was created).

	
The model does not attempt to execute SQL right away when the persist method is called.

	
You have set up ID generation for the primary key column. For more information, see Section 3.2.8, "About Generating IDs for Primary Keys with the @GeneratedValue Annotation."

	
The EJB session been is stateful and uses the following:

	
container-managed transactions

	
the @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED) annotation for the session bean class,

	
the @TransactionAttribute(TransactionAttributeType.REQUIRED for the commit method

If you use JDeveloper's Create Session Bean wizard to create a stateful session bean with container-managed transactions and an explicit commit model, any data control that you create for this bean will be generated with the EagerPersist property set to true. Otherwise, EagerPersist is set to false.

3.3.9 How to Change the EagerPersist Property

If your bean meets the conditions to work with eager persist behavior (as described in Section 3.3.8, "About Automatically Persisting New Rows") but it is not turned on (which might be the case if you did not use the Create Entities from Tables wizard to create the entity classes), you can manually set the EagerPersist property to true. Likewise, if the property is set to true but you do not want eager persist behavior, you can change it to false.

To change the value of the EagerPersist property for a data control:

	
In the Data Controls panel, right-click the data control's root node and choose Edit Definition.

	
In the ejb-definition Properties dialog, change the value of the EagerPersist property.

3.3.10 What You May Need to Know About the Persistence Context and Resubmitting Queries

When you have a data control based on a stateful container-managed session bean, pre-commit changes made in a session are not reflected in any subsequent query that is made to the data source. So, if a user is in the middle of a transaction and performs an operation that requeries the data source, the subsequent refresh of the data on the page will not include changes made in the session.

3.3.11 How to Create Different Data Controls for a Single Bean

You can create multiple instances of a data control for a single bean, which can be useful if you need to make contrasting data control features available to the UI developer. For example, you may want to make it possible for a UI developer to create some UI components with scrollable paging and others with range paging.

Before you begin:

It may be helpful to have a general understanding of using EJB data controls. For more information, see Section 3.3, "Exposing Session Bean Services with ADF Data Controls".

You may also find it helpful to understand the code patterns and constructs in your session bean that the data control uses. For more information, see Section 3.2, "Preparing a Session Bean to Use With a Data Control."

You need to complete this task:

Create a data control as shown in Section 3.3.1, "How to Create EJB Data Controls."
To create an additional data control instance for a bean:

	
Right-click the bean for which you want to create the additional data control instance and choose Create Data Control.

	
In the Choose Session EJB page (or Choose Bean Class) page of the wizard, specify a unique name for the data control instance (different from any previous data control instances that you have created).

	
Complete the wizard with the options that you want for that instance of the data control.

3.3.12 What Happens When You Create an Additional Data Control Instance

When you create an additional data control instance for a bean, an additional high-level node appears in the overview editor for the DataControls.dcx file, as shown in Figure 3-3 and in the Data Controls panel.

Figure 3-3 Data Control Overview Editor with Two Data Control Instances

[image: EmpDeptSessionBean and EmpDeptSessionBeanPaging instances]

	
Note:

When you add declarative metadata such as UI hints and validators to a data control, the different data control instances for a bean use that same metadata. For more information on adding declarative metadata, see Chapter 7, "Adding Business Logic to Data Controls."

3.4 Paginated Fetching of Data in EJB Data Controls

When you create an EJB or bean data control, you can use the wizard's Access Mode dropdown list to determine how records are accessed from the database and whether to limit the number of records that are held in memory at a time.

In EJB and bean data controls, there are the following possibilities for fetching and storing data in memory:

	
Scrollable access mode.

If you accept the defaults when creating the data control, the data access mode is set to scrollable. This means that the data that your application needs to display is retrieved from the database as needed (in increments equal to the range size specified by the UI component's iterator) and stored in memory. Then, when the user scrolls forward through the application, additional rows are fetched as needed and stored in memory. All rows that have been fetched remain in memory.

For example, if the running application contains a table that displays rows 1 through 20 on a web page and the table's iterator has a range size of 25 (the default), the data control will fetch the first 25 rows. If the user scrolls down to display rows 477 through 496 of the result set, the data will be fetched in sets of 25 as the user scrolls until rows 26 through 500 are fetched. At that point, a total of 500 rows will be stored in memory.

This is the default mode for data controls using oracle.adf.model.adapter.bean.DataFilterHandler and oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler. However, for data controls using oracle.adf.model.adapter.bean.DataFilterHandler, you still need to add paging methods to your data control to implement the access mode. For more information, see Section 4.4.1, "How To Manually Implement Pagination Support in a Data Control."

	
Range paging access mode

To limit the amount of records that are fetched and stored in memory at a time, you can use the rangePaging access mode. As with scrollable mode, range paging mode allows your applications to fetch data in increments. The main difference in range paging mode is that only the most recently fetched increment is retained in memory. So, for example, if the accessor iterator's rangeSize attribute is set to 25, no more than 25 records will be held in memory at any given time.

In a range paging version of the scrollable example above, the data control would fetch rows 1 through 25 and hold them in memory in order to display rows 1 through 20. If the user scrolled down, the data control would fetch data in increments of 25 as the user was scrolling but release the previous 25 records from memory as it fetched a new range. By the time the user reached rows 477 through 496 as in the example above, only rows 476 through 500 would be in memory.

When scrolling to a position that displays data from multiple increments, only the data from the increment last fetched is held in memory.

You can set page ranging when creating the data control by selecting Range Paging in the Access Mode dropdown of the Create EJB Data Control wizard.

	
Note:

When you use range paging in a data control, the built-in navigation operation Last does not work on databound UI components created from that data control.

	
No pagination. When there is no pagination, all available data for a UI component is fetched. No pagination is implemented when the data control does not implement a data control handler, such as oracle.adf.model.adapter.bean.DataFilterHandler ororacle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler. You can also use annotations to turn off paging for specific collections. For more information, see Section 3.4.4, "How to Specify Access Mode for Individual Objects in the Data Control."

	
Custom pagination. If the built-in pagination options do not suit your needs, you can implement your own pagination by implementing a custom handler class. For more information, see Section 4.4.2, "How to Implement a Custom Handler for Querying and Pagination."

For more information about access mode and data control handlers, see Section 3.4.3, "What You May Need to Know About the Scrollable and Range Paging Modes."

3.4.1 How to Change Paging Mode for a Data Control

If you want to change the paging mode for a data control, you can do so in the Data Controls panel.

	
Note:

For data controls using the oracle.adf.model.adapter.bean.DataFilterHandler ororacle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler handler, the default access mode is scrollable.

Before you begin:

It may be helpful to have a general understanding of access modes for EJB and bean data controls. For more information, see Section 3.4, "Paginated Fetching of Data in EJB Data Controls."

You need to complete this task:

Create an EJB or bean data control. For more information, see Section 3.3.1, "How to Create EJB Data Controls."
To change paging mode for a data control:

	
In the Data Controls panel, right-click the data control's node and choose Edit Definition.

	
In the ejb-definition Properties or the bean-definition Properties dialog, select rangePaging or scrollable from the AccessMode dropdown list.

	
If you are changing the data control to use range paging, make sure that the data control's FactoryClass property is specified as oracle.adf.model.adapter.bean.BeanDCFactoryImpl.

You can access the FactoryClass property in the source editor for the DataControls.dcx file or in the Properties window that appears when you open DataControls.dcx in the source editor or overview editor.

3.4.2 How to Set Range Size for a Data Control that Uses Range Paging

When you set a data control's access mode to rangePaging, the data control determines the range size by reading the rangeSize property of the accessor iterator of each component that is bound to a collection in the data control.

To set the range size for a component:

	
In the Applications window, select the page containing the component that is bound to the data control.

	
In the Structure window, select the component that is bound to the data control collection.

	
In the Properties window, expand the Behavior node, and set the rangeSize property to the desired value.

For more information on iterator bindings, see "Iterator Bindings Created in the Page Definition File" in Developing Fusion Web Applications with Oracle Application Development Framework.

3.4.3 What You May Need to Know About the Scrollable and Range Paging Modes

Data controls that support scrollable and range paging modes rely on methods in the bean class to implement that functionality. The method that the data control uses depends on the data control handler class that the data control uses.

For JPA-based data controls, typically the JPQLDataFilterHandler handler is specified. JPQLDataFilterHandler relies on the presence of JPA queries and a queryByRange() method in the bean. For more information, see Section 3.2.4, "EJB Data Control Prerequisites and Considerations."

For non-JPA bean data controls (and for EJB and JPA-based bean data controls that do not have a queryByRange() method), DataFilterHandler is specified. To implement range paging in data controls that use this handler, you need to add code to your bean class as shown in Section 4.4.1, "How To Manually Implement Pagination Support in a Data Control."

For data controls that do not have either of these handler classes (such as EJB data controls where you have explicitly turned off named criteria support), there is no built-in support for scrollable or range paging. However, you can write your own handler class to implement paging support. For more information, see Section 4.4.2, "How to Implement a Custom Handler for Querying and Pagination."

3.4.4 How to Specify Access Mode for Individual Objects in the Data Control

If your data control encompasses multiple collections of different sizes, you may wish to set different access modes for some of the collections. You can do so by placing annotations on the accessor methods in the bean that the data control represents.

For the methods on which the annotations are used, the annotations override the access mode set for the data control. If an accessor method does not have such an annotation, it inherits its access mode from the one that is defined for the data control.

To specify access mode for individual objects in a bean or EJB data control:

	
Open the class on which the data control is based. For EJB data controls, this is the remote or local interface, depending on which you specified in the wizard when creating the data control.

	
Add annotations for the methods for which you want a different access mode than that generally specified for the data control.

	
Note:

These annotations only work on getter methods.

Example 3-3 shows the necessary import statements and the available annotations and how they can be used on a collection.

Example 3-3 Access Mode Annotations

import oracle.adf.model.adapter.bean.annotation.AccessMode;
import oracle.adf.model.adapter.bean.annotation.AccessModeType;

...
 * List with scrollable access
 */
 @AccessMode(type=AccessModeType.SCROLLABLE)
 public List<Employees> getEmployeesScrollable();
 ...
 * List with range paging.
 */
 @AccessMode(type=AccessModeType.RANGE_PAGING)
 public List<Employees> getEmployeesRangePaging();
 ...
 * List with no paging.
 */
 @AccessMode(type=AccessModeType.NO_PAGING)
 public List<Employees> getEmployeesNoPaging();

3.4.5 What You May Need to Know About Sorting Tables Based on Range Paginated Collections

By default, if a user sorts a table that is bound to a JPA-based data control, the ADF Model runtime forces the iterator to return all rows into memory for sorting, even if the back-end JPQL queries have already done the sort at the database level, which can cause memory problems if collection is too large. If you are using range paging for a collection, you can disable the ADF Model runtime full in-memory sort and have the data control handle it instead, based on just the currently selected range.

To use the data control to handle the sort for range paginated collections:

	
In the Applications window, double-click the DataControls.dcx file to open it in the overview editor.

	
In the overview editor, select the node for the data control that you want to edit.

	
In the Properties window, set the ImplementsSort property to true.

3.5 Enabling Failover in an EJB Data Control

You can configure EJB data controls that are based on stateful session beans to have their state managed by the ADF Model runtime and enable failover of the objects encapsulated by the data control. Failover support for EJB data controls works in the same way as it does for bean data controls.

For information on generating method stubs in the session bean for this failover support, see Section 3.3.1, "How to Create EJB Data Controls." For more information on implementing those methods, see Section 4.5, "Enabling Failover in a Bean Data Control."

4 Creating and Configuring Bean Data Controls

This chapter describes how to create data controls for JavaBeans components that are based on the Java Persistence API (JPA) and plain Java objects (also known as "POJOs").

This chapter includes the following sections:

	
Section 4.1, "About Bean Data Controls"

	
Section 4.2, "Preparing a Bean to Expose with a Data Control"

	
Section 4.3, "Exposing Java Collections and Methods With Bean Data Controls"

	
Section 4.4, "Paginated Fetching of Data in Bean Data Controls"

	
Section 4.5, "Enabling Failover in a Bean Data Control"

	
Section 4.6, "Enabling Custom CRUD Operations in a Bean Data Control"

	
Section 4.7, "Adding Transactional Behavior to a non-JPA Bean Data Control"

	
Section 4.8, "Using Annotations to Declare Metadata for Non-JPA Data Controls"

	
Section 4.9, "Creating Custom Bean Data Controls"

4.1 About Bean Data Controls

Data controls are an abstraction provided by ADF Model than enable you to work with data and business services in a declarative manner and easily create UI components. For more general information on data controls, see Section 1.1, "About ADF Model."

You use the bean data control type to create data controls for plain Java objects (POJOs) and JPA-based Java service facade classes.

4.1.1 About JPA-Based Bean Data Controls

Similar to EJB data controls, JPA-based bean data controls enable you to work with persistent data. Such data controls are based on POJO service facade classes that provide accessor methods to JPA entity classes. The main difference in JPA-based bean data controls is that you must provide the code to manage the persistence instead of being able to rely on an EJB container. For more information on EJB data controls, see Section 3.1, "About EJB Data Controls."

4.1.2 About non-JPA Bean Data Controls

You can also create bean data controls for Java classes that do not work with JPA functions. Such data controls do not provide persistence functionality or named criteria support, but they do include other features of adapter data controls such as the ability to add declarative validation rules on attributes and support for UI control hints.

Unlike JPA-based bean data controls, non-JPA data controls do not have built-in implementations for handling transactions or updating of data sources. However, you can code your own implementation for that functionality in your bean class within specific methods whose signatures the data control recognizes. For more information, see Section 4.7, "Adding Transactional Behavior to a non-JPA Bean Data Control" and Section 4.6, "Enabling Custom CRUD Operations in a Bean Data Control."

Non-JPA data controls have support for scrollable paging and range paging, but require some manual coding. For more information, see Section 4.4.1, "How To Manually Implement Pagination Support in a Data Control."

You can also create a custom data control type that extends bean data controls. For more information, see Section 4.9, "Creating Custom Bean Data Controls."

4.2 Preparing a Bean to Expose with a Data Control

A bean data control serves as a metadata wrapper for a bean class and exposes the bean's code elements as data control objects, which can then be used to bind those code elements to UI components.

4.2.1 Supported Types and Constructs in Bean Data Controls

Bean data controls support the same Java types and constructs as EJB data controls. For more information, see Section 3.2.1, "Supported Types and Constructs in EJB Data Controls."

4.2.2 Bean Data Control Objects

When you create a data control based on a bean, the data control exposes several different types of objects, each of which you can bind to a variety of UI components. Bean data controls exposes the same types of objects as EJB data controls. For more information, see Section 3.2.2, "EJB Data Control Objects.".

4.2.3 Bean Data Control Prerequisites and Considerations

Bean data controls are based on classes that meet the JavaBeans specification. For example, for a class to be a valid data control source, it needs to have a public default constructor.

In order to take advantage of the full functionality of JPA-based data controls, you need to include some elements in your classes that the data controls can use to present the structure of the services. These elements are largely the same as for EJB data controls. The main difference is that you use a Java service facade class for bean data controls instead of an EJB session bean. For more information, see Section 3.2.4, "EJB Data Control Prerequisites and Considerations."

4.2.4 How to Create a Service Facade for a JPA-Based Bean Data Control

You can create a bean data control based on a POJO class that contains service methods to access Java entity classes. JDeveloper has a wizard that helps you create this facade class that contains all of the necessary methods to work with the data control.

Before you begin:

It may be helpful to have a general understanding of the code conventions that the service facade and the data control will rely on. For more information, see Section 4.2, "Preparing a Bean to Expose with a Data Control."

You need to complete this task:

	
Create an application workspace that contains a project with JPA entities as described in "How to Create JPA Entities" in Developing Applications with Oracle JDeveloper.

To create a service facade for a JPA-based Bean Data Control:

	
Right-click the package that contains the JPA entity classes and choose Java Service Facade.

	
In the Java Service Class page of the Create Java Service Facade wizard, do the following:

	
Specify a name for the service class.

	
Specify the persistence unit on which to base the service facade.

	
Select the Implicit or Explicit radio button to determine commit behavior.

If you select Explicit, transactional methods are generated into the class, which are in turn exposed as Commit and Rollback operations if you later create a data control based on the class.

If you select Implicit, you can use the persistEntity(), mergeEntity(), and removeEntity() methods that are generated by the wizard to act as the methods for adding and removing rows from the data source.

	
In the Java Service Facade Methods page, select the methods which you want to generate.

	
Note:

If you subsequently plan to create a data control and you want to use the built-in pagination and JPA querying support, be sure to select the queryByRange() method.

	
Click Finish to exit the wizard.

4.3 Exposing Java Collections and Methods With Bean Data Controls

Once you have your bean in place, you can use JDeveloper to create data controls that provide the objects needed to declaratively bind UI components to the bean's services as well as any built-in operations provided by the data control.

4.3.1 How to Create a JPA-Based Bean Data Control

You create JPA-based bean data controls from within the New Gallery or the Applications window.

Before you begin:

It may be helpful to have a general understanding of bean data controls. For more information, see Section 4.3, "Exposing Java Collections and Methods With Bean Data Controls."

You may also find it helpful to understand the code patterns and constructs in your session bean that the data control uses. For more information, see Section 4.2, "Preparing a Bean to Expose with a Data Control."

You need to complete this task:

Create a Java service facade class, as described in Section 4.2.4, "How to Create a Service Facade for a JPA-Based Bean Data Control."
To create a bean data control:

	
In the Applications window, right-click the bean for which you want to create a data control and choose Create Data Control.

For a JPA-based data control, use the Java service facade class as the base for the data control.

	
In the Choose Bean Class page of the Create Bean Data Control wizard, specify a name for the data control instance.

	
Note:

You can create multiple data control instances with different behavior for the same bean. For more information, see Section 3.3.11, "How to Create Different Data Controls for a Single Bean."

	
In the Choose ADF Data Controls Features page, select any of the following checkboxes for additional data control features that you would like to use in your application. Methods will be added to the bean to implement the data control features.

	
Transactions. Selecting this feature generates the commitTransaction(), rollbackTransaction(), and isTransactionDirty() methods in your bean. If you have used JDeveloper to create a Java Service Facade with explicit commit behavior, these methods should already be implemented. For more information, see Section 4.7, "Adding Transactional Behavior to a non-JPA Bean Data Control."

	
Custom CRUD. This feature enables you to provide your own implementation of persistence behavior. JPA-based bean data controls already have CRUD functionality from JPA, so you would only select this feature if you want to override JPA's functionality. For more information, see Section 4.6, "Enabling Custom CRUD Operations in a Bean Data Control."

	
Failover. For more information, see Section 4.5, "Enabling Failover in a Bean Data Control."

	
Optionally, click the New Wrapper Class icon (to the right of the Implementation Class field) to generate a separate class that extends the bean class and holds the custom methods created on this page of the wizard.

	
In the Bean Data Control Options page, select any additional options.

	
Access Mode. Enables you to set how the data control fetches and stores data in memory. For more information, see Section 3.4, "Paginated Fetching of Data in EJB Data Controls." For JPA-based data controls, the Support Named Criteria option must be selected for you to be able to specify an access mode.

	
Support Named Criteria. When selected, the data control includes built-in support for declarative named criteria, which can be used to create quick search forms. For more information, see Section 7.6, "Filtering Result Sets with Named Criteria." This option is only available for JPA-based data controls, on which it is selected by default.

	
WARNING:

If you deselect this option, built-in options for scrollable paging and range paging access modes are also turned off. For more information, see Section 3.3.4, "What You May Need to Know About the Support Named Criteria Option."

The Support Named Criteria option is only available for JPA-based beans that also contain a queryByRange() method. The data control uses the bean's queryByRange() method to handle all queries that otherwise would be carried out by individual getter methods on the bean. For more information, see Section 3.2.6, "What You May Need to Know About How EJB and Bean Data Controls Use Getter Methods."

	
Generate Metadata. You can select this option to immediately generate metadata files for any beans represented by the data control that are in the current project. This option is typically not necessary, since such metadata files are created on demand when you edit a data control. However, this option might be useful if you plan to make the application available for MDS customization. For more information, see Section 7.2.4, "What You May Need to Know About MDS Customization of Data Controls."

4.3.2 How to Create a non-JPA-Based Bean Data Control

You create bean data controls from within the New Gallery or the Applications window.

Before you begin:

It may be helpful to have a general understanding of bean data controls. For more information, see Section 4.3, "Exposing Java Collections and Methods With Bean Data Controls."

You may also find it helpful to understand the code patterns and constructs in your session bean that the data control uses. For more information, see Section 4.2, "Preparing a Bean to Expose with a Data Control."

You need to complete these tasks:

	
Create an application workspace and a project. For more information, see "Creating Applications and Projects" in Developing Applications with Oracle JDeveloper.

	
Create a bean class in the project. For more information, see "How to Create a New Java Class or Interface" in Developing Applications with Oracle JDeveloper.

To create a non-JPA bean data control:

	
In the Applications window, right-click the bean for which you want to create a data control and choose Create Data Control.

	
In the Choose Bean Class page of the Create Bean Data Control wizard, specify a name for the data control instance.

	
Note:

You can create multiple data control instances with different behavior for the same bean. For more information, see Section 3.3.11, "How to Create Different Data Controls for a Single Bean."

	
In the Choose ADF Data Controls Features page, select any of the following checkboxes for additional data control features that you would like to use in your application. For each feature that you select, methods with signatures that are recognized by the data control will be added to the bean. Within those methods, you can write your implementation for the respective data control features.

	
Transactions. Selecting this feature generates the commitTransaction(), rollbackTransaction(), and isTransactionDirty() methods in your bean. For more information, see Section 4.7, "Adding Transactional Behavior to a non-JPA Bean Data Control."

	
Custom CRUD. This feature enables you to provide your own implementation of persistence behavior. For more information, see Section 4.6, "Enabling Custom CRUD Operations in a Bean Data Control."

	
Failover. For more information, see Section 4.5, "Enabling Failover in a Bean Data Control."

	
Optionally, click the New Wrapper Class icon (to the right of the Implementation Class field) to generate a separate class that extends the bean class and holds the methods created on this page of the wizard.

	
In the Bean Data Control Options page, select any additional options.

	
Access Mode. Enables you to set how the data control fetches and stores data in memory. For more information, see Section 4.4, "Paginated Fetching of Data in Bean Data Controls." The Support Named Criteria option must be selected for you to be able to select an access mode.

	
Generate Metadata. You can select this option to automatically generate metadata files for all of the beans represented by the data control upon the creation of the data control. This option is not necessary, since metadata files are created on demand when you edit a data control. However, this option might be useful if you plan to make the application available for MDS customization. For more information, see Section 7.2.4, "What You May Need to Know About MDS Customization of Data Controls."

4.3.3 What Happens in Your Project When You Create a Bean Data Control

When you create a data control based on a JavaBeans component, JDeveloper does the following:

	
Creates the data control definition file (DataControls.dcx) and opens the file in the overview editor.

	
Displays the hierarchy of the resulting data control objects in the Data Controls panel.

	
If you have selected any features on the ADF Data Controls Features page, adds methods to implement those features to the session bean.

For general information on the overview editor and Data Controls panel, see Section 2.2.2, "What Happens in Your Project When You Create a Data Control." For information specific to JPA-based data controls, see Section 3.3.3, "How EJB and Bean Data Controls Appear in the IDE."

If you have selected any features on the ADF Data Controls Features page, methods to implement those features are added to the bean (or to the wrapper class if you have chosen to generate one).

If the bean has accessor methods that query collections and you have selected Support Named Criteria in the wizard, the data control will be generated to use oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler, which provides support in the data control for declarative named criteria and paginated queries.

If the bean doesn't have accessor methods that query collections, the data control will be generated to use oracle.adf.model.adapter.bean.DataFilterHandler. Besides not supporting named criteria, oracle.adf.model.adapter.bean.DataFilterHandler also does not have paging functionality fully implemented. However, you can add a method to your bean to implement paging. For more information, see Section 4.4.1, "How To Manually Implement Pagination Support in a Data Control."

If the bean has accessor methods that query collections and you deselected Support Named Criteria in the wizard, the data control is generated to use the more limited oracle.adf.model.adapter.bean.BeanDCHandler handler and thus disables even basic paging support. For more information, see Section 3.3.4, "What You May Need to Know About the Support Named Criteria Option."

4.3.4 What You May Need to Know About Primary Keys for Non-JPA Bean Data Controls

Even when you are creating non-JPA beans, you can use the @Id annotation to mark a field as a primary key column.

However, for performance reasons, you might find it preferable to designate the primary key at the data control level so that you do not introduce a dependency on the JPA runtime library. For more information, see Section 7.3.1, "How to Designate an Attribute as Primary Key."

4.4 Paginated Fetching of Data in Bean Data Controls

When you create a bean data control, you can use the wizard's Access Mode dropdown list to determine how records are accessed from the database and whether to limit the number of records that are held in memory at a time.

Paging support for bean data controls generally follows the same principals as paging for EJB data controls. For more information, see Section 3.4, "Paginated Fetching of Data in EJB Data Controls." However, especially for non-JPA-based data controls, you might want or need to fill in part of the implementation yourself.

4.4.1 How To Manually Implement Pagination Support in a Data Control

With non-JPA data controls (or any EJB or bean data control that uses the oracle.adf.model.adapter.bean.jpa.DataFilterHandler handler), you need to add three methods for each collection in the session or service facade in order for the ADF Model runtime to implement scrollable paging and range paging. The method signatures should take the following form:

List<EntityBeanName> getEntityBeanNameList()
List<EntityBeanName> getEntityBeanNameList(int firstResult, int maxResults)
long getEntityBeanNameListSize()

	
Note:

JPA-based data controls typically use the oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler handler and thus do not require manual implementation of these methods. However, a data control can get assigned the oracle.adf.model.adapter.bean.jpa.DataFilterHandler handler if the bean it is based on does not contain the queryByRange(String jpqlStmt, int firstResult, int maxResults) method. For more information, see Section 3.2.4.2, "Recommended Session Facade Elements."

4.4.2 How to Implement a Custom Handler for Querying and Pagination

If the built-in querying and paging options are not sufficient for your application, you can implement your own custom paging and querying behavior by providing your own data handler class for your data control.

To implement a custom handler for querying and pagination:

	
Write a custom data control handler class and add it to the data control's project.

You can sub-classes an existing handler, such as oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler or oracle.adf.model.adapter.bean.DataFilterHandler. See Example 4-1 for an outline of a custom handler class.

	
In the Source view of the DataControls.dcx file, type the fully-qualified class name of the handler as the value for the DataControlHandler attribute of each data control.

DataControlHandler is an attribute of the ejb-definition element of EJB data controls and an attribute of the bean-definition element for bean data controls.

Example 4-1 Custom Data Control Handler

public class MyJPQLDataFilterHandler extends JPQLDataFilterHandler
{
 public boolean invoke(Map bindingContext,
 OperationBinding action,
 DataFilter filter)
 {
 /** TODO: Users provide custom criteria. */
 }

 public Object invoke(RowContext rowCtx, String name,
 DataFilter filter)
 {
 /** TODO: Users provide custom criteria. */
 }

}

4.5 Enabling Failover in a Bean Data Control

You can configure bean data controls to have their state managed by the ADF runtime. This can be particularly useful if your application will run in a high availability or cluster environment. If the application is running on a server node that fails, the most recent snapshot of the data control's session state can be restored to another node in the cluster. Likewise, if a user's session is interrupted, the failover support can be used to restore the data control's state when the session is resumed.

You enable failover by implementing methods for saving and restoring the state of the data control. The ADF Model runtime manages the calling of these methods and handles the details of distributing the states of the data control. EJB and bean data control support for failover requires the following three methods, which you can add to your bean class through the data control wizard or manually:

	
public Serializable createSnapshot(). Saves the state of the data control and underlying bean as a serialized object and returns a handle for that object. The ADF runtime calls this method whenever the user submits any changes to a component bound via the data control (or when the user merely refreshes the page).

In this method you need to add the logic that determines what gets saved and return the corresponding Serializable handle.

	
public void restoreSnapshot(Serializable handle). Restores the session state based on the most recently created snapshot. This method is called whenever the ADF Model runtime needs to restore a session that has been interrupted for whatever reason, such as a broken connection, a server failure, etc.

In this method you need to fill in the implementation for restoring the data control from the handle returned by createSnapshot().

	
public void removeSnapshot(Serializable handle). Removes the snapshot that is associated with the handle returned by the createSnapshot() method.

4.5.1 What You May Need to Know About Calling PageFlowScope from the Constructor

In bean data controls that implement failover, you should not call PageFlowScope from the bean's constructor. During application failover, the data control objects are re-instantiated with a call to the constructor. Because that call happens outside of the ADF lifecycle, FacesContext is not available, nor is anything that depends upon it for its implementation.

4.6 Enabling Custom CRUD Operations in a Bean Data Control

JPA-based data controls are tightly integrated with the CRUD (create/read/update/delete) support in JPA. For example, built-in data control operations such as Create and Delete use the corresponding JPA persistence methods to carry out those operations when invoked at runtime.

However, if your data control is not JPA-based, you can provide your own implementation to integrate your bean's CRUD model with the data control.

The following are the method stubs that are added to your bean data control class when you use the Create Bean Data Control wizard to create a bean data control and enable custom CRUD support:

	
public Object createRowData(RowContext p0). Used to create a new row of data. At runtime, this method is called when the Create operation is invoked. You can provide your own implementation of this method to customize how a new row is persisted.

	
public boolean removeRowData(RowContext p0). Used to remove a row of data. At runtime, this method is called when the Delete operation is invoked.

	
public boolean setAttributeValue(oracle.binding.AttributeContext p0, Object p1). This method is called by the ADF Model runtime when a new value is to be set on an attribute in a bean.

	
public Object registerDataProvider(oracle.binding.RowContext p0). This method is called by the data binding facility before the object is modified or marked as removed, so the row can be marked dirty by the data control.

This method needs to be present if you are implementing custom CRUD functionality, though typically you do not need to provide your own implementation.

	
public void validate(). Validates a transaction if it is dirty.

This method needs to be present if you are implementing custom CRUD functionality, though typically you do not need to provide your own implementation of this method.

For information on creating a non-JPA data control, see Section 4.3.2, "How to Create a non-JPA-Based Bean Data Control."

4.7 Adding Transactional Behavior to a non-JPA Bean Data Control

When you create a JPA-based bean with the Create Java Service Facade wizard, you can generate code to support an explicit commit model. When a data control is based on such a class, the bean's transactional methods are exposed as Commit and Rollback operations in the data control.

For non-JPA bean data controls, you can generate stub methods when you create the data control to support the Commit and Rollback operations. Within those stub methods, you can write your own implementation of transactional behavior. At runtime, when the Commit and Rollback operations are invoked those methods are called.

The following are the method stubs that are added to your bean data control class when you use the Create Bean Data Control wizard to create a bean data control and enable transactional support:

	
public boolean isTransactionDirty(). Used to mark whether there are any pending changes to be committed (or rolled back).

	
public void commitTransaction(). Commits all pending changes to the data source.

	
public void rollbackTransaction(). Rolls back pending changes.

	
Note:

In order to implement transaction support in a non-JPA data control, you must also implement custom CRUD methods. For more information, see Section 4.6, "Enabling Custom CRUD Operations in a Bean Data Control"

For information on creating a non-JPA data control, see Section 4.3.2, "How to Create a non-JPA-Based Bean Data Control."

4.8 Using Annotations to Declare Metadata for Non-JPA Data Controls

The Adapter Data Control Framework provides several Java annotations that you can use to specify metadata for bean data controls.

	
oracle.adf.model.adapter.bean.annotation.AccessMode. Use to override the AccessMode flag in the DataControls.dcx file. You can use this annotation to control the paging feature in a JPA-based data control at the level of the accessor method, thus making it possible to use different access modes in a single data control.

// AccessModeType can be either NO_PAGING, RANGE_PAGING or SCROLLABLE)@AccessMode(type = AcessModeType.RANGE_PAGING)
public Collection<EmpBean> getListEmpBean() {}
public Collection<EmpBean> getListEmpBean(int firstResult, int maxResults) {}
public int getListEmpBeanSize() {}
}

For more information, see Section 3.4.4, "How to Specify Access Mode for Individual Objects in the Data Control."

	
oracle.adf.model.adapter.bean.annotation.AccessModeType. Must also be imported when using the oracle.adf.model.adapter.bean.annotation.AccessMode annotations in a class.

	
oracle.adf.model.adapter.bean.annotation.ElementType. Use to define the type for the collection. For example, an element type of EmpBean can be defined with @ElementType(name = "model.EmpBean". This is a substitute for using a generic collection (for example, Collection<EmpBean>) and is recommended only if you are using JDK 1.4 or before or if you need to override the element type of the collection.

@ElementType(name = "model.EmpBean")
public Collection getListEmpBean() {}

	
oracle.adf.model.adapter.bean.annotation.Id. Use to define the primary key for the attribute. For example:

@Id
public int getPrimaryKey() {}

	
oracle.adf.model.adapter.bean.annotation.Property. Use to specify a property for an attribute. For example:

@Property(name = AttributeHints.ATTRIBUTE_LABEL, value = "Employee No.")
public Long getEmpno() {}

	
oracle.adf.model.adapter.bean.annotation.Properties. Use to specify multiple properties for an attribute. For example:

@Properties({
 @Property(name = AttributeHints.FMT_FORMATTER, value = "oracle.jbo.format.DefaultDateFormatter"),
 @Property(name = AttributeHints.FMT_FORMAT, value = "dd-mmm-yyyy"),
 @Property(name = AttributeHints.ATTRIBUTE_LABEL, value = "Hire Date"),
 @Property(name = AttributeHints.ATTRIBUTE_TOOLTIP, value = "My Tooltip"),
 @Property(name = AttributeHints.ATTRIBUTE_CTL_TYPE, value = AttributeHints.CTL_DEFAULT),
 @Property(name = AttributeHints.ATTRIBUTE_CTL_DISPLAYWIDTH, value = "40"),
 @Property(name = AttributeHints.ATTRIBUTE_CTL_DISPLAYHEIGHT, value = "20"),
 @Property(name = AttributeHints.ATTRIBUTE_CTL_FORMTYPE, value = AttributeHints.ATTRIBUTE_FORM_TYPE_DETAIL),
 @Property(name = AttributeHints.ATTRIBUTE_CTL_FIELD_ORDER, value =""),
 @Property(name = AttributeHints.ATTRIBUTE_CTL_CATEGORY, value = "")
 })
public Timestamp getHiredate() {}

4.9 Creating Custom Bean Data Controls

You can modify or enhance the functionality on the bean data control type by extending the definition and implementation classes for the bean data control type to create a custom data control.

Creating a custom bean-based data control consists of a combination of the following main steps:

	
(Optionally) extending oracle.adf.model.adapter.bean.BeanDataControl in order to customize the way the data control handles filtering, failover, updating data sources, and other data control features.

	
(Optionally) extending oracle.adf.model.adapter.bean.BeanDCDefinition to create a new implementation class.

If you create a new implementation class, you need to register that implementation class in the DataControls.dcx file. In the source view of the file, replace the value of the data control's ImplDef property (oracle.adf.model.adapter.bean.BeanDataControl) with the fully-qualified name of the new implementation class.

	
(Optionally) creating new structure definition types for the types of data structures that will be represented by your data control.

	
(Optionally), in the data control class, implement some of the existing supported features (such as failover or custom CRUD support).

For API documentation of the classes used by the bean data control and other data control types, see theJava API Reference for Oracle ADF Model.

6 Exposing URL Services Using the ADF Model Layer

This chapter describes how to create data controls for URL services.

This chapter includes the following sections:

	
Section 6.1, "About Using ADF Model with URL Services"

	
Section 6.2, "Exposing URL Services with ADF Data Controls"

	
Section 6.3, "Using URL Service Data Controls"

6.1 About Using ADF Model with URL Services

A URL service can be simply a URL against which a query is posted, so that the URL can be exposed as an ADF form. For example, say you have a URL service that allows you to access employee data for your company. This data can be retrieved using a URL as shown in Example 6-1.

Example 6-1 Sample URL that Accesses a URL Service

http://example.com/getEmployee?empId=20+deptId=10

This simple URL that accesses employee data can become an ADF data control with a method (getEmployee) and two parameters (empId and deptId), that can then be dropped on a page as a form.

URL services can also utilize representational state transfer (REST) actions. REST services are web services that can be accessed using a simple HTTP URL, rather than a more complex SOAP protocol. The HTTP actions (GET, PUT, POST, DELETE) are mapped to service operations that access and manipulate data at the service implementation. The response data can be returned in delimiter separated value and XML formats, and you can specify an XSD to define the input format for the PUT and POST actions.

	
Note:

This chapter focuses on using the URL Service data control type to create a data control based on a single URL service. To create a data control based on REST web services, you might be better served by using the REST Web Services data control type, which enables you to incorporate multiple REST methods in one data control with a single pass through the wizard. For more information, see Section 5.2.2, "How to Create a Data Control for a RESTful Web Service."

6.1.1 URL Services Use Cases and Examples

The REST architecture simplifies web service invocation by representing a web service as an HTTP resource, so that web service methods and operations look like a resources on the server that can be accessed through an HTTP URL.

For example, say a web service has a method called getEmployee(int EmpID). Using the REST architecture, this can become http://mywebservice.com/myService/getEmployee?EmpID=20. When represented as a plain HTTP URL, it is easy to use the URL service data control to quickly create a databound page that accesses this service.

6.1.2 Additional Functionality for URL Services

You may find it helpful to understand other data access features before you start working with URL services. Following are links to other functionality that may be of interest.

	
You can design a databound user interface by dragging an item from the Data Controls panel and dropping it on a page as a specific UI component. For more information, see Section 2.3.1, "How to Use the Data Controls Panel."

	
For information about creating data controls for application modules, see Chapter 2, "Using ADF Data Controls."

	
For information about creating web service data controls, see Chapter 5, "Exposing Web Services Using the ADF Model Layer."

6.2 Exposing URL Services with ADF Data Controls

The URL service data control enables you to access and consume data streams from specified URLs. A URL service data control can represent multiple operations. For example, the GET operation and the PUT operation for a given URL service can be represented by the same data control.

6.2.1 How to Create a URL Connection

You use the Create URL Connection dialog to create a URL connection by supplying a name and the connection details required to access a URL endpoint. You can access this dialog from the Create URL Service Data Control wizard or separately. If you access the dialog from the Create URL Service Data Control wizard, the connection only applies to the data control's application. If you access the dialog separately, you can create a single IDE-level connection that can be copied by multiple data controls.

Before you begin:

It may be helpful to have a general understanding of URL service data controls. For more information, see Section 6.2, "Exposing URL Services with ADF Data Controls."

You may also find it helpful to understand additional functionality that can be added using other URL services features. For more information, see Section 6.1.2, "Additional Functionality for URL Services."

You need to complete this task:

Make sure you have access to the URL service that the data control will access.
To create an IDE-level URL connection:

	
From the main menu, choose File > New > From Gallery.

	
In the New Gallery, expand General, select Connections and then URL Connection, and click OK.

	
In the Create URL Connection dialog, select where to create the connection.

Select Application Resources if you want the URL connection to be available only within the application. Select IDE Connections if you want the URL connection to be available from the Resources window for use in other applications.

	
Enter a name for the connection.

	
In the URL Endpoint field, enter the URL of the desired data stream.

Typically, this includes just the host and port. Do not include any URL parameters. For example, you can enter something like http://service.example.com:7101/.

	
Select the level of authentication from the Authentication Type dropdown.

None is the default authentication type and disables authentication. Use Digest when security is desired. In this way, the password will be transmitted across the network as an MD5 digest of the user's password and cannot be determined by sniffing network traffic. Basic authentication is primarily only useful when service access over the network does not require high security.

	
If digest or basic authentication is selected, specify the user name and password required to access the web site.

	
If the URL is associated with a protected area of the overall web site, enter the authentication realm.

	
After you have entered the name and endpoint, you can click Test Connection to verify URL connection is valid.

	
Click OK.

6.2.2 How to Create a URL Service Data Control

You can create a URL Service data control using the Create URL Service Data Control wizard, which is available from the New Gallery. When you create URL service data controls, you use the wizard to create each operation, one at a time.

Before you begin:

It may be helpful to have a general understanding of URL service data controls. For more information, see Section 6.2, "Exposing URL Services with ADF Data Controls."

You may also find it helpful to understand additional functionality that can be added using other URL services features. For more information, see Section 6.1.2, "Additional Functionality for URL Services."

You need to complete these tasks:

	
Create an application workspace and a project in that workspace. Depending on how you decide to organize your projects, you can use an existing application workspace and project or create new ones. For information on creating an application workspace, see "Creating Applications and Projects" in Developing Applications with Oracle JDeveloper.

	
Make sure you have access to the URL service that the data control will access.

	
Optionally, create the URL connection you will use, as described in Section 6.2.1, "How to Create a URL Connection."

To create a URL service data control:

	
In the Applications window, right-click the project where you want to place the data control and choose New > From Gallery.

	
In the New Gallery, expand Business Tier, select Data Controls and then URL Service Data Control, and click OK.

	
In the Create URL Service Data Control wizard, on the Data Source page, provide a name for the data control.

	
Select the URL connection for the data control to use.

	
If you have not yet created a URL connection, click the Create New Connection icon and specify a URL and a name for the connection.

	
If you have already created a URL connection, select the connection you want to use from the Connection dropdown.

	
From the HTTP Method dropdown list, select the action for this data control.

	
Optionally, select the Include HTTP Header Parameter checkbox. For more information, see Section 6.2.5, "How to Include a Custom Header Parameter for a URL Service Data Control."

	
In the Source field, enter the source for the URL service (for example, servicepath/servicename), and click Next.

If this operation requires a parameter, you can use the format ?symbol=##ParamName## to specify it (for example, servicepath/servicename?symbol=##id##). You can also use a parameter to provide dynamic input for the source path (for example, servicepath/##servicename##?symbol=##id##).

	
On the Parameters page, supply default values for any parameters you specified, and click Next.

For the PUT and POST operations, you must also provide an XML schema definition (XSD) that defines the format of the input.

	
On the Data Format page, select the data format of the data source and set the associated properties, then click Next.

You can choose either XML format (for which you provide URLs for the XSD and XSL) or delimiter separated value (for which you specify the delimiter, text qualifier, and encoding for the data).

	
On the Finish page, you can click Test URL Connection to verify that the URL data connection is valid, and click Finish.

	
Repeat the above steps for any other operation you would like to include in the data control. In order to include the additional operations in the same data control, fill in the Name field of the Data Source page of the wizard with the same name for the data control that you used when you ran the wizard for the first operation.

6.2.3 What Happens When You Create a URL Service Data Control

When you create a data control, JDeveloper creates the data control definition file (DataControls.dcx), opens the file in the overview editor, and displays the file's hierarchy in the Data Controls panel. For more information, see Section 2.2.2, "What Happens in Your Project When You Create a Data Control"

When you create a URL Service data control, the DataControls.dcx overview editor is populated with method nodes for each of your operations. Those method nodes may have Return subnodes, which in turn can contain subnodes for collections, scalar values, and attributes.

For operations on which you have selected the Include HTTP Header Parameter checkbox, an input parameter called HttpHeader and of type Map is specified for the method node.

For example, Figure 6-1 shows a data control with three methods, including a method with a custom header parameter (loadData(Map)).

Figure 6-1 URL Data Control in Data Controls Panel

[image: data control with 2 structured attributes and 3 methods]

For operations that take a parameter of a complex data type, a structured attribute node also appears.

See Table 6-1 for the full list of the nodes that appear for URL service data controls and information on how you can use them.

6.2.4 What You May Need to Know About Generating URL Data Controls without Schema

When you create a URL data control based on an HTTP GET method, a schema will be generated automatically if you do not specify one in the wizard. However, this auto-generated schema might not contain the information needed for the data control to work as you might expect. For example, the auto-generated schema has the following limitations:

	
If there is no data returned from an element, the generated schema does not reflect the detail of the element's structure, and thus there are no corresponding data control objects shown in the Data Controls panel.

	
If the returned data from a given element only contains one row, the element will not be treated as a table in the resulting data control. (You can fix this by adding the maxOccurs="unbounded" attribute to the given element in the schema.)

	
If you set an attribute as a primary key, the generated schema might not reflect the correct data type. For more information, see Section 6.2.6, "What You May Need to Know About Primary Keys in URL Service Data Controls."

The generated schema can be found under the project's Resources node in the Applications window, where you can inspect and edit it.

6.2.5 How to Include a Custom Header Parameter for a URL Service Data Control

When using a URL service data control, you may want to add a custom parameter to the HTTP header when invoking the HTTP request. Such a parameter can be useful for a variety of purposes, including for security or for notifications.

Before you begin:

It may be helpful to have a general understanding of URL service data controls. For more information, see Section 6.2, "Exposing URL Services with ADF Data Controls."

You may also find it helpful to understand additional functionality that can be added using other URL services features. For more information, see Section 6.1.2, "Additional Functionality for URL Services."

You need to complete these tasks:

	
Create a URL Service data control and select the Include HTTP Header Parameter checkbox in the wizard. For more information, see Section 6.2.2, "How to Create a URL Service Data Control."

	
Create a JSF page as described in "Creating a Web Page" in Developing Web User Interfaces with Oracle ADF Faces.

	
Create a managed bean and register it in the view project's adfc-config.xml file. For more information, see "How to Use a Managed Bean to Store Information" in Developing Fusion Web Applications with Oracle Application Development Framework.

To pass a custom header to a URL service:

	
In the managed bean, create a bean property of type java.util.Map that provides the header parameter names and values.

See Example 6-2 for an example of such a managed bean.

	
From the Data Controls panel, drag the method that includes the custom header parameter to a web page and drop it as an ADF Button.

	
In the Edit Action Binding dialog, perform the following steps to create the binding between the button and the managed bean:

	
In the Data Collection tree, select the method that includes the HTTP header parameter.

	
In the Parameters table, click in the Value cell for the parameter, click the drop-down button, and then choose Show EL Expression Builder.

	
In the Variables dialog, type the expression by hand or generate the expression by navigating through the Variables tree and selecting the managed bean field that represents the HTTP parameter to which you are binding.

For example, to bind to the httpHeadersMap property shown in Example 6-2, you would expand the ADF Managed Beans node, expand the node for the bean's scope, expand the node for name of the bean specified in the adfc-config.xml file (which is not necessarily the same as the class name), and select httpHeadersMap.

At runtime, the data control will obtain the entries from the map (if it is present) and add them as HTTP headers in the request.

Example 6-2 Managed Bean Containing Custom Parameters for URL Service Data Control

package view;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class BackingBean {

 private Map<String,String> httpHeadersMap = new HashMap<String,String>();

 public BackingBean() {
 httpHeadersMap.put("TenantID","OurCompany");
 }

 public void setHttpHeadersMap(Map<String,String> httpHeadersMap) {
 this.httpHeadersMap = httpHeadersMap;
 }

 public Map<String,String> getHttpHeadersMap() {
 return httpHeadersMap;
 }
}

6.2.6 What You May Need to Know About Primary Keys in URL Service Data Controls

When you create a data control on a URL service, the data control supports primary key operations on any exposed collection. However, to be sure the primary key functionality works correctly, on the Data Format page of the URL Service Data Control wizard, you must specify a schema that names the data type of the primary key field. (For URL data controls based on HTTP GET methods, you are not necessarily required to provide a schema.)

Otherwise, this feature is the same as the corresponding feature for web service data controls. For more information, see Section 5.2.6, "What You May Need to Know About Primary Keys in SOAP-Based Web Service Data Controls."

6.2.7 What You May Need to Know About URL Service Data Controls

Because the URL Service data control is not updatable, there are limitations on some of the objects in the Data Controls panel. For example, the only built-in operations available under the Operations node are for retrieval and navigation. Also, in a URL Service data control, the parameter object is the parameter that a user passes in the URL For more information, see Table 6-1.

6.3 Using URL Service Data Controls

As with other kinds of data controls, you can design a databound user interface by dragging an item from the Data Controls panel and dropping it on a page as a specific UI component. For more information, see Section 2.3.1, "How to Use the Data Controls Panel."

In the Data Controls panel, each data control object is represented by an icon. Table 6-1 describes what each icon represents, where it appears in the Data Controls panel hierarchy, and what components it can be used to create.

Table 6-1 Data Controls Panel Icons and Object Hierarchy for the URL Service Data Control

	Icon	Name	Description	Used to Create...
	
[image: icon for data control]

	
Data Control

	
Represents a data control. You cannot use the data control itself to create UI components, but you can use the child objects listed under the data control. There may be more than one data control, each representing a logical grouping of data functions.

	
Serves as a container for the other objects. Not used to create anything.

	
[image: icon for method]

	
Method

	
Represents the loadData() operation, which retrieves the contents of the URL. This operation may accept parameters, perform some action or business logic, and return data or data collections. If the method is a get method of a Map and returns a data collection, a method return icon appears as a child under it. If a method requires a parameter, a node appears under the method, which lists the required parameters.

	
Command components.

For methods that accept parameters: command components and parameterized forms.

For more information, see "Using Command Components to Invoke Functionality in the View Layer."

	
[image: icon for method return]

	
Method Return

	
Represents an object that is returned by a web service method. The returned object can be a single value or a collection.

A method return appears as a child under the method that returns it. The objects that appear as children under a method return can be attributes of the collection, other methods that perform actions related to the parent collection, and operations that can be performed on the parent collection.

When a single-value method return is dropped, the method is not invoked automatically by the framework. You should either drop the corresponding method as a button to invoke the method, or if working with task flows you can create a method activity for it. For more information about executables, see "Executable Binding Objects Defined in the Page Definition File" in Developing Fusion Web Applications with Oracle Application Development Framework

	
The same components as for collections and attributes and for query forms.

For more information on query forms, see "Creating ADF Databound Search Forms" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
[image: icon for collection]

	
Collection

	
Represents a data collection returned by an operation on the URL service. Collections appear as children under method returns, other collections, or structured attributes. The children under a collection may be attributes, other collections, custom methods, and built-in operations that can be performed on the collection.

	
Forms, tables, graphs, trees, range navigation components, and master-detail components.

For more information, see "Creating a Basic Databound Page," "Creating ADF Databound Tables," "Displaying Master-Detail Data," and "Creating Databound Graph and Gauge Components" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
[image: icon for structured attribute]

	
Structured Attribute

	
Represents a returned object that is a complex type but not a collection. For example, a structured attribute might represent a single user assigned to the current service request.

	
Label, text field, date, list of values, and selection list components

For more information, see "Creating Text Fields Using Data Control Attributes" and "Creating Databound Selection Lists and Shuttles" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
[image: icon for attribute]

	
Attribute

	
Represents a discrete data element in an object (for example, an attribute in a row). Attributes appear as children under the collections or method returns to which they belong.

	
Label, text field, and selection list components.

For more information, see "Creating Text Fields Using Data Control Attributes" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
[image: icon for operation]

	
Operation

	
Represents a built-in data control operation that performs actions on the parent object. Data control operations are located in an Operations node under collections. If an operation requires one or more parameters, they are listed in a Parameters node under the operation.

The following navigation operations are supported: First, Last, Next, and Previous. Execute is supported for refreshing queries. Create and Delete are available as applicable, depending on the URL method. Because the URL service data controls are not transactional, Commit and Rollback are not supported.

	
UI command components, such as buttons, links, and menus.

For more information, see "Creating Command Components Using Data Control Operations" and "Creating an Input Form" in Developing Fusion Web Applications with Oracle Application Development Framework.

	
[image: icon for parameter]

	
Parameter

	
Represents a parameter value that is declared by the method or operation under which it appears. Parameters appear in a node under a method or operation.

The parameter for a URL Service data control is the parameter that a user passes in the URL. These show up as a parameters to the loadData() method when the URL Service data control is created. For example, say you create a data control to the URL http://www.example.org?id=##param##. On the Data Controls panel, you would see that the loadData() method has one parameter with the name param. The value supplied to this parameter is substituted in the URL when the invocation occurs.

	
Label, text, and selection list components.

7 Adding Business Logic to Data Controls

This chapter describes how to configure your data controls with declarative metadata, such as default labels for attributes, new transient attributes, validation rules, and built-in search criteria. In addition, this chapter shows how you can test the data controls that you have configured before you use them in an application and provides a reference on using Groovy expressions in data controls.

This chapter includes the following sections:

	
Section 7.1, "Introduction to Adding Business Logic to Data Controls"

	
Section 7.2, "Configuring Data Controls"

	
Section 7.3, "Working with Attributes"

	
Section 7.4, "Adding Transient Attributes to a Data Object"

	
Section 7.5, "Defining Validation Rules on Attributes Declaratively"

	
Section 7.6, "Filtering Result Sets with Named Criteria"

	
Section 7.7, "Creating List of Values Objects"

	
Section 7.8, "Testing Data Object Metadata Using the Oracle ADF Model Tester"

	
Section 7.9, "Groovy Language Support"

7.1 Introduction to Adding Business Logic to Data Controls

When you generate data controls, you can use them without further modification to create bindings between your data model and the UI components in your application. In addition, you can configure the data controls to add business logic and other features to your data model so that those features are applied when you use the Data Controls panel to create UI components. For example, depending on the type of data control you are creating, you can do the following things:

	
Configure default values for attributes

	
Add labels and tooltips for attributes

	
Add custom metadata (typically name-value pairs) that can be referenced via expression language (EL) from the ADF Faces UI

	
Add calculated attributes

	
Add attribute-level validation rules with custom error messages

	
Define declarative search forms

7.2 Configuring Data Controls

When you create a data control, a standard set of values and behaviors are assumed for the data control. For example, the data control determines how the label for an attribute will display in a client. You can configure these values and behaviors by creating and modifying data control structure files that correspond to the elements of the data control. You first generate a data control structure file using the overview editor for the .dcx file.

7.2.1 How to Edit a Data Control

You can make a data control configurable by using the overview editor for the DataControls.dcx file to create data control structure files that correspond to objects encompassed by the data control. You can then edit the individual data control structure files.

Before you begin:

It may be helpful to have a general understanding of data control configuration. For more information, see Section 7.2, "Configuring Data Controls."

You will need to complete this task:

	Create a data control, as described in Section 2.2.1, "How to Create ADF Data Controls."

To edit a data control:

	
In the Applications window, double-click DataControls.dcx.

	
In the overview editor, select the object that you would like to configure and click the Edit icon to generate a data control structure file, as shown in Figure 7-1.

Figure 7-1 Edit Button in Data Controls Registry

[image: customerFindAll accessor selected and Edit icon highlighted]

	
In the overview editor of the data control structure file, make the desired modifications.

7.2.2 What Happens When You Edit a Data Control

When you edit a data control, JDeveloper creates a data control structure file that contains metadata for the affected collection and opens that file in the overview editor. This file stores configuration data for the data control that is specific to that collection, such as any UI hints or validators that you have specified for the data object.

A data control structure file has the same base name as the data object with which it corresponds. For example, if you click the Edit icon when you have a collection node selected that corresponds with the Customer.java entity bean, the data control structure file is named Customer.xml. The data control structure file is generated in a package that corresponds to the package of the bean class, but with persdef prepended to the package name. For example, if the Customer.java bean is in the model package, the Customer.xml data control definition file is generated in the persdef.model package. Once a data control structure file has been generated, you can use the overview editor for that file to make further configurations.

A data control structure file contains the following information:

	
Attributes: Describes all of the attributes on the service. For example, for entity beans, there is an attribute for each bean property that is mapped to a database column. You can also add transient attributes. You can set UI hints that define how these attributes will display in the UI. You can also set other properties, such as whether the attribute value is required, whether it must be unique, and whether it is visible. For more information, see Section 7.3, "Working with Attributes."

You can also set validation for an attribute and create custom properties. For more information on validation, see Section 7.5, "Defining Validation Rules on Attributes Declaratively." For more information on custom properties, see the "How to Implement Generic Functionality Driven by Custom Properties" section of Developing Fusion Web Applications with Oracle Application Development Framework.

	
Accessors: Describes data control elements that return result sets.

	
Named Criteria: Enables you to create rules to filter the rows that are presented. Named criteria are available for JPA-based data controls.

For more information, see Section 7.6, "Filtering Result Sets with Named Criteria."

	
List of Values: Enables you to create declarative associations between an attribute of the current data object and rows from another data object. You can then create components from these associations such as dropdown lists.

	
Operations: Describes methods on the data object that are used by the data control's built-in operations, such as add and remove methods, which are used by the Create and Delete built-in operations, respectively.

Figure 7-2 shows the data control structure file for the Item bean.

Figure 7-2 Data Control Structure File in the Overview Editor

[image: item.xml data control structure file]

	
Note:

The overview editor of a data control structure file shows all of the attributes, accessors, and operations that are associated with the data object. However, the data control structure file's XML source only contains definitions for elements that you have edited. The base elements are introspected from the data object. Also, when you make changes to the underlying data object, the data control inherits those changes.

7.2.3 How to Convert Data Controls from a Previous Release

The format of data control structure files changed in Release 11.1.2 to enable additional features, such as named criteria and list of values. In addition, data control structure files are now only generated on demand, such as when you need to add metadata to a data control object or if you have them generated when creating the data control. There is no longer metadata for data control objects that merely repeats information that is already available in the object on which the data control is based. For JPA-based data controls, UpdatableSingleValue.xml and UpdateableCollection.xml files are no longer generated.

If you have a data control from a previous release, you can continue using that data control in applications that you develop with later versions of JDeveloper. However, if you plan to make changes to that data control, you should first convert the data control to the new format. Modification of data controls in the old format is not supported.

Converting an old data control to use the current structure definition format involves a few changes to the DataControls.dcx file and generation of new data control structure files. You do not need to rebind existing UI components to the updated data control.

To migrate a data control from a previous release:

	
In the current version of JDeveloper, open the application workspace that contains the data control.

	
Open the DataControls.dcx file and make the following changes:

	
Change the value of the ImplDef attribute to the name of the appropriate data control implementation class, as shown in Table 7-1.

	
Optionally, for bean and EJB data controls, add a DataControlHandler attribute to the data control's bean-definition or ejb-definition element to enable full query and paging support. For JPA-based data controls, typically you would typically use oracle.adf.model.adapter.bean.jpa.JPQLDataFilterHandler. For non-JPA data controls you typically use oracle.adf.model.adapter.bean.DataFilterHandler.

	
Optionally, for JPA-based bean and EJB data controls, add an accessMode attribute to the data control's bean-definition or ejb-definition element to specify the type of paging for the data control. The value of the accessMode can be scrollable or rangePaging. For more information on access mode, see Section 3.4, "Paginated Fetching of Data in EJB Data Controls."

	
Optionally, for JPA-based bean and EJB data controls, add an eagerPersist attribute to the data control's bean-definition or ejb-definition element to specify whether new records are persisted eagerly. The value of eagerPersist can be false or true. For more information, see Section 3.3.8, "About Automatically Persisting New Rows."

	
For data controls to which you have added metadata (such as UI hints or validators), create new data control structure files as shown in Section 7.2.1, "How to Edit a Data Control."

	
Optionally, in the data control's project, delete the old data control structure files. These include:

	
UpdatableSingleValue.xml

	
UpdateableCollection.xml

	
Files ending in .xml that contain metadata for a data control object (not including the new files that you generated in step 3.

For an example of a converted DataControls.dcx file, see Example 7-1.

Table 7-1 Data Control Implementation Classes

	Data Control Type	Data Control Implementation Class
	
EJB

	
oracle.adfinternal.model.adapter.ejb.EjbDCDefinition

	
Bean

	
oracle.adf.model.adapter.bean.BeanDCDefinition

	
Web Service

	
oracle.adfinternal.model.adapter.webservice.WSDefinition

	
URL Service

	
oracle.adfinternal.model.adapter.url.URLDCDefinition

Example 7-1 DataControls.dcx File Converted to Use Sparse Metadata

<?xml version="1.0" encoding="UTF-8" ?>
<DataControlConfigs xmlns="http://xmlns.oracle.com/adfm/configuration"
 version="11.1.1.61.92" id="DataControls" Package="model1">
 <AdapterDataControl id="BeanPagingDC1"
 FactoryClass="oracle.adf.model.adapter.DataControlFactoryImpl"
 ImplDef="oracle.adf.model.adapter.bean.BeanDCDefinition"
 SupportsTransactions="false" SupportsSortCollection="true"
 SupportsResetState="false" SupportsRangesize="false"
 SupportsFindMode="false" SupportsUpdates="true"
 Definition="model1.BeanPagingDC1"
 BeanClass="model1.BeanPagingDC1"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol">
 <CreatableTypes>
 <TypeInfo FullName="model1.SampleData1"/>
 <TypeInfo FullName="model1.BeanPagingDC1"/>
 </CreatableTypes>
 <Source>
 <bean-definition BeanClass="model1.BeanPagingDC1"
 DataControlHandler="oracle.adf.model.adapter.bean.DataFilterHandler"
 AccessMode="scrollable"
 xmlns="http://xmlns.oracle.com/adfm/adapter/bean"/>
 </Source>
 </AdapterDataControl>
</DataControlConfigs>

7.2.4 What You May Need to Know About MDS Customization of Data Controls

If you wish for all of the objects that are encompassed by the data control to be available for Oracle Metadata Services (MDS) customization, the packaged application must contain data control structure files for those objects.

When you create a data control based on the adapter framework, data control structure files are not generated by default, since they are not needed by the data control if you do not add metadata to a given object. Typically, a data control structure file is only generated for a data control object once you edit the data control to add declarative metadata (such as UI hints or validators) to that object, as described in Section 7.2.1, "How to Edit a Data Control." To create data control structure files for each data control object, you need to repeat that procedure for each data control object.

	
Note:

In the Create EJB Data Control and the Create Bean Data Control wizards, there is a Generate Metadata checkbox that you can select in order to have structure files for each data control object generated upon creation of the data control.

For more information on MDS, see "Customizing Applications with MDS" in Developing Fusion Web Applications with Oracle Application Development Framework.

7.3 Working with Attributes

When you create a data control for your business services, you can create a data control structure file for an individual data object in which you can declaratively augment the functionality of the data object's persistent attributes. For example, you can create validation rules and set UI hints to control the default presentation of attributes in UI components. In addition, you can create transient attributes.

In all cases, you set these properties on the Attributes page of the overview editor of the data control structure file. For information on creating a data control structure file, see Section 7.2.1, "How to Edit a Data Control."

7.3.1 How to Designate an Attribute as Primary Key

In the overview editor for a data object's data control structure file, you can designate an attribute as a primary key for that data object if you have not already done so in the data object's underlying class.

Before you begin:

It may be helpful to have an understanding of how you set attribute properties. For more information, see Section 7.3, "Working with Attributes."

You will need to complete this task:

	Create the desired data control structure files as described in Section 7.2.1, "How to Edit a Data Control."

To set an attribute as a primary key:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute you want to designate as the primary key and then click the Details tab.

	
On the Details page, set the Key Attribute property.

	
Note:

If the attribute has already been designated as the primary key in the class (such as through the JPA @ID annotation), the data control inherits that setting and the Key Attribute checkbox will be selected. However, in this case, you can not deselect the Key Attribute option.

7.3.2 How to Control the Updatability of an Attribute

The Updatable property controls whether the value of a given attribute can be updated. You can select the following values for the Updatable property:

	
Always - the attribute is always updatable

	
Never- the attribute is read-only

	
While New- the attribute can be set during the transaction that creates the row for the first time, but after being successfully committed to the database the attribute is read-only

Before you begin:

It may be helpful to have an understanding of how you set attribute properties. For more information, see Section 7.3, "Working with Attributes."

You will need to complete this task:

	Create the desired data control structure files as described in Section 7.2.1, "How to Edit a Data Control."

To set the updatability of an attribute:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute you want to edit, and then click the Details tab.

	
On the Details page, select a value from the Updatable dropdown list.

7.3.3 How to Define a Static Default Value for an Attribute

The Value field in the Details section allows you to specify a static default value for the attribute when the value type is set to Literal. For example, you might set the default value of a ServiceRequest entity bean's Status attribute to Open, or set the default value of a User bean's UserRole attribute to user.

Before you begin:

It may be helpful to have an understanding of how you set attribute properties. For more information, see Section 7.3, "Working with Attributes."

To define a static default value for an attribute:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute you want to edit, and then click the Details tab.

	
On the Details page, select the Literal option.

	
In the text field below the Literal option, enter the default value for the attribute.

7.3.4 How to Define a Default Value Using a Groovy Expression

You can use a Groovy expression to define a default value for an attribute. This approach is useful if you want to be able to change default values at runtime. However, if the default value is always the same, the value is easier to see and maintain using value field with the Literal type (on the Details tab). For general information about using Groovy, see Section 7.9, "Groovy Language Support."

Before you begin:

It may be helpful to have an understanding of how you set attribute properties. For more information, see Section 7.3, "Working with Attributes."

You will need to complete this task:

	Create the desired data control structure files as described in Section 7.2.1, "How to Edit a Data Control."

To define a default value using a Groovy expression:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute you want to edit, and then click the Details tab.

	
On the Details page, select Expression for the default value type, and click the Edit button next to the adjoining text field.

	
In the Edit Expression dialog, enter an expression in the field provided.

Attributes that you reference can include any attribute that is defined for the data object.

	
If the attribute is transient, select the appropriate recalculate setting, as shown in Figure 7-3.

Figure 7-3 Edit Expression Editor

[image: Edit Expression Editor dialog]

If you select Always (default), the expression is evaluated each time any attribute in the row changes.

If you select Never, the expression is evaluated only when the row is created.

If you select Based on the following expression, you can provide an expression that determines when to recalculate the attribute value.

For example, the following expression in the Based on the following expression field causes the attribute to be recalculated when either the Quantity attribute or the UnitPrice attribute are changed:

return (adf.object.dataProvider.isAttributeChanged("Quantity") || adf.object.dataProvider.isAttributeChanged("UnitPrice"));

	
In the Available list at the bottom of the dialog, select any attributes upon which the value expression or the optional recalculate expression is based and shuttle each to the Selected list.

	
Click OK to save the expression.

7.3.5 What Happens When You Create a Default Value Using a Groovy Expression

When you define a default value using a Groovy expression, <RecalcCondition> and <TransientExpression> tags are added within the tag for the corresponding attribute in the data control structure file. In addition, a <Dependencies> tag is added if you have specified any dependencies for the expression. Example 7-2 shows the code that is added to the LineItemTotal attribute when an expression is written to define the default value as the product of the price and quantity attributes and the recalculate condition is specified as Always.

Example 7-2 Default Value Expression

<RecalcCondition><![CDATA[true]]></RecalcCondition>
<TransientExpression><![CDATA[price * quantity]]></TransientExpression>
<Dependencies>
 <Item
 Value="price"/>
 <Item
 Value="quantity"/>
</Dependencies>

7.3.6 How to Set UI Hints on Attributes

You can set UI hints on attributes so that those attributes are displayed and labeled in a consistent and localizable way by any UI components that use those attributes. To create UI hints for attributes, use the overview editor for the data object's data control structure file, which is accessible from the Applications window.

Before you begin:

It may be helpful to have an understanding of how you set attribute properties. For more information, see Section 7.3, "Working with Attributes."

You will need to complete this task:

	Create the desired data control structure files as described in Section 7.2.1, "How to Edit a Data Control."

To set a UI hint:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute you want to edit, and then click the UI Hints tab.

	
In the UI Hints section, set the desired UI hints.

For information about the various UI hints, see the "Defining UI Hints for View Objects" section of Developing Fusion Web Applications with Oracle Application Development Framework.

	
Note:

The view objects referenced in Developing Fusion Web Applications with Oracle Application Development Framework are ADF Business Components used to encapsulate SQL queries and to simplify working with the results. Data control structure files function much like view objects in adapter data controls and provide many of the same configuration options. For more information on view objects, see the "About View Objects" section of Developing Fusion Web Applications with Oracle Application Development Framework.

7.3.7 What Happens When You Set UI Hints on Attributes

When you set UI hints on an attribute, those hints are stored as properties. Tags for the properties are added to the data object's data control structure file and the values for the properties are stored in a resource bundle file. If the resource bundle file does not already exist, it is generated in the data control's package and named according to the project name when you first set a UI hint.

Example 7-3 shows the code for the price attribute in the Item.xml data control structure file, including tags for the Label and Format Type hints which have been set for the attribute.

Example 7-3 XML Code for UI Hints

<PDefAttribute
 Name="price">
 <Properties>
 <SchemaBasedProperties>
 <LABEL
 ResId="${adfBundle['model.ModelBundle']['model.Item.price_LABEL']}"/>
 <FMT_FORMATTER
 ResId="${adfBundle['model.ModelBundle']['model.Item.price_FMT_
 FORMATTER']}"/>
 </SchemaBasedProperties>
 </Properties>
</PDefAttribute>

Example 7-4 shows the corresponding entries for the Label and Format Type hints in the ModelBundle.properties resource bundle file, which contains the values for all of the project's localizable properties.

Example 7-4 Resource Bundle Code for UI Hints

model.Item.price_LABEL=Price
. . .
model.Item.price_FMT_FORMATTER=oracle.jbo.format.DefaultCurrencyFormatter

7.4 Adding Transient Attributes to a Data Object

In addition to having attributes that map to columns in an underlying table, your data control structure files can include transient attributes that display calculated values.

For example, a transient attribute you create, such as FullName, could be calculated based on the concatenated values of FirstName and LastName attributes.

Once you create the transient attribute, you can use a Groovy expression in the attribute definition to specify a default value.

7.4.1 How to Add a Transient Attribute

Use the Attributes page of the overview editor to create a transient attribute.

Before you begin:

It may be helpful to have an understanding of transient and calculated attributes. For more information, see Section 7.4, "Adding Transient Attributes to a Data Object."

You will need to complete this task:

	Create the desired data control structure files as described in Section 7.2.1, "How to Edit a Data Control."

To add a transient attribute to a data object's data control structure file:

	
In the Applications window, double-click the data object's data control structure file.

	
In the overview editor, click the Attributes navigation tab, and then click the Create new attribute icon.

	
In the New View Attribute dialog, enter a name for the attribute and click OK.

	
On the Attributes page of the overview editor, click the Details tab and select an object type from the Type dropdown list.

	
Optionally, in the Default Value section, set a default value or enter an expression to calculate the default value.

For information on setting an expression to calculate the default value, see Section 7.3.4, "How to Define a Default Value Using a Groovy Expression."

	
If the value will be calculated with an expression, set Updatable to Never.

7.4.2 What Happens When You Add a Transient Attribute

When you add a transient attribute, JDeveloper adds a <ViewAttribute> tag to the data object's data control structure file to reflect the new attribute. Example 7-5 shows the XML code for a transient attribute named LineItemTotal that is based on an expression that multiplies the values of the price and quantity attributes.

Example 7-5 XML Code for a Transient Attribute

<ViewAttribute
 Name="LineItemTotal"
 IsUpdateable="false"
 IsSelected="false"
 IsPersistent="false"
 PrecisionRule="true"
 Type="java.lang.String"
 ColumnType="$none$">
 SQLType="VARCHAR">
 <RecalcCondition><![CDATA[true]]></RecalcCondition>
 <TransientExpression><![CDATA[price * quantity]]></TransientExpression>
 <Dependencies>
 <Item
 Value="price"/>
 <Item
 Value="quantity"/>
 </Dependencies>
 </ViewAttribute>

7.5 Defining Validation Rules on Attributes Declaratively

The easiest way to create and manage validation rules is through declarative validation rules. Declarative validation rules are defined using the overview editor, and once created, are stored in the data object's data control structure file. Encapsulating the business logic this way ensures that your business information is validated consistently in every client that accesses it, and it simplifies maintenance by centralizing where the validation is stored.

Oracle ADF provides built-in declarative validation rules for many common business needs. You can also base validation on a Groovy expression, as described in Section 7.5.4, "How to Use Groovy Expressions For Validation Rules."

When you add a validation rule, you supply an appropriate error message and can later translate it easily into other languages if needed. You can also set the severity level.

Many of the declarative validation features available for data objects are also available at the page definition level, should your application warrant the use of page-level validation in addition to business-layer validation. For more information, see the "Using Validation in the ADF Model Layer" chapter of Developing Fusion Web Applications with Oracle Application Development Framework.

	
Note:

You can also add validation rules by implementing a custom validation class. This approach is particularly useful if you need to define complex parameterized validation rules (such as for checking credit card numbers) that you will need to use multiple times in your application. For more information, see the "Implementing Custom Validation Rules" section of Developing Fusion Web Applications with Oracle Application Development Framework.

7.5.1 How to Add Validation Rules to Attributes

The process for adding a validation rule to a data object is similar for most of the validation rules, and is done using the Add Validation Rule dialog. You can open this dialog by opening the data object's data control structure file, selecting an attribute on Attributes page, clicking the Validation Rules tab, and then clicking the Add icon

It is important to note that when you define a rule declaratively using the Add Validation Rule dialog, the rule definition you provide specifies the valid condition for the attribute. At runtime, the entry provided by the user is evaluated against the rule definition, and an error or warning is raised if the entry fails to satisfy the specified criteria. For example, if you specify a Length validator on an attribute that requires it to be Less Than or Equal To 12, the validation fails if the entry is more than 12 characters, and the error or warning is raised.

To add a declarative validation rule to a data control structure file, use the Attributes page of the data object's overview editor.

Before you begin:

It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 7.5, "Defining Validation Rules on Attributes Declaratively."

You will need to complete this task:

	Create the desired data control structure files as described in Section 7.2.1, "How to Edit a Data Control."

To add a validation rule:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute for which you want to add the validation rule, and then click the Validation Rules tab.

	
In the Validation Rules page, click the Add Validation Rule icon.

	
In the Add Validation Rule dialog, select the type of validation rule desired from the Rule Type dropdown list.

Note that the subordinate fields change depending on your choices.

	
Use the dialog settings to configure the new rule.

For more information about the different validation rules, see Section 7.5.3, "How to Use the Built-in Declarative Validation Rules."

	
Click the Failure Handling tab and enter or select the error message that will be shown to the user if the validation rule fails. For more information, see Section 7.5.5, "How to Create Validation Error Messages."

	
Click OK.

7.5.2 What Happens When You Add a Validation Rule

When you add a validation rule to a data object, JDeveloper updates the data object's data control structure file to include an entry describing what rule you've used and what rule properties you've entered.

For example, if you add a compare validation rule to the dateShipped attribute to ensure that the shipping date does not precede the date in the dateOrdered attribute, this results in a <validation:CompareValidationBean> entry in the XML file, as shown in Example 7-6.

Example 7-6 Compare Validator

<validation:CompareValidationBean
 Name="dateShipped_Rule_0"
 ResId="${adfBundle['model.ModelBundle']['model.Ord.dateShipped_Rule_0']}"
 OnAttribute="dateShipped"
 OperandType="EXPR"
 Inverse="false"
 CompareType="GREATERTHANEQUALTO">
 <validation:TransientExpression><![CDATA[dateOrdered]]>
 </validation:TransientExpression>
</validation:CompareValidationBean>

7.5.3 How to Use the Built-in Declarative Validation Rules

The built-in declarative validation rules can satisfy many, if not all, of your business needs. These rules are easy to implement because you don't write any code. You use the user-interface tools to choose the type of validation and how it is used.

Built-in declarative validation rules can be used to:

	
Make a comparison between an attribute and literal value or expression.

	
Validate against a list of values that you provide manually.

	
Make sure that a value falls within a certain range, or that it is limited by a certain number of bytes or characters.

	
Validate using a regular expression or evaluate a Groovy expression.

7.5.3.1 Validating Based on a Comparison

The Compare validator performs a logical comparison between an attribute and a value. When you add a Compare validator, you specify an operator and something to compare with. You can compare the following:

	
Literal value

When you use a Compare validator with a literal value, the value in the attribute is compared against the specified literal value. When using this kind of comparison, it is important to consider data types and formats. The literal value must conform to the format specified by the data type of the attribute to which you are applying the rule. In all cases, the type corresponds to the type mapping for the attribute.

For example, an attribute of column type DATE maps to the oracle.jbo.domain.Date class, which accepts dates and times in the same format accepted by java.sql.TimeStamp and java.sql.Date. You can use format masks to ensure that the format of the value in the attribute matches that of the specified literal.

	
Expression

For information on the expression option, see Section 7.5.4, "How to Use Groovy Expressions For Validation Rules."

Before you begin:

It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 7.5, "Defining Validation Rules on Attributes Declaratively."

You will need to complete this task:

	Create the desired data control structure files as described in Section 7.2.1, "How to Edit a Data Control."

To validate based on a comparison:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute for which you want to add the validation rule, and then click the Validation Rules tab.

	
In the Validation Rules page, click the Add Validation Rule icon.

	
In the Add Validation Rule dialog, in the Rule Type dropdown list, select Compare.

	
Select the appropriate operator.

	
Select an item in the Compare With list, and based on your selection provide the appropriate comparison value.

	
Click the Failure Handling tab and enter or select the error message that will be shown to the user if the validation rule fails. For more information, see Section 7.5.5, "How to Create Validation Error Messages."

	
Click OK.

7.5.3.2 What Happens When You Validate Based on a Comparison

When you create a Compare validator, a <validation:CompareValidationBean> tag is added to the data object's data control structure file.

Example 7-6 shows the XML code for the validator on the dateShipped attribute.

7.5.3.3 Validating Using a List of Values

The List validator compares an attribute against a list of values that you provide manually. The validator ensures that the value of the data object attribute is in (or not in, if specified) that list.

Before you begin:

It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 7.5, "Defining Validation Rules on Attributes Declaratively."

You will need to complete this task:

	Create the desired data control structure files as described in Section 7.2.1, "How to Edit a Data Control."

To validate using a list of values:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute for which you want to add the validation rule, and then click the Validation Rules tab.

	
In the Validation Rules page, click the Add Validation Rule icon.

	
In the Add Validation Rule dialog, in the Rule Type dropdown list, select List.

	
In the Operator field, select In or NotIn, depending on whether you want an inclusive list or an exclusive list.

	
In the Enter List of Values section, enter the values, one per line.

	
Click the Failure Handling tab and enter or select the error message that will be shown to the user if the validation rule fails. For more information, see Section 7.5.5, "How to Create Validation Error Messages."

	
Click OK.

7.5.3.4 What Happens When You Validate Using a List of Values

When you validate using a list of values, a <validation:ListValidationBean> tag is added to the data object's data control structure file.

7.5.3.5 Ensuring That a Value Falls Within a Certain Range

The Range validator performs a logical comparison between an attribute and a range of values. When you add a Range validator, you specify minimum and maximum literal values. The Range validator verifies that the value of the attribute falls within the range (or outside the range, if specified).

If you need to dynamically calculate the minimum and maximum values, or need to reference other attributes, use the Script Expression validator and provide a Groovy expression. For more information, see Section 7.9.1, "How to Reference ADF Objects in Groovy Expressions."

Before you begin:

It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 7.5, "Defining Validation Rules on Attributes Declaratively."

You will need to complete this task:

	Create the desired data control structure files as described in Section 7.2.1, "How to Edit a Data Control."

To validate within a certain range:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute for which you want to add the validation rule, and then click the Validation Rules tab.

	
In the Validation Rules page, click the Add Validation Rule icon.

	
In the Add Validation Rule dialog, in the Rule Type dropdown list, select Range.

	
In the Operator field, select Between or NotBetween.

	
In the Minimum Value and Maximum Value fields, enter appropriate values.

	
Click the Failure Handling tab and enter or select the error message that will be shown to the user if the validation rule fails. For more information, see Section 7.5.5, "How to Create Validation Error Messages."

	
Click OK.

7.5.3.6 What Happens When You Use a Range Validator

When you validate against a range, a <validation:RangeValidationBean> tag is added to the data control structure file.

Example 7-7 shows the quantity attribute with a minimum of zero and a maximum of 10.

Example 7-7 Range Validator XML Code

<PDefAttribute
 Name="quantity">
 <validation:RangeValidationBean
 Name="quantity_Rule_0"
 ResId="${adfBundle['model.ModelBundle']['QUANTITY_VALIDATOR']}"
 OnAttribute="quantity"
 OperandType="LITERAL"
 Inverse="false"
 MinValue="0"
 MaxValue="10"/>
. . .
</PDefAttribute>

7.5.3.7 Validating Against a Number of Bytes or Characters

The Length validator validates whether the string length (in characters or bytes) of an attribute's value is less than, equal to, or greater than a specified number, or whether it lies between a pair of numbers. For example, you might have a field where the user enters a password or PIN and you need to validate that it is at least 6 characters long, but not longer than 10.

Before you begin:

It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 7.5, "Defining Validation Rules on Attributes Declaratively."

You will need to complete this task:

	Create the desired data control structure files as described in Section 7.2.1, "How to Edit a Data Control."

To validate against a number of bytes or characters:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute for which you want to add the validation rule, and then click the Validation Rules tab.

	
In the Validation Rules page, click the Add Validation Rule icon.

	
In the Add Validation Rule dialog, in the Rule Type dropdown list, select Length.

	
In the Operator field, select how to evaluate the value.

	
In the Comparison Type field, select Byte or Character and enter a length in the Value field.

	
Click the Failure Handling tab and enter or select the error message that will be shown to the user if the validation rule fails. For more information, see Section 7.5.5, "How to Create Validation Error Messages."

	
Click OK.

7.5.3.8 What Happens When You Validate Against a Number of Bytes or Characters

When you validate using length, a <validation:LengthValidationBean> tag is added to the data control structure file. Example 7-8 shows the Between operator with a minimum value of 6 and a maximum value of 10.

Example 7-8 Validating the Length Between Two Values

 <validation:LengthValidationBean
 OnAttribute="pin"
 CompareType="BETWEEN"
 DataType="CHARACTER"
 MinValue="6"
 MaxValue="10"
 Inverse="false"/>

7.5.3.9 Validating Using a Regular Expression

The Regular Expression validator compares attribute values against a mask specified by a Java regular expression.

If you want to create expressions that can be personalized in metadata, you can use the Script Expression validator. For more information, see Section 7.5.4, "How to Use Groovy Expressions For Validation Rules."

Before you begin:

It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 7.5, "Defining Validation Rules on Attributes Declaratively."

You will need to complete this task:

	Create the desired data control structure files as described in Section 7.2.1, "How to Edit a Data Control."

To validate using a regular expression:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute for which you want to add the validation rule, and then click the Validation Rules tab.

	
In the Validation Rules page, click the Add Validation Rule icon.

	
In the Add Validation Rule dialog, in the Rule Type dropdown list, select Regular Expression.

	
In the Operator field, you can select Matches or Not Matches.

	
To use a predefined expression (if available), you can select one from the dropdown list and click Use Pattern. Otherwise, write your own regular expression in the field provided.

	
Click the Failure Handling tab and enter or select the error message that will be shown to the user if the validation rule fails. For more information, see Section 7.5.5, "How to Create Validation Error Messages."

	
Click OK.

Figure 7-4 shows what the dialog looks like when you select a Regular Expression validator and validate that the Email attribute matches a predefined Email Address expression.

Figure 7-4 Regular Expression Validator Matching Email Address

[image: Predefined expression for email validation]

7.5.3.10 What Happens When You Validate Using a Regular Expression

When you validate using a regular expression, a <RegExpValidationBean> tag is added to the data control structure file. Example 7-9 shows an Email attribute that must match a regular expression.

Example 7-9 Regular Expression Validator XML Code

<validation:RegExpValidationBean
 Name="Email_Rule_0"
 OnAttribute="Email"
 Pattern="[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}"
 Flags="CaseInsensitive"
 Inverse="false"/>

7.5.4 How to Use Groovy Expressions For Validation Rules

Groovy expressions are Java-like scripting code stored in the data control structure file. You can even change or specify values at runtime.

For more information about creating validation rules, see Chapter 7, "Defining Validation Rules on Attributes Declaratively."

For more information about using Groovy expressions in your business logic, see Section 7.9, "Groovy Language Support."

7.5.4.1 Validating Using a Groovy Expression

You can use a Groovy expression to return a true/false statement. The Script Expression validator requires that the expression either return true or false, or that it calls the adf.error.raise/warn() method. A common use of this feature would be to validate an attribute value, for example, to make sure that an account number is valid.

	
Note:

Using the adf.error.raise() and adf.error.warn() methods (rather than simply returning true or false) allows you to define the message text to show to the user, and to associate a validator with a specific attribute. For more information, see Section 7.5.5.4, "Raising Error Message Conditionally Using Groovy."

Before you begin:

It may be helpful to have an understanding of validation in data control structure files. For more information, see Section 7.5, "Defining Validation Rules on Attributes Declaratively."

You may also find it helpful to understand the use of Groovy in validation rules. For more information, see Section 7.5.4, "How to Use Groovy Expressions For Validation Rules."

You will need to complete this task:

	Create the desired data control structure files as described in Section 7.2.1, "How to Edit a Data Control."

To validate using a true/false expression:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute for which you want to add the validation rule, and then click the Validation Rules tab.

	
In the Validation Rules page, click the Add Validation Rule icon.

	
In the Add Validation Rule dialog, in the Rule Type dropdown list, select Script Expression.

	
Enter a validation expression in the field provided.

	
Click the Failure Handling tab and enter or select the error message that will be shown to the user if the validation rule fails. For more information, see Section 7.5.5, "How to Create Validation Error Messages."

	
Click OK.

7.5.4.2 What Happens When You Validate Based on a Groovy Expression

When you create a Groovy expression, it is saved in the data object's data control structure file. The Groovy expression is wrapped by a <TransientExpression> tag. For some Groovy expressions, the <TransientExpression> tag is wrapped by a <validation:ExpressionValidationBean> tag as well.

7.5.4.3 Referencing Data Object Methods in Groovy Validation Expressions

You can call methods on the data object using the adf.source.dataProvider property of the current object. The adf.source.dataProvider property allows you to access the data object that is being validated.

If the method is a non-boolean type and the method name is getXyzAbc() with no arguments, then you access its value as if it were a property named XyzAbc. For example, the Groovy expression in Example 7-10 would call the getXyzAbc() method.

Example 7-10 Groovy Expression Calling Sample Methods

adf.source.dataProvider.XyzAbc

For a Boolean property, the same holds true but the JavaBeans component naming pattern for the getter method changes to recognize isXyzAbc() instead of getXyzAbc(). If the method on your data object does not match the JavaBeans getter method naming pattern, or if it takes one or more arguments, then you must call it like a method using its complete name.

7.5.5 How to Create Validation Error Messages

Validation error messages provide important information for the user: the message should convey what went wrong and how to fix it.

7.5.5.1 Creating Validation Error Messages

Before you begin:

It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 7.5, "Defining Validation Rules on Attributes Declaratively."

You will need to complete this task:

	Create the desired data control structure files as described in Section 7.2.1, "How to Edit a Data Control."

To create validation error messages:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute for which you want to create the validation error message, and then click the Validation Rules tab.

	
In the Validation Rules page, select the validation rule that you want to edit and click the Edit Validation Rule icon.

	
In the Edit Validation Rule dialog, click the Failure Handling tab.

	
In the Message Text field, enter your error message.

You can also define error messages in a message bundle file. To select a previously defined error message or to define a new one in a message bundle file, click the Select Message icon in the top right corner of the Message Text field to open the Select Text Resource dialog.

	
Note:

The Script Expression validator allows you to enter more than one error message. This is useful if the validation script conditionally returns different error or warning messages. For more information, see Section 7.5.5.4, "Raising Error Message Conditionally Using Groovy."

	
Optionally, define a message token by entering the message token's name in curly braces ({}) within the text of the error message. An entry for the token will then appear in the Token Message Expressions list where you can then define an expression to determine the value of the message token.

Figure 7-5 shows a failure message that contains a message token for a validation rule in the data control structure file. For more information on this feature, see Section 7.5.5.5, "Embedding a Groovy Expression in an Error Message."

	
Click OK.

Figure 7-5 Failure Handling Message for a Validation Rule

[image: Failure handling message with expression]

7.5.5.2 What Happens When You Create a Validation Error Message

When you create an error message for a validation rule, it is saved in a .properties file. The .properties file and the message string are referenced from the ResId tag attribute of the validator's tag in the data control structure file.

Example 7-11 shows the validation rule tag's ResId attribute that specifies the location and key of the error message. Example 7-12 shows the corresponding entry in the .properties file which contains the error message.

Example 7-11 Validation Error Message Reference

<validation:CompareValidationBean
 Name="dateShipped_Rule_0"
 ResId="${adfBundle['model.ModelBundle']['model.Ord.dateShipped_Rule_0']}"

Example 7-12 Validation Error String

model.Ord.dateShipped_Rule_0=Date Shipped cannot be before Date Ordered

7.5.5.3 Localizing Validation Messages

The error message is a translatable string and is managed in the same way as translatable UI control hints in a message bundle file. To view the error message for the defined rule in the message bundle class, locate the key in the message bundle that corresponds to the ResId property in the data control structure file entry for the validator.

7.5.5.4 Raising Error Message Conditionally Using Groovy

You can use the adf.error.raise() and adf.error.warn() methods to conditionally raise one error message or another depending upon branching in the Groovy expression.

If the expression returns false (versus raising a specific error message using the raise() method), the validator calls the first error message associated with the validator.

The syntax of the raise() method takes one required parameter (the msgId to use from the message bundle), and optionally can take the attrName parameter.

You can use either of the adf.error.raise() and adf.error.warn() methods, depending on whether you want to throw an exception, or whether you want processing to continue, as described in Section 7.5.6, "How to Set the Severity Level for Validation Exceptions."

Example 7-13 shows a rule that will allow the input of value 5000 or under. If the value is above 5000, the error message tied to the SALARY_TOO_HIGH_ERROR resource bundle property is shown and validation fails. If the entered value is between 1001 and 5000, validation passes, but a warning is displayed to the user.

Example 7-13 Using Groovy to Raise an Error Message

if (newValue > 1000)
{
if (newValue > 5000)
{adf.error.raise("SALARY_TOO_HIGH_ERROR")
return false}
adf.error.warn("SALARY_LIMIT_WARNING")
return true
}
else
{
return true
}

7.5.5.5 Embedding a Groovy Expression in an Error Message

A validator's error message can contain embedded expressions that are resolved by the server at runtime. To access this feature, simply enter a named token delimited by curly braces (for example, {2} or {errorParam}) in the error message text where you want the result of the Groovy expression to appear.

After entering the token into the text of the error message (on the Failure Handling tab of the Edit Validation Rule dialog), the Token Message Expressions table at the bottom of the dialog displays a row that allows you to enter a Groovy expression for the token. Figure 7-5 shows a failure message that contains a message token for a validation rule.

The expression shown in Figure 7-5 is a Groovy expression that returns the value of the quantity attribute. You can also use Groovy expressions to access attribute UI hints and other objects that are defined in the data control structure file.

You can use the Groovy expression newValue to return the entered value.

For more information about accessing ADF objects using Groovy, see Section 7.9, "Groovy Language Support."

Oracle Legal Notices

Oracle Legal Notices

Copyright Notice

Copyright 1994-2013, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/dcommon/bookicon.gif

OEBPS/img/structuredef_tester.png
B Oracle ADF Mod od
Flo View Create Database Hep

)

[rr—
& customerrindal

] customerrindcountry
) emprindal

S eemendal

S ol

5 ordendeycustid

{E] productFindall

ameRoot Definiton: §DefaultAppHodule:

OEBPS/img/intro-dcpanel.png
=l Data Controls @7E
=B

3 construcors
] customerrindal
& customerrindsytd
<& emprindal

& comments

- commissenpet
s depttd

- frsthiame
o=

[—
sl

- sttt
o et

o userd
= stmp

) semptit

{=] addemp(Emp)

{E] removeEmp(Emp)

23 Operstions

3 Named rieria

= o—y

OEBPS/img/url-dcpanel-headerparam.png
- Data Controls @®7VE-
=3 URupatscontos
[ER T —
= enp

e —
ce

=-{2) Parameters.

@ HttpHeader
Eretum
=] loadData1{Object)
{E] Ioadpataz(String, Object)

OEBPS/dcommon/conticon.gif

OEBPS/img/vo_browser_icon1.png
R < 2

OEBPS/dcommon/booklist.gif

OEBPS/img/adf_criteria_icon.png

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Developing
Applications with Oracle ADF Data
Controls, 12¢ (12.1.2)

OEBPS/dcommon/rarrow.gif

OEBPS/img/strucdef_edit_expression.png
Edit Expression Editor

Expression:

price * quancicyl

Enter 2 Recalcute Expression for the expression above: Tost Syntax

© aways
Otiever

(O Based onthe folawing expression

Select attributes that this atribute is dependent Upon, These dependencies are used during
database queries and attrbute recalulation

Avalable: o selected

eemid

e
ordld ® quantity

QuantieyShipped Q

K

[Reset attriute's value when the dependent at.

[o | e

OEBPS/img/adf_attributeicon.png

OEBPS/img/adfm-dcpanel-highlevel.jpg
=) Data Controls. BYE-

=8 data control 2
3 Constructors
5] customerFindal ————— collection (use to
] customerFineyd areate forms
{E] empFindal and tables)
El kemFindal
] ordrngan
(E] paymentTypeFindall method (use to
{E productFindall create buttons
& mergeCustomer(Customer) ———— and parameter -
& (20 Parameters forms)
@ customer ————— parameter
{8 Customer ———— method return (use to
=] mergeltem(Item) create forms and tables)

& mergord(ord)

OEBPS/dcommon/bookbig.gif

OEBPS/img/ws_rest_paths.png
% Create Web Service Data Control - Step 2 of 4

Resources

;G

© Resources

Methed Detalk

S Finish

Resource Paths:

[pepartments
Pt

* X

[Jeost
Oeur
[JoeLETE

Method diplay names are used orly
in'the Data Control Paltte,

OEBPS/img/structuredef_tester_crit.png
Select predefined crteia, o define 3d hoc crteia
Predsfined citera

Avalable: Selected

#d hoc citera

salesRepld:
aty:

crediRating:

(e) Coron] (Cromoe]| renove s | (o] (b]

OEBPS/dcommon/oracle.gif

OEBPS/img/adf_sampcompon_bc.png
F(Productid) #(Suplerld) #(Calegoryld) (. Producilame)
FlProducti) #(.Supplerld) #(.Colegorykd) (. Productiame)
PlProducti) #(.Supplerld) #(.Colegorykd) #(.Productilame)

OEBPS/img/adf_structure.png
@7

List of Values Q- Name +x
€ 5] 4%

Detals | UlHints | Valdation Rules | Custom Properties | Dependencies

e \mm \ Updatal: ways

Defaul Valg ———————————————
@ Lieral O Expression

. g

overon [STRFED i

Persistent

Transient

Key Attrbute

OEBPS/dcommon/larrow.gif

OEBPS/img/adf_keyattributeicon.png

OEBPS/dcommon/rightnav.gif

OEBPS/dcommon/help.gif

OEBPS/dcommon/index.gif

OEBPS/dcommon/oracle-small.JPG
ORACLE

OEBPS/img/adfm-dcx-overview.png
DataControls.dex
Data Control Registry

a
i s the Oracls AD dataconrospublshed b thisproect,Inccing metadsta summry. T ek the dta contoldeikion o snale
custonization,selec aDataconrolsnods and cick Ed.
[y— £ @ Structure Name: perscsfimodel/Customer.xrl
OrdorsSessonEBLoce Btrbutes | Accossors | Operatons
Fod
Nome e
&[] sordust . -
e e acrss javalang Strng g
Bt ety javalang Strng
] customerridbyid lcomments javalang Strng
E] emprnaal eounrytd java.mth BiDecinsl
] kenringat (aedinatingid java.mth Bioecinsl
E] orarnaat o= java.mth Bioecinsl
% il lname Java.lang.String
productFindsl fphone. java.lang.String

5 mergeCustoneCustamer) pl
Overview| Source History ¢ € > i}

OEBPS/dcommon/O_signature_clr.JPG
ORACLE

OEBPS/img/vo_browser_icon7.png

OEBPS/dcommon/prodicon.gif

OEBPS/img/adf_methodreturnicon.png

OEBPS/img/vo_browser_icon6.png

OEBPS/dcommon/mix.gif

OEBPS/dcommon/contbig.gif

OEBPS/img/adf_structuredattributeicon.png

OEBPS/img/ejb_apps_window.png
=IProjects Q@ 7-E-
odel
&£ Applcaton Sources
& @ mode!
© customerjava
] oataContros dox
© empavs
@ Iemavs
& remprjsva
[odelpundisproperies
© ordsva
8 orderssessonE B.java
& orderssassione besn.jsva
& orderssessonEeclent.java
{6 orderssessonepLocalava
@ PaymentType.java
© Product java
& persde.model
& customercrl
] e
] ordol

OEBPS/dcommon/indxicon.gif

OEBPS/dcommon/topnav.gif

OEBPS/img/vo_browser_icon5.png

OEBPS/dcommon/toc.gif

OEBPS/dcommon/leftnav.gif

OEBPS/img/ejb_extra_dc.png
Data Controls

EmpDeptsessionBan
EmpDeptsessionBsanpaging

] enployeesendal
[E) mergeEntity(Object)

[E) persistntity(Object)

[E] removeDepartments(Departments)
[E] removeEmployees(Employess)

7@

Structure Name:

Atributes | Accessors | Operations

Name

Type
javallang.Integer
Javalang String

javallang.Integer

(©= departmentid
departmenthiame
locationd

OEBPS/img/adfm_dcpanel_detail.jpg
= Data Controls. WY E-

&[5 ordrindal
8 dateOrdered ———— attribute (use to create.
@ deteshipped text felds, dates, and
i selection lsts)
- ordeiled
&8 paymentTypeld
{10 sdlesRend structured atribute
= total (use to create
=5 SCustomer ————— liss of values)
Bl sttemuse ————— nested collection
] aden(tien) (use to create
& removettem(item) Mmaster-detail
2 onerations forms and tables)
53 Named Creria

] paymentTypeFindal

OEBPS/img/model_arch_dcbind.png
Desktop Browser-Based View
s
2| ooy for [Ao e
S0 integration Fe=a e
B Vot Lt
% Controler
g usF
£l3 ADF Controller
53 I A
g g el
H AOF Model Binding Laver
= ADF Model Data Control Layer
¥ -
dowa | JPAEIB | ADF Business Components | BAM Senes
sowmest | eeL | @ | porters
! ki o
L w Services

Legacy Apps

Services Systems Unlimited

OEBPS/img/vo_browser_icon4.png

OEBPS/img/adfm-dcpanel-operations.jpg
= Data Controls ®YVE-
=3 Operstons

488 Create ——— operation (use to

3 velete areate buttons)
-4 Bxete

st
8 et

28 text

g Previous parameter (use
488 Previous set to create
545 removeRowihKey — parameter forms)

& (1 Parameters

@ ronkey

& setcunentRomit ey

@ setCurenRowNiKevaie named criera
= {2 Named Criteria (use to create
5 Al Queriabe Attributes —— search forms)

OEBPS/dcommon/prodbig.gif

OEBPS/dcommon/feedback.gif

OEBPS/img/ws_rest_params.png
% Create Web Service Data Control - Step 3 of 4

Method Details

Data Source
¢ Besaurces

© Method Details

& s

Resource Methods:
& [Departments

getal
55 [Departments/i# deptic##

HTTP Method: | GET

R —
Response X5D: [SIMy“20bacuments/Departments xsd| Q)
O — Y

[Include HTTP Header Parameter

URL Parameters:

Name Default value

OEBPS/img/adf_methodicon.png

OEBPS/img/attr_add_validator_regex.png
& Add Validation Rule for: email

Definethe Validation you want to perform with this rue and configure the Validstion
Fallre respanse,

e Ty [oglr qressn

Rule Defintion Failre Handing

e e E

Select a predefined expression and clck Uss Pattern to add the defition

bredefind Exgressons UgePatten

Enter Regular Expression

[4-20-5, %+ 1+@[AZ0-9. 1 [AZH2 4}

Expression Qualfiers-
] Case Insensiive [tutiine [] CononEq
[ot] Uricode Case

Hint: Enter a val regular expression.

Help

OEBPS/img/adfm-dc-panel.png
=)