

6 Simplifying Cache Calls and Aggregations

This exercise illustrates how you can simplify Java expressions that use aggregations and filters by using the Coherence createFilter and createExtractor factory methods in the QueryHelper class.

In Chapter 5, "Loading Data Into a Cache," you created a file, QueryExample.java, that used a variety of filters, such as AlwaysFilter, LikeFilter, and EqualsFilter, to pull and aggregate information from the cache. The file also created indexes on the data by using a variety of specialized ValueExtractors: ChainedExtractors, KeyExtractors, and ReflectionExtractors. This created some verbose Java statements. These statements can be simplified by using the QueryHelper API.

This chapter contains the following sections:

	
Introduction

	
Simplifying the Query Example

	
Rerunning the Query Example

6.1 Introduction

To simplify filter and extractor statements, and the way in which you interact with the Coherence caches, Coherence provides the QueryHelper API. QueryHelper (com.tangosol.util.QueryHelper) is a utility class that provides a set of createFilter and createExtractor factory methods that can build instances of Filter and ValueExtractor. The methods in the class accept a String data type that specifies the creation of rich Filters in a format that is familiar to anyone who understands SQL WHERE clauses.

For example, the following statement uses createFilter(String s) to construct a filter for employees who live in Massachusetts but work in another state.

..
QueryHelper.createFilter("homeAddress.state = 'MA' and workAddress.state !='MA'")
...

This statement is more simple and easier to read than the equivalent filter and extractor statement using the Coherence API:

new AndFilter(new EqualsFilter("getHomeAddress.getState", "MA"),
 new NotEqualsFilter("getWorkAddress.getState", "MA"))

For more information, see the Javadoc for the QueryHelper API. For information on the syntax of the WHERE clause within the Coherence Query Language, see "Using Coherence Query Language" in Oracle Fusion Middleware Developing Applications with Oracle Coherence.

6.2 Simplifying the Query Example

This section describes how you can simplify the indexes, cache calls, and aggregations in the QueryExample.java file that you created in the previous chapter.

	
Import the QueryHelper API into the QueryExample.java file as a static class.

import static com.tangosol.util.QueryHelper.*;

	
Comment out the imports for the ChainedExtractor, KeyExtractor, and ReflectionExtractor classes.

	
Comment out the imports for the AlwaysFilter, AndFilter, EqualsFilter, GreaterFilter, LikeFilter, and NotEqualsFilter classes.

	
In the cache.addIndex statements, replace instances of ReflectionExtractor with createExtractor from the QueryHelper API.

Table 6-1 lists the ReflectionExtractor instances and their createExtractor equivalents.

Table 6-1 ReflectionExtractors and Their Equivalent createExtractor Statements

	Replace This ReflectionExtractor Statement ...	With the Equivalent createExtractor Statement ...
	
cache.addIndex(new ReflectionExtractor("getAge"), true, null);

	
cache.addIndex(createExtractor("age"), true, null);

	
cache.addIndex(new ChainedExtractor(reflectAddrHome, new ReflectionExtractor("getState")), true, null);

	
cache.addIndex(createExtractor("homeAddress.state"), false, null);

	
cache.addIndex(new ChainedExtractor(new ReflectionExtractor("getWorkAddress"), new ReflectionExtractor("getState")), true, null);

	
cache.addIndex(createExtractor("workAddress.state"),false, null);

	
cache.addIndex(new ChainedExtractor(reflectAddrHome, new ReflectionExtractor("getCity")), true, null);

	
cache.addIndex(createExtractor("homeAddress.city"), true, null);

	
Replace the calls to the *Filter methods in the setResults statements with calls to createFilter with the appropriate Coherence Query Language.

Table 6-2 lists the *Filter instances and their createFilter equivalents.

Table 6-2 *Filter Statements and Their Equivalent createFilter Statements in Queries

	Replace This *Filter Statement ...	With the Equivalent createFilter Statement ...
	
Set setResults = cache.entrySet(new EqualsFilter("getHomeAddress.getState", "MA"));

	
Set setResults = cache.entrySet(createFilter("homeAddress.state = 'MA'"));

	
Set setResults = cache.entrySet(new AndFilter(new EqualsFilter("getHomeAddress.getState", "MA"), new NotEqualsFilter("getWorkAddress.getState", "MA")));

	
setResults = cache.entrySet(createFilter("homeAddress.state is 'MA' and workAddress is not 'MA'"));

	
Set setResults = cache.entrySet(new LikeFilter("getHomeAddress.getCity", "S%"));

	
Set setResults = cache.entrySet(createFilter("homeAddress.city like 'S%'"));

	
Set setResults = cache.entrySet(new GreaterFilter("getAge", nAge));

	
// Initialize nAge and aEnv

final int nAge = 42;

Object[] aEnv = new Object[] {new Integer(nAge)};

...

Set setResults = cache.entrySet(createFilter("age > ?1",aEnv));

	
Set setResults = cache.entrySet(new AndFilter(new LikeFilter(new KeyExtractor("getLastName"), "S%", (char) 0, false), new EqualsFilter("getHomeAddress.getState", "MA")));

	
Set setResults = cache.entrySet(createFilter("key(lastName) like 'S%' and homeAddress.state = 'MA'"));

	
Replace the calls to the *Filter methods in the aggregate statements with calls to createFilter with the appropriate Coherence Query Language.

Table 6-3 lists the *Filter instances and their createFilter equivalents.

Table 6-3 Filter Statements and Their Equivalent createFilter Statements in Aggregations

	Replace This *Filter Statement ...	With the Equivalent createFilter Statement ...
	
System.out.println("count > " + nAge + ": "+ cache.aggregate(new GreaterFilter("getAge", nAge), new Count()));

	
System.out.println("count > " + nAge + ": " + cache.aggregate(createFilter("age > ?1", aEnv), new Count()));

	
System.out.println("min age: " + cache.aggregate(AlwaysFilter.INSTANCE, new LongMin("getAge")));

	
Filter always = createFilter("true");

System.out.println("min age: " + cache.aggregate(always, new LongMin("getAge")));

	
System.out.println("avg age: " + cache.aggregate(AlwaysFilter.INSTANCE, new DoubleAverage("getAge")));

	
System.out.println("avg age: " + cache.aggregate(always, new DoubleAverage("getAge")));

	
System.out.println("max age: " + cache.aggregate(AlwaysFilter.INSTANCE, new LongMax("getAge")));

	
System.out.println("max age: " + cache.aggregate(always, new LongMax("getAge")));

When you are finished with the code replacements, QueryExample.java looks similar to Example 6-1.

Example 6-1 Edited QueryExample File

package com.oracle.handson;

import com.tangosol.net.CacheFactory;
import com.tangosol.net.NamedCache;

import com.tangosol.util.Filter;
import static com.tangosol.util.QueryHelper.*;

import com.tangosol.util.aggregator.Count;
// import com.tangosol.util.extractor.ChainedExtractor;
// import com.tangosol.util.extractor.KeyExtractor;
// import com.tangosol.util.extractor.ReflectionExtractor;

// import com.tangosol.util.aggregator.Count;
import com.tangosol.util.aggregator.DoubleAverage;
import com.tangosol.util.aggregator.LongMax;
import com.tangosol.util.aggregator.LongMin;

// import com.tangosol.util.filter.AlwaysFilter;
// import com.tangosol.util.filter.AndFilter;
// import com.tangosol.util.filter.EqualsFilter;
// import com.tangosol.util.filter.GreaterFilter;
// import com.tangosol.util.filter.LikeFilter;
// import com.tangosol.util.filter.NotEqualsFilter;

import java.util.Iterator;
import java.util.Set;

/**
* QueryExample runs sample queries for contacts.
*
*/
public class QueryExample{

 // ----- QueryExample methods ---------------------------------------

 public static void main(String[] args) {
 NamedCache cache = CacheFactory.getCache("ContactsCache");
 query(cache);
 }
 /**
 * Perform the example queries
 *
 */
 public static void query(NamedCache cache)
 {
 // Add indexes to make queries more efficient
 // ReflectionExtractor reflectAddrHome =
 // new ReflectionExtractor("getHomeAddress");

 // Add an index for the age
 // cache.addIndex(new ReflectionExtractor("getAge"), true, null);
 cache.addIndex(createExtractor("age"), true, null);

 // Add index for state within home address
 // cache.addIndex(new ChainedExtractor(reflectAddrHome,
 // new ReflectionExtractor("getState")), true, null);
 cache.addIndex(createExtractor("homeAddress.state"), false, null);

 // Add index for state within work address
 // cache.addIndex(new ChainedExtractor(
 // new ReflectionExtractor("getWorkAddress"),
 // new ReflectionExtractor("getState")), true, null);
 cache.addIndex(createExtractor("workAddress.state"),false, null);

 // Add index for city within home address
 // cache.addIndex(new ChainedExtractor(reflectAddrHome,
 // new ReflectionExtractor("getCity")), true, null);
 cache.addIndex(createExtractor("homeAddress.city"), true, null);

 // Find all contacts who live in Massachusetts
 // Set setResults = cache.entrySet(new EqualsFilter(
 // "getHomeAddress.getState", "MA"));
 Set setResults = cache.entrySet(createFilter("homeAddress.state = 'MA'"));
 printResults("MA Residents", setResults);

 // Find all contacts who live in Massachusetts and work elsewhere
 // setResults = cache.entrySet(new AndFilter(
 // new EqualsFilter("getHomeAddress.getState", "MA"),
 // new NotEqualsFilter("getWorkAddress.getState", "MA")));
 setResults = cache.entrySet(createFilter("homeAddress.state is 'MA' and workAddress is not 'MA'"));
 printResults("MA Residents, Work Elsewhere", setResults);

 // Find all contacts whose city name begins with 'S'
 // setResults = cache.entrySet(new LikeFilter("getHomeAddress.getCity",
 // "S%"));
 setResults = cache.entrySet(createFilter("homeAddress.city like 'S%'"));
 printResults("City Begins with S", setResults);

 final int nAge = 42;
 Object[] aEnv = new Object[] {new Integer(nAge)};
 // Find all contacts who are older than nAge
 // setResults = cache.entrySet(new GreaterFilter("getAge", nAge));
 setResults = cache.entrySet(createFilter("age > ?1",aEnv));
 printResults("Age > " + nAge, setResults);

 // Find all contacts with last name beginning with 'S' that live
 // in Massachusetts. Uses both key and value in the query.
 // setResults = cache.entrySet(new AndFilter(
 // new LikeFilter(new KeyExtractor("getLastName"), "S%",
 // (char) 0, false),
 // new EqualsFilter("getHomeAddress.getState", "MA")));
 setResults = cache.entrySet(createFilter("key(lastName) like 'S%' and homeAddress.state = 'MA'"));
 setResults = cache.entrySet(createFilter("key().lastName like 'S%' and homeAddress.state = 'MA'"));
 printResults("Last Name Begins with S and State Is MA", setResults);

 // Count contacts who are older than nAge
 // System.out.println("count > " + nAge + ": "+
 // cache.aggregate(new GreaterFilter("getAge", nAge), new Count()));
 System.out.println("count > " + nAge + ": " + cache.aggregate(
 createFilter("age > ?1", aEnv), new Count()));

 // Find minimum age
 // System.out.println("min age: " + cache.aggregate(AlwaysFilter.INSTANCE, new LongMin("getAge")));
 Filter always = createFilter("true");
 System.out.println("min age: " + cache.aggregate(always, new LongMin("getAge")));

 // Calculate average age
 // System.out.println("avg age: " + cache.aggregate(AlwaysFilter.INSTANCE, new DoubleAverage("getAge")));
 System.out.println("avg age: " + cache.aggregate(always, new DoubleAverage("getAge")));

 // Find maximum age
 // System.out.println("max age: " +
 // cache.aggregate(AlwaysFilter.INSTANCE, new LongMax("getAge")));
 System.out.println("max age: " + cache.aggregate(always, new LongMax("getAge")));

 System.out.println("------QueryLanguageExample completed------");

 }

 /**
 * Print results of the query
 *
 * @param sTitle the title that describes the results
 * @param setResults a set of query results
 */
 private static void printResults(String sTitle, Set setResults)
 {
 System.out.println(sTitle);
 for (Iterator iter = setResults.iterator(); iter.hasNext();)
 {
 System.out.println(iter.next());
 }
 }
 }

6.3 Rerunning the Query Example

To rerun the query example:

	
Stop any running cache servers. See "Stopping Cache Servers" for more information.

	
Restart the ContactsCacheServer.

	
Run the DataGenerator, LoaderExample, and QueryExample files.

	
After printing all of the contact information in the cache, it displays the results of the queries. The results should look similar to the following examples.

	
Note:

The DataGenerator program produces random names, cities and birthdates. Your output may be different.

Example 6-2 illustrates the output of the MA Residents filter.

Example 6-2 Output of the MA Residents Filter

...
MA Residents
ConverterEntry{Key="John Hwdrrls", Value="John Hwdrrls
Addresses
Home: 369 Beacon St.

Fetggv, MA 24372
US
Work: Yoyodyne Propulsion Systems
330 Lectroid Rd.
Grover's Mill, NE 84499
US
Telephone Numbers
work: +11 88 331 2307913
home: +11 64 86 2489621
Birth Date: 1976-12-29"}
...

Example 6-3 illustrates the output of the MA Residents, Work Elsewhere filter.

Example 6-3 Output of the MA Residents, Work Elsewhere Filter

...
MA Residents, Work Elsewhere
ConverterEntry{Key="John Hwdrrls", Value="John Hwdrrls
Addresses
Home: 369 Beacon St.

Fetggv, MA 24372
US
Work: Yoyodyne Propulsion Systems
330 Lectroid Rd.
Grover's Mill, NE 84499
US
Telephone Numbers
work: +11 88 331 2307913
home: +11 64 86 2489621
Birth Date: 1976-12-29"}
...

Example 6-4 illustrates the output of the City Begins with S filter.

Example 6-4 Output of the City Begins with S Filter

...
City Begins with S
ConverterEntry{Key="John Pzek", Value="John Pzek
Addresses
Home: 309 Beacon St.

Saqrgy, OH 81353
US
Work: Yoyodyne Propulsion Systems
330 Lectroid Rd.
Grover's Mill, CT 78117
US
Telephone Numbers
work: +11 28 790 2035988
home: +11 61 470 7634708
Birth Date: 1971-12-31"}
...

Example 6-5 illustrates the output of the age greater than 42 filter.

Example 6-5 Output of the Age Greater than 42 Filter

...
Age > 42
ConverterEntry{Key="John Gddurqqziy", Value="John Gddurqqziy
Addresses
Home: 613 Beacon St.

Cxyskdo, DE 28968
US
Work: Yoyodyne Propulsion Systems
330 Lectroid Rd.
Grover's Mill, SD 07959
US
Telephone Numbers
work: +11 31 768 5136041
home: +11 87 22 3851589
Birth Date: 1958-01-03"}
...

Example 6-6 illustrates the output of the Last Name Begins with S and State is MA filter and the output of the aggregators.

Example 6-6 Output of the State and Age Aggregators

Last Name Begins with S and State Is MA
ConverterEntry{Key="John Syaqlojl", Value="John SyaqlojlAddressesHome: 810 Beacon St.Rgtaljwph, MA 07471USWork: 200 Newbury St.Yoyodyne, Ltd.Boston, MA 02116USTelephone Numberswork: +11 37 18 1767648home: +11 98 155 1073866Birth Date: 1974-12-30"}
...
count > 42: 446
min age: 22
avg age: 41.126
max age: 61

[image: Oracle Corporation]

What's New in This Guide

The following topics introduce the new and changed features of Oracle Coherence and other significant changes that are described in this guide, and provides pointers to additional information. This document is the new edition of the formerly titled Oracle Coherence Tutorial for Oracle Coherence.

New and Changed Features for 12c (12.1.2)

Oracle Coherence 12c (12.1.2) includes the following new and changed features for this document.

	
Tutorial for Live Events, which shows you how to use the Coherence Live Events framework. This framework allows your applications to react to operations performed in the data grid. The framework uses an event-based model where events represent observable occurrences of cluster operations. The supported events include partitioned service, cache, and application events. See Chapter 11, "Working with Live Events."

	
An appendix has been added describing the basic features, security, and events examples that are delivered with the Coherence distribution in the examples.zip file. These examples (in the Java, C++, and .NET languages) are designed to be built and run on the command line. See Appendix A, "Coherence Examples in the examples.zip File."

Other Significant Changes in this Document for 12c (12.1.2)

For 12c (12.1.2), this guide has been updated in several ways. Following are the sections that have been added or changed.

	
Revised all of the tutorials in the guide to use Coherence 12c (12.1.2).

	
Revised the Coherence and JPA tutorial to use EclipseLink 2.4.x, TopLink Grid 12c (12.1.2), and the Java Persistence 2.0 files. See Chapter 8, "Using JPA with Coherence."

	
Revised the tutorial to create and configure an Oracle Coherence cache in Eclipse to use EclipseLink 2.4.x, TopLink Grid 12c (12.1.2), and the Java Persistence 2.0 files. See Chapter 9, "Interacting with the Cache and the Database."

	
Revised the session caching and managed WebLogic Servers tutorial to use WebLogic Server 12c (12.1.2). See Chapter 12, "Caching Sessions with Managed WebLogic Servers."

A Coherence Examples in the examples.zip File

The Coherence distribution provides a collection of example code in the examples.zip file. These examples demonstrate how to use basic Coherence functionality, security, and events features in all supported languages (Java, .NET, and C++). The examples are organized as collections of code that show how to use one or more features. They also provide a single common way (per language) to build and run all examples.

This appendix has the following sections:

	
Examples Provided in the examples.zip File

	
Obtaining the examples.zip File

	
How to Build the Examples

	
How to Run the Examples

	
Coherence Basic Features Examples

	
Coherence Security Examples

	
Coherence Live Events Examples

There are a number of differences between the examples in the examples.zip file described in this appendix and the examples that are presented in the main body of the tutorial:

	
The examples in the examples.zip must be built and run from the command line. The tutorial uses an IDE to compile and run the code.

	
The examples in the examples.zip file demonstrate how to use basic Coherence functionality and security features in all supported languages (Java, .NET, and C++). The tutorial covers only Java implementations.

	
The Java examples in the examples.zip file are only a subset of the Java examples presented in the tutorial.

	
The Java code files in the examples.zip file are similar, but not identical to, the files used in the tutorial. In many instances, the code in the tutorial has been simplified for demonstration purposes.

A.1 Examples Provided in the examples.zip File

The Coherence Basic Features Examples include the following:

Table A-1 Coherence Basic Features Examples

	Example Name	Description
	
Basic Data Access

	
"Getting", "putting" and "removing" data from the Coherence Data Grid. See Section A.5.3, "Basic Data Access Example."

	
Data Loading

	
Loading example data into the Coherence Data Grid. See Section A.5.4, "Loader Example."

	
Parallel Querying

	
Querying the Coherence Data Grid including the use of indexes. See Section A.5.5, "Query Example."

	
Observable

	
Listening for changes to data in the Coherence Data Grid. See Section A.5.6, "Observer Example."

	
Processing

	
Co-locating data processing with the data itself in the Coherence Data Grid. See Section A.5.7, "Processor Example."

	
Query Language

	
How to use the Coherence Query Language. See Section A.5.5, "Query Example."

The Coherence Security Examples include the following:

Table A-2 Coherence Security Examples

	Example Name	Description
	
Password Example

	
Requiring a password to access Coherence. See Section A.6.2, "Password Example."

	
Access Control Example

	
Simplified role based access control. See Section A.6.3, "Access Control Example."

	
Password Identity Transformer

	
Creates a custom security token that contains the required password and then adds a list of Principal names. See Section A.6.4, "Password Identity Transformer."

	
Password Identity Asserter

	
Asserts that the security token contains the required password and then constructs a Subject based on a list of Principal names. See Section A.6.5, "Password Identity Asserter."

	
Entitled Cache Service

	
Wraps a cache service for access control. See Section A.6.6, "Entitled Cache Service."

	
Entitled Invocation Service

	
Wraps an invocation service for access control. See Section A.6.7, "Entitled Invocation Service."

	
Entitled Named Cache

	
Wraps a named cache for access control. See Section A.6.8, "Entitled Named Cache."

The Coherence Live Events Examples are available for the Java platform only. They include the following:

Table A-3 Coherence Live Events Examples

	Example Name	Description
	
EventsExamples

	
Illustrates various features within Live Events, such as providing mean elapsed times split by event type, the different semantics in throwing exceptions in pre-events compared to post-events, and logging of partition movement when enabled. See Section A.7.2, "EventsExamples."

	
TimedTraceInterceptor

	
Provides timings between pre- and post-commit events for different types of events. See Section A.7.3, "TimedTraceInterceptor."

	
CantankerousInterceptor

	
Responds with runtime exceptions at either pre- or post-commit time, based on the type of key being inserted. See Section A.7.4, "CantankerousInterceptor."

	
RedistributionInterceptor

	
Logs partition events when enabled. See Section A.7.5, "RedistributionInterceptor."

	
RedistributionInvocable

	
Defines three actionable states that will be executed on various members of the cluster. The states are enable logging performed by the RedistributionInterceptor, disable logging, or terminate the JVM that the invocable (RedistributionInvocable) is executed on. See Section A.7.6, "RedistributionInvocable."

	
LazyProcessor

	
Creates a superficial delay between the processing of events. See Section A.7.7, "LazyProcessor."

A.2 Obtaining the examples.zip File

You can obtain the examples.zip file by performing a full Coherence installation with the coherence_version.jar or wls_version.jar installer file. The Coherence examples appear as an installation option in the Oracle Universal Installer.

If you have already installed Coherence but without the examples, you can obtain the examples.zip file by running the coherence_quick_supp_version.jar supplemental installer file. The supplemental installer contains only API documentation and examples.

Note that the coherence_quick_version.jar quick installer file does not install the examples or API documentation.

Unzip the contents of the examples.zip file into an examples directory.

A.3 How to Build the Examples

	
Note:

You must build and run the Java example even for .NET and C++. This is because the cache server runs in Java.

This section contains the following information:

	
How to Build the Java Examples

	
How to Build the .NET Examples

	
How to Build the C++ Examples

A.3.1 How to Build the Java Examples

This section contains the following information:

	
Prerequisites for Java

	
Directory Structure for Java

	
Build Instructions for Java

A.3.1.1 Prerequisites for Java

To build the example, you must have Coherence version 3.7 or later and a Java development kit (JDK) 1.6 or later. Ensure that the following environment variables are set.

	Environment Variable	Description
	
$COHERENCE_HOME

	
Make sure that the COHERENCE_HOME environment variable points to the location of the unpacked Coherence 3.7 directory.

	
$JAVA_HOME

	
Make sure that the JAVA_HOME environment variable points to the location of a 1.6 or greater JDK before building the example. A Java runtime 1.6 or greater is needed to run the example

A.3.1.2 Directory Structure for Java

The directory structure described below is relative to the examples directory.

Table A-4 Directory Structure for Java

	Directory Name	Description
	
java/bin

	
Scripts for building and executing the example. There are two sets of scripts. Scripts with no file extension are bash scripts. Scripts with a .cmd file extension are Windows command scripts. The following description refers to the script names without specifying the file extension.

	
build—builds an example

	
java/src

	
All example source. The examples are in the com.tangosol.examples.<example name> package. The classes for objects stored in the cache are in the com.tangosol.examples.pof package.

	
java/classes

	
The class files output from a build. This directory will not exist until the build script is executed.

	
java/resource/config

	
The common Coherence configuration files required by the examples.

	
java/resource/<example name>

	
If an example has configuration that is required instead of the common configuration, it will have its own directory. The security example uses configuration files from java/resource/security.

	
$COHERENCE_HOME/lib

	
Coherence libraries used for compiling and running the example.

A.3.1.3 Build Instructions for Java

Execute the build script with the name of the example collection, for example: bin/build contacts, bin/build security, or bin/build events.

The script will build the POF package files and then the files for the particular example. On Windows, change directories to the /bin directory then run the scripts.

A.3.2 How to Build the .NET Examples

This section contains the following information:

	
Prerequisites for .NET

	
Directory Structure for .NET

	
Build Instructions for .NET

A.3.2.1 Prerequisites for .NET

To build the example, you must have Coherence version 3.7 or later for .NET and Visual Studio 2008 or later or Visual Studio 2008 Express or later.

To run the example, you will need the Java version of Coherence 3.7 or later and a Java development kit (JDK) 1.6 or greater. The Java version is required because the Coherence*Extend proxy and cache servers require Java. Also, the examples depend on Java example classes that must be built before running the proxy and cache server. See the Java example readme.txt file for instructions on how to build and run. Note that the Java run-proxy script must be executed; the Java run-cache-server is optional because the proxy is storage enabled.

A.3.2.2 Directory Structure for .NET

The directory structure described below is relative to the examples directory.

Table A-5 Directory Structure for .NET

	Directory Name	Description
	
dotnet\src

	
All example source. The examples are in the Tangosol.Examples.<example name> namespace. The classes for objects stored in the cache are in the Tangosol.Examples.Pof namespace.

The examples are in the Visual Studio 2008 examples solution. Each example has its own Visual Studio 2008 project in the src directory. For example, src contains projects for the contacts and security examples.

The Coherence configuration files required by the example.

	
src\pof\config

	
The common Coherence configuration files required by the examples.

	
src\<example name>\config

	
If an example has configuration that is required instead of the common configuration, it will have its own directory. The security example uses configuration files from security\config.

A.3.2.3 Build Instructions for .NET

Open the examples project from the examples\dotnet\src\contacts.csproj directory with Visual Studio

When installing Coherence 3.7 for the .NET Framework, the installer registers the coherence.dll library with the assembly registry. The included Visual Studio projects have a reference to coherence.dll in the default location. If another version of the library is desired, or it was not installed in the default location, the Coherence reference can be overridden when configuring the reference, be sure to set the local copy attribute to true. This setting will copy and register the correct coherence.dll in the bin\debug directory.

After the desired Coherence 3.7 for .NET is configured, in Visual Studio select Build then Build Solution from the menu, Build Solution (F6), etc., to build the solution.

The build for the contacts example will copy resource\contacts.csv to the build output directory (examples\dotnet\src\bin\Debug).

A.3.3 How to Build the C++ Examples

This section contains the following information:

	
Prerequisites for C++

	
Directory Structure for C++

	
Build Instructions for C++

A.3.3.1 Prerequisites for C++

To run the examples, you will need the Java version of Coherence 3.7 or later and a Java development kit (JDK) 1.6 or greater. The Java version is required because the Coherence*Extend proxy and cache servers require Java. Also, the examples depend on Java example classes that must be built before running the proxy and cache server. See the Java examples readme.txt for instructions on how to build and run. Note that the Java run-proxy script must be executed; the Java run-cache-server is optional because the proxy is storage enabled.

Ensure that the following environment variables are set:

	Environment Variable	Description
	
%COHERENCE_HOME%

	
Make sure that the COHERENCE_HOME environment variable points to the location of the unpacked Coherence 3.7 (or later) directory.

	
%JAVA_HOME%

	
Make sure that the JAVA_HOME environment variable points to the location of a 1.6 or greater JDK before building the examples. A Java runtime 1.6 or greater is needed to run the examples.

	
%COHERENCE_CPP_HOME%

	
Make sure that the COHERENCE_CPP_HOME environment variable points to the location of the unpacked C++ development environment. Compiler environments supported.

A.3.3.2 Directory Structure for C++

The directory structure described below is relative to the examples directory.

Table A-6 Directory Structure for C++

	Directory Name	Description
	
cpp\bin

	
Scripts for building and executing the examples. Scripts with no file extension are bash scripts. Scripts with a .cmd file extension are Windows command scripts. The following description refers to the script names without specifying any file extension.

	
cpp

	
All example source organized under the <example name> (such as contacts and security) and pof directories.

	
cpp\contacts

	
The contacts example source. The examples are in the coherence::examples namespace. The next level of the name after examples represents a related set of example classes. "Driver" in coherence::examples::LoaderExample is the Loader for the contacts example. In other words, the name of the example is the name after coherence::examples.

	
cpp\security

	
The security example source. The examples are in the coherence::examples namespace.

	
cpp\pof

	
The data model is represented in this directory plus any classes that are serialized. The rationale is to show how to utilize an already existing data model and expose it in Coherence. The model classes do not contain any Coherence-specific code to prove this point. However, there is a serializer that is associated with each model type. For example the Contact has a ContactSerializer class whose purpose is to register the model type with Coherence and serialization operations.

The generated output will be in the form of a dynamic library.

	
cpp\config

	
The common Coherence configuration files required by the examples.

	
cpp\config\<example name>

	
If an example has configuration that is required instead of the common configuration, it will have its own directory. The security example uses configuration files from config/security.

	
cpp\<example name>\out

	
The object files output from a build. This directory will not exist until the build script is executed.

	
%COHERENCE_CPP_HOME%\include

	
Contains the Coherence header files.

	
%COHERENCE_CPP_HOME%\lib

	
Contains the Coherence library.

A.3.3.3 Build Instructions for C++

This section contains the following information:

	
Build Instructions for C++ on Windows

	
Build Instructions for C++ on Linux/Mac and Solaris

Build Instructions for C++ on Windows

Open a development environment command prompt. This should have been installed with Visual Studio or the platform SDK. Go to the C++ examples directory and type bin\build.cmd <example name>. This will build both the pof (model) and the example executable. For example, bin\build.cmd contacts or bin\build.cmd security

The model will put the pof.lib and pof.dll file under cpp\pof\out. These are needed for building and running the contacts and security examples.

The executable contacts.exe will be generated in cpp\contacts\out directory. The executable security.exe will be generated in cpp\security\out directory.

To run the contacts example, type bin\run.cmd contacts after starting a proxy server, java\bin\run-proxy, and an additional cache server java\bin\run-cache-server.

As an alternative, in any command window you can cd to the C++ bin directory and run vcvars32.bat before trying to build the examples. With a default install of Visual Studio, the bin directory is C:\Program Files\Mircorsoft Visual Studio 9.0\vc\bin. Follow the previous instructions for running the build script.

Build Instructions for C++ on Linux/Mac and Solaris

Open a command shell. Go to the C++ examples directory and type bin/build <example name>. This will build both the pof (model) and the contacts examples executable.

The model dynamic library and lib file will be put in cpp/pof/out. These are needed for building and running the contacts and security examples.

The executable contacts, will be generated in cpp/contacts/out or cpp/security/out.

A.4 How to Run the Examples

	
Note:

The Coherence examples are distributed as source, so they must first be built. See Section A.3, "How to Build the Examples."

This section contains the following information:

	
How to Run the Java Examples

	
How to Run the .NET Examples

	
How to Run the C++ Examples

A.4.1 How to Run the Java Examples

This section contains the following information:

	
Prerequisites for Java

	
Directory Structure for Java

	
Instructions for Java

A.4.1.1 Prerequisites for Java

To run the examples, you must have Coherence version 3.7 and a Java development kit (JDK) 1.6 or greater.

	Environment Variable	Description
	
$COHERENCE_HOME

	
Make sure that the COHERENCE_HOME environment variable points to the location of the unpacked Coherence 3.7 directory.

	
$JAVA_HOME

	
Make sure that the JAVA_HOME environment variable points to the location of a 1.6 or greater JDK before building the examples. A Java runtime 1.6 or greater is needed to run the examples.

A.4.1.2 Directory Structure for Java

The directory structure described below is relative to the examples directory, the directory into which the examples were unzipped.

Table A-7 Directory Structure for Java

	Directory Name	Description
	
java/bin

	
Scripts for building and executing examples. There are two sets of scripts. Scripts with no file extension are bash scripts. Scripts with a .cmd file extension are Windows command scripts. The following description refers to the script names without specifying any file extension.

	
run—Runs an example collection

	
run-cache-server—Runs the cache server used for examples

	
run-proxy—Runs a proxy node. Optional for some Java examples; required for .NET and C++. This can only be done after the example has been built

	
java/classes

	
The class files output from a build. This directory will not exist until the build script is executed.

	
java/resource/config

	
The common Coherence configuration files required by the examples.

	
java/resource/<example name>

	
If an example has configuration that is required instead of the common configuration, it will have its own directory. The security example uses configuration files from java/resource/security.

	
$COHERENCE_HOME/lib

	
Coherence libraries used for compiling and running the examples.

	
resource

	
The data file used for the contacts LoaderExample: contacts.csv.

A.4.1.3 Instructions for Java

Execute the run script. There are two parts to running the example.

contacts example

	
Start one or more cache servers: bin/run-cache-server. Each execution will start a cache server cluster node. To add additional nodes, execute the command in a new command shell.

	
In a new command shell, run with the name of the example: bin/run contacts. The Driver.main method will run through the features of the example with output going to the command window (stdout).

Starting with Coherence 3.7, an example of the new Query Language feature was added. This example shows how to configure and use a simple helper class FilterFactory using the Coherence InvocationService.

security example

The security example requires Coherence*Extend, which uses a proxy.

	
Start a proxy: bin/run-proxy security.

Optionally, start one or more cache servers as described in the contacts example. The proxy is storage-enabled, so it will act as both a proxy and a cache server node.

	
In a new command shell, run with the name of the example: bin/run security. The Driver.main method will run through the features of the example with output going to the command window (stdout).

events example

	
Start one or more cache servers: bin/run-cache-server. Each execution will start a cache server cluster node. To add additional nodes, execute the command in a new command shell.

	
In a new command shell, run with the name of the example: bin/run events. The Driver.main method will run through the features of the example with output going to the command window (stdout).

A.4.2 How to Run the .NET Examples

This section contains the following information:

	
Prerequisites for .NET

	
Directory Structure for .NET

	
Instructions for .NET

A.4.2.1 Prerequisites for .NET

To run the examples, you must have Coherence version 3.7 or later for .NET and Visual Studio 2008 or later. To run the examples, you will also need to build the Java examples. The Java version is required because the Coherence*Extend proxy and cache servers require Java.

Also, the examples depend on Java example classes that must be built before running the proxy and cache server.

A.4.2.2 Directory Structure for .NET

The directory structure described below is relative to the "examples" directory.

Table A-8 Directory Structure for .NET

	Directory Name	Description
	
resource

	
The data file used for the contacts LoaderExample: contacts.csv.

A.4.2.3 Instructions for .NET

The following sections contain instructions for running the contacts and security examples.

contacts

	
Following the Java instructions, start a proxy server (run-proxy) and zero or more cache servers (run-cache-server).

	
From Visual Studio, start the contacts project without debugging or execute the contacts.exe produced from the build in a command shell. The Driver.Main method will run through the features of the example with the output going to the command window (stdout).

Starting with Coherence 3.7, a new example of the new Query Language feature was integrated. This example shows how configure and use a simple helper class "FilterFactory" using the Coherence InvocationService.

security

	
Following the java readme.txt instructions, start a proxy server (java/bin/run-proxy security) and zero or more cache servers.

	
From Visual Studio, start the security project without debugging or execute the contacts.exe produced from the build in a command shell. The Driver.Main method will run through the features of the example with the output going to the command window (stdout).

A.4.3 How to Run the C++ Examples

This section contains the following information:

	
Prerequisites for C++

	
Directory Structure for C++

	
Instructions for C++

A.4.3.1 Prerequisites for C++

To build the examples, you must have the appropriate C++ library of Coherence version 3.7. Also you must have a C++ development environment. To run the examples, you will also need to build the Java examples. The Java version is required because the Coherence*Extend proxy and cache servers require Java. Also, the examples depend on Java example classes that must be built before running the proxy and cache server.

	Environment Variable	Description
	
$COHERENCE_CPP_HOME

	
Make sure that the COHERENCE_CPP_HOME environment variable points to the location of the unpacked Coherence 3.7 C++ installation (or later) directory.

The supported C++ compilers are:

	
Windows —Microsoft Visual C++ Express/Studio 2008 or later or the equivalent Platform SDK.

	
Linux—g++ 4.0

	
Mac—g++ 4.0

A.4.3.2 Directory Structure for C++

The directory structure described below is relative to the examples directory.

Table A-9 Directory Structure for C++

	Directory Name	Description
	
cpp/bin

	
Scripts for building and executing the examples. Scripts with no file extension are bash scripts. Scripts with a .cmd file extension are Windows command scripts. The following description refers to the script names without specifying any file extension.

	
run—Runs an example, requires that java/bin/run-proxy is started.

	
cpp

	
All example source organized under the contacts and model directories.

	
contact/out

	
The object files output from a build. This directory will not exist until the build script is executed.

	
resource

	
The data file used for the contacts LoaderExample: contacts.csv.

	
cpp/contacts

	
Contains the contacts example sources.

	
cpp/security

	
Contains the security example sources.

	
cpp/pof

	
Contains the datamodel sources and any classes that require serialization.

	
$COHERENCE_CPP_HOME/include

	
Contains the Coherence header files.

	
$COHERENCE_CPP_HOME/lib

	
Contains the Coherence library.

A.4.3.3 Instructions for C++

Execute the run scripts. There are two parts to running the example. From within new command shells:

contacts example

	
Start one proxy server: java/bin/run-proxy contacts.

Optionally, start one or more cache servers: bin/run-cache-server. Each execution will start a cache server cluster node. To add additional nodes, execute the command in a new command shell.

	
In a new command shell, execute run with the name of the example:

Running the contacts Example on Windows:

Type bin\run.cmd contacts

Running the contacts Example on Linux/Mac and Solaris:

Type bin/run contacts

The Driver.main method will run through the features of the example with output going to the command window (stdout).

Starting with Coherence 3.7, an example of the new Query Language feature was added. This example shows how to configure and use a simple helper class FilterFactory using the Coherence InvocationService.

security example

	
Start one proxy server: java/bin/run-proxy security.

Optionally, start one or more cache servers: bin/run-cache-server. Each execution will start a cache server cluster node. To add additional nodes, execute the command in a new command shell.

	
In a new command shell, execute run with the name of the example:

Running the security Example on Windows:

Type bin\run.cmd security

Running the security Example on Linux/Mac and Solaris:

Type bin/run security

The Driver.main method will run through the features of the example with output going to the command window (stdout).

A.5 Coherence Basic Features Examples

The Coherence basic features examples are a collection of examples that show how to use the basic features of Coherence using a simplified contact information tracker and includes:

	
Basic Data Access—"Getting", "putting" and "removing" data from the Coherence Data Grid. See Section A.5.3, "Basic Data Access Example."

	
Data Loading—Loading example data into the Coherence Data Grid. See Section A.5.4, "Loader Example."

	
Parallel Querying —Querying the Coherence Data Grid including the use of indexes. See Section A.5.5, "Query Example."

	
Observable—Listening for changes to data in the Coherence Data Grid. See Section A.5.6, "Observer Example."

	
Processing—Co-locating data processing with the data itself in the Coherence Data Grid. See Section A.5.7, "Processor Example."

	
Query Language—How to use the new 3.6 Coherence Query Language. See Section A.5.8, "Query Language."

This example set uses example data represented by these Data Model classes.

Table A-10 Data Model Classes for the Features Examples

	Name	Description
	
Address

	
Address information

	
Contact

	
Contact information (includes addresses and phone numbers)

	
ContactId

	
The key (contact name) to the contact information

	
PhoneNumber

	
Phone number

This example set also ships with a contacts.csv file which is a comma-delimited value file containing sample Contacts information.

A.5.1 Running the Example Set

	
Review the following information:

	
Section A.3, "How to Build the Examples"

	
Section A.4, "How to Run the Examples"

	
Review the information on the Driver implementation found in Section A.5.2, "Understanding the Features Driver File."

A.5.2 Understanding the Features Driver File

The Driver file has a static main method that executes all the Contacts examples in the following order:

	
LoaderExample

	
QueryExample

	
QueryLanguageExample

	
ObserverExample

	
BasicExample

	
ProcessorExample

The Driver file is implemented in each of the three programming languages supported by Coherence.

	Language	Implementation Class
	
Java

	
com.tangosol.examples.contacts.Driver in java/src

	
.NET

	
Driver in namespace Tangosol.Examples.Contacts in dotnet/src/contacts

	
C++

	
Driver in namespace coherence::examples in cpp/contacts

Please refer to this example set's examples.zip file for more details on each of the examples outlined below.

A.5.3 Basic Data Access Example

This example shows the most basic data access features of Coherence including getting, putting and removing data.

Java

Implementation Class: com.tangosol.examples.contacts.BasicExample in java/src

	
Associate a ContactId with a Contact in the cache:

cache.put(contactId, contact);

	
Retrieve the Contact associated with a ContactId from the cache:

contact = (Contact) cache.get(contactId);

	
Remove mapping of ContactId to Contact from the cache:

cache.remove(contactId);

.NET

Implementation Class: BasicExample in namespace Tangosol.Examples.Contacts in dotnet/src/contacts

	
Associate a ContactId with a Contact in the cache:

cache.Add(contactId, contact);

	
Retrieve the Contact associated with a ContactId from the cache:

contact = (Contact)cache[contactId];

	
Remove mapping of ContactId to Contact from the cache:

cache.Remove(contactId);

C++

Implementation Class: BasicExample in namespace coherence::examples in cpp/contacts

	
Associate a ContactId with a Contact in the cache:

hCache->put(vContactId, vContact);

	
Retrieve the Contact associated with a ContactId from the cache:

vContact = cast<Managed<Contact>::View>(hCache->get(vContactId));

	
Remove mapping of ContactId to Contact from the cache:

hCache->remove(vContactId);

A.5.3.1 Example Output

The example output (due to "Observer Example"):

Example A-1 Example Output of the Basic Data Access Example

entry inserted:
John Nocyefqgqo
Addresses
Home: 1500 Boylston St.
null
Obopnof, NM 88824
US
Work: 8 Yawkey Way
null
Ssedhvmdeq, OR 84217
US
Phone Numbers
work: +11 0 707 3776578
Birth Date: 1971-12-31
entry deleted:
John Nocyefqgqo
Addresses
Home: 1500 Boylston St.
null
Obopnof, NM 88824
US
Work: 8 Yawkey Way
null
Ssedhvmdeq, OR 84217
US
Phone Numbers
work: +11 0 707 3776578
Birth Date: 1971-12-31

A.5.4 Loader Example

This example loads contacts into the cache from a file or stream.

It demonstrates the most effective way of inserting data into a cache using bulk inserts. This will allow for minimizing the number of network roundtrips between the application and the cache.

Java

Implementation Class: com.tangosol.examples.contacts.LoaderExample in java/src

cache.putAll(mapBatch);

.NET

Implementation Class: LoaderExample in namespace Tangosol.Examples.Contacts in dotnet/src/contacts

cache.InsertAll(dictBatch);

C++

Implementation Class: LoaderExample in namespace coherence::examples in cpp/contacts

hCache->putAll(hMapBatch);

A.5.4.1 Example Output

Example A-2 Example Output of the LoaderExample

.........Added 10000 entries to cache

A.5.5 Query Example

QueryExample runs sample queries for contacts.

The purpose of this example is to show how to create Extractors on cache data and how to create a KeyExtractor for the cache keys. It also illustrates how to use the indexes to filter the dataset to efficiently create a matching set. Finally, the example demonstrates how to use some of the built-in cache aggregators to do simple computational tasks on the cache data. A subset of the code is shown below.

Java

Implementation Class: com.tangosol.examples.contacts.QueryExample in java/src

	
Add an index to make queries more efficient.

cache.addIndex(new ChainedExtractor("getHomeAddress.getState"), /*fOrdered*/ false, /*comparator*/ null);

	
Find all contacts who live in Massachusetts.

Set setResults = cache.entrySet(new EqualsFilter("getHomeAddress.getState", "MA"));

	
Count contacts who are older than nAge for the entire cache dataset.

System.out.println("count > " + nAge + ": " + cache.aggregate(new GreaterFilter("getAge", nAge), new Count()));

.NET

Implementation Class: QueryExample in namespace Tangosol.Examples.Contacts in dotnet/src/contacts

	
Add an index to make queries more efficient.

cache.AddIndex(new ChainedExtractor("getHomeAddress.getState"),/*fOrdered*/ false, /*comparator*/ null);

	
Find all contacts who live in Massachusetts.

ICacheEntry[] aCacheEntry = cache.GetEntries(new EqualsFilter("getHomeAddress.getState", "MA"));

	
Count contacts who are older than nAge for the entire cache dataset.

Console.WriteLine("count > " + nAge + ": "+ cache.Aggregate(new GreaterFilter("getAge", nAge), new
Count()));

C++

Implementation Class: QueryExample in namespace coherence::examples in cpp/contacts

	
Add an index to make queries more efficient.

ValueExtractor::View vHomeStateExtractor = ChainedExtractor::create(
ChainedExtractor::createExtractors("getHomeAddress.getState"));

	
Find all contacts who live in Massachusetts.

Object::View voStateName = String::create("MA");
Set::View setResults = hCache->entrySet(
EqualsFilter::create(vHomeStateExtractor, voStateName));

	
Count contacts who are older than nAge for the entire cache dataset.

Integer32::View nAge = Integer32::valueOf(58);
Object::View vResult = hCache->aggregate((Filter::View) GreaterFilter::create(vAgeExtractor, nAge), Count::create());
std::cout << "count > " << nAge->getValue() << ": " << vResult << std::endl;

A.5.5.1 Example Output

The example output is large due to 10,000 contacts and several queries. A sample of the query for Massachusetts residents:

Example A-3 Example Output of the Query Example

MA Residents
ConverterEntry{Key="John Scqngqda", Value="John Scqngqda
Addresses
Home: 265 Beacon St.
Oaskxm, MA 88259
US
Work: Yoyodyne Propulsion Systems
330 Lectroid Rd.
Grover's Mill, OK 95744
US
Phone Numbers
work: +11 88 903 8991283
home: +11 98 553 5878221
Birth Date: 1960-01-03"}

A.5.6 Observer Example

ObserverExample demonstrates how to use a MapListener to monitor cache events such as when cache data has been inserted, updated, and removed. A subset of the code is shown below.

Java

Implementation Class: com.tangosol.examples.contacts.ObserverExample in java/src

	
ContactChangeListener is a class that implements the MapListener interface.

cache.addMapListener(new ContactChangeListener());

.NET

Implementation Class: ObserverExample in namespace Tangosol.Examples.Contacts in dotnet/src/contacts

	
ContactChangeListener is a class that implements the ICacheListener interface.

cache.AddCacheListener(new ContactChangeListener());

C++

Implementation Class: ObserverExample in namespace coherence::examples in cpp/contacts

	
ContactChangeListener is a class that extends the MapListener type using Coherence extend macro.

ContactChangeListener::Handle hListener = ContactChangeListener::create();
hCache->addFilterListener(hListener);

	
Definition of ContactChangeListener:

class ContactChangeListener
 : public class_spec<ContactChangeListener,
 extends <MapListener> >

There is no immediate output when this example is run. The registered listener outputs the entry when it is inserted, updated, and deleted. For an update, it outputs both the old value and the new value. The changes to entries are caused by running the "Basic Data Access Example" and the "Processor Example", so the output happens when those examples are run.

A.5.7 Processor Example

ProcessorExample demonstrates how to use a processor to modify a set of data in the cache. In the code sample that follows, all Contacts who live in MA will have their work address updated.

Java

Implementation Class: com.tangosol.examples.contacts.ProcessorExample in java/src

Helper Class: com.tangosol.examples.contacts.OfficeUpdater in java/src

	
Apply the OfficeUpdater on all contacts who live in MA. The OfficeUpdater is a class that implements the InvocableMap.EntryProcessor interface by extending AbstractProcessor.

cache.invokeAll(new EqualsFilter("getHomeAddress.getState", "MA"), new OfficeUpdater(addrWork));

.NET

Implementation Class: ProcessorExample in namespace Tangosol.Examples.Contacts in dotnet/src/contacts

Helper Class: OfficeUpdater in namespace Tangosol.Examples.Contacts in dotnet/src/contacts

	
Apply the OfficeUpdater on all contacts who live in MA. The OfficeUpdater is a class that implements the IEntryProcessor interface by extending AbstractProcessor.

cache.InvokeAll(new EqualsFilter("getHomeAddress.getState", "MA"), new OfficeUpdater(addrWork));

C++

Implementation Class: ProcessorExample in namespace coherence::examples in cpp/contacts

Helper Class: OfficeUpdater in namespace coherence::examples in cpp/contacts

	
The OfficeUpdater is a class that extends the UpdaterProcessor type.

class OfficeUpdater
: public class_spec<OfficeUpdater,
extends<UpdaterProcessor>,
implements<PortableObject> >

	
Apply the OfficeUpdater on all contacts who live in MA.

Filter::View vEqualsFilter = EqualsFilter::create(
ChainedExtractor::create(ChainedExtractor::createExtractors(
"getHomeAddress.getState")),
String::create("MA"));
InvocableMap::EntryProcessor::Handle hOffice = OfficeUpdater::create(addrWork);
Map::View vMap = hCache->invokeAll(vEqualsFilter, hOffice);

A.5.7.1 Example Output

The example Output (due to "Observer Example") is large due to the number of contacts. A sample of output:

Example A-4 Example Output of the Processor Example

entry updated
old value:
John Keau
Addresses
Home: 443 Beacon St.
Ophvowvw, MA 06539
US
Work: Yoyodyne Propulsion Systems
330 Lectroid Rd.
Grover's Mill, FL 86812
US
Phone Numbers
work: +11 8 919 9456102
home: +11 25 759 588823
Birth Date: 1968-12-31
new value:
John Keau
Addresses
Home: 443 Beacon St.
Ophvowvw, MA 06539
US
Work: 200 Newbury St.
Yoyodyne, Ltd.
Boston, MA 02116
US
Phone Numbers
work: +11 8 919 9456102
home: +11 25 759 588823
entry updated
old value:
John Lbggblkd
Addresses
Home: 929 Beacon St.
Trwylbmf, MA 50358
US
Work: Yoyodyne Propulsion Systems
330 Lectroid Rd.
Grover's Mill, AZ 19164
US
Phone Numbers
work: +11 60 699 203810
home: +11 34 149 5018157
Birth Date: 1964-01-02
new value:
John Lbggblkd
Addresses
Home: 929 Beacon St.
Trwylbmf, MA 50358
US
Work: 200 Newbury St.
Yoyodyne, Ltd.
Boston, MA 02116
US
Phone Numbers
work: +11 60 699 203810
home: +11 34 149 5018157
Birth Date: 1964-01-02
Birth Date: 1968-12-31

A.5.8 Query Language

This example shows how to run sample queries for contacts.

Java

Implementation Class: com.tangosol.examples.query.QueryExample in java/src

	
Add indexes to make queries more efficient.

cache.addIndex(ff.createExtractor("age"), /*fOrdered*/ true, /*comparator*/ null);
cache.addIndex(ff.createExtractor("homeAddress.state"), /*fOrdered*/ false, /*comparator*/ null);

	
Find all contacts who live in Massachusetts.

Set setResults = cache.entrySet(ff.createFilter("homeAddress.state = 'MA'"));

	
Count contacts who are older than nAge for the entire cache dataset.

final int nAge = 58;
Object[] aEnv = new Object[] {new Integer(nAge)};
System.out.println("count > " + nAge + ": " + cache.aggregate(ff.createFilter("age > ?1", aEnv), new
Count()));

.NET

Implementation Class: SimpleQueryExample in namespace Tangosol.Examples.Query in dotnet/src/query

	
Add indexes to make queries more efficient.

cache.AddIndex(ff.CreateExtractor("age"), /*fOrdered*/ true, /*comparator*/ null);
cache.AddIndex(ff.CreateExtractor("homeAddress.state"), /*fOrdered*/ false, /*comparator*/ null);

	
Find all contacts who live in Massachusetts.

ICollection results = cache.GetEntries(ff.CreateFilter("homeAddress.state = 'MA'"));

	
Count contacts who are older than age for the entire cache dataset.

const int age = 58;
object[] env = new object[] { age };
results = cache.GetEntries(ff.CreateFilter("age > ?1", env));

C++

Implementation Class: SimpleQueryExample in namespace coherence::examples in cpp/query

	
Add indexes to make queries more efficient.

hCache->addIndex(hff->createExtractor("age"), /*fOrdered*/ true, /*vComparator*/ NULL);
hCache->addIndex(hff->createExtractor("homeAddress.state"), /*fOrdered*/ false, /*vComparator*/ NULL);

	
Find all contacts who live in Massachusetts.

Set::View setResults = hCache->entrySet(hff->createFilter("homeAddress.state is 'MA'"));
s

	
Count contacts who are older than nAge for the entire cache dataset.

Integer32::View nAge = Integer32::valueOf(58);
ObjectArray::Handle haEnv = ObjectArray::create(1);
haEnv[0] = nAge;
HashMap::Handle hbinds = HashMap::create();
hbinds->put(String::create("nAge"), nAge);
setResults = hCache->entrySet(hff->createFilter("age > ?1", haEnv));

A.5.8.1 Example Output

The example output (due to "Query Example"):

Example A-5 Example Output of the Query Language Example

MA Residents
ConverterCacheEntry{Key="John Wmbltik", Value="John Wmbltik
Addresses
Home: 785 Beacon St.
Vpmji, MA 34400
US
Work: 200 Newbury St.
Yoyodyne, Ltd.
Boston, MA 02116
US
Phone Numbers
work: +11 62 133 6144503
home: +11 17 238 6189757
Birth Date: 1/1/1968 12:00:00 AM"}
ConverterCacheEntry{Key="John Dtpx", Value="John Dtpx
Addresses
Home: 673 Beacon St.
Mvblms, MA 25889
US
Work: 200 Newbury St.
Yoyodyne, Ltd.
Boston, MA 02116
US
Phone Numbers
work: +11 89 900 8436918
home: +11 32 686 9582798
Birth Date: 1/3/1960 12:00:00 AM"}
.
.
.
count > 58 : 496

A.5.9 Data Generator

Implementation Class: com.tangosol.examples.contacts.DataGenerator in java/src

The DataGenerator has a static main method that generates random Contact information and stores the results in a comma separated value file. This class was used to generate the contacts.csv that is packaged with the contacts examples and is included in case more sample data is needed.

It is implemented only in Java.

A.6 Coherence Security Examples

The Coherence security examples are a collection of examples that show how to use the security features of Coherence in order to provide access control.

These examples are simplified to show only the security features of Coherence. They are not examples of security best practices:

	
"Password Example"—Shows how a Coherence Proxy can require a password to access a cache.

	
"Access Control Example"—Shows simplified role based access control.

	
"Password Identity Transformer"—Creates a custom security token that contains the required password and then adds a list of Principal names.

	
"Password Identity Asserter"—Asserts that the security token contains the required password and then constructs a Subject based on a list of Principal names.

	
"Entitled Cache Service"—Wraps a cache service for access control.

	
"Entitled Invocation Service"—Wraps an invocation service for access control.

	
"Entitled Named Cache"—Wraps a named cache for access control.

A.6.1 This Example Set

	
Gets a cache reference that requires a password.

	
Attempts cache and invocation service operations that require different roles.

A.6.1.1 Running the Security Example Set

	
Review the following information:

	
Section A.3, "How to Build the Examples"

	
Section A.4, "How to Run the Examples"

	
Review the information on the security Driver implementation found in the next section.

A.6.1.2 Understanding the Security Driver File

Has a static main method that executes all the security examples in the following order:

	
PasswordExample

	
AccessControlExample.accessCache()

	
AccessControlExample.accessInvocationService()

Is implemented in each of the three programming languages supported by Coherence:

	Language	Implementation Class
	
Java

	
com.tangosol.examples.security.Driver in java/src

	
.NET

	
Driver in namespace Tangosol.Examples.Security in dotnet/src/security

	
C++

	
Driver in namespace coherence::examples in cpp/security

Please refer to this example set's example.zip file for more details on each of the examples outlined below.

A.6.2 Password Example

This example shows how a Coherence Proxy can require a password to get a reference to a cache.

Java

Implementation Class: com.tangosol.examples.security.PasswordExample in java/src

The code logs in to get a Subject, and then tries to get a cache reference running in the context of the Subject.

The Password Identity Transformer will generate a security token that contains the password. The Password Identity Asserter (running in the proxy) will validate the security token to enforce the password. The token generation and validation occurs automatically when a connection to the proxy is made.

.NET

Implementation Class: PasswordExample in namespace Tangosol.Example.Security in dotnet/src/security

The code logs in to get a Principal, and then tries to get a cache reference running in the context of the Principal by making the Principal the Thread's current principal.

The Password Identity Transformer will generate a security token that contains the password. ThePassword Identity Asserter (running in the proxy) will validate the security token to enforce the password. The token generation and validation occurs automatically when a connection to the proxy is made.

C++

Implementation Class: AccessExample in namespace coherence::examples in cpp/security

The code logs in to get a Subject, and then tries to get a cache reference running in the context of the Subject.

The Password Identity Transformer will generate a security token that contains the password. The Password Identity Asserter (running in the proxy) will validate the security token to enforce the password. The token generation and validation occurs automatically when a connection to the proxy is made.

The example Output:

Example A-6 Example Output of the Password Example

------password example begins------
------password example succeeded------
------password example completed------

A.6.3 Access Control Example

This example shows simplified role-based access control.

Java

Implementation Class: com.tangosol.examples.security.AccessControlExample in java/src

The code logs in to get a Subject with a user-id with a particular role, gets a cache reference running in the context of the Subject, and then tries cache operations. Depending on the role granted to the user, the cache operation is allowed or denied.

Someone with a writer role is allowed to put and get. Someone with a reader role can get but not put. Someone with a writer role cannot destroy a cache. Someone with an admin role can destroy a cache.

Then a user with a particular role tries to use the invocation service. A reader is not allowed to invoke, but a writer is allowed.

Note that once the cache or invocation service reference is created in the context of a Subject, that identity is permanently associated with that reference. Any use of that cache or service reference is on behalf of that identity.

The Password Identity Transformer will generate a security token that contains the password, the user-id, and the roles. The Password Identity Asserter (running in the proxy) will validate the security token to enforce the password, and construct a Subject with the proper user-id and roles.

The production and assertion of the security token happens automatically.

See the Entitled Cache Service, Entitled Invocation Service, and Entitled Named Cache code for the implementation of access control.

.NET

Implementation Class: AccessControlExample in namespace Tangosol.Example.Security in dotnet/src/security

The code logs in to get a Principal with a user-id with a particular role, gets a cache reference running in the context of the Principal, and then tries cache operations. Depending on the role granted to the user, the cache operation is allowed or denied.

Someone with a writer role is allowed to put and get. Someone with a reader role can get but not put. Someone with a writer role cannot destroy a cache. Someone with an admin role can destroy a cache.

Then a user with a particular role tries to use the invocation service. A reader is not allowed to invoke, but a writer is allowed.

Note that once the cache or invocation service reference is created in the context of a Principal, that identity is permanently associated with that reference. Any use of that cache or service reference is on behalf of that identity.

The Password Identity Transformer will generate a security token that contains the password, the user-id, and the roles. The Password Identity Asserter (running in the proxy) will validate the security token to enforce the password, and construct a Subject with the proper user-id and roles.

The production and assertion of the security token happens automatically.

See the Entitled Cache Service, Entitled Invocation Service, and Entitled Named Cache code for the implementation of access control.

C++

Implementation Class: AccessControlExample in namespace coherence::examples in cpp/security

The code logs in to get a Subject with a user-id with a particular role, gets a cache reference running in the context of the Subject, and then tries cache operations. Depending on the role granted to the user, the cache operation is allowed or denied.

Someone with a writer role is allowed to put and get. Someone with a reader role can get but not put. Someone with a writer role cannot destroy a cache. Someone with an admin role can destroy a cache.

Then a user with a particular role tries to use the invocation service. A reader is not allowed to invoke, but a writer is allowed.

Note that once the cache or invocation service reference is created in the context of a Subject, that identity is permanently associated with that reference. Any use of that cache or service reference is on behalf of that identity.

The Password Identity Transformer will generate a security token that contains the password, the user-id, and the roles. The Password Identity Asserter (running in the proxy) will validate the security token to enforce the password, and construct a Subject with the proper user-id and roles.

The production and assertion of the security token happens automatically.

See the Entitled Cache Service, Entitled Invocation Service, and Entitled Named Cache code for the implementation of access control.

A.6.3.1 Example Output

The example output:

Example A-7 Example Output of the Access Control Example

------cache access control example begins------
Success: read and write allowed
Success: read allowed
Success: Correctly cannot write
Success: Correctly cannot destroy the cache
Success: Correctly allowed to destroy the cache
------cache access control example completed------
------InvocationService access control example begins------
Success: Correctly allowed to use the invocation service
Success: Correctly unable to use the invocation service
------InvocationService access control example completed------

A.6.4 Password Identity Transformer

This example shows how an IdentityTransformer produces a security token from an identity.

Java

Implementation Class: com.tangosol.examples.security.PasswordIdentityTransformer in java/src

The code produces a security token that is an array of strings. The first string is the password. The second string is the user-id and subsequent strings are the user's roles. Arrays of strings will be serialized by Coherence*Extend without requiring a custom serializer.

This class will be invoked automatically when the Extend client connects to a proxy or a channel is opened in an existing connection.

.NET

Implementation Class: PasswordIdentityTransformer in namespace Tangosol.Example.Security in dotnet/src/security

The code produces a security token that is an array of strings. The first string is the password. The second string is the user-id and subsequent strings are the user's roles. Arrays of strings will be serialized by Coherence*Extend without requiring a custom serializer.

This class will be invoked automatically when the Extend client connects to a proxy or a channel is opened in an existing connection.

C++

Implementation Class: PasswordIdentityTranfromer in namespace coherence::examples in cpp/security

The code produces a security token that is an array of strings. The first string is the password. The second string is the user-id and subsequent strings are the user's roles. Arrays of strings will be serialized by Coherence*Extend without requiring a custom serializer.

This class will be invoked automatically when the Extend client connects to a proxy or a channel is opened in an existing connection.

A.6.5 Password Identity Asserter

This example shows how an IdentityAsserter validates a security token and produces a Subject from a list of principal names.

Java

Implementation Class: com.tangosol.examples.security.PasswordIdentityAsserter in java/src

The code processes a security token that should be an array of strings. The first string must be the password. Subsequent strings are principals. Any failure processing the token results in a SecurityException that will deny access to the proxy.

.NET

Implementation Class: none

The IdentityAsserter runs only on the proxy (in Java), so it does not run in the .NET client. Therefore, there is no PasswordIdentityAsserter for .NET.

C++

Implementation Class: none

The PasswordIdentityAsserter runs only on the proxy (in Java), so it does not run in the C++ client. Therefore there is no PasswordIdentityAsserter for C++.

A.6.6 Entitled Cache Service

This example shows how a remote cache service can be wrapped to provide access control.

Java

Implementation Class: com.tangosol.examples.security.EntitledCachService in java/src

The code instantiates an Entitled Named Cache that provides access control for cache operations. The code also provides access control for the cache service methods release and destroy. The access control check is delegated to the Security Example Helper.

This class will be instantiated automatically when the cache service is started on the proxy.

.NET

There is no .NET implementation. The class runs only on the proxy in Java.

C++

There is no C++ implementation. The class runs only on the proxy in Java.

A.6.7 Entitled Invocation Service

This example shows how a remote invocation service can be wrapped to provide access control.

Java

Implementation Class: com.tangosol.examples.security.EntitledInvocationService in java/src

The code provides access control for the invocation service methods. The access control check is delegated to the Security Example Helper.

This class will be instantiated automatically when the invocation service is started on the proxy.

.NET

There is no .NET implementation. The class runs only on the proxy in Java.

C++

There is no C++ implementation. The class runs only on the proxy in Java.

A.6.8 Entitled Named Cache

This example shows how a remote named cache can be wrapped to provide access control.

Java

Implementation Class: com.tangosol.examples.security.EntitledNamedCache in java/src

The code provides access control for the NamedCache methods. The access control check is delegated to the Security Example Helper.

This class will be instantiated automatically when the cache service is started on the proxy.

.NET

There is no .NET implementation. The class runs only on the proxy in Java.

C++

There is no C++ implementation. The class runs only on the proxy in Java.

A.6.9 Security Example Helper

This example is a helper class for authentication and access control.

Java

Implementation Class: com.tangosol.examples.security.SecurityExampleHelper in java/src

The code simulates authentication. For the sake of simplicity, it creates a Subject. A real implementation would do platform- and company-specific authentication. The login also does simple mapping of user names to roles.

The checkAccess method checks that the operation is allowed by the user's role.

.NET

Implementation Class: SecurityExampleHelper in namespace Tangosol.Example.Security in dotnet/src/security

The code simulates authentication. For the sake of simplicity, it creates a Principal. A real implementation would do platform- and company-specific authentication. The login also does simple mapping of user names to roles.

C++

Implementation Class: SecurityExampleHelper in namespace coherence::examples in cpp/security

The code simulates authentication. For the sake of simplicity, it creates a Subject. A real implementation would do platform- and company-specific authentication. The login also does simple mapping of user names to roles.

A.7 Coherence Live Events Examples

These examples illustrate the various event types in Coherence Live Events and how they can be consumed, including EntryEvents, EntryProcessorEvents and TransferEvents.

The Live Events Examples are available only in the Java programming language, as they are executed on the storage-enabled members of the partitioned service.

	
"EventsExamples"—Illustrates various features within Live Events.

	
"TimedTraceInterceptor"—Provides timings between pre- and post-commit events for different types of events.

	
"CantankerousInterceptor"—Responds with runtime exceptions at either pre- or post-commit time, based on the type of key being inserted.

	
"RedistributionInterceptor"—Logs partition events when enabled.

	
"RedistributionInvocable"—Defines three actionable states that will be executed on various members of the cluster. The states are enable logging performed by the RedistributionInterceptor, disable logging, or terminate the JVM that the invocable (RedistributionInvocable) is executed on.

	
"LazyProcessor"—Creates a superficial delay between the processing of events.

A.7.1 This Example Set

	
Illustrates how to measure the elapsed time between pre- and post-events which are inserted into a results cache.

	
Illustrates the semantics of throwing exceptions in pre- and post-commit events.

	
Illustrates how partition redistribution events can be logged.

A.7.1.1 Running the Live Events Example Set

	
Review the following information:

	
Section A.3, "How to Build the Examples"

	
Section A.4, "How to Run the Examples"

	
Review the information on the Live Events Driver implementation found in the next section.

A.7.1.2 Understanding the Live Events Driver File

Has a static main method that executes all the Live Events examples in the following order:

	
Timed Events Example

	
Veto Events Example

	
Partition Transfer Events Example

Is implemented only in the Java programming language:

	Language	Implementation Class
	
Java

	
com.tangosol.examples.events.Driver in java/src

A.7.2 EventsExamples

Implementation Class: com.tangosol.examples.events.EventsExamples in java/src

The EventsExamples class illustrates various features within Live Events. This includes:

	
Providing mean elapsed times split by event type.

	
Illustrating the different semantics in throwing exceptions in pre-events compared to post-events.

	
Illustrating logging of partition movement when enabled.

The EventsExamples class defines these inner classes:

	
EventsTimingExample

	
VetodEventsExample

	
RedistributionEventsExample

A.7.2.1 EventsTimingExample

The EventsTimingExample inner class is a catalyst for action to be performed by TimedTraceInterceptor. This illustrates how the elapsed time between pre- and post-events can be measured which are inserted into a results cache. The entries inserted into the results cache are displayed by using the stdout of the process executing this class.

The example output:

Example A-8 Example Output of the EventsTimingExample

Received stats [memberId=2, eventType=INSERTED, sample=1] = EventStats[name = INSERTED, sampleMean = 0.294040ms, mean = 0.294040ms]
Received stats [memberId=3, eventType=INSERTED, sample=1] = EventStats[name = INSERTED, sampleMean = 0.397855ms, mean = 0.397855ms]
Received stats [memberId=1, eventType=INSERTED, sample=1] = EventStats[name = INSERTED, sampleMean = 0.373270ms, mean = 0.373270ms]
Received stats [memberId=3, eventType=UPDATED, sample=1] = EventStats[name = UPDATED, sampleMean = 0.187132ms, mean = 0.187132ms]
Received stats [memberId=2, eventType=UPDATED, sample=1] = EventStats[name = UPDATED, sampleMean = 0.234314ms, mean = 0.234314ms]
Received stats [memberId=1, eventType=UPDATED, sample=1] = EventStats[name = UPDATED, sampleMean = 0.237622ms, mean = 0.237622ms]

A.7.2.2 VetodEventsExample

The VetodEventsExample inner class is a catalyst for action to be performed by CantankerousInterceptor. This illustrates the semantics of throwing exceptions in pre- and post-events. The exceptions that are expected to only be logged are inserted into a results cache. The entries inserted into the results cache are displayed by using the stdout of the process executing this class.

The example output:

Example A-9 Example Output of the VetodEventsExample

Received event [memberId=3, eventType=NON_VETO, count=1] = Objection falls on deaf ears! value = value: 11
Received event [memberId=3, eventType=NON_VETO, count=2] = Objection falls on deaf ears! value = value: 22
Received event [memberId=3, eventType=NON_VETO, count=3] = Objection falls on deaf ears! value = value: 33
Received event [memberId=3, eventType=NON_VETO, count=4] = Objection falls on deaf ears! value = value: 44

A.7.2.3 RedistributionEventsExample

The RedistributionEventsExample inner class is a catalyst for action to be performed by the RedistributionInterceptor class. This illustrates how partition redistribution events can be logged, by enabling logging in the RedistributionInterceptor and killing a member thus inducing partition redistribution.

The example output:

Example A-10 Output of the RedistributionEventsExample

Choosing to kill member Member(Id=3, Timestamp=2014-01-02 16:38:17.942, Address=10.159.154.103:8092, MachineId=47251, Location=site:,machine:TPFAEFFL-LAP,process:8168, Role=CoherenceServer)

A.7.3 TimedTraceInterceptor

Implementation Class: com.tangosol.examples.events.TimedTraceInterceptor in java/src

The TimedTraceInterceptor class provides timings between pre- and post-commit events for each type of event; that is, inserts, updates, removes, and entry processor execution. These timings are collected and averaged at a sample rate defined by parameter cSample. Additionally they are output to the log at the same time. This implementation does maintain a strong reference to the each binary key however this is removed upon receiving the post-commit event for the same key.

The interceptor implements the EventInterceptor interface. The @Interceptor annotation provides the unique name of the interceptor with the identifier attribute and the order in which it should be executed (Order.HIGH) with the order attribute.

The interceptor also contains a protected EventTimer inner-class. This class times the elapsed time for each event it is notified of. The interceptor tracks the time between a pre- and post-commit event for each entry and the respective event types (INSERT, UPDATE, REMOVE). The timings are sent to the Coherence log in batches displaying sample and cumulative statistics.

As the generic argument is com.tangosol.net.events.partition.cache.Event, you will only get events that are consumers of that event, that is, EntryEvent and EntryProcessorEvent, without specifying any filtering.

A.7.4 CantankerousInterceptor

Implementation Class: com.tangosol.examples.events.CantankerousInterceptor in java/src

The CantankerousInterceptor class is an EventInterceptor implementation that is argumentative in nature, hence the event of inserting certain keys will result in runtime exceptions at either pre- or post-commit phases.

If the exception is thrown at pre-commit time, then a rollback occurs and the exception is propagated to the client. If the exception occurs at post-commit time, then a log event is recorded. The keys used for the exceptions are VETO and NON-VETO. INSERTING and UPDATING are events that can be vetoed, whereas INSERTED and UPDATED events cannot be vetoed.

A.7.5 RedistributionInterceptor

Implementation Class: com.tangosol.examples.events.RedistributionInterceptor in java/src

The RedistributionInterceptor class is an EventInterceptor that logs partition activity when enabled. Logging can be enabled by using setting the RedistributionInvocable.ENABLED constant.

A.7.6 RedistributionInvocable

Implementation Class: com.tangosol.examples.pof.RedistributionInvocable in java/src

The RedistributionInvocable class defines three actionable states that will be executed on various members of the cluster. For this example, define the states as follows:

	
DISABLE: Disable the logging performed by the RedistributionInterceptor event interceptor.

	
ENABLE: Enable the logging performed by the RedistributionInterceptor event interceptor.

	
KILL: Terminate the JVM that this invocable (RedistributionInvocable) is executed on.

A.7.7 LazyProcessor

Implementation Class: com.tangosol.examples.pof.LazyProcessor in java/src

The LazyProcessor class creates a superficial delay between the processing of events. The class specifies the number of milliseconds this processor should sleep between processing events. This class will be used by the EventsTimingExample subclass in the EventsExamples class.

Oracle® Fusion Middleware

Tutorial for Oracle Coherence

12c (12.1.2)

E26053-03

May 2014

Documentation for developers and architects that provides step-by-step examples of creating, configuring, and deploying Oracle Coherence-based Java applications.

Oracle Fusion Middleware Tutorial for Oracle Coherence, 12c (12.1.2)

E26053-03

Copyright © 2013, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Thomas Pfaeffle

Contributing Author: Noah Arliss, Mark Falco, Alex Gleyzer, Gene Gleyzer, David Guy, Charlie Helin, Adam Leftik, Tim Middleton, Brian Oliver, Patrick Peralta, Cameron Purdy

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

List of Examples

	1-1 cache-server.cmd File with an Edited COHERENCE_HOME
	1-2 Output from Starting a Coherence Cache Server
	1-3 query.cmd File with an Edited COHERENCE_HOME
	1-4 Output from Starting the Coherence Cache Client
	1-5 Output from Starting a Coherence Cache Client
	1-6 Exercising Coherence Commands
	2-1 Cache Server Output in the Eclipse Console Window
	3-1 Creating a NamedCache Object: Inserting and Verifying Values
	3-2 Output of MyFirstSample Program
	3-3 Getting a Value from the Cache
	3-4 Output of the MyFirstSampleReader Program
	3-5 Output of MyFirstSampleReader Program with a Running Cache Server
	3-6 Output of the MyFirstSample Class with Cache Storage Disabled
	3-7 A Coherence-Based Java Application
	3-8 Output for the QueryPlus Cache Client
	3-9 Output of the YourFirstCoherenceApplication Class
	3-10 Output of the YourFirstCoherenceApplication Class with a New Key Value
	4-1 Implementation of an Address Class
	4-2 Implementation of a PhoneNumber Class
	4-3 Sample Contact Class
	4-4 Sample ContactDriver Class
	4-5 POF Configuration File
	4-6 Cache Configuration File
	4-7 Output from the Contacts Cache Server
	4-8 Output of the Contacts Example in the Eclipse IDE
	4-9 Contacts Cache Server Displaying the Arrival and Departure of the Contacts Client
	5-1 Simple Contact ID Class
	5-2 POF Configuration File with the ContactId Entry
	5-3 Sample Data Generation Class
	5-4 Contents of the contacts.csv File
	5-5 Sample Cache Loading Program
	5-6 Output from the Sample Cache Loading Program
	5-7 Sample QueryExample Class
	5-8 Results of the QueryExample Program
	5-9 Methods to Aggregate Over Keys or by Specifying Filters
	5-10 QueryExample with Aggregation
	5-11 Output from the Aggregators
	6-1 Edited QueryExample File
	6-2 Output of the MA Residents Filter
	6-3 Output of the MA Residents, Work Elsewhere Filter
	6-4 Output of the City Begins with S Filter
	6-5 Output of the Age Greater than 42 Filter
	6-6 Output of the State and Age Aggregators
	7-1 Listener Methods on a NamedCache
	7-2 Code Pattern for Registering an Event
	7-3 Sample Listener Class
	7-4 Listener Program Waiting for Events
	7-5 Sample Program to Update an Object in the Cache
	7-6 Output from the ObserverExample and ProcessorExample Classes
	8-1 Generated persistence.xml File
	8-2 Cache Configuration for JPA
	8-3 Sample Employee Class File
	8-4 Output from the RunEmployee Executable
	8-5 Cache Server Response to Logging In to the Database
	9-1 Implementation of a Coherence Cache
	9-2 Cache Configuration File
	9-3 Output of the Coherence Cache Application
	9-4 SQL Script for Creating a Database Table
	9-5 Running the SQL Script for Creating a Database Table
	9-6 Database Cache Store Implementation
	9-7 Database Cache Configuration File
	9-8 Implementation for the Database Cache Class File
	9-9 Output of the DatabaseCache Program
	9-10 Cache Server Response to the DatabaseCache Program
	9-11 Output from the SELECT Statement
	10-1 A Security Helper File
	10-2 Sample Identity Transformer Implementation
	10-3 Sample Identity Asserter Implementation
	10-4 Sample Implementation to Run the Password Example
	10-5 Specifying an Identity Transformer and an Asserter
	10-6 Sample Extend Client Cache Configuration File
	10-7 Sample Cache Configuration File for the Proxy Server
	10-8 Password Example Output in the Eclipse Console
	10-9 Response from the Cache Server Running the Proxy Service Shell
	10-10 Entitled Named Cache
	10-11 Entitled Cache Service
	10-12 Sample Program to Run the Access Control Example
	10-13 Cache Service Proxy Configuration for a Cluster-Side Cache Configuration
	10-14 Access Control Example Output in the Eclipse Console
	10-15 Output for the Cache Server Running the Proxy Service
	10-16 A Sample Invocable Object
	10-17 A Sample Entitled Invocation Service
	10-18 Sample Program to Run the Access Invocation Service Example
	10-19 Invocation Service Proxy Configuration for a Cluster-Side Cache
	10-20 POF Configuration File with ExampleInvocable User Type
	10-21 Client Program Response in the Eclipse Console
	10-22 Proxy Service Response in the Eclipse Console
	11-1 Class to Provide Timings Between Pre- and Postcommit Events
	11-2 Class to Delay the Processing of Events
	11-3 Cache Configuration File That Registers the TimedTraceInterceptor
	11-4 POF Configuration File for the LazyProcessor Class
	11-5 Class to Exercise the TimedTraceInterceptor Event Interceptor
	11-6 Driver File for Timed Events Example
	11-7 Output from the Cache Client
	11-8 Class to Detect and Veto Events
	11-9 Cache Configuration to Register the CantankerousInterceptor Class
	11-10 Class to Exercise the TimedTraceInterceptor EventInterceptor
	11-11 Output from the Veto Events Client
	11-12 Output from the Cache Server
	11-13 Class to Terminate a JVM and to Enable or Disable Logging
	11-14 Class to Log Partition Events
	11-15 Sample Class to Exercise the Log Partition Activity Example
	11-16 Cache Configuration File with Event Interceptors
	11-17 POF Configuration File for the Log Partition Events Example
	11-18 Output from the Cache Client
	11-19 Output from First Cache Server
	12-1 Sample weblogic.xml File
	12-2 Sample MANIFEST.MF File
	A-1 Example Output of the Basic Data Access Example
	A-2 Example Output of the LoaderExample
	A-3 Example Output of the Query Example
	A-4 Example Output of the Processor Example
	A-5 Example Output of the Query Language Example
	A-6 Example Output of the Password Example
	A-7 Example Output of the Access Control Example
	A-8 Example Output of the EventsTimingExample
	A-9 Example Output of the VetodEventsExample
	A-10 Output of the RedistributionEventsExample

Preface

Oracle Coherence (Coherence) is an in-memory data grid solution that enables organizations to predictably scale mission-critical applications by providing fast access to frequently used data. Data grid software is a middleware that reliably manages data objects in memory across many servers. By automatically and dynamically partitioning data, Coherence enables continuous data availability and transactional integrity, even in the event of a server failure.

Developers can easily take advantage of the features of Coherence using the standard Java collections API to access and modify data, and use the standard JavaBeans event model to receive data change notifications.

Audience

This tutorial is intended for software developers, architects, and administrators. It describes how to develop applications for the Oracle Coherence data grid

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following in the Oracle Coherence documentation set:

	
Oracle Fusion Middleware Developing Applications with Oracle Coherence

	
Oracle Fusion Middleware Developing Remote Clients for Oracle Coherence

	
Oracle Fusion Middleware Integrating Oracle Coherence

	
Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

	
Oracle Fusion Middleware Managing Oracle Coherence

	
Oracle Fusion Middleware Administering Oracle Coherence

	
Oracle Fusion Middleware Securing Oracle Coherence

	
Oracle Fusion Middleware Developing Oracle Coherence Applications for Oracle WebLogic Server

	
Oracle Fusion Middleware Java API Reference for Oracle Coherence

	
Oracle Fusion Middleware .NET API Reference for Oracle Coherence

	
Oracle Fusion Middleware C++ API Reference for Oracle Coherence

Conventions

The following text conventions are used in this tutorial:

	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	
monospace

	
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

11 Working with Live Events

In this exercise you learn how to work with entry and EntryProcessor events, and how to be notified of events using event interceptors. This exercise provides instructions for creating a project where you create event interceptors and cause events to exercise the features of the Live Events framework.

A brief overview of the Live Events framework is also provided. For a more detailed description of the framework and the API discussed in this chapter, see "Using Live Events" in Oracle Fusion Middleware Developing Applications with Oracle Coherence and Oracle Fusion Middleware Java API Reference for Oracle Coherence.

This chapter contains the following sections:

	
Introduction

	
Creating, Registering, and Executing an Event Interceptor

	
Vetoing Pre- and Postcommit Events Using an Event Interceptor

	
Logging Partition Activity Using an Event Interceptor

11.1 Introduction

Coherence provides an event framework that allows your applications to react to operations performed in the data grid. The framework uses an event-based model where events represent observable occurrences of cluster operations. The supported events include partitioned service, cache, and application events. These events can be consumed by registering event interceptors (classes that implement EventInterceptor) either programmatically or by using the cache configuration.

11.1.1 About Event Interceptors

Applications can react to Live Events by registering event interceptors (EventInterceptor). The interceptors explicitly define which events to receive and what action, if any, to take. Any number of event interceptors can be created and registered for a specific cache or for all caches managed by a specific partitioned service. Multiple interceptors that are registered for the same event type are automatically chained together and executed in the context of a single event.

Event interceptors are created by implementing the EventInterceptor interface. The interface is defined using generics and allows you to filter the events of interest by specifying the generic type of the event as a type parameter. The inherited onEvent method provides the ability to perform any necessary processing upon receiving an event. For details on the EventInterceptor API, see Oracle Fusion Middleware Java API Reference for Oracle Coherence.

The @Interceptor annotation is used to restrict the events to specific event types and also provides further configuration of the interceptor. The @Interceptor annotation includes the following attributes:

	
identifier—Specifies a unique identifier for the interceptor. This value can be overridden when registering an interceptor class in the cache configuration file.

	
entryEvents—Specifies an array of entry event types to which the interceptor wants to subscribe.

	
entryProcessorEvents—Specifies an array of entry processor event types to which the interceptor wants to subscribe.

	
transferEvents—Specifies an array of transfer event types to which the interceptor wants to subscribe.

	
transactionEvents—Specifies an array of transaction event types to which the interceptor wants to subscribe.

	
order—Specifies whether the interceptor is placed at the front of a chain of interceptors. The legal values are HIGH and LOW. A value of HIGH indicates that the interceptor is placed at the front in the chain of interceptors. A value of LOW indicates no order preference. The default value is LOW. This value can be overridden when registering an interceptor class in the cache configuration file.

For more information on the @Interceptor annotation, see "Creating Event Interceptors" in Oracle Fusion Middleware Developing Applications with Oracle Coherence

11.1.2 About Cache Events

Cache events are raised due to some operation performed against one or many entries in a cache. Cache events include entry events and entry processor events. An entry event (EntryEvent) can represent one of several operations (inserting, updating, and removing) performed against entries in a cache. Entry events can be divided into precommit events (INSERTING, UPDATING, and REMOVING), which are raised before the operation is performed to allow modification to an entry, and postcommit events (INSERTED, UPDATED, and REMOVED) which are raised after an operation has completed and in the same order as the events occurred.

Entry processor (EntryProcessor) events represent the execution of an EntryProcessor on a set of entries in a cache. Entry processor events can be divided into precommit events (EXECUTING), which are raised before an entry processor is executed to allow modification to the entry processor implementation, and postcommit events (EXECUTED), which are raised after an entry processor is executed and in the same order that the events occurred.

11.1.3 About Partitioned Service Events

Partitioned service (PartitionedService) events are comprised of transfer events, which represent partition transfers between storage-enabled members, and transaction events. Transfer events are dispatched in the context of a partition being transferred, however the contents belonging to a partition are immutable.

11.1.4 About Event Interceptor Registration

You register an event interceptor either in a cache configuration file or programmatically. An event interceptor is registered either for one or many caches, or for a specific partitioned service. An event interceptor that is registered for a specific cache only receives events that pertain to that cache. An event interceptor that is registered for a specific partitioned service receives events for all caches that are managed by the service.

In the cache configuration file, the full class name of the event interceptor is specified in the <interceptor> element, which appears under <cache-name> in the <cache-mapping> stanza. The interceptor is associated with the cache specified in the <cache-name> element. An event interceptor can also be registered for a partitioned service in the <caching-schemes> stanza. To do this, include an <interceptors> element, within <distributed-scheme> element, that includes any number of <interceptor> subelements.

Instead of using the cache configuration file, event interceptors can be registered programmatically. The key classes and methods to register event interceptors are the getInterceptorRegistry method on the ConfigurableCacheFactory interface and the getEventInterceptor and registerEventInterceptor methods on the InterceptorRegistry interface. For example, the following code registers the TimedTraceInterceptor, which is an EventInterceptor introduced later in this chapter:

ConfigurableCacheFactory ccf = CacheFactory.getConfigurableCacheFactory();
InterceptorRegistry reg = ccf.getInterceptorRegistry();

reg.registerEventInterceptor(new TimedTraceInterceptor(), RegistrationBehavior.FAIL);

A detailed description and examples of registering event interceptors programmatically is beyond the scope of this documentation. For more information, see "Using Live Events" in Oracle Fusion Middleware Developing Applications with Oracle Coherence and Oracle Fusion Middleware Java API Reference for Oracle Coherence.

11.2 Creating, Registering, and Executing an Event Interceptor

The following sections describe how to create, register, and execute an event interceptor. In this exercise, you will work with an event interceptor that will measure the timing between pre- and postcommit events.

To complete this exercise, follow these steps:

	
Create a Event Interceptor to Measure the Time Between a Pre- and a Postcommit Event

	
Create a Class to Delay the Processing of Events

	
Register the Timed Events Event Interceptor

	
Create a POF Configuration File for the Lazy Processor Class

	
Create a Class to Exercise the Timed Events Event Interceptor

	
Create a Driver File for Timed Events Example

	
Create a Cache Server Startup Configuration

	
Create a Startup Configuration for the Timed Events Driver

	
Run the Timed Events Example

11.2.1 Create a Event Interceptor to Measure the Time Between a Pre- and a Postcommit Event

Create a event interceptor named TimedTraceInterceptor to measure the timings between precommit and postcommit events (that is, INSERTING/INSERTED, UPDATING /UPDATED, and REMOVING/REMOVED) for each type of event.

To create the TimedTraceInterceptor event interceptor class:

	
Create a new Application Client Project in Eclipse named UEMEvents. Ensure that CoherenceConfig is selected in the Configuration field on the opening page and the Create a default main is not selected on the Application Client module page.

See "Creating a New Project in the Eclipse IDE" for detailed information.

	
Create a new Java class called TimedTraceInterceptor. Ensure that the Default Package is com.oracle.handson. Do not select the Main Method check box.

See "Creating a Java Class" for more information.

	
Write an event interceptor that implements the EventInterceptor interface. The interceptor should provide timings between pre- and postcommit events for each type of event: inserts, updates, removes, and an entry processor. You can write your own interceptor or use the code that is provided in Example 11-1.

Example 11-1 illustrates the event interceptor TimedTraceInterceptor. The interceptor implements the EventInterceptor interface. The @Interceptor annotation provides the unique name of the interceptor with the identifier attribute and the order in which it should be executed (Order.HIGH) with the order attribute.

The interceptor also contains a protected EventTimer inner-class. This class times the elapsed time for each event it is notified of. The interceptor tracks the time between a pre- and postcommit event for each entry and the respective event types (INSERT, UPDATE, REMOVE). The timings are sent to the Coherence log in batches displaying sample and cumulative statistics.

As the generic argument is com.tangosol.net.events.partition.cache.Event you will only get events that are consumers of that event, that is, EntryEvent and EntryProcessorEvent, without specifying any filtering.

Example 11-1 Class to Provide Timings Between Pre- and Postcommit Events

package com.oracle.handson;

import com.tangosol.net.CacheFactory;
import com.tangosol.net.NamedCache;

import com.tangosol.net.events.EventInterceptor;
import com.tangosol.net.events.annotation.Interceptor;
import com.tangosol.net.events.annotation.Interceptor.Order;
import com.tangosol.net.events.partition.cache.EntryEvent;
import com.tangosol.net.events.partition.cache.EntryEvent.Type;
import com.tangosol.net.events.partition.cache.EntryProcessorEvent;
import com.tangosol.net.events.partition.cache.Event;

import com.tangosol.util.Binary;
import com.tangosol.util.BinaryEntry;

import java.util.HashMap;
import java.util.Map;

import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;

/**
 * TimedTraceInterceptor provides timings between pre- and postcommit events
 * for each type of event i.e. inserts, updates, removes, and entry processor
 * execution.
 * <p>
 * These timings are collected and averaged at a sample rate defined by
 * parameter <tt>cSample</tt>. Additionally they are output to the log
 * at the same time. This implementation does maintain a strong reference to
 * the each binary key however this is removed upon receiving the postcommit event
 * for the same key.
 *
 * @since Coherence 12.1.2
 */
@Interceptor(identifier = "trace", order = Order.HIGH)
public class TimedTraceInterceptor
 implements EventInterceptor<Event<? extends Enum<?>>>
 {

 // ----- constructors ---

 /**
 * Default no-arg constructor.
 */
 public TimedTraceInterceptor()
 {
 this(DEFAULT_SAMPLE_RATE);
 }

 /**
 * Construct an TimedTraceInterceptor with specified {@link Event}
 * types and chain position.
 *
 * @param cSample sample size to calculate mean and output statistics
 */
 public TimedTraceInterceptor(int cSample)
 {
 Map<Enum, EventTimer> mapTimedEvents = m_mapTimedEvents = new HashMap<Enum, EventTimer>(3);
 EventTimer insertTimer = new EventTimer(Type.INSERTED, cSample);
 EventTimer updateTimer = new EventTimer(Type.UPDATED, cSample);
 EventTimer removeTimer = new EventTimer(Type.REMOVED, cSample);
 EventTimer invocationTimer = new EventTimer(EntryProcessorEvent.Type.EXECUTED, cSample);

 mapTimedEvents.put(Type.INSERTED, insertTimer);
 mapTimedEvents.put(Type.INSERTING, insertTimer);
 mapTimedEvents.put(Type.UPDATED, updateTimer);
 mapTimedEvents.put(Type.UPDATING, updateTimer);
 mapTimedEvents.put(Type.REMOVED, removeTimer);
 mapTimedEvents.put(Type.REMOVING, removeTimer);
 mapTimedEvents.put(EntryProcessorEvent.Type.EXECUTED, invocationTimer);
 mapTimedEvents.put(EntryProcessorEvent.Type.EXECUTING, invocationTimer);
 }

 // ----- EventInterceptor methods ---------------------------------------

 /**
 * {@inheritDoc}
 */
 public void onEvent(Event event)
 {
 if (event instanceof EntryEvent)
 {
 process((EntryEvent) event);
 }
 else if (event instanceof EntryProcessorEvent)
 {
 process((EntryProcessorEvent) event);
 }
 }

 /**
 * This method will be invoked upon execution of an entry processor and
 * will time its execution from prior to post execution, including any
 * backup requests that need to be made as a result.
 *
 * @param event the {@link EntryProcessorEvent} that encompasses the
 * requested event
 */
 protected void process(EntryProcessorEvent event)
 {
 EventTimer mapTimedEvents = m_mapTimedEvents.get(event.getType());

 for (BinaryEntry binEntry : event.getEntrySet())
 {
 if (event.getType() == EntryProcessorEvent.Type.EXECUTING)
 {
 mapTimedEvents.starting(binEntry);
 }
 else if (event.getType() == EntryProcessorEvent.Type.EXECUTED)
 {
 mapTimedEvents.started(binEntry);
 }
 }
 }

 /**
 * This method will be invoked upon execution of a data mutating request
 * and will time its execution from prior to post execution, including
 * any backup requests that need to be made as a result.
 *
 * @param event the {@link EntryEvent} that encompasses the
 * requested event
 */
 protected void process(EntryEvent event)
 {
 EventTimer mapTimedEvents = m_mapTimedEvents.get(event.getType());

 switch ((Type) event.getType())
 {
 case INSERTING:
 case UPDATING:
 case REMOVING:
 for (BinaryEntry binEntry : event.getEntrySet())
 {
 mapTimedEvents.starting(binEntry);
 }
 break;
 case INSERTED:
 case UPDATED:
 case REMOVED:
 for (BinaryEntry binEntry : event.getEntrySet())
 {
 mapTimedEvents.started(binEntry);
 }
 break;
 }
 }

 // ----- inner class: EventTimer --

 /**
 * The EventTimer times the elapsed time for each event it is notified
 * of. It correlates the completion event based on equality comparisons
 * of the Binary provided. Additionally it calculates the mean based on a
 * sample set of <tt>cSample</tt> size. When reaching this sample set
 * a log will be made of the current sample set mean and the cumulative
 * mean.
 */
 protected class EventTimer
 {

 // ----- constructors ---

 /**
 * Construct an EventTimer with the event type provided.
 *
 * @param eventType the type of event this timer will be timing
 */
 protected EventTimer(Enum eventType, int cSample)
 {
 m_eventType = eventType;
 m_cSampleSize = cSample;
 }

 /**
 * Notifies the timer of the execution of the provided key will
 * imminently commence.
 *
 * @param binEntry the event will commence for this <tt>binEntry</tt>
 */
 public void starting(BinaryEntry binEntry)
 {
 m_mapElapsedTimes.put(binEntry.getBinaryKey(), System.nanoTime());
 }

 /**
 * Notifies the timer of the completion of the event for the provided
 * key.
 *
 * @param binEntry the event has completed for this <tt>binEntry</tt>
 */
 public void started(BinaryEntry binEntry)
 {
 Long lStart = m_mapElapsedTimes.remove(binEntry.getBinaryKey());
 if (lStart == null)
 {
 return;
 }

 add(System.nanoTime() - lStart);
 }

 /**
 * Regardless of the specific data item add the elapsed time taken to
 * process the data item. Upon reaching the sample set size of events
 * calculate the mean, reset timings and continue.
 *
 * @param lElapsed the number of nanos taken for a data item to
 * process
 */
 protected void add(long lElapsed)
 {
 AtomicInteger nEvents = m_nEvents;
 AtomicLong lTotalElapsed = m_lTotalElapsed;
 int nCurrEvents = nEvents.incrementAndGet();
 long lCurrTotalElapsed = lTotalElapsed.addAndGet(lElapsed);

 if (nCurrEvents % m_cSampleSize == 0)
 {
 nEvents.set(0);
 lTotalElapsed.set(0L);
 ++m_cSamples;

 long lMean = lCurrTotalElapsed / nCurrEvents;
 m_lMean = m_lMean == 0 ? lMean : lMean + m_lMean / 2;

 String sStats = String.format("EventStats[name = %s, sampleMean = %fms, mean = %fms]",
 m_eventType, (double) lMean / 1000000, (double) m_lMean / 1000000);

 CacheFactory.log(sStats, CacheFactory.LOG_INFO);

 NamedCache cacheResults = CacheFactory.getCache("events-results");
 int nMemberId = CacheFactory.getCluster().getLocalMember().getId();

 cacheResults.put(
 String.format("%d-%s-%d", nMemberId, m_eventType.name(), m_cSamples),
 sStats);
 }
 }

 // ----- data members ---

 /**
 * Sample size to calculate mean and output statistics.
 */
 private int m_cSampleSize;

 /**
 * The start times for a number of Binary keys.
 */
 private Map<Binary, Long> m_mapElapsedTimes = new ConcurrentHashMap<Binary, Long>();

 /**
 * A counter of the total elapsed time.
 */
 private AtomicLong m_lTotalElapsed = new AtomicLong();

 /**
 * A counter of the number of events processed
 */
 private AtomicInteger m_nEvents = new AtomicInteger();

 /**
 * An average over time.
 */
 private long m_lMean;

 /**
 * The number of samples taken.
 */
 private int m_cSamples;

 /**
 * The type of event being timed.
 */
 private Enum m_eventType;
 }

 // ----- constants --

 /**
 * The sample size for elapsed times.
 */
 protected static final int DEFAULT_SAMPLE_RATE = 100;

 // ----- data members ---

 /**
 * A map of event types to their timers.
 */
 private Map<Enum, EventTimer> m_mapTimedEvents;
 }

11.2.2 Create a Class to Delay the Processing of Events

Create a class named LazyProcessor to create a superficial delay between the processing of events. The class should be able to specify the number of milliseconds this processor should sleep between processing events. This class will be used by the EventsTimingExample subclass in the EventsExamples class. You will create the EventsExamples class in a later step.

The data that the LazyProcessor class produces will be sent across the wire, so the class should use POF (Portable Object Format). You will add the LazyProcessor class to the POF configuration file in a later step.

To create the LazyProcessor class:

	
Create a new Java class called LazyProcessor. Do not include a main method.

See "Creating a Java Class" for more information.

	
Create the code for the LazyProcessor class. Because the class uses the PortableObject interface for data serialization, the LazyProcessor class must implement PortableObject interface. The class must also extend the AbstractProcessor class. Import the Base, InvocableMap.Entry, AbstractProcessor, PortableObject, PofReader, and PofWriter classes and interfaces. You can write your own code for the LazyProcessor class or use the code that is provided in Example 11-2.

Example 11-2 Class to Delay the Processing of Events

package com.oracle.handson;

import com.tangosol.io.pof.PofReader;
import com.tangosol.io.pof.PofWriter;
import com.tangosol.io.pof.PortableObject;
import com.tangosol.util.Base;
import com.tangosol.util.InvocableMap.Entry;
import com.tangosol.util.processor.AbstractProcessor;

import java.io.IOException;

/**
 * LazyProcessor will sleep for a specified period of time.
 *
 *
 * @since 12.1.2
 */
public class LazyProcessor
 extends AbstractProcessor
 implements PortableObject
 {
 // ----- constructors ---

 /**
 *
 */
 private static final long serialVersionUID = 1L;

 /**
 * Default no-arg constructor.
 */
 public LazyProcessor()
 {
 }

 /**
 * Constructs a LazyProcessor with a specified time to sleep.
 *
 * @param lSleepTime the number of milliseconds this processor should
 * sleep
 */
 public LazyProcessor(long lSleepTime)
 {
 m_lSleepTime = lSleepTime;
 }

 /**
 * {@inheritDoc}
 */
 public Object process(Entry entry)
 {
 try
 {
 Thread.sleep(m_lSleepTime);
 }
 catch (InterruptedException e)
 {
 throw Base.ensureRuntimeException(e);
 }
 return null;
 }

 // ----- PortableObject members ---

 /**
 * {@inheritDoc}
 */
 public void readExternal(PofReader in) throws IOException
 {
 m_lSleepTime = in.readLong(0);
 }

 /**
 * {@inheritDoc}
 */
 public void writeExternal(PofWriter out) throws IOException
 {
 out.writeLong(0, m_lSleepTime);
 }

 // ----- data members ---

 /**
 * The number of milliseconds this processor should sleep.
 */
 private long m_lSleepTime;
 }

11.2.3 Register the Timed Events Event Interceptor

In the UEMEvents project, the interceptors are registered in the cache configuration file. The fully-qualified name of the event interceptor is specified in the interceptor element, which appears under <cache-name> element in the <cache-mapping> stanza. The interceptor is associated with the cache specified in the <cache-name> element. In this example, TimedTraceInterceptor is the event interceptor on the events cache.

To create a cache configuration file which defines the event interceptors:

	
Open the coherence-cache-config.xml file from the Project Explorer window. You can find the file under Events/appClientModule.

	
Save the file as uem-cache-config.xml.

	
Write the cache configuration that calls the event interceptors. The following list highlights some key elements:

	
Under the <cache-mapping> element there is a reference from the com.oracle.handson.TimedTraceInterceptor class in the <interceptor> element to the events cache in the <cache-name> element. The events cache uses the events-distributed-scheme This scheme uses the PartitionedPofCache service which is listed under <distributed-schemes>.

	
There is a mapping between the events-results cache and the dist-events-results scheme. In the <distributed-scheme> section, there is an association between the dist-events-results scheme and the PartitionedEventsResults service.

Example 11-3 illustrates a possible implementation for the uem-cache-config.xml file.

Example 11-3 Cache Configuration File That Registers the TimedTraceInterceptor

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config coherence-cache-config.xsd">
 <defaults>
 <serializer>pof</serializer>
 </defaults>

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>events</cache-name>
 <scheme-name>events-distributed-scheme</scheme-name>
 <interceptors>
 <interceptor>
 <instance>
 <class-name>com.oracle.handson.TimedTraceInterceptor</class-name>
 <init-params>
 <init-param>
 <param-type>int</param-type>
 <param-value>100</param-value>
 </init-param>
 </init-params>
 </instance>
 </interceptor>
 </interceptors>
 </cache-mapping>
 <cache-mapping>
 <cache-name>events-results</cache-name>
 <scheme-name>dist-events-results</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>events-distributed-scheme</scheme-name>
 <service-name>PartitionedPofCache</service-name>
 <thread-count>5</thread-count>
 <backing-map-scheme>
 <local-scheme>
 <!-- each node will be limited to 32MB -->
 <high-units>32M</high-units>
 <unit-calculator>binary</unit-calculator>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <!-- A PartitionedCache service used to store results for events examples
 -->
 <distributed-scheme>
 <scheme-name>dist-events-results</scheme-name>
 <service-name>PartitionedEventsResults</service-name>
 <thread-count>5</thread-count>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <!--
 Invocation Service scheme.
 -->
 <invocation-scheme>
 <scheme-name>examples-invocation</scheme-name>
 <service-name>InvocationService</service-name>

 <autostart system-property="tangosol.coherence.invocation.autostart">true</autostart>
 </invocation-scheme>

 </caching-schemes>
</cache-config>

11.2.4 Create a POF Configuration File for the Lazy Processor Class

All of the information produced by the TimedTraceInterceptor class is exclusive to its local member. The LazyProcessor, and its state, is transmitted to storage-enabled members and executed, thus it must be added to the POF configuration file. In the Eclipse Project Explorer, right-click the pof-config.xml file and rename it uem-pof-config.xml. Open the uem-pof-config.xml file in the editor and replace its contents with the code in Example 11-4. The example illustrates a POF configuration file containing this class.

Example 11-4 POF Configuration File for the LazyProcessor Class

<?xml version="1.0"?>
<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config http://xmlns.oracle.com/coherence/coherence-pof-config/1.2/coherence-pof-config.xsd">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>coherence-pof-config.xml</include>
 <user-type>
 <type-id>1008</type-id>
 <class-name>com.oracle.handson.LazyProcessor</class-name>
 </user-type>
 </user-type-list>
</pof-config>

11.2.5 Create a Class to Exercise the Timed Events Event Interceptor

Create a class named EventsExamples to trigger actions to be performed by the TimedTraceInterceptor class. The class should illustrate how the elapsed time can be measured between pre- and postcommit events inserted into a results cache. The entries inserted into the results cache are sent to standard output by the process executing this class.

To create the EventsExamples class:

	
Create a new Java class called EventsExamples. Do not include a main method.

See "Creating a Java Class" for more information.

	
Write the code for the EventsExamples class. Import the LazyProcessor, CacheFactory, NamedCache, PartitionedService, MapEvent, MapListener, MultiplexListener, and Callable classes and interfaces. You can write your own code or use the code supplied in Example 11-5.

Example 11-5 illustrates a sample implementation of the EventsExamples class. The example contains the EventsTimingExample inner-class. This inner-class accesses the events and event-results caches and obtains the number of cache cluster members, the name of the triggering event, and the sample size from the TimedTraceInterceptor class logs. The calculation of the time for the sample to be processed and the mean time for all of the samples to be processed are provided by the TimedTraceInterceptor class.

The EventsTimingExample subclass provides the values for the total amount of time for event processing and the number of threads on which the events can run. It also calls the LazyProcessor class to calculate the amount of time between processing events (sleep time).

Example 11-5 Class to Exercise the TimedTraceInterceptor Event Interceptor

package com.oracle.handson;

import com.oracle.handson.LazyProcessor;

import com.tangosol.net.CacheFactory;
import com.tangosol.net.NamedCache;
import com.tangosol.net.PartitionedService;
import com.tangosol.util.MapEvent;
import com.tangosol.util.MapListener;
import com.tangosol.util.MultiplexingMapListener;

import java.util.concurrent.Callable;

/**
 * EventsExamples illustrates various features within the Live Events
 * Model. This includes providing mean elapsed times split by event type.
 *
 * @since Coherence 12.1.2
 */
@SuppressWarnings("unchecked")
public class EventsExamples
 {

 // ----- inner-class: EventsTimingExample -------------------------------

 /**
 * The EventsTimingExample is a catalyst for action to be performed by
 * {@link TimedTraceInterceptor}. This illustrates how the elapsed time
 * between pre- and postcommit events can be measured which are inserted
 * into a results cache. The entries inserted into the results cache are
 * displayed via the stdout of the process executing this class.
 */
 public static class EventsTimingExample
 implements Callable<Boolean>
 {
 // ----- Callable methods ---

 /**
 * {@inheritDoc}
 */
 public Boolean call() throws Exception
 {
 NamedCache cacheEvents = CacheFactory.getCache("events");
 NamedCache cacheResults = CacheFactory.getCache("events-results");
 int cFrequency = ((PartitionedService) cacheEvents.getCacheService()).getOwnershipEnabledMembers().size();
 int cSet = 110;

 MapListener ml = new MultiplexingMapListener()
 {
 @Override
 protected void onMapEvent(MapEvent evt)
 {
 String[] asKey = ((String) evt.getKey()).split("-");

 System.out.printf("Received stats [memberId=%s, eventType=%s, sample=%s] = %s\n",
 asKey[0], asKey[1], asKey[2], evt.getNewValue());
 }
 };

 try
 {
 cacheResults.addMapListener(ml);

 // execute inserts and updates
 for (int i = cFrequency; i > 0; --i)
 {
 for (int j = 1, cMax = cSet * cFrequency; j <= cMax; ++j)
 {
 cacheEvents.put(j, "value " + j);
 }
 }

 // execute processors
 int nTotalTime = 3000;
 int cThreads = 5;
 int nSleepTime = nTotalTime / (cThreads * cSet * cFrequency);
 for (int i = 1, cMax = cSet * cFrequency; i <= cMax; ++i)
 {
 cacheEvents.invoke(i, new LazyProcessor(nSleepTime));
 }
 }
 finally
 {
 cacheEvents.clear();
 cacheResults.removeMapListener(ml);
 cacheResults.clear();
 }
 return true;
 }
 }
 }

11.2.6 Create a Driver File for Timed Events Example

Create a driver file to run the EventsTimingExample example defined in the EventsExamples class.

To create a driver file:

	
Create a new Java class called Driver in the UEMEvents project. Ensure that it includes a main method.

See "Creating a Java Class" for detailed information.

	
Write the code to run the EventsTimingExample example defined in the EventsExamples class. You can write your own driver or use the code supplied in Example 11-6.

Example 11-6 Driver File for Timed Events Example

package com.oracle.handson;

import com.oracle.handson.EventsExamples.EventsTimingExample;

import java.util.LinkedHashMap;
import java.util.Map;
import java.util.concurrent.Callable;

/**
 * Driver executes all the Coherence Events examples.
 * <p>
 * Timed Events Example - In this example we time
 * the elapsed time between pre- and postcommit events for each of the events
 * that occur.
 *
 * @since Coherence 12.1.2
 */
public class Driver
 {

 // ----- static methods ---

 /**
 * Execute Events examples.
 *
 * @param asArg command line arguments
 */
 public static void main(String[] asArg)
 {
 System.out.println("------ events examples begin ------");

 // Run examples
 for (Map.Entry<String, Callable<Boolean>> example : EVENTS_EXAMPLES.entrySet())
 {
 String sExample = example.getKey();

 try
 {
 System.out.printf("------ %s begin\n\n", sExample);
 boolean fSuccess = example.getValue().call();
 System.out.printf("\n------ %s completed %ssuccessfully\n", sExample, fSuccess ? "" : "un");
 }
 catch(Exception e)
 {
 System.err.printf("----------%s completed unsuccessfully with the following exception:\n", sExample);
 e.printStackTrace();
 }
 }

 System.out.println("------ events examples completed------");
 }

 // ----- constants --

 /**
 * All the examples to be executed in insertion order.
 */
 protected static final Map<String, Callable<Boolean>> EVENTS_EXAMPLES = new LinkedHashMap<String, Callable<Boolean>>();

 /**
 * Default examples.
 */
 static
 {
 EVENTS_EXAMPLES.put("timing interceptor", new EventsTimingExample());
 }
 }

11.2.7 Create a Cache Server Startup Configuration

Create a configuration to start the cache server for the UEMEvents project.

	
Right click the project and select Run As then Run Configurations. Double click the Oracle Coherence icon in the Run Configurations dialog box to create a new launch configuration.

	
In the Main tab, enter UEMEventsServer in the Name field. Click Browse in the Project field and select the UEMEvents project in the Project Selection dialog box. Select the Include system libraries when searching for a main class checkbox and click Search. Enter DefaultCacheServer in the Select Type field and select com.tangosol.net.DefaultCacheServer. Click Apply. The Main tab should look similar to Figure 11-1.

Figure 11-1 Main Tab for the Events Server Startup Configuration

[image: Description of Figure 11-1 follows]

	
In the General tab of the Coherence tab, identify the path to the cache configuration file under Cache configuration descriptor. Click the Browse button to navigate to the Absolute file path of the cache configuration file C:\home\oracle\workspace\UEMEvents\src\uem-cache-config.xml. Select Enabled (cache server) under Local storage. Enter a unique value, such as 3155, for the Cluster port.

In the Other tab, set the tangosol.pof.config item to uem-pof-config.xml.

	
In the Common tab, select Shared file and browse to the \UEMEvents project.

	
The Classpath tab should look similar to Example 11-2. The UEMEvents project appears below User Entries. The JRE System Library and Coherence12.1.2 library appear in the Bootstrap Entries section.

Figure 11-2 Classpath Tab for the Events Server Startup Configuration

[image: Description of Figure 11-2 follows]

11.2.8 Create a Startup Configuration for the Timed Events Driver

Create a configuration to start the client driver for the UEMEvents project.

	
Right click the project and select Run As then Run Configurations. Double click the Oracle Coherence icon in the Run Configurations dialog box to create a new launch configuration.

	
In the Main tab, enter UEMEventDriver in the Name field. Click Browse in the Project field and select the UEMEvents project in the Project Selection dialog box. Select the Include system libraries when searching for a main class checkbox and click Search. Enter Driver in the Select Type field and select com.oracle.handson.Driver. Click Apply. The Main tab should look similar to Figure 11-0.

Figure 11-3 Main Tab for the Events Client Startup Configuration

[image: Description of Figure 11-3 follows]

	
In the General tab of the Coherence tab, identify the path to the cache configuration file under Cache configuration descriptor. Click the Browse button to navigate to the Absolute file path of the cache configuration file C:\home\oracle\workspace\UEMEvents\src\uem-cache-config.xml. Select Disabled (cache client) under Local storage. Enter a unique value, such as 3155, for the Cluster port.

In the Other tab, set the tangosol.pof.config item to the uem-pof-config.xml.

	
In the Common tab, select Shared file and browse to the \UEMEvents project.

	
The Classpath tab should look similar to Example 11-4. The UEMEvents project appears below User Entries. The JRE System Library and Coherence12.1.2 library appear in the Bootstrap Entries section.

Figure 11-4 Classpath Tab for the Events Client Startup Configuration

[image: Description of Figure 11-4 follows]

11.2.9 Run the Timed Events Example

Right-click the UEMEvents project in the Project Explorer and select Run As, then Run Configurations. In the Run Configurations dialog box, select the UEMEventsServer launch configuration and click Run to start the cache server. After the cache server starts, select UEMEventsServer and click Run a second and a third time to start a total of three cache servers.

After the third cache server starts, select the UEMEventDriver configuration and click Run. The output from the cache client should look similar to Example 11-7.

Example 11-7 Output from the Cache Client

------ events examples begin ------
------ timing interceptor begin
2013-03-07 15:53:49.958/0.406 Oracle Coherence 12.1.2.0.0 <Info> (thread=main, member=n/a): Loaded operational configuration from "jar:file:/C:/Oracle7/coherence/lib/coherence.jar!/tangosol-coherence.xml"
2013-03-07 15:53:50.020/0.468 Oracle Coherence 12.1.2.0.0 <Info> (thread=main, member=n/a): Loaded operational overrides from "jar:file:/C:/Oracle7/coherence/lib/coherence.jar!/tangosol-coherence-override-dev.xml"
...
...
2013-03-07 15:53:51.692/2.140 Oracle Coherence GE 12.1.2.0.0 <D5> (thread=DistributedCache:PartitionedPofCache, member=4): Service PartitionedPofCache joined the cluster with senior service member 1
2013-03-07 15:53:51.802/2.250 Oracle Coherence GE 12.1.2.0.0 <D5> (thread=DistributedCache:PartitionedEventsResults, member=4): Service PartitionedEventsResults joined the cluster with senior service member 1
Received stats [memberId=2, eventType=INSERTED, sample=1] = EventStats[name = INSERTED, sampleMean = 0.294040ms, mean = 0.294040ms]
Received stats [memberId=3, eventType=INSERTED, sample=1] = EventStats[name = INSERTED, sampleMean = 0.397855ms, mean = 0.397855ms]
Received stats [memberId=1, eventType=INSERTED, sample=1] = EventStats[name = INSERTED, sampleMean = 0.373270ms, mean = 0.373270ms]
Received stats [memberId=3, eventType=UPDATED, sample=1] = EventStats[name = UPDATED, sampleMean = 0.187132ms, mean = 0.187132ms]
Received stats [memberId=2, eventType=UPDATED, sample=1] = EventStats[name = UPDATED, sampleMean = 0.234314ms, mean = 0.234314ms]
Received stats [memberId=1, eventType=UPDATED, sample=1] = EventStats[name = UPDATED, sampleMean = 0.237622ms, mean = 0.237622ms]
Received stats [memberId=2, eventType=UPDATED, sample=2] = EventStats[name = UPDATED, sampleMean = 1.315323ms, mean = 1.432480ms]
Received stats [memberId=3, eventType=UPDATED, sample=2] = EventStats[name = UPDATED, sampleMean = 0.417201ms, mean = 0.510767ms]
Received stats [memberId=1, eventType=UPDATED, sample=2] = EventStats[name = UPDATED, sampleMean = 0.190555ms, mean = 0.309366ms]
Received stats [memberId=2, eventType=EXECUTED, sample=1] = EventStats[name = EXECUTED, sampleMean = 1.766313ms, mean = 1.766313ms]
Received stats [memberId=3, eventType=EXECUTED, sample=1] = EventStats[name = EXECUTED, sampleMean = 1.672603ms, mean = 1.672603ms]
Received stats [memberId=1, eventType=EXECUTED, sample=1] = EventStats[name = EXECUTED, sampleMean = 1.676003ms, mean = 1.676003ms]

------ timing interceptor completed successfully
------ events examples completed------

11.3 Vetoing Pre- and Postcommit Events Using an Event Interceptor

In this exercise you will create an event interceptor to detect and veto events based on a specified key. To complete this exercise, follow these steps:

	
Create an Event Interceptor to Detect and Veto Events

	
Register the Veto Events Event Interceptor

	
Create a Class to Exercise the Veto Events Event Interceptor

	
Edit the Driver File for the Veto Events Example

	
Run the Veto Events Example

11.3.1 Create an Event Interceptor to Detect and Veto Events

To exercise the ability of Live Events to accept or veto events, create an event interceptor named CantankerousInterceptor. The interceptor will throw exceptions based on events that correspond to a specified key.

	
Create a new Java class called CantankerousInterceptor. Ensure that the Default Package is com.oracle.handson. Do not select the Main Method check box.

See "Creating a Java Class" for more information.

	
Write the code for the event interceptor. Import the Event, EventInterceptor, Interceptor, EntryEvent, and EntryEvent.Type classes and interfaces. You can write your own interceptor code or use the code that is provided in Example 11-8.

Example 11-8 illustrates an event interceptor that throws a runtime exception during pre or post-commit events, based on the key that is attempting to be inserted. If the exception is thrown at precommit time, then a rollback occurs and the exception is propagated to the client. If the exception occurs at postcommit time, then a log event is recorded. The keys used for the exceptions are VETO and NON-VETO. INSERTING and UPDATING are events that can be vetoed, whereas INSERTED and UPDATED events cannot be vetoed.

Example 11-8 Class to Detect and Veto Events

package com.oracle.handson;

import com.tangosol.net.CacheFactory;
import com.tangosol.net.NamedCache;

import com.tangosol.net.events.Event;
import com.tangosol.net.events.EventInterceptor;
import com.tangosol.net.events.annotation.Interceptor;
import com.tangosol.net.events.partition.cache.EntryEvent;
import com.tangosol.net.events.partition.cache.EntryEvent.Type;

import com.tangosol.util.BinaryEntry;

/**
 * A CantankerousInterceptor is an {@link EventInterceptor} implementation
 * that is argumentative in nature, hence the event of inserting certain keys
 * will result in {@link RuntimeException}s at either pre- or postcommit
 * phases. Throwing a {@link RuntimeException} during the precommit phase
 * will result in a rollback and related exception being propagated to the
 * client. A postcommit exception will result in a log event. A precommit
 * event is considered an *ING event with a postcommit event being a
 * *ED event.
 * <p>
 * This interceptor assumes it will be working against a cache with strings
 * as keys with the following items that will be considered objectionable.
 * <table>
 * <tr><td>Key</td><td>Exception Thrown During Event</td></tr>
 * <tr><td>{@value #VETO}</td><td>{@link Type#INSERTING} ||
 * {@link Type#UPDATING}</td></tr>
 * <tr><td>{@value #NON_VETO}</td><td>{@link Type#INSERTED} ||
 * {@link Type#UPDATED}</td></tr>
 * </table>
 *
 *
 * @since Coherence 12.1.2
 */
@Interceptor(identifier = "cantankerous",
 entryEvents = {Type.INSERTING, Type.INSERTED, Type.UPDATING, Type.UPDATED})
public class CantankerousInterceptor
 implements EventInterceptor<EntryEvent>
 {
 // ----- EventInterceptor methods ---------------------------------------

 /**
 * Throws {@link RuntimeException} iff the key used for this event is
 * {@code #VETO} or {@code #NON_VETO}.
 *
 * @param event the {@link Event} to be processed
 *
 * @throws RuntimeException iff {@code #VETO} || {@code #NON_VETO} are
 * keys of the event
 */
 public void onEvent(EntryEvent event)
 {
 for (BinaryEntry binEntry : event.getEntrySet())
 {
 if (VETO.equals(binEntry.getKey()))
 {
 throw new RuntimeException("Objection! value = " + binEntry.getValue());
 }
 else if (NON_VETO.equals(binEntry.getKey())
 && (event.getType() == Type.INSERTED || event.getType() == Type.UPDATED))
 {

 NamedCache cacheResults = CacheFactory.getCache("events-results");
 int nMemberId = CacheFactory.getCluster().getLocalMember().getId();
 String sMessage = "Objection falls on deaf ears! value = " + binEntry.getValue();

 cacheResults.put(
 String.format("%d-NON_VETO-%d", nMemberId, ++m_cNonVetoableEvents),
 sMessage);

 throw new RuntimeException(sMessage);
 }
 }
 }

 // ----- constants --

 /**
 * String used to determine whether the event should be VETO'd during the
 * precommit phase.
 */
 public static final String VETO = "VETO";

 /**
 * String used to determine whether the event should be VETO'd during the
 * postcommit phase.
 */
 public static final String NON_VETO = "NON-VETO";

 // ----- data members ---

 /**
 * A counter of the number of non-vetoable exceptions raised.
 */
 private int m_cNonVetoableEvents;
 }

11.3.2 Register the Veto Events Event Interceptor

Open the uem-cache-config.xml cache configuration file and add the code to register the CantankerousInterceptor event interceptor and its cache. List the cache it references, vetod-events, in the <cache-name> element and its associated scheme events-distributed-scheme in the <scheme-name> element. List the fully-qualified class name of the CantankerousInterceptor class in the <class-name> subelement of the <interceptors> stanza. The added code is illustrated in bold font.

Example 11-9 Cache Configuration to Register the CantankerousInterceptor Class

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config coherence-cache-config.xsd">
 <defaults>
 <serializer>pof</serializer>
 </defaults>

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>events</cache-name>
 <scheme-name>events-distributed-scheme</scheme-name>
 <interceptors>
 <interceptor>
 <instance>
 <class-name>com.oracle.handson.TimedTraceInterceptor</class-name>
 <init-params>
 <init-param>
 <param-type>int</param-type>
 <param-value>100</param-value>
 </init-param>
 </init-params>
 </instance>
 </interceptor>
 </interceptors>
 </cache-mapping>
 <cache-mapping>
 <cache-name>vetod-events</cache-name>
 <scheme-name>events-distributed-scheme</scheme-name>
 <interceptors>
 <interceptor>
 <instance>
 <class-name>com.oracle.handson.CantankerousInterceptor</class-name>
 </instance>
 </interceptor>
 </interceptors>
 </cache-mapping>
 <cache-mapping>
 <cache-name>events-results</cache-name>
 <scheme-name>dist-events-results</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>events-distributed-scheme</scheme-name>
 <service-name>PartitionedPofCache</service-name>
 <thread-count>5</thread-count>
 <backing-map-scheme>
 <local-scheme>
 <!-- each node will be limited to 32MB -->
 <high-units>32M</high-units>
 <unit-calculator>binary</unit-calculator>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <!-- A PartitionedCache service used to store results for events examples
 -->
 <distributed-scheme>
 <scheme-name>dist-events-results</scheme-name>
 <service-name>PartitionedEventsResults</service-name>
 <thread-count>5</thread-count>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <!--
 Invocation Service scheme.
 -->
 <invocation-scheme>
 <scheme-name>examples-invocation</scheme-name>
 <service-name>InvocationService</service-name>

 <autostart system-property="tangosol.coherence.invocation.autostart">true</autostart>
 </invocation-scheme>

 </caching-schemes>
</cache-config>

11.3.3 Create a Class to Exercise the Veto Events Event Interceptor

Create a class to exercise the CantankerousInterceptor event interceptor. Within the class, create a subclass, VetoedEventsExample. The VetoedEventsExample subclass initiates the action to be performed by CantankerousInterceptor. The code illustrates the semantics of throwing exceptions in pre- and postcommit events. The exceptions that are expected only to be logged are inserted into a results cache. The entries inserted into the results cache are displayed by using the standard output of the process executing this class.

Example 11-10 Class to Exercise the TimedTraceInterceptor EventInterceptor

package com.oracle.handson;

import com.tangosol.net.CacheFactory;
import com.tangosol.net.NamedCache;
import com.tangosol.util.MapEvent;
import com.tangosol.util.MapListener;
import com.tangosol.util.MultiplexingMapListener;

import java.util.concurrent.Callable;

/**
 * VetoExample illustrates the different semantics in throwing exceptions in pre
 * events compared to post events.
 *
 * @since Coherence 12.1.2
 */
@SuppressWarnings("unchecked")
public class VetoExample
 {

 /**
 * The VetoExample is a catalyst for action to be performed by
 * {@link CantankerousInterceptor}. This illustrates the semantics of
 * throwing exceptions in pre- and postcommit events. The exceptions that are
 * expected to only be logged are inserted into a results cache. The
 * entries inserted into the results cache are
 * displayed via the stdout of the process executing this class.
 */
 public static class VetoedEventsExample
 implements Callable<Boolean>
 {

 // ----- Callable methods ---

 /**
 * {@inheritDoc}
 */
 public Boolean call() throws Exception
 {
 // perform events to cause interceptors to veto said event
 NamedCache cacheVetoEvents = CacheFactory.getCache("vetod-events");
 NamedCache cacheResults = CacheFactory.getCache("events-results");
 MapListener ml = new MultiplexingMapListener()
 {
 @Override
 protected void onMapEvent(MapEvent evt)
 {
 String[] asKey = ((String) evt.getKey()).split("-");

 System.out.printf("Received event [memberId=%s, eventType=%s, count=%s] = %s\n",
 asKey[0], asKey[1], asKey[2], evt.getNewValue());
 }
 };
 try
 {
 int cSet = 110;
 int cVetos = 5;
 int cNonVetos = 10;
 int cVetod = 0;

 cacheResults.addMapListener(ml);

 for (int i = 1; i <= cSet; ++i)
 {
 boolean fVetod = false;

 if (i % (cSet / cVetos) == 0)
 {
 try
 {
 cacheVetoEvents.put(CantankerousInterceptor.VETO, "value: " + i);
 }
 catch(Throwable e)
 {
 fVetod = true;
 ++cVetod;
 }
 }
 if (i % (cSet / cNonVetos) == 0)
 {
 cacheVetoEvents.put(CantankerousInterceptor.NON_VETO, "value: " + i);
 fVetod = true;
 }

 if (!fVetod)
 {
 cacheVetoEvents.put(String.valueOf(i), "value: " + i);
 }
 }
 System.out.printf("Number of veto'd events: %d\n", cVetod);
 }
 finally
 {
 cacheVetoEvents.clear();
 cacheResults.removeMapListener(ml);
 cacheResults.clear();
 }
 return true;
 }
 }
 }

11.3.4 Edit the Driver File for the Veto Events Example

Edit the driver file that you created in "Create a Driver File for Timed Events Example" to run the VetoedEventsExample example defined in the VetoExample class.

To edit the driver file:

	
Replace the import statement for the Events Timing Example:

import com.oracle.handson.EventsExamples.EventsTimingExample;

with an import statement for the VetoedEventsExample subclass.

import com.oracle.handson.VetoExample.VetoedEventsExample;

	
Replace the command which calls the Timed Events example:

EVENTS_EXAMPLES.put("timing interceptor", new EventsTimingExample());

with the following command to run the VetoedEventsExample example defined in the VetoExample class:

EVENTS_EXAMPLES.put("veto interceptor", new VetoedEventsExample());

11.3.5 Run the Veto Events Example

Right-click the UEMEvents project in the Project Explorer and select Run As, then Run Configurations. In the Run Configurations dialog box, select the UEMEventsServer launch configuration that you created in "Create a Cache Server Startup Configuration". Click Run to start the cache server. After the cache server starts, select UEMEventsServer and click Run a second and a third time to start a total of three cache servers.

After the third cache server starts, select the UEMEventDriver launch configuration and click Run. The output from the veto events client should look similar to Example 11-11.

Example 11-11 Output from the Veto Events Client

------ events examples begin ------
------ veto interceptor begin
2013-03-08 12:00:57.718/1.843 Oracle Coherence GE 12.1.2.0.0 <D5> (thread=Invocation:Management, member=4): Service Management joined the cluster with senior service member 1
...
2013-03-08 12:00:58.109/2.234 Oracle Coherence GE 12.1.2.0.0 <D5> (thread=DistributedCache:PartitionedEventsResults, member=4): Service PartitionedEventsResults joined the cluster with senior service member 1
Received event [memberId=3, eventType=NON_VETO, count=1] = Objection falls on deaf ears! value = value: 11
Received event [memberId=3, eventType=NON_VETO, count=2] = Objection falls on deaf ears! value = value: 22
Received event [memberId=3, eventType=NON_VETO, count=3] = Objection falls on deaf ears! value = value: 33
Received event [memberId=3, eventType=NON_VETO, count=4] = Objection falls on deaf ears! value = value: 44
Received event [memberId=3, eventType=NON_VETO, count=5] = Objection falls on deaf ears! value = value: 55
Received event [memberId=3, eventType=NON_VETO, count=6] = Objection falls on deaf ears! value = value: 66
Received event [memberId=3, eventType=NON_VETO, count=7] = Objection falls on deaf ears! value = value: 77
Received event [memberId=3, eventType=NON_VETO, count=8] = Objection falls on deaf ears! value = value: 88
Received event [memberId=3, eventType=NON_VETO, count=9] = Objection falls on deaf ears! value = value: 99
Number of veto'd events: 5
Received event [memberId=3, eventType=NON_VETO, count=10] = Objection falls on deaf ears! value = value: 110
------ veto interceptor completed successfully
------ events examples completed------

Notice the output from the third cache server illustrated in Example 11-12. The output displays the exceptions caused by the vetoed events.

Example 11-12 Output from the Cache Server

Started DefaultCacheServer...

2013-03-08 12:00:52.921/12.968 Oracle Coherence GE 12.1.2.0.0 <D4> (thread=DistributedCache:PartitionedPofCache, member=3): Asking member 1 for primary ownership of PartitionSet{128..171}
...
2013-03-08 12:00:58.125/18.172 Oracle Coherence GE 12.1.2.0.0 <D5> (thread=Cluster, member=3): Member 4 joined Service PartitionedEventsResults with senior member 1
2013-03-08 12:00:58.265/18.312 Oracle Coherence GE 12.1.2.0.0 <Error> (thread=DistributedCache:PartitionedPofCache:EventDispatcher, member=3): Exception caught while dispatching to "<cantankerous, com.oracle.handson.CantankerousInterceptor>": Objection falls on deaf ears! value = value: 11
 at com.oracle.handson.CantankerousInterceptor.onEvent(CantankerousInterceptor.java:74)
 at com.oracle.handson.CantankerousInterceptor.onEvent(CantankerousInterceptor.java:1)
 at com.tangosol.net.events.internal.NamedEventInterceptor.onEvent(NamedEventInterceptor.java:240)
 at com.tangosol.net.events.internal.AbstractEvent.nextInterceptor(AbstractEvent.java:116)
 at com.tangosol.net.events.internal.AbstractEvent.dispatch(AbstractEvent.java:154)
 at com.tangosol.net.events.internal.AbstractEventDispatcher$1.proceed(AbstractEventDispatcher.java:254)
 at com.tangosol.coherence.component.util.daemon.queueProcessor.service.grid.PartitionedService$Continuations$Task.run(PartitionedService.CDB:6)
 at com.tangosol.coherence.component.util.daemon.queueProcessor.Service$EventDispatcher.onNotify(Service.CDB:26)
 at com.tangosol.coherence.component.util.Daemon.run(Daemon.CDB:51)
 at java.lang.Thread.run(Thread.java:722)

2013-03-08 12:00:52.953/13.000 Oracle Coherence GE 12.1.2.0.0 <Error> (thread=DistributedCache:PartitionedPofCache:EventDispatcher, member=3): Exception caught while dispatching to "<cantankerous, com.oracle.handson.CantankerousInterceptor>": Objection falls on deaf ears! value = value: 22
 at com.oracle.handson.CantankerousInterceptor.onEvent(CantankerousInterceptor.java:74)
 at com.oracle.handson.CantankerousInterceptor.onEvent(CantankerousInterceptor.java:1)
 at com.tangosol.net.events.internal.NamedEventInterceptor.onEvent(NamedEventInterceptor.java:240)
 at com.tangosol.net.events.internal.AbstractEvent.nextInterceptor(AbstractEvent.java:116)
 at com.tangosol.net.events.internal.AbstractEvent.dispatch(AbstractEvent.java:154)
 at com.tangosol.net.events.internal.AbstractEventDispatcher$1.proceed(AbstractEventDispatcher.java:254)
 at com.tangosol.coherence.component.util.daemon.queueProcessor.service.grid.PartitionedService$Continuations$Task.run(PartitionedService.CDB:6)
 at com.tangosol.coherence.component.util.daemon.queueProcessor.Service$EventDispatcher.onNotify(Service.CDB:26)
 at com.tangosol.coherence.component.util.Daemon.run(Daemon.CDB:51)
 at java.lang.Thread.run(Thread.java:722)

...

2013-03-08 12:00:58.640/18.687 Oracle Coherence GE 12.1.2.0.0 <Error> (thread=DistributedCache:PartitionedPofCache:EventDispatcher, member=3): Exception caught while dispatching to "<cantankerous, com.oracle.handson.CantankerousInterceptor>": Objection falls on deaf ears! value = value: 110
 at com.oracle.handson.CantankerousInterceptor.onEvent(CantankerousInterceptor.java:74)
 at com.oracle.handson.CantankerousInterceptor.onEvent(CantankerousInterceptor.java:1)
 at com.tangosol.net.events.internal.NamedEventInterceptor.onEvent(NamedEventInterceptor.java:240)
 at com.tangosol.net.events.internal.AbstractEvent.nextInterceptor(AbstractEvent.java:116)
 at com.tangosol.net.events.internal.AbstractEvent.dispatch(AbstractEvent.java:154)
 at com.tangosol.net.events.internal.AbstractEventDispatcher$1.proceed(AbstractEventDispatcher.java:254)
 at com.tangosol.coherence.component.util.daemon.queueProcessor.service.grid.PartitionedService$Continuations$Task.run(PartitionedService.CDB:6)
 at com.tangosol.coherence.component.util.daemon.queueProcessor.Service$EventDispatcher.onNotify(Service.CDB:26)
 at com.tangosol.coherence.component.util.Daemon.run(Daemon.CDB:51)
 at java.lang.Thread.run(Thread.java:722)

...
2013-03-08 12:00:58.734/18.781 Oracle Coherence GE 12.1.2.0.0 <D5> (thread=Cluster, member=3): MemberLeft notification for Member(Id=4, Timestamp=2013-03-08 12:00:58.718, Address=192.168.0.102:8094, MachineId=18578, Location=site:,machine:tpfaeffl-lap7,process:5720, Role=OracleHandsonDriver) received from Member(Id=1, Timestamp=2013-03-08 12:00:08.343, Address=192.168.0.102:8088, MachineId=18578, Location=site:,machine:tpfaeffl-lap7,process:3508, Role=CoherenceServer)

11.4 Logging Partition Activity Using an Event Interceptor

In this exercise you will create an event interceptor to log partition events for a partitioned service. To complete this exercise, follow these steps:

	
Create a Class to Terminate a JVM and to Enable and Disable Logging

	
Create an Event Interceptor to Log Partition Activity

	
Create a Class to Exercise the Log Partition Activity Example

	
Register the Log Partition Activity Event Interceptor

	
Edit the POF Configuration File

	
Edit the Driver File for the Log Partition Activity Example

	
Run the Log Partition Activity Example

11.4.1 Create a Class to Terminate a JVM and to Enable and Disable Logging

Create a class named RedistributionInvocable that defines three actionable states that will be executed on various members of the cluster. For this example, define the states as follows:

	
DISABLE: Disable the logging performed by the RedistributionInterceptor event interceptor.

	
ENABLE: Enable the logging performed by the RedistributionInterceptor event interceptor.

	
KILL: Terminate the JVM that this invocable (RedistributionInvocable) is executed on.

You will create the RedistributionInterceptor event interceptor in a later step.

For the variable that determines whether logging is enabled or disabled, use the AtomicBoolean class. For example:

public static final AtomicBoolean ENABLED = new AtomicBoolean(false)

To terminate the invocable, the KILL state can simply call System.exit.

The data that the class produces will be sent across the wire, so the class should use POF (Portable Object Format). You will add the class to the POF configuration file in a later step.

To create the RedistributionInvocable class:

	
Create a new Java class called RedistributionInvocable. Ensure that the Default Package is com.oracle.handson. Do not select the Main Method check box.

See "Creating a Java Class" for more information.

	
Write the class to define three different states that can be assigned to an interceptor object. Import the AbstractInvocable, AtomicBoolean, PortableObject, PofReader, and PofWriter classes and interfaces. The RedistributionInvocable class should extend the AbstractInvocable class and implement the PortableObject interface.You can write your own RedistributionInvocable class or use the code provided in Example 11-13.

Example 11-13 Class to Terminate a JVM and to Enable or Disable Logging

package com.oracle.handson;

import com.tangosol.io.pof.PofReader;
import com.tangosol.io.pof.PofWriter;
import com.tangosol.io.pof.PortableObject;

import com.tangosol.net.AbstractInvocable;

import java.io.IOException;

import java.util.concurrent.atomic.AtomicBoolean;

/**
 * RedistributionInvocable has three states in which appropriate action is
 * taken:
 *
 * {@link State#DISABLE} - Disables the logging
 * performed by {@link com.oracle.handson.RedistributionInterceptor}.
 * {@link State#ENABLE} - Enables the logging
 * performed by {@link com.oracle.handson.RedistributionInterceptor}.
 * {@link State#KILL} - Kills the JVM this invocable
 * is executed on.
 *
 *
 *
 * @since 12.1.2
 */
public class RedistributionInvocable
 extends AbstractInvocable
 implements PortableObject
 {
 // ----- constructors ---

 /**
 *
 */
 private static final long serialVersionUID = 1L;

 /**
 * Default no-arg constructor.
 */
 public RedistributionInvocable()
 {
 this(State.DISABLE);
 }

 /**
 * Constructs a RedistributionInvocable with the specified state.
 *
 * @param state the state indicating the action to be performed
 */
 public RedistributionInvocable(State state)
 {
 m_state = state;
 }

 // ----- Invocable methods --

 /**
 * {@inheritDoc}
 */
 public void run()
 {
 switch (m_state)
 {
 case DISABLE:
 ENABLED.set(false);
 break;
 case ENABLE:
 ENABLED.set(true);
 break;
 case KILL:
 System.exit(1);
 }
 }

 // ----- PortableObject methods ---

 /**
 * {@inheritDoc}
 */
 public void readExternal(PofReader in) throws IOException
 {
 m_state = State.values()[in.readInt(0)];
 }

 /**
 * {@inheritDoc}
 */
 public void writeExternal(PofWriter out) throws IOException
 {
 out.writeInt(0, m_state.ordinal());
 }

 // ----- inner class: State ---

 /**
 * Representation of the action to be performed when
 * {@link RedistributionInvocable#run()}.
 */
 public enum State
 {
 /**
 * Disables the logging performed by
 * {@link com.oracle.handson.RedistributionInterceptor}
 */
 DISABLE,
 /**
 * Enables the logging performed by
 * {@link com.oracle.handson.RedistributionInterceptor}
 */
 ENABLE,
 /**
 * Terminates the JVM process in which the
 * {@link RedistributionInvocable} is executed.
 */
 KILL
 }

 // ----- constants --

 /**
 * Flag used to determine whether to log partition events.
 */
 public static final AtomicBoolean ENABLED = new AtomicBoolean(false);

 // ----- data members ---

 /**
 * The state used to determine which action to perform.
 */
 private State m_state;
 }

11.4.2 Create an Event Interceptor to Log Partition Activity

Create an event interceptor named RedistributionInterceptor to log partition events for a partitioned service.

To create the RedistributionInterceptor event interceptor:

	
Create a new Java class called RedistributionInterceptor. Ensure that the Default Package is com.oracle.handson. Do not select the Main Method check box.

See "Creating a Java Class" for more information.

	
Write the RedistributionInterceptor class to log partition events. Import the RedistributionInvocable, CacheFactory, EventInterceptor, Interceptor, TransferEvent classes and interfaces. The RedistributionInterceptor class should implement the EventInterceptor<TransferEvent> interface. You can write your own class to log partition events or use the code provided in Example 11-14.

Example 11-14 illustrates an event interceptor to log partition events. A name can be assigned to the interceptor by using the optional identifier attribute in the @Interceptor annotation. The event interceptor determines whether the partition event should be logged by referencing the value of the RedistributionInvocable.ENABLED constant.

Example 11-14 Class to Log Partition Events

package com.oracle.handson;

import com.oracle.handson.RedistributionInvocable;

import com.tangosol.net.CacheFactory;

import com.tangosol.net.events.EventInterceptor;
import com.tangosol.net.events.annotation.Interceptor;
import com.tangosol.net.events.partition.TransferEvent;

/**
 * RedistributionInterceptor is an {@link
 * com.tangosol.net.events.EventInterceptor}
 * that logs partition activity when enabled. Logging can be enabled via
 * setting the {@link RedistributionInvocable#ENABLED} constant.
 *
 * @since Coherence 12.1.2
 */
@Interceptor(identifier = "redist")
public class RedistributionInterceptor
 implements EventInterceptor<TransferEvent>
 {

 // ----- EventInterceptor methods ---------------------------------------

 /**
 * {@inheritDoc}
 */
 public void onEvent(TransferEvent event)
 {
 if (RedistributionInvocable.ENABLED.get())
 {
 CacheFactory.log(String.format("Discovered event %s for partition-id %d from remote member %s\n",
 event.getType(), event.getPartitionId(), event.getRemoteMember()),
 CacheFactory.LOG_INFO);
 }
 }
 }

11.4.3 Create a Class to Exercise the Log Partition Activity Example

Create a class called LogExample to trigger actions to be performed by the RedistributionInterceptor class.

To create the LogExample class:

	
Create a new Java class called LogExample. Do not include a main method.

See "Creating a Java Class" for more information.

	
Write the code for the LogExample class. Import the RedistributionInvocable, RedistributionInvocable.State, CacheFactory, InvocationService, Member, ArrayList, Collection, Random, Set and Callable classes and interfaces. You can write your own code or use the code supplied in Example 11-15.

Example 11-15 illustrates a sample implementation of the LogExample class. The example contains the subclass RedistributionEventsExample subclass which triggers actions to be performed by the RedistributionInterceptor class. The subclass illustrates how partition redistribution events can be logged. At least two cluster members must be running to run this example.

Example 11-15 Sample Class to Exercise the Log Partition Activity Example

package com.oracle.handson;

import com.oracle.handson.RedistributionInvocable;
import com.oracle.handson.RedistributionInvocable.State;
import com.tangosol.net.CacheFactory;
import com.tangosol.net.InvocationService;
import com.tangosol.net.Member;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.Callable;

/**
 * LogExample illustrates logging of partition movement when enabled.
 *
 * @since Coherence 12.1.2
 */
@SuppressWarnings("unchecked")
public class LogExample
 {

 /**
 * The RedistributionEventsExample is a catalyst for action to be
 * performed by {@link RedistributionInterceptor}. This illustrates how
 * partition redistribution events can be logged.
 */
 public static class RedistributionEventsExample
 implements Callable<Boolean>
 {

 // ----- Callable methods ---

 /**
 * {@inheritDoc}
 */
 public Boolean call() throws Exception
 {
 // transfer events
 try
 {
 InvocationService is = (InvocationService) CacheFactory.getService("InvocationService");
 Random rnd = new Random();
 int cMembers = is.getInfo().getServiceMembers().size();

 if (cMembers < 3)
 {
 System.err.println("<Error> At least two members must exist for the RedistributionEvent example");
 return false;
 }

 // enable the logging of transfer event
 is.query(new RedistributionInvocable(State.ENABLE), null);

 Set<Member> isMembers = is.getInfo().getServiceMembers();
 isMembers.remove(is.getCluster().getLocalMember());

 Member memChosen = new ArrayList<Member>(isMembers).get(rnd.nextInt(isMembers.size()));

 System.out.printf("Choosing to kill member %s\n", memChosen);
 is.query(new RedistributionInvocable(State.KILL), Collections.singleton(memChosen));
 }
 finally
 {
 }

 return true;
 }
 }
 }

11.4.4 Register the Log Partition Activity Event Interceptor

The event interceptors can be registered either programmatically or by including references to them in the cache configuration file.

In the UEMEvents project, the interceptors are registered in the cache configuration file. The fully-qualified class name of the event interceptor is specified in the <interceptor> element. The interceptor is associated with the cache specified in the <cache-name> element.

For the log partition events example, the event interceptor, RedistributionInterceptor, is registered on the partitioned cache service under the <distributed-scheme> element.

To edit the cache configuration file to define the RedistributionInterceptor event interceptor:

	
Open the uem-cache-config.xml file from the Project Explorer window. You can find the file under Events/appClientModule.

	
Write the cache configuration that calls the event interceptors. Under the <distributed-scheme> element, there should be a reference to the fully-qualified RedistributionInterceptor class in the <interceptor> element.

Example 11-16 illustrates a possible implementation for the uem-cache-config.xml file. The configuration for the RedistributionInterceptor event interceptor is illustrated in bold font.

Example 11-16 Cache Configuration File with Event Interceptors

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config coherence-cache-config.xsd">
 <defaults>
 <serializer>pof</serializer>
 </defaults>

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>events</cache-name>
 <scheme-name>events-distributed-scheme</scheme-name>
 <interceptors>
 <interceptor>
 <instance>
 <class-name>com.oracle.handson.TimedTraceInterceptor</class-name>
 <init-params>
 <init-param>
 <param-type>int</param-type>
 <param-value>100</param-value>
 </init-param>
 </init-params>
 </instance>
 </interceptor>
 </interceptors>
 </cache-mapping>
 <cache-mapping>
 <cache-name>vetod-events</cache-name>
 <scheme-name>events-distributed-scheme</scheme-name>
 <interceptors>
 <interceptor>
 <instance>
 <class-name>com.oracle.handson.CantankerousInterceptor</class-name>
 </instance>
 </interceptor>
 </interceptors>
 </cache-mapping>
 <cache-mapping>
 <cache-name>events-results</cache-name>
 <scheme-name>dist-events-results</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>events-distributed-scheme</scheme-name>
 <service-name>PartitionedPofCache</service-name>
 <thread-count>5</thread-count>
 <backing-map-scheme>
 <local-scheme>
 <!-- each node will be limited to 32MB -->
 <high-units>32M</high-units>
 <unit-calculator>binary</unit-calculator>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 <interceptors>
 <interceptor>
 <instance>
 <class-name>com.oracle.handson.RedistributionInterceptor</class-name>
 </instance>
 </interceptor>
 </interceptors>
 </distributed-scheme>

 <!-- A PartitionedCache service used to store results for events examples
 -->
 <distributed-scheme>
 <scheme-name>dist-events-results</scheme-name>
 <service-name>PartitionedEventsResults</service-name>
 <thread-count>5</thread-count>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <!--
 Invocation Service scheme.
 -->
 <invocation-scheme>
 <scheme-name>examples-invocation</scheme-name>
 <service-name>InvocationService</service-name>

 <autostart system-property="tangosol.coherence.invocation.autostart">true</autostart>
 </invocation-scheme>

 </caching-schemes>
</cache-config>

11.4.5 Edit the POF Configuration File

With the exception of the RedistributionInvocable class, all of the information produced by the classes in the log partition activity exercise remain on their own cluster members. The information produced by the RedistributionInvocable class however, will be sent across the wire to other cluster members. Thus, it must be added to the POF configuration file.

To edit the POF configuration file for the RedistributionInvocable data type:

	
Open the uem-pof-config.xml file. You can find the file under UEMEvents/appClientModule/META-INF.

	
Define <user-type> elements for the com.oracle.handson.RedistributionInvocable, class and assign type ID 1009 to it. The file must include the coherence-pof-config.xml file which reserves the first 1000 IDs for Coherence data types.

Example 11-17 illustrates a sample uem-pof-config.xml file. The configuration for the RedistributionInvocable class is illustrated in bold font.

Example 11-17 POF Configuration File for the Log Partition Events Example

<?xml version="1.0"?>
<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config http://xmlns.oracle.com/coherence/coherence-pof-config/1.2/coherence-pof-config.xsd">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>coherence-pof-config.xml</include>
 <user-type>
 <type-id>1008</type-id>
 <class-name>com.oracle.handson.LazyProcessor</class-name>
 </user-type>
 <user-type>
 <type-id>1009</type-id>
 <class-name>com.oracle.handson.RedistributionInvocable</class-name>
 </user-type>
 </user-type-list>
</pof-config>

11.4.6 Edit the Driver File for the Log Partition Activity Example

Edit the driver file that you created in "Create a Driver File for Timed Events Example" to run the RedistributionEventsExample example defined in the LogExample class.

To edit the driver file:

	
Replace the import statement for the Vetoed Events example:

import com.oracle.handson.VetoExample.VetoedEventsExample;

with an import statement for the RedistributionEventsExample subclass of the LogExample class.

import com.oracle.handson.LogExample.RedistributionEventsExample;

	
Replace the command which calls the Vetoed Events example

EVENTS_EXAMPLES.put("veto interceptor", new VetoedEventsExample());

with the following command to run the RedistributionEventsExample example defined in the LogExample class:

EVENTS_EXAMPLES.put("redistribution interceptor", new RedistributionEventsExample());

11.4.7 Run the Log Partition Activity Example

Right-click the UEMEvents project in the Project Explorer and select Run As, then Run Configurations. In the Run Configurations dialog box, select the UEMEventsServer launch configuration that you created in "Create a Cache Server Startup Configuration". Click Run to start the cache server. After the cache server starts, select UEMEventsServer and click Run a second and a third time to start a total of three cache servers.

After the third cache server starts, select the UEMEventDriver configuration and click Run. The output from the cache client should look similar to Example 11-18.

Example 11-18 Output from the Cache Client

------ events examples begin ------
------ redistribution interceptor begin
2013-03-08 12:35:38.640/2.062 Oracle Coherence 12.1.2.0.0 <Info> (thread=main, member=n/a): Loaded operational configuration from "jar:file:/C:/Oracle7/coherence/lib/coherence.jar!/tangosol-coherence.xml"

...

2013-03-08 12:35:38.640/2.062 Oracle Coherence GE 12.1.2.0.0 <D5> (thread=Invocation:InvocationService, member=4): Service InvocationService joined the cluster with senior service member 1
Choosing to kill member Member(Id=1, Timestamp=2013-03-08 12:34:41.218, Address=192.168.0.102:8088, MachineId=18578, Location=site:,machine:tpfaeffl-lap7,process:3476, Role=CoherenceServer)
------ redistribution interceptor completed successfully
------ events examples completed------
2013-03-08 12:35:38.703/2.125 Oracle Coherence GE 12.1.2.0.0 <D5> (thread=Invocation:Management, member=4): Member 1 left service Management with senior member 1

...

Example 11-19 displays the output from the cache server that was terminated. The output illustrates the client joining the cluster (Member 4) and the shutdown of the current cache server.

Example 11-19 Output from First Cache Server

...

2013-03-08 12:43:41.750/2.438 Oracle Coherence GE 12.1.2.0.0 <D5> (thread=DistributedCache:PartitionedPofCache, member=1): Transferring primary PartitionSet{128..171} to member Member(Id=3, Timestamp=2012-12-24 12:19:36.983, Address=10.159.166.164:8092, MachineId=18578, Location=site:,machine:tpfaeffl-lap7,process:1692, Role=CoherenceServer) requesting 44
2013-03-08 12:44:14.109/34.797 Oracle Coherence GE 12.1.2.0.0 <D5> (thread=Cluster, member=1): Member(Id=4, Timestamp=2012-12-24 12:19:53.952, Address=10.159.166.164:8094, MachineId=18578, Location=site:,machine:tpfaeffl-lap7,process:3360, Role=OracleHandsonDriver) joined Cluster with senior member 1
2013-03-08 12:44:14.375/35.063 Oracle Coherence GE 12.1.2.0.0 <D5> (thread=Cluster, member=1): Member 4 joined Service Management with senior member 1
22013-03-08 12:44:14.640/35.328 Oracle Coherence GE 12.1.2.0.0 <D5> (thread=Cluster, member=1): Member 4 joined Service InvocationService with senior member 1
2013-03-08 12:44:14.656/35.344 Oracle Coherence GE 12.1.2.0.0 <D4> (thread=ShutdownHook, member=1): ShutdownHook: stopping cluster node

