Administering Oracle HTTP Server
12c (12.1.2)
E37888-07
January 2015
This document describes how to configure and use Oracle HTTP Server as a framework for hosting static pages, dynamic pages, and applications over the Web.
Oracle Fusion Middleware Administering Oracle HTTP Server, 12c (12.1.2)
E37888-07
Copyright © 2002, 2015, Oracle and/or its affiliates. All rights reserved.
Primary Author: Tom Pfaeffle
Contributor: Jeff TrawickLeonard Bottleman, Ken Vincent, Maria Choudhary, Edwin Spear
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
This guide describes how to manage Oracle HTTP Server, including how to start and stop Oracle HTTP Server, how to manage network components, configure listening ports, and extend basic functionality using modules.
Administering Oracle HTTP Server is intended for application server administrators, security managers, and managers of databases used by application servers. This documentation is based on the assumption that readers are already familiar with Apache HTTP Server.
Unless otherwise mentioned, the information in this document is applicable when Oracle HTTP Server is installed with Oracle WebLogic Server and Oracle Fusion Middleware Control. It is assumed that readers are familiar with the key concepts of Oracle Fusion Middleware as described in the Oracle Fusion Middleware Concepts Guide and the Administering Oracle Fusion Middleware.
For information about installing Oracle HTTP Server in standalone mode, see Installing and Configuring Oracle HTTP Server.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following documents in the Oracle Fusion Middleware 11g Release 1 (11.1.1) documentation set:
Note: Readers using this guide in PDF or hard copy formats will be unable to access third-party documentation, which Oracle provides in HTML format only. To access the third-party documentation referenced in this guide, use the HTML version of this guide and click the hyperlinks. |
The following text conventions are used in this document:
Convention | Meaning |
---|---|
boldface | Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary. |
italic | Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values. |
monospace | Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter. |
The following topics introduce the new and changed features of Oracle HTTP Server and other significant changes that are described in this guide, and provides pointers to additional information. This document is the new edition of the formerly titled Administrator's Guide for Oracle HTTP Server.
This section contains the following information:
This section describes new features in this version of Oracle HTTP Server. These features include:
This version of Oracle HTTP Server introduces the WebLogic Management Framework, a set of tools that leverage Oracle WebLogic 12c (12.1.2) interfaces to provide a simple, consistent and distributed framework for managing Oracle. For more information on the WebLogic Management Framework, see "What is the WebLogic Management Framework?" in Understanding Oracle Fusion Middleware.
The following changes are a result of the new framework:
Oracle HTTP Server 12.1.2 now complies with the Federal Information Processing Standard publication 140 (FIPS 140). Although the modules used in this version of Oracle HTTP Server are still undergoing their FIPS 140 validation, it uses a version of the underlying SSL libraries that has gone through formal FIPS certification.
As part of Oracle HTTP Server's FIPS 140 compliance, the mod_ossl plug-in now includes the SSLFIPS directive. This directive enables FIPS from Oracle HTTP Server configuration files by toggling the SSL library FIPS_mode flag on or off. SSLFIPS must be set in the global server context and cannot be configured with conflicting settings (for example, SSLFIPS
on
followed by SSLFIPS off
or similar). The mode applies to all SSL library operations.
For more information on SSLFIPS, see Section G.2.6, "SSLFIPS".
Note: FIPS is available only on the UNIX/Linux platform. It is not available on the Windows platform |
When configuring mod_wl_ohs by using Fusion Middleware Control, you can see a list of clusters or servers available to the selected Oracle HTTP Server instance by clicking the Search icon:
Selecting this tool displays a selection dialog box, from which you can select the cluster or server you want to use.
You can now easily add valid WebLogic Server and endpoint locations for a specified Base URL to the Locations table on the mod_wl_ohs Configuration screen by clicking the AutoFill button. Data for any location of the same name will be updated and any new locations will be added to the table.
This section describes features that have been significantly updated from earlier versions of Oracle HTTP Server. These updates include:
The WebLogic Server plug-in logs are now part of the Oracle HTTP Server error log and are prefixed with weblogic
: to easily identify them. Hence the directives WLLogFile
and Debug
are deprecated. If the configuration still uses any of these directives, the following note will appear in the console log file:
Oracle HTTP Server no longer supports the sqlnet.ora NZ trace logging mechanism. As of version 12.1.2, you should use the new SSLNZTraceLogLevel
directive to enable NZ trace logging using ssl.conf file. For more information, see Section G.2.9, "SSLNZTraceLogLevel".
The following features were removed from 12.1.2:
Oracle Web Cache is no longer included in Fusion Middleware 12c. Oracle HTTP Server support for integration with Oracle Web Cache has been removed.
The mod_oradav module is no longer included with Oracle HTTP Server. Customers who require DAV support in Oracle HTTP Server must use a third-party solution, such as the open source module mod_dav.
The mod_osso module is no longer included with Oracle HTTP Server. Oracle WebGate is the recommended replacement. WebGate is now installed with Oracle HTTP Server.
The SSO plug-ins for IIS and iPlanet are no longer included with Oracle HTTP Server. Oracle WebGate is the recommended replacement.
This part presents introductory and conceptual information about Oracle HTTP Server. It contains the following chapters:
This chapter serves as an introduction to the Oracle HTTP Server (OHS). It describes key features of OHS and its place within the Oracle Fusion Middleware Web Tier and also provides information on the OHS directory structure, the OHS configuration files, and how to obtain OHS support.
Oracle HTTP Server is the web server component for Oracle Fusion Middleware. It provides a listener for Oracle WebLogic Server and the framework for hosting static pages, dynamic pages, and applications over the Web.
This chapter includes the following sections:
Oracle HTTP Server 12c (12.1.2) is based on Apache HTTP Server 2.2.22 infrastructure (with critical bug fixes from higher versions) and includes modules developed specifically by Oracle. The features of single sign-on, clustered deployment, and high availability enhance the operation of the Oracle HTTP Server. Oracle HTTP Server has the following components to handle client requests:
Oracle HTTP Server enables developers to program their site in a variety of languages and technologies, such as:
Oracle HTTP Server can also be a proxy server, both forward and reverse. A reverse proxy enables content served by different servers to appear as if coming from one server.
Note: For more information about Fusion Middleware concepts, see Understanding Oracle Fusion Middleware. |
Oracle HTTP Server leverages the WebLogic Management Framework to provide a simple, consistent and distributed environment for administering Oracle HTTP Server, Oracle WebLogic Server, and the rest of the Fusion Middleware stack. It acts as the HTTP front-end by hosting the static content from within and by leveraging its built-in WLS Web Server Proxy Plug-In 12.1.2 to route dynamic content requests to WebLogic-managed servers. In such cases, there are multiple ways of implementing Oracle HTTP Server, depending on your requirements. The major implementations, or "topologies," are described in Table 1-1.
Table 1-1 Oracle HTTP Server Topologies
Topology | Description | For More Information |
---|---|---|
Standard Installation Topology for Oracle HTTP Server in a WebLogic Server Domain | This topology provides enhanced management capabilities through the Fusion Middleware Control and WebLogic Management Framework. A WebLogic Server domain can be scaled out to multiple physical machines and be centrally managed by the administration server. This topology is depicted in Figure 1-1. | See "Standard Installation Topology for Oracle HTTP Server in a WebLogic Server Domain" in Installing and Configuring Oracle HTTP Server. |
Standard Installation Topology for Oracle HTTP Server in a Standalone Domain | This topology is similar to an Oracle WebLogic Server Domain topology, but does not provide an administration server or managed servers. It is useful when you do not want your Oracle HTTP Server implementation to front a Fusion Middleware domain and do not need the management functionality provided by Fusion Middleware Control. This topology is depicted in Figure 1-2. | See "Standard Installation Topology for Oracle HTTP Server in a Standalone Domain" in Installing and Configuring Oracle HTTP Server. |
High availability implementation, with two separate hosts for Oracle HTTP Server on a Web Tier, managed by FMW Control | This topology provides a highly available Oracle Fusion Middleware deployment where each pair of components (Oracle HTTP Server and Web Logic Managed Servers) exist on different host computers. You access the system from the client tier and requests are routed, through a load balancer, to Web servers running Oracle HTTP Servers in the web tier. This topology is depicted in Figure 1-1. | See "Understanding the Oracle Fusion Middleware Standard HA Topology" in the High Availability Guide. |
Managed Oracle HTTP Server Test Domain | This topology provides a single machine WebLogic Server Domain with an Oracle HTTP Server instance and is geared toward testing. It provides all the administrative capabilities of a full production domain but does not require an external database. The test domain cannot be scaled out to other machines and is not certified to be used in production. | See "createOHSTestDomain()" in the WLST Command Reference for Infrastructure Components. |
The following sections describe some key features of Oracle HTTP Server:
Secure Sockets Layer (SSL) is required to run any website securely. Oracle HTTP Server supports SSL encryption based on patented, industry standard, algorithms. SSL works seamlessly with commonly-supported Internet browsers. Security features include the following:
WebGate enables single sign-on (SSO) for Oracle HTTP Server. WebGate examines incoming requests and determines whether the requested resource is protected, and if so, retrieves the session information for the user. Through WebGate, Oracle HTTP Server becomes an SSO partner application enabled to use SSO to authenticate users, obtain their identity by using Oracle Single Sign-On, and to make user identities available to web applications accessed through Oracle HTTP Server.
Active websites usually update their web pages and directory contents often, and possibly their URLs as well. Oracle HTTP Server makes it easy to accommodate the changes by including an engine that supports URL rewriting so end users do not have to change their bookmarks.
Oracle HTTP Server also supports reverse proxy capabilities, making it easier to make content served by different servers to appear from one single server.
PL/SQL Server Pages are similar in concept to the JavaServer Pages. The mod_plsql module enables PL/SQL to be used as the scripting language within an HTML page. PL/SQL Server Pages get translated into a stored procedure, which then uses the module to send the output to the browser.
Server-Side Includes provide an easy way of adding dynamic or uniform static content across all pages on a site. It is typically used for header and footer information. Oracle HTTP Server supports special directives to enable these only for certain types of files, or for specified virtual hosts.
Perl is a scripting language often used to provide dynamic content. Perl scripts can either be called as a CGI program, or directly through the mod_perl module. Oracle Fusion Middleware uses Perl version 5.10.
Dynamic Scripting languages, for example Ruby, PHP, Python, which capable of being embedded in HTML, making them well-suited for Web development. Their scripts can be executed within Oracle HTTP Server through the built-in CGI or FastCGI modules.
CGI programs are commonly used to program Web applications. Oracle HTTP Server enhances the programs by providing a mechanism to keep them active beyond the request lifecycle.
You can install Oracle HTTP Server either collocated with Oracle WebLogic Server, called a WebLogic Server Domain or as a standalone domain. You can select which environment you want to use during server configuration. Be aware that certain functionality will not be available to standalone domains.
A WebLogic Server Domain is one configured with an administration server and managed servers. A WebLogic Server Domain contains a WebLogic Administration Server, zero or more WebLogic Managed Servers, and zero or more System Component Instances (for example, an Oracle HTTP Server instance). This type of domain provides enhanced management capabilities through the Fusion Middleware Control and WebLogic Management Framework present throughout the system. A WebLogic Server Domain can span multiple physical machines, and it is centrally managed by the administration server. Because of these properties, a WebLogic Server Domain provides the best integration between your System Components and Java EE Components.
WebLogic Server Domains support all WebLogic Management Framework tools.
Because Fusion Middleware Control provides advanced management capabilities, Oracle recommends using WebLogic Server Domain.
A standalone domain is a container for system components, such as Oracle HTTP Server. It has a directory structure similar to an Oracle WebLogic Server Domain, but it does not contain an Administration Server or Managed Servers. It can contain one or more instances of system components of the same type, such as Oracle HTTP Server, or a mix of system component types.
For standalone domains, the WebLogic Management Framework supports these tools:
nmStart()
, nmStop()
, nmSoftRestart()
, and nmKill()
that start and stop Oracle HTTP Server instance. nmConnect()
to connect to the node manager nmLog()
to get the node manager log information For a complete list of supported WLST Node Manager commands, see "Node Manager Commands" in "WLST Command Reference for WebLogic Server".
Note: If you have a remote Oracle HTTP Server in a managed mode and another in standalone with the remote administration mode enabled, you can use WLST to perform management tasks such as SSL configuration. A vanilla Oracle HTTP Server in a standalone domain can be used only as a WebLogic Server Node Manager and for Oracle HTTP Server start/stop purposes. You can also do this by using a command-line script. |
Generally, you would use a standalone domain when you do not want your Oracle HTTP Server implementation to front an Fusion Middleware domain and do not need the management functionality provided by Fusion Middleware Control. Nor would you use it when you want to keep Oracle HTTP Server in a "demilitarized zone" (DMZ; that is, the zone between the internal and external firewalls) and you do not want to open management ports used by the Node Manager.
As described in Section 1.4, "Domain Types", Oracle HTTP Server domains can be either WebLogic Server or standalone. When installed, each domain has its own directory structure that contains files necessary to implement the domain type. For a complete file structure topology, see Appendix A "Understanding the Oracle HTTP Server Directory Structures" in Installing and Configuring Oracle HTTP Server.
The Oracle HTTP Server configuration is specified through configuration files of several types, notably .conf files, similar to those used in Apache HTTP Server. This section explains the layout of the configuration file directories, mechanisms for editing the files, and more about the files themselves.
Two configuration directories exist for each Oracle HTTP Server instance:
DOMAIN_HOME/config/fmwconfig/components/OHS/componentName
DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName
Each of the configuration directories will contain the complete OHS configuration -- httpd.conf, admin.conf, auditconfig.xml, etc.
Modifications to the configuration are made in the staging directory. (See Section 1.6.2, "Editing the Configuration") These modifications are automatically propagated to the run-time directory during the following operations:
Modifications are replicated to the run-time directory on the node with the managed OHS instance after changes are activated from within Fusion Middleware Control, or when the administration server initializes and prior changes need to be replicated. If communication with node manager is broken at the time of the action, replication will occur at a later time when communication has been restored.
Modifications are synchronized with the run-time directory when a start, restart, or stop action is initiated. Some changes might be written to the run-time directory during domain update, but the changes will be finalized during synchronization.
Any modifications to the configuration within the run-time directory will be lost during replication or synchronization.
Note: When a standalone instance is created, the keystores directory containing a demo wallet is created only in the run-time directory.Before creating the first new wallet for the instance, you must create a keystores directory within the staging directory. DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/keystores Wallets must then be created within that keystores directory. |
For instances that are part of a WebLogic Server Domain, the Oracle HTTP Server configuration is managed by Fusion Middleware Control and the management infrastructure. Direct editing of the configuration in the staging directory is subject to being overwritten after subsequent management operations, including modifying the configuration in Fusion Middleware Control. For such instances, direct editing should only be performed when the administration server is inactive. When the administration server is subsequently started, the results of any manual edits will be replicated to the run-time directory on the node of the managed instance.
For standalone instances, the configuration can be edited directly within the staging directory at any time. The configuration will be activated during start, restart, or stop.
The default Oracle HTTP Server configuration contains the files described in Appendix D, "Configuration Files".
Additional files can be added to the configuration and included in the top-level .conf file httpd.conf using the Include
directive. For information on how to use this directive, see the Include directive documentation, at:
http://httpd.apache.org/docs/2.2/mod/core.html#include)
The default configuration provides an Include directive which includes all .conf files in the moduleconf/ directory within the configuration.
An Include directive should be added to an existing .conf file, usually httpd.conf, for .conf files which are not stored in the moduleconf/ directory. This may be required if the new .conf file must be included at a different configuration scope, such as within an existing virtual host definition.
Oracle provides technical support for the following Oracle HTTP Server features and conditions:
This chapter provides a high-level description of the Oracle-developed modules, or "plug-ins," used by the Oracle HTTP Server (OHS). It also provides a list of all other Apache- and third party-developed modules for OHS.
Modules (mods) extend the basic functionality of Oracle HTTP Server and support integration between Oracle HTTP Server and other Oracle Fusion Middleware components.
This chapter discusses the modules developed specifically by Oracle for Oracle HTTP Server. It includes the following sections:
This section lists all of the modules bundled with Oracle HTTP Server.
Oracle-developed Modules for Oracle HTTP Server
The following modules have developed specifically by Oracle for Oracle HTTP Server:
Apache HTTP Server and Third-party Modules in Oracle HTTP Server
Oracle HTTP Server also includes out-of-the-box the Apache HTTP Server and third-party modules listed in Table 2-1. These modules are not developed by Oracle.
Table 2-1 Apache HTTP Server and Third-party Modules in Oracle HTTP Server
Module | For more information, see: |
---|---|
mod_actions | |
mod_alias | |
mod_asis | |
mod_auth_basic | |
mod_authn_alias | |
mod_authn_anon | |
mod_authn_default | |
mod_authn_file | |
mod_authz_default | |
mod_authz_groupfile |
|
mod_authz_host | |
mod_authz_user | |
mod_autoindex | |
mod_cern_meta | |
mod_cgi | |
mod_cgid (UNIX only) | |
mod_deflate | |
mod_dir | |
mod_dumpio | |
mod_env | |
mod_expires | |
mod_fastcgi | |
mod_file_cache | |
mod_filter | |
mod_headers | |
mod_imagemap | |
mod_include | |
mod_info | |
mod_log_config | |
mod_logio | |
mod_mime | |
mod_mime_magic | |
mod_negotiation | |
mod_perl | |
mod_proxy | |
mod_proxy_balancer |
|
mod_proxy_connect | |
mod_proxy_ftp | |
mod_proxy_http | |
mod_reqtimeout | |
mod_rewrite | |
mod_security |
Also, for Oracle HTTP Server-specific information regarding mod_security, see Appendix F, "Configuring mod_security". |
mod_setenvif | |
mod_speling | |
mod_status | |
mod_substitute | |
mod_unique_id | |
mod_userdir | |
mod_usertrack | |
mod_vhost_alias |
The mod_certheaders module enables reverse proxies that terminate Secure Sockets Layer (SSL) connections in front of Oracle HTTP Server to transfer information regarding the SSL connection, such as SSL client certificate information, to Oracle HTTP Server and the applications running behind Oracle HTTP Server. This information is transferred from the reverse proxy to Oracle HTTP Server using HTTP headers. The information is then transferred from the headers to the standard CGI environment variable. The mod_ossl module or the mod_ssl module populate the variable if the SSL connection is terminated by Oracle HTTP Server.
The mod_certheaders module also enables certain requests to be treated as HTTPS requests even though they are received through HTTP. This is done using the SimulateHttps
directive.
SimulateHttps
takes the container it is contained within, such as <VirtualHost>
or <Location>
, and treats all requests received for this container as if they were received through HTTPS, regardless of the real protocol used by the request.
See Section G.1, "mod_certheaders" for a list and description of the directives accepted by mod_certheaders.
mod_context creates or propagates Execution Context IDs, or ECIDs, for requests handled by Oracle HTTP Server. If an ECID has been created for the request execution flow before it reaches Oracle HTTP Server, mod_context will make the ECID available for logging within Oracle HTTP Server and for propagation to other Fusion Middleware components, such as WebLogic Server. If an ECID has not been created when the request reaches Oracle HTTP Server, mod_context will create one.
mod_context is not configurable. It is enabled by loading it into the server with the LoadModule directive, and disabled by removing or commenting out the LoadModule directive corresponding to this module. It should always be enabled to aid with problem diagnosis.
mod_dms provides FMW infrastructure access to the OHS Oracle Dynamic Monitoring Service (DMS) data.
The mod_odl module allows Oracle HTTP Server to access Oracle Diagnostic Logging (ODL). ODL generates log messages in text or XML-formatted logs, in a format which complies with Oracle standards for generating error log messages. Oracle HTTP Server uses ODL by default.
Oracle HTTP Server complies with the Federal Information Processing Standard publication 140 (FIPS 140); it uses a version of the underlying SSL libraries that has gone through formal FIPS certification. As part of Oracle HTTP Server's FIPS 140 compliance, the mod_ossl plug-in now includes the SSLFIPS directive. For more information, see Section G.2.6, "SSLFIPS."
ODL provides the following benefits:
You can view log files using Fusion Middleware Control or with WLST commands, or you can download log files to your local client and view them using another tool (for example, a text edit or another file viewing utility).
For more information on using ODL with Oracle HTTP Server, see Chapter 7, "Managing Oracle HTTP Server Logs."
mod_ossl, the Oracle Secure Sockets Layer (SSL) implementation in use with the Oracle database, enables strong cryptography for Oracle HTTP Server. It is a plug-in to Oracle HTTP Server that enables the server to use SSL and is very similar to the OpenSSL module, mod_ssl. mod_ossl supports SSL version 3 and TLS versions 1.0, 1.1. and 1.2, and is based on Certicom and RSA Security technology.
Oracle HTTP Server complies with the Federal Information Processing Standard publication 140 (FIPS 140); it uses a version of the underlying SSL libraries that has gone through formal FIPS certification. As part of Oracle HTTP Server's FIPS 140 compliance, the mod_ossl plug-in now includes the SSLFIPS directive. For more information, see Section G.2.6, "SSLFIPS."
Oracle no longer supports mod_ssl. A tool is provided to enable you to migrate from mod_ssl to mod_ossl, and convert your text certificates to Oracle wallets.
mod_ossl provides:
mod_ossl Directives
See Section G.2 for a list and descriptions of directives accepted by mod_ossl.
The mod_perl module embeds the Perl interpreter into Oracle HTTP Server. This eliminates start-up overhead and enables you to write modules in Perl. Oracle Fusion Middleware uses Perl version 5.10.
The module is disabled, by default. To enable mod_perl, follow the instructions in Section 4.6.4, "Configuring mod_perl".
This section provides information for mod_perl users working with databases. It explains how to test a local database connection and set character forms.
Perl scripts access databases using the DBI/DBD driver for Oracle. The DBI/DBD driver is part of Oracle Fusion Middleware. It calls Oracle Call Interface (OCI) to access the databases.
Once mod_perl is enabled, DBI must be enabled in the mod_perl.conf
file to function. To enable DBI, perform the following steps:
Note: The following steps assume you are using Fusion Middleware Control and a managed server. For general information on editing a configuration file, see Section 1.6.2, "Editing the Configuration". |
PerlModule Apache::DBI
Place the Perl scripts that you want to run in the DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName/cgi-bin.
Example 2-1 Using a Perl Script to Access a Database
To run the DBI scripts, the URLs would look like the following:
If a script specifies "use Apache::DBI
" instead of "use DBI
", then it can only run from the URL http://
hostname.domain:port
/perl/
scriptname
.
Example 2-2 shows a sample Perl script for testing a database connection. Replace the instance name, user ID, and password in the connect
statement with proper values for the target database.
Example 2-2 Sample Perl Script For Testing Connection for Local Seed Database
SQL NCHAR data types (NCHAR, NVARCHAR2 and NCLOB) are reliable Unicode data types. SQL NCHAR data types enable you to store Unicode characters regardless of the database character set. The character set for those data types is specified by the national character set, which is either AL16UTF16 or UTF8.
Example 2-3 shows an example of accessing SQL NCHAR data.
Example 2-3 Sample Script to Access SQL NCHAR Data
As shown in Example 2-3, the set_form
function is provided as a private function that you can invoke with the standard DBI func method. The set_form function takes an anonymous hash that enables you to set the character form for parameters.
The valid values of character form are either ORA_IMPLICIT or ORA_NCHAR. Setting the character form to ORA_IMPLICIT causes the application's bound data to be converted to the database character set, and ORA_NCHAR to the national character set. The default is ORA_IMPLICIT.
The constants are available as ora_forms in DBD::Oracle.
set_default_form sets the default character form for a database handle. The following example shows its syntax:
This syntax causes the form of all parameters to be ORA_NCHAR, unless otherwise specified with set_form calls. Unlike the set_form function, the set_default_form functions on the database handle, so every statement from the database handle has the form of your choice.
Example 2-4 Sample for set_form
The mod_plsql module connects Oracle HTTP Server to an Oracle database, enabling you to create Web applications using Oracle stored procedures.
To access a Web-enabled PL/SQL application, configure a PL/SQL database access descriptor (DAD) for the mod_plsql module. A DAD is a set of values that specifies how the module connects to a database server to fulfill an HTTP request. Besides the connection details, a DAD contains important configuration parameters for various operations in the database and for the mod_plsql module in general. Any Web-enabled PL/SQL application which uses the PL/SQL Web ToolKit needs to create a DAD to invoke the application.
This section contains the following topics:
mod_plsql Directives
See Section G.3.1 for a list and descriptions of directives accepted by mod_plsql.
To create a DAD, perform the following steps:
dads.conf
configuration file. For the locations of mod_plsql configuration files, see Table 2-2.
Note: You can also open and edit thedads.conf file by using Oracle Fusion Middleware Control, on the Oracle HTTP Server Advanced Server Configuration page, as described in Section 4.6.6, "Modifying an Oracle HTTP Server Configuration File." |
Location
. For example, the following directive defines a virtual path called /myapp that will be used to invoke a PL/SQL Web application through a URL such as http://host:port/myapp/
.
Note: Earlier releases of the mod_plsql module were always mounted on a virtual path with a prefix of/pls . This restriction is removed in later releases but might still be a restriction imposed by some earlier PL/SQL applications. |
SetHandler
directive, which directs Oracle HTTP Server to enable the mod_plsql module to handle the request for the virtual path defined by the named Location: <Location>
directive. Typically, the following directives are used: </Location>
tag to close the <Location>
element. You can create additional DADs by defining other uniquely named <Location>
elements in dads.conf.
Example DADs
The following DAD connects as a specific user and has a default home page:
The following DAD uses HTTP Basic Authentication and supports document upload/download operations:
The mod_plsql configuration parameters reside in the configuration files that are located in the configuration directory (typically, DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/), as described in Table 2-2.
Table 2-2 mod_plsql Configuration Files In a System Component Instance
Directory Name | Contents |
---|---|
CONFIG_DIR/moduleconf |
|
CONFIG_DIR/mod_plsql |
|
For information on editing these .conf files, see Section 1.6.2, "Editing the Configuration".
The mod_plsql configuration parameters are described in these sections:
The plsql.conf file resides in the CONFIG_DIR/moduleconf directory and Oracle HTTP Server automatically loads all .conf files under this location. The plsql.conf file contains the LoadModule
directive to load the mod_plsql module into Oracle HTTP Server, any global settings for the mod_plsql module, and include directives for dads.conf and cache.conf.
mod_plsql Directives in plsql.conf
See Section G.3.1 for a list and description of the directives used in plsql.conf.
See Also: The plsql.README file, located in ORACLE_HOME/ohs/mod_plsql, for a detailed description of plsql.conf. |
The dads.conf file contains the configuration parameters for the PL/SQL database access descriptor. (See Table 2-2 for the file location.) A DAD is a set of values that specifies how the mod_plsql module connects to a database server to fulfill a HTTP request.
mod_plsql Directives in dads.conf
See Section G.3.2 for a list and description of the directives used in dads.conf
The cache.conf file contains the configuration settings for the file system caching functionality implemented in the mod_plsql module. This configuration file is relevant only if PL/SQL applications use the OWA_CACHE package to cache dynamically generated content in the file system.
mod_plsql Directives in cache.conf
See Appendix G for a list and description of the directives used in cache.conf
While specifying a value for a configuration parameter, follow Oracle HTTP Server conventions for specifying values. For instance, if a value has white spaces in it, enclose the value with double quotes. For example:
Multi-line directives enable you to specify same directive multiple times in a DAD.
For more Oracle HTTP Server-relevant information on PL/SQL, see the following:
The mod_webgate module enables single sign-on (SSO) for Oracle HTTP Server. WebGate examines incoming requests and determines whether the requested resource is protected, and if so, retrieves the session information for the user.
For more information, see Section 8.4.2.2, "Using WebGate to Authenticate Users" and Section 1.3.2, "Security: Single Sign-On with WebGate." For information on configuring WebGate, see "Configuring Oracle HTTP Server WebGate for Oracle Access Manager" in Installing and Configuring Oracle HTTP Server.
The mod_wl_ohs module enables requests to be proxied from Oracle HTTP Server 12c (12.1.2) to Oracle WebLogic Server. This module is generally referred to as the WebLogic Proxy Plug-in.
For information about the prerequisites and procedure for configuring mod_wl_ohs, see "Configuring the WebLogic Proxy Plug-In for Oracle HTTP Server" in Using Oracle WebLogic Server Proxy Plug-Ins 12c. Directives for this module are listed in "Parameters for Web Server Plug-Ins" in that document.
Note: mod_wl_ohs is similar to the mod_wl plug-in, which you can use to proxy requests from Apache HTTP Server to Oracle WebLogic server. However, while the mod_wl plug-in for Apache HTTP Server should be downloaded and installed separately, the mod_wl_ohs plug-in is bundled with Oracle HTTP Server. |
This chapter describes the management tools available with the Oracle HTTP Server (OHS). It includes information on OHS management, how to access Fusion Middleware Control, how to access the OHS home page, and how to use the WebLogic Scripting Tool (WLST).
Oracle provides the following management tools for Oracle HTTP Server:
Note: The management tools available to your Oracle HTTP Server implementation depend on whether you have configured it in a WebLogic Server domain (with FMW Infrastructure) or in a standalone domain. For details, see Section 1.4, "Domain Types". |
This chapter includes the following sections:
The main tool for managing Oracle HTTP Server is Fusion Middleware Control, which is a browser-based tool for administering and monitoring the Oracle Fusion Middleware environment.
The Oracle HTTP Server MBeans, which might be visible in Fusion Middleware Control or the WebLogic Scripting Tool (WLST) are provided for the use of Oracle management tools. The interfaces are not supported for other use and are subject to change without notice.
To display Fusion Middleware Control, you enter the Fusion Middleware Control URL, which includes the name of the WebLogic Administration Server host and the port number assigned to Fusion Middleware Control during the installation. The following shows the format of the URL:
hostname.domain:port
/emIf you saved the installation information by clicking Save on the last installation screen, the URL for Fusion Middleware Control is included in the file that is written to disk.
The Welcome page appears.
The default user name for the administrator user is weblogic
. This is the account you can use to log in to the Fusion Middleware Control for the first time. The weblogic
password is the one you supplied during the installation of Fusion Middleware Control.
The Oracle HTTP Server Home page in Fusion Middleware Control contains menus and regions that enable you to manage the server. Use the menus for monitoring, managing, routing, and viewing general information.
When you select a target, such as a WebLogic Managed Server or a component, such as Oracle HTTP Server, the target's home page is displayed in the content pane and that target's menu is displayed at the top of the page, in the context pane. For example, if you select an Oracle HTTP Server instance from the Web Tier folder, the Oracle HTTP Server menu is displayed. You can also view the menu for a target by right-clicking the target in the navigation pane.
Figure 3-1 shows the target navigation pane and the home page of Oracle HTTP Server.
The Oracle HTTP Server home page contains the following regions:
See Also: Administering Oracle Fusion Middleware contains detailed descriptions of all the items on the target navigation pane and the home page. |
The Advanced Server Configuration page in Fusion Middleware Control enables you to edit your Oracle HTTP Server configuration without directly editing the configuration (.conf) files (for details, see Section 4.6.6, "Modifying an Oracle HTTP Server Configuration File"). Be aware that Fusion Middleware Control and other Oracle software that manage the Oracle HTTP Server configuration might save these files in a different, equivalent format. After using the software to make a configuration change, multiple configuration files might be rewritten.
Five OHS-specific WLST commands are provided for management of Oracle HTTP Server in WebLogic Server Domains. Most are online commands, which require a connection between WLST and the administration server for the domain.
createOHSInstance()
deleteOHSInstance()
addOHSAdminProperties()
addOHSNMProperties()
One off-line command is provided for creating a domain appropriate for testing OHS:
createOHSTestDomain()
You should use the createOHSInstance()
and deleteOHSInstance()
commands to create and delete Oracle HTTP Server instances instead of using the Configuration Wizard or offline WLST, as these custom commands perform additional error checking and, in the case of instance creation, automatic port assignment.
An Oracle HTTP Server standalone implementation can only use WLST to start and stop the server (nmStart()
and nmKill()
commands; see Section 4.3, "Performing Basic OHS Tasks"). Other administration tasks are not possible. Thus in a standalone configuration, WLST offers limited benefits.
If you have a remote Oracle HTTP Server in a managed mode and another in standalone with the remote administration mode enabled, you can use WLST to perform management tasks such as SSL configuration. A vanilla Oracle HTTP Serverin a standalone domain can be used only as a WebLogic Server Node Manager and for Oracle HTTP Server start/stop purposes. You can also do this by using a command-line script.
For more information on the custom WLST commands for Oracle HTTP Server, see "Oracle HTTP Server Custom WLST Commands" in the WLST Command Reference for Infrastructure Components.
This part presents information about management tasks for Oracle HTTP Server. It contains the following chapters:
This chapter provides information on how to work with Oracle HTTP Server (OHS). It discusses the procedures needed to configure and use OHS in your environment.
This chapter includes the following sections:
Before performing any of the tasks described in this chapter, you need to do the following:
Note: When you start WebLogic Server from the command line, you might encounter many warning messages scrolling by. Despite these messages, WebLogic Server should start normally. |
Note: As Node Manager starts, you might encounter many warnings scrolling by. You can ignore these messages. |
The Configuration Wizard enables you to create multiple Oracle HTTP Server instances simultaneously when you create a domain. If you are creating a WebLogic Server Domain, then you are not required to create any instances, whereas if you are creating a standalone domain, you need to create at least one Oracle HTTP Server instance. Note that, when creating a WebLogic Server domain, if you elect not to create any instances, a warning appears; however, you are allowed to proceed with the configuration process.
Note: If you are attempting to create an Oracle HTTP Server instance that uses a TCP port in the reserved range (typically less than 1024), then you must perform some extra configuration to allow the server to bind to privileged ports. For more information, see Section 4.3.2.4, "Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)." |
Note: Oracle Fusion Middleware contains more than one version of WLST. The WLST commands used in all procedures in this chapter will only work if you run the WLST implementation on ORACLE_HOME/ohs/common/bin/. |
You can create a managed Oracle HTTP Server instance in a WebLogic Server Domain by using either the custom WebLogic Scripting Tool (WLST) command createOHSInstance()
or from Fusion Middleware Control. These procedures are described in the following sections.
Note: If you are working with a WebLogic Server Domain, you should use the Oracle HTTP Server custom WLST commands, described in Section 3.6, "Using the WebLogic Scripting Tool". These commands offer superior error checking, provide automatic port management, and so on. |
To create an OHS instance in a WebLogic Server Domain by using WLST, do the following:
From the command line, launch WLST:
Linux: $ORACLE_HOME/ohs/common/bin/wlst.sh
Windows: $ORACLE_HOME\ohs\common\bin\wlst.cmd
Connect to WLST:
For example:
createOHSInstance()
command, with an instance and machine name—which was assigned during domain creation—to create the instance: Note: If Node Manager should be down, the create command will take place partially. The master copy of the config files will appear at OHS/componentName. Once Node Manager comes back up, the system will resync and the runtime copy of the files will appear at OHS/instances/componentName. |
For example:
Note: If you do not provide port numbers, they will be assigned automatically. |
See also: For information on using the WebLogic Scripting Tool (WLST), see Understanding the WebLogic Scripting Tool. |
To create an Oracle HTTP Server instance in a WebLogic Server Domain by using Fusion Middleware Control, do the following:
Note: Create/Delete OHS will only appear if you have extended the domain by using the Oracle HTTP Server domain template. Otherwise, this command will not be available. |
The OHS Instances page appears.
The Create OHS Instance page appears.
ohs4
. The OHS Instance page reappears, showing a confirmation message and the new instance.
After creating the instance, you will note that the Column on the OHS Instances page shows a down-arrow for that instance.
This indicates that the instance is not running. For instructions on starting an instance, see Section 4.3.2, "Starting Oracle HTTP Server Instances". Once started, the arrow will point up.
Once an instance is created, it will be provisioned within the DOMAIN_HOME.
DOMAIN_HOME/config/fmwconfig/components/OHS/componentName
DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName
Immediately after creation, the state reported for an OHS instance will vary depending on how the instance was created:
createOHSInstance()
was used, the reported state for the instance will be SHUTDOWN. If you select Standalone as your domain during server configuration, the Configuration Wizard will create the domain but during this process you must create at least one Oracle HTTP Server instance. For more information, see Installing and Configuring Oracle HTTP Server.
If your Oracle HTTP Server instance is running in a standalone domain, you can use WLST but must use the offline, or "agent", commands that route tasks through Node Manager. The specific commands are described elsewhere in this chapter, in the context of the task they perform; however, you will need to use the nmConnect()
command to actually connect to offline WLST. For both Linux and Windows, enter:
For example:
You can use Fusion Middleware Control or WebLogic Scripting Tool for the following tasks:
About Using the WLST Commands
If you plan to use WLST, you should familiarize yourself with that tool. You should also be aware of the following:
For more information, see "Getting Started Using the Oracle WebLogic Scripting Tool (WLST)" in the Oracle® Fusion Middleware Administrator's Guide.
When Oracle HTTP Server starts, it writes the process ID (PID) of the parent httpd
process to the httpd.pid file located in the following directory:
The process ID can be used by the administrator when restarting and terminating the daemon. If a process stops abnormally, it is necessary to stop the httpd
child processes using the kill
command. You must not change the default PID file name or its location.
The PidFile
directive in httpd.conf specifies the location of the PID file; however, you should never modify the value of this directive.
Note: On UNIX/Linux platforms, if you edit the PidFile directive, you also have to edit the ORACLE_HOME/ohs/bin/apachectl file to specify the new location of the PID file. |
See Also: PidFile directive in the Apache HTTP Server documentation at:
|
This section describes how to start Oracle HTTP Server using Fusion Middleware Control and WLST.
To start Oracle HTTP Server using Fusion Middleware Control, navigate to the Oracle HTTP Server home page and do one of the following:
The instance will start in the state UNKNOWN.
To start all Oracle HTTP Server components in a system component instance by using WLST (this procedure assumes you have created as OHS instance, as described in Section 4.2, "Creating an OHS Instance" and WLST is running), use the start()
command in a WebLogic Server Domain or nmStart() for standalone domain, as shown here:
Notes: Node Manager must be running for these commands to work. If it is down, you will receive an error message.
|
Domain | Syntax | Example |
---|---|---|
WebLogic | start('instanceName') nmStart(serverName='name', serverType='type') | start('ohs1') nmStart(serverName='ohs1', serverType='OHS') |
Standalone | nmStart(serverName='name', serverType='type') | nmStart(serverName='ohs1', serverType='OHS') |
If you used createOHSInstance()
to create the instance (Section 4.2, "Creating an OHS Instance"), the state initially reported for the instance will be SHUTDOWN.
You can start Oracle HTTP Server directly from a command line—that is, without launching WLST—by entering the following command:
Linux: $DOMAIN_HOME/bin/startComponent.sh
componentName
Windows: %DOMAIN_HOME%\bin\startComponent.cmd
componentName
For example:
This command invokes WLST and tells it to run its start()
command.
After a few seconds, you will be prompted for your Node Manager password. Type that and press Enter.
You can avoid having to enter your Node Manager password every time you launch the server with startComponent.sh
/.cmd
by starting it with the storeUserConfig
option for the first time. Do the following:
The system will prompt for your Node Manager password.
The system responds with this message:
y
to store your Node manager password. When you subsequently use this command, you will not need to enter a password. WARNING: When this procedure is completed, any Oracle HTTP Server processes running from this Oracle Home as a user in the same group will be able to bind to privileged ports. |
On a UNIX system, TCP ports in a reserved range (typically less than 1024) can only be bound by processes with root privilege. Oracle HTTP Server always runs as a non-root user; that is, the user who installed Oracle Fusion Middleware. On UNIX, special configuration is required to allow Oracle HTTP Server to bind to privileged ports.
To enable Oracle HTTP Server to listen on a port in the reserved range (for example, the default port 80 or port 443) as a process without root privilege, use the following one-time setup on each Oracle HTTP Server machine:
As the same user who will start Oracle HTTP Server, create a temporary cap.ora file by entering the following:
Note: The next steps must be performed as the root user. If you do not have root access, have the system administrator perform these steps. |
If /etc/cap.ora does exist, append the contents of the temporary file you created in step 1 to the existing /etc/cap.ora file:
The steps that require root permissions are now complete.
This section describes how to stop Oracle HTTP Server using Fusion Middleware Control. Be aware that other services might be impacted when Oracle HTTP Server is stopped.
To stop Oracle HTTP Server using Fusion Middleware Control, navigate to the Oracle HTTP Server home page and do one of the following:
To stop Oracle HTTP Server by using WLST, from within the scripting tool, use one of the following commands:
Notes: Node Manager must be running for these commands to work. If it is down, you will receive an error message.
|
Domain | Syntax | Example |
---|---|---|
WebLogic | shutdown('serverName') | shutdown('ohs1') |
Standalone | nmKill(serverName='serverName', serverType='type') | nmKill(serverName='ohs1', serverType='OHS') |
WARNING: If you run shutdown() without specifying any parameters, WLS will terminate and boot you out of WLST. Oracle HTTP Server will continue running. |
You can stop Oracle HTTP Server directly from a command line—that is, without launching WLST—by entering the following command:
For example:
This command invokes WLST and tells it to run its shutdown()
command.
After a few seconds, you will be prompted for your Node Manager password. Type that and press Enter. Once the server is stopped, the system will respond:
Restarting Oracle HTTP Server causes the Apache parent process to advise its child processes to exit after their current request (or to exit immediately if they are not serving any requests). Upon restarting, the parent process re-reads its configuration files and reopens its log files. As each child process exits, the parent replaces it with a child process from the new generation of the configuration file, which begins serving new requests immediately.
The following sections describe how to restart Oracle HTTP Server using by Fusion Middleware Control and the WLST.
To restart OHS using Fusion Middleware Control, navigate to the Oracle HTTP Server home page and do one of the following:
To restart OHS by using WLST, use the softRestart()
command. From within the scripting tool, enter one of the following commands:
Notes: Node Manager must be running for these commands to work. If it is down, you will receive an error message.All parameters are required for standalone domains. If they are not included, an error will be thrown referencing an inability to find |
Domain | Syntax | Example |
---|---|---|
WebLogic | softRestart('serverName') | softRestart('ohs1') |
Standalone | nmSoftRestart(serverName='name', serverType='type') | nmSoftRestart(serverName='ohs1', serverType='OHS') |
This section describes how to check the status of a running Oracle HTTP Server instance. You can check this information from either Fusion Middleware Control or by using WLST.
An up or down arrow in the top left corner of any Oracle HTTP Server page's header indicates whether the selected server instance is running. This image shows the up arrow, indicating that the server instance, in this case, "ohs2", is running:
This image shows a down arrow, indicating that the server instance, in this case, "ohs2", is not running:
In a WebLogic Server Domain, if you used createOHSInstance()
to create the Oracle HTTP Server instance, its initial state (that is, before starting it) will be SHUTDOWN.
If you used the Configuration Wizard to generate the instance (both WebLogic Server Domain and standalone domain), its initial state (that is, before starting) will be UNKNOWN.
To check the status of a running Oracle HTTP Server instance by using WLST, from within the scripting tool, enter the following:
Notes: Node Manager must be running for these commands to work. If it is down, you will receive an error message. If Node Manager goes down in a WebLogic Server Domain, the state will be returned as UNKNOWN, regardless of the real state of the instance. Additionallystate() does not inform you that it cannot connect to Node Manager. Unlike other WLST commands, All parameters are required for standalone domains. If they not included an error will be thrown referencing an inability to find |
Domain | Syntax | Example |
---|---|---|
WebLogic | state('serverName') | state('ohs1') |
Standalone | nmServerStatus(serverName='name', serverType='type') | nmServerStatus(serverName='ohs1', serverType='OHS') |
Note: This command does not distinguish between non-existent components and real components in state UNKNOWN. Thus, if you enter a non-existent instance (for example, if you mis-identify the instance with a non-existent instance name—for example,ohsz instead of ohs2 )— UNKNOWN will be returned. |
You can delete an Oracle HTTP Server instance in both a WebLogic Server Domain and a standalone domain.
In a WebLogic Server Domain, you can use either the custom WLST command deleteOHSInstance()
or from Fusion Middleware Control. These procedures are described in the following sections.
If you are in a WebLogic Server Domain, you can delete an Oracle HTTP Server instance by using the customer WLST command deleteOHSInstance()
. When you use this command, the following happens:
Note: You cannot delete an instance by using deleteOHSInstance() if Node Manager is down. |
To delete an instance by using WLST:
For example, to delete an OHS instance named ohs1
use the following command:
You cannot delete any OHS instance in either an UNKNOWN or a RUNNING state.
To delete an Oracle HTTP Server instance by using Fusion Middleware Control:
Note: You cannot delete a running Oracle HTTP Server instance. If the instance is running, stop it, as described in Section 4.3.3, "Stopping Oracle HTTP Server Instances" and then proceed with the following steps. |
The OHS Instances page appears.
A confirmation window appears.
The OHS Instances page appears, with an information method indicating that the selected Oracle HTTP Server instance was deleted.
You can delete an Oracle HTTP Server instance in a standalone domain by using the Configuration Wizard so long as it is not the only instance in the domain. The Configuration Wizard always requires at least one Oracle HTTP Server instance in a standalone domain so you will not be able to delete one if it's the only instance in the domain. If you want to delete the only instance in a standalone domain, you should instead completely remove the entire domain directory.
Deleting Oracle HTTP Server instances by using the Configuration Wizard is actually only a partial deletion (and is inconsistent with the way deletion is done on the WebLogic Server domain side by using deleteOHSInstance()
; see Section 4.3.6.1.1, "Deleting an Instance by Using WLST"). When you delete a standalone instance by using the Configuration Wizard, the following occurs:
To delete an Oracle HTTP Server instance in a standalone domain, do the following:
The selected instance is deleted.
You can remotely manage an Oracle HTTP Server running in a standalone environment from a collocated Oracle HTTP Server implementation running on a separate machine. This feature enables you to use the WebLogic Scripting Tool (WLST) or Fusion Middleware Control from the remote machine to start, restart, stop, and configure the component. This chapter describes how to set up the environments to
The following instructions describe how to set up a remote environment, which will enable you to run Oracle HTTP Server installed on one machine from an installation on another. This section contains the following information:
To remotely manage Oracle HTTP Server, you need to have separate hosts installed on separate machines:
The following steps describe how to set up an expanded domain and link it to a database on the collocated version of Oracle HTTP Server (host1).
Table 4-1 Setting Up an Expanded Domain
For... | Select or Enter... |
---|---|
Create Domain | Create a new domain and specify its path (for example, MW_HOME/user_projects/domains/ohs1_domain) |
Templates | Oracle HTTP Server (Collocated) |
Application Locations | The default |
Administrator Account | A username and password (for example, weblogic and welcome1) |
Database Configuration Type | The RCU data. Then, click Get RCU Configuration and then Next. |
Optional Configuration | The following items:
|
Administration Server | The listen address (All Local Addresses or the valid name or address for host1) and port |
Node Manager | Per Domain and specify the NodeManager credentials (for example, |
System Components | Add and set the fields, using OHS as the Component Type (for example, use a System Component value of ohs1). |
OHS Server | The listen addresses and ports or use the defaults. |
Machines | Add. This will add a machine to the domain (for example, ohs1_Machine) and the Node Manager listen and port values. You must specify a listen address for host2 that is accessible from host1, such the valid name or address for host2 (do not use localhost or All Local Addresses). |
Assign System Components | The OHS component (for example, |
Configuration Summary | Create (note that the OPSS steps may take some minutes). |
On host1, use the following command to pack the domain:
For example:
Use the following steps to unpack the domain you packed on host1, above, on host2:
For example:
Once you have unpacked the domain created on host1 onto host2, you can use the same set of WLST commands and Fusion Middleware Control tools you would in a collocated environment to start, stop, restart, and configure the component.
To run an Oracle HTTP Server remotely, do the following:
You can now run the Oracle HTTP Server instance on host2 from the collocated implementation on host1. You can use any of the WLST commands or any of the Fusion Middleware Control tools. For example, to connect host2 to Node Manager and start the server ohs1, from host1 enter:
See Section 4.3, "Performing Basic OHS Tasks" for information on starting, stopping, restarting, and configuring Oracle HTTP Server components.
Server properties for Oracle HTTP Server can be set using Fusion Middleware Control or direct editing of the Oracle HTTP Server configuration files. You cannot use WLST commands to specify the server properties.
To specify the server properties using the Fusion Middleware Control:
This field is normally blank. It may be set to the user that installed Oracle HTTP Server and starts Node Manager.
This field is normally blank. It may be set to the group of the user that installed Oracle HTTP Server and starts Node Manager.
For instructions on configuring the mod_perl module, see "Configuring mod_perl".
The server properties are saved, and shown on the Server Configuration page.
To specify the server properties using the httpd.conf file:
Note: Before attempting to edit any .conf file, you should familiarize yourself with the layout of the configuration file directories, mechanisms for editing the files, and learn more about the files themselves. For this information, see Section 1.6, "Understanding Configuration Files". |
This section includes the following sections:
Note: Fusion Middleware Control and other Oracle software which manage the Oracle HTTP Server configuration might save configuration files in a different, equivalent format. After using the software to make a configuration change, multiple configuration files might be rewritten. |
Secure Sockets Layer (SSL) is an encrypted communication protocol that is designed to securely send messages across the Internet. It resides between Oracle HTTP Server on the application layer and the TCP/IP layer, transparently handling encryption and decryption when a secure connection is made by a client.
One common use of SSL is to secure Web HTTP communication between a browser and a Web server. This case does not preclude the use of non-secured HTTP. The secure version is simply HTTP over SSL (HTTPS). The differences are that HTTPS uses the URL scheme https
:// rather than http://
. The default communication port is 4443 in Oracle HTTP Server. Oracle HTTP Server does not use the 443 standard https://
privileged port because of security implications. For information about running Oracle HTTP Server on privileged ports see Section 4.3.2.4, "Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)."
By default, an SSL listen port is configured and enabled using a default wallet during installation. Wallets store your credentials, such as certificate requests, certificates, and private keys.
The default wallet that is automatically installed with Oracle HTTP Server is for testing purposes only. A real wallet must be created for your production server. The default wallet is located in the DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName/keystores/default directory. You can either place the new wallet in this location, or change the SSLWallet
directive in DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName/ssl.conf to point to the location of your real wallet.
For the changes to take effect, you should restart the Oracle HTTP Server components as described in Section 4.3.4.
For information about configuring wallets and SSL using Fusion Middleware Control, see "Enabling SSL for Oracle HTTP Server Virtual Hosts" in the Administering Oracle Fusion Middleware.
The following sections contain information about how to enable and configure SSL for Oracle HTTP Server in standalone mode. These instructions make use of the mod_ossl plug-in to Oracle HTTP Server which enables the server to use SSL.
By default, SSL is enabled when you install Oracle HTTP Server. Perform these tasks to modify and configure SSL:
To configure Oracle HTTP Server for SSL, you need a wallet that contains the certificate for the server. Wallets store your credentials, such as certificate requests, certificates, and private keys.
The default wallet that is automatically installed with Oracle HTTP Server is for testing purposes only. A real wallet must be created for your production server. The default wallet is located in $ORACLE_INSTANCE
/config/fmwconfig/components/
$COMPONENT_TYPE
/instances/
$COMPONENT_NAME
/keystores/default
. You can either place the new wallet in that location, or change the SSLWallet
directive in $ORACLE_INSTANCE
/config/fmwconfig/components/
$COMPONENT_TYPE
/instances/
$COMPONENT_NAME
/ssl.conf
(the pre-install location) to point to the location of your real wallet.
See Also: "orapki" in Administering Oracle Fusion Middleware for instructions on creating a wallet. It is important that you do the following:Generate a certificate request: For the Common Name, specify the name or alias of the site you are configuring. Make sure that you enable this auto_login_only feature. |
Optionally, you can further customize your configuration using mod_ossl directives.
Note: The files installed during configuration contain all of the necessary SSL configuration directives and a default setup for SSL. |
Your SSL configuration must contain, at minimum, the following directives:
Use the appropriate client certificate on your client side for the HTTPS connection. See your client documentation for information on getting and using a client certificate. Be sure that your client certificate is trusted by the server wallet.
See Also: "Importing a Certificate or a Trusted Certificate Using WLST" in Administering Oracle Fusion Middleware Guide for instructions on how to import a trusted certificate into your wallet. |
You can force the client to validate its client certificate and allow access to the server using the following method. This scenario is valid for all clients having a client certificate supplied by the server Certificate Authority (CA). The server can validate client's supplied certificates against its CA for additional permission.
To force a client to authenticate using certificates for a particular URL, you can use the per-directory reconfiguration features of mod_ossl:
To do this, check that part of the client certificate matches what you expect. Usually, this means checking all or part of the Distinguished Name (DN), to see if it contains some known string. There are two ways to do this, using either mod_auth_basic or SSLRequire.
The mod_auth_basic method is generally required when the certificates are completely arbitrary, or when their DNs have no common fields (usually the organization, and so on). In this case, you should establish a password database containing all of the clients allowed, for example:
The password used in this example is the DES encrypted string password
. For more information on the directive, see Section G.2.10, "SSLOptions" which describes the SSLOptions directive of the mod_ossl module.
When your clients are all part of a common hierarchy, which is encoded into the DN, you can match them more easily using SSLRequire, for example:
The following examples presume that clients on the Intranet have IPs in the range 192.168.1.0/24, and that the part of the Intranet website you want to allow Internet access to is /access/required. This configuration should remain outside of your HTTPS virtual host, so that it applies to both HTTPS and HTTP.
Use the Web Server proxy plug-ins to enable SSL between Oracle HTTP Server and Oracle WebLogic Server. The plug-ins allow you to configure SSL libraries and configure one-way and two- way SSL communications. For more information, see "Use SSL with Plug-Ins" and "Parameters for Web Server Plug-Ins" in Using Oracle WebLogic Server Proxy Plug-Ins 12c.
Multipurpose Internet Mail Extension (MIME) settings are used by Oracle HTTP Server to interpret file types, encodings, and languages. MIME settings for Oracle HTTP Server can only be set using Fusion Middleware Control. You cannot use WLST commands to specify the MIME settings.
The following tasks can be completed on the MIME Configuration page:
MIME type maps a given file extension to a specified content type. The MIME type is used for filenames containing an extension.
To configure a MIME type using Fusion Middleware Control, do the following:
The MIME configuration is saved, and shown on the MIME Configuration page.
MIME encoding enables Oracle HTTP Server to determine the file type based on the file extension. You can add and remove MIME encodings. The encoding directive maps the file extension to a specified encoding type.
x-gzip
. The MIME language setting maps file extensions to a particular language. This directive is commonly used for content negotiation, in which Oracle HTTP Server returns the document that most closely matched the preferences set by the client.
The mod_perl module embeds the Perl interpreter into Oracle HTTP Server. This eliminates start-up overhead and enables you to write modules in Perl. The module is disabled, by default.
To enable the mod_perl module using Fusion Middleware Control, do the following:
Note: If mod_perl has not been enabled, then you will be redirected to the Server Configuration page. Select mod_perl and click Apply to enable mod_perl. After the confirmation page has been displayed, restart Oracle HTTP Server, and then return to the mod_perl Configuration page. |
PerlOptions
directive provides fine-grained configuration by providing control over which class of Perl interpreter pool to be used. Options are enabled by prepending them with a plus sign (+) and are disabled by prepending them with a minus sign (-). PerlSendHeader
directive is for mod_perl 1.0 backwards-compatibility. When enabled, the server sends an HTTP header to the browser on every script invocation. You should disable this option for NPH (non-parsed-headers) scripts. PerlSetEnv
directive enables you to specify system environment variables and pass them into your mod_perl handlers. PerlResponseHandler
directive tells mod_perl which callback is going to do the job. The mod_perl module configuration is saved and shown on the mod_perl Configuration page.
Note: If you are manually editing the mod_perl configuration instead of using Fusion Middleware Control, then all directives must be defined within the<IfModule mod_perl.c> block of the mod_perl.conf file. Any mod_perl related directives defined outside of this block might be ignored. |
You can configure the WebLogic Proxy Plug-in (mod_wl_ohs) either by using Fusion Middleware Control or by editing the mod_wl_ohs.conf configuration file manually.
For information about the prerequisites and procedure for configuring the WebLogic Proxy Plug-in to proxy requests from Oracle HTTP Server to Oracle WebLogic Server, see "Configuring the WebLogic Proxy Plug-In for Oracle HTTP Server" in Using Oracle WebLogic Server Proxy Plug-Ins 12c.
Note: Fusion Middleware Control and other Oracle software that manage the Oracle HTTP Server configuration might save these files in a different, equivalent format. After using the software to make a configuration change, multiple configuration files might be rewritten. |
To modify an Oracle HTTP Server configuration file by using Fusion Middleware Control, do the following:
httpd.conf
file. The file is saved and shown on the Advanced Server Configuration page.
Edit the httpd.conf file for your environment. Follow the instructions in Section 4.6.6, "Modifying an Oracle HTTP Server Configuration File" to access the file.
Examine the contents of the cgi-bin
directory. You can either remove the code from the httpd.conf file that you do not need, or change the following Directory directive to point to your own CGI script directory.
Edit the following sections pertaining to fancy indexing in the httpd.conf file for your use cases.
You can remove the following documentation configuration sections from the httpd.conf file if they are not needed.
Note: This command is only for UNIX and Linux and should be used only for modules which are supplied in source code form. Follow the installation instructions for modules supplied in binary form.For more information about the apxs command, see the Apache HTTP Server documentation at: |
The Apache Extension Tool (apxs) can be used to build and install Apache HTTP Server extension modules for Oracle HTTP Server. apxs installs modules in the ORACLE_HOME/ohs/modules directory for access by any Oracle HTTP Server instances which run from this installation.
Recommended apxs options for use with Oracle HTTP Server are:
Option | Purpose | Example Command |
---|---|---|
-c | Compile module source | $ORACLE_HOME/ohs/bin/apxs -c mod_example.c |
-i | Install module binary into ORACLE_HOME | $ORACLE_HOME/ohs/bin/apxs -ci mod_example.c |
When the module binary has been installed into ORACLE_HOME, a LoadModule
directive in httpd.conf or other configuration file is used to load the module into the server processes; for example:
The directive is required in the configurations for all instances which must load the module.
When the -a or -A option is specified, apxs will edit httpd.conf to add a LoadModule directive for the module. Do not use the -a
and -A
options with Oracle HTTP Server instances that are part of a WebLogic Server Domain. Instead, use Fusion Middleware Control to update the configuration, as described in Section 1.6.2, "Editing the Configuration".
You can use the -a or -A option with Oracle HTTP Server instances that are part of a standalone domain if the CONFIG_FILE_PATH environment variable is set to the staging directory for the instance before invoking apxs; for example:
By default, apxs uses the Perl interpreter in /usr/bin. If apxs cannot locate the product install or encounters other operational errors when using /usr/bin/perl, use the Perl interpreter within the Middleware home by invoking apxs as follows:
Modules often require directives besides LoadModule
to properly function. After the module has been installed and loaded using the LoadModule directive, refer to the documentation for the module for any additional configuration requirements.
The Options method enables clients to determine which methods are supported by a web server. If enabled, it appears in the Allow
line of HTTP response headers.
For example, if you send a request such as:
you might get the following response from the web server:
Some sources consider exposing the Options method a low security risk because malicious clients could use it to determine the methods supported by a web server. However, because web servers support only a limited number of methods, disabling this method will just slow down malicious clients, not stop them. In addition, the Options method may be used by legitimate clients.
If your Oracle Fusion Middleware environment does not have clients that require the Options method, you can disable it by including the following lines in the httpd.conf file:
Functional or performance issues may be encountered when an OHS instance is created on a shared filesystem, including NFS (Network File System). In particular, lock files or UNIX sockets used by OHS may not work or may have severe performance degradation; WLS requests routed by mod_wl_ohs may have severe performance degradation due to filesystem accesses in the default configuration.
Table 4-1 provides information about the Lock file issues and the suggested changes in the httpd.conf file specific to the operating systems.
Table 4-2 Lock File issues
Operating System | Description | httpd.conf changes |
---|---|---|
Linux | Lock files are not required. The Sys V semaphore is the preferred cross-process mutex implementation. | Change Comment out the |
Solaris | Lock files are not required. The cross-process pthread mutex is the preferred cross-process mutex implementation. | Change Comment out the |
Other UNIX platforms | Change the | |
UNIX socket issues | mod_cgid is not enabled by default. If enabled, use the mod_fastcgi is not enabled by default. If enabled, use the |
This chapter describes how to manage and monitor Oracle HTTP Server. It discusses the procedures and tools to manage OHS in your environment.
This chapter includes the following sections:
The following sections explain the processing model for Oracle HTTP Server.
After Oracle HTTP Server is started, it is ready to listen for and respond to HTTP(S) requests. The request processing model on Microsoft Windows systems differs from that on UNIX systems.
Oracle HTTP Server provides functionality that allows it to terminate as a single unit if the parent process fails. The parent process is responsible for starting and stopping all the child processes for an Oracle HTTP Server instance. The failure of the parent process without first shutting down the child processes leaves Oracle HTTP Server in an inconsistent state that can only be fixed by manually shutting down all the orphaned child processes. Until all the child processes are closed, a new Oracle HTTP Server instance cannot be started because the orphaned child processes still occupy the ports the new Oracle HTTP Server instance needs to access.
To prevent this from occurring, the DMS instrumentation layer in child processes on UNIX and monitor functionality within WinNT MPM on Windows monitor the parent process. If they detect that the parent process has failed, then all of the remaining child processes are shut down.
Oracle Fusion Middleware automatically and continuously measures run-time performance for Oracle HTTP Server. The performance metrics are automatically enabled; you do not need to set options or perform any extra configuration to collect them. If you encounter a problem, such as an application that is running slowly or is hanging, you can view particular metrics to find out more information about the problem.
Note that Fusion Middleware Control provides real-time data. If you are interested in viewing historical data, consider using Grid Control.
You can view metrics from the Oracle HTTP Server home menu of Fusion Middleware Control:
The Oracle HTTP Server home page is displayed.
The Performance Summary page is displayed. It shows performance metrics, and information about response time and request processing time for the Oracle HTTP Server instance.
Tip: Oracle HTTP Server port usage information is also available from the Oracle HTTP Server home menu. |
The following figure shows the Oracle HTTP Server Performance Summary page with the Metric Palette displayed:
This section lists some most commonly-used metrics that can help you analyze Oracle HTTP Server performance.
OHS Server Metrics
The OHS Server Metrics folder contains performance metric options for Oracle HTTP Server. The following table describes the metrics in the OHS Server Metrics folder:
Element | Description |
---|---|
CPU Usage | CPU usage and idle times |
Memory Usage | Memory usage and free memory, in MB |
Processes | Busy and idle process metrics |
Request Throughput | Request throughput, as measured by requests per second |
Request Processing Time | Request processing time, in seconds |
Response Data Throughput | Response data throughput, in KB per second |
Response Data Processed | Response data processed, in KB per response |
Active HTTP Connections | Number of active HTTP connections |
Connection Duration | Length of time for connections |
HTTP Errors | Number of HTTP 4xx and 5xx errors |
OHS Virtual Host Metrics
The OHS Virtual Host Metrics folder contains performance metric options for virtual hosts, also known as access points. The following table describes the metrics in the OHS Virtual Host Metrics folder:
Element | Description |
---|---|
Request Throughput for a Virtual Host | Number of requests per second for each virtual host |
Request Processing Time for a Virtual Host | Time to process each request for each virtual host |
Response Data Throughput for a Virtual Host | Amount of data being sent for each virtual host |
Response Data Processed for a Virtual Host | Amount of data being processed for each virtual host |
OHS Module Metrics
The OHS Module Metrics folder contains performance metric option for modules. The following table describes the metrics in the OHS Module Metrics folder.
Element | Description |
---|---|
Request Handling Throughput | Request handling throughput for a module, in requests per second |
Request Handling Time | Request handling time for a module, in seconds |
Module Metrics | Modules including active requests, throughput, and time for each module |
Oracle HTTP Server uses directives in httpd.conf. This configuration file specifies the maximum number of HTTP requests that can be processed simultaneously, logging details, and certain limits and timeouts. Oracle HTTP Server supports and ships with the following three Multi-Processing Modules (MPMs) which are responsible for binding to network ports on the machine, accepting requests, and dispatching children to handle the requests:
The discussion and recommendations in this section are based on the use of Worker or WinNT MPM, which uses threads. The thread-related directives listed below are not applicable if you are using the Prefork MPM.
The Performance Directives page enables you to tune performance-related directives for Oracle HTTP Server, as illustrated in the following figure:
Performance directives management consists of three areas: request configuration, connection configuration, and process configuration. You can set these configurations using the Performance Directive page of Fusion Middleware Control and by following the instructions in the following sections:
To specify the Oracle HTTP Server request configuration using Fusion Middleware Control, do the following:
MaxClients
directive). This setting limits the number of requests that can be dealt with at one time. The default and recommended value is 150. This is applicable for all Linux/UNIX platforms. MaxRequestPerChild
directive). You can choose to have no limit, or a maximum number. If you choose to have a limit, enter the maximum number in the field. Timeout
directive). This value sets the maximum time, in seconds, Oracle HTTP Server waits to receive a GET request, the amount of time between receipt of TCP packets on a POST or PUT request, and the amount of time between ACKs on transmissions of TCP packets in responses. The request configuration settings are saved, and shown on the Performance Directives page.
To specify the connection configuration using Fusion Middleware Control, do the following:
ListenBacklog
directive). This is the queue for pending connections. This is useful if the server is experiencing a TCP SYN overload, which causes numerous new connections to open up, but without completing the pending task. KeepAlive
directive) to indicate whether to allow multiple connections. If you choose to allow multiple connections, enter the number of seconds for timeout in the Allow With Connection Timeout field. The Allow With Connection Timeout value sets the number of seconds the server waits for a subsequent request before closing the connection. Once a request has been received, the specified value applies. The default is 15 seconds.
The connection configuration settings are saved, and shown on the Performance Directives page.
The child process and configuration settings impact the ability of the server to process requests. You may need to modify the settings as the number of requests increase or decrease to maintain a well-performing server.
For UNIX, the default number of child server processes is 2. For Microsoft Windows, the default number of threads to handle requests is 150.
To specify the process configuration using Fusion Middleware Control, do the following:
StartServers
directive). This is the number of child server processes created when Oracle HTTP Server is started. The default is 2. This is for UNIX only. MaxSpareThreads
directive). An idle thread is a process that is running, but not handling a request. MinSpareThreads
directive). ThreadsPerChild
directive). The process configuration settings are saved, and shown on the Performance Directives page.
By default, Oracle HTTP Server is not able to bind to ports on UNIX in the reserved range (typically less than 1024). To enable Oracle HTTP Server to listen on ports in the reserved range (for example, port 80 and port 443) on UNIX, see Section 4.3.2.4, "Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)".
If your PL/SQL application is using the file system caching functionality in mod_plsql, then Oracle HTTP server should have read and write privileges to the cache directory, specified through the parameter PlsqlCacheDirectory
in DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/mod_plsql/cache.conf. By default, this parameter points to DOMAIN_HOME/servers/componentName.
Finally, given that the cached content might contain sensitive data, the contents of the file system cache should be protected. So, access to the system as this user should be well-protected.
This chapter describes how to manage Oracle HTTP Server connectivity. It includes procedures for viewing port number usage, managing ports, and configuring virtual hosts.
This chapter includes the following sections:
Oracle HTTP Server comes configured with two listen ports: a non-SSL port (http) and an SSL port (https). The default, non-SSL port is 7777. If port 7777 is occupied, the next available port number, within a range of 7777-7877, is assigned. The default SSL port is 4443. Similarly, if port 4443 is occupied, the next available port number, within a range of 4443-4543, is assigned.
You can set these ports when you create the instance or modify the instance configuration later. Automatic port assignment occurs only if you use createOHSInstance()
or Fusion Middleware Control. You must do your own port management if you create instances by using the Configuration Wizard.
For information about specifying ports when creating a new Oracle HTTP Server component, see Section 4.2, "Creating an OHS Instance".
The Admin or Proxy MBean port is an additional SSL port (9999) that is used internally by Oracle HTTP Server to communicate with Fusion Middleware Control. It is also used to monitor Oracle HTTP Server through Node Manager. This port is configured to run out-of-the-box in the admin.conf file; however, if for any reason you need to use the default port for another purpose, you can reconfigure the Admin port by using the Configuration Wizard to update the domain and manually reset ports there.
This section describes how to view ports using Fusion Middleware Control.
To view the port number usage using Fusion Middleware Control, do the following:
The Port Usage detail page shows the component, the ports that are in use, the IP address the ports are bound to, and the protocol being used, as illustrated in the following figure:
The ports used by Oracle HTTP Server can be set during and after installation. In addition, you can change the port numbers, as needed. This section describes how to create, edit, and delete ports using Fusion Middleware Control.
Caution: The Oracle HTTP Server administration (proxy MBean) virtual host and its configuration, defined in the admin.conf file, must not be edited with the WebLogic Scripting Tool (WLST). |
See Also: "Changing the Oracle HTTP Server Listen Ports" in the Administering Oracle Fusion Middleware. |
Note: When deleting a port, if there is a virtual host configured to use the port you want to delete, you must first delete that virtual host before deleting the port. |
To create ports using Fusion Middleware Control, do the following:
SSL for a port can be configured on the Virtual Hosts page, as described in Section 6.5.2, "Using Fusion Middleware Control to Configure Virtual Hosts".
Note: If you change the port or make other changes that affect the URL, such as changing the host name, enabling or disabling SSL, you need to re-register partner applications with the SSO server using the new URL. For more information, see "Registering Oracle HTTP Server mod_osso with OSSO Server 10.1.4" in Securing Applications with Oracle Platform Security Services. |
To create the ports using Fusion Middleware Control, do the following:
The Admin port cannot be edited by using Fusion Middleware Control. Although this is a port Oracle HTTP Server uses for its internal communication with Fusion Middleware Control, in most of the cases it does not need to be changed. If you really want to change it, manually edit the DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/admin.conf file.
SSL for a port can be configured on the Virtual Hosts page, as described in Section 6.5.2, "Using Fusion Middleware Control to Configure Virtual Hosts".
Note: If you change the port or make other changes that affect the URL, such as changing the host name, enabling or disabling SSL, you need to re-register partner applications with the SSO server using the new URL. |
While you can use Fusion Middleware Control to disable a listen port in a WebLogic Server environment, to do so in a standalone environment, you must directly update master configuration file (DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/httpd.conf) by commenting-out the line where port is exposed; for example:
Note: Before attempting to edit any .conf file, you should familiarize yourself with the layout of the configuration file directories, mechanisms for editing the files, and learn more about the files themselves. For this information, see Section 1.6, "Understanding Configuration Files". |
You can create virtual hosts to run more than one website (such as www.company1.com
and www.company2.com
) on a single machine. Virtual hosts can be IP-based, meaning that you have a different IP address for every website, or name-based, meaning that you have multiple names running on each IP address. The fact that they run on the same physical server is not apparent to the end user.
Caution: The Oracle HTTP Server administration (proxy MBean) virtual host and its configuration, defined in the admin.conf file, must not be edited with the WebLogic Scripting Tool (WLST). |
This section describes how to create and edit virtual hosts using Fusion Middleware Control.
To create a virtual Host using Fusion Middleware Control, do the following:
You can use the options on the Configure menu to specify Server, MIME, Log, mod_perl, SSL, and mod_wl_ohs configuration for a selected virtual host.
To configure a virtual host using Fusion Middleware Control, do the following:
This chapter describes how to manage Oracle HTTP Server logs. It describes how to configure server logs, how to find information about the cause of an error and its corrective action, to view and manage log files to assist in monitoring system activity and to diagnose problems
Oracle HTTP Server generates log files containing messages that record all types of events, including startup and shutdown information, errors, warning messages, access information on HTTP requests, and additional information.
This chapter includes the following sections:
You can view Oracle Fusion Middleware log files using either Fusion Middleware Control or a text editor. The log files for Oracle HTTP Server are located in the following directory:
ORACLE_HOME/user_projects/domains/base_domain/servers/componentName/logs
Oracle HTTP Server has two types of logs:
This section contains the following topics:
Oracle HTTP Server enables you to choose the format in which you want to generate log messages. You can choose to generate log messages in the legacy Apache HTTP Server message format, or use Oracle Diagnostic Logging (ODL) to generate log messages in text or XML-formatted logs, which complies with Oracle standards for generating error log messages.
By default, Oracle HTTP Server error logs use ODL for generating diagnostic messages. It provides a common format for all diagnostic messages and log files, and a mechanism for correlating the diagnostic messages from various components across Oracle Fusion Middleware.
The default name of the error log file is instance_name.log.
Access logs record all requests processed by the server. The logs contain basic information about every HTTP transaction handled by the server. The access log contains the following information:
The default name of the access log file is access_log.
Access Log Format
You can specify the information to include in the access log, and the manner in which it is written. The default format is the Common Log Format (CLF).
The CLF format contains the following fields:
host ident authuser date request status bytes
host
: This is the client domain name or its IP number. Use %h
to specify the host field in the log. ident
: If IdentityCheck is enabled and the client system runs identd, this is the client identity information. Use %i
to specify the client identity field in the log. authuser
: This is the user ID for the authorized user. Use %a
to specify the authorized user field in the log. date
: This is the date and time of the request in the day/month/year:hour:minute:second format. Use %t
to specify date and time in the log. request
: This is the request line, in double quotes, from the client. Use %r
to specify request in the log. status
: This is the three-digit status code returned to the client. Use %s
to specify the status in the log. If the request will be forwarded from another server, use %>s
to specify the last server in the log. bytes
: This is the number of bytes, excluding headers, returned to the client. Use %b
to specify number of bytes in the log. Use %i
to include the header in the log. Oracle HTTP Server supports two types of log rotation policies: size-based and time-based. You can configure the Oracle HTTP Server logs to use either of the two rotation polices, by using the odl_rotatelogs
command in ORACLE_HOME/ohs/bin. By default, Oracle HTTP Server uses odl_rotatelogs for both error and access logs.
odl_rotatelogs
supports all the features of Apache HTTP Server's rotatelogs
command and the additional feature of log retention.
The following is the general syntax of the odl_rotatelogs
command:
Table 7-1 describes the size- and time-based rotation options:
Table 7-1 Options of the odl_rotatelogs command
Option | Description |
---|---|
| The time (in seconds) to offset from UTC. |
| The path and name of the log file, followed by a hyphen (-) and then the timestamp format. The following are the common timestamp format strings:
It should not include formats that expand to include slashes. |
| The time (in seconds) between log file rotations. |
| The maximum time for which the rotated log files are retained. |
| The time when time-based rotation should start. |
| The maximum size (in MB) of log files. |
| The total size (in MB) of files retained. |
Syntax and Examples for Time- and Size-Based Rotation
Syntax:
Example:
This command configures log rotation to be performed every 21600 seconds (6 hours) starting from 8:30 a.m. on March 10, 2012, and it specifies that the rotated log files should be retained for 172800 seconds (2 days).
Syntax:
Example:
This command configures log rotation to be performed when the size of the log file reaches 10 MB, and it specifies the maximum size of all the rotated log files as 70 MB (up to 7 log files (=70/10) will be retained).
You can use Fusion Middleware Control to configure error and access logs. The following logging tasks can be set from the Log Configuration page:
To configure an error log for Oracle HTTP Server using Fusion Middleware Control, do the following:
The Log Configuration page is displayed, as shown in the following figure.
Oracle HTTP Server by default uses ODL-Text as the error log format and creates the log file with the name component_name
.log
under the DOMAIN_HOME/servers/component_name/logs directory. To use a different format or log location, do the following:
You can configure the amount and type of information written to log files by specifying the message type and level. Error log level for Oracle HTTP Server by default is configured to WARNING:32. To use a different error log level do the following:
Note: The log levels are different for the Apache HTTP Server log format from ODL-Text and the ODL-XML log format.
|
Log rotation policy for error logs can either be time-based, such as once a week, or sized-based, such as 120MB. By default, the error log file is rotated when it reaches 10 MB in size and a maximum of 7 error log files will be retained. To use a different rotation policy, do the following:
To configure an access log for Oracle HTTP Server using Fusion Middleware Control, do the following:
The following access log configuration tasks can be set from this page:
Log format specifies the information included in the access log file and the manner in which it is written. To add a new access log format or to edit or remove an existing format, do the following:
The Manage Custom Access Log Formats page is displayed, as shown in the following figure.
See Also: Refer to the Apache HTTP Server documentation for information about log format directives. |
To configure an access log for file Oracle HTTP Server, do the following:
The Create or Edit Access Log page is displayed.
Note that you can create multiple access log files.
This section discuss Oracle HTTP Server error and access log-related directives in the httpd.conf
file. The directives discussed are:
Oracle HTTP Server by default uses Oracle Diagnostic Logging (ODL) for generating diagnostic messages. The following directives are used to set up logging using ODL:
Enables you to choose the format in which you want to generate log messages. You can choose to generate log messages in the legacy Apache HTTP Server, ODL text, or ODL XML format.
OraLogMode Apache | ODL-Text | ODL-XML
Default value: ODL-Text
For example: OraLogMode ODL-XML
Note: The Apache HTTP Server log directivesErrorLog and LogLevel are only effective when OraLogMode is set to Apache . When OraLogMode is set to either ODL-Text or ODL-XML , the ErrorLog and LogLevel directives are ignored. |
Specifies the path to the directory that contains all log files. This directory must exist.
This directive is used only when OraLogMode is set to either ODL-Text
or ODL-XML
. When OraLogMode
is set to Apache
, OraLogDir
is ignored and ErrorLog is used instead.
Default value: ORACLE_INSTANCE/servers/componentName/logs
For example: OraLogDir /tmp/logs
Enables you to set message severity. The message severity specified with this directive is interpreted as the lowest desired message severity, and all messages of that severity level and higher are logged.
This directive is used only when OraLogMode is set to either ODL-Text
or ODL-XML
. When OraLogMode
is set to Apache
, OraLogSeverity
is ignored and LogLevel is used instead.
Default value: WARNING:32
For example: OraLogSeverity NOTIFICATION:16
msg_type
Message types can be specified in upper or lower case, but appear in the message output in upper case. This parameter must be of one of the following values:
msg_level
This parameter must be an integer in the range of 1–32, where 1 is the most severe, and 32 is the least severe. Using level 1 will result in fewer messages than using level 32.
Enables you to choose the rotation policy for an error log file. This directive is used only when OraLogMode is set to either ODL-Text
or ODL-XML
. When OraLogMode
is set to Apache
, OraLogRotationParams
is ignored.
Default value: S 10:70
For example: OraLogRotationParams T 43200:604800 2009-05-08T10:53:29
rotation_type
This parameter can either be S
(for sized-based rotation) or T
(for time-based rotation).
rotation_policy
When rotation_type
is set to S
(sized-based), set the rotation_policy parameter to:
maxFileSize:allFilesSize
(in MB)
For example, when configured as 10:70
, the error log file is rotated whenever it reaches 10MB in size and a total of 70MB is allowed for all error log files (a maximum of 70/10=7 error log files will be retained).
When rotation_type is set to T
(time-based), set the rotation_policy parameter to:
frequency(in sec) retentionTime(in sec) startTime(in YYYY-MM-DDThh:mm:ss)
For example, when configured as 43200:604800 2009-05-08T10:53:29
, the error log is rotated every 43200 seconds (that is, 12 hours), rotated log files are retained for maximum of 604800 seconds (7 days) starting from May 5, 2009 at 10:53:29.
Although Oracle HTTP Server uses ODL by default for error logs, you can configure the OraLogMode
directive to Apache
to generate error log messages in the legacy Apache HTTP Server message format. The following directives are discussed in this section:
The ErrorLog
directive sets the name of the file where the server logs any errors it encounters. If the filepath is not absolute then it is assumed to be relative to the ServerRoot.
This directive is used only when OraLogMode
is set to Apache
. When OraLogMode
is set to either ODL-Text
or ODL-XML
, ErrorLog is ignored and OraLogDir
is used instead.
See Also: For information about the Apache ErrorLog directive, see: |
The LogLevel
directive adjusts the verbosity of the messages recorded in the error logs.
This directive is used only when 3 is set to Apache
. When OraLogMode
is set to either ODL-Text
or ODL-XML
, LogLevel is ignored and OraLogSeverity is used instead.
The LogFormat
directive specifies the format of the access log file. By default, Oracle HTTP Server comes with the following four access log formats defined:
See Also: For information about the Apache HTTP Server LogFormat directive, see:
|
The CustomLog
directive is used to log requests to the server. A log format is specified and the logging can optionally be made conditional on request characteristics using environment variables. By default, the access log file is configured to use the common log format.
See Also: For information about the Apache CustomLog directive, see:
|
You can search, view, and list Oracle HTTP Server log files using Fusion Middleware Control, or you can download a log file to your local client and view the log files using another tool.
You can also use the text editor of your choice to view Oracle HTTP Server log files directly from the DOMAIN_HOME directory. By default, Oracle HTTP Server log files are located in the DOMAIN_HOME/servers/component_name/logs directory.
As discussed in Section 7.1, "Overview of Server Logs", there are mainly two types of log files for Oracle HTTP Server: error logs and access logs. The error log file is an important source of information for maintaining a well-performing server. The error log records all of the information about problem situations so that the system administrator can easily diagnose and fix the problems. The access log file contains basic information about every HTTP transaction that the server handles. This information can be used to generate statistical reports about the server's usage patterns.
See Also: For information about searching and viewing log files, see the Administering Oracle Fusion Middleware |
This chapter contains an overview of Oracle HTTP Server security features and provides configuration information for setting up a secure website.
This chapter includes the following sections:
Security can be organized into the three categories of authentication, authorization, and confidentiality. Oracle HTTP Server provides support for all three of these categories. It is based on the Apache HTTP Server, and its security infrastructure is primarily provided by the Apache modules, mod_auth_basic, mod_authn_file, mod_auth_user, and mod_authz_groupfile, and WebGate. The mod_auth_basic, mod_authn_file, mod_auth_user, and mod_authz_groupfile modules provide authentication based on user name and password pairs, while mod_authz_host controls access to the server based on the characteristics of a request, such as host name or IP address, mod_ossl provides confidentiality and authentication with X.509 client certificates over SSL.
Oracle HTTP Server provides access control, authentication, and authorization methods that can be configured with access control directives in the httpd.conf
file. When URL requests arrive at Oracle HTTP Server, they are processed in a sequence of steps determined by server defaults and configuration parameters. The steps for handling URL requests are implemented through a module or plug-in architecture that is common to many Web listeners.
Oracle HTTP Server authorizes and authenticates users before allowing them to access, or modify resources on the server. The following are three classes of users that access the server using Oracle HTTP Server, and their privileges:
http.conf
file. Oracle HTTP Server can be configured to protect all resources that it manages. You are responsible for configuring any protection that your resources require.
Oracle HTTP Server provides user authentication and authorization at two stages:
Access control refers to any means of controlling access to any resource.
See Also: Refer to the Apache HTTP Server documentation for more information on how to configure access control to resources. |
Authentication is any process by which you verify that someone is who they claim they are. Authorization is any process by which someone is allowed to be where they want to go, or to have information that they want to have.
Access control refers to any means of controlling access to any resource.
See Also: For more information on how to authenticate users, see the Apache HTTP Server documentation on "Authentication and Authorization" at: |
WebGate enables single sign-on (SSO) for Oracle HTTP Server. WebGate examines incoming requests and determines whether the requested resource is protected, and if so, retrieves the session information for the user.
Through WebGate, Oracle HTTP Server becomes an SSO partner application enabled to use SSO to authenticate users, obtain their identity by using Oracle Single Sign-On, and to make user identities available to web applications accessed through Oracle HTTP Server.
By using WebGate, web applications can register URLs that require SSO authentication. WebGate detects which requests received by Oracle HTTP Server require SSO authentication, and redirects them to the SSO server. Once the SSO server authenticates the user, it passes the user's authenticated identity back to WebGate in a secure token. WebGate retrieves the user's identity from the token and propagates it to applications accessed through Oracle HTTP Server, including applications running in Oracle WebLogic Server and CGIs and static files handled by Oracle HTTP Server.
Oracle HTTP Server supports authentication and authorization auditing by using the FMW Common Audit Framework. As part of enabling auditing, Oracle HTTP Server supports a directive called OraAuditEnable
, which defaults to On
. When it is enabled, audit events enabled in auditconfig.xml will be recorded in an audit log. By default, no audit events are enabled in auditconfig.xml.
When OraAuditEnable
is set to Off
, auditing is disabled regardless of the settings in auditconfig.xml.
Audit filters can be configured using Fusion Middleware Control or by editing auditconfig.xml directly.
See Also: "Overview of Audit Features" in Securing Applications with Oracle Platform Security Services |
Because of security concerns, Oracle strongly recommends that you disable the SSLv3 security protocol from Oracle HTTP Server.
To disable SSL security protocols from Oracle HTTP Server:
ssl.conf
file in the staging directory and the runtime directory. You can find the ssl.conf
files in the following locations:
Staging directory: DOMAIN_HOME
/config/fmwconfig/components/OHS/
componentName
Runtime directory: DOMAIN_HOME
/config/fmwconfig/components/OHS/instances/
componentName
For example, to remove the SSLv3 security protocol:
or to add the TLS version 1.0 and 1.2 security protocols:
or to add the TLS version 1.0, 1.1, and 1.2 security protocols:
Note:
|
The Oracle HTTP Server (OHS) introspector plug-in for the Oracle Virtual Assembly Builder (OVAB) plug-in introspects all the available Oracle HTTP Server instances in a WebLogic Server domain. This plug-in is an extension of WebLogic Server plug-in for OVAB.
This chapter contains the following sections:
This plug-in supports version 12.1.2.
The OHS Introspector plug-in for OVAB is an extension of WebLogic Server plug-in for OVAB, thus it works with the Introspector parameters provided for the WLS plug-in.
For the parameters required by WebLogic Server, see "Using the Introspection Plug-in for Oracle Virtual Assembly Builder," in Administering Server Environments for Oracle WebLogic Server.
Multiple scalable appliances, one per Oracle HTTP Server instance.
All of WebLogic Server requirements must be satisfied. For these requirements, see "Using the Introspection Plug-in for Oracle Virtual Assembly Builder," in Administering Server Environments for Oracle WebLogic Server.
In addition to the WebLogic Server requirements, reference system implementations require that WLS and Oracle HTTP Server be installed in the same ORACLE_HOME.
Inputs are created on the Oracle HTTP Server appliance for each Listen or Port directive found in the configuration. The protocol of an Oracle HTTP Server input is set to http
unless the Listen
directive is found inside a VirtualHost
directive and the directive SSLEngine
is set to on. In that case, the protocol is https
.
Outputs on the Oracle HTTP Server appliance are created based on various directives related to Oracle WebLogic Server in the Oracle HTTP Server configuration. The outputs indicate which inputs on an Oracle WebLogic Server assembly to connect to through the output 'description'.
All instance appliance input endpoints have one editable property, port
, and two non-editable properties, name
and a list of protocol
s. The protocol
s indicate what sort of outputs can be connected to the input. An administration server appliance will always have one secure http listener input endpoint, port
, which is editable.
All output endpoints have three non-editable properties, description
, protocol
and singleton
. The protocol
indicates what sort of input can be connected to the output. Singleton
indicates what sort of appliance the output can be connected to. If singleton
is true, the output can only be connected to an input on an appliance that has a scalability absolute max value of 1. Administration Server appliance do not have output endpoints.
There are no relevant Oracle HTTP Server appliance properties.
None.
The supported template type is Oracle Enterprise Linux (OEL).
Be aware of the following plug-in limitations:
For more information on using OVAB, see the following documents:
This appendix provides answers to frequently asked questions about Oracle HTTP Server (OHS). It includes the following topics:
Documentation from the Apache Software Foundation is referenced when applicable.
Note: Readers using this guide in PDF or hard copy formats will be unable to access third-party documentation, which Oracle provides in HTML format only. To access the third-party documentation referenced in this guide, use the HTML version of this guide and click the hyperlinks. |
Oracle HTTP Server has a default content handler for dealing with errors. You can use the ErrorDocument
directive to override the defaults.
For HTTP, Oracle HTTP Server supports both name-based and IP-based virtual hosts. Name-based virtual hosts are virtual hosts that share a common listening address (IP plus port combination), but route requests based on a match between the Host header sent by the client and the ServerName
directive set within the VirtualHost
. IP-based virtual hosts are virtual hosts that have distinct listening addresses. IP-based virtual hosts route requests based on the address they were received on.
For HTTPS, only IP-based virtual hosts are possible with Oracle HTTP Server. This is because for name-based virtual hosts, the request must be read and inspected to determine which virtual host is used to process the request. If HTTPS is used, an SSL handshake must be performed before the request can be read. To perform the SSL handshake, a server certificate must be provided. To have a meaningful server certificate, the host name in the certificate must match the host name the client requested, which implies a unique server certificate per virtual host. However, because the server cannot know which virtual host to route the request to until it has read the request, and it can't properly read the request unless it knows which server certificate to provide, there is no way to make name-based virtual hosting work with HTTPS.
Yes, you can use multiviews, a general name given to the Apache HTTP Server's ability to provide language and character-specific document variants in response to a request.
See Also: Multiviews option in the Apache HTTP Server documentation on Content Negotiation, at:
|
No, you cannot apply the Apache HTTP Server security patches to Oracle HTTP Server for the following reasons:
The latest security related fixes to Oracle HTTP Server are performed through the Oracle Critical Patch Update (CPU). For more details, refer to Oracle's Critical Patch Updates and Security Alerts Web page.
Note: After applying a CPU, the Apache HTTP Server-based version may stay the same, but the vulnerability will be fixed. There are third-party security detection tools that can check the version, but do not check the vulnerability itself. |
No, you cannot upgrade only the Apache HTTP Server version inside Oracle HTTP Server. Oracle provides a newer version of Apache HTTP Server that Oracle HTTP Server is based on, which is part of either a patch update or the next major or minor release of Oracle Fusion Middleware.
In general, Oracle recommends using mod_deflate, which is included with Oracle HTTP Server. For more information pertaining to mod_deflate, see http://httpd.apache.org/docs/current/mod/mod_deflate.html
The general idea is that all servers in a distributed website should use a single URL namespace. Every server serves some part of that namespace, and is able to redirect or proxy requests for URLs that it does not serve to a server that is closer to that URL. For example, your namespaces could be the following:
You could initially map these name spaces to two Web servers by putting app1 on server1 and app2 on server2. The configuration for server1 might look like the following:
The configuration for Server2 is complementary.
If you decide to partition the namespace by content type (HTML on server1, and JSP on server2), then you can change server configuration and move files around, but you do not have to make changes to the application itself. The resulting configuration of server1 might look like the following:
The amount of actual redirection can be minimized by configuring a hardware load balancer like F5 system BIG-IP to send requests to server1 or server2 based on the URL.
There are many attacks by hackers, and new attacks are invented everyday. The following are some general guidelines for securing your site. You can never be completely secure, but you can avoid being an easy target.
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
Yes, if you enable or disable SSL, you have to re-register partner applications with the SSO server. When you make any changes that affect the URL (for example, changing the host name or port, or enabling or disabling SSL), you have re-register partner applications with the SSO server because the old URL registered with the SSO server is no longer valid. You have to re-register the partner applications with the new URL.
The REDIRECT_ERROR_NOTES CGI environment variable is not set for "File Not Found" errors in Oracle HTTP Server because compatibility with Apache HTTP Server does not make that information available to CGI and other applications for this condition.
Specify ServerSignature Off
to remove this information from web server generated responses. Specify ServerTokens Custom
some-server-string
to disguise the web server software when Oracle HTTP Server generates the web Server response header. (When a backend server generates the response, the server response header may come from the backend server depending on the proxy mechanism.)
Note: ServerTokens Custom some-server-string is a replacement for the ServerHeader Off setting in Oracle HTTP Server 10g. |
Oracle HTTP Server 12.1.2 process management is handled by Node Manager. The startComponent
command can be used to start Oracle HTTP Server without using WLST or Fusion Middleware Control directly. For more information, see Section 4.3.2.3, "Starting Oracle HTTP Server Instances from the Command Line".
This appendix describes common problems that you might encounter when using Oracle HTTP Server (OHS), and explains how to solve them. It includes the following topics:
You can get the following error if Oracle HTTP Server cannot start due to port conflict:
Solution
Determine what process is already using that port, and then either change the IP:port address of Oracle HTTP Server or the port of the conflicting process.
When too many httpd processes run on a system, the response time degrades because there are insufficient resources for normal processing.
Solution
Lower the value of MaxClients
to a value the machine can accommodate.
You will get the following error if you try to start Oracle HTTP Server on a port below 1024:
Oracle HTTP Server will not start on ports below 1024 because root privileges are needed to bind these ports.
Solution
Follow the steps in Section 4.3.2.4, "Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)" to start Oracle HTTP Server on a Privileged Port.
If Oracle HTTP Server is not able to locate Perl module (PM) files in the path defined in the PERL5LIB
variable, Oracle HTTP Server may encounter the following errors, and fail to start:
or:
Solution
Check that ORACLE_HOME/ohs/bin/apachectl is correctly defined in the PERL5LIB variable. It should point to the path(s) containing the PM files. By default, it points to PM files in the following directories:
ORACLE_HOME
/ohs/mod_perl/lib/site_perl/5.10.0ORACLE_HOME
/perl/lib/5.10.0ORACLE_HOME
/perl/lib/site_perl/5.10.0If you configure mod_perl by using the EM mod_perl configuration page and try to remove a previously configured PerSetEnv
variable from the Environment field, this error is thrown:
Solution
To correct this situation:
PerSetEnv
by doing one of the following: OR
PerSetEnv
value. You can use the following log files to help locate errors:
This log file is necessary for debugging when mod_rewrite is used. The log file produces a detailed analysis of how the rewriting engine transforms requests. The level of detail is controlled by the RewriteLogLevel
directive.
This log file enables you to record the input to and output from the CGI scripts. This should only be used in testing, and not for production servers.
See Also: ScriptLog in the Apache HTTP Server documentation at:
|
This log file records overall server problems. Refer to Chapter 7, "Managing Oracle HTTP Server Logs" for details on configuring and viewing error logs.
If you need to recover an Oracle HTTP Server instance that is installed on a remote host (that is, a host with just managed servers but no Administration Server), you must use tar
and untar
; pack.sh
and unpack.sh
do not work in this scenario.
The following are performance issues, along with their solutions, that you might encounter when running Oracle HTTP Server:
Oracle HTTP Server uses locks for its internal processing, which in turn use lock files. These files are created dynamically when the lock is created and are accessed every time the lock is taken or released. If these files reside on a slower file system (for example, network file system), then there could be severe performance degradation. To counter this issue:
AcceptMutex
fcntl
to AcceptMutex sysvsem
(two places). LockFile
directive (three places). AcceptMutex fcntl
to AcceptMutex pthread
(two places). LockFile
directive (three places). In httpd.conf, change the LockFile
directive to point to a local filesystem (three places).
mod_cgid and mod_fastcgi are not enabled by default. If enabled, these modules use UNIX sockets internally. If UNIX sockets reside on a slower file system (e.g., network file system), a severe performance degradation could be observed. You can set the following directives to avoid the issue:
ScriptSock
directive to place mod_cgid's UNIX socket on a local filesystem. FastCgiIpcDir
directive to place mod_fastcgi's UNIX sockets on a local filesystem. If you are using mod_wl_ohs to route the requests to back-end WLS server/cluster, and the DocumentRoot is on a slower file system (e.g., network file system), then every request that is routed to the backend server can experience performance issues. This can be overcome by setting WLSRequest
to ON
instead of SetHandler
weblogic-handler
.
In some extreme configurations, you might see the following message in the OHS error log:
This is because of an incorrect calculation of required shared memory for OHS DMS. This can be resolved by setting DMSThreadSharedMem
to a larger value than the default of 350. Continue setting DMSThreadSharedMem
50% higher until the problem is resolved.
In a configuration with a very large number of virtual hosts (hundreds or thousands), if the above workaround does not work, you can instead set the environment variable OHS_DMS_BLOCKSIZE to the desired value.
The default Oracle HTTP Server configuration contains the files described in the following sections:
For more information about the configuration files, see Section 1.6, "Understanding Configuration Files"
Description | Top-level web server configuration file |
Format | Apache HTTP Server .conf file format |
Primary feature configured | Various, including non-SSL listening socket |
Description | Web server configuration file for SSL |
Format | Apache HTTP Server .conf file format |
Primary feature configured | mod_ossl |
Description | Web server configuration file for administration port |
Format | Apache HTTP Server .conf file format |
Primary feature configured | mod_dms; administration port used for communication with node manager |
Note: Only the listen port and local address are intended for customer configuration. |
Description | Web server configuration file for WebLogic plugin |
Format | Apache HTTP Server .conf file format |
Primary feature configured | WebLogic plugin (mod_wl_ohs) |
Description | Optional, enabled web server configuration files for specific features, such as mod_plsql |
Format | Apache HTTP Server .conf file format |
Primary feature configured | default: mod_plsql |
Note: To disable .conf move it from moduleconf/ to disabled/. |
Description | Optional, disabled web server configuration files for specific features, such as mod_plsql |
Format | Apache HTTP Server .conf file format |
Primary feature configured | default: mod_perl, mod_fastcgi (if .conf file is moved to moduleconf/) |
Note: To enable a .conf file in the disabled directory, move it from moduleconf/ to disabled/. |
Description | Web server configuration file for mod_mime |
Format | mod_mime file format |
Primary feature configured | Mime types used by mod_mime |
Description | Configuration file for Oracle HTTP Server node manager plug-ins |
Format | Java property file format |
Primary feature configured | Oracle HTTP Server Node Manager plug-ins |
Description | Optional, disabled web server configuration file for mod_mime_magic |
Format | mod_mime_magic file format |
Primary feature configured | File content patterns used by mod_mime_magic |
Name example: keystores/default
Description | Oracle wallet |
Format | Oracle wallet format |
Primary feature configured | Oracle wallets for SSL/TLS communication |
Description | Configuration of OHS auditing and logging |
Format | FMW audit framework audit configuration XML format |
Primary feature configured | FMW audit framework auditing of Oracle HTTP Server operations |
Description | Configuration of OHS log files for log collection |
Format | FMW log file configuration XML format |
Primary feature configured | Log collection |
Description | Static configuration of OHS audit event definitions |
Format | FMW audit framework component event XML format |
Primary feature configured | FMW audit framework |
Note: This configuration file is not intended for modification by customers. |
For additional information, see the following documentation:
This appendix documents the property files used by Oracle HTTP Server. The files include:
The ohs_admin.properties file is a per domain file used to configure the Oracle HTTP Server administration server MBeans. This file must be edited manually and the administration server restarted for the change to take effect.
File path: DOMAIN_HOME/config/fmwconfig/components/OHS/ohs_admin.properties
Editable properties in this file are listed here:
Property | Description |
---|---|
LogLevel | The log level for the OHS Node Manager plug-in. Accepted Values:
Default: INFO |
The ohs_nm.properties file is a per domain file used to configure the Oracle HTTP Server Node Manager plug-in. This file must be edited manually and Node Manager restarted for the change to take effect.
File path: DOMAIN_HOME/config/fmwconfig/components/OHS/ohs_nm.properties
Property | Description |
---|---|
LogLevel | The log level for the OHS undemanding plug-in. Accepted values:
Default: INFO |
The ohs.plugins.nodemanager.properties file exists for each configured Oracle HTTP Server and contains configured parameters OHS process management. This file must be manually edited and propagated to the run-time area.
File path: DOMAIN_HOME/config/fmwconfig/components/OHS/ohs1/ohs.plugins.nodemanager.properties
The following table lists the cross-platform properties:
Property | Description |
---|---|
config-file | The base filename of the initial Oracle HTTP Server configuration file.
Caution: The specified .conf file must include admin.conf in the same manner as the default httpd.conf. Default: httpd.conf |
command-line | Extra arguments to add to the httpd invocation.
Caution: These must not conflict with the usual start, stop, and restart parameters. Using -D and symbol is the expected use of this property. Default: None |
start-timeout | The maximum number of seconds to wait for Oracle HTTP Server to start and initialize.
Default: 120 |
stop-timeout | The maximum number of seconds to wait for the Oracle HTTP Server to terminate.
Default: 60 |
restart-timeout | The maximum number of seconds to wait for the Oracle HTTP Server to restart.
Default: 180 |
ping-interval | The number of seconds from the completion of one Node Manager health check ping to the Oracle HTTP Server until the start of the next. A value of 0 disables pings.
Default: 30 |
ping-timeout | The maximum number of seconds to wait for an Oracle HTTP Server health check ping to complete.
Default: 60 |
Example:
Additional environment variables for the OHS server may be specified using environment properties.
The environment property syntax is:
Where:
.append
will append the new <value> to any existing value for <
name
>
. If <
name
>
has not yet been defined, then <value> will be the new value. .<
order
>
value sets order for this definition's setting in the environment (the default is 0). The order determines when the configured variable is added to the process' environment (and its value evaluated). Environment properties with lower order values are processed before those with higher order values. The order value must be an integer with a value greater than or equal to 0. <
name
>
is the environment variable name, which must begin with a letter or underscore, and consist of letters, numeric digits or underscores. <
value
>
is the value of environment variable <
name
>
. The value can reference other environment variable names, including its own. The following special references may be included in the value:
With the exception of these special characters, UNIX variable syntax references ("$name" or "${name}") and the Windows variable syntax reference ("%name%") are supported.
Note that each property name within the same property file must be unique (the behavior is not defined for multiple properties defined with the same name), thus the .<
order
>
field should be used to keep property names unique when multiple definitions are provided for the same environment variable <
name
>
.
The following environment variables are set by the Oracle HTTP Server Node Manager plug-in:
$PRODUCT_HOME/bin:$ORACLE_HOME/bin:
$ORACLE_HOME/jdk/bin:/bin:/usr/bin:/usr/local/bin
%PRODUCT_HOME%\bin;%ORACLE_HOME%\bin;
%ORACLE_HOME%\jdk\bin;%SystemRoot%;%SystemRoot%\system32
These variables apply to UNIX only:
These variables apply to Windows only:
Example
On a UNIX like system with the web tier installed as /oracle and the environment variable "MODX_RUNTIME=special" set in the NodeManager's environment, the following definitions:
would result in the following additional environment variables set for Oracle HTTP Server:
These should only be configured for instances running on Linux or other UNIX like systems.
Property | Description |
---|---|
restart-mode | Determines whether to use graceful or hard restart for the Oracle HTTP Server when configuration changes are activated.
Default: graceful |
stop-mode | Determines whether to use a graceful or hard stop when stopping Oracle HTTP Server.
Default: stop |
mpm | Determines whether to use the prefork or worker MPM for Oracle HTTP Server.
Default: worker |
allow-corefiles | Determines whether ulimit should be set to allow core files to be written for OHS server crashes.
Default: no |
Example
mod_security is an open-source module that you can use to detect and prevent intrusion attacks against Oracle HTTP Server; for example, you can specify a mod_security rule to screen all incoming requests and deny requests that match the conditions specified in the rule. The mod_security module (version 2.7.2) and its prerequisites are included in the Oracle HTTP Server installation as a shared object named mod_security2.so in the ORACLE_HOME/ohs/modules directory.
This version of OHS supports only mod_security (version 2.7.2) directives, variables, action, phases and functions. It will not be supported if you replace this module with a later version.
This appendix contains a usable example (Example E–1) of the mod_security.conf file, including the loadModule
statement.
Notes: Be aware of the following:
|
For more information on mod_security, see the mod_security documentation site, at:
http://www.modsecurity.org/documentation/
This chapter contains the following sections:
To make the mod_security module available for use when Oracle HTTP Server is running, ensure that mod_security.conf begins with the following lines:
as shown in the mod_security.conf example inExample F-1.
Configuring mod_security involves specifying certain directives in the Oracle HTTP Server configuration file. You can specify the directives directly in the httpd.conf file in an IfModule
container. Alternatively, you can specify the mod_security directives in a separate mod_security.conf file and include that .conf file in httpd.conf by using the Include
directive.
By default, mod_security.conf does not exist, so you need to create it, preferably by using the template in Example F-1. Copy and paste the sample into a text editor and read the entire file, editing it for your system. Then save it as your own mod_security.conf and include it from your httpd.conf. If you implement mod_security.conf as described in this appendix, it will use the LoadModule
directive to load mod_security2.so into the run time environment.
Example F-1 mod_security.conf Sample
This appendix describes the directives available in the Oracle-developed modules supported by OHS. It contains these sections:
mod_certheaders accepts the following directives:
Specify which headers should be translated to CGI environment variables. This can be achieved by using the AddCertHeader
directive. This directive takes a single argument, which is the CGI environment variable that should be populated from a HTTP header on incoming requests. For example, to populate the SSL_CLIENT_CERT CGI environment variable.
Category | Value |
---|---|
Syntax | AddCertHeader environment_variable |
Example | AddCertHeader SSL_CLIENT_CERT |
Default | None |
mod_certheaders can be used to instruct Oracle HTTP Server to treat certain requests as if they were received through HTTPS even though they were received through HTTP. This is useful when Oracle HTTP Server is front-ended by a reverse proxy or load balancer, which acts as a termination point for SSL requests, and forwards the requests to Oracle HTTP Server through HTTPS.
Category | Value |
---|---|
Syntax | SimulateHttps on|off |
Example | SimulateHttps on |
Default | off |
To configure SSL for your Oracle HTTP Server, enter the mod_ossl
directives you want to use in the httpd.conf
file.
The following directives are described in subsequent sections:
Specifies if SSL accelerator is used. Currently only nFast card is supported.
Category | Value |
---|---|
Syntax | SSLAccelerator yes|no |
Example | SSLAccelerator yes |
Default | SSLAccelerator no |
Note: TheSSLAccelerator directive has been deprecated. For information on enabling SSL acceleration support using a wallet, refer to the Oracle Advanced Security Administrator's Guide on http://www.oracle.com/technology/documentation . |
Specifies the file where you can assemble the Certificate Revocation Lists (CRLs) from CAs (Certificate Authorities) that you accept certificates from. These are used for client authentication. Such a file is the concatenation of various PEM-encoded CRL files in order of preference. This directive can be used alternatively or additionally to SSLCARevocationPath
.
Category | Value |
---|---|
Syntax | SSLCARevocationFile file_name |
Example | SSLCARevocationFile ${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/crl/ca_bundle.cr |
Default | None |
Specifies the directory where PEM-encoded Certificate Revocation Lists (CRLs) are stored. These CRLs come from the CAs (Certificate Authorities) that you accept certificates from. If a client attempts to authenticate itself with a certificate that is on one of these CRLs, then the certificate is revoked and the client cannot authenticate itself with your server.
Category | Value |
---|---|
Syntax | SSLCARevocationPath path/to/CRL_directory/ |
Example | SSLCARevocationPath ${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/crl |
Default | None |
Specifies the SSL cipher suite that the client can use during the SSL handshake. This directive uses a colon-separated cipher specification string to identify the cipher suite. Table 11–2 shows the tags you can use in the string to describe the cipher suite you want. SSLCipherSuite accepts the following values:
Tags are joined with prefixes to form a cipher specification string. Cipher suite tags are listed in Table G-1.
Category | Value |
---|---|
Example | SSLCipherSuite ALL:!MD5 In this example, all ciphers are specified except MD5 strength ciphers. |
Syntax | SSLCipherSuite cipher-spec |
Default | ALL:!ADH:+HIGH:+MEDIUM:+LOW |
Table G-1 SSLCipher Suite Tags
Function | Tag | Meaning |
---|---|---|
Key exchange |
|
|
Key exchange |
| Diffie-Hellman key exchange with RSA key |
Authentication |
| No authentication |
Authentication |
|
|
Authentication |
| Diffie-Hellman authentication |
Encryption |
| No encryption |
Encryption |
|
|
Encryption |
| Triple |
Encryption |
|
|
Encryption |
| Elliptic curve cryptography encoding |
Data Integrity |
|
|
Data Integrity |
|
|
Data Integrity |
| SHA256 hash function |
Data Integrity |
| SHA384 hash function |
Aliases |
| All SSL version 3.0 ciphers |
Aliases |
| All TLS version 1.1 ciphers |
Aliases |
| All TLS version 1.2 ciphers |
Aliases |
| All low strength ciphers (export and single |
Aliases |
| All ciphers with 128-bit encryption |
Aliases |
| All ciphers using triple |
Aliases |
| All ciphers using AES encryption. |
Aliases |
| All ciphers using |
Aliases |
| All ciphers using Diffie-Hellman key exchange |
Table G-2 lists the Cipher Suites supported in Oracle Advanced Security 12.1.2.
Table G-2 Cipher Suites Supported in Oracle Advanced Security 12.1.2
Cipher Suite | Authentication | Encryption | Data Integrity | TLSv1 | TLSv1.1 | TLSv1.2 |
---|---|---|---|---|---|---|
|
|
|
| Yes | Yes | Yes |
|
|
|
| Yes | Yes | Yes |
|
|
|
| Yes | Yes | Yes |
|
|
|
| Yes | Yes | Yes |
|
|
|
| Yes | Yes | Yes |
|
|
|
| No | No | Yes |
|
|
|
| No | No | Yes |
|
|
|
| No | No | Yes |
|
|
|
| No | No | Yes |
|
|
|
| Yes | Yes | Yes |
|
|
|
| Yes | Yes | Yes |
|
|
|
| No | No | Yes |
|
|
|
| No | No | Yes |
|
|
|
| No | No | Yes |
|
|
|
| No | No | Yes |
Toggles the usage of the SSL Protocol Engine. This is usually used inside a <VirtualHost>
section to enable SSL for a particular virtual host. By default, the SSL Protocol Engine is disabled for both the main server and all configured virtual hosts. Example 11–1 is an example for using SSLEngine directive.
Category | Value |
---|---|
Syntax | SSLEngine on|off |
Example | SSLEngine on |
Default | off |
This directive toggles the usage of the SSL library FIPS_mode flag. It must be set in the global server context and cannot be configured with conflicting settings (SSLFIPS on
followed by SSLFIPS off
or similar). The mode applies to all SSL library operations.
Note: FIPS is available only on the UNIX/Linux platform. It is not available on the Windows platform |
Category | Value |
---|---|
Syntax | SSLFIPS ON | OFF |
Example | SSLFIPS ON |
Default | Off |
Configuring an SSLFIPS change requires that the SSLFIPS on
/off
directive be set globally in ssl.conf. Virtual level configuration is disabled in SSLFIPS directive. Hence, setting SSLFIPS to virtual directive will result in an error.
The cipher suites supported the SSLFIPS mode are:
SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_AES_128_CBC_SHA
SSL_RSA_WITH_AES_256_CBC_SHA
RSA_WITH_AES_128_CBC_SHA256
RSA_WITH_AES_256_CBC_SHA256
RSA_WITH_AES_256_GCM_SHA384
ECDHE_ECDSA_WITH_AES_128_CBC_SHA
ECDHE_ECDSA_WITH_AES_256_CBC_SHA
ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
For instructions on how to implement these cipher suites, see Section G.2.4, "SSLCipherSuite".
As originally specified, all versions of the SSL and TLS protocols (up to and including TLS/1.2) were vulnerable to a Man-in-the-Middle attack (CVE-2009-3555) during a renegotiation. This vulnerability allowed an attacker to "prefix" a chosen plaintext to the HTTP request as seen by the web server. A protocol extension was developed which fixed this vulnerability if supported by both client and server. By default insecure renegotiation is disabled it is NZ's (ssl.renegotiate = "compatible"). This mode allow vulnerable peers to connect; but, renegotiation is allowed only with those peers that have RI/SCSV support. To enable renegotiation set SSLInsecureRenegotiation on ssl.conf file. This mode is equivalent to NZ (ssl.renegotiate = "insecure"). This mode will allow vulnerable peers to connect; but, renegotiation is allowed only with those peers that have RI/SCSV support.
Category | Value |
---|---|
Syntax | SSLInsecureRenegotiation ON | OFF |
Example | SSLInsecureRenegotiation ON |
Default | Off |
To configure SSLInsecureRenegotiation, edit ssl.conf file and set SSLInsecureRenegotiation
ON
/OFF
globally or virtually to enable disable insecure renegotiation.
Type of semaphore (lock) for SSL engine's mutual exclusion of operations that have to be synchronized between Oracle HTTP Server processes. Accepted values are:
none
: Uses no mutex at all. Not recommended, because the mutex synchronizes the write access to the SSL session cache. If you do not configure a mutex, the session cache can become garbled. file:
path/to/mutex: Uses a file for locking. The process ID (PID) of the Oracle HTTP Server parent process is appended to the filename to ensure uniqueness. If the filename does not begin with a slash (/), it is assumed to be relative to ServerRoot
. This setting is not available on Windows. sem
: Uses an operating system semaphore to synchronize writes. On UNIX, it would be a Sys V IPC semaphore; on Windows, it is a Windows Mutex. This is the best choice, if the operating system supports it. Category | Value |
---|---|
Syntax | SSLMutex none | file | sem |
Example | SSLMutex sem |
Default | None |
SSLNZTraceLogLevel
adjusts the verbosity of the messages recorded in the NZ library error logs. When a particular level is specified, messages from all other levels of higher significance will be reported as well. For example, when SSLNZTraceLogLevel ssl
is set, messages with log levels of error, warn, user and debug will also be posted.
SSLNZTraceLogLevel accepts the following log levels:
none
: NZ Trace disable fatal
: Fatal error; system is unusable. error
: Error conditions. warn
: Warning conditions. user
: Normal but significant condition. debug
: Debug-level condition ssl
: SSL level debugging Category | Value |
---|---|
Syntax | SSLNZTraceLogLevel none | fatal | error | warn | user | debug | ssl |
Example | SSLNZTraceLogLevel fatal |
Default | None |
Controls various runtime options on a per-directory basis. In general, if multiple options apply to a directory, the most comprehensive option is applied (options are not merged). However, if all of the options in an SSLOptions
directive are preceded by a plus ('+') or minus ('-') symbol, then the options are merged. Options preceded by a plus are added to the options currently in force, and options preceded by a minus are removed from the options currently in force.
Accepted values are:
StdEnvVars
: Creates the standard set of CGI/SSI environment variables that are related to SSL. This is disabled by default because the extraction operation uses a lot of CPU time and usually has no application when serving static content. Typically, you only enable this for CGI/SSI requests. ExportCertData
: Enables the following additional CGI/SSI variables: SSL_SERVER_CERT
SSL_CLIENT_CERT
SSL_CLIENT_CERT_CHAIN_n
(where n= 0, 1, 2...)
These variables contain the Privacy Enhanced Mail (PEM)-encoded X.509 certificates for the server and the client for the current HTTPS connection, and can be used by CGI scripts for deeper certificate checking. All other certificates of the client certificate chain are provided. This option is "Off" by default because there is a performance cost associated with using it.
SSL_CLIENT_CERT_CHAIN_n
variables are in the following order: SSL_CLIENT_CERT_CHAIN_0
is the intermediate CA who signs SSL_CLIENT_CERT
. SSL_CLIENT_CERT_CHAIN_1
is the intermediate CA who signs SSL_CLIENT_CERT_CHAIN_0
, and so forth, with SSL_CLIENT_ROOT_CERT
as the root CA.
FakeBasicAuth
: Translates the subject distinguished name of the client X.509 certificate into an HTTP basic authorization user name. This means that the standard HTTP server authentication methods can be used for access control. Note that no password is obtained from the user; the string 'password' is substituted. StrictRequire
: Denies access when, according to SSLRequireSSL or directives, access should be forbidden. Without StrictRequire
, it is possible for a 'Satisfy any'
directive setting to override the SSLRequire
or SSLRequireSSL
directive, allowing access if the client passes the host restriction or supplies a valid user name and password. Thus, the combination of SSLRequireSSL
or SSLRequire
with SSLOptions +StrictRequire
gives mod_ossl
the ability to override a 'Satisfy any'
directive in all cases.
CompatEnvVars
: Exports obsolete environment variables for backward compatibility to Apache SSL 1.x, mod_ssl
2.0.x, Sioux 1.0, and Stronghold 2.x. Use this to provide compatibility to existing CGI scripts. OptRenegotiate
: This enables optimized SSL connection renegotiation handling when SSL directives are used in a per-directory context. Category | Value |
---|---|
Syntax | SSLOptions [+-] StdEnvVars | ExportCertData | FakeBasicAuth | StrictRequire | CompatEnvVars | OptRenegotiate |
Example | SSLOptions -StdEnvVars |
Default | None |
Type of pass phrase dialog for wallet access. mod_ossl
asks the administrator for a pass phrase to access the wallet. Accepted values are:
builtin
: when the server is started, mod_ossl
prompts for a password for each wallet. exec:
path/to/program
- when the server is started, mod_ossl
calls an external program configured for each wallet. This program is invoked with two arguments: servername
:portnumber
and RSA
or DSA
. Category | Value |
---|---|
Syntax | SSLPassPhraseDialog builtin | exec |
Example | SSLPassPhraseDialog exec:/usr/local/sbin/pfilter |
Default | builtin |
Specifies SSL protocol(s) for mod_ossl
to use when establishing the server environment. Clients can only connect with one of the specified protocols. Accepted values are:
SSLv3
TLSv1
TLSv1.1
TLSv1.2
All
You can specify multiple values as a space-delimited list. In the syntax for SSLProtocol, the "-" and "+" symbols have the following meaning:
In the current release All
is defined as +SSLv3
+TLSv1
+TLSv1.1
+TLSv1.2
(SSLv2
is disabled out-of-the-box. You must explicitly disable SSLv3
in this case.)
Note: Because of security concerns, Oracle strongly recommends that you disable theSSLv3 security protocol from Oracle HTTP Server. For instructions on how to disable SSL, see "Disable SSL Security Protocols" in Oracle HTTP Server Release Notes. |
Note: The syntax for theSSLProtocol directive can use either TLSv1 as a value or the nzos_Version_1_0 syntax (or TLSv1.1 and nzos_Version_1_1 , or TLSv1.2 and nzos_Version_1_2 ). If you are using Oracle Fusion Middleware Control, security will be configured using the |
Category | Value |
---|---|
Syntax | SSLProtocol [+-] SSLv3 | TLSv1 | TLSv1.1 | TLSv1.2 | All |
Example | SSLProtocol +TLSv1 +TLSv1.1 +TLSv1.2 |
Default | ALL |
Specifies the SSL cipher suite that the proxy can use during the SSL handshake. This directive uses a colon-separated cipher specification string to identify the cipher suite. Table G-1 shows the tags to use in the string to describe the cipher suite you want. SSLProxyCipherSuite accepts the following values:
Tags are joined with prefixes to form a cipher specification string. The SSLProxyCipherSuite directive uses the same tags as the SSLCipherSuite directive. For a list of supported suite tags, see Table G-1.
Category | Value |
---|---|
Example | SSLProxyCipherSuite ALL:!MD5 In this example, all ciphers are specified except MD5 strength ciphers. |
Syntax | SSLProxyCipherSuite cipher-spec |
Default | ALL:!ADH:+HIGH:+MEDIUM:+LOW |
The SSLProxyCipherSuite directive uses the same cipher suites as the SSLCipherSuite directive. For a list of the Cipher Suites supported in Oracle Advanced Security 12.1.2, see Table G-2.
Enables or disables the SSL/TLS protocol engine for proxy. SSLProxyEngine is usually used inside a <VirtualHost>
section to enable SSL/TLS for proxy usage in a particular virtual host. By default, the SSL/TLS protocol engine is disabled for proxy both for the main server and all configured virtual hosts.
SSLProxyEngine should not be included in a virtual host that will be acting as a forward proxy (by using Proxy
or ProxyRequest
directives). SSLProxyEngine is not required to enable a forward proxy server to proxy SSL/TLS requests.
Category | Value |
---|---|
Syntax | SSLProxyEngine ON | OFF |
Example | SSLProxyEngine on |
Default | Disable |
Specifies SSL protocol(s) for mod_ossl
to use when establishing a proxy connection in the server environment. Proxies can only connect with one of the specified protocols. Accepted values are:
SSLv3
TLSv1
TLSv1.1
TLSv1.2
All
You can specify multiple values as a space-delimited list. In the syntax, the "-" and "+" symbols have the following meaning:
In the current release All
is defined as +SSLv3
+TLSv1
+TLSv1.1
+TLSv1.2
(SSLv2
is disabled out of the box. You must explicitly disable SSLv3
in this case.)
Note: Because of security concerns, Oracle strongly recommends that you disable theSSLv3 security protocol from Oracle HTTP Server. For instructions on how to disable SSL, see "Disable SSL Security Protocols" in Oracle HTTP Server Release Notes. |
Note: The syntax for theSSLProxyProtocol directive can use either TLSv1 as a value or the nzos_Version_1_0 syntax (or TLSv1.1 and nzos_Version_1_1 , or TLSv1.2 and nzos_Version_1_2 ). If you are using Oracle Fusion Middleware Control, security will be configured using the |
Category | Value |
---|---|
Syntax | SSLProxyProtocol [+-] SSLv3 | TLSv1 | TLSv1.1 | TLSv1.2 | All |
Example | SSLProxyProtocol +TLSv1 +TLSv1.1 +TLSv1.2 |
Default | ALL |
Specifies the location of the wallet with its WRL, specified as a filepath, that a proxy connection needs to use.
Category | Value |
---|---|
Syntax | SSLProxyWallet file:path to wallet |
Example | SSLProxyWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/instances/${COMPONENT_NAME}/keystores/proxy" |
Default | None |
Denies access unless an arbitrarily complex boolean expression is true.
Category | Value |
---|---|
Syntax | SSLRequire expression (see Understanding the Expression) |
Example | SSLRequire word ">=" word |word "ge" word |
Default | None |
Understanding the Expression
The expression must match the following syntax (given as a BNF grammar notation):
Table G-3 and Table G-4 list standard and SSL variables. These are valid values for varname
.
For funcname
, the following function is available:
The file function takes one string argument, the filename, and expands to the contents of the file. This is useful for evaluating the file's contents against a regular expression.
Table G-3 lists the standard variables for SSLRequire varname
.
Table G-3 Standard Variables for SSLRequire Varname
Standard Variables | Standard Variables | Standard Variables |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table G-4 lists the SSL variables for SSLRequire varname.
Table G-4 SSL Variables for SSLRequire Varname
SSL Variables | SSL Variables | SSL Variables |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Denies access to clients not using SSL. This is a useful directive for absolute protection of a SSL-enabled virtual host or directories in which configuration errors could create security vulnerabilities.
Category | Value |
---|---|
Syntax | SSLRequireSSL |
Example | SSLRequireSSL |
Default | None |
Specifies the global/interprocess session cache storage type. The cache provides an optional way to speed up parallel request processing. The accepted values are:
none
: disables the global/interprocess session cache. Produces no impact on functionality, but makes a major difference in performance. shmht:
/path/to/datafile[bytes]: Uses a high-performance hash table (bytes
specifies approximate size) inside a shared memory segment in RAM, which is established by the /path/to/datafile
. This hash table synchronizes the local SSL memory caches of the server processes. shmcb:
/path/to/datafile[bytes]: Uses a high-performance Shared Memory Cyclic Buffer (SHMCB) session cache to synchronize the local SSL memory caches of the server processes. The performance of shmcb
is more uniform in all environments when compared to shmht
. Category | Value |
---|---|
Syntax | SSLSessionCache none | shmht: /path/to/datafile[bytes] | shmcb:/path/to/datafile[bytes] |
Examples | SSLSessionCache "shmcb:${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs/ssl_scache(512000)" |
Default | SSLSessionCache none |
Specifies the number of seconds before a SSL session in the session cache expires.
Category | Value |
---|---|
Syntax | SSLSessionCacheTimeout seconds |
Example | SSLSessionCacheTimeout 120 |
Default | 300 |
Specifies whether a client must present a certificate when connecting. The accepted values are:
none
: No client certificate is required optional
: Client can present a valid certificate require
: Client must present a valid certificate Category | Value |
---|---|
Syntax | SSLVerifyClient none | optional | require |
Example | SSLVerifyClient optional |
Default | None |
Note: The leveloptional_no_ca included with mod_ssl (in which the client can present a valid certificate, but it need not be verifiable) is not supported in mod_ossl . |
The mod_plsql configuration parameters are described in these sections:
The following parameters are used with the plsql.conf
file:
Enables Dynamic Monitoring Service (DMS) for the mod_plsql module.
Category | Value |
---|---|
Syntax | PlsqlDMSEnable On | Off |
Example | PlsqlDMSEnable On |
Default | On |
Enables debug level logging for the mod_plsql module. Debug level logging is meant to be used for debugging purposes only.
When logging is enabled, Oracle HTTP Server log files are typically created in the PlsqlCacheDirectory
DOMAIN_HOME/servers/componentName/ directory. However, the location specified in PlsqlLogDirectory determines the final location.
This parameter should be set to Off
unless recommended by Oracle support to debug problems with the mod_plsql module.
To view more details about the internal processing of the mod_plsql module, set this directive to On
. This causes the mod_plsql module to start logging every request that is processed. The log files are generated as specified by the PlsqlLogDirectory
directive.
Category | Value |
---|---|
Syntax | PlsqlLogEnable On | Off |
Example | PlsqlLogEnable Off |
Default | Off |
Specifies the directory where debug level logs are written.
Set the directory name of the location where log files should be generated when logging is enabled. To avoid possible confusion about the location of this directory, an absolute path is recommended.
On UNIX, this directory must have write permissions by the owner of the child httpd
processes.
Category | Value |
---|---|
Syntax | PlsqlLogDirectory directory |
Example | PlsqlLogDirectory "${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}/logs" |
Default | None |
Specifies the time (in minutes) in which the idle database sessions should be closed and cleaned by the mod_plsql module.
This directive is used with connection pooling of database connections and sessions in the mod_plsql module. When a session is not used for the specified amount of time, it is closed and freed. This is done so that unused sessions can be cleaned, and the memory is freed on the database side.
Setting this time to a low number helps in faster cleanup of unused database sessions. If this number is too low, then this may adversely affect the performance benefits of connection pooling in the mod_plsql module.
If the number of open database sessions is not a concern, you can increase the value of this parameter for best performance. In such a case, if the site is accessed frequently enough that the idle session cleanup interval is never reached for a session, then the DAD configuration parameter PlsqlMaxRequestsPerSession can be modified so that it is guaranteed that a pooled database session gets recycled on a regular basis.
For most installations, the default value is adequate.
Category | Value |
---|---|
Syntax | PlsqlIdleSessionCleanupInterval number |
Example | PlsqlIdleSessionCleanupInterval 10 |
Default | 15 (minutes) |
The dads.conf
file contains the configuration parameters for the PL/SQL database access descriptor. (See Table G-1 for the file location.) A DAD is a set of values that specifies how the mod_plsql module connects to a database server to fulfill a HTTP request.
The following parameters are used with the dads.conf
file:
Specifies the procedure to be invoked after calling the requested procedure. This enables you to put a hook point after the requested procedure is called. This is useful in doing SQL*Traces/SQL Profiles while debugging a problem with the requested procedure. This is also useful when you want to ensure that a specific call is made after running every procedure.
Category | Value |
---|---|
Syntax | PlsqlAfterProcedure string |
Example | PlsqlAfterProcedure portal.mypkg.myafterproc |
Default | None |
Note: This parameter should only be used for debugging purposes. In addition, you could use this parameter to stop SQL trace/SQL profiling. |
Specifies whether the mod_plsql module should describe a procedure before trying to run it. If this is set to On
, then the mod_plsql module will always describe a procedure before invoking it. Otherwise, the mod_plsql module will only describe a procedure when its internal heuristics have interpreted a parameter type incorrectly.
Category | Value |
---|---|
Syntax | PlsqlAlwaysDescribeProcedure On | Off |
Example | PlsqlAlwaysDescribeProcedure On |
Default | Off |
Note: This parameter should only be used for debugging purposes. |
Specifies the authentication mode to use for allow access through the DAD. The accepted values for PlsqlAuthenticationMode
are Basic
, SingleSignOn
, GlobalOwa
, CustomOwa
, PerPackageOwa
.
Category | Value |
---|---|
Syntax | PlsqlAuthenticationMode Basic | SingleSignOn | GlobalOwa | CustomOwa | PerPackageOwa |
Example | PlsqlAuthenticationMode CustomOwa |
Default | Basic |
Basic
is the default mode and determines whether to ask for username and password if they are not provided with PlsqlDatabaseUsername
and PlsqlDatabasePassword
. This setting is required for WebDB 2.x applications. If the DAD is not using the Basic authentication, then you must include a valid username/password in the DAD configuration. SingleSignOn
specifies that you want to use Single Sign-On server. This is required for DADs using Oracle9iAS Portal. As already stated the provided username and password need to be the one from your single sign-on server. GlobalOwa
, CustomOwa
, and PerPackageOwa
are used only by very few PL/SQL applications. Custom authentication enables applications to authenticate users within the application itself, not at the database level. Authorization is performed by invoking a user-written authorization function. Custom authentication uses a static username/password that is stored in the DAD. It cannot be combined with dynamic username/password authentication. To enable custom authentication, set the level of authentication for PlsqlAuthenticationMode and implement the authorize function.
You should also be aware of the following:
Specifies the procedure to be invoked before calling the requested procedure. This enables you to put a hook point before the requested procedure is called. This is useful in doing SQL*Traces/SQL Profiles while debugging a problem with the requested procedure. This is also useful when you want to ensure that a specific call be made before running every procedure.
Category | Value |
---|---|
Syntax | PlsqlBeforeProcedure string |
Example | PlsqlBeforeProcedure portal.mypkg.mybeforeproc |
Default | None |
Note: This parameter should only be used for debugging purposes. In addition, you could use this parameter to start SQL Trace/SQL Profiling. |
Note: This configuration property is rarely ever changed, and system defaults suffice in most cases. |
Specifies the rounding size to use while binding the number of elements in a collection bind. While executing PL/SQL statements, the Oracle database maintains a cache of PL/SQL statements in the shared SQL area, and attempts to reuse the cached statement if the same statement is run again. Oracle's matching criteria requires that the statement texts be identical, and that the bind variable data types match. Unfortunately, the type match for strings is sensitive to the exact byte size specified, and for collection bindings is also sensitive to the number of elements in the collection. Since the mod_plsql module binds statements dynamically, the odds of hitting the shared cache are low, and it may fill up with near-duplicates and lead to contention for the latch on the shared area. This parameter reduces that effect by bucketing bind lengths to the nearest level.
All numbers specified should be in ascending order. After the last specified size, subsequent bucket sizes will be assumed to be twice the last one.
Category | Value |
---|---|
Syntax | PlsqlBindBucketLengths number multiline |
Example | PlsqlBindBucketLengths 4
|
Default | 4,20,100,400 |
Note: This configuration property is rarely ever changed, and system defaults suffice in most cases. |
Specifies the rounding size to use while binding the number of elements in a collection bind. While executing PL/SQL statements, the Oracle database maintains a cache of PL/SQL statements in the shared SQL area, and attempts to reuse the cached statement if the same statement is run again. Oracle's matching criteria requires that the statement texts be identical, and that the bind variable data types match. Unfortunately, the type match for strings is sensitive to the exact byte size specified, and for collection bindings is also sensitive to the number of elements in the collection. Since the mod_plsql module binds statements dynamically, the odds of hitting the shared cache are low, and it may fill up with near-duplicates and lead to contention for the latch on the shared area. This parameter reduces that effect by bucketing bind widths to the nearest level.
All numbers specified should be in ascending order. After the last specified size, subsequent bucket sizes will be assumed to be twice the last one.
The last bucket width must be equal to or less than 4000. This is due to the restriction imposed by OCI where array bind widths cannot be greater than 4000.
Category | Value |
---|---|
Syntax | PlsqlBindBucketWidths number multiline |
Example | PlsqlBindBucketWidths 40
|
Default | 32,128,1450,2048,4000 |
Specifies overrides and additions of CGI environment variables to the default set of environment variables passed to a PL/SQL procedure. This is a multi-line directive of name-value pairs to be added, overridden or removed. You can only specify one environment variable for each directive.
You can add CGI environment variables from the Oracle HTTP Server environment by specifying the variable name. To remove a CGI environment variable, set it equal to blank. To add your own name-value pair, use the syntax myname=myvalue
.
Category | Value |
---|---|
Syntax | PlsqlCGIEnvironmentList string multiline |
Default | None |
Example |
|
owa_util.get_cgi_env
. Specifies the timeout in milliseconds for testing a connection pool in the mod_plsql module.
Category | Value |
---|---|
Syntax | PlsqlConnectionTimeout number |
Example | PlsqlConnectionTimeout 5000 |
Default | 10000 (milliseconds) |
When PlsqlConnectionValidation is set to Automatic
or AlwaysValidate
, the mod_plsql module attempts to test pooled database connections. This parameter specifies the maximum time the mod_plsql module should wait for the test request to complete before it assumes that the connection is not usable.
Specifies the mechanism the mod_plsql module should use to detect terminated connections in its connection pool.
Note: This configuration property is rarely ever changed, and system defaults suffice in most cases. |
For performance reasons, the mod_plsql module pools database connections. If a database instance goes down, and the mod_plsql module was maintaining a pool of connections to the instance, then each pooled database connection results in an error when it is next used to service a request. This can be a concern in high availability configurations such as Oracle RAC where even if one node goes down, other nodes servicing the database might have been able to service the request successfully. The mod_plsql module provides for a mechanism whereby it can self-correct after it detects a failure that could be caused by a database node going down. This mechanism to self-correct is controlled by the parameter PlsqlConnectionValidation.
The following are the valid values for PlsqlConnectionValidation:
Automatic
: The mod_plsql module tests all pooled database connections which were created before the detection of a failure that could mean an instance failure. ThrowAwayOnFailure
: The mod_plsql module throws away all pooled database connections which were created before the detection of a failure that could mean an instance failure. AlwaysValidate
: The mod_plsql module always tests all pooled database connections which were created before issuing a request. Since this option has an associated performance overhead for each request, this should be used with caution. NeverValidate
: The mod_plsql module never pings any pooled database connection. Category | Value |
---|---|
Syntax | PlsqlConnectionValidation Automatic | ThrowAwayOnFailure | AlwaysValidate | NeverValidate |
Example | PlsqlConnectionValidation ThrowAwayOnFailure |
Default | Automatic |
When the mod_plsql module encounters one of the following errors, it assumes that the database may have been down.
00443 — background process <string> did not start
00444 — background process <string> failed while starting
00445 — background process did not start after <x> seconds
00447 — fatal error in background processes
00448 — normal completion of background process
00449 — background process <string> unexpectedly terminated with error
00470 — LGWR process terminated with error
00471 — DBWR process terminated with error
00472 — PMON process terminated with error
00473 — ARCH process terminated with error
00474 — SMON process terminated with error
00475 — TRWR process terminated with error
00476 — RECO process terminated with error
00480 — LCK* process terminated with error
00481 — LMON process terminated with error
00482 — LMD* process terminated with error
00484 — LMS* process terminated with error
00485 — DIAG process terminated with error
01014 — ORACLE shutdown in progress
01033 — ORACLE initialization or shutdown in progress
01034 — ORACLE not available
01041 — internal error. hostdef extension doesn't exist
01077 — background process initialization failure
01089 — immediate shutdown in progress- no operations permitted
01090 — shutdown in progress- connection is not permitted
01091 — failure during startup force
01092 — ORACLE instance terminated. Disconnection forced
03106 — fatal two-task communication protocol error
03113 — end-of-file on communication channel
03114 — not connected to ORACLE
12570 — TNS: packet reader failure
12571 — TNS: packet writer failure
Specifies the connection to an Oracle database.
Category | Value |
---|---|
Syntax | PlsqlDatabaseConnectString string {ServiceNameFormat | SIDFormat | TNSFormat | NetServiceNameFormat} The string parameter depends on the second argument:
If the format argument is not specified, then the mod_plsql module assumes the string is either in the HOST:PORT:SID format, or resolvable by Oracle Net. The differentiation between the two is made by the presence of the colon in the specified string. It is recommended that newer DADs do not use the |
Example |
|
Default | None |
tnsping db_connect_string
, and commands such as: TNSFormat
and NetServiceNameFormat
are synonymous and denote connect descriptors that are resolved by Oracle Net. The TNSFormat
is provided as a convenience so that end-users use this to signify that the name resolution happens through the local tnsnames.ora. For situations where the resolution is through an LDAP lookup as configured in sqlnet.ora, it is recommended that the format specifier of NetServiceNameFormat
be used. If your database supports high availability, for example, Oracle Real Application Clusters database, it is highly recommended that you use the NetServiceNameFormat
such that the resolution for the net service name is through LDAP. This enables you to add or remove Oracle RAC nodes accessible through the mod_plsql module by changing Oracle Internet Directory with the new or deleted node information. In such situations, hard-coding database listener HOST:PORT information in dads.conf or in the local tnsnames.ora
is not recommended.
Specifies the password to use to log in to the database.
Category | Value |
---|---|
Syntax | PlsqlDatabasePassword string |
Example | PlsqlDatabasePassword tiger |
Default | None |
After making manual configuration changes to DAD passwords, you should obfuscate the DAD passwords by running the dadTool.pl
script, located in ORACLE_HOME/bin
.
To obfuscate DAD passwords:
oracle
, using the following command: ORACLE_HOME
environment variable to specify the path to the Oracle home directory for the current release, and set the PATH environment variable to include the directory containing the Perl executable and the location of the dadTool.pl
script. Bourne, Bash, or Korn shell:
C or tcsh shell:
On Microsoft Windows, set the PATH and PERL5LIB environment variable:
Include the ORACLE_HOME/lib
or lib32
directory in your shared library path. Table G-5 shows the appropriate directory and environment variable for each platform.
Table G-5 Shared Library Path Environment Variable
Platform | Environment Variable | Include Directory |
---|---|---|
AIX Based Systems | LIBPATH | ORACLE_HOME/lib |
HP-UX PA-RISC | SHLIB_PATH | ORACLE_HOME/lib |
Solaris Operating System | LD_LIBRARY_PATH | ORACLE_HOME/lib32 |
Other UNIX platforms, including Linux and HP Tru64 UNIX | LD_LIBRARY_PATH | ORACLE_HOME/lib |
For example, on HP-UX PA-RISC systems, set the SHLIB_PATH environment to include the ORACLE_HOME/lib
directory:
dadfilename
where dadfilename
is the filename for dads.conf
, which includes the full path to the DAD file.
For example:
Specifies the username to use to log in to the database.
Category | Value |
---|---|
Syntax | PlsqlDatabaseUsername string |
Example | PlsqlDatabaseUsername scott |
Default | None |
Specifies the default procedure to call if none is specified in the URL.
Category | Value |
---|---|
Syntax | PlsqlDefaultPage string |
Example | PlsqlDefaultPage myschema.mypackage.home |
Default | None |
You can also use Oracle HTTP Server Rewrite rules to achieve the same effect as you get by setting this configuration parameter.
Specifies a virtual path in the URL that initiates document download from the document table. For example, if this parameter is set to docs
, then the following URLs will start the document downloading process for URLs of the format:
Category | Value |
---|---|
Syntax | PlsqlDocumentPath string |
Example | PlsqlDocumentPath docs |
Default | docs |
Omit this parameter for applications that do not perform document uploads or downloads.
Specifies the procedure to call when a document download is initiated. This procedure is called to process the download.
Category | Value |
---|---|
Syntax | PlsqlDocumentProcedure string |
Example | PlsqlDocumentProcedure portal.wwdoc_process.process_download |
Default | None |
Omit this parameter for applications that do not perform document uploads or downloads.
Specifies the table in the database to which all documents are uploaded.
Category | Value |
---|---|
Syntax | PlsqlDocumentTablename string |
Example | PlsqlDocumentTablename myschema.document_table |
Default | None |
Omit this parameter for applications that do not perform document uploads or downloads.
Specifies the error reporting mode for mod_plsql errors.
Specifies a pattern for procedures, packages, or schema names which are forbidden to be directly run from a browser. This is a multi-line directive in which each pattern is on a separate line. The pattern is not case sensitive and can accept a wildcard such as an asterisk (*). The default patterns disallowed from direct URL access are as follows:
Setting this directive to #NONE#
will disable all protection. This is strongly discouraged for an active site and should not be done. It may be used for debugging purposes.
If this parameter is overridden, the defaults still apply, which means that you do not have to explicitly add the default list to the list of excluded patterns.
Category | Value |
---|---|
Syntax | PlsqlExclusionList {string | "#NONE#" multiline } |
Example | PlsqlExclusionList myschema.private.*
will disallow access to URLs which contain one of:
will disable all protection. Its use is strongly discouraged for an active site. |
Default | sys.* dbms_* utl_* owa_util* owa.* htp.* htf.* wpg_docload.* |
This cannot be changed.
Specifies the number of rows of content to fetch from the database for each trip, using either owa_util.get_page or owa_util.get_page_raw.
By default, the mod_plsql module attempts to fetch 200 response lines of output where each line is of 255 bytes. In situations where the response bytes are single-bytes, the response buffer is populated to the maximum and can pack 255*200=51000 bytes for each round trip. For responses containing multibyte data, the byte packing for each row could be less than ideal resulting in lesser bytes getting transferred for each round trip. If your application generates large pages frequently and the response does not fit in one round trip, then consider setting this parameter higher. The memory usage for the mod_plsql module will increase.
Category | Value |
---|---|
Syntax | PlsqlFetchBufferSize number |
Example | PlsqlFetchBufferSize 256 |
Default | 200 |
get_page
or get_page_raw
fetching fewer bytes for each row. Calculations in the PL/SQL Web ToolKit are character-based and in the case of multibyte characters, OWA packages assume a worst-case character byte size and do not attempt to pack each row to its maximum. Specifies what mode the mod_plsql module should use to do extra performance logging.
InfoDebug mode: This logs more information to the Apache's error_log. This is used with Apache's info logging level. If the Apache's logging level is not at least set to this high, this setting will be ignored.
Category | Value |
---|---|
Syntax | PlsqlInfoLogging InfoDebug |
Example | PlsqlInfoLogging InfoDebug |
Default | Empty |
The logging setting is useful for debugging problems in your PL/SQL application.
Specifies the maximum number of requests a pooled database connection should service before it is closed and re-opened.
Category | Value |
---|---|
Syntax | PlsqlMaxRequestsPerSession number |
Example | PlsqlMaxRequestsPerSession 500 |
Default | 1000 |
Specifies the NLS_LANG variable for this DAD. This parameter overrides the NLS_LANG environment variable. When this parameter is set, the PL/SQL Gateway uses the specified NLS_LANG to connect to the database. Once connected, an alter session command is issued to switch to the specified language and territory. If the middle tier character set matches that of the database, then no alter session call is issued by the mod_plsql module.
Category | Value |
---|---|
Syntax | PlsqlNLSLanguage string |
Example | PlsqlNLSLanguage America_America.UTF8 |
Default | None |
Specifies a virtual path alias to map to a procedure call. This is application-specific. This directive is used with PlsqlPathAliasProcedure.
Category | Value |
---|---|
Syntax | PlsqlPathAlias string |
Example | PlsqlPathAlias url |
Default | None |
For applications that do not use path aliasing, this parameter may be omitted.
Specifies the procedure to call when the virtual path in the URL matches the path alias as configured by PlsqlPathAlias.
Category | Value |
---|---|
Syntax | PlsqlPathAliasProcedure string |
Example | PlsqlPathAliasProcedure portal.wwpth_api_alias.process_download |
Default | None |
For applications that do not use path aliasing, this parameter may be omitted.
Specifies an application-defined PL/SQL function which gives you the opportunity to allow and disallow further processing of the requested procedure. This is useful in implementing tight security for your PL/SQL application by blocking out package and procedure calls that should not be allowed to run from a DAD.
The function defined by this parameter must have the following prototype:
function_name
(procedure_name
IN varchar2)The procedure_name parameter will contain the name of the procedure that the request is trying to run.
For example, if all the PL/SQL application procedures callable from a browser are inside the package mypkg, then an implementation of this function can be as follows:
Category | Value |
---|---|
Syntax | PlsqlRequestValidationFunction string |
Example | PlsqlRequestValidationFunction myschema.mypkg.my_validation_check |
Default | none |
Specifies the cookie name when PlsqlAuthenticationMode is set to SingleSignOn. This parameter is supported only for Oracle Fusion Middleware releases, and is used by Oracle Portal and Oracle Single Sign-On.
Category | Value |
---|---|
Syntax | PlsqlSessionCookieName cookie_name |
Example | PlsqlSessionCookieName mycookie |
Default | Same as DAD name |
Specifies how package and session state should be cleaned up at the end of each the mod_plsql request.
StatelessWithResetPackageState
causes the mod_plsql module to call dbms_session.reset_package_state
at the end of each mod_plsql request. This is the default. StatelessWithPreservePackageState
causes the mod_plsql module to call htp.init
at the end of each mod_plsql request. This cleans up the state of session variables in the PL/SQL Web ToolKit. The PL/SQL application is responsible for cleaning up its own session state. Failure to do so causes erratic behavior, in which a request starts recognizing or manipulating state modified in previous requests. StatelessWithFastResetPackageState
causes the mod_plsql module to call dbms_session.modify_package_state(dbms_session.reinitialize)
at the end of each mod_plsql request. This API is faster than the mode of StatelessWithResetPackageState
, and avoids some latch contention issues, but exists only in Oracle database releases 8.1.7.2 and later. This mode uses slightly more memory than the default mode. Category | Value |
---|---|
Syntax | PlsqlSessionStateManagement {StatelessWithResetPackageState | StatelessWithFastResetPackageState | StatelessWithPreservePackageState } |
Example | PlsqlSessionStateManagement StatelessWithPreservePackageState |
Default | StatelessWithResetPackageState |
stateful=no
or stateful=STATELESS_RESET
corresponds to StatelessWithResetPackageState
. stateful=STATELESS_FAST_RESET
corresponds to StatelessWithFastResetPackageState
. stateful=STATELESS_PRESERVE
corresponds to StatelessWithPreservePackageState
. The mod_plsql module does not support stateful mode of operation. To allow PL/SQL applications stateful behavior, save the state in cookies and/or in the database.
Specifies the transfer mode for data from the database back to the mod_plsql module. Most applications use the default value of CHAR
.
Category | Value |
---|---|
Syntax | PlsqlTransferMode {CHAR | RAW } |
Example | PlsqlTransferMode CHAR |
Default | CHAR |
This parameter only must be changed to enable sending back responses in different character sets from the same DAD. In such a case, the CHAR
mode is useless, since it always converts the response data from the database character set to the mod_plsql character set.
Specifies the file extensions to be uploaded as LONGRAW data type, as opposed to using the default BLOB data type. The default can be overridden by specifying multi-line directives of file extensions for field. A value of asterisk (*
) in this field causes all documents to be uploaded as LONGRAW.
Category | Value |
---|---|
Syntax | PlsqlUploadAsLongRaw string multiline |
Example | PlsqlUploadAsLongRaw jpg
|
Default | None |
For applications that do not upload or download documents, this parameter may be omitted.
The cache.conf
file contains the configuration settings for the file system caching functionality implemented in the mod_plsql module. This configuration file is relevant only if PL/SQL applications use the OWA_CACHE
package to cache dynamically generated content in the file system.
The following parameters are specified in the cache.conf
file:
Specifies the time to start the cleanup of the cache storage.
This setting defines the exact day and time in which cleanup should occur. The frequency can be set as daily, weekly, and monthly.
Everyday
is used. The cleanup starts every day at the time defined. For example, Everyday 2:00
causes the cleanup to happen everyday at 2:00 a.m. (local time). Sunday
, Monday
, Tuesday
, Wednesday
, Thursday
, Friday
, Saturday
) are used. For example, Wednesday 15:30
causes the cleanup to happen every Wednesday at 3:30 p.m. (local time). Everymonth
is used. The cleanup starts on the Saturday of the month at the time defined. For example, Saturday Everymonth 23:00 causes the cleanup to happen the first Saturday of every month at 11:00 p.m. (local time). Category | Value |
---|---|
Syntax | PlsqlCacheCleanupTime {Sunday-Saturday | Everyday | Everymonth} {hh:mm} |
Example | PlsqlCacheCleanupTime Monday 20:00 |
Default | Saturday 23:00 |
Specifies the directory where cache files are written out by the mod_plsql module. This directory must exist or Oracle HTTP Server will not start.
On UNIX, this directory must have write permissions by the owner of the child httpd processes.
Category | Value |
---|---|
Syntax | PlsqlCacheDirectory directory |
Example | PlsqlCacheDirectory "${ORACLE_INSTANCE}/servers/${COMPONENT_NAME}" |
Default | none |
Enables mod_plsql caching.
Category | Value |
---|---|
Syntax | PlsqlCacheEnable {On | Off} |
Example | PlsqlCacheEnable On |
Default | Off |
If an application does not make use of the OWA_CACHE
package in the PL/SQL Web Toolkit, then you can choose to disable caching. In such situations, there will be a minor performance benefit.
Specifies the maximum time, in days, a cache file can reside in a file system cache, after which the cached file will be removed for cache maintenance.
This setting is to ensure that the cache system does not contain old content. This setting removes old cache files and makes space for new ones.
Category | Value |
---|---|
Syntax | PlsqlCacheMaxAge number |
Example | PlsqlCacheMaxAge 20 |
Default | 30 (days) |
Specifies the maximum possible size of a cache file.
This setting prevents the case in which one file can fill up the entire cache. In general, it is recommended that this be set to about 1-3 percent of the total cache size, which is specified by PlsqlCacheTotalSize.
Category | Value |
---|---|
Syntax | PlsqlCacheMaxSize number |
Example | PlsqlCacheMaxSize 1048576 |
Default | 1048576 |
Specifies the total size of the cache directory. The default is 20 MB.
This setting limits the amount of space the cache is allowed to use. Both PL/SQL cache and Session Cookie cache share this cache space. This setting is not a hard limit. It might exceed the limit temporarily during normal processing. This is normal behavior.
The cleanup algorithm uses this setting to determine how much to reduce the cache files. Therefore, the real space limit is the physical storage's available size.
This parameter takes bytes as values:
Category | Value |
---|---|
Syntax | PlsqlCacheTotalSize number |
Example | PlsqlCacheTotalSize 20971520 |
Default | 20971520 (bytes) |
Apache HTTP Server is an open source web server originally derived from the National Center for Supercomputing Applications (NCSA).
The process of verifying the identity of a user, device, or other entity in a host system, often as a prerequisite to granting access to resources in a system. A recipient of an authenticated message can be certain of the message's origin (its sender). Authentication is presumed to preclude the possibility that another party has impersonated the sender.
The percentage or amount of scheduled time that a computing system provides application service.
Also called a digital certificate. An ITU x.509 v3 standard data structure that securely binds an identity to a public key.
A certificate is created when an entity's public key is signed by a trusted identity, a certificate authority The certificate ensures that the entity's information is correct and that the public key actually belongs to that entity.
A certificate contains the entity's name, identifying information, and public key. It is also likely to contain a serial number, expiration date, and information about the rights, uses, and privileges associated with the certificate. It also contains information about the certificate authority that issued it.
A trusted third party that certifies that other entities—users, databases, administrators, clients, servers—are who they say they are. When it certifies a user, the certificate authority first seeks verification that the user is not on the certificate revocation list (CRL), then verifies the user's identity and grants a certificate, signing it with the certificate authority's private key. The certificate authority has its own certificate and public key which it publishes. Servers and clients use these to verify signatures the certificate authority has made. A certificate authority might be an external company that offers certificate services, or an internal organization such as a corporate MIS department.
Common Gateway Interface (CGI) is the industry-standard technique for transferring information between a Web server and any program designed to accept and return data that conforms to the CGI specifications.
Data that has been encrypted. Ciphertext is unreadable until it has been converted to plain text (decrypted) with a key. See decryption.
See plaintext.
The art of protecting information by transforming it (encrypting) into an unreadable format. See encryption.
A database access descriptor (DAD) is a set of values that specify how an application connects to an Oracle database to fulfill an HTTP request. The information in the DAD includes the username (which also specifies the schema and the privileges), password, connect-string, error log file, standard error message, and national language support (NLS) parameters such as NLS language, NLS date format, NLS date language, and NLS currency.
The process of converting the contents of an encrypted message (ciphertext) back into its original readable format (plaintext).
See certificate.
See wallet.
The process of converting a message thereby rendering it unreadable to any but the intended recipient. Encryption is performed by converting data into code that cannot be understood by unauthorized people or systems. There are two main types of encryption: public-key encryption (also known as asymmetric-key encryption) and symmetric-key encryption.
In the context of a directory service, entries are the building blocks of a directory. An entry is a collection of information about an object in the directory. Each entry is composed of a set of attributes that describe one particular trait of the object. For example, if a directory entry describes a person, that entry can have attributes such as first name, last name, telephone number, or e-mail address.
Execution Context ID
Execution Context ID (or ECID) is a unique identifier that can be used to correlate events in different components of Fusion Middleware or in different log files as being part of the same request execution flow.
The ability to reconfigure a computing system to use an alternate active component when a similar component fails.
Hypertext Transfer Protocol (HTTP) is the underlying format used by the Web to format and transmit messages and determine what actions Web servers and browsers should take in response to various commands. HTTP is the protocol used between Oracle Fusion Middleware and clients.
Lightweight Directory Access Protocol
A standard, extensible directory access protocol. It is a common language that LDAP clients and servers use to communicate. The framework of design conventions supporting industry-standard directory products, such as the Oracle Internet Directory.
Modules extend the basic functionality of a Web server, and support integration between Oracle HTTP Server and other Oracle Fusion Middleware components.
Oracle Enterprise Manager Fusion Middleware Control
Oracle Enterprise Manager Fusion Middleware Control (Fusion Middleware Control) provides Web-based management tools designed specifically for Oracle Fusion Middleware. Using Fusion Middleware Control, you can monitor and configure the components of your application server, such as deploy applications, manage security, and create and manage Oracle Fusion Middleware clusters.
Privacy-enhanced Electronic Mail. An encryption technique that provides encryption, authentication, message integrity, and key management.
PL/SQL is the Oracle proprietary extension to the SQL language. PL/SQL adds procedural and other constructs to SQL that make it suitable for writing applications.
In public-key cryptography, this key is the secret key. It is primarily used for decryption but is also used for encryption with digital signatures. See public/private key pair.
A proxy server typically resides on a network firewall and allows clients behind the firewall to access Web resources. All requests from clients go to the proxy server rather than directly to the destination server. The proxy server forwards the request to the destination server and passes the received information back to the client. The proxy server channels all Web traffic at a site through a single, secure port; this allows an organization to create a secure firewall by preventing Internet access to internal systems, while allowing Web access.
In public-key cryptography, this key is made public to all. It is primarily used for encryption but can be used for verifying signatures. See public/private key pair.
Encryption method that uses two different random numbers (keys). See public key and public-key encryption.
The process where the sender of a message encrypts the message with the public key of the recipient. Upon delivery, the message is decrypted by the recipient using its private key.
A set of two numbers used for encryption and decryption, where one is called the private key and the other is called the public key. Public keys are typically made widely available, while private keys are held by their respective owners. Though mathematically related, it is generally viewed as computationally infeasible to derive the private key from the public key. Public and private keys are used only with asymmetric encryption algorithms, also called public-key encryption algorithms, or public-key cryptosystems. Data encrypted with either a public key or a private key from a key pair can be decrypted with its associated key from the key-pair. However, data encrypted with a public key cannot be decrypted with the same public key, and data encrypted with a private key cannot be decrypted with the same private key.
A public-key encryption technology developed by RSA Data Security. The RSA algorithm is based on the fact that it is laborious to factor very large numbers. This makes it mathematically unfeasible, because of the computing power and time required to decode an RSA key.
A measure of how well the software or hardware product is able to adapt to future business needs.
Secure Sockets Layer (SSL) is a standard for the secure transmission of documents over the Internet using HTTPS (secure HTTP). SSL uses digital signatures to ensure that transmitted data is not tampered with.
Single sign-on enables a you to authenticate once, combined with strong authentication occurring transparently in subsequent connections to other databases or applications. It lets you access multiple accounts and applications with a single password, entered during a single connection.
See Secure Sockets Layer.
Also called a digital wallet. A wallet is a data structure used to store and manage security credentials for an individual entity. It implements the storage and retrieval of credentials for use with various cryptographic services. A Wallet Resource Locator (WRL) provides the necessary information to locate the wallet.
A wallet resource locator (WRL) provides all necessary information to locate a wallet. It is a path to an operating system directory that contains a wallet.
Copyright © 1994-2015, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.