

[image: Oracle Corporation]





Oracle® Fusion Middleware

Administering Oracle HTTP Server

12c (12.1.2)

E37888-03

February 2014

This document describes how to configure and use Oracle HTTP Server as a framework for hosting static pages, dynamic pages, and applications over the Web.




Oracle Fusion Middleware Administering Oracle HTTP Server, 12c (12.1.2)

E37888-03

Copyright © 2002, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Srinivas Sudhindra

Contributors: Jeff Trawick, Leonard Bottleman, Ken Vincent, Maria Choudhary, Edwin Spear

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.







Preface

This guide describes how to manage Oracle HTTP Server, including how to start and stop Oracle HTTP Server, how to manage network components, configure listening ports, and extend basic functionality using modules.


Audience

Administering Oracle HTTP Server is intended for application server administrators, security managers, and managers of databases used by application servers. This documentation is based on the assumption that readers are already familiar with Apache HTTP Server.

Unless otherwise mentioned, the information in this document is applicable when Oracle HTTP Server is installed with Oracle WebLogic Server and Oracle Fusion Middleware Control. It is assumed that readers are familiar with the key concepts of Oracle Fusion Middleware as described in the Oracle Fusion Middleware Concepts Guide and the Administering Oracle Fusion Middleware.

For information about installing Oracle HTTP Server in standalone mode, see Installing and Configuring Oracle HTTP Server.


Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.


Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.


Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.


Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.


Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.


Related Documents

For more information, see the following documents in the Oracle Fusion Middleware 11g Release 1 (11.1.1) documentation set:

	
Understanding Oracle Fusion Middleware


	
Administering Oracle Fusion Middleware


	
High Availability Guide


	
Apache documentation included in this library







	
Note:

Readers using this guide in PDF or hard copy formats will be unable to access third-party documentation, which Oracle provides in HTML format only. To access the third-party documentation referenced in this guide, use the HTML version of this guide and click the hyperlinks.










Conventions

The following text conventions are used in this document:


	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.


	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.


	
monospace

	
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.













What's New in Oracle HTTP Server 12c 12.1.2

The following topics introduce the new and changed features of Oracle HTTP Server and other significant changes that are described in this guide, and provides pointers to additional information. This document is the new edition of the formerly titled Administrator's Guide for Oracle HTTP Server.


New and Changed Features in 12c (12.1.2)

This section contains the following information:

	
New Features in 12c (12.1.2)


	
Significant Updates in 12c (12.1.2)





New Features in 12c (12.1.2)

This section describes new features in this version of Oracle HTTP Server. These features include:

	
12c (12.1.2) Introduces the WebLogic Management Framework


	
OHS 12.1.2 is Now Supports FIPS 140


	
Search Capability on mod_wl_ohs Configuration Page


	
AutoFill Capability on mod_wl_ohs Configuration Page





12c (12.1.2) Introduces the WebLogic Management Framework

This version of Oracle HTTP Server introduces the WebLogic Management Framework, a set of tools that leverage Oracle WebLogic 12c (12.1.2) interfaces to provide a simple, consistent and distributed framework for managing Oracle. For more information on the WebLogic Management Framework, see "What is the WebLogic Management Framework?" in Understanding Oracle Fusion Middleware.

The following changes are a result of the new framework:

	
Configuration is a post-install task that begins with creating a domain, primarily by using Configuration Wizard. For more information, see Installing and Configuring Oracle HTTP Server.


	
Support for remote management of OHS instances cannot be added after creation. The necessary domain type (WebLogic Server or standalone) should be chosen prior to installation (see Section 1.4, "Domain Types"). This is different from Oracle HTTP Server 11g where you could register an Oracle instance with a WebLogic domain at a later time in order to manage it by using the non-J2EE management tool.


	
Configuration files for instances that are part of a WebLogic Server domain are maintained on the administration server node, not on the managed server.


	
Changes made to configuration files on the managed server are not preserved when updates are made on the administration server, for example, by using Fusion Middleware Control.


	
Command support for managing Oracle HTTP Server is provided primarily within WLST, instead of from the operating system shell. Existing WLST commands as well as new commands added in this release are applicable to Oracle HTTP Server (see Section 3.6, "Using the WebLogic Scripting Tool").


	
Server-specific configuration previously maintained in opmn.xml is now configured in ohs.plugins.nodemanager.properties within the Oracle HTTP Server configuration directory.


	
When starting or stopping Oracle HTTP Server, console output is now written to the Node Manager log instead a special console log file.


	
Server configuration directories no longer include product code, such as Apache HTTP Server documentation, FastCGI programming libraries, or icon files used by content generated by Oracle HTTP Server. This code resides only in the product directory.


	
The administration port, previously referred to as the Proxy MBean or Admin Port, is now used whether or not the instance is managed as part of a WebLogic Server domain. The port should now be limited to the loopback interface. In the previous release, the administration server would connect to the port.


	
The Oracle HTTP Server MBeans, which might be visible in Fusion Middleware Control or WLST, are provided for the use of Oracle management tools. The interfaces are not supported for other use and are subject to change without notice.





OHS 12.1.2 is Now Supports FIPS 140

Oracle HTTP Server 12.1.2 now complies with the Federal Information Processing Standard publication 140 (FIPS 140). Although the modules used in this version of Oracle HTTP Server are still undergoing their FIPS 140 validation, it uses a version of the underlying SSL libraries that has gone through formal FIPS certification.

As part of Oracle HTTP Server's FIPS 140 compliance, the mod_ossl plug-in now includes the SSLFIPS directive. This directive enables FIPS from Oracle HTTP Server configuration files by toggling the SSL library FIPS_mode flag on or off. SSLFIPS must be set in the global server context and cannot be configured with conflicting settings (for example, SSLFIPS on followed by SSLFIPS off or similar). The mode applies to all SSL library operations.

For more information on SSLFIPS, see Section G.2.6, "SSLFIPS".


Search Capability on mod_wl_ohs Configuration Page

When configuring mod_wl_ohs by using Fusion Middleware Control, you can see a list of clusters or servers available to the selected Oracle HTTP Server instance by clicking the Search icon:

[image: Magnifying gl;ass representing the search icon.]

Selecting this tool displays a selection dialog box, from which you can select the cluster or server you want to use.


AutoFill Capability on mod_wl_ohs Configuration Page

You can now easily add valid WebLogic Server and endpoint locations for a specified Base URL to the Locations table on the mod_wl_ohs Configuration screen by clicking the AutoFill button. Data for any location of the same name will be updated and any new locations will be added to the table.


Significant Updates in 12c (12.1.2)

This section describes features that have been significantly updated from earlier versions of Oracle HTTP Server. These updates include:

	
WLS Plug-in Logs Are Now Part of the Web Server Logs


	
sqlnet.ora NZ Trace Logging Mechanism is No Longer Supported


	
Privileged Ports on Unix Have Different Support Implementation





WLS Plug-in Logs Are Now Part of the Web Server Logs

The WebLogic Server plug-in logs are now part of the Oracle HTTP Server error log and are prefixed with weblogic: to easily identify them. Hence the directives WLLogFile and Debug are deprecated. If the configuration still uses any of these directives, the following note will appear in the console log file:


The WLLogFile directive is ignored. The web server log file is used instead.
The Debug directive is ignored. The web server log level is used instead.



sqlnet.ora NZ Trace Logging Mechanism is No Longer Supported

Oracle HTTP Server no longer supports the sqlnet.ora NZ trace logging mechanism. As of version 12.1.2, you should use the new SSLNZTraceLogLevel directive to enable NZ trace logging using ssl.conf file. For more information, see Section G.2.9, "SSLNZTraceLogLevel".


Privileged Ports on Unix Have Different Support Implementation

Support for listening on privileged ports on Unix has a different implementation that does not require running any Oracle HTTP Server code as root. The User and Group directives no longer have to be configured.


Features Removed from 12c (12.1.2)

The following features were removed from 12.1.2:

	
Integration with Oracle Web Cache


	
mod_oradav


	
mod_osso


	
SSO Plug-ins for Third-party Web Servers


	
Proxy Plug-ins for Third-party Web Servers


	
SSL Protocol Version 2 and Export Ciphers





Integration with Oracle Web Cache

Oracle Web Cache is no longer included in Fusion Middleware 12c. Oracle HTTP Server support for integration with Oracle Web Cache has been removed.


mod_oradav

The mod_oradav module is no longer included with Oracle HTTP Server. Customers who require DAV support in Oracle HTTP Server must use a third-party solution, such as the open source module mod_dav.


mod_osso

The mod_osso module is no longer included with Oracle HTTP Server. Oracle WebGate is the recommended replacement. WebGate is now installed with Oracle HTTP Server.


SSO Plug-ins for Third-party Web Servers

The SSO plug-ins for IIS and iPlanet are no longer included with Oracle HTTP Server. Oracle WebGate is the recommended replacement.


Proxy Plug-ins for Third-party Web Servers

The proxy plug-ins for IIS and iPlanet are no longer included with Oracle HTTP Server. Customers who require proxy support for those web servers can use any proxy support bundled with the web server or use third-party solutions.


SSL Protocol Version 2 and Export Ciphers

Support for SSL Protocol Version 2 and export ciphers has been removed. Their use is no longer recommended for secure communication.







Part I



Understanding Oracle HTTP Server

This part presents introductory and conceptual information about Oracle HTTP Server. It contains the following chapters:

	
Chapter 1, "Introduction to Oracle HTTP Server"


	
Chapter 2, "Understanding Oracle HTTP Server Modules"


	
Chapter 3, "Understanding Oracle HTTP Server Management Tools"










1 Introduction to Oracle HTTP Server


This chapter serves as an introduction to the Oracle HTTP Server (OHS). It describes key features of OHS and its place within the Oracle Fusion Middleware Web Tier and also provides information on the OHS directory structure, the OHS configuration files, and how to obtain OHS support.

Oracle HTTP Server is the web server component for Oracle Fusion Middleware. It provides a listener for Oracle WebLogic Server and the framework for hosting static pages, dynamic pages, and applications over the Web.

This chapter includes the following sections:

	
Section 1.1, "What is Oracle HTTP Server?"


	
Section 1.2, "Oracle HTTP Server 12c (12.1.2) Topologies"


	
Section 1.3, "Key Features of Oracle HTTP Server"


	
Section 1.4, "Domain Types"


	
Section 1.5, "Understanding Oracle HTTP Server Directory Structure"


	
Section 1.6, "Understanding Configuration Files"


	
Section 1.7, "Oracle HTTP Server Support"






1.1 What is Oracle HTTP Server?

Oracle HTTP Server 12c (12.1.2) is based on Apache HTTP Server 2.2.22 infrastructure (with critical bug fixes from higher versions) and includes modules developed specifically by Oracle. The features of single sign-on, clustered deployment, and high availability enhance the operation of the Oracle HTTP Server. Oracle HTTP Server has the following components to handle client requests:

	
HTTP listener, to handle incoming requests and route them to the appropriate processing utility.


	
Modules (mods), to implement and extend the basic functionality of Oracle HTTP Server. Many of the standard Apache HTTP Server modules are included with Oracle HTTP Server. Oracle also includes several modules that are specific to Oracle Fusion Middleware to support integration between Oracle HTTP Server and other Oracle Fusion Middleware components.


	
Perl interpreter, a persistent Perl runtime environment embedded in Oracle HTTP Server through mod_perl.




Oracle HTTP Server enables developers to program their site in a variety of languages and technologies, such as:

	
Perl (through mod_perl, CGI and FastCGI)


	
C and C++ (through CGI and FastCGI)


	
PHP, Ruby and Python (through CGI and FastCGI)


	
Oracle PL/SQL




Oracle HTTP Server can also be a proxy server, both forward and reverse. A reverse proxy enables content served by different servers to appear as if coming from one server.




	
Note:

For more information about Fusion Middleware concepts, see Understanding Oracle Fusion Middleware.














1.2 Oracle HTTP Server 12c (12.1.2) Topologies

Oracle HTTP Server leverages the WebLogic Management Framework to provide a simple, consistent and distributed environment for administering Oracle HTTP Server, Oracle WebLogic Server, and the rest of the Fusion Middleware stack. It acts as the HTTP front-end by hosting the static content from within and by leveraging its built-in WLS Web Server Proxy Plug-In 12.1.2 to route dynamic content requests to WebLogic-managed servers. In such cases, there are multiple ways of implementing Oracle HTTP Server, depending on your requirements. The major implementations, or "topologies," are described in Table 1-1.


Table 1-1 Oracle HTTP Server Topologies

	Topology	Description	For More Information
	
Standard Installation Topology for Oracle HTTP Server in a WebLogic Server Domain

	
This topology provides enhanced management capabilities through the Fusion Middleware Control and WebLogic Management Framework. A WebLogic Server domain can be scaled out to multiple physical machines and be centrally managed by the administration server. This topology is depicted in Figure 1-1.

	
See "Standard Installation Topology for Oracle HTTP Server in a WebLogic Server Domain" in Installing and Configuring Oracle HTTP Server.


	
Standard Installation Topology for Oracle HTTP Server in a Standalone Domain

	
This topology is similar to an Oracle WebLogic Server Domain topology, but does not provide an administration server or managed servers. It is useful when you do not want your Oracle HTTP Server implementation to front a Fusion Middleware domain and do not need the management functionality provided by Fusion Middleware Control. This topology is depicted in Figure 1-2.

	
See "Standard Installation Topology for Oracle HTTP Server in a Standalone Domain" in Installing and Configuring Oracle HTTP Server.


	
High availability implementation, with two separate hosts for Oracle HTTP Server on a Web Tier, managed by FMW Control

	
This topology provides a highly available Oracle Fusion Middleware deployment where each pair of components (Oracle HTTP Server and Web Logic Managed Servers) exist on different host computers. You access the system from the client tier and requests are routed, via a load balancer, to Web servers running Oracle HTTP Servers in the web tier. This topology is depicted in Figure 1-1.

	
See "Understanding the Oracle Fusion Middleware Standard HA Topology" in the High Availability Guide.


	
Managed Oracle HTTP Server Test Domain

	
This topology provides a single machine WebLogic Server Domain with an Oracle HTTP Server instance and is geared towards testing. It provides all the administrative capabilities of a full production domain but does not require an external database. The test domain cannot be scaled out to other machines and is not certified to be used in production.

	
See "createOHSTestDomain()" in the WLST Command Reference for Infrastructure Components.









Figure 1-1 Standard Installation Topology for OHS in a WebLogic Server Domain

[image: Description of Figure 1-1 follows]






Figure 1-2 Standard Installation Topology for OHS in a Standalone Domain

[image: Description of Figure 1-2 follows]









1.3 Key Features of Oracle HTTP Server

The following sections describe some of the key features of Oracle HTTP Server:

	
Section 1.3.1, "Security: Encryption with Secure Sockets Layer"


	
Section 1.3.2, "Security: Single Sign-On with WebGate"


	
Section 1.3.3, "URL Rewriting and Proxy Server Capabilities"


	
Section 1.3.4, "PL/SQL Server Pages"


	
Section 1.3.5, "Server-Side Includes"


	
Section 1.3.6, "Perl"


	
Section 1.3.7, "Dynamic Scripting Languages"


	
Section 1.3.8, "C / C++ (CGI and FastCGI)"


	
Section 1.3.9, "Load Balancing"






1.3.1 Security: Encryption with Secure Sockets Layer

Secure Sockets Layer (SSL) is required to run any Web site securely. Oracle HTTP Server supports SSL encryption based on patented, industry standard, algorithms. SSL works seamlessly with commonly-supported Internet browsers. Security features include the following:

	
SSL hardware acceleration support uses dedicated hardware for SSL. Hardware encryption is faster than software encryption.


	
Variable security per directory allows individual directories to be protected by different strength encryption.


	
Oracle HTTP Server and Oracle WebLogic Server communicate using the HTTP protocol to provide both encryption and authentication. You can also enable HTTP tunneling for the T3 or IIOP protocols to provide non-browser clients access to WebLogic Server services.







	
See Also:

Securing Applications with Oracle Platform Security Services














1.3.2 Security: Single Sign-On with WebGate

WebGate enables single sign-on (SSO) for Oracle HTTP Server. WebGate examines incoming requests and determines whether the requested resource is protected, and if so, retrieves the session information for the user. Through WebGate, Oracle HTTP Server becomes an SSO partner application enabled to use SSO to authenticate users, obtain their identity by using Oracle Single Sign-On, and to make user identities available to web applications accessed through Oracle HTTP Server.




	
See Also:

Securing Applications with Oracle Platform Security Services














1.3.3 URL Rewriting and Proxy Server Capabilities

Active web sites usually update their web pages and directory contents often, and possibly their URLs as well. Oracle HTTP Server makes it easy to accommodate the changes by including an engine that supports URL rewriting so end users do not have to change their bookmarks.

Oracle HTTP Server also supports reverse proxy capabilities, making it easier to make content served by different servers to appear from one single server.






1.3.4 PL/SQL Server Pages

PL/SQL Server Pages are similar in concept to the JavaServer Pages. The mod_plsql module enables PL/SQL to be used as the scripting language within an HTML page. PL/SQL Server Pages get translated into a stored procedure, which then uses the module to send the output to the browser.






1.3.5 Server-Side Includes

Server-Side Includes provide an easy way of adding dynamic or uniform static content across all pages on a site. It is typically used for header and footer information. Oracle HTTP Server supports special directives to enable these only for certain types of files, or for specified virtual hosts.






1.3.6 Perl

Perl is a scripting language often used to provide dynamic content. Perl scripts can either be called as a CGI program, or directly through the mod_perl module. Oracle Fusion Middleware uses Perl version 5.10.




	
See Also:

Section 2.6, "mod_perl"














1.3.7 Dynamic Scripting Languages

Dynamic Scripting languages, for example Ruby, PHP, Python, which capable of being embedded in HTML, making them well-suited for Web development. Their scripts can be executed within Oracle HTTP Server through the built-in CGI or FastCGI modules.






1.3.8 C / C++ (CGI and FastCGI)

CGI programs are commonly used to program Web applications. Oracle HTTP Server enhances the programs by providing a mechanism to keep them alive beyond the request lifecycle.






1.3.9 Load Balancing

Oracle HTTP Server includes the mod_wl_ohs module, which routes requests to Oracle WebLogic Server. The mod_wl_ohs module provides the same load balancing functionality as the Oracle WebLogic Server plug-in for Apache HTTP Server (mod_wl).




	
See Also:

"The Dynamic Server List" in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.2.
















1.4 Domain Types

You can install Oracle HTTP Server either collocated with Oracle WebLogic Server, called a WebLogic Server Domain or as a standalone domain. You can select which environment you want to use during server configuration. Be aware that certain functionality will not be available to standalone domains.



1.4.1 WebLogic Server Domain

A WebLogic Server Domain is one configured with an administration server and managed servers. A WebLogic Server Domain contains a WebLogic Administration Server, zero or more WebLogic Managed Servers, and zero or more System Component Instances (for example, an Oracle HTTP Server instance). This type of domain provides enhanced management capabilities through the Fusion Middleware Control and WebLogic Management Framework present throughout the system. A WebLogic Server Domain can span multiple physical machines, and it is centrally managed by the administration server. Because of these properties, a WebLogic Server Domain provides the best integration between your System Components and Java EE Components.

WebLogic Server Domains support all WebLogic Management Framework tools.

Because Fusion Middleware Control provides advanced management capabilities, Oracle recommends using WebLogic Server Domain.






1.4.2 Standalone Domain

A standalone domain is a container for system components, such as Oracle HTTP Server. It has a directory structure similar to an Oracle WebLogic Server Domain, but it does not contain an Administration Server or Managed Servers. It can contain one or more instances of system components of the same type, such as Oracle HTTP Server, or a mix of system component types.

For standalone domains, the WebLogic Management Framework supports these tools:

	
Node Manager


	
The WebLogic Scripting Tool (WLST) commands nmStart() and nmKill() that start and stop Oracle HTTP Server.




	
Note:

If you have a remote Oracle HTTP Server in a managed mode and another in standalone with the remote administration mode enabled, you can use WLST to perform management tasks such as SSL configuration. A vanilla Oracle HTTP Server in a standalone domain can be used only as a WebLogic Server Node Manager and for Oracle HTTP Server start/stop purposes. You can also do this by using a command-line script.










	
Config Wizard


	
Pack/Unpack




Generally, you would use a standalone domain when you do not want your Oracle HTTP Server implementation to front an Fusion Middleware domain and do not need the management functionality provided by Fusion Middleware Control. Nor would you use it when you want to keep Oracle HTTP Server in a "demilitarized zone" (DMZ; that is, the zone between the internal and external firewalls) and you do not want to open management ports used by the Node Manager.








1.5 Understanding Oracle HTTP Server Directory Structure

As described in Section 1.4, "Domain Types", Oracle HTTP Server domains can be either WebLogic Server or standalone. When installed, each domain has its own directory structure that contains files necessary to implement the domain type. For a complete file structure topology, see Appendix A "Understanding the Oracle HTTP Server Directory Structures" in Installing and Configuring Oracle HTTP Server.






1.6 Understanding Configuration Files

The Oracle HTTP Server configuration is specified through configuration files of several types, notably .conf files, similar to those used in Apache HTTP Server. This section explains the layout of the configuration file directories, mechanisms for editing the files, and more about the files themselves.



1.6.1 Staging and Run-time Configuration Directories

Two configuration directories exist for each Oracle HTTP Server instance:

	
Staging directory

DOMAIN_HOME/config/fmwconfig/components/OHS/componentName


	
* Run-time directory

DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName




Each of the configuration directories will contain the complete OHS configuration -- httpd.conf, admin.conf, auditconfig.xml, etc.

Modifications to the configuration are made in the staging directory. (See Section 1.6.2, "Editing the Configuration") These modifications are automatically propagated to the run-time directory during the following operations:

	
Oracle HTTP Server instances which are part of a WebLogic Server Domain

Modifications are replicated to the run-time directory on the node with the managed OHS instance after changes are activated from within Fusion Middleware Control, or when the administration server initializes and prior changes need to be replicated. If communication with node manager is broken at the time of the action, replication will occur at a later time when communication has been restored.


	
Standalone Oracle HTTP Server instances

Modifications are synchronized with the run-time directory when a start, restart, or stop action is initiated. Some changes might be written to the run-time directory during domain update, but the changes will be finalized during synchronization.




Any modifications to the configuration within the run-time directory will be lost during replication or synchronization.




	
Note:

When a standalone instance is created, the keystores directory containing a demo wallet is created only in the run-time directory.

Prior to creating the first new wallet for the instance, the user must create a keystores directory within the staging directory.

DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/keystores

Wallets must then be created within that keystores directory.














1.6.2 Editing the Configuration

For instances that are part of a WebLogic Server Domain, the Oracle HTTP Server configuration is managed by Fusion Middleware Control and the management infrastructure. Direct editing of the configuration in the staging directory is subject to being overwritten after subsequent management operations, including modifying the configuration in Fusion Middleware Control. For such instances, direct editing should only be performed when the administration server is inactive. When the administration server is subsequently started, the results of any manual edits will be replicated to the run-time directory on the node of the managed instance.

For standalone instances, the configuration can be edited directly within the staging directory at any time. The configuration will be activated during start, restart, or stop.






1.6.3 Configuration Files

The default Oracle HTTP Server configuration contains the files described in Appendix D, "Configuration Files".

Additional files can be added to the configuration and included in the top-level .conf file httpd.conf using the Include directive. For information on how to use this directive, see the Include directive documentation, at:

http://httpd.apache.org/docs/2.2/mod/core.html#include)

The default configuration provides an Include directive which includes all .conf files in the moduleconf/ directory within the configuration.

An Include directive should be added to an existing .conf file, usually httpd.conf, for .conf files which are not stored in the moduleconf/ directory. This may be required if the new .conf file must be included at a different configuration scope, such as within an existing virtual host definition.








1.7 Oracle HTTP Server Support

Oracle provides technical support for the following Oracle HTTP Server features and conditions:

	
Modules included in the Oracle distribution. Oracle does not support modules obtained from any other source, including the Apache Software Foundation. Oracle HTTP Server will still be supported when non-Oracle-provided modules are included. If it is suspected that the non-Oracle-provided modules are contributing to reported problems, customers may be requested to reproduce the problems without including those modules.


	
Problems that can be reproduced within an Oracle HTTP Server configuration consisting only of supported Oracle HTTP Server modules.


	
Use of the included Perl interpreter with the supported Oracle HTTP Server configuration.












2 Understanding Oracle HTTP Server Modules


This chapter provides a high-level description of the Oracle-developed modules, or "plug-ins," used by the Oracle HTTP Server (OHS). It also provides a list of all other Apache- and third party-developed modules for OHS.

Modules (mods) extend the basic functionality of Oracle HTTP Server and support integration between Oracle HTTP Server and other Oracle Fusion Middleware components.

This chapter discusses the modules developed specifically by Oracle for Oracle HTTP Server. It includes the following sections:

	
Section 2.1, "List of Included Modules"


	
Section 2.2, "mod_certheaders"


	
Section 2.3, "mod_context"


	
Section 2.4, "mod_dms"


	
Section 2.5, "mod_ossl"


	
Section 2.6, "mod_perl"


	
Section 2.7, "mod_plsql"


	
Section 2.8, "mod_wl_ohs"






2.1 List of Included Modules

This section lists all of the modules bundled with Oracle HTTP Server.


Oracle-developed Modules for Oracle HTTP Server

The following modules have developed specifically by Oracle for Oracle HTTP Server:

	
mod_certheaders


	
mod_context


	
mod_dms


	
mod_ossl


	
mod_plsql


	
mod_wl_ohs





Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Oracle HTTP Server also includes out-of-the-box the Apache HTTP Server and third-party modules listed in Table 2-1. These modules are not developed by Oracle.


Table 2-1 Apache HTTP Server and Third-party Modules in Oracle HTTP Server

	Module	For more information, see:
	
mod_actions

	
http://httpd.apache.org/docs/2.2/mod/mod_actions.html


	
mod_alias

	
http://httpd.apache.org/docs/2.2/mod/mod_alias.html


	
mod_asis

	
http://httpd.apache.org/docs/2.2/mod/mod_asis.html


	
mod_auth_basic

	
http://httpd.apache.org/docs/2.2/mod/mod_auth_basic.html


	
mod_authn_alias

	
http://httpd.apache.org/docs/2.2/mod/mod_authn_alias.html


	
mod_authn_anon

	
http://httpd.apache.org/docs/2.2/mod/mod_authn_anon.html


	
mod_authn_default

	
http://httpd.apache.org/docs/2.2/mod/mod_authn_default.html


	
mod_authn_file

	
http://httpd.apache.org/docs/2.2/mod/mod_authn_file.html


	
mod_authz_default

	
http://httpd.apache.org/docs/2.2/mod/mod_authz_default.html


	
mod_authz_groupfile

	
http://httpd.apache.org/docs/2.2/mod/mod_authz_groupfile.html


	
mod_authz_host

	
http://httpd.apache.org/docs/2.2/mod/mod_authz_host.html


	
mod_authz_user

	
http://httpd.apache.org/docs/2.2/mod/mod_authz_user.html


	
mod_autoindex

	
http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html


	
mod_cern_meta

	
http://httpd.apache.org/docs/2.2/mod/mod_cern_meta.html


	
mod_cgi

	
http://httpd.apache.org/docs/2.2/mod/mod_cgi.html


	
mod_cgid (Unix only)

	
http://httpd.apache.org/docs/2.2/mod/mod_cgid.html


	
mod_deflate

	
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html


	
mod_dir

	
http://httpd.apache.org/docs/2.2/mod/mod_dir.html


	
mod_dumpio

	
http://httpd.apache.org/docs/2.2/mod/mod_dumpio.html


	
mod_env

	
http://httpd.apache.org/docs/2.2/mod/mod_env.html


	
mod_expires

	
http://httpd.apache.org/docs/2.2/mod/mod_expires.html


	
mod_fastcgi

	
http://www.fastcgi.com/drupal/node/6


	
mod_file_cache

	
http://httpd.apache.org/docs/2.2/mod/mod_file_cache.html


	
mod_filter

	
http://httpd.apache.org/docs/2.2/mod/mod_filter.html


	
mod_headers

	
http://httpd.apache.org/docs/2.2/mod/mod_headers.html


	
mod_imagemap

	
http://httpd.apache.org/docs/2.2/mod/mod_imagemap.html


	
mod_include

	
http://httpd.apache.org/docs/2.2/mod/mod_include.html


	
mod_info

	
http://httpd.apache.org/docs/2.2/mod/mod_info.html


	
mod_log_config

	
http://httpd.apache.org/docs/2.2/mod/mod_log_config.html


	
mod_logio

	
http://httpd.apache.org/docs/2.2/mod/mod_logio.html


	
mod_mime

	
http://httpd.apache.org/docs/2.2/mod/mod_mime.html


	
mod_mime_magic

	
http://httpd.apache.org/docs/2.2/mod/mod_mime_magic.html


	
mod_negotiation

	
http://httpd.apache.org/docs/2.2/mod/mod_negotiation.html


	
mod_perl

	
http://perl.apache.org/


	
mod_proxy

	
http://httpd.apache.org/docs/2.2/mod/mod_proxy.html


	
mod_proxy_balancer

	
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html


	
mod_proxy_connect

	
http://httpd.apache.org/docs/2.2/mod/mod_proxy_connect.html


	
mod_proxy_ftp

	
http://httpd.apache.org/docs/2.2/mod/mod_proxy_ftp.html


	
mod_proxy_http

	
http://httpd.apache.org/docs/2.2/mod/mod_proxy_http.html


	
mod_reqtimeout

	
http://httpd.apache.org/docs/2.2/mod/mod_reqtimeout.html


	
mod_rewrite

	
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html


	
mod_security

	
http://www.modsecurity.org/documentation/

Also, for Oracle HTTP Server-specific information regarding mod_security, see Appendix F, "Configuring mod_security".


	
mod_setenvif

	
http://httpd.apache.org/docs/2.2/mod/mod_setenvif.html


	
mod_speling

	
http://httpd.apache.org/docs/2.2/mod/mod_speling.html


	
mod_status

	
http://httpd.apache.org/docs/2.2/mod/mod_status.html


	
mod_substitute

	
http://httpd.apache.org/docs/2.2/mod/mod_substitute.html


	
mod_unique_id

	
http://httpd.apache.org/docs/2.2/mod/mod_unique_id.html


	
mod_userdir

	
http://httpd.apache.org/docs/2.2/mod/mod_userdir.html


	
mod_usertrack

	
http://httpd.apache.org/docs/2.2/mod/mod_usertrack.html


	
mod_vhost_alias

	
http://httpd.apache.org/docs/2.2/mod/mod_vhost_alias.html












2.2 mod_certheaders

The mod_certheaders module enables reverse proxies that terminate Secure Sockets Layer (SSL) connections in front of Oracle HTTP Server to transfer information regarding the SSL connection, such as SSL client certificate information, to Oracle HTTP Server and the applications running behind Oracle HTTP Server. This information is transferred from the reverse proxy to Oracle HTTP Server using HTTP headers. The information is then transferred from the headers to the standard CGI environment variable. The mod_ossl module or the mod_ssl module populate the variable if the SSL connection is terminated by Oracle HTTP Server.

The mod_certheaders module also enables certain requests to be treated as HTTPS requests even though they are received through HTTP. This is done using the SimulateHttps directive.

SimulateHttps takes the container it is contained within, such as <VirtualHost> or <Location>, and treats all requests received for this container as if they were received through HTTPS, regardless of the real protocol used by the request.

See Section G.1, "mod_certheaders" for a list and description of the directives accepted by mod_certheaders.






2.3 mod_context

mod_context creates or propagates Execution Context IDs, or ECIDs, for requests handled by Oracle HTTP Server. If an ECID has been created for the request execution flow before it reaches Oracle HTTP Server, mod_context will make the ECID available for logging within Oracle HTTP Server as well as for propagation to other Fusion Middleware components, such as WebLogic Server. If an ECID has not been created when the request reaches Oracle HTTP Server, mod_context will create one.

mod_context is not configurable. It is enabled by loading it into the server with the LoadModule directive, and disabled by removing or commenting out the LoadModule directive corresponding to this module. It should always be enabled to aid with problem diagnosis.






2.4 mod_dms

mod_dms provides FMW infrastructure access to the OHS Oracle Dynamic Monitoring Service (DMS) data.






2.5 mod_ossl

mod_ossl, the Oracle Secure Sockets Layer (SSL) implementation in use with the Oracle database, enables strong cryptography for Oracle HTTP Server. It is a plug-in to Oracle HTTP Server that enables the server to use SSL and is very similar to the OpenSSL module, mod_ssl. mod_ossl supports SSL version 3 and TLS version 1, and is based on Certicom and RSA Security technology.

Oracle no longer supports mod_ssl. A tool is provided to enable you to migrate from mod_ssl to mod_ossl, and convert your text certificates to Oracle wallets.

mod_ossl provides:

	
Encrypted communication between client and server, using RSA or DES encryption standards.


	
Integrity checking of client-server communication using MD5 or SHA checksum algorithms.


	
Certificate management with Oracle wallets.


	
Authorization of clients with multiple access checks, exactly as performed in mod_ssl.





mod_ossl Directives

See Section G.2 for a list and descriptions of directives accepted by mod_ossl.




	
See Also:

For more information, see the "Configuring SSL for the Web Tier" section of the Administering Oracle Fusion Middleware.














2.6 mod_perl

The mod_perl module embeds the Perl interpreter into Oracle HTTP Server. This eliminates start-up overhead and enables you to write modules in Perl. Oracle Fusion Middleware uses Perl version 5.10.

The module is disabled, by default. To enable mod_perl, follow the instructions in Section 4.6.3, "Configuring mod_perl".




	
See Also:

mod_perl documentation at http://perl.apache.org/docs/index.html











2.6.1 Using mod_perl with a Database

This section provides information for mod_perl users working with databases. It explains how to test a local database connection and set character forms.



2.6.1.1 Using Perl to Access the Database

Perl scripts access databases using the DBI/DBD driver for Oracle. The DBI/DBD driver is part of Oracle Fusion Middleware. It calls Oracle Call Interface (OCI) to access the databases.

Once mod_perl is enabled, DBI must be enabled in the mod_perl.conf file to function. To enable DBI, perform the following steps:




	
Note:

The following steps assume you are using Fusion Middleware Control and a managed server. For general information on editing a configuration file, see Section 1.6.2, "Editing the Configuration".









	
Edit the mod_perl.conf file:

	
In Fusion Middleware Control, navigate to the Oracle HTTP Server Advanced Server Configuration page.


	
Select the mod_perl.conf file from the menu and click Go.


	
Add the following line to the mod_perl.conf file:

PerlModule Apache::DBI





	
Click Apply to save the file.


	
Restart Oracle HTTP Server as described in Section 4.3.4, "Restarting Oracle HTTP Server Instances."




Place the Perl scripts that you want to run in the DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName/cgi-bin.


Example 2-1 Using a Perl Script to Access a Database


#!ORACLE_HOME/perl/bin/perl -w 
  use DBI; 
  my $dataSource = "host=hostname.domain;sid=orclsid;port=1521";
  my $userName = "userid";
  my $password = "password";
  my $dbhandle = DBI->connect("dbi:Oracle:$dataSource", $userName, $password)
    or die "Can't connect to the Oracle Database: $DBI::errstr\n";
  print "Content-type: text/plain\n\n";
  print "Database connection successful.\n";
  ### Now disconnect from the database
  $dbhandle->disconnect
    or warn "Database disconnect failed; $DBI::errstr\n";
  exit;


To run the DBI scripts, the URLs would look like the following:


http://hostname.domain:port/cgi-bin/scriptname
http://hostname.domain:port/perl/scriptname


If a script specifies "use Apache::DBI" instead of "use DBI", then it can only run from the URL http://hostname.domain:port/perl/scriptname.








2.6.1.2 Testing a Database Connection

Example 2-2 shows a sample Perl script for testing a database connection. Replace the instance name, user ID, and password in the connect statement with proper values for the target database.


Example 2-2 Sample Perl Script For Testing Connection for Local Seed Database


use DBI;
print "Content-type: text/plain\n\n"; 
$dbh = DBI->connect("dbi:Oracle:instance_name", userid/password, "") ||
            die $DBI::errstr;
$stmt = $dbh->prepare("select * from emp order by empno")|| die $DBI::errstr;
$rc = $stmt->execute() || die $DBI::errstr;
while (($empno, $name) = $stmt->fetchrow()) {
   print "$empno $name\n";
}
warn $DBI::errstr if $DBI::err;
die "fetch error: " . $DBI::errstr if $DBI::err;
$stmt->finish() || die "can't close cursor";
$dbh->disconnect() || die "can't log off Oracle";








2.6.1.3 Using SQL NCHAR Data Types

SQL NCHAR data types (NCHAR, NVARCHAR2 and NCLOB) are reliable Unicode data types. SQL NCHAR data types enable you to store Unicode characters regardless of the database character set. The character set for those data types is specified by the national character set, which is either AL16UTF16 or UTF8.

Example 2-3 shows an example of accessing SQL NCHAR data.


Example 2-3 Sample Script to Access SQL NCHAR Data


# declare to use the constants for character forms
use DBD::Oracle qw(:ora_forms);
# connect to the database and get the database handle
$dbh = DBI->connect( ... );

# prepare the statement and get the statement handle
$sth = $dbh->prepare( 'SELECT * FROM TABLE_N WHERE NCOL1 = :nchar1' );

# bind the parameter of a NCHAR type
$sth->bind_param( ':nchar1', $param_1 );
# set the character form to NCHAR
$sth->func( { ':nchar1' => ORA_NCHAR } , 'set_form' );

$sth->execute;




As shown in Example 2-3, the set_form function is provided as a private function that you can invoke with the standard DBI func method. The set_form function takes an anonymous hash that enables you to set the character form for parameters.

The valid values of character form are either ORA_IMPLICIT or ORA_NCHAR. Setting the character form to ORA_IMPLICIT causes the application's bound data to be converted to the database character set, and ORA_NCHAR to the national character set. The default is ORA_IMPLICIT.

The constants are available as ora_forms in DBD::Oracle.

set_default_form sets the default character form for a database handle. The following example shows its syntax:


# specify the default form to be NCHAR
$dbh->func( ORA_NCHAR, 'set_default_form' );


This syntax causes the form of all parameters to be ORA_NCHAR, unless otherwise specified with set_form calls. Unlike the set_form function, the set_default_form functions on the database handle, so every statement from the database handle has the form of your choice.


Example 2-4 Sample for set_form


# a declaration example for the constants ORA_IMPLICIT and ORA_NCHAR
use DBD::Oracle qw(:ora_forms);

# set the character form for the placeholder :nchar1 to NCHAR
$sth->func( { ':nchar1' => ORA_NCHAR } , 'set_form' );

# set the character form using the positional index
$sth->func( { 2 => ORA_NCHAR } , 'set_form' );

# set the character form for multiple placeholders at once
$sth->func( { 1 => ORA_NCHAR, 2 => ORA_NCHAR } , 'set_form' );












2.7 mod_plsql

The mod_plsql module connects Oracle HTTP Server to an Oracle database, enabling you to create Web applications using Oracle stored procedures.

To access a Web-enabled PL/SQL application, configure a PL/SQL database access descriptor (DAD) for the mod_plsql module. A DAD is a set of values that specifies how the module connects to a database server to fulfill an HTTP request. Besides the connection details, a DAD contains important configuration parameters for various operations in the database and for the mod_plsql module in general. Any Web-enabled PL/SQL application which makes use of the PL/SQL Web ToolKit needs to create a DAD to invoke the application.

This section contains the following topics:

	
Section 2.7.1, "Creating a DAD"


	
Section 2.7.2, "Configuration Files for mod_plsql"


	
Section 2.7.3, "Using Configuration Files and Parameters"


	
Section 2.7.4, "Additional Documentation"





mod_plsql Directives

See Section G.3.1 for a list and descriptions of directives accepted by mod_plsql.



2.7.1 Creating a DAD

To create a DAD, perform the following steps:

	
Open the dads.conf configuration file.

For the locations of mod_plsql configuration files, see Table 2-2.




	
Note:

You can also open and edit the dads.conf file by using Oracle Fusion Middleware Control, on the Oracle HTTP Server Advanced Server Configuration page, as described in Section 4.6.5, "Modifying an Oracle HTTP Server Configuration File."










	
Add the following:

	
The <Location> element, which defines a virtual path used to access the PL/SQL Web Application. This directive groups a set of directives that apply to the named Location.

For example, the following directive defines a virtual path called /myapp that will be used to invoke a PL/SQL Web application through a URL such as http://host:port/myapp/.


<Location /myapp>





	
Note:

Earlier releases of the mod_plsql module were always mounted on a virtual path with a prefix of /pls. This restriction is removed in later releases but might still be a restriction imposed by some of the earlier PL/SQL applications.










	
The SetHandler directive, which directs Oracle HTTP Server to enable the mod_plsql module to handle the request for the virtual path defined by the named Location:


SetHandler pls_handler


	
Additional Oracle HTTP Server directives that are allowed in the context of a <Location> directive. Typically, the following directives are used:


Order deny,allow
Allow from all


	
One or more specific mod_plsql directives. For example:


PlsqlDatabaseUsername        scott
PlsqlDatabasePassword        tiger
PlsqlDatabaseConnectString   orcl
PlsqlAuthenticationMode      Basic


	
The </Location> tag to close the <Location> element.





	
Save the edits.


	
Obfuscate the DAD password by running the dadTool.pl script located in the ORACLE_HOME/bin directory.




	
See Also:

"PlsqlDatabasePassword" for instructions on performing the obfuscation.










	
Restart Oracle HTTP Server as described in Section 4.3.4, "Restarting Oracle HTTP Server Instances."




You can create additional DADs by defining other uniquely named <Location> elements in dads.conf.


Example DADs

The following DAD connects as a specific user and has a default home page:


<Location /pls/mydad>
SetHandler pls_handler
Order allow,deny
Allow from All
PlsqlDatabaseUsername scott
PlsqlDatabasePassword tiger
PlsqlDatabaseConnectString prod_db
PlsqlDefaultPage scott.myapp.home
</Location>


The following DAD uses HTTP Basic Authentication and supports document upload/download operations:


<Location /pls/mydad2>
SetHandler pls_handler
Order allow,deny
Allow from All
PlsqlDatabaseConnectString prod_db2
PlsqlDefaultPage scott.myapp.my_home
PlsqlDocumentTablename scott.my_documents
PlsqlDocumentPath docs
PlsqlDocumentProcedure scott.docpkg.process_download
</Location>






2.7.2 Configuration Files for mod_plsql

The mod_plsql configuration parameters reside in the configuration files that are located in the configuration directory (typically, DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/), as described in Table 2-2.


Table 2-2 mod_plsql Configuration Files In a System Component Instance

	Directory Name	Contents
	
CONFIG_DIR/moduleconf

	
plsql.conf


	
CONFIG_DIR/mod_plsql

	
dads.conf and cache.conf








For information on editing these .conf files, see Section 1.6.2, "Editing the Configuration".

The mod_plsql configuration parameters are described in these sections:

	
Section 2.7.2.1, "plsql.conf"


	
Section 2.7.2.2, "dads.conf"


	
Section 2.7.2.3, "cache.conf"






2.7.2.1 plsql.conf

The plsql.conf file resides in the CONFIG_DIR/moduleconf directory and Oracle HTTP Server automatically loads all .conf files under this location. The plsql.conf file contains the LoadModule directive to load the mod_plsql module into Oracle HTTP Server, any global settings for the mod_plsql module, and include directives for dads.conf and cache.conf.


mod_plsql Directives in plsql.conf

See Section G.3.1 for a list and description of the directives used in plsql.conf.




	
See Also:

The plsql.README file, located in ORACLE_HOME/ohs/mod_plsql, for a detailed description of plsql.conf.














2.7.2.2 dads.conf

The dads.conf file contains the configuration parameters for the PL/SQL database access descriptor. (See Table 2-2 for the file location.) A DAD is a set of values that specifies how the mod_plsql module connects to a database server to fulfill a HTTP request.


mod_plsql Directives in dads.conf

See Section G.3.2 for a list and description of the directives used in dads.conf






2.7.2.3 cache.conf

The cache.conf file contains the configuration settings for the file system caching functionality implemented in the mod_plsql module. This configuration file is relevant only if PL/SQL applications use the OWA_CACHE package to cache dynamically generated content in the file system.


mod_plsql Directives in cache.conf

See Appendix G for a list and description of the directives used in cache.conf








2.7.3 Using Configuration Files and Parameters

While specifying a value for a configuration parameter, follow Oracle HTTP Server conventions for specifying values. For instance, if a value has white spaces in it, enclose the value with double quotes. For example:


PlsqlNLSLanguage "TRADITIONAL CHINESE_TAIWAN.UTF8"


Multi-line directives enable you to specify same directive multiple times in a DAD.






2.7.4 Additional Documentation

For more Oracle HTTP Server-relevant information on PL/SQL, see the following:

	
Oracle® Fusion Middleware User's Guide for mod_plsql


	
Oracle® Fusion Middleware PL/SQL Web Toolkit Reference











2.8 mod_wl_ohs

mod_wl_ohs enables requests to be proxied from Oracle HTTP Server 12c (12.1.2) to Oracle WebLogic Server. This module is generally referred to as the WebLogic Proxy Plug-in.

For information about the prerequisites and procedure for configuring mod_wl_ohs, see "Configuring the WebLogic Proxy Plug-In for Oracle HTTP Server" in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.2. Directives for this module are listed in "Parameters for Web Server Plug-Ins" in that document.




	
Note:

mod_wl_ohs is similar to the mod_wl plug-in, which you can use to proxy requests from Apache HTTP Server to Oracle WebLogic server. However, while the mod_wl plug-in for Apache HTTP Server should be downloaded and installed separately, the mod_wl_ohs plug-in is bundled with Oracle HTTP Server.

















3  Understanding Oracle HTTP Server Management Tools


This chapter describes the management tools available with the Oracle HTTP Server (OHS). It includes information on OHS management, how to access Fusion Middleware Control, how to access the OHS home page, and how to use the WebLogic Scripting Tool (WLST).

Oracle provides the following management tools for Oracle HTTP Server:

	
The Configuration Wizard, which allows you to create and delete Oracle HTTP Server instances. For more information, see Installing and Configuring Oracle HTTP Server.


	
Fusion Middleware Control, which is a browser-based management tool. For more information, see Administering Oracle Fusion Middleware.


	
The WebLogic Scripting Tool, which is a command-driven scripting tool. For more information, see Understanding the WebLogic Scripting Tool.







	
Note:

The management tools available to your Oracle HTTP Server implementation depend on whether or not you have configured it in a WebLogic Server domain (with FMW Infrastructure) or in a standalone domain. For details, see Section 1.4, "Domain Types".









This chapter includes the following sections:

	
Section 3.1, "Overview of Oracle HTTP Server Management"


	
Section 3.2, "Special Note on Oracle HTTP Server Mbeans"


	
Section 3.3, "Accessing Fusion Middleware Control"


	
Section 3.4, "Accessing the Oracle HTTP Server Home Page"


	
Section 3.5, "Using Fusion Middleware Control to Edit Configuration Files"


	
Section 3.6, "Using the WebLogic Scripting Tool"






3.1 Overview of Oracle HTTP Server Management

The main tool for managing Oracle HTTP Server is Fusion Middleware Control, which is a browser-based tool for administering and monitoring the Oracle Fusion Middleware environment.




	
See Also:

Administering Oracle Fusion Middleware














3.2 Special Note on Oracle HTTP Server Mbeans

The Oracle HTTP Server MBeans, which might be visible in Fusion Middleware Control or the WebLogic Scripting Tool (WLST) are provided for the use of Oracle management tools. The interfaces are not supported for other use and are subject to change without notice.






3.3 Accessing Fusion Middleware Control

To display Fusion Middleware Control, you enter the Fusion Middleware Control URL, which includes the name of the WebLogic Administration Server host and the port number assigned to Fusion Middleware Control during the installation. The following shows the format of the URL:


http://hostname.domain:port/em


If you saved the installation information by clicking Save on the last installation screen, the URL for Fusion Middleware Control is included in the file that is written to disk.

	
Display Fusion Middleware Control by entering the URL in your Web browser. For example:


http://host1.acme.com:7001/em


The Welcome page appears.


	
Enter the Fusion Middleware Control administrator user name and password and click Login.

The default user name for the administrator user is weblogic. This is the account you can use to log in to the Fusion Middleware Control for the first time. The weblogic password is the one you supplied during the installation of Fusion Middleware Control.









3.4 Accessing the Oracle HTTP Server Home Page

The Oracle HTTP Server Home page in Fusion Middleware Control contains menus and regions that enable you to manage the server. Use the menus for monitoring, managing, routing, and viewing general information.



3.4.1 Navigating Within Fusion Middleware Control

When you select a target, such as a WebLogic Managed Server or a component, such as Oracle HTTP Server, the target's home page is displayed in the content pane and that target's menu is displayed at the top of the page, in the context pane. For example, if you select an Oracle HTTP Server instance from the Web Tier folder, the Oracle HTTP Server menu is displayed. You can also view the menu for a target by right-clicking the target in the navigation pane.

Figure 3-1 shows the target navigation pane and the home page of Oracle HTTP Server.


Figure 3-1 Oracle HTTP Server Home in Fusion MIddleware Control

[image: Description of Figure 3-1 follows]





The Oracle HTTP Server home page contains the following regions:

	
Virtual Hosts Region: Shows the virtual hosts for Oracle HTTP Server.


	
Module Request Statistics Region: Shows the modules for Oracle HTTP Server.


	
Response and Load Region: Provides information such as the number of active requests, how many requests were submitted, and how long it took for Oracle HTTP Server to respond to a request. It also provides information about the number of bytes processed with the requests.


	
CPU and Memory Usage Region: Shows how much CPU (by percentage) and memory (in megabytes) are being used by an Oracle HTTP Server instance.


	
Resource Center: Provides links to books and topics related to Oracle HTTP Server.







	
See Also:

Administering Oracle Fusion Middleware contains detailed descriptions of all the items on the target navigation pane and the home page.
















3.5 Using Fusion Middleware Control to Edit Configuration Files

The Advanced Server Configuration page in Fusion Middleware Control allows you to edit your Oracle HTTP Server configuration without directly editing the configuration (.conf) files (for details, see Section 4.6.5, "Modifying an Oracle HTTP Server Configuration File"). Be aware that Fusion Middleware Control and other Oracle software that manage the Oracle HTTP Server configuration might save these files in a different, equivalent format. After using the software to make a configuration change, multiple configuration files might be rewritten.






3.6 Using the WebLogic Scripting Tool

Five OHS-specific WLST commands are provided for management of Oracle HTTP Server in WebLogic Server Domains. Most are online commands, which require a connection between WLST and the administration server for the domain.

	
createOHSInstance()


	
deleteOHSInstance()


	
addOHSAdminProperties()


	
addOHSNMProperties()




One off-line command is provided for creating a domain appropriate for testing OHS:

	
createOHSTestDomain()




You should use the createOHSInstance() and deleteOHSInstance() commands to create and delete Oracle HTTP Server instances instead of using the Configuration Wizard or offline WLST, as these custom commands perform additional error checking and, in the case of instance creation, automatic port assignment.


3.6.1 Using WLST in a Standalone Environment

An Oracle HTTP Server standalone implementation can only use WLST to start and stop the server (nmStart() and nmKill() commands; see Section 4.3, "Performing Basic OHS Tasks"). Other administration tasks are not possible. Thus in a standalone configuration, WLST offers limited benefits.

If you have a remote Oracle HTTP Server in a managed mode and another in standalone with the remote administration mode enabled, you can use WLST to perform management tasks such as SSL configuration. A vanilla Oracle HTTP Serverin a standalone domain can be used only as a WebLogic Server Node Manager and for Oracle HTTP Server start/stop purposes. You can also do this by using a command-line script.





3.6.2 Additional Information

For more information on the custom WLST commands for Oracle HTTP Server, see "Oracle HTTP Server Custom WLST Commands" in the WLST Command Reference for Infrastructure Components.




	
See Also:

For more information on WLST, see Understanding the WebLogic Scripting Tool



















4 Working with Oracle HTTP Server


This chapter provides information on how to work with Oracle HTTP Server (OHS). It discusses the procedures needed to configure and use OHS in your environment.

This chapter includes the following sections:

	
Section 4.1, "Before You Begin"


	
Section 4.2, "Creating an OHS Instance"


	
Section 4.3, "Performing Basic OHS Tasks"


	
Section 4.4, "Remotely Administering Oracle HTTP Server"


	
Section 4.5, "Specifying Server Properties"


	
Section 4.6, "Configuring Oracle HTTP Server"






4.1 Before You Begin

Before performing any of the tasks described in this chapter, you need to do the following:

	
Install and configure Oracle HTTP Server, as described in Installing and Configuring Oracle HTTP Server.


	
If you are running Oracle HTTP Server in a WebLogic Server Domain, start WebLogic Server as described in "Starting and Stopping Servers" in Administering Server Startup and Shutdown for Oracle WebLogic Server.




	
Note:

When you start WebLogic Server from the command line, you might encounter a number of warning messages scrolling by. Despite these messages, WebLogic Server should start normally.










	
Start Node Manager (required for both WebLogic and standalone domains), as described in "Using Node Manager" in Administering Node Manager for Oracle WebLogic Server.




	
Note:

As Node Manager starts, you might encounter a number of warnings scrolling by. You can ignore these messages.

















4.2 Creating an OHS Instance

The Configuration Wizard allows you to create multiple Oracle HTTP Server instances simultaneously when you create a domain. If you are creating a WebLogic Server Domain, the you are not required to create any instances, whereas if you are creating a standalone domain, you need to create at least one Oracle HTTP Server instance. Note that, when creating a WebLogic Server domain, if you elect not to create any instances, a warning appears; however, you are allowed to proceed with the configuration process.




	
Note:

Oracle Fusion Middleware contains a number of versions of WLST. The WLST commands used in all procedures in this chapter will only work if you run the WLST implementation on ORACLE_HOME/ohs/common/bin/.











4.2.1 Creating a Managed Instance in a WebLogic Server Domain

You can create a managed Oracle HTTP Server instance in a WebLogic Server Domain by using either the custom WebLogic Scripting Tool (WLST) command createOHSInstance() or from Fusion Middleware Control. These procedures are described in the following sections.




	
Note:

If you are working with a WebLogic Server Domain, you should use the Oracle HTTP Server custom WLST commands, described in Section 3.6, "Using the WebLogic Scripting Tool". These commands offer superior error checking, provide automatic port management, and so on.











4.2.1.1 Creating an Instance by Using WLST

To create an OHS instance in a WebLogic Server Domain by using WLST, do the following:

	
From the command line, launch WLST:

Linux: $ORACLE_HOME/ohs/common/bin/wlst.sh

Windows: $ORACLE_HOME\ohs\common\bin\wlst.cmd


	
Connect to WLST:

	
In a WebLogic Server Domain:


> connect('loginID', 'password', '<adminHost>:<adminPort>')


For example:


> connect('weblogic', 'welcome1', 'abc03lll.myCo.com:7001')





	
Use the createOHSInstance() command, with an instance and machine name—which was assigned during domain creation—to create the instance:


> createOHSInstance(instanceName='ohs1', machine='abc03lll.myCo.com' [listenPort=XXXX] [sslPort=XXXX] [adminPort=XXXX]) 





	
Note:

If Node Manager should be down, the create command will take place partially. The master copy of the config files will appear at OHS/componentName. Once Node Manager comes back up, the system will resync and the runtime copy of the files will appear at OHS/instances/componentName.









For example:


> createOHSInstance(instanceName='ohs1', machine='abc03lll.myCo.com')





	
Note:

If you do not provide port numbers, they will be assigned automatically.















	
See also:

For information on using the WebLogic Scripting Tool (WLST), see Understanding the WebLogic Scripting Tool.














4.2.1.2 Creating an Instance by Using Fusion Middleware Control

To create an Oracle HTTP Server instance in a WebLogic Server Domain by using Fusion Middleware Control, do the following:

	
Log in to Fusion Middleware Control and navigate to the system component instance home page for the WebLogic Server Domain within which you want to create the Oracle HTTP Server instance.


	
Open the WebLogic Server Domain menu and select Administration then Create/Delete OHS.




	
Note:

Create/Delete OHS will only appear if you have extended the domain by using the Oracle HTTP Server domain template. Otherwise, this command will not be available.









[image: Description of cre_del_ohs.gif follows]



The OHS Instances page appears.

[image: Description of cre_ohs_inst_page_new.gif follows]



	
Click Create.

The Create OHS Instance page appears.

[image: Description of cre_ohs_inst_page.gif follows]



	
In Instance Name, type a unique name for the Oracle HTTP Server instance; for example, ohs4.


	
In Machine Name, click the drop-down control and select the machine to which you want to associate the instance.


	
Click OK.

The OHS Instance page reappears, showing a confirmation message and the new instance.

[image: Description of cre_inst_conf.gif follows]





After creating the instance, you will note that the Column on the OHS Instances page shows a down-arrow for that instance.

[image: Description of cre-status.gif follows]



This indicates that the instance is not running. For instructions on starting an instance, see Section 4.3.2, "Starting Oracle HTTP Server Instances". Once started, the arrow will point up.






4.2.1.3 Instance Provisioning

Once an instance is created, it will be provisioned within the DOMAIN_HOME.

	
The master copy will be in:

DOMAIN_HOME/config/fmwconfig/components/OHS/componentName


	
The runtime will be in:

DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName




Immediately after creation, the state reported for an OHS instance will vary depending on how the instance was created:

	
If createOHSInstance() was used, the reported state for the instance will be SHUTDOWN.


	
If the Configuration Wizard was used, the reported state for the instance will be UNKNOWN.











4.2.2 Creating a Standalone Domain Instance

If you select Standalone as your domain during server configuration, the Configuration Wizard will create the domain but during this process you must create at least one Oracle HTTP Server instance. For more information, see Installing and Configuring Oracle HTTP Server.



4.2.2.1 Using WLST in a Standalone Domain

If your Oracle HTTP Server instance is running in a standalone domain, you can use WLST but must use the offline, or "agent", commands that route tasks through Node Manager. The specific commands are described elsewhere in this chapter, in the context of the task they perform; however, you will need to use the nmConnect() command to actually connect to offline WLST. For both Linux and Windows, enter:


nmConnect('login','password','hostname','port','<domainName>')


For example:


nmConnect('weblogic','welcome1','localhost','5556','myDomain')










4.3 Performing Basic OHS Tasks

You can use Fusion Middleware Control or WebLogic Scripting Tool for the following tasks:

	
Starting Oracle HTTP Server Instances


	
Stopping Oracle HTTP Server Instances


	
Restarting Oracle HTTP Server Instances


	
Checking the Status of a Running Oracle HTTP Server Instance


	
Deleting an Oracle HTTP Server Instance





About Using the WLST Commands

If you plan to use WLST, you should familiarize yourself with that tool. You should also be aware of the following:

	
The online WLST commands described in this section and used in WebLogic Server Domains will only work if you run them from the WLST implementation on ORACLE_HOME/ohs/common/bin/wlst.sh (wlst.cmd on Windows).


	
If you are running a standalone version of Oracle HTTP Server, you must use the offline, or "agent", WLST commands, which are also available in ORACLE_HOME/ohs/common/bin/wlst.sh (wlst.cmd on Windows). These commands are described in their appropriate context.




For more information, see "Getting Started Using the Oracle WebLogic Scripting Tool (WLST)" in the Oracle® Fusion Middleware Administrator's Guide.



4.3.1 Understanding the PID File

When Oracle HTTP Server starts up, it writes the process ID (PID) of the parent httpd process to the httpd.pid file located in the following directory:


DOMAIN_HOME/servers/<componentName>/logs


The process ID can be used by the administrator when restarting and terminating the daemon. If a process stops abnormally, it is necessary to stop the httpd child processes using the kill command. You must not change the default PID file name or its location.

The PidFile directive in httpd.conf specifies the location of the PID file; however, you should never modify the value of this directive.




	
Note:

On UNIX/Linux platforms, if you edit the PidFile directive, you also have to edit the ORACLE_HOME/ohs/bin/apachectl file to specify the new location of the PID file.












	
See Also:

PidFile directive in the Apache HTTP Server documentation at:

http://httpd.apache.org/docs/current/mod/mpm_common.html#pidfile














4.3.2 Starting Oracle HTTP Server Instances

This section describes how to start Oracle HTTP Server using Fusion Middleware Control and WLST.



4.3.2.1 Starting Oracle HTTP Server Instances by Using Fusion Middleware Control

To start Oracle HTTP Server using Fusion Middleware Control, navigate to the Oracle HTTP Server home page and do one of the following:

	
From the Oracle HTTP Server menu:

	
Select Control.


	
Select Start Up from the Control menu.





	
From the Target Navigation tree:

	
Right-click the Oracle HTTP Server instance you want to start.


	
Select Control.


	
Select Start Up from the Control menu.





	
From the page header, select Start Up.

The instance will start in the state UNKNOWN.









4.3.2.2 Starting Oracle HTTP Server Instances by Using WLST

To start all Oracle HTTP Server components in a system component instance by using WLST (this procedure assumes you have created as OHS instance, as described in Section 4.2, "Creating an OHS Instance" and WLST is running), use the start() command in a WebLogic Server Domain or nmStart() for standalone domain, as shown here:




	
Notes:

Node Manager must be running for these commands to work. If it is down, you will receive an error message.

serverType is required for standalone domains. If it is not included an error will be thrown referencing an inability to find startWebLogic.










	Domain	Syntax	Example
	
WebLogic

	

start('instanceName')


or


nmStart(serverName='name', serverType='type')

	

start('ohs1')


or


nmStart(serverName='ohs1', serverType='OHS')


	
Standalone

	

nmStart(serverName='name', serverType='type')

	

nmStart(serverName='ohs1', serverType='OHS')








If you used createOHSInstance() to create the instance (Section 4.2, "Creating an OHS Instance"), the state initially reported for the instance will be SHUTDOWN.






4.3.2.3 Starting Oracle HTTP Server Instances from the Command Line

You can start Oracle HTTP Server directly from a command line—that is, without launching WLST—by entering the following command:

Linux: $DOMAIN_HOME/bin/startComponent.sh componentName

Windows: %DOMAIN_HOME%\bin\startComponent.cmd componentName

For example:


$DOMAIN_HOME/bin/startComponent.sh ohs1


This command invokes WLST and tells it to run its start() command.

After a few seconds, you will be prompted for your Node Manager password. Type that and press Enter.


Successfully started server componentName...
Successfully disconnected from Node Manager...

Exiting WebLogic Scripting Tool.


You can avoid having to enter your Node Manager password every time you launch the server with startComponent.sh/.cmd by starting it with the storeUserConfig option for the first time. Do the following:

	
At the prompt, enter the following command:


$DOMAIN_HOME/bin/startComponent.sh componentName storeUserConfig


The system will prompt for your Node Manager password.


	
Type the password and press Enter.

The system responds with this message:


Creating a key file can reduce the security of your system if it is not a secured location after it is created. Do you want to create the key file? y or n.


	
Type y to store your Node manager password. When you subsequently use this command, you will not need to enter a password.









4.3.2.4 Starting Oracle HTTP Server Instances on a Privileged Port (Unix Only)




	
WARNING:

When this procedure is completed, any Oracle HTTP Server processes running from this Oracle Home as a user in the same group will be able to bind to privileged ports.









On a UNIX system, TCP ports in a reserved range (typically less than 1024) can only be bound by processes with root privilege. Oracle HTTP Server always runs as a non-root user; that is, the user who installed Oracle Fusion Middleware. On UNIX, special configuration is required to allow Oracle HTTP Server to bind to privileged ports.

To enable Oracle HTTP Server to listen on a port in the reserved range (for example, the default port 80 or port 443) as a process without root privilege, use the following one-time setup on each Oracle HTTP Server machine:

	
As the same user who will start Oracle HTTP Server, create a temporary cap.ora file by entering the following:


echo `id -ng`: bind  > /tmp/cap.ora





	
Note:

The next steps must be performed as the root user. If you do not have root access, have the system administrator perform these steps.










	
Update the ORACLE_HOME/oracle_common/bin/hasbind file by performing the following steps:

	
Change ownership of the file to root:


chown root $ORACLE_HOME/oracle_common/bin/hasbind


	
Change the permissions on the file as follows:


chmod 4755 $ORACLE_HOME/oracle_common/bin/hasbind





	
Generate the /etc/cap.ora file by performing the following steps:

	
If /etc/cap.ora does not exist, copy the temporary cap.ora file you created in step 1 to the /etc/ directory:


cp /tmp/cap.ora /etc/cap.ora


If /etc/cap.ora does exist, append the contents of the temporary file you created in step 1 to the existing /etc/cap.ora file:


cat /tmp/cap.ora >> /etc/cap.ora


	
Change the permissions on the /etc/cap.ora file as follows:


chmod 644 /etc/cap.ora


	
Change ownership of the file to root:


chown root /etc/cap.ora




The steps that require root permissions are now complete.


	
If you prefer, remove the temporary cap.ora you created in step 1:


rm /tmp/cap.ora


	
Modify the port settings for Oracle HTTP Server as described in Section 6.4, "Managing Ports".


	
Start (or restart) the instance by using any of the start-up methods described in Section 4.3.2, "Starting Oracle HTTP Server Instances".











4.3.3 Stopping Oracle HTTP Server Instances

This section describes how to stop Oracle HTTP Server using Fusion Middleware Control. Be aware that other services might be impacted when Oracle HTTP Server is stopped.



4.3.3.1 Stopping Oracle HTTP Server Instances by Using Fusion Middleware Control

To stop Oracle HTTP Server using Fusion Middleware Control, navigate to the Oracle HTTP Server home page and do one of the following:

	
From the Oracle HTTP Server menu:

	
Select Control.


	
Select Shut Down from the Control menu.





	
From the Target Navigation tree:

	
Right-click the Oracle HTTP Server component you want to stop.


	
Select Control.


	
Select Shut Down from the Control menu.





	
From the page header, select Shut Down.









4.3.3.2 Stopping Oracle HTTP Server Instances by Using WLST

To stop Oracle HTTP Server by using WLST, from within the scripting tool, use one of the following commands:




	
Notes:

Node Manager must be running for these commands to work. If it is down, you will receive an error message.

serverType is required for standalone domains. If it is not included an error will be thrown referencing an inability to find startWebLogic










	Domain	Syntax	Example
	
WebLogic

	

shutdown('serverName')

	

shutdown('ohs1')


	
Standalone

	

nmKill(serverName='serverName', serverType='type')

	

nmKill(serverName='ohs1', serverType='OHS')











	
WARNING:

If you run shutdown() without specifying any parameters, WLS will terminate and boot you out of WLST. Oracle HTTP Server will continue running.














4.3.3.3 Stopping Oracle HTTP Server Instances from the Command Line

You can stop Oracle HTTP Server directly from a command line—that is, without launching WLST—by entering the following command:


$DOMAIN_HOME/bin/stopComponent.sh componentName


For example:


$DOMAIN_HOME/bin/stopComponent.sh ohs1


This command invokes WLST and tells it to run its shutdown() command.

After a few seconds, you will be prompted for your Node Manager password. Type that and press Enter. Once the server is stopped, the system will respond:


Successfully killed server componentName...
Successfully disconnected from Node Manager...

Exiting WebLogic Scripting Tool.








4.3.4 Restarting Oracle HTTP Server Instances

Restarting Oracle HTTP Server causes the Apache parent process to advise its child processes to exit after their current request (or to exit immediately if they are not serving any requests). Upon restarting, the parent process re-reads its configuration files and reopens its log files. As each child process exits, the parent replaces it with a child process from the new generation of the configuration file, which begins serving new requests immediately.

The following sections describe how to restart Oracle HTTP Server using by Fusion Middleware Control and the WLST.



4.3.4.1 Restarting Oracle HTTP Server Instances by Using Fusion Middleware Control

To restart OHS using Fusion Middleware Control, navigate to the Oracle HTTP Server home page and do one of the following:

	
From the Oracle HTTP Server menu:

	
Select Control.


	
Select Restart from the Control menu.





	
From the Target Navigation tree:

	
Right-click the OHS instance you want to stop.


	
Select Control.


	
Select Restart from the Control menu.












4.3.4.2 Restarting Oracle HTTP Server Instances by Using WLST

To restart OHS by using WLST, use the softRestart() command. From within the scripting tool, enter one of the following commands:




	
Notes:

Node Manager must be running for these commands to work. If it is down, you will receive an error message.

All parameters are required for standalone domains. If they are not included, an error will be thrown referencing an inability to find startWebLogic.










	Domain	Syntax	Example
	
WebLogic

	

softRestart('serverName')

	

softRestart('ohs1')


	
Standalone

	

nmSoftRestart(serverName='name', serverType='type')

	

nmSoftRestart(serverName='ohs1', serverType='OHS')














4.3.5 Checking the Status of a Running Oracle HTTP Server Instance

This section describes how to check the status of a running Oracle HTTP Server instance. You can check this information from either Fusion Middleware Control or by using WLST.



4.3.5.1 Checking Server Status by Using Fusion Middleware Control

An up or down arrow in the top left corner of any Oracle HTTP Server page's header indicates whether or not the selected server instance is running. This image shows the up arrow, indicating that the server instance, in this case, "ohs2", is running:

[image: Upward pointing arrow]



This image shows a down arrow, indicating that the server instance, in this case, "ohs2", is not running:

[image: Description of down_arrow.gif follows]







4.3.5.2 Checking Server Status by Using WLST

In a WebLogic Server Domain, if you used createOHSInstance() to create the Oracle HTTP Server instance, its initial state (that is, prior to starting it) will be SHUTDOWN.

If you used the Configuration Wizard to generate the instance (both WebLogic Server Domain and standalone domain), its initial state (that is, prior to starting) will be UNKNOWN.

To check the status of a running Oracle HTTP Server instance by using WLST, from within the scripting tool, enter the following:




	
Notes:

Node Manager must be running for these commands to work. If it is down, you will receive an error message. If Node Manager goes down in a WebLogic Server Domain, the state will be returned as UNKNOWN, regardless of the real state of the instance. Additionally state() does not inform you that it cannot connect to Node Manager.

Unlike other WLST commands, state() will not tell you when Node Manager is down so there is no way to distinguish an instance that truly is in state UNKNOWN as opposed to Node Manager simply being down.

All parameters are required for standalone domains. If they not included an error will be thrown referencing an inability to find startWebLogic.










	Domain	Syntax	Example
	
WebLogic

	

state('serverName')

	

state('ohs1')


	
Standalone

	

nmServerStatus(serverName='name', serverType='type')

	

nmServerStatus(serverName='ohs1', serverType='OHS')











	
Note:

This command does not distinguish between non-existent components and real components in state UNKNOWN. Thus, if you enter a non-existent instance (for example, if you mis-identify the instance with a non-existent instance name—for example, ohsz instead of ohs2)— UNKNOWN will be returned.
















4.3.6 Deleting an Oracle HTTP Server Instance

You can delete an Oracle HTTP Server instance in both a WebLogic Server Domain and a standalone domain.



4.3.6.1 Deleting an Oracle HTTP Server Instance in a WebLogic Server Domain

In a WebLogic Server Domain, you can use either the custom WLST command deleteOHSInstance() or from Fusion Middleware Control. These procedures are described in the following sections.



4.3.6.1.1 Deleting an Instance by Using WLST

If you are in a WebLogic Server Domain, you can delete an Oracle HTTP Server instance by using the customer WLST command deleteOHSInstance(). When you use this command, the following happens:

	
The selected instance information is removed form config.xml.


	
All OHS configuration directories and their contents are deleted; for example, OHS/instanceName and OHS/instances/instanceName).


	
All logfiles associated with the deleted instance are deleted.


	
All state information for the deleted instance is removed.







	
Note:

You cannot delete an instance by using deleteOHSInstance() if Node Manager is down.









To delete an instance by using WLST:

	
Connect to WLST, as described in Section 4.3.2.2, "Starting Oracle HTTP Server Instances by Using WLST".


	
At the command prompt, enter:


deleteOHSInstance(instanceName='instanceName')


For example, to delete an OHS instance named ohs1 use the following command:


deleteOHSInstance(instanceName='ohs1')




You cannot delete any OHS instance in either an UNKNOWN or a RUNNING state.






4.3.6.1.2 Deleting an Instance by Using Fusion Middleware Control

To delete an Oracle HTTP Server instance by using Fusion Middleware Control:




	
Note:

You cannot delete a running Oracle HTTP Server instance. If the instance is running, stop it, as described in Section 4.3.3, "Stopping Oracle HTTP Server Instances" and then proceed with the following steps.









	
Log in to Fusion Middleware Control and navigate to the system component instance home page for the WebLogic Server Domain within which you want to delete the Oracle HTTP Server instance.


	
Open the WebLogic Server Domain menu and select Administration then Create/Delete OHS.

The OHS Instances page appears.


	
Select the instance you want to delete and click Delete.

A confirmation window appears.


	
Click Yes to complete the deletion.

The OHS Instances page appears, with an information method indicating that the selected Oracle HTTP Server instance was deleted.











4.3.6.2 Deleting an Oracle HTTP Server Instance from a Standalone Domain

You can delete an Oracle HTTP Server instance in a standalone domain by using the Configuration Wizard so long as it is not the only instance in the domain. The Configuration Wizard always requires at least one Oracle HTTP Server instance in a standalone domain so you will not be able to delete one if it's the only instance in the domain. If you want to delete the only instance in a standalone domain, you should instead completely remove the entire domain directory.

Deleting Oracle HTTP Server instances by using the Configuration Wizard is actually only a partial deletion (and is inconsistent with the way deletion is done on the WebLogic Server domain side by using deleteOHSInstance(); see Section 4.3.6.1.1, "Deleting an Instance by Using WLST"). When you delete a standalone instance by using the Configuration Wizard, the following occurs:

	
Information on the specific instance is removed from config.xml, so this instance is no longer recognized as valid. When you launch the Configuration Wizard again for another update, the deleted instance will not appear.


	
The logs compiled for the deleted instance are left intact at: DOMAIN_HOME/servers/ohs1... If a new instance with the same name is subsequently created, it will inherit and continue logging to these files.


	
The deleted instance's configuration directories and their contents are not deleted; they remain intact at: DOMAIN_HOME/config/fmwconfig/components/OHS/instanceName and DOMAIN_HOME/config/fmwconfig/components/OHS/instances/instanceName. The only change in both directories is that the following files are renamed: httpd.conf becomes httpd.conf.bak; ssl.conf becomes ssl.conf.bak; and admin.conf becomes admin.conf.bak. This prevents the instance from being started. (If you create a new instance with the same name as the instance you deleted, this information will be overwritten, but the *.bak files will remain).


	
The deleted instance's state information is left intact at DOMAIN_HOME/system_components/... If a new instance of the same name is subsequently created, it will inherit the state of the old instance. Instead of starting in UNKNOWN, it could be SHUTDOWN or even FAILED_NOT_RESTARTABLE out of the gate.




To delete an Oracle HTTP Server instance in a standalone domain, do the following:

	
Shutdown all running instances (see Section 4.3.3, "Stopping Oracle HTTP Server Instances"). Be aware the Configuration Wizard will not check the state of the Oracle HTTP Server instance so you will need to verify that all instances are indeed stopped.


	
If it is running, shut down Node Manager.


	
Launch the Configuration Wizard (see Installing and Configuring Oracle HTTP Server) and do the following:

	
Select Update an existing domain and select the path to the domain.


	
Skip both the Templates screen and the JDK Selection screen by clicking Next on each.


	
On the System Components screen, select the instance you want to delete and click Delete.

The selected instance is deleted.


	
Click Next and, on the OHS Server screen, click Next again.


	
On the Configuration Summary screen, verify that the selected instance has been deleted and click Update.


	
On the Success screen, click Finish.
















4.4 Remotely Administering Oracle HTTP Server

You can remotely manage an Oracle HTTP Server running in a standalone environment from a collocated Oracle HTTP Server implementation running on a separate machine. This feature allows you to use the WebLogic Scripting Tool (WLST) or Fusion Middleware Control from the remote machine to start, restart, stop, and configure the component. This chapter describes how to set up the environments to

	
Section 4.4.1, "Setting Up a Remote Environment"


	
Section 4.4.2, "Running Oracle HTTP Server Remotely"






4.4.1 Setting Up a Remote Environment

The following instructions describe how to set up a remote environment, which will enable you to run Oracle HTTP Server installed on one machine from an installation on another. This section contains the following information:

	
Section 4.4.1.1, "Host Requirements."


	
Section 4.4.1.2, "Task 1: Set Up an Expanded Domain on host1."


	
Section 4.4.1.3, "Task 2: Pack the Domain on host1."


	
Section 4.4.1.4, "Task 3: Unpack the Domain on host2."






4.4.1.1 Host Requirements

In order to remotely manage Oracle HTTP Server, you need to have separate hosts installed on separate machines:

	
A collocated installation (for this document, this installation will be called host1).


	
A standalone installation (host2). The path to standalone MW_HOME on host2 must be the same as the path to collocated MW_HOME on host1; for example:


/scratch/user/work









4.4.1.2 Task 1: Set Up an Expanded Domain on host1

The following steps describe how to set up an expanded domain and link it to a database on the collocated version of Oracle HTTP Server (host1).

	
Using the Repository Configuration Utility (RCU), set up and install a database for the expanded domain. For more information, see Oracle Fusion Middleware Creating Schemas with the Repository Creation Utility.


	
Launch the Configuration Wizard and create an expanded domain. Use the values specified in Table 4-1.


Table 4-1 Setting Up an Expanded Domain

	For...	Select or Enter...
	
Create Domain

	
Create a new domain and specify its path (for example, MW_HOME/user_projects/domains/ohs1_domain)


	
Templates

	
Oracle HTTP Server (Collocated)


	
Application Locations

	
The default


	
Administrator Account

	
A username and password (for example, weblogic and welcome1)


	
Database Configuration Type

	
The RCU data. Then, click Get RCU Configuration and then Next.


	
Optional Configuration

	
The following items:

	
Administration Server


	
Node Manager


	
System Components


	
Deployment and Services





	
Administration Server

	
The listen address (All Local Addresses or the valid name or address for host1) and port


	
Node Manager

	
Per Domain and specify the NodeManager credentials (for example, weblogic and welcome1).


	
System Components

	
Add and set the fields, using OHS as the Component Type (for example, use a System Component value of ohs1).


	
OHS Server

	
The listen addresses and ports or use the defaults.


	
Machines

	
Add. This will add a machine to the domain (for example, ohs1_Machine) and the Node Manager listen and port values. You must specify a listen address for host2 that is accessible from host1, such the valid name or address for host2 (do not use localhost or All Local Addresses).


	
Assign System Components

	
The OHS component (for example, ohs1) then use the right arrow to assign the component to the machine (ohs1_machine, for example).


	
Configuration Summary

	
Create (note that the OPSS steps may take some minutes).















4.4.1.3 Task 2: Pack the Domain on host1

On host1, use the following command to pack the domain:


<MW_HOME>/ohs/common/bin/pack.sh -domain=path to domain -template=path to template -template_name=name -managed=true


For example:


<MW_HOME>/ohs/common/bin/pack.sh -domain=<MW_HOME>/user_projects/domains/ohs1_domain -template=/tmp/ohs1_tmplt.jar -template_name=ohs1 -managed=true






4.4.1.4 Task 3: Unpack the Domain on host2

Use the following steps to unpack the domain you packed on host1, above, on host2:

	
Copy the template file created in "Task 2: Pack the Domain on host1" from host1 to host2.


	
Use the following command to unpack the domain:


<MW_HOME>/ohs/common/bin/unpack.sh -domain=path to domain -template=path to template


For example:


<MW_HOME>/ohs/common/bin/unpack.sh -domain=<MW_HOME>/user_projects/domains/ohs1_domain -template=/tmp/ohs1_tmplt.jar











4.4.2 Running Oracle HTTP Server Remotely

Once you have unpacked the domain created on host1 onto host2, you can use the same set of WLST commands and Fusion Middleware Control tools you would in a collocated environment to start, stop, restart, and configure the component.

To run an Oracle HTTP Server remotely, do the following:

	
Start the WebLogic Administration Server on host1:


<MW_HOME>/user_projects/domains/ohs1_domain/bin/startWebLogic.sh &


	
Start Node Manager on host2:


<MW_HOME>/user_projects/domains/ohs1_domain/bin/startNodeManager.sh &




You can now run the Oracle HTTP Server instance on host2 from the collocated implementation on host1. You can use any of the WLST commands or any of the Fusion Middleware Control tools. For example, to connect host2 to Node Manager and start the server ohs1, from host1 enter:


<MW_HOME>/ohs/common/bin/wlst.sh
nmConnect('weblogic', 'welcome1', '<nm-host>', '<nm-port>', 'ohs1_domain')
nmStart(serverName='ohs1', serverType='OHS')


See Section 4.3, "Performing Basic OHS Tasks" for information on starting, stopping, restarting, and configuring Oracle HTTP Server components.








4.5 Specifying Server Properties

Server properties for Oracle HTTP Server can be set using Fusion Middleware Control or direct editing of the Oracle HTTP Server configuration files. You cannot use WLST commands to specify the server properties.

	
Specifying Server Properties by Using Fusion Middleware Control


	
Editing the httpd.conf File to Specify Server Properties






4.5.1 Specifying Server Properties by Using Fusion Middleware Control

To specify the server properties using the Fusion Middleware Control:

	
Select Administration from the Oracle HTTP Server menu.


	
Select Server Configuration from the Administration menu. The Server Configuration page appears.

[image: Description of srv_prop3.gif follows]



	
Enter the documentation root directory in the Document Root field that forms the main document tree visible from the Web site.


	
Enter the e-mail address in the Administrator's E-mail field that the server will includes in error messages sent to the client.


	
Enter the directory index in the Directory Index field. The is the main (index) page that will be displayed when a client first accesses the Web site.


	
Optional: Enter the user name in the Operating System User field.

This field is normally blank. It may be set to the user that installed Oracle HTTP Server and starts Node Manager.


	
Optional: Enter the group name in the Operating System Group field.

This field is normally blank. It may be set to the group of the user that installed Oracle HTTP Server and starts Node Manager.


	
The Modules region is used to enable or disable modules. There are three modules that you can enable or disable: mod_perl, mod_fcgi, and mod_plsql.

For instructions on configuring the mod_perl module, see "Configuring mod_perl".


	
Create an alias, if necessary in the Aliases table. An alias maps to a specified directory. For example, to use a specific set of content pages for a group you can create an alias to the directory that has the content pages.


	
Review the settings. If the settings are correct, click Apply to apply the changes. If the settings are incorrect, or you decide to not apply the changes, click Revert to return to the original settings.


	
Restart Oracle HTTP Server as described in Section 4.3.4.




The server properties are saved, and shown on the Server Configuration page.






4.5.2 Editing the httpd.conf File to Specify Server Properties

To specify the server properties using the httpd.conf file:




	
Note:

Before attempting to edit any .conf file, you should familiarize yourself with the layout of the configuration file directories, mechanisms for editing the files, and learn more about the files themselves. For this information, see Section 1.6, "Understanding Configuration Files".









	
Open the httpd.conf file using either a text editor or the Advanced Server Configuration page in Fusion Middleware Control. (See Section 4.6.5, "Modifying an Oracle HTTP Server Configuration File.")


	
In the DocumentRoot section of the file, enter the directory that stores the main content for the Web site. The following is an example of the syntax:


DocumentRoot "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/instances/${COMPONENT_NAME}/htdocs"


	
In the ServerAdmin section of the file, enter the administrator's email address. This is the e-mail address that will appear on client pages. The following is an example of the syntax:


ServerAdmin WebMaster@example.com


	
In the DirectoryIndex section of the file, enter the directory index. This is the main (index) page that will be displayed when a client first accesses the Web site. The following is an example of the syntax:


DirectoryIndex index.html index.html.var


	
Create aliases, if needed. An alias maps to a specified directory. For example, to use a specific set of icons, you can create an alias to the directory that has the icons for the Web pages. The following is an example of the syntax:


Alias /icons/ "${PRODUCT_HOME}/icons/"

<Directory "${PRODUCT_HOME}/icons">
    AllowOverride None
    Order allow,deny
    Allow from all
</Directory>


	
Save the file.


	
Restart Oracle HTTP Server as described in Section 4.3.4.











4.6 Configuring Oracle HTTP Server

This section includes the following sections:

	
Section 4.6.1, "Configuring Secure Sockets Layer"


	
Section 4.6.2, "Configuring MIME Settings"


	
Section 4.6.3, "Configuring mod_perl"


	
Section 4.6.4, "Configuring the WebLogic Proxy Plug-in (mod_wl_ohs)"


	
Section 4.6.5, "Modifying an Oracle HTTP Server Configuration File"


	
Section 4.6.6, "Using the apxs Command to Install Extension Modules"


	
Section 4.6.7, "Disabling the Options Method"







	
Note:

Fusion Middleware Control and other Oracle software which manage the Oracle HTTP Server configuration might save configuration files in a different, equivalent format. After using the software to make a configuration change, multiple configuration files might be rewritten.











4.6.1 Configuring Secure Sockets Layer

Secure Sockets Layer (SSL) is an encrypted communication protocol that is designed to securely send messages across the Internet. It resides between Oracle HTTP Server on the application layer and the TCP/IP layer, transparently handling encryption and decryption when a secure connection is made by a client.

One common use of SSL is to secure Web HTTP communication between a browser and a Web server. This case does not preclude the use of non-secured HTTP. The secure version is simply HTTP over SSL (HTTPS). The differences are that HTTPS uses the URL scheme https:// rather than http://.

By default, an SSL listen port is configured and enabled using a default wallet during installation. Wallets store your credentials, such as certificate requests, certificates, and private keys.

The default wallet that is automatically installed with Oracle HTTP Server is for testing purposes only. A real wallet must be created for your production server. The default wallet is located in the DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName/keystores/default directory. You can either place the new wallet in this location, or change the SSLWallet directive in DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/ssl.conf to point to the location of your real wallet.

For the changes to take effect, you should restart the Oracle HTTP Server components as described in Section 4.3.4.

For information about configuring wallets and SSL using Fusion Middleware Control, see "Enabling SSL for Oracle HTTP Server Virtual Hosts" in the Administering Oracle Fusion Middleware.






4.6.2 Configuring MIME Settings

Multipurpose Internet Mail Extension (MIME) settings are used by Oracle HTTP Server to interpret file types, encodings, and languages. MIME settings for Oracle HTTP Server can only be set using Fusion Middleware Control. You cannot use WLST commands to specify the MIME settings.

The following tasks can be completed on the MIME Configuration page:

	
Configuring MIME Types


	
Configuring MIME Encoding


	
Configuring MIME Languages






4.6.2.1 Configuring MIME Types

MIME type maps a given file extension to a specified content type. The MIME type is used for filenames containing an extension.



4.6.2.1.1 Using Fusion Middleware Control to Configure MIME Types

To configure a MIME type using Fusion Middleware Control, do the following:

	
Select Administration from the Oracle HTTP Server menu.


	
Select MIME Configuration from the Administration menu. The MIME configuration page appears.


	
Click Add Row in MIME Configuration region. A new, blank row is added to the list.


	
Enter the MIME type.


	
Enter the file extension.


	
Review the settings. If the settings are correct, click Apply to apply the changes. If the settings are incorrect, or you decide to not apply the changes, click Revert to return to the original settings.


	
Restart Oracle HTTP Server, as described in Section 4.3.4.




The MIME configuration is saved, and shown on the MIME Configuration page.








4.6.2.2 Configuring MIME Encoding

MIME encoding enables Oracle HTTP Server to determine the file type based on the file extension. You can add and remove MIME encodings. The encoding directive maps the file extension to a specified encoding type.

	
Select Administration from the Oracle HTTP Server menu.


	
Select MIME Configuration from the Administration menu. The MIME configuration page appears.


	
Expand the MIME Encoding region by clicking the plus sign (+) next to MIME Encoding.


	
Click Add Row in MIME Encoding region. A new, blank row is added to the list.


	
Enter the MIME encoding, such as x-gzip.


	
Enter the file extension, such as .gx.


	
Review the settings. If the settings are correct, click Apply to apply the changes. If the settings are incorrect, or you decide to not apply the changes, click Revert to return to the original settings.


	
Restart Oracle HTTP Server as described in Section 4.3.4.









4.6.2.3 Configuring MIME Languages

The MIME language setting maps file extensions to a particular language. This directive is commonly used for content negotiation, in which Oracle HTTP Server returns the document that most closely matched the preferences set by the client.

	
Select Administration from the Oracle HTTP Server menu.


	
Select MIME Configuration from the Administration menu. The MIME configuration page appears.


	
Expand the MIME Languages region by clicking the plus sign (+) next to MIME Languages.


	
Click Add Row in MIME Languages region. A new, blank row is added to the list.


	
Enter the MIME language, such as en-US.


	
Enter the file extension, such as en-us.


	
Review the settings. If the settings are correct, click Apply to apply the changes. If the settings are incorrect, or you decide to not apply the changes, click Revert to return to the original settings.


	
Restart Oracle HTTP Server as described in Section 4.3.4.











4.6.3 Configuring mod_perl

The mod_perl module embeds the Perl interpreter into Oracle HTTP Server. This eliminates start-up overhead and enables you to write modules in Perl. The module is disabled, by default.

To enable the mod_perl module using Fusion Middleware Control, do the following:

	
Select Administration from the Oracle HTTP Server menu.


	
Select mod_perl Configuration from the Administration menu. The mod_perl configuration page appears.




	
Note:

If mod_perl has not been enabled, then you will be redirected to the Server Configuration page. Select mod_perl and click Apply to enable mod_perl. After the confirmation page has been displayed, restart Oracle HTTP Server, and then return to the mod_perl Configuration page.










	
Enter the switch information in the Switches field.


	
Enter the environment variables to be passed to the scripts in the Environment field.


	
Enter the required script names in the Require field.


	
Click Add Row to create a new row.


	
Configure mod_perl directives for a Location in the Perl Locations table. The Location assigns a number of rules that the server should follow when the request's URI matches the Location.

	
Enter the base URI for the Perl scripts in the Locations field. Just as it is the widely accepted convention to use /cgi-bin for your mod_cgi scripts, it is also conventional to use /perl as the base URI of the Perl scripts that are running under mod_perl.


	
Enter options in the Options field. The PerlOptions directive provides fine-grained configuration by providing control over which class of Perl interpreter pool to be used. Options are enabled by prepending them with a plus sign (+) and are disabled by prepending them with a minus sign (-).


	
If you want to send headers, then click the Send Header check box. The PerlSendHeader directive is for mod_perl 1.0 backwards-compatibility. When enabled, the server sends an HTTP header to the browser on every script invocation. You should disable this option for NPH (non-parsed-headers) scripts.


	
Enter the environment in the Environment field. The PerlSetEnv directive allows you to specify system environment variables and pass them into your mod_perl handlers.


	
Enter the response handler in the Response Handler field. The PerlResponseHandler directive tells mod_perl which callback is going to do the job.


	
Enter the authentication handler in the Authentication Handler field. The PerlAuthenHandler directive is used to set the handler to verify a user's identification credentials.





	
Review the settings. If the settings are correct, click Apply to apply the changes. If the settings are incorrect, or you decide to not apply the changes, click Revert to return to the original settings.


	
Restart Oracle HTTP Server as described in Section 4.3.4.




The mod_perl module configuration is saved and shown on the mod_perl Configuration page.




	
Note:

If you are manually editing the mod_perl configuration instead of using Fusion Middleware Control, then all directives must be defined within the <IfModule mod_perl.c> block of the mod_perl.conf file. Any mod_perl related directives defined outside of this block might be ignored.














4.6.4 Configuring the WebLogic Proxy Plug-in (mod_wl_ohs)

You can configure the WebLogic Proxy Plug-in (mod_wl_ohs) either by using Fusion Middleware Control or by editing the mod_wl_ohs.conf configuration file manually.

For information about the prerequisites and procedure for configuring the WebLogic Proxy Plug-in to proxy requests from Oracle HTTP Server to Oracle WebLogic Server, see "Configuring the WebLogic Proxy Plug-In for Oracle HTTP Server" in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.2.






4.6.5 Modifying an Oracle HTTP Server Configuration File




	
Note:

Fusion Middleware Control and other Oracle software that manage the Oracle HTTP Server configuration might save these files in a different, equivalent format. After using the software to make a configuration change, multiple configuration files might be rewritten.









To modify an Oracle HTTP Server configuration file by using Fusion Middleware Control, do the following:

	
Select Administration from the HTTP Server menu.


	
Select Advanced Configuration from the Administration menu item. The Advanced Server Configuration page appears.


	
Select the configuration file from the list, such as the httpd.conf file.


	
Edit the file, as needed.


	
Review the settings. If the settings are correct, click Apply to apply the changes. If the settings are incorrect, or you decide to not apply the changes, click Revert to return to the original settings.


	
Restart Oracle HTTP Server as described in Section 4.3.4.




The file is saved and shown on the Advanced Server Configuration page.




	
See Also:

Section 1.6, "Understanding Configuration Files"














4.6.6 Using the apxs Command to Install Extension Modules




	
Note:

This command is only for Unix and Linux and should be used only for modules which are supplied in source code form. Follow the installation instructions for modules supplied in binary form.

For more information about the apxs command, see the Apache HTTP Server documentation at:

http://httpd.apache.org/docs/2.2/programs/apxs.html









The Apache Extension Tool (apxs) can be used to build and install Apache HTTP Server extension modules for Oracle HTTP Server. apxs installs modules in the ORACLE_HOME/ohs/modules directory for access by any Oracle HTTP Server instances which run from this installation.

Recommended apxs options for use with Oracle HTTP Server are:


	Option	Purpose	Example Command
	
-c

	
Compile module source

	

$ORACLE_HOME/ohs/bin/apxs -c mod_example.c


	
-i

	
Install module binary into ORACLE_HOME

	

$ORACLE_HOME/ohs/bin/apxs -ci mod_example.c








When the module binary has been installed into ORACLE_HOME, a LoadModule directive in httpd.conf or other configuration file is used to load the module into the server processes; for example:


LoadModule example_module "${ORACLE_HOME}/ohs/modules/mod_example.so"


The directive is required in the configurations for all instances which must load the module.

When the -a or -A option is specified, apxs will edit httpd.conf to add a LoadModule directive for the module. Do not use the -a and -A options with Oracle HTTP Server instances that are part of a WebLogic Server Domain. Instead, use Fusion Middleware Control to update the configuration, as described in Section 1.6.2, "Editing the Configuration".

You can use the -a or -A option with Oracle HTTP Server instances that are part of a standalone domain if the CONFIG_FILE_PATH environment variable is set to the staging directory for the instance before invoking apxs; for example:


CONFIG_FILE_PATH=$ORACLE_HOME/user_projects/domains/base_domain/config/fmwconfig/components/OHS/ohs1
export CONFIG_FILE_PATH
$ORACLE_HOME/ohs/bin/apxs -cia mod_example.c


By default, apxs uses the Perl interpreter in /usr/bin. If apxs is unable to locate the product install or encounters other operational errors when using /usr/bin/perl, use the Perl interpreter within the Middleware home by invoking apxs as follows:


$ORACLE_HOME/perl/bin/perl $ORACLE_HOME/ohs/bin/apxs -c mod_example.c


Modules often require directives besides LoadModule in order to properly function. After the module has been installed and loaded using the LoadModule directive, refer to the documentation for the module for any additional configuration requirements.






4.6.7 Disabling the Options Method

The Options method enables clients to determine which methods are supported by a web server. If enabled, it appears in the Allow line of HTTP response headers.

For example, if you send a request such as:


---- Request -------
OPTIONS / HTTP/1.0
Content-Length: 0
Accept: */*
Accept-Language: en-US
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Win32)
Host: host123:80


you might get the following response from the web server:


---- Response --------
HTTP/1.1 200 OK
Date: Wed, 23 Apr 2008 20:20:49 GMT
Server: Oracle-Application-Server-11g/11.1.1.0.0 Oracle-HTTP-Server
Allow: GET,HEAD,POST,OPTIONS
Content-Length: 0
Connection: close
Content-Type: text/html


Some sources consider exposing the Options method a low security risk because malicious clients could use it to determine the methods supported by a web server. However, because web servers support only a limited number of methods, disabling this method will just slow down malicious clients, not stop them. In addition, the Options method may be used by legitimate clients.

If your Oracle Fusion Middleware environment does not have clients that require the Options method, you can disable it by including the following lines in the httpd.conf file:


<IfModule mod_rewrite.c>
RewriteEngine on
RewriteCond %{REQUEST_METHOD} ^OPTIONS
RewriteRule .* – [F]
</IfModule> 






4.6.8 Updating the Configuration for Oracle HTTP Server Instances on a Shared Filesystem

Functional or performance issues may be encountered when an OHS instance is created on a shared filesystem, including NFS (Network File System). In particular, lock files or Unix sockets used by OHS may not work or may have severe performance degradation; WLS requests routed by mod_wl_ohs may have severe performance degradation due to filesystem accesses in the default configuration.

Table 4-1 provides information about the Lock file issues and the suggested changes in the httpd.conf file specific to the operating systems.


Table 4-2 Lock File issues

	Operating System	Description	httpd.conf changes
	
Linux

	
Lock files are not required. The Sys V semaphore is the preferred cross-process mutex implementation.

	
Change AcceptMutex fcntl to AcceptMutex sysvsem (two places).

Comment out the LockFile directive (three places).


	
Solaris

	
Lock files are not required. The cross-process pthread mutex is the preferred cross-process mutex implementation.

	
Change AcceptMutex fcntl to AcceptMutex pthread (two places).

Comment out the LockFile directive (three places).


	
Other Unix platforms

	
	
Change the LockFile directive to point to a local filesystem (three places).


	
Unix socket issues

	
mod_cgid is not enabled by default. If enabled, use the ScriptSock directive to place mod_cgid's Unix socket on a local filesystem.

mod_fastcgi is not enabled by default. If enabled, use the FastCgiIpcDir directive to place mod_fastcgi's Unix sockets on a local filesystem.

	
















5 Managing and Monitoring Server Processes


This chapter describes how to manage and monitor Oracle HTTP Server. It discusses the procedures and tools to manage OHS in your environment.

This chapter includes the following sections:

	
Section 5.1, "Oracle HTTP Server Processing Model"


	
Section 5.2, "Monitoring Oracle HTTP Server Performance"


	
Section 5.3, "Configuring Oracle HTTP Server Performance Directives"


	
Section 5.4, "Understanding Process Security"






5.1 Oracle HTTP Server Processing Model

The following sections explain the processing model for Oracle HTTP Server.



5.1.1 Request Process Model

After Oracle HTTP Server is started, it is ready to listen for and respond to HTTP(S) requests. The request processing model on Microsoft Windows systems differs from that on UNIX systems.

	
On Microsoft Windows, there is a single parent process and a single child process. The child process creates threads that are responsible for handling client requests. The number of created threads is static and can be configured for performance.


	
On UNIX, there is a single parent process that manages multiple child processes. The child processes are responsible for handling requests. The parent process brings up additional child processes as necessary, based on configuration. Although the server has the ability to dynamically bring up additional child processes, it is best to configure the server to start enough child processes initially so that requests can be handled without having to spawn more child processes.









5.1.2 Single Unit Process Model

Oracle HTTP Server provides functionality that allows it to terminate as a single unit if the parent process fails. The parent process is responsible for starting and stopping all the child processes for an Oracle HTTP Server instance. The failure of the parent process without first shutting down the child processes leaves Oracle HTTP Server in an inconsistent state that can only be fixed by manually shutting down all the orphaned child processes. Until all the child processes are closed, a new Oracle HTTP Server instance cannot be started because the orphaned child processes still occupy the ports the new Oracle HTTP Server instance needs to access.

To prevent this from occurring, the DMS instrumentation layer in child processes on UNIX and monitor functionality within WinNT MPM on Windows monitor the parent process. If they detect that the parent process has failed, then all of the remaining child processes are shut down.








5.2 Monitoring Oracle HTTP Server Performance

Oracle Fusion Middleware automatically and continuously measures run-time performance for Oracle HTTP Server. The performance metrics are automatically enabled; you do not need to set options or perform any extra configuration to collect them. If you encounter a problem, such as an application that is running slowly or is hanging, you can view particular metrics to find out more information about the problem.

Note that Fusion Middleware Control provides real-time data. If you are interested in viewing historical data, consider using Grid Control.



5.2.1 Viewing Oracle HTTP Server Performance Metrics

You can view metrics from the Oracle HTTP Server home menu of Fusion Middleware Control:

	
Select the Oracle HTTP Server that you want to monitor.

The Oracle HTTP Server home page is displayed.


	
From the Oracle HTTP Server menu, choose Monitoring, and then select Performance Summary.

The Performance Summary page is displayed. It shows performance metrics, as well as information about response time and request processing time for the Oracle HTTP Server instance.


	
To see additional metrics, click Show Metric Palette and expand the metric categories.




	
Tip:

Oracle HTTP Server port usage information is also available from the Oracle HTTP Server home menu.









The following figure shows the Oracle HTTP Server Performance Summary page with the Metric Palette displayed:

[image: MAS home page showing status]



	
Select additional metrics to add them to the Performance Summary.









5.2.2 Understanding Oracle HTTP Server Performance Metrics

This section lists some of the most commonly-used metrics that can help you analyze Oracle HTTP Server performance.


OHS Server Metrics

The OHS Server Metrics folder contains performance metric options for Oracle HTTP Server. The following table describes the metrics in the OHS Server Metrics folder:


	Element	Description
	
CPU Usage

	
CPU usage and idle times


	
Memory Usage

	
Memory usage and free memory, in MB


	
Processes

	
Busy and idle process metrics


	
Request Throughput

	
Request throughput, as measured by requests per second


	
Request Processing Time

	
Request processing time, in seconds


	
Response Data Throughput

	
Response data throughput, in KB per second


	
Response Data Processed

	
Response data processed, in KB per response


	
Active HTTP Connections

	
Number of active HTTP connections


	
Connection Duration

	
Length of time for connections


	
HTTP Errors

	
Number of HTTP 4xx and 5xx errors









OHS Virtual Host Metrics

The OHS Virtual Host Metrics folder contains performance metric options for virtual hosts, also known as access points. The following table describes the metrics in the OHS Virtual Host Metrics folder:


	Element	Description
	
Request Throughput for a Virtual Host

	
Number of requests per second for each virtual host


	
Request Processing Time for a Virtual Host

	
Time to process each request for each virtual host


	
Response Data Throughput for a Virtual Host

	
Amount of data being sent for each virtual host


	
Response Data Processed for a Virtual Host

	
Amount of data being processed for each virtual host









OHS Module Metrics

The OHS Module Metrics folder contains performance metric option for modules. The following table describes the metrics in the OHS Module Metrics folder.


	Element	Description
	
Request Handling Throughput

	
Request handling throughput for a module, in requests per second


	
Request Handling Time

	
Request handling time for a module, in seconds


	
Module Metrics

	
Modules including active requests, throughput, and time for each module














5.3 Configuring Oracle HTTP Server Performance Directives

Oracle HTTP Server uses directives in httpd.conf. This configuration file specifies the maximum number of HTTP requests that can be processed simultaneously, logging details, and certain limits and timeouts. Oracle HTTP Server supports and ships with the following three Multi-Processing Modules (MPMs) which are responsible for binding to network ports on the machine, accepting requests, and dispatching children to handle the requests:

	
Worker: This is the default MPM for Oracle HTTP Server on UNIX/Linux platforms. This MPM implements a hybrid multi-process multi-threaded server. By using threads to serve requests, it is able to serve a large number of requests with fewer system resources than a process-based server. However, it retains much of the stability of a process-based server by keeping multiple processes available, each with many threads.


	
WinNT: This is the default MPM for Oracle HTTP Server on Windows platforms. It uses a single control process which launches a single child process which in turn creates threads to handle requests.


	
Prefork: This MPM implements a non-threaded, pre-forking server that handles requests in a manner similar to Apache 1.3. It is appropriate for sites that need to avoid threading for compatibility with non-thread-safe libraries. It is also the best MPM for isolating each request, so that a problem with a single request will not affect any other.




The discussion and recommendations in this section are based on the use of Worker or WinNT MPM, which uses threads. The thread-related directives listed below are not applicable if you are using the Prefork MPM.

The Performance Directives page allows you to tune performance-related directives for Oracle HTTP Server, as illustrated in the following figure:

[image: MAS home page showing status]



Performance directives management consists of three areas: request configuration, connection configuration, and process configuration. You can set these configurations using the Performance Directive page of Fusion Middleware Control and by following the instructions in the following sections:

	
Using Fusion Middleware Control to Set the Request Configuration


	
Using Fusion Middleware Control to Set the Connection Configuration


	
Using Fusion Middleware Control to Set the Process Configuration






5.3.1 Using Fusion Middleware Control to Set the Request Configuration

To specify the Oracle HTTP Server request configuration using Fusion Middleware Control, do the following:

	
Select Administration from the Oracle HTTP Server menu.


	
Select Performance Directives from the Administration menu. The Performance Directives page appears.


	
Enter the maximum number of requests in the Maximum Requests field (MaxClients directive). This setting limits the number of requests that can be dealt with at one time. The default and recommended value is 150. This is applicable for all Linux/Unix platforms.


	
Set the maximum requests per child process in the Maximum Request per Child Process field (MaxRequestPerChild directive). You can choose to have no limit, or a maximum number. If you choose to have a limit, enter the maximum number in the field.


	
Enter the request timeout value in the Request Timeout (seconds) field (Timeout directive). This value sets the maximum time, in seconds, Oracle HTTP Server waits to receive a GET request, the amount of time between receipt of TCP packets on a POST or PUT request, and the amount of time between ACKs on transmissions of TCP packets in responses.


	
Review the settings. If the settings are correct, click Apply to apply the changes. If the settings are incorrect, or you decide to not apply the changes, click Revert to return to the original settings.


	
Restart Oracle HTTP Server. See Section 4.3.4.




The request configuration settings are saved, and shown on the Performance Directives page.






5.3.2 Using Fusion Middleware Control to Set the Connection Configuration

To specify the connection configuration using Fusion Middleware Control, do the following:

	
Select Administration from the Oracle HTTP Server menu.


	
Select Performance Directives from the Administration menu. The Performance Directives page appears.


	
Enter the maximum connection queue length in the Maximum Connection Queue Length field (ListenBacklog directive). This is the queue for pending connections. This is useful if the server is experiencing a TCP SYN overload, which causes numerous new connections to open up, but without completing the pending task.


	
Set the Multiple Requests per Connection field (KeepAlive directive) to indicate whether or not to allow multiple connections. If you choose to allow multiple connections, enter the number of seconds for timeout in the Allow With Connection Timeout field.

The Allow With Connection Timeout value sets the number of seconds the server waits for a subsequent request before closing the connection. Once a request has been received, the specified value applies. The default is 15 seconds.


	
Review the settings. If the settings are correct, click Apply to apply the changes. If the settings are incorrect, or you decide to not apply the changes, click Revert to return to the original settings.


	
Restart Oracle HTTP Server. See Section 4.3.4.




The connection configuration settings are saved, and shown on the Performance Directives page.






5.3.3 Using Fusion Middleware Control to Set the Process Configuration

The child process and configuration settings impact the ability of the server to process requests. You may need to modify the settings as the number of requests increase or decrease to maintain a well-performing server.

For UNIX, the default number of child server processes is 2. For Microsoft Windows, the default number of threads to handle requests is 150.

To specify the process configuration using Fusion Middleware Control, do the following:

	
Select Administration from the Oracle HTTP Server menu.


	
Select Performance Directives from the Administration menu. The Performance Directives page appears.


	
Enter the number for the initial child server processes in the Initial Child Server Processes field (StartServers directive). This is the number of child server processes created when Oracle HTTP Server is started. The default is 2. This is for UNIX only.


	
Enter the number for the maximum idle threads in the Maximum Idle Threads field (MaxSpareThreads directive). An idle thread is a process that is running, but not handling a request.


	
Enter the number for the minimum idle threads in the Minimum Idle Threads field (MinSpareThreads directive).


	
Enter the number for the threads per child server process in the Threads per Child Server Process field (ThreadsPerChild directive).


	
Review the settings. If the settings are correct, click Apply to apply the changes. If the settings are incorrect, or you decide to not apply the changes, click Revert to return to the original settings.


	
Restart Oracle HTTP Server. See Section 4.3.4, "Restarting Oracle HTTP Server Instances".




The process configuration settings are saved, and shown on the Performance Directives page.








5.4 Understanding Process Security

By default, Oracle HTTP Server is not able to bind to ports on UNIX in the reserved range (typically less than 1024). To enable Oracle HTTP Server to listen on ports in the reserved range (for example, port 80 and port 443) on UNIX, see Section 4.3.2.4, "Starting Oracle HTTP Server Instances on a Privileged Port (Unix Only)".

If your PL/SQL application is using the file system caching functionality in mod_plsql, then Oracle HTTP server should have read and write privileges to the cache directory, specified through the parameter PlsqlCacheDirectory in DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/mod_plsql/cache.conf. By default, this parameter points to DOMAIN_HOME/servers/componentName.

Finally, given that the cached content might contain sensitive data, the contents of the file system cache should be protected. So, access to the system as this user should be well-protected.




	
See Also:

Section 2.7, "mod_plsql"

















6 Managing Connectivity


This chapter describes how to manage Oracle HTTP Server connectivity. It includes procedures for viewing port number usage, managing ports, and configuring virtual hosts.

This chapter includes the following sections:

	
Section 6.1, "Default Listen Ports"


	
Section 6.2, "Defining the Admin Port"


	
Section 6.3, "Viewing Port Number Usage"


	
Section 6.4, "Managing Ports"


	
Section 6.5, "Configuring Virtual Hosts"






6.1 Default Listen Ports

Oracle HTTP Server comes configured with two listen ports: a non-SSL port (http) and an SSL port (https). The default, non-SSL port is 7777. If port 7777 is occupied, the next available port number, within a range of 7777-7877, is assigned. The default SSL port is 4443. Similarly, if port 4443 is occupied, the next available port number, within a range of 4443-4543, is assigned.

You can set these ports when you create the instance or modify the instance configuration later. Automatic port assignment occurs only if you use createOHSInstance() or Fusion Middleware Control. You must do your own port management if you create instances by using the Configuration Wizard.

For information about specifying ports when creating a new Oracle HTTP Server component, see Section 4.2, "Creating an OHS Instance".






6.2 Defining the Admin Port

The Admin or Proxy MBean port is an additional SSL port (9999) that is used internally by Oracle HTTP Server to communicate with Fusion Middleware Control. It is also used to monitor Oracle HTTP Server through Node Manager. This port is configured to run out-of-the-box in the admin.conf file; however, if for any reason you need to use the default port for another purpose, you can reconfigure the Admin port by using the Configuration Wizard to update the domain and manually reset ports there.






6.3 Viewing Port Number Usage

This section describes how to view ports using Fusion Middleware Control.



6.3.1 Using the Fusion Middleware Control to View Port Number Usage

To view the port number usage using Fusion Middleware Control, do the following:

	
Navigate to the Oracle HTTP Server home page.


	
Select Port Usage from the Oracle HTTP Server menu.

The Port Usage detail page shows the component, the ports that are in use, the IP address the ports are bound to, and the protocol being used, as illustrated in the following figure:

[image: OHS port usage page]












6.4 Managing Ports

The ports used by Oracle HTTP Server can be set during and after installation. In addition, you can change the port numbers, as needed. This section describes how to create, edit, and delete ports using Fusion Middleware Control.




	
Caution:

The Oracle HTTP Server administration (proxy MBean) virtual host and its configuration, defined in the admin.conf file, must not be edited with the WebLogic Scripting Tool (WLST).












	
See Also:

"Changing the Oracle HTTP Server Listen Ports" in the Administering Oracle Fusion Middleware.









	
Using Fusion Middleware Control to Create Ports


	
Using Fusion Middleware Control to Edit Ports




[image: OHS port usage page]






	
Note:

When deleting a port, if there is a virtual host configured to use the port you want to delete, you must first delete that virtual host before deleting the port.











6.4.1 Using Fusion Middleware Control to Create Ports

To create ports using Fusion Middleware Control, do the following:

	
Navigate to the Oracle HTTP Server home page.


	
Select Administration from the Oracle HTTP Server menu.


	
Select Ports Configuration from the Administration menu.


	
Click Create.

[image: OHS port usage page]



	
Use the IP Address menu to select an IP address for the new port. Ports can listen on a local IP Address of an associated host or on any available network interfaces.

SSL for a port can be configured on the Virtual Hosts page, as described in Section 6.5.2, "Using Fusion Middleware Control to Configure Virtual Hosts".


	
In Port, enter the port number.


	
Click OK.


	
Restart Oracle HTTP Server. See Section 4.3.4.







	
Note:

If you change the port or make other changes that affect the URL, such as changing the host name, enabling or disabling SSL, you need to re-register partner applications with the SSO server using the new URL. For more information, see "Registering Oracle HTTP Server mod_osso with OSSO Server 10.1.4" in Securing Applications with Oracle Platform Security Services.














6.4.2 Using Fusion Middleware Control to Edit Ports

To create the ports using Fusion Middleware Control, do the following:

	
Navigate to the Oracle HTTP Server home page.


	
Select Administration from the Oracle HTTP Server menu.


	
Select Ports Configuration from the Administration menu.


	
Select the port for which you want to change the port number.

The Admin port cannot be edited by using Fusion Middleware Control. Although this is a port Oracle HTTP Server uses for its internal communication with Fusion Middleware Control, in most of the cases it does not need to be changed. If you really want to change it, manually edit the DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/admin.conf file.


	
Click Edit.

[image: OHS port usage page]



	
Edit the IP Address and/or Port number for the port.

SSL for a port can be configured on the Virtual Hosts page, as described in Section 6.5.2, "Using Fusion Middleware Control to Configure Virtual Hosts".


	
Click OK.


	
Restart Oracle HTTP Server. See Section 4.3.4.







	
Note:

If you change the port or make other changes that affect the URL, such as changing the host name, enabling or disabling SSL, you need to re-register partner applications with the SSO server using the new URL.














6.4.3 Disabling a Listening Port in a Standalone Environment

While you can use Fusion Middleware Control to disable a listen port in a WebLogic Server environment, to do so in a standalone environment, you must directly update master configuration file (DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/httpd.conf) by commenting-out the line where port is exposed; for example:


#Listen slc01qtd.us.myCo.com:7777





	
Note:

Before attempting to edit any .conf file, you should familiarize yourself with the layout of the configuration file directories, mechanisms for editing the files, and learn more about the files themselves. For this information, see Section 1.6, "Understanding Configuration Files".
















6.5 Configuring Virtual Hosts

You can create virtual hosts to run more than one Web site (such as www.company1.com and www.company2.com) on a single machine. Virtual hosts can be IP-based, meaning that you have a different IP address for every Web site, or name-based, meaning that you have multiple names running on each IP address. The fact that they are running on the same physical server is not apparent to the end user.




	
Caution:

The Oracle HTTP Server administration (proxy MBean) virtual host and its configuration, defined in the admin.conf file, must not be edited with the WebLogic Scripting Tool (WLST).









This section describes how to create and edit virtual hosts using Fusion Middleware Control.

	
Using Fusion Middleware Control to Create Virtual Hosts


	
Using Fusion Middleware Control to Configure Virtual Hosts







	
See Also:

For more information about virtual hosts, refer to the Apache HTTP Server documentation.









[image: OHS port usage page]





6.5.1 Using Fusion Middleware Control to Create Virtual Hosts

To create a virtual Host using Fusion Middleware Control, do the following:

	
Navigate to the Oracle HTTP Server home page.


	
Select Administration from the Oracle HTTP Server menu.


	
Select Virtual Hosts from the Administration menu.


	
Click Create.

[image: OHS port usage page]



	
Enter a name for the virtual host field and then choose whether to enter a new listen address or to use an existing listen address.

	
New listen address - use this option when you want to create a virtual host that maps to a specific hostname or IP address, for example mymachine.com:8080. This will create following type NameVirtualHost and VirtualHost directives:


NameVirtualHost mymachine.com:8080
<VirtualHost mymachine.com:8080>


	
Use existing listen address - use this option when you want to create a virtual host using an existing listen port and the one that maps to all IP addresses. This will create following type VirtualHost directive:


<VirtualHost *:8080>





	
Enter the remaining attributes for the new virtual host.


	
Use the Type field to select whether the virtual host will be IP-based or name-based.


	
Click OK.


	
Restart Oracle HTTP Server. See Section 4.3.4.









6.5.2 Using Fusion Middleware Control to Configure Virtual Hosts

You can use the options on the Configure menu to specify Server, MIME, Log, mod_perl, SSL, and mod_wl_ohs configuration for a selected virtual host.

To configure a virtual host using Fusion Middleware Control, do the following:

	
Navigate to the Oracle HTTP Server home page.


	
Select Administration from the Oracle HTTP Server menu.


	
Select Virtual Hosts from the Administration menu.


	
Highlight an existing virtual host in the table.


	
Click Configure.

[image: OHS port usage page]



	
Select one of the following options from Configure menu to open its corresponding configuration page. The values on these pages apply only to the virtual host. If the fields are blank, the virtual host uses the values configured at the server level.

	
Server Configuration: Configure basic virtual host properties, such as document root directory, installed modules, and aliases. See Section 4.5.1, "Specifying Server Properties by Using Fusion Middleware Control."


	
MIME Configuration: Configure MIME settings, which are used by Oracle HTTP Server to interpret file types, encodings, and languages. Section 4.6.2, "Configuring MIME Settings."


	
Log Configuration: Configure access logs that will record all requests processed by the virtual host. The logs contain basic information about every HTTP transaction handled by the virtual host. See Section 7.2, "Configuring Oracle HTTP Server Logs."


	
mod_perl Configuration: Configure the mod_perl module to embed the Perl interpreter into the virtual host, thereby eliminating startup overhead and enabling you to write modules in Perl. This module is disabled, by default. See Section 4.6.3, "Configuring mod_perl."


	
SSL Configuration: For instructions on configuring SSL using Fusion Middleware Control, see "Enabling SSL for Oracle HTTP Server Virtual Hosts" in the Administering Oracle Fusion Middleware.


	
mod_wl_ohs Configuration: Configure the mod_wl_ohs module to allow requests to be proxied from an Oracle HTTP Server to Oracle WebLogic Server. See Section 4.6.4, "Configuring the WebLogic Proxy Plug-in (mod_wl_ohs)."





	
Review the settings on each configuration page. If the settings are correct, click OK to apply the changes. If the settings are incorrect, or you decide to not apply the changes, click Cancel to return to the original settings.


	
Restart Oracle HTTP Server. See Section 4.3.4, "Restarting Oracle HTTP Server Instances".














7 Managing Oracle HTTP Server Logs


This chapter describes how to manage Oracle HTTP Server logs. It describes how to configure server logs, how to find information about the cause of an error and its corrective action, to view and manage log files to assist in monitoring system activity and to diagnose problems

Oracle HTTP Server generates log files containing messages that record all types of events, including startup and shutdown information, errors, warning messages, access information on HTTP requests, and additional information.

This chapter includes the following sections:

	
Section 7.1, "Overview of Server Logs"


	
Section 7.2, "Configuring Oracle HTTP Server Logs"


	
Section 7.3, "Log Directives for Oracle HTTP Server"


	
Section 7.4, "Viewing Oracle HTTP Server Logs"






7.1 Overview of Server Logs

You can view Oracle Fusion Middleware log files using either Fusion Middleware Control or a text editor. The log files for Oracle HTTP Server are located in the following directory:

ORACLE_HOME/user_projects/domains/base_domain/servers/componentName/logs

Oracle HTTP Server has two types of logs:

	
Error logs, which record server problems.


	
Access logs, which record which components and applications are being accessed and by whom.




This section contains the following topics:

	
Section 7.1.1, "About Error Logs"


	
Section 7.1.2, "About Access Logs"


	
Section 7.1.3, "Log Rotation"






7.1.1 About Error Logs

Oracle HTTP Server enables you to choose the format in which you want to generate log messages. You can choose to generate log messages in the legacy Apache HTTP Server message format, or use Oracle Diagnostic Logging (ODL) to generate log messages in text or XML-formatted logs, which complies with Oracle standards for generating error log messages.

By default, Oracle HTTP Server error logs use ODL for generating diagnostic messages. It provides a common format for all diagnostic messages and log files, and a mechanism for correlating the diagnostic messages from various components across Oracle Fusion Middleware.

The default name of the error log file is instance_name.log.






7.1.2 About Access Logs

Access logs record all requests processed by the server. The logs contain basic information about every HTTP transaction handled by the server. The access log contains the following information:

	
Host name


	
Remote log name


	
Remote user and time


	
Request


	
Response code


	
Number of transferred bytes




The default name of the access log file is access_log.


Access Log Format

You can specify the information to include in the access log, and the manner in which it is written. The default format is the Common Log Format (CLF).

The CLF format contains the following fields:

host ident authuser date request status bytes

	
host: This is the client domain name or its IP number. Use %h to specify the host field in the log.


	
ident: If IdentityCheck is enabled and the client system runs identd, this is the client identity information. Use %i to specify the client identity field in the log.


	
authuser: This is the user ID for the authorized user. Use %a to specify the authorized user field in the log.


	
date: This is the date and time of the request in the day/month/year:hour:minute:second format. Use %t to specify date and time in the log.


	
request: This is the request line, in double quotes, from the client. Use %r to specify request in the log.


	
status: This is the three-digit status code returned to the client. Use %s to specify the status in the log. If the request will be forwarded from another server, use %>s to specify the last server in the log.


	
bytes: This is the number of bytes, excluding headers, returned to the client. Use %b to specify number of bytes in the log. Use %i to include the header in the log.







	
See Also:

Access Log in the Apache HTTP Server documentation.














7.1.3 Log Rotation

Oracle HTTP Server supports two types of log rotation policies: size-based and time-based. You can configure the Oracle HTTP Server logs to use either of the two rotation polices, by using the odl_rotatelogs command in ORACLE_HOME/ohs/bin. By default, Oracle HTTP Server uses odl_rotatelogs for both error and access logs.

odl_rotatelogs supports all the features of Apache HTTP Server's rotatelogs command and the additional feature of log retention.

The following is the general syntax of the odl_rotatelogs command:


odl_rotatelogs [-u:offset] logfile {size-|time-based-rotation-options}


Table 7-1 describes the size- and time-based rotation options:


Table 7-1 Options of the odl_rotatelogs command

	Option	Description
	
-u

	
The time (in seconds) to offset from UTC.


	
logfile

	
The path and name of the log file, followed by a hyphen (-) and then the timestamp format.

The following are the common timestamp format strings:

	
%m: Month as a two-digit decimal number (01-12)


	
%d: Day of month as a two-digit decimal number (01-31)


	
%Y: Year as a four-digit decimal number


	
%H: Hour of the day as a two-digit decimal number (00-23)


	
%M: Minute as a two-digit decimal number (00-59)


	
%S: Second as a two-digit decimal number (00-59)




It should not include formats that expand to include slashes.


	
frequency

	
The time (in seconds) between log file rotations.


	
retentionTime

	
The maximum time for which the rotated log files are retained.


	
startTime

	
The time when time-based rotation should start.


	
maxFileSize

	
The maximum size (in MB) of log files.


	
allFileSize

	
The total size (in MB) of files retained.









Syntax and Examples for Time- and Size-Based Rotation

	
Time-based rotation

Syntax:


$ odl_rotatelogs logfile frequency retentionTime startTime


Example:


$ odl_rotatelogs /varlog/error.log-%Y-%m-%d 21600 172800 2012-03-10T08:30:00


This command configures log rotation to be performed every 21600 seconds (6 hours) starting from 8:30 a.m. on March 10, 2012, and it specifies that the rotated log files should be retained for 172800 seconds (2 days).


	
Size-based rotation

Syntax:


$ odl_rotatelogs logfile maxFileSize allFileSize


Example:

This command configures log rotation to be performed when the size of the log file reaches 10 MB, and it specifies the maximum size of all the rotated log files as 70 MB (up to 7 log files (=70/10) will be retained).


$ odl_rotatelogs /var/log/error.log-%Y-%m-%d 10M 70M











7.2 Configuring Oracle HTTP Server Logs

You can use Fusion Middleware Control to configure error and access logs. The following logging tasks can be set from the Log Configuration page:

	
Using Fusion Middleware Control to Configure Error Logs


	
Configuring Access Logs by Using Fusion Middleware Control






7.2.1 Using Fusion Middleware Control to Configure Error Logs

To configure an error log for Oracle HTTP Server using Fusion Middleware Control, do the following:

	
Navigate to the Oracle HTTP Server home page.


	
Select Log Configuration from the Administration menu.

The Log Configuration page is displayed, as shown in the following figure.

[image: Description of log_config_12c.gif follows]



	
The following error log configuration tasks can be set from this page:

	
Configuring the Error Log Format and Location


	
Configuring the Error Log Level


	
Configuring Error Log Rotation Policy









7.2.1.1 Configuring the Error Log Format and Location

Oracle HTTP Server by default uses ODL-Text as the error log format and creates the log file with the name component_name.log under the DOMAIN_HOME/servers/component_name/logs directory. To use a different format or log location, do the following:

	
From the Log Configuration page, navigate to the General section under the Error Log section.


	
Select the desired file format. Although both ODL-Text and ODL-XML formats provide the same information, the ODL-XML file includes XML elements and wrappers, and so may be easier to read.

	
ODL-Text: the format of the diagnostic messages conform to an Oracle standard and are written in text format.


	
ODL-XML: the format of the diagnostic messages conform to an Oracle standard and are written in XML format.


	
Apache: the format of the diagnostic messages conform to the legacy Apache HTTP Server message format.





	
Enter a path for the error log in the Log File/Directory field. This directory must exist before you enter it here.


	
Review the settings. If the settings are correct, click Apply to apply the changes. If the settings are incorrect, or you decide to not apply the changes, click Revert to return to the original settings.


	
Restart Oracle HTTP Server. See Section 4.3.4.









7.2.1.2 Configuring the Error Log Level

You can configure the amount and type of information written to log files by specifying the message type and level. Error log level for Oracle HTTP Server by default is configured to WARNING:32. To use a different error log level do the following:

	
From the Log Configuration page, navigate to the General section under the Error Log section.


	
Select a level for the logging from the Level menu. The higher the log level, the more information that is included in the log.


	
Review the settings. If the settings are correct, click Apply to apply the changes. If the settings are incorrect, or you decide to not apply the changes, click Revert to return to the original settings.


	
Restart Oracle HTTP Server. See Section 4.3.4.







	
Note:

The log levels are different for the Apache HTTP Server log format from ODL-Text and the ODL-XML log format.

	
For details on ODL log levels, refer to "Setting the Level of Information Written to Log Files" in the Administering Oracle Fusion Middleware.


	
For details on Apache HTTP Server log levels, refer to the LogLevel Directive in the Apache HTTP Server documentation.

















7.2.1.3 Configuring Error Log Rotation Policy

Log rotation policy for error logs can either be time-based, such as once a week, or sized-based, such as 120MB. By default, the error log file is rotated when it reaches 10 MB in size and a maximum of 7 error log files will be retained. To use a different rotation policy, do the following:

	
From the Log Configuration page, navigate to the General section under the Error Log section.


	
Select a rotation policy.

	
No Rotation: if you do not want to have the log file rotated ever.


	
Size Based: rotate the log file whenever it reaches a configured size. Set the maximum size for the log file in Maximum Log File Size (MB) field and the maximum number of error log files to retain in Maximum Files to Retain field.


	
Time Based: rotate the log file whenever configured time is reached. Set the start time, rotation frequency, and retention period.





	
Review the settings. If the settings are correct, click Apply to apply the changes. If the settings are incorrect, or you decide to not apply the changes, click Revert to return to the original settings.


	
Restart Oracle HTTP Server. See Section 4.3.4.











7.2.2 Configuring Access Logs by Using Fusion Middleware Control

To configure an access log for Oracle HTTP Server using Fusion Middleware Control, do the following:

	
Navigate to the Oracle HTTP Server home page.


	
Select Log Configuration from the Administration menu.




The following access log configuration tasks can be set from this page:

	
Configuring the Access Log Format


	
Configuring the Access Log File






7.2.2.1 Configuring the Access Log Format

Log format specifies the information included in the access log file and the manner in which it is written. To add a new access log format or to edit or remove an existing format, do the following:

	
From the Log Configuration page, navigate to the Access Log section.


	
Click Manage Log Formats.

The Manage Custom Access Log Formats page is displayed, as shown in the following figure.

[image: Description of log_format_12c.gif follows]



	
Select an existing format to change or remove, or click Add Row to create a new format.


	
If you choose to create a new format, then enter the new log format in the Log Format Name field and the log format in the Log Format Pattern field.




	
See Also:

Refer to the Apache HTTP Server documentation for information about log format directives.










	
Click OK to save the new format.









7.2.2.2 Configuring the Access Log File

To configure an access log for file Oracle HTTP Server, do the following:

	
From the Log Configuration page, navigate to the Access Log section.


	
Click Create to create a new access log, or select a row from the table and click Edit button to edit an existing access log file.

The Create or Edit Access Log page is displayed.

[image: Access log format page]



	
Enter the path for the access log in the Log File Path field. This directory must exist before you enter it.


	
Select an existing access log format from the Log Format menu.


	
Select a rotation policy.

	
No Rotation: if you do not want to have the log file rotated ever.


	
Size Based: rotate the log file whenever it reaches a configured size. Set the maximum size for the log file in Maximum Log File Size (MB) field and the maximum number of error log files to retain in Maximum Files to Retain field.


	
Time Based: rotate the log file whenever configured time is reached. Set the start time, rotation frequency, and retention period.





	
Click OK to continue.

Note that you can create multiple access log files.













7.3 Log Directives for Oracle HTTP Server

This section discuss Oracle HTTP Server error and access log-related directives in the httpd.conf file. The directives discussed are:

	
Oracle Diagnostic Logging Directives


	
Apache HTTP Server Log Directives






7.3.1 Oracle Diagnostic Logging Directives

Oracle HTTP Server by default uses Oracle Diagnostic Logging (ODL) for generating diagnostic messages. The following directives are used to set up logging using ODL:

	
OraLogMode


	
OraLogDir


	
OraLogSeverity


	
OraLogRotationParams






7.3.1.1 OraLogMode

Enables you to choose the format in which you want to generate log messages. You can choose to generate log messages in the legacy Apache HTTP Server, ODL text, or ODL XML format.

OraLogMode Apache | ODL-Text | ODL-XML

Default value: ODL-Text

For example: OraLogMode ODL-XML




	
Note:

The Apache HTTP Server log directives ErrorLog and LogLevel are only effective when OraLogMode is set to Apache. When OraLogMode is set to either ODL-Text or ODL-XML, the ErrorLog and LogLevel directives are ignored.














7.3.1.2 OraLogDir

Specifies the path to the directory that contains all log files. This directory must exist.

This directive is used only when OraLogMode is set to either ODL-Text or ODL-XML. When OraLogMode is set to Apache, OraLogDir is ignored and ErrorLog is used instead.


OraLogDir <path>


Default value: ORACLE_INSTANCE/servers/componentName/logs

For example: OraLogDir /tmp/logs






7.3.1.3 OraLogSeverity

Enables you to set message severity. The message severity specified with this directive is interpreted as the lowest desired message severity, and all messages of that severity level and higher are logged.

This directive is used only when OraLogMode is set to either ODL-Text or ODL-XML. When OraLogMode is set to Apache, OraLogSeverity is ignored and LogLevel is used instead.


OraLogSeverity <msg_type>[:msg_level]


Default value: WARNING:32

For example: OraLogSeverity NOTIFICATION:16


msg_type

Message types can be specified in upper or lower case, but appear in the message output in upper case. This parameter must be of one of the following values:

	
INCIDENT_ERROR


	
ERROR


	
WARNING


	
NOTIFICATION


	
TRACE





msg_level

This parameter must be an integer in the range of 1–32, where 1 is the most severe, and 32 is the least severe. Using level 1 will result in fewer messages than using level 32.






7.3.1.4 OraLogRotationParams

Enables you to choose the rotation policy for an error log file. This directive is used only when OraLogMode is set to either ODL-Text or ODL-XML. When OraLogMode is set to Apache, OraLogRotationParams is ignored.


OraLogRotationParams <rotation_type> <rotation_policy>


Default value: S 10:70

For example: OraLogRotationParams T 43200:604800 2009-05-08T10:53:29


rotation_type

This parameter can either be S (for sized-based rotation) or T (for time-based rotation).


rotation_policy

When rotation_type is set to S (sized-based), set the rotation_policy parameter to:

maxFileSize:allFilesSize (in MB)

For example, when configured as 10:70, the error log file is rotated whenever it reaches 10MB in size and a total of 70MB is allowed for all error log files (a maximum of 70/10=7 error log files will be retained).

When rotation_type is set to T (time-based), set the rotation_policy parameter to:

frequency(in sec) retentionTime(in sec) startTime(in YYYY-MM-DDThh:mm:ss)

For example, when configured as 43200:604800 2009-05-08T10:53:29, the error log is rotated every 43200 seconds (that is, 12 hours), rotated log files are retained for maximum of 604800 seconds (7 days) starting from May 5, 2009 at 10:53:29.








7.3.2 Apache HTTP Server Log Directives

Although Oracle HTTP Server uses ODL by default for error logs, you can configure the OraLogMode directive to Apache to generate error log messages in the legacy Apache HTTP Server message format. The following directives are discussed in this section:

	
ErrorLog


	
LogLevel


	
LogFormat


	
CustomLog






7.3.2.1 ErrorLog

The ErrorLog directive sets the name of the file where the server logs any errors it encounters. If the filepath is not absolute then it is assumed to be relative to the ServerRoot.

This directive is used only when OraLogMode is set to Apache. When OraLogMode is set to either ODL-Text or ODL-XML, ErrorLog is ignored and OraLogDir is used instead.




	
See Also:

For information about the Apache ErrorLog directive, see:

http://httpd.apache.org/docs/current/mod/core.html#errorlog














7.3.2.2 LogLevel

The LogLevel directive adjusts the verbosity of the messages recorded in the error logs.

This directive is used only when 3 is set to Apache. When OraLogMode is set to either ODL-Text or ODL-XML, LogLevel is ignored and OraLogSeverity is used instead.




	
See Also:

For information about the Apache HTTP Server LogLevel directive see:

http://httpd.apache.org/docs/current/mod/core.html#loglevel














7.3.2.3 LogFormat

The LogFormat directive specifies the format of the access log file. By default, Oracle HTTP Server comes with the following four access log formats defined:


LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent





	
See Also:

For information about the Apache HTTP Server LogFormat directive, see:

http://httpd.apache.org/docs/current/mod/mod_log_config.html#logformat














7.3.2.4 CustomLog

The CustomLog directive is used to log requests to the server. A log format is specified and the logging can optionally be made conditional on request characteristics using environment variables. By default, the access log file is configured to use the common log format.




	
See Also:

For information about the Apache CustomLog directive, see:

http://httpd.apache.org/docs/current/mod/mod_log_config.html#customlog


















7.4 Viewing Oracle HTTP Server Logs

You can search, view, and list Oracle HTTP Server log files using Fusion Middleware Control, or you can download a log file to your local client and view the log files using another tool.

You can also use the text editor of your choice to view Oracle HTTP Server log files directly from the DOMAIN_HOME directory. By default, Oracle HTTP Server log files are located in the DOMAIN_HOME/servers/component_name/logs directory.

As discussed in Section 7.1, "Overview of Server Logs", there are mainly two types of log files for Oracle HTTP Server: error logs and access logs. The error log file is an important source of information for maintaining a well-performing server. The error log records all of the information about problem situations so that the system administrator can easily diagnose and fix the problems. The access log file contains basic information about every HTTP transaction that the server handles. This information can be used to generate statistical reports about the server's usage patterns.




	
See Also:

For information about searching and viewing log files, see the Administering Oracle Fusion Middleware

















Part III



Appendixes and Glossary

This part contains the following appendices plus a glossary:

	
Appendix A, "OHS Introspector Plug-in for OVAB"


	
Appendix B, "Frequently Asked Questions"


	
Appendix C, "Troubleshooting Oracle HTTP Server"


	
Appendix D, "Configuration Files"


	
Appendix E, "Property Files"


	
Appendix F, "Configuring mod_security"


	
Appendix G, "OHS Module Directives"


	
"Glossary"










A OHS Introspector Plug-in for OVAB


The Oracle HTTP Server (OHS) introspector plug-in for the Oracle Virtual Assembly Builder (OVAB) plug-in introspects all the available Oracle HTTP Server instances in a WebLogic Server domain. This plug-in is an extension of WebLogic Server plug-in for OVAB.

This chapter contains the following sections:

	
Section A.1, "Versions Supported"


	
Section A.2, "Oracle HTTP Server Introspection Parameters"


	
Section A.3, "Resulting Artifact Type"


	
Section A.4, "Requirements"


	
Section A.5, "Wiring"


	
Section A.6, "Wiring Properties"


	
Section A.7, "Oracle HTTP Server Appliance Properties"


	
Section A.8, "Extensions of the Plug-in"


	
Section A.9, "Supported Template Types"


	
Section A.10, "Plug-in Limitations"


	
Section A.11, "Related Documents"






A.1 Versions Supported

This plug-in supports version 12.1.2.






A.2 Oracle HTTP Server Introspection Parameters

The OHS Introspector plug-in for OVAB is an extension of WebLogic Server plug-in for OVAB, thus it works with the Introspector parameters provided for the WLS plug-in.

For the parameters required by WebLogic Server, see "Using the Introspection Plug-in for Oracle Virtual Assembly Builder," in Administering Server Environments for Oracle WebLogic Server.






A.3 Resulting Artifact Type

Multiple scalable appliances, one per Oracle HTTP Server instance.






A.4 Requirements

All of WebLogic Server requirements must be satisfied. For these requirements, see "Using the Introspection Plug-in for Oracle Virtual Assembly Builder," in Administering Server Environments for Oracle WebLogic Server.

In addition to the WebLogic Server requirements, reference system implementations require that WLS and Oracle HTTP Server be installed in the same ORACLE_HOME.






A.5 Wiring

Inputs are created on the Oracle HTTP Server appliance for each Listen or Port directive found in the configuration. The protocol of an Oracle HTTP Server input is set to http unless the Listen directive is found inside a VirtualHost directive and the directive SSLEngine is set to on. In that case, the protocol is https.

Outputs on the Oracle HTTP Server appliance are created based on various directives related to Oracle WebLogic Server in the Oracle HTTP Server configuration. The outputs indicate which inputs on an Oracle WebLogic Server assembly to connect to through the output 'description'.






A.6 Wiring Properties

All instance appliance input endpoints have one editable property, port, and two non-editable properties, name and a list of protocols. The protocols indicate what sort of outputs can be connected to the input. An administration server appliance will always have one secure http listener input endpoint, port, which is editable.

All output endpoints have three non-editable properties, description, protocol and singleton. The protocol indicates what sort of input can be connected to the output. Singleton indicates what sort of appliance the output can be connected to. If singleton is true, the output can only be connected to an input on an appliance that has a scalability absolute max value of 1. Administration Server appliance do not have output endpoints.






A.7 Oracle HTTP Server Appliance Properties

There are no relevant Oracle HTTP Server appliance properties.






A.8 Extensions of the Plug-in

None.






A.9 Supported Template Types

The supported template type is Oracle Enterprise Linux (OEL).






A.10 Plug-in Limitations

Be aware of the following plug-in limitations:

	
Any changes done manually to Oracle HTTP Server instance(s) on the reference system without the administration interfaces will not be introspected by the plug-in.


	
On the reference implementation, the OVAB Oracle HTTP Server plug-in does not introspect Oracle HTTP Server standalone deployments. It only supports WebLogic Server Oracle HTTP Server deployments.









A.11 Related Documents

For more information on using OVAB, see the following documents:

	
Developing Applications and Introspection Plug-ins for Oracle Virtual Assembly Builder


	
Using Oracle Virtual Assembly Builder












B Frequently Asked Questions


This appendix provides answers to frequently asked questions about Oracle HTTP Server (OHS). It includes the following topics:

	
Section B.1, "How Do I Create Application-Specific Error Pages?"




	
Section B.2, "What Type of Virtual Hosts Are Supported for HTTP and HTTPS?"




	
Section B.3, "Can I Use Different Language and Character Set Versions of Document?"




	
Section B.4, "Can I Apply Apache HTTP Server Security Patches to Oracle HTTP Server?"




	
Section B.5, "Can I Upgrade the Apache HTTP Server Version of Oracle HTTP Server?"




	
Section B.6, "Can I Compress Output From Oracle HTTP Server?"




	
Section B.7, "How Do I Create a Namespace That Works Through Firewalls and Clusters?"




	
Section B.8, "How do I Protect the Web Site from Hackers?"




	
Section B.9, "Should I Re-register Partner Applications with SSO Server If I Disable or Enable SSL?"


	
Section B.10, "Why is REDIRECT_ERROR_NOTES not set for "File Not Found" errors?"


	
Section B.11, "How can I hide information about the Web Server Vendor and Version"


	
Section B.12, "Can I Start OHS by Using apachectl or Other Command-Line Tool?"




Documentation from the Apache Software Foundation is referenced when applicable.




	
Note:

Readers using this guide in PDF or hard copy formats will be unable to access third-party documentation, which Oracle provides in HTML format only. To access the third-party documentation referenced in this guide, use the HTML version of this guide and click the hyperlinks.











B.1 How Do I Create Application-Specific Error Pages?

Oracle HTTP Server has a default content handler for dealing with errors. You can use the ErrorDocument directive to override the defaults.




	
See Also:

Apache HTTP Server documentation on the ErrorDocument directive at:

http://httpd.apache.org/docs/current/mod/core.html#errordocument














B.2 What Type of Virtual Hosts Are Supported for HTTP and HTTPS?

For HTTP, Oracle HTTP Server supports both name-based and IP-based virtual hosts. Name-based virtual hosts are virtual hosts that share a common listening address (IP plus port combination), but route requests based on a match between the Host header sent by the client and the ServerName directive set within the VirtualHost. IP-based virtual hosts are virtual hosts that have distinct listening addresses. IP-based virtual hosts route requests based on the address they were received on.

For HTTPS, only IP-based virtual hosts are possible with Oracle HTTP Server. This is because for name-based virtual hosts, the request must be read and inspected to determine which virtual host is used to process the request. If HTTPS is used, an SSL handshake must be performed before the request can be read. In order to perform the SSL handshake, a server certificate must be provided. In order to have a meaningful server certificate, the host name in the certificate must match the host name the client requested, which implies a unique server certificate per virtual host. However, because the server cannot know which virtual host to route the request to until it has read the request, and it can't properly read the request unless it knows which server certificate to provide, there is no way to make name-based virtual hosting work with HTTPS.






B.3 Can I Use Different Language and Character Set Versions of Document?

Yes, you can use multiviews, a general name given to the Apache HTTP Server's ability to provide language and character-specific document variants in response to a request.




	
See Also:

 Multiviews option in the Apache HTTP Server documentation on Content Negotiation, at:

http://httpd.apache.org/docs/current/content-negotiation.html














B.4 Can I Apply Apache HTTP Server Security Patches to Oracle HTTP Server?

No, you cannot apply the Apache HTTP Server security patches to Oracle HTTP Server for the following reasons:

	
Oracle tests and appropriately modifies security patches before releasing them to Oracle HTTP Server users.


	
In many cases, the Apache HTTP Server alerts, such as OpenSSL alerts, may not be applicable because Oracle has removed those components from the stack.




The latest security related fixes to Oracle HTTP Server are performed through the Oracle Critical Patch Update (CPU). For more details, refer to Oracle's Critical Patch Updates and Security Alerts Web page.




	
Note:

After applying a CPU, the Apache HTTP Server-based version may stay the same, but the vulnerability will be fixed. There are third-party security detection tools that can check the version, but do not check the vulnerability itself.














B.5 Can I Upgrade the Apache HTTP Server Version of Oracle HTTP Server?

No, you cannot upgrade only the Apache HTTP Server version inside Oracle HTTP Server. Oracle provides a newer version of Apache HTTP Server that Oracle HTTP Server is based on, which is part of either a patch update or the next major or minor release of Oracle Fusion Middleware.






B.6 Can I Compress Output From Oracle HTTP Server?

In general, Oracle recommends using mod_deflate, which is included with Oracle HTTP Server. For more information pertaining to mod_deflate, see http://httpd.apache.org/docs/current/mod/mod_deflate.html






B.7 How Do I Create a Namespace That Works Through Firewalls and Clusters?

The general idea is that all servers in a distributed Web site should use a single URL namespace. Every server serves some part of that namespace, and is able to redirect or proxy requests for URLs that it does not serve to a server that is closer to that URL. For example, your namespaces could be the following:


/app1/login.html
/app1/catalog.html
/app1/dologin.jsp
/app2/orderForm.html
/apps/placeOrder.jsp


You could initially map these name spaces to two Web servers by putting app1 on server1 and app2 on server2. The configuration for server1 might look like the following:


Redirect permanent /app2 http://server2/app2
Alias /app1 /myApps/application1
<Directory /myApps/application1>
  ...
</Directory>


The configuration for Server2 is complementary.

If you decide to partition the namespace by content type (HTML on server1, and JSP on server2), then you can change server configuration and move files around, but you do not have to make changes to the application itself. The resulting configuration of server1 might look like the following:


RedirectMatch permanent (.*) \.jsp$ http://server2/$1.jsp
AliasMatch ^/app(.*) \.html$ /myPages/application$1.html
<DirectoryMatch "^/myPages/application\d">
  ...
</DirectoryMatch>


The amount of actual redirection can be minimized by configuring a hardware load balancer like F5 system BIG-IP to send requests to server1 or server2 based on the URL.






B.8 How do I Protect the Web Site from Hackers?

There are many attacks by hackers, and new attacks are invented everyday. The following are some general guidelines for securing your site. You can never be completely secure, but you can avoid being an easy target.

	
Use a commercial firewall, such as Checkpoint FW-1 or Cisco PIX between your ISP and your Web server. Remember not all hackers are outside your organization.


	
Use switched Ethernet to limit the amount of traffic a compromised server can detect. Use additional firewalls between Web server machines and highly sensitive internal servers running the database and enterprise applications.


	
Remove unnecessary network services such as RPC, Finger, and telnet from your server.


	
Carefully validate all input from Web forms. Be especially wary of long input strings and input that contains non-printable characters, HTML tags, or javascript tags.


	
Encrypt or randomize the contents of cookies that contain sensitive information to prevent a hacker from hijacking a valid session. For example, it should be difficult to guess a valid sessionID.


	
Check often for security patches for all your system and application software, and install them as soon as possible. Be sure these patches come from reliable sources. Only download patches from trusted sites and verify the cryptographic checksum.


	
Use an intrusion detection package to monitor for defaced Web pages, viruses, and presence of rootkits that indicate hackers have broken into your site. If possible, mount system executables and Web content on read-only file systems.


	
Have a forensic analysis package on hand to capture evidence of a break in as soon as detected. This aids in prosecution of the hackers.









B.9 Should I Re-register Partner Applications with SSO Server If I Disable or Enable SSL?

Yes, if you enable or disable SSL, you have to re-register partner applications with the SSO server. When you make any changes that affect the URL (for example, changing the host name or port, or enabling or disabling SSL), you have re-register partner applications with the SSO server because the old URL registered with the SSO server is no longer valid. You have to re-register the partner applications with the new URL.






B.10 Why is REDIRECT_ERROR_NOTES not set for "File Not Found" errors?

The REDIRECT_ERROR_NOTES CGI environment variable is not set for "File Not Found" errors in Oracle HTTP Server because compatibility with Apache HTTP Server does not make that information available to CGI and other applications for this condition.






B.11 How can I hide information about the Web Server Vendor and Version

Specify ServerSignature Off to remove this information from web server generated responses. Specify ServerTokens Custom some-server-string to disguise the web server software when Oracle HTTP Server generates the web Server response header. (When a backend server generates the response, the server response header may come from the backend server depending on the proxy mechanism.)




	
Note:

ServerTokens Custom some-server-string is a replacement for the ServerHeader Off setting in Oracle HTTP Server 10g.














B.12 Can I Start OHS by Using apachectl or Other Command-Line Tool?

Oracle HTTP Server 12.1.2 process management is handled by Node Manager. The startComponent command can be used to start Oracle HTTP Server without using WLST or Fusion Middleware Control directly. For more information, see Section 4.3.2.3, "Starting Oracle HTTP Server Instances from the Command Line".









D Configuration Files

The default Oracle HTTP Server configuration contains the files described in the following sections:

	
Section D.1, "httpd.conf"


	
Section D.2, "ssl.conf"


	
Section D.3, "admin.conf"


	
Section D.4, "mod_wl_ohs.conf"


	
Section D.5, "moduleconf/*.conf"


	
Section D.6, "disabled/*.conf"


	
Section D.7, "mime.types"


	
Section D.8, "ohs.plugins.nodemanager.properties"


	
Section D.9, "magic"


	
Section D.10, "keystores/<wallet-directory>"


	
Section D.11, "auditconfig.xml"


	
Section D.12, "component-logs.xml"


	
Section D.13, "component_events.xml"


	
Section D.14, "Additional Reference"




For more information about the configuration files, see Section 1.6, "Understanding Configuration Files"



D.1 httpd.conf


	
Description

	
Top-level web server configuration file


	
Format

	
Apache HTTP Server .conf file format


	
Primary feature configured

	
Various, including non-SSL listening socket












D.2 ssl.conf


	
Description

	
Web server configuration file for SSL


	
Format

	
Apache HTTP Server .conf file format


	
Primary feature configured

	
mod_ossl












D.3 admin.conf


	
Description

	
Web server configuration file for administration port


	
Format

	
Apache HTTP Server .conf file format


	
Primary feature configured

	
mod_dms; administration port used for communication with node manager











	
Note:

Only the listen port and local address are intended for customer configuration.














D.4 mod_wl_ohs.conf


	
Description

	
Web server configuration file for WebLogic plugin


	
Format

	
Apache HTTP Server .conf file format


	
Primary feature configured

	
WebLogic plugin (mod_wl_ohs)












D.5 moduleconf/*.conf


	
Description

	
Optional, enabled web server configuration files for specific features, such as mod_plsql


	
Format

	
Apache HTTP Server .conf file format


	
Primary feature configured

	
default: mod_plsql











	
Note:

To disable .conf move it from moduleconf/ to disabled/.














D.6 disabled/*.conf


	
Description

	
Optional, disabled web server configuration files for specific features, such as mod_plsql


	
Format

	
Apache HTTP Server .conf file format


	
Primary feature configured

	
default: mod_perl, mod_fastcgi (if .conf file is moved to moduleconf/)











	
Note:

To enable a .conf file in the disabled directory, move it from moduleconf/ to disabled/.














D.7 mime.types


	
Description

	
Web server configuration file for mod_mime


	
Format

	
mod_mime file format


	
Primary feature configured

	
Mime types used by mod_mime












D.8 ohs.plugins.nodemanager.properties


	
Description

	
Configuration file for Oracle HTTP Server node manager plug-ins


	
Format

	
Java property file format


	
Primary feature configured

	
Oracle HTTP Server Node Manager plug-ins












D.9 magic


	
Description

	
Optional, disabled web server configuration file for mod_mime_magic


	
Format

	
mod_mime_magic file format


	
Primary feature configured

	
File content patterns used by mod_mime_magic












D.10 keystores/<wallet-directory>

Name example: keystores/default


	
Description

	
Oracle wallet


	
Format

	
Oracle wallet format


	
Primary feature configured

	
Oracle wallets for SSL/TLS communication












D.11 auditconfig.xml


	
Description

	
Configuration of OHS auditing and logging


	
Format

	
FMW audit framework audit configuration XML format


	
Primary feature configured

	
FMW audit framework auditing of Oracle HTTP Server operations












D.12 component-logs.xml


	
Description

	
Configuration of OHS log files for log collection


	
Format

	
FMW log file configuration XML format


	
Primary feature configured

	
Log collection












D.13 component_events.xml


	
Description

	
Static configuration of OHS audit event definitions


	
Format

	
FMW audit framework component event XML format


	
Primary feature configured

	
FMW audit framework











	
Note:

This configuration file is not intended for modification by customers.














D.14 Additional Reference

For additional information, see the following documentation:

	
Apache HTTP Server .conf file format:

http://httpd.apache.org/docs/2.2/configuring.html


	
mod_mime file format:

http://httpd.apache.org/docs/2.2/mod/mod_mime.html


	
mod_mime_magic file format:

http://httpd.apache.org/docs/2.2/mod/mod_mime_magic.html












F Configuring mod_security


mod_security is an open-source module that you can use to detect and prevent intrusion attacks against Oracle HTTP Server; for example, you can specify a mod_security rule to screen all incoming requests and deny requests that match the conditions specified in the rule. The mod_security module (version 2.7.2) and its prerequisites are included in the Oracle HTTP Server installation as a shared object named mod_security2.so in the ORACLE_HOME/ohs/modules directory.

This version of OHS supports only mod_security (version 2.7.2) directives, variables, action, phases and functions. It will not be supported if you replace this module with a later version.

This appendix contains a usable example (Example E–1) of the mod_security.conf file, including the loadModule statement.




	
Notes:

Be aware of the following:

	
mod_security was removed from earlier versions of Oracle HTTP Server but was reintroduced in version 11.1.1.7. This version follows the recommendations and practices prescribed for open source mod_security 2.7.2. Only documentation applicable to open source mod_security 2.7.2 is applicable to the Oracle HTTP Server implementation of the module.


	
In Oracle HTTP Server 11.1.1.7 and later, mod_security is not loaded or configured by default; however, if you have an installation patched from 11.1.1.6, implementing the patch might have already loaded and configured the module.


	
Oracle only supports the Oracle-supplied version of mod_security. Newer versions from modsecurity.org will not be supported.












For more information on mod_security, see the mod_security documentation site, at:

http://www.modsecurity.org/documentation/ 

This chapter contains the following sections:

	
Section F.1, "Enabling mod_security"


	
Section F.2, "Configuring mod_security"






F.1 Enabling mod_security

To make the mod_security module available for use when Oracle HTTP Server is running, ensure that mod_security.conf begins with the following lines:


#Load module
LoadModule security2_module "${PRODUCT_HOME}/modules/mod_security2.so"


as shown in the mod_security.conf example inExample F-1.






F.2 Configuring mod_security

Configuring mod_security involves specifying certain directives in the Oracle HTTP Server configuration file. You can specify the directives directly in the httpd.conf file in an IfModule container. Alternatively, you can specify the mod_security directives in a separate mod_security.conf file and include that .conf file in httpd.conf by using the Include directive.

By default, mod_security.conf does not exist, so you need to create it, preferably by using the template in Example F-1. Copy and paste the sample into a text editor and read the entire file, editing it for your system. Then save it as your own mod_security.conf and include it from your httpd.conf. If you implement mod_security.conf as described in this appendix, it will use the LoadModule directive to load mod_security2.so into the run time environment.


Example F-1 mod_security.conf Sample


#Load module 
LoadModule security2_module "${PRODUCT_HOME}/modules/mod_security2.so"
# -- Rule engine initialization ----------------------------------------------

# Enable ModSecurity, attaching it to every transaction. Use detection
# only to start with, because that minimises the chances of post-installation
# disruption.
#
SecRuleEngine DetectionOnly


# -- Request body handling ---------------------------------------------------

# Allow ModSecurity to access request bodies. If you don't, ModSecurity
# won't be able to see any POST parameters, which opens a large security
# hole for attackers to exploit.
#
SecRequestBodyAccess On

# Enable XML request body parser.
# Initiate XML Processor in case of xml content-type
#
SecRule REQUEST_HEADERS:Content-Type "text/xml" "id:'200000',phase:1,t:none,t:lowercase,pass,nolog,ctl:requestBodyProcessor=XML"


# Maximum request body size we will accept for buffering. If you support
# file uploads then the value given on the first line has to be as large
# as the largest file you are willing to accept. The second value refers
# to the size of data, with files excluded. You want to keep that value as
# low as practical.
#
SecRequestBodyLimit 13107200
SecRequestBodyNoFilesLimit 131072

# Store up to 128 KB of request body data in memory. When the multipart
# parser reachers this limit, it will start using your hard disk for
# storage. That is slow, but unavoidable.
#
SecRequestBodyInMemoryLimit 131072

# What do do if the request body size is above our configured limit.
# Keep in mind that this setting will automatically be set to ProcessPartial
# when SecRuleEngine is set to DetectionOnly mode in order to minimize
# disruptions when initially deploying ModSecurity.
#
SecRequestBodyLimitAction Reject

# Verify that we've correctly processed the request body.
# As a rule of thumb, when failing to process a request body
# you should reject the request (when deployed in blocking mode)
# or log a high-severity alert (when deployed in detection-only mode).
#
SecRule REQBODY_ERROR "!@eq 0" \
"id:'200001', phase:2,t:none,log,deny,status:400,msg:'Failed to parse request
 body.',logdata:'%{reqbody_error_msg}',severity:2"

# By default be strict with what we accept in the multipart/form-data
# request body. If the rule below proves to be too strict for your
# environment consider changing it to detection-only. You are encouraged
# _not_ to remove it altogether.
#
SecRule MULTIPART_STRICT_ERROR "!@eq 0" \
"id:'200002',phase:2,t:none,log,deny,status:44, \
msg:'Multipart request body failed strict validation: \
PE %{REQBODY_PROCESSOR_ERROR}, \
BQ %{MULTIPART_BOUNDARY_QUOTED}, \
BW %{MULTIPART_BOUNDARY_WHITESPACE}, \
DB %{MULTIPART_DATA_BEFORE}, \
DA %{MULTIPART_DATA_AFTER}, \
HF %{MULTIPART_HEADER_FOLDING}, \
LF %{MULTIPART_LF_LINE}, \
SM %{MULTIPART_MISSING_SEMICOLON}, \
IQ %{MULTIPART_INVALID_QUOTING}, \
IP %{MULTIPART_INVALID_PART}, \
IH %{MULTIPART_INVALID_HEADER_FOLDING}, \
FL %{MULTIPART_FILE_LIMIT_EXCEEDED}'"

# Did we see anything that might be a boundary?
#
SecRule MULTIPART_UNMATCHED_BOUNDARY "!@eq 0" \
"id:'200003',phase:2,t:none,log,deny,status:44,msg:'Multipart parser detected a possible unmatched boundary.'"

# PCRE Tuning
# We want to avoid a potential RegEx DoS condition
#
SecPcreMatchLimit 1000
SecPcreMatchLimitRecursion 1000

# Some internal errors will set flags in TX and we will need to look for these.
# All of these are prefixed with "MSC_".  The following flags currently exist:
#
# MSC_PCRE_LIMITS_EXCEEDED: PCRE match limits were exceeded.
#
SecRule TX:/^MSC_/ "!@streq 0" \
        "id:'200004',phase:2,t:none,deny,msg:'ModSecurity internal error flagged: %{MATCHED_VAR_NAME}'"

# -- Response body handling --------------------------------------------------

# Allow ModSecurity to access response bodies. 
# You should have this directive enabled in order to identify errors
# and data leakage issues.
# 
# Do keep in mind that enabling this directive does increases both
# memory consumption and response latency.
#
SecResponseBodyAccess On

# Which response MIME types do you want to inspect? You should adjust the
# configuration below to catch documents but avoid static files
# (e.g., images and archives).
#
SecResponseBodyMimeType text/plain text/html text/xml

# Buffer response bodies of up to 512 KB in length.
SecResponseBodyLimit 524288

# What happens when we encounter a response body larger than the configured
# limit? By default, we process what we have and let the rest through.
# That's somewhat less secure, but does not break any legitimate pages.
#
SecResponseBodyLimitAction ProcessPartial

# -- Filesystem configuration ------------------------------------------------

# The location where ModSecurity stores temporary files (for example, when
# it needs to handle a file upload that is larger than the configured limit).
# 
# This default setting is chosen due to all systems have /tmp available however, 
# this is less than ideal. It is recommended that you specify a location that's private.
#
SecTmpDir /tmp/

# The location where ModSecurity will keep its persistent data.  This default setting 
# is chosen due to all systems have /tmp available however, it
# too should be updated to a place that other users can't access.
#
SecDataDir /tmp/

# -- File uploads handling configuration -------------------------------------

# The location where ModSecurity stores intercepted uploaded files. This
# location must be private to ModSecurity. You don't want other users on
# the server to access the files, do you?
#
#SecUploadDir /opt/modsecurity/var/upload/

# By default, only keep the files that were determined to be unusual
# in some way (by an external inspection script). For this to work you
# will also need at least one file inspection rule.
#
#SecUploadKeepFiles RelevantOnly

# Uploaded files are by default created with permissions that do not allow
# any other user to access them. You may need to relax that if you want to
# interface ModSecurity to an external program (e.g., an anti-virus).
#
#SecUploadFileMode 0600


# -- Debug log configuration -------------------------------------------------

# The default debug log configuration is to duplicate the error, warning
# and notice messages from the error log.
#
#SecDebugLog /opt/modsecurity/var/log/debug.log
#SecDebugLogLevel 3


# -- Audit log configuration -------------------------------------------------

# Log the transactions that are marked by a rule, as well as those that
# trigger a server error (determined by a 5xx or 4xx, excluding 404,  
# level response status codes).
#
SecAuditEngine RelevantOnly
SecAuditLogRelevantStatus "^(?:5|4(?!04))"

# Log everything we know about a transaction.
SecAuditLogParts ABIJDEFHZ

# Use a single file for logging. This is much easier to look at, but
# assumes that you will use the audit log only ocassionally.
#
SecAuditLogType Serial
SecAuditLog "${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs/modsec_audit.log"

# Specify the path for concurrent audit logging.
SecAuditLogStorageDir "${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs"
#Simple test 
SecRule ARGS "\.\./" "t:normalisePathWin,id:99999,severity:4,msg:'Drive Access'" 

# -- Miscellaneous -----------------------------------------------------------

# Use the most commonly used application/x-www-form-urlencoded parameter
# separator. There's probably only one application somewhere that uses
# something else so don't expect to change this value.
#
SecArgumentSeparator &

# Settle on version 0 (zero) cookies, as that is what most applications
# use. Using an incorrect cookie version may open your installation to
# evasion attacks (against the rules that examine named cookies).
#
SecCookieFormat 0

# Specify your Unicode Code Point.
# This mapping is used by the t:urlDecodeUni transformation function
# to properly map encoded data to your language. Properly setting
# these directives helps to reduce false positives and negatives.
#
#SecUnicodeCodePage 20127
#SecUnicodeMapFile unicode.mapping











G OHS Module Directives


This appendix describes the directives available in the Oracle-developed modules supported by OHS. It contains these sections:

	
Section G.1, "mod_certheaders"


	
Section G.2, "mod_ossl"


	
Section G.3, "mod_plsql"






G.1 mod_certheaders

mod_certheaders accepts the following directives:

	
AddCertHeader


	
SimulateHttps






G.1.1 AddCertHeader

Specify which headers should be translated to CGI environment variables. This can be achieved by using the AddCertHeader directive. This directive takes a single argument, which is the CGI environment variable that should be populated from a HTTP header on incoming requests. For example, to populate the SSL_CLIENT_CERT CGI environment variable.


	Category	Value
	
Syntax

	
AddCertHeader environment_variable


	
Example

	
AddCertHeader SSL_CLIENT_CERT


	
Default

	
None












G.1.2 SimulateHttps

mod_certheaders can be used to instruct Oracle HTTP Server to treat certain requests as if they were received through HTTPS even though they were received through HTTP. This is useful when Oracle HTTP Server is front-ended by a reverse proxy or load balancer, which acts as a termination point for SSL requests, and forwards the requests to Oracle HTTP Server through HTTPS.


	Category	Value
	
Syntax

	
SimulateHttps on|off


	
Example

	
SimulateHttps on


	
Default

	
off














G.2 mod_ossl

To configure SSL for your Oracle HTTP Server, enter the mod_ossl directives you want to use in the httpd.conf file.

The following directives are described in subsequent sections:

	
SSLAccelerator


	
SSLCARevocationFile


	
SSLCARevocationPath


	
SSLCipherSuite


	
SSLEngine


	
SSLFIPS


	
SSLInsecureRenegotiation


	
SSLMutex


	
SSLNZTraceLogLevel


	
SSLOptions


	
SSLPassPhraseDialog


	
SSLProtocol


	
SSLProxyCipherSuite


	
SSLProxyEngine


	
SSLProxyProtocol


	
SSLProxyWallet


	
SSLRequire


	
SSLRequireSSL


	
SSLSessionCache


	
SSLSessionCacheTimeout


	
SSLVerifyClient


	
SSLWallet






G.2.1 SSLAccelerator

Specifies if SSL accelerator is used. Currently only nFast card is supported.


	Category	Value
	
Syntax

	
SSLAccelerator yes|no


	
Example

	
SSLAccelerator yes


	
Default

	
SSLAccelerator no











	
Note:

The SSLAccelerator directive has been deprecated. For information on enabling SSL acceleration support using a wallet, refer to the Oracle Advanced Security Administrator's Guide on http://www.oracle.com/technology/documentation.














G.2.2 SSLCARevocationFile

Specifies the file where you can assemble the Certificate Revocation Lists (CRLs) from CAs (Certificate Authorities) that you accept certificates from. These are used for client authentication. Such a file is the concatenation of various PEM-encoded CRL files in order of preference. This directive can be used alternatively or additionally to SSLCARevocationPath.


	Category	Value
	
Syntax

	
SSLCARevocationFile file_name


	
Example

	

SSLCARevocationFile ${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/crl/ca_bundle.cr


	
Default

	
None












G.2.3 SSLCARevocationPath

Specifies the directory where PEM-encoded Certificate Revocation Lists (CRLs) are stored. These CRLs come from the CAs (Certificate Authorities) that you accept certificates from. If a client attempts to authenticate itself with a certificate that is on one of these CRLs, then the certificate is revoked and the client cannot authenticate itself with your server.


	Category	Value
	
Syntax

	
SSLCARevocationPath path/to/CRL_directory/


	
Example

	

SSLCARevocationPath ${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/crl 


	
Default

	
None












G.2.4 SSLCipherSuite

Specifies the SSL cipher suite that the client can use during the SSL handshake. This directive uses a colon-separated cipher specification string to identify the cipher suite. Table 11–2 shows the tags you can use in the string to describe the cipher suite you want. SSLCipherSuite accepts the following values:

	
none: Adds the cipher to the list


	
+ : Adds the cipher to the list and place it in the correct location in the list


	
- : Remove the cipher from the list (can be added later)


	
! : Remove the cipher from the list permanently




Tags are joined together with prefixes to form a cipher specification string. Cipher suite tags are listed in Table G-1.


	Category	Value
	
Example

	
SSLCipherSuite ALL:!MD5

In this example, all ciphers are specified except MD5 strength ciphers.


	
Syntax

	
SSLCipherSuite cipher-spec


	
Default

	

ALL:!ADH:+HIGH:+MEDIUM:+LOW









Table G-1 SSLCipher Suite Tags

	Function	Tag	Meaning
	
Key exchange

	
kRSA

	
RSA key exchange


	
Key exchange

	
kDHr

	
Diffie-Hellman key exchange with RSA key


	
Authentication

	
aNULL

	
No authentication


	
Authentication

	
aRSA

	
RSA authentication


	
Authentication

	
aDH

	
Diffie-Hellman authentication


	
Encryption

	
eNULL

	
No encryption


	
Encryption

	
DES

	
DES encoding


	
Encryption

	
3DES

	
Triple DES encoding


	
Encryption

	
RC4

	
RC4 encoding


	
Encryption

	
ECC

	
Elliptic curve cryptography encoding


	
Data Integrity

	
MD5

	
MD5 hash function


	
Data Integrity

	
SHA

	
SHA hash function


	
Data Integrity

	
SHA256

	
SHA256 hash function


	
Data Integrity

	
SHA384

	
SHA384 hash function


	
Aliases

	
SSLv3

	
All SSL version 3.0 ciphers


	
Aliases

	
TLSv1.1

	
All TLS version 1.1 ciphers


	
Aliases

	
TLSv1.2

	
All TLS version 1.2 ciphers


	
Aliases

	
LOW

	
All low strength ciphers (export and single DES)


	
Aliases

	
MEDIUM

	
All ciphers with 128-bit encryption


	
Aliases

	
HIGH

	
All ciphers using triple DES


	
Aliases

	
AES

	
All ciphers using AES encryption.


	
Aliases

	
RSA

	
All ciphers using RSA key exchange


	
Aliases

	
DH

	
All ciphers using Diffie-Hellman key exchange








Table G-2 lists the Cipher Suites supported in Oracle Advanced Security 12.1.2.


Table G-2 Cipher Suites Supported in Oracle Advanced Security 12.1.2

	Cipher Suite	Authentication	Encryption	Data Integrity
	
SSL_RSA_WITH_RC4_128_MD5

	
RSA

	
RC4 (128)

	
MD5


	
SSL_RSA_WITH_RC4_128_SHA

	
RSA

	
RC4 (128)

	
SHA


	
SSL_RSA_WITH_3DES_EDE_CBC_SHA

	
RSA

	
3DES (168)

	
SHA


	
SSL_RSA_WITH_AES_128_CBC_SHA

	
RSA

	
AES (128)

	
SHA


	
SSL_RSA_WITH_AES_256_CBC_SHA

	
RSA

	
AES (256)

	
SHA


	
RSA_WITH_AES_128_CBC_SHA256

	
RSA

	
AES (128)

	
SHA256


	
RSA_WITH_AES_256_CBC_SHA256

	
RSA

	
AES (256)

	
SHA256


	
RSA_WITH_AES_128_GCM_SHA256

	
RSA

	
AES (128)

	
SHA256


	
RSA_WITH_AES_256_GCM_SHA384

	
RSA

	
AES (256)

	
SHA384


	
ECDHE_ECDSA_WITH_AES_128_CBC_SHA

	
RSA

	
AES (128)

	
SHA


	
ECDHE_ECDSA_WITH_AES_256_CBC_SHA

	
RSA

	
AES (256)

	
SHA


	
ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

	
RSA

	
AES (128)

	
SHA256


	
ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

	
RSA

	
AES (256)

	
SHA384


	
ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

	
RSA

	
AES (128)

	
SHA256


	
ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

	
RSA

	
AES (256)

	
SHA384












G.2.5 SSLEngine

Toggles the usage of the SSL Protocol Engine. This is usually used inside a <VirtualHost> section to enable SSL for a particular virtual host. By default, the SSL Protocol Engine is disabled for both the main server and all configured virtual hosts. Example 11–1 is an example for using SSLEngine directive.


	Category	Value
	
Syntax

	
SSLEngine on|off


	
Example

	
SSLEngine on


	
Default

	
off












G.2.6 SSLFIPS

This directive toggles the usage of the SSL library FIPS_mode flag. It must be set in the global server context and cannot be configured with conflicting settings (SSLFIPS on followed by SSLFIPS off or similar). The mode applies to all SSL library operations.


	Category	Value
	
Syntax

	

SSLFIPS ON | OFF


	
Example

	

SSLFIPS ON


	
Default

	
Off








Configuring an SSLFIPS change requires that the SSLFIPS on/off directive be set globally in ssl.conf. Virtual level configuration is disabled in SSLFIPS directive. Hence, setting SSLFIPS to virtual directive will result in an error.

The cipher suites supported the SSLFIPS mode are:

	
SSL_RSA_WITH_3DES_EDE_CBC_SHA


	
SSL_RSA_WITH_AES_128_CBC_SHA


	
SSL_RSA_WITH_AES_256_CBC_SHA


	
RSA_WITH_AES_128_CBC_SHA256


	
RSA_WITH_AES_256_CBC_SHA256


	
RSA_WITH_AES_256_GCM_SHA384


	
ECDHE_ECDSA_WITH_AES_128_CBC_SHA


	
ECDHE_ECDSA_WITH_AES_256_CBC_SHA


	
ECDHE_ECDSA_WITH_AES_128_CBC_SHA256


	
ECDHE_ECDSA_WITH_AES_256_CBC_SHA384


	
ECDHE_ECDSA_WITH_AES_128_GCM_SHA256


	
ECDHE_ECDSA_WITH_AES_256_GCM_SHA384




For instructions on how to implement these cipher suites, see Section G.2.4, "SSLCipherSuite".






G.2.7 SSLInsecureRenegotiation

As originally specified, all versions of the SSL and TLS protocols (up to and including TLS/1.2) were vulnerable to a Man-in-the-Middle attack (CVE-2009-3555) during a renegotiation. This vulnerability allowed an attacker to "prefix" a chosen plaintext to the HTTP request as seen by the web server. A protocol extension was developed which fixed this vulnerability if supported by both client and server. By default insecure renegotiation is disabled it is NZ's (ssl.renegotiate = "compatible"). This mode allow vulnerable peers to connect; but, renegotiation is allowed only with those peers that have RI/SCSV support. To enable renegotiation set SSLInsecureRenegotiation on ssl.conf file. This mode is equivalent to NZ (ssl.renegotiate = "insecure"). This mode will allow vulnerable peers to connect; but, renegotiation is allowed only with those peers that have RI/SCSV support.


	Category	Value
	
Syntax

	

SSLInsecureRenegotiation ON | OFF


	
Example

	

SSLInsecureRenegotiation ON


	
Default

	
Off








To configure SSLInsecureRenegotiation, edit ssl.conf file and set SSLInsecureRenegotiation ON/OFF globally or virtually to enable disable insecure renegotiation.






G.2.8 SSLMutex

Type of semaphore (lock) for SSL engine's mutual exclusion of operations that have to be synchronized between Oracle HTTP Server processes. Accepted values are:

	
none: Uses no mutex at all. Not recommended, because the mutex synchronizes the write access to the SSL session cache. If you do not configure a mutex, the session cache can become garbled.


	
file:path/to/mutex: Uses a file for locking. The process ID (PID) of the Oracle HTTP Server parent process is appended to the filename to ensure uniqueness. If the filename does not begin with a slash (/), it is assumed to be relative to ServerRoot. This setting is not available on Windows.


	
sem: Uses an operating system semaphore to synchronize writes. On UNIX, it would be a Sys V IPC semaphore; on Windows, it is a Windows Mutex. This is the best choice, if the operating system supports it.





	Category	Value
	
Syntax

	
SSLMutex none | file | sem


	
Example

	
SSLMutex sem


	
Default

	
None












G.2.9 SSLNZTraceLogLevel

SSLNZTraceLogLevel adjusts the verbosity of the messages recorded in the NZ library error logs. When a particular level is specified, messages from all other levels of higher significance will be reported as well. For example, when SSLNZTraceLogLevel ssl is set, messages with log levels of error, warn, user and debug will also be posted.

SSLNZTraceLogLevel accepts the following log levels:

	
none: NZ Trace disable


	
fatal: Fatal error; system is unusable.


	
error: Error conditions.


	
warn: Warning conditions.


	
user: Normal but significant condition.


	
debug: Debug-level condition


	
ssl: SSL level debugging





	Category	Value
	
Syntax

	

SSLNZTraceLogLevel none | fatal | error | warn | user | debug | ssl 


	
Example

	

SSLNZTraceLogLevel fatal


	
Default

	
None












G.2.10 SSLOptions

Controls various runtime options on a per-directory basis. In general, if multiple options apply to a directory, the most comprehensive option is applied (options are not merged). However, if all of the options in an SSLOptions directive are preceded by a plus ('+') or minus ('-') symbol, then the options are merged. Options preceded by a plus are added to the options currently in force, and options preceded by a minus are removed from the options currently in force.

Accepted values are:

	
StdEnvVars: Creates the standard set of CGI/SSI environment variables that are related to SSL. This is disabled by default because the extraction operation uses a lot of CPU time and usually has no application when serving static content. Typically, you only enable this for CGI/SSI requests.


	
ExportCertData: Enables the following additional CGI/SSI variables:

SSL_SERVER_CERT

SSL_CLIENT_CERT

SSL_CLIENT_CERT_CHAIN_n (where n= 0, 1, 2...)

These variables contain the Privacy Enhanced Mail (PEM)-encoded X.509 certificates for the server and the client for the current HTTPS connection, and can be used by CGI scripts for deeper certificate checking. All other certificates of the client certificate chain are provided. This option is "Off" by default because there is a performance cost associated with using it.

SSL_CLIENT_CERT_CHAIN_n variables are in the following order: SSL_CLIENT_CERT_CHAIN_0 is the intermediate CA who signs SSL_CLIENT_CERT. SSL_CLIENT_CERT_CHAIN_1 is the intermediate CA who signs SSL_CLIENT_CERT_CHAIN_0, and so forth, with SSL_CLIENT_ROOT_CERT as the root CA.


	
FakeBasicAuth: Translates the subject distinguished name of the client X.509 certificate into an HTTP basic authorization user name. This means that the standard HTTP server authentication methods can be used for access control. Note that no password is obtained from the user; the string 'password' is substituted.


	
StrictRequire: Denies access when, according to SSLRequireSSL or directives, access should be forbidden. Without StrictRequire, it is possible for a 'Satisfy any' directive setting to override the SSLRequire or SSLRequireSSL directive, allowing access if the client passes the host restriction or supplies a valid user name and password.

Thus, the combination of SSLRequireSSL or SSLRequire with SSLOptions +StrictRequire gives mod_ossl the ability to override a 'Satisfy any' directive in all cases.


	
CompatEnvVars: Exports obsolete environment variables for backward compatibility to Apache SSL 1.x, mod_ssl 2.0.x, Sioux 1.0, and Stronghold 2.x. Use this to provide compatibility to existing CGI scripts.


	
OptRenegotiate: This enables optimized SSL connection renegotiation handling when SSL directives are used in a per-directory context.





	Category	Value
	
Syntax

	
SSLOptions [+-] StdEnvVars | ExportCertData | FakeBasicAuth | StrictRequire | CompatEnvVars | OptRenegotiate


	
Example

	
SSLOptions -StdEnvVars


	
Default

	
None












G.2.11 SSLPassPhraseDialog

Type of pass phrase dialog for wallet access. mod_ossl asks the administrator for a pass phrase in order to access the wallet. Accepted values are:

	
builtin: when the server is started, mod_ossl prompts for a password for each wallet.


	
exec:path/to/program - when the server is started, mod_ossl calls an external program configured for each wallet. This program is invoked with two arguments: servername:portnumber and RSA or DSA.





	Category	Value
	
Syntax

	
SSLPassPhraseDialog builtin | exec


	
Example

	
SSLPassPhraseDialog exec:/usr/local/sbin/pfilter


	
Default

	
builtin












G.2.12 SSLProtocol

Specifies SSL protocol(s) for mod_ossl to use when establishing the server environment. Clients can only connect with one of the specified protocols. Accepted values are:

	
SSLv3


	
TLSv1


	
TLSv1.1


	
TLSv1.2


	
All





	Category	Value
	
Syntax

	
SSLProtocol [+-] SSLv3 | TLSv1 | TLSv1.1 | TLSv1.2 | All


	
Example

	
SSLProtocol +SSLv3


	
Default

	
ALL












G.2.13 SSLProxyCipherSuite

Specifies the SSL cipher suite that the proxy can use during the SSL handshake. This directive uses a colon-separated cipher specification string to identify the cipher suite. Table 11–2 shows the tags you can use in the string to describe the cipher suite you want. SSLCipherSuite accepts the following values:

	
none: Adds the cipher to the list


	
+ : Adds the cipher to the list and place it in the correct location in the list


	
- : Remove the cipher from the list (can be added later)


	
! : Remove the cipher from the list permanently




Tags are joined together with prefixes to form a cipher specification string. Cipher suite tags are listed in Table G-3.


	Category	Value
	
Example

	
SSLProxyCipherSuite ALL:!MD5

In this example, all ciphers are specified except MD5 strength ciphers.


	
Syntax

	
SSLProxyCipherSuite cipher-spec


	
Default

	

ALL:!ADH:+HIGH:+MEDIUM:+LOW









Table G-3 SSLProxyCipher Suite Tags

	Function	Tag	Meaning
	
Key exchange

	
kRSA

	
RSA key exchange


	
Key exchange

	
kDHr

	
Diffie-Hellman key exchange with RSA key


	
Authentication

	
aNULL

	
No authentication


	
Authentication

	
aRSA

	
RSA authentication


	
Authentication

	
aDH

	
Diffie-Hellman authentication


	
Encryption

	
eNULL

	
No encryption


	
Encryption

	
DES

	
DES encoding


	
Encryption

	
3DES

	
Triple DES encoding


	
Encryption

	
RC4

	
RC4 encoding


	
Encryption

	
ECC

	
Elliptic curve cryptography encoding


	
Data Integrity

	
MD5

	
MD5 hash function


	
Data Integrity

	
SHA

	
SHA hash function


	
Data Integrity

	
SHA256

	
SHA256 hash function


	
Data Integrity

	
SHA384

	
SHA384 hash function


	
Aliases

	
SSLv3

	
All SSL version 3.0 ciphers


	
Aliases

	
TLSv1.1

	
All TLS version 1.1 ciphers


	
Aliases

	
TLSv1.2

	
All TLS version 1.2 ciphers


	
Aliases

	
LOW

	
All low strength ciphers (export and single DES)


	
Aliases

	
MEDIUM

	
All ciphers with 128-bit encryption


	
Aliases

	
HIGH

	
All ciphers using triple DES


	
Aliases

	
AES

	
All ciphers using AES encryption.


	
Aliases

	
RSA

	
All ciphers using RSA key exchange


	
Aliases

	
DH

	
All ciphers using Diffie-Hellman key exchange








Table G-4 lists the Cipher Suites supported in Oracle Advanced Security 12.1.2.


Table G-4 Cipher Suites Supported in Oracle Advanced Security 12.1.2

	Cipher Suite	Authentication	Encryption	Data Integrity
	
SSL_RSA_WITH_RC4_128_MD5

	
RSA

	
RC4 (128)

	
MD5


	
SSL_RSA_WITH_RC4_128_SHA

	
RSA

	
RC4 (128)

	
SHA


	
SSL_RSA_WITH_3DES_EDE_CBC_SHA

	
RSA

	
3DES (168)

	
SHA


	
SSL_RSA_WITH_AES_128_CBC_SHA

	
RSA

	
AES (128)

	
SHA


	
SSL_RSA_WITH_AES_256_CBC_SHA

	
RSA

	
AES (256)

	
SHA


	
RSA_WITH_AES_128_CBC_SHA256

	
RSA

	
AES (128)

	
SHA256


	
RSA_WITH_AES_256_CBC_SHA256

	
RSA

	
AES (256)

	
SHA256


	
RSA_WITH_AES_128_GCM_SHA256

	
RSA

	
AES (128)

	
SHA256


	
RSA_WITH_AES_256_GCM_SHA384

	
RSA

	
AES (256)

	
SHA384


	
ECDHE_ECDSA_WITH_AES_128_CBC_SHA

	
RSA

	
AES (128)

	
SHA


	
ECDHE_ECDSA_WITH_AES_256_CBC_SHA

	
RSA

	
AES (256)

	
SHA


	
ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

	
RSA

	
AES (128)

	
SHA256


	
ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

	
RSA

	
AES (256)

	
SHA384


	
ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

	
RSA

	
AES (128)

	
SHA256


	
ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

	
RSA

	
AES (256)

	
SHA384












G.2.14 SSLProxyEngine

Enables or disables the SSL/TLS protocol engine for proxy. SSLProxyEngine is usually used inside a <VirtualHost> section to enable SSL/TLS for proxy usage in a particular virtual host. By default, the SSL/TLS protocol engine is disabled for proxy both for the main server and all configured virtual hosts.

SSLProxyEngine should not be included in a virtual host that will be acting as a forward proxy (by using Proxy or ProxyRequest directives). SSLProxyEngine is not required to enable a forward proxy server to proxy SSL/TLS requests.


	Category	Value
	
Syntax

	
SSLProxyEngine ON | OFF


	
Example

	
SSLProxyEngine on


	
Default

	
Disable












G.2.15 SSLProxyProtocol

Specifies SSL protocol(s) for mod_ossl to use when establishing a proxy connection in the server environment. Proxies can only connect with one of the specified protocols. Accepted values are:

	
SSLv3


	
TLSv1


	
TLSv1.1


	
TLSv1.2


	
All





	Category	Value
	
Syntax

	
SSLProxyProtocol [+-] SSLv3 | TLSv1 | TLSv1.1 | TLSv1.2 | All


	
Example

	
SSLProxyProtocol +SSLv3


	
Default

	
ALL












G.2.16 SSLProxyWallet

Specifies the location of the wallet with its WRL, specified as a filepath, that a proxy connection needs to use.


	Category	Value
	
Syntax

	
SSLProxyWallet file:path to wallet


	
Example

	

SSLProxyWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/proxy"


	
Default

	
None












G.2.17 SSLRequire

Denies access unless an arbitrarily complex boolean expression is true.


	Category	Value
	
Syntax

	
SSLRequire expression (see Understanding the Expression)


	
Example

	
SSLRequire word ">=" word |word "ge" word


	
Default

	
None









Understanding the Expression

The expression must match the following syntax (given as a BNF grammar notation):


expr ::= "true" | "false"
"!" expr
expr "&&" expr
expr "||" expr
"(" expr ")"

comp ::=word "==" word | word "eq" word
word "!=" word |word "ne" word
word "<" word |word "lt" word
word "<=" word |word "le" word
word ">" word |word "gt" word
word ">=" word |word "ge" word
word "=~" regex
word "!~" regex
wordlist ::= word
wordlist "," word

word ::= digit
cstring
variable
function

digit ::= [0-9]+

cstring ::= "..."

variable ::= "%{varname}"


Table G-5 and Table G-6 list standard and SSL variables. These are valid values for varname.


function ::= funcname "(" funcargs ")"


For funcname, the following function is available:


file(filename)


The file function takes one string argument, the filename, and expands to the contents of the file. This is useful for evaluating the file's contents against a regular expression.

Table G-5 lists the standard variables for SSLRequire varname.


Table G-5 Standard Variables for SSLRequire Varname

	Standard Variables	Standard Variables	Standard Variables
	
HTTP_USER_AGENT

	
PATH_INFO

	
AUTH_TYPE


	
HTTP_REFERER

	
QUERY_STRING

	
SERVER_SOFTWARE


	
HTTP_COOKIE

	
REMOTE_HOST

	
API_VERSION


	
HTTP_FORWARDED

	
REMOTE_IDENT

	
TIME_YEAR


	
HTTP_HOST

	
IS_SUBREQ

	
TIME_MON


	
HTTP_PROXY_CONNECTION

	
DOCUMENT_ROOT

	
TIME_DAY


	
HTTP_ACCEPT

	
SERVER_ADMIN

	
TIME_HOUR


	
HTTP:headername

	
SERVER_NAME

	
TIME_MIN


	
THE_REQUEST

	
SERVER_PORT

	
TIME_SEC


	
REQUEST_METHOD

	
SERVER_PROTOCOL

	
TIME_WDAY


	
REQUEST_SCHEME

	
REMOTE_ADDR

	
TIME


	
REQUEST_URI

	
REMOTE_USER

	
ENV:variablename


	
REQUEST_FILENAME

	
 


	
 









Table G-6 lists the SSL variables for SSLRequire varname.


Table G-6 SSL Variables for SSLRequire Varname

	SSL Variables	SSL Variables	SSL Variables
	
HTTPS

	
SSL_PROTOCOL

	
SSL_CIPHER_ALGKEYSIZE


	
SSL_CIPHER

	
SSL_CIPHER_EXPORT

	
SSL_VERSION_INTERFACE


	
SSL_CIPHER_USEKEYSIZE

	
SSL_VERSION_LIBRARY

	
SSL_SESSION_ID


	
SSL_CLIENT_V_END

	
SSL_CLIENT_M_SERIAL

	
SSL_CLIENT_V_START


	
SSL_CLIENT_S_DN_ST

	
SSL_CLIENT_S_DN

	
SSL_CLIENT_S_DN_C


	
SSL_CLIENT_S_DN_CN

	
SSL_CLIENT_S_DN_O

	
SSL_CLIENT_S_DN_OU


	
SSL_CLIENT_S_DN_G

	
SSL_CLIENT_S_DN_T

	
SSL_CLIENT_S_DN_I


	
SSL_CLIENT_S_DN_UID

	
SSL_CLIENT_S_DN_S

	
SSL_CLIENT_S_DN_D


	
SSL_CLIENT_I_DN_C

	
SSL_CLIENT_S_DN_Email

	
SSL_CLIENT_I_DN


	
SSL_CLIENT_I_DN_O

	
SSL_CLIENT_I_DN_ST

	
SSL_CLIENT_I_DN_L


	
SSL_CLIENT_I_DN_T

	
SSL_CLIENT_I_DN_OU

	
SSL_CLIENT_I_DN_CN


	
SSL_CLIENT_I_DN_S

	
SSL_CLIENT_I_DN_I

	
SSL_CLIENT_I_DN_G


	
SSL_CLIENT_I_DN_Email

	
SSL_CLIENT_I_DN_D

	
SSL_CLIENT_I_DN_UID


	
SSL_CLIENT_CERT

	
SSL_CLIENT_CERT_CHAIN_n

	
SSL_CLIENT_ROOT_CERT


	
SSL_CLIENT_VERIFY

	
SSL_CLIENT_M_VERSION

	
SSL_SERVER_M_VERSION


	
SSL_SERVER_V_START

	
SSL_SERVER_V_END

	
SSL_SERVER_M_SERIAL


	
SSL_SERVER_S_DN_C

	
SSL_SERVERT_S_DN_ST

	
SSL_SERVER_S_DN


	
SSL_SERVER_S_DN_OU

	
SSL_SERVER_S_DN_CN

	
SSL_SERVER_S_DN_O


	
SSL_SERVER_S_DN_I

	
SSL_SERVER_S_DN_G

	
SSL_SERVER_S_DN_T


	
SSL_SERVER_S_DN_D

	
SSL_SERVER_S_DN_UID

	
SSL_SERVER_S_DN_S


	
SSL_SERVER_I_DN

	
SSL_SERVER_I_DN_C

	
SSL_SERVER_S_DN_Email


	
SSL_SERVER_I_DN_L

	
SSL_SERVER_I_DN_O

	
SSL_SERVER_I_DN_ST


	
SSL_SERVER_I_DN_CN

	
SSSL_SERVER_I_DN_T

	
SSL_SERVER_I_DN_OU


	
SSL_SERVER_I_DN_G

	
SSL_SERVER_I_DN_I

	
 













G.2.18 SSLRequireSSL

Denies access to clients not using SSL. This is a useful directive for absolute protection of a SSL-enabled virtual host or directories in which configuration errors could create security vulnerabilities.


	Category	Value
	
Syntax

	
SSLRequireSSL


	
Example

	
SSLRequireSSL


	
Default

	
None












G.2.19 SSLSessionCache

Specifies the global/interprocess session cache storage type. The cache provides an optional way to speed up parallel request processing. The accepted values are:

	
none: disables the global/interprocess session cache. Produces no impact on functionality, but makes a major difference in performance.


	
shmht:/path/to/datafile[bytes]: Uses a high-performance hash table (bytes specifies approximate size) inside a shared memory segment in RAM, which is established by the /path/to/datafile. This hash table synchronizes the local SSL memory caches of the server processes.


	
shmcb:/path/to/datafile[bytes]: Uses a high-performance Shared Memory Cyclic Buffer (SHMCB) session cache to synchronize the local SSL memory caches of the server processes. The performance of shmcb is more uniform in all environments when compared to shmht.





	Category	Value
	
Syntax

	
SSLSessionCache none | shmht: /path/to/datafile[bytes] | shmcb:/path/to/datafile[bytes]


	
Examples

	
SSLSessionCache "shmcb:${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs/ssl_scache(512000)"


	
Default

	
SSLSessionCache none












G.2.20 SSLSessionCacheTimeout

Specifies the number of seconds before a SSL session in the session cache expires.


	Category	Value
	
Syntax

	
SSLSessionCacheTimeout seconds


	
Example

	
SSLSessionCacheTimeout 120


	
Default

	
300












G.2.21 SSLVerifyClient

Specifies whether or not a client must present a certificate when connecting. The accepted values are:

	
none: No client certificate is required


	
optional: Client can present a valid certificate


	
require: Client must present a valid certificate





	Category	Value
	
Syntax

	
SSLVerifyClient none | optional | require


	
Example

	
SSLVerifyClient optional


	
Default

	
None











	
Note:

The level optional_no_ca included with mod_ssl (in which the client can present a valid certificate, but it need not be verifiable) is not supported in mod_ossl.














G.2.22 SSLWallet

Specifies the location of the wallet with its WRL, specified as a filepath.


	Category	Value
	
Syntax

	
SSLWallet file:path to wallet


	
Example

	

SSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/default"


	
Default

	
None














G.3 mod_plsql

The mod_plsql configuration parameters are described in these sections:

	
Section G.3.1, "plsql.conf"


	
Section G.3.2, "dads.conf"


	
Section G.3.3, "cache.conf"






G.3.1 plsql.conf

The following parameters are used with the plsql.conf file:

	
PlsqlDMSEnable


	
PlsqlLogEnable


	
PlsqlLogDirectory


	
PlsqlIdleSessionCleanupInterval






G.3.1.1 PlsqlDMSEnable

Enables Dynamic Monitoring Service (DMS) for the mod_plsql module.


	Category	Value
	
Syntax

	
PlsqlDMSEnable On | Off


	
Example

	
PlsqlDMSEnable On


	
Default

	
On












G.3.1.2 PlsqlLogEnable

Enables debug level logging for the mod_plsql module. Debug level logging is meant to be used for debugging purposes only.

When logging is enabled, Oracle HTTP Server log files are typically created in the PlsqlCacheDirectory DOMAIN_HOME/servers/componentName/ directory. However, the location specified in PlsqlLogDirectory determines the final location.

This parameter should be set to Off unless recommended by Oracle support to debug problems with the mod_plsql module.

To view more details about the internal processing of the mod_plsql module, set this directive to On. This causes the mod_plsql module to start logging every request that is processed. The log files are generated as specified by the PlsqlLogDirectory directive.


	Category	Value
	
Syntax

	
PlsqlLogEnable On | Off


	
Example

	
PlsqlLogEnable Off


	
Default

	
Off












G.3.1.3 PlsqlLogDirectory

Specifies the directory where debug level logs are written.

Set the directory name of the location where log files should be generated when logging is enabled. To avoid possible confusion about the location of this directory, an absolute path is recommended.

On UNIX, this directory must have write permissions by the owner of the child httpd processes.


	Category	Value
	
Syntax

	
PlsqlLogDirectory directory


	
Example

	
PlsqlLogDirectory "${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs"


	
Default

	
None












G.3.1.4 PlsqlIdleSessionCleanupInterval

Specifies the time (in minutes) in which the idle database sessions should be closed and cleaned by the mod_plsql module.

This directive is used in conjunction with connection pooling of database connections and sessions in the mod_plsql module. When a session is not used for the specified amount of time, it is closed and freed. This is done so that unused sessions can be cleaned, and the memory is freed on the database side.

Setting this time to a low number helps in faster cleanup of unused database sessions. If this number is too low, then this may adversely affect the performance benefits of connection pooling in the mod_plsql module.

If the number of open database sessions is not a concern, you can increase the value of this parameter for best performance. In such a case, if the site is accessed frequently enough that the idle session cleanup interval is never reached for a session, then the DAD configuration parameter PlsqlMaxRequestsPerSession can be modified so that it is guaranteed that a pooled database session gets recycled on a regular basis.

For most installations, the default value is adequate.


	Category	Value
	
Syntax

	
PlsqlIdleSessionCleanupInterval number


	
Example

	
PlsqlIdleSessionCleanupInterval 10


	
Default

	
15 (minutes)














G.3.2 dads.conf

The dads.conf file contains the configuration parameters for the PL/SQL database access descriptor. (See Table G-1 for the file location.) A DAD is a set of values that specifies how the mod_plsql module connects to a database server to fulfill a HTTP request.

The following parameters are used with the dads.conf file:


	
	
PlsqlAfterProcedure


	
PlsqlAlwaysDescribeProcedure


	
PlsqlAuthenticationMode


	
PlsqlBeforeProcedure


	
PlsqlBindBucketLengths


	
PlsqlBindBucketWidths


	
PlsqlCGIEnvironmentList


	
PlsqlConnectionTimeout


	
PlsqlConnectionValidation


	
PlsqlConnectionValidation


	
PlsqlDatabaseConnectString


	
PlsqlDatabasePassword


	
PlsqlDatabaseUserName


	
PlsqlDefaultPage


	
PlsqlDocumentPath





	
	
PlsqlDocumentProcedure


	
PlsqlDocumentTablename


	
PlsqlErrorStyle


	
PlsqlExclusionList


	
PlsqlFetchBufferSize


	
PlsqlInfoLogging


	
PlsqlMaxRequestsPerSession


	
PlsqlNLSLanguage


	
PlsqlPathAlias


	
PlsqlPathAliasProcedure


	
PlsqlRequestValidationFunction


	
PlsqlSessionCookieName


	
PlsqlSessionStateManagement


	
PlsqlTransferMode


	
PlsqlUploadAsLongRaw














G.3.2.1 PlsqlAfterProcedure

Specifies the procedure to be invoked after calling the requested procedure. This enables you to put a hook point after the requested procedure is called. This is useful in doing SQL*Traces/SQL Profiles while debugging a problem with the requested procedure. This is also useful when you want to ensure that a specific call is made after running every procedure.


	Category	Value
	
Syntax

	
PlsqlAfterProcedure string


	
Example

	
PlsqlAfterProcedure portal.mypkg.myafterproc


	
Default

	
None











	
Note:

This parameter should only be used for debugging purposes. In addition, you could use this parameter to stop SQL trace/SQL profiling.














G.3.2.2 PlsqlAlwaysDescribeProcedure

Specifies whether the mod_plsql module should describe a procedure before trying to run it. If this is set to On, then the mod_plsql module will always describe a procedure before invoking it. Otherwise, the mod_plsql module will only describe a procedure when its internal heuristics have interpreted a parameter type incorrectly.


Glossary







Glossary



Apache HTTP Server

Apache HTTP Server is an open source web server originally derived from the National Center for Supercomputing Applications (NCSA).






authentication

The process of verifying the identity of a user, device, or other entity in a host system, often as a prerequisite to granting access to resources in a system. A recipient of an authenticated message can be certain of the message's origin (its sender). Authentication is presumed to preclude the possibility that another party has impersonated the sender.






availability

The percentage or amount of scheduled time that a computing system provides application service.






certificate

Also called a digital certificate. An ITU x.509 v3 standard data structure that securely binds an identity to a public key.

A certificate is created when an entity's public key is signed by a trusted identity, a certificate authority The certificate ensures that the entity's information is correct and that the public key actually belongs to that entity.

A certificate contains the entity's name, identifying information, and public key. It is also likely to contain a serial number, expiration date, and information about the rights, uses, and privileges associated with the certificate. It also contains information about the certificate authority that issued it.






certificate authority

A trusted third party that certifies that other entities—users, databases, administrators, clients, servers—are who they say they are. When it certifies a user, the certificate authority first seeks verification that the user is not on the certificate revocation list (CRL), then verifies the user's identity and grants a certificate, signing it with the certificate authority's private key. The certificate authority has its own certificate and public key which it publishes. Servers and clients use these to verify signatures the certificate authority has made. A certificate authority might be an external company that offers certificate services, or an internal organization such as a corporate MIS department.






CGI

Common Gateway Interface (CGI) is the industry-standard technique for transferring information between a Web server and any program designed to accept and return data that conforms to the CGI specifications.






ciphertext

Data that has been encrypted. Ciphertext is unreadable until it has been converted to plain text (decrypted) with a key. See decryption.






cleartext

See plaintext.






cryptography

The art of protecting information by transforming it (encrypting) into an unreadable format. See encryption.






DAD

See database access descriptor.






database access descriptor

A database access descriptor (DAD) is a set of values that specify how an application connects to an Oracle database to fulfill an HTTP request. The information in the DAD includes the username (which also specifies the schema and the privileges), password, connect-string, error log file, standard error message, and national language support (NLS) parameters such as NLS language, NLS date format, NLS date language, and NLS currency.






decryption

The process of converting the contents of an encrypted message (ciphertext) back into its original readable format (plaintext).






digital certificate

See certificate.






digital wallet

See wallet.






encryption

The process of converting a message thereby rendering it unreadable to any but the intended recipient. Encryption is performed by converting data into code that cannot be understood by unauthorized people or systems. There are two main types of encryption: public-key encryption (also known as asymmetric-key encryption) and symmetric-key encryption.






entry

In the context of a directory service, entries are the building blocks of a directory. An entry is a collection of information about an object in the directory. Each entry is composed of a set of attributes that describe one particular trait of the object. For example, if a directory entry describes a person, that entry can have attributes such as first name, last name, telephone number, or e-mail address.






Execution Context ID

Execution Context ID (or ECID) is a unique identifier that can be used to correlate events in different components of Fusion Middleware or in different log files as being part of the same request execution flow.






failover

The ability to reconfigure a computing system to utilize an alternate active component when a similar component fails.






Fusion Middleware Control

See Oracle Enterprise Manager Fusion Middleware Control.






HTTP

See Hypertext Transfer Protocol.






Hypertext Transfer Protocol

Hypertext Transfer Protocol (HTTP) is the underlying format used by the Web to format and transmit messages and determine what actions Web servers and browsers should take in response to various commands. HTTP is the protocol used between Oracle Fusion Middleware and clients.






LDAP

See Lightweight Directory Access Protocol.






Lightweight Directory Access Protocol

A standard, extensible directory access protocol. It is a common language that LDAP clients and servers use to communicate. The framework of design conventions supporting industry-standard directory products, such as the Oracle Internet Directory.






modules

Modules extend the basic functionality of a Web server, and support integration between Oracle HTTP Server and other Oracle Fusion Middleware components.






Oracle Enterprise Manager Fusion Middleware Control

Oracle Enterprise Manager Fusion Middleware Control (Fusion Middleware Control) provides Web-based management tools designed specifically for Oracle Fusion Middleware. Using Fusion Middleware Control, you can monitor and configure the components of your application server, such as deploy applications, manage security, and create and manage Oracle Fusion Middleware clusters.






PEM

Privacy-enhanced Electronic Mail. An encryption technique that provides encryption, authentication, message integrity, and key management.






PL/SQL

PL/SQL is the Oracle proprietary extension to the SQL language. PL/SQL adds procedural and other constructs to SQL that make it suitable for writing applications.






plaintext

Also called cleartext. Unencrypted data in ASCII format.






plug-in

A module that adds a specific feature or service to a larger system.






port

A port is a number that TCP uses to route transmitted data to and from a particular program.






private key

In public-key cryptography, this key is the secret key. It is primarily used for decryption but is also used for encryption with digital signatures. See public/private key pair.






proxy server

A proxy server typically resides on a network firewall and allows clients behind the firewall to access Web resources. All requests from clients go to the proxy server rather than directly to the destination server. The proxy server forwards the request to the destination server and passes the received information back to the client. The proxy server channels all Web traffic at a site through a single, secure port; this allows an organization to create a secure firewall by preventing Internet access to internal systems, while allowing Web access.






public key

In public-key cryptography, this key is made public to all. It is primarily used for encryption but can be used for verifying signatures. See public/private key pair.






public-key cryptography

Encryption method that uses two different random numbers (keys). See public key and public-key encryption.






public-key encryption

The process where the sender of a message encrypts the message with the public key of the recipient. Upon delivery, the message is decrypted by the recipient using its private key.






public/private key pair

A set of two numbers used for encryption and decryption, where one is called the private key and the other is called the public key. Public keys are typically made widely available, while private keys are held by their respective owners. Though mathematically related, it is generally viewed as computationally infeasible to derive the private key from the public key. Public and private keys are used only with asymmetric encryption algorithms, also called public-key encryption algorithms, or public-key cryptosystems. Data encrypted with either a public key or a private key from a key pair can be decrypted with its associated key from the key-pair. However, data encrypted with a public key cannot be decrypted with the same public key, and data encrypted with a private key cannot be decrypted with the same private key.






RSA

A public-key encryption technology developed by RSA Data Security. The RSA algorithm is based on the fact that it is laborious to factor very large numbers. This makes it mathematically unfeasible, because of the computing power and time required to decode an RSA key.






scalability

A measure of how well the software or hardware product is able to adapt to future business needs.






Secure Sockets Layer

Secure Sockets Layer (SSL) is a standard for the secure transmission of documents over the Internet using HTTPS (secure HTTP). SSL uses digital signatures to ensure that transmitted data is not tampered with.






single sign-on

Single sign-on enables a you to authenticate once, combined with strong authentication occurring transparently in subsequent connections to other databases or applications. It lets you access multiple accounts and applications with a single password, entered during a single connection.






SSL

See Secure Sockets Layer.






wallet

Also called a digital wallet. A wallet is a data structure used to store and manage security credentials for an individual entity. It implements the storage and retrieval of credentials for use with various cryptographic services. A Wallet Resource Locator (WRL) provides the necessary information to locate the wallet.






Wallet Resource Locator

A wallet resource locator (WRL) provides all necessary information to locate a wallet. It is a path to an operating system directory that contains a wallet.






WRL

See Wallet Resource Locator.






X.509

A standard for creating digital certificates.







Index






Index

A  C  D  E  F  H  I  L  M  N  O  P  R  S  T  U  W  X 


A

	access log, 7.1.2
	accessing
	
	Fusion Middleware Control, 3.3



	Al16UTF-16, 2.6.1.3
	Apache, Glossary
	
	security patches, B.4
	version, 1.1



	Apache HTTP Server, 1.1
	ApacheStyle, G.3.2.17
	application-specific error pages, B.1
	authentication, 8.1, Glossary
	authorization, 8.1
	availability, Glossary





C

	cache.conf, 2.7.2.3, G.3.3
	certificate, Glossary
	
	digital, Glossary
	X.509, G.2.10



	certificate authority, Glossary
	certificate revocation list, G.2.2
	CGI, Glossary
	ciphertext, Glossary
	cleartext, Glossary
	CompatEnvVars, G.2.10
	confidentiality, 8.1
	configuration files
	
	cache.conf, 2.7.2.3, G.3.3
	dads.conf, 2.7.2.2, G.3.2
	plsql.conf, 2.7.2.1
	syntax, 1.6



	creating
	
	DAD, 2.7.1



	cryptography, Glossary





D

	DAD, Glossary
	
	creating, 2.7.1
	password
	
	obfuscation, G.3.2.11






	dads.conf, 2.7.2.2, G.3.2
	dadTool.pl, G.3.2.11
	database access descriptor, 2.7.2.2, G.3.2, Glossary
	database usage notes, 2.6.1
	DebugStyle, G.3.2.17
	decryption, Glossary
	digital certificate, Glossary
	digital wallet, Glossary
	directives
	
	create name space, B.7
	RewriteLogLevel, C.6.1



	directory structure, 1.5, 1.5
	distinguished name, G.2.10
	Dynamic Monitoring Service, G.3.1.1





E

	encryption, 1.3.1, Glossary
	entry, Glossary
	error log, C.6.3
	ExportCertData, G.2.10





F

	failover, Glossary
	FakeBasicAuth, G.2.10
	FAQ, B
	
	Apache security patches, B.4
	compressing
	
	output, B.6



	offering HTTPS to ISP customers, B.2
	protecting Web site
	
	hackers, B.8






	features, 1.1
	frequently asked questions, B
	Fusion Middleware Control, Glossary
	
	accessing, 3.3
	managing, 3
	
	Oracle HTTP Server, 3.4



	Oracle HTTP Server Home page, 3.4








H

	hackers, B.8
	HTTP, Glossary
	HTTP listener, 1.1
	Hypertext Transfer Protocol, Glossary





I

	identd, 7.1.2
	IdentityCheck, 7.1.2
	InfoDebug, G.3.2.20





L

	LDAP, Glossary
	lightweight directory access protocol, Glossary
	listener addresses, 6.3
	listener ports, 6.3
	LoadModule directive, 2.7.2.1
	log files, C.6
	
	locations, C.6



	log formats
	
	authuser, 7.1.2
	bytes, 7.1.2
	Common Log Format, 7.1.2
	data, 7.1.2
	host, 7.1.2
	ident, 7.1.2
	request, 7.1.2
	status, 7.1.2



	log rotation, 7.2.1.3





M

	managing
	
	Fusion Middleware Control, 3
	Oracle HTTP Server, 3.4



	mod_certheaders, 2.2
	mod_dms, 2.4
	mod_ossl, 2.5, 2.5
	
	directives
	
	SSLAccelerator, G.2.1
	SSLCARevocationFile, G.2.2
	SSLCARevocationPath, G.2.3
	SSLCipherSuite, G.2.4, G.2.13
	SSLEngine, G.2.5
	SSLMutex, G.2.8
	SSLOptions, G.2.10
	SSLPassPhraseDialog, G.2.11
	SSLProtocol, G.2.12
	SSLRequire, G.2.17
	SSLRequireSSL, G.2.18
	SSLSessionCache, G.2.19
	SSLSessionCacheTimeout, G.2.20
	SSLVerifyClient, G.2.21
	SSLWallet, G.2.22






	mod_perl, 1.1, 2.6, 2.6
	
	database usage notes, 2.6.1
	testing database connection, 2.6.1.2



	mod_plsql, 2.7
	
	configuration files, 2.7.2, G.3
	
	cache.conf, 2.7.2.3, G.3.3
	dads.conf, 2.7.2.2, G.3.2
	plsql.conf, 2.7.2.1



	configuration parameters, 2.7.3
	CustomOwa, G.3.2.3
	PerPackageOwa, G.3.2.3



	mod_ssl, 2.5
	ModplsqlStyle, G.3.2.17
	modules, 1.1, Glossary
	
	mod_certheaders, 2.2
	mod_dms, 2.4
	mod_ossl, 2.5
	mod_perl, 2.6
	mod_plsql, 2.7
	mod_ssl, 2.5



	Multipurpose Internet Mail Extension, 4.6.2
	multiviews, B.3, B.3





N

	nFast, G.2.1





O

	OptRenegotiate, G.2.10
	ORA_IMPLICIT, 2.6.1.3
	ORA_NCHAR, 2.6.1.3
	Oracle Enterprise Manager Application Server Control, Glossary
	Oracle HTTP Server
	
	C/C++, 1.3.8
	components
	
	HTTP listener, 1.1
	modules, 1.1
	Perl interpreter, 1.1



	compressing
	
	output, B.6



	configuration files syntax, 1.6
	directory structure, 1.5
	FAQ, B
	features, 1.1
	load balancing, 1.3.9
	managing, 3.4
	overview, 1
	Perl, 1.3.6
	PHP, 1.3.7
	PL/SQL server pages, 1.3.4
	process model
	
	security considerations, 5.4



	restarting, 4.3.4
	security, 1.3.1
	server side include, 1.3.5
	single sign-on, 1.3.2
	starting, 4.3.2
	stopping, 4.3.3
	support, 1.7
	URL rewriting and proxy server, 1.3.3



	Oracle HTTP Server Home page, 3.4
	overview, 1





P

	PEM, Glossary
	Perl
	
	access database, 2.6.1.1



	Perl interpreter, 1.1
	PID file, 4.3.1
	plaintext, Glossary
	PL/SQL, Glossary
	plsql.conf, 2.7.2.1
	PlsqlErrorStyle
	
	ApacheStyle, G.3.2.17
	DebugStyle, G.3.2.17
	ModplsqlStype, G.3.2.17



	PlsqlInfoLogging
	
	InfoDebug, G.3.2.20



	plug-in, Glossary
	port, Glossary
	private key, Glossary
	protecting
	
	Web site, B.8



	proxy server, Glossary
	public key, Glossary
	public-key cryptography, Glossary
	public-key encryption, Glossary
	public/private key pair, Glossary





R

	restarting, 4.3.4
	rewrite log, C.6.1, C.6.1
	RewriteLogLevel, C.6.1
	RSA, Glossary





S

	scalability, Glossary
	script log, C.6.2
	Secure Sockets Layer, Glossary
	secure sockets layer, 4.6.1
	security
	
	authentication, 8.1
	authorization, 8.1
	confidentiality, 8.1



	single sign-on, Glossary
	specifying
	
	listener addresses, 6.3
	listener ports, 6.3
	log file locations, C.6
	log files, C.6
	
	access log, 7.1.2
	error log, C.6.3
	lot rotation, 7.2.1.3
	PID file, 4.3.1
	rewrite log, C.6.1, C.6.1
	script log, C.6.2






	SQL NCHAR datatypes, 2.6.1.3
	SSL, 4.6.1, Glossary
	SSL HW Acceleration Support, 1.3.1
	SSLAccelerator, G.2.1
	
	nFast, G.2.1



	SSLCARevocationFile, G.2.2
	SSLCARevocationPath, G.2.3
	SSLCipherSuite, G.2.4, G.2.13
	
	tags, G.2.4, G.2.13



	SSLEngine, G.2.5
	SSLMutex, G.2.8
	SSLOptions, G.2.10
	
	CompatEnvVars, G.2.10
	ExportCertData, G.2.10
	FakeBasicAuth, G.2.10
	OptRenegotiate, G.2.10
	StdEnvVars, G.2.10
	StrictRequire, G.2.10



	SSLPassPhraseDialog, G.2.11
	SSLProtocol, G.2.12
	SSLReqiureSSL, G.2.18
	SSLRequire, G.2.17
	
	variables
	
	SSL, G.2.17
	standard, G.2.17






	SSLSessionCache, G.2.19
	SSLSessionCacheTimeout, G.2.20
	SSLVerifyClient, G.2.21
	SSLWallet, G.2.22
	starting, 4.3.2
	StdEnvVars, G.2.10
	stopping, 4.3.3
	StrictRequire, G.2.10
	support, 1.7





T

	troubleshooting, C
	
	Oracle HTTP Server may fail to start if PM files are not located correctly, C.4
	permission denied, C.3








U

	UTF8, 2.6.1.3





W

	wallet, Glossary
	
	digital, Glossary



	Wallet Resource Locator, Glossary
	WRL, Glossary





X

	X.509, Glossary






Oracle Legal Notices

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/cre-status.gif
| satus_[machine Name

my_tachine_1
my_Wachine_1

my_Wachine_1

LA LX)

my_Wachine_1





OEBPS/img/virtual_hosts_create.gif
@ ohs1 @
@ Orack HTTP Server - [@Startlp [ ShutDown..

Loggedin as weblogicl [ adc2100252.us.orade.com
Page Refreshed Jun 5, 2013 9:16:16 P PDOT &

Virtual Hosts >

@ tnformation
Al changes made in this page requie 3 server restart to take effect.
Create Virtual Host

* Virtual Host Name

serverheme|

DoamentRoot|

Drectorylndex [

AdviistatorsEmai Address [
Type [name based [<]





OEBPS/img/log_access.gif
© Time Based

Start Time [June 5, 2013 10:14:1

RotatonFrequecy |

Retentonperod |

ol






OEBPS/img/log_config_12c.gif
@ ohs1 @

Loggedin as weblogicl [ adc2100282.us.orade.com
@ OradeHTTP Server + [@StrtUp [ ShutDown...

Page Refeshed Jun 5, 2013 95819 P POT €

@ mformation
Al changes made intis page requre a server restart to take effect.
Log Configuration
ErrorLog

o | s

‘Orade HTTP Server records server error information i erfor logs. Speciy the error log settings, induding whether to generate log messages n Oradle
"Diagnostic Logging (0DL) text, ODL XML or Apache format. ODL is 2 standard format and mechanism for correlating the ciagnostics messages from
‘components across Orade Fusion Middleware. To view log messages choose Logs from the Oracle HITP Server menu.
General
Fie Format © ODL-Text ©) ODLXML ©) APACHE

Log File/Diectory | S{ORACLE_INSTANCE} Servers/S{COMPONE!

Level [WARNING: =
Rotation Policy
©NoRotaton © Sie Besed © Time Besed
*Maximum Log File Size (MB) 10 ‘Start Time [June 5, 2013 9:58:191 &
Maximum Fies To Retain 7 Rotation Frequency =]
Retenton Perod =l
AccessLog

Access logs record all requests processed by the server. The logs contain basic information about every HTTP transaction handled by the server. If you want to
create a new log format, update an existing one with a new value, or delete one, dick Manage Log Formats.

G Ceste pEat. 3 Remove | ManageLogFomsts
JLog Fie path

S{ORACLE_INSTANCE) fervers/S{COMPONENT_NAWE)fogs/access Jog

JLog Format






OEBPS/img/ports2.gif
4 ohsl@®

@ Orack HTTP Server +
Port Usage
PortinUse IP Address Component Protocol
8689 ALL ohs1 https.
a3 AL ohs1 https

8888 ALL ohst http






OEBPS/img/cre_inst_conf.gif
[ Confimation

OHS instance ohs4 successfuly created

OHS Instances
Use thi page o Create, Delete an Instance of OHS.

dp Create 3¢ ek

Eo

ohs4





OEBPS/img/cre_ohs_inst_page_new.gif
base_domain ®

5] Webtogis Donai ~

OHS Instances
Use thi page o Create, Delete an Instance of OHS.

Page Fefr

X

o Create 3¢ Dekete.

b ot [uachwavams
= Q ry e !
aus B i
oz *

my_tachine_1





OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware
Administering Oracle
HTTP Server, 12c
(12.1.2)





OEBPS/img/srv_prop3.gif
@ ohs1 @

-

Logged in 2s weblogic| (I adc2100252.us.oradke.com
Page Refreshed May 29,2013 11:0330 AM PDT

@ tnformation
Al changes made n this page requre a server restart to take effect,
Server Configuration
‘Configure basic OH settings, such as document root dectory, the user and group under which th server runs, instaled modiles, and aases.
Server Root Diectory "${ORACLE_INSTANCE}/conifig/fmwconifig/componients/${COMPONENT TYPE}finstances/$(COMPONENT_NAME}™
‘Document Root [ *${ORACLE INSTANCE} confg/fimwconiig/components/{COMPOT
Administrator's E-mai |
Directory Index [index hind
Operating System User |
‘Operating System Group |

Modules
“The following are the installed OHS moduies that can be enabled or disabled.

‘Alas s used to map URLS to esystem locatons. This alows for documents o be stored i th local lesystem other then under the Document Root.
o AddRon 3¢ Remove

[Lpsn [FiePath o Drectory ath

[ fcons/ ["stPRODUCT_HOME}cons/™

@ TIP For example, the columns can have the following values: URL Path: fmage, File Path or Directory Path: ftp/pubjimage.





OEBPS/img/search_icon.gif





OEBPS/img/ports_config_create.gif
@ ohs1 @ Loggedin as weblogicl [ adc2100282.us.orade.com
@ Orace HTTP Server - [@Startlp [ ShutDown... Page Refreshed Jun's, 2013 9:09:14 PHPDT &

@ tnformation
‘Ahanges made inthis page requie a server restart to take effect.
Edit Port : oracle.ohs:0HSInstance=ohs1,name=7777,type=OHSInstance.PortConfig O | Cancel

Edit atirbutes of a port for thissystem component, Ports created can sten o local P Address of associated host o any of avalable network.
nterfaces. SSL for a port can be configred here Virtual Hosts

|Endpoint Attributes

PortType. Listen
Endpoint Name  orade.ohs:OHSInstance=ohs1,name=7777, type=OHsInstance.PortConfig
P addess [ [=]

*port [7777





OEBPS/img/cre_ohs_inst_page.gif
base_domain @ Logged in as weblogic
5] WebLegic Domain ~ Page Refreshed Apr24, 2015 12:32:37 P PDT

Create OHS Instance ok | cancel

Enter OHS Instance name and sekot a machie o which the nstance wil be assocated.

*Instance Name

.





OEBPS/dcommon/oracle.gif





OEBPS/img/ohs_home12c.gif
@ ohs1 @
@ Orace HTTP Server - [3Startlp [ ShutDown

Change Center®
a Changes - ] Recording ~

Target Navigation v/ Virtual Hosts G
o+ = [ReauestTroughput|_Response Size (@) Port
locahostocadon 0.0 0.00 9955
Application Deployments *:4443-2dc210028. 0.00 0.00 4443
¥ B2 veblogicDomain
7 £ base_domain
&5 Adminserver
| Module Request Statistics G
ame [ hougrpu] Processed]  processig
mod_plsal.c 0.00 0 -
|mod_dms.c. 0.00 48 EI
|mod_weblogic.c 0.00 0
mod s 000 o
mod ewrte.c 000 o
mod context.c 000 o
mod setenvc 000 o
mod ricue id.c 000 o
mod userrac.c 000 o
mod_hesders.c 000 o

Logged in 2s weblogic! (3 adc2100252.us.oradke.com
Page Refieshed Hay 22, 2013 337:48 PHPDT

| Response and Load LT

4

9

2

1

0 03
02
o1
00

0327PM_ 0325 0331 0333 0m3s 0337 038 034l

May 222013

IReguest Processing T (nllseconds) I Request Throughput (requests per second)

Tabe View
</ CPU and Hemory Usage L=
10
05
06
04 o
02
00 —_—
100
o:PM o032 0331 0333 0m3 0% 0% 03l O
May 222013
WCPUUsage (%) MMemory Usage (VE)
Tabe View
</ Resource Center o
Before You Begin -

@ miroduction to Orae HTTP Server

Q0 Getting Started with Managing Oracie HTTP Server with Oradle Enterprise Manager
‘Typical Administration Tasks

Q2 configuring Oracle HTTP Server Properties

@ configuring mod_wl_ohs b

Q@ configuring Logs

Q0 Configuring a Virtua Host.
Other Resources






OEBPS/img/log_format_12c.gif
@ ohs1 @ Loggedin as weblogicl [ adc2100282.us.orade.c