

[1] Oracle® Fusion Middleware
Administering HTTP Session Management with Oracle
Coherence*Web

12c (12.1.3)

E47888-02

May 2015

Documentation for developers and administrators that
describes how to configure, deploy, and use Coherence*Web,
the HTTP session management module dedicated to
managing session state in clustered environments, on a
variiety of applications servers including WebLogic Server
and GlassFish Server.

Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web, 12c
(12.1.3)

E47888-02

Copyright © 2008, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Tom Pfaeffle

Contributing Author: James Kirsch, Pyounguk Cho, Arun Govindaraju

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

List of ExamplesList of FiguresList of Tables

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents ... xi
Conventions .. xii

What's New in This Guide .. xiii

New and Changed Features for 12c (12.1.3) .. xiii
Other Significant Changes in this Document for 12c (12.1.3) ... xiii

1 Introduction to Coherence*Web

Understanding Coherence*Web.. 1-1
Supported Web Containers .. 1-1
Installation and Deployment Road Map ... 1-3

Choose Your Cluster Node Isolation... 1-3
Choose Your Locking Mode .. 1-3
Choose How to Scope Sessions and Session Attributes ... 1-3
Choose When to Clean Up Expired HTTP Sessions ... 1-4
Choose the Installation Method ... 1-4

2 Using Coherence*Web with WebLogic Server

Overview of Coherence*Web... 2-2
Overview of Managed Coherence Servers .. 2-3
Configuring and Deploying Coherence*Web: Main Steps ... 2-3

Installing WebLogic Server and Oracle Coherence... 2-4
Configure Coherence*Web .. 2-4
Configure the Session Cookies... 2-6
Start a Cache Server ... 2-9

Starting a Coherence Cache Server from WebLogic Server Administration Console 2-9
Starting a Coherence Cache Server from the Command Line... 2-10

To Start a Standalone Coherence Cache Server.. 2-10
To Start a Storage-Enabled or -Disabled WebLogic Server Instance 2-11

Configure Coherence*Web Storage Mode... 2-11

iv

Deploying Applications to WebLogic Server.. 2-11
Coherence MBean Attributes for Coherence*Web ... 2-12

Enabling the Coherence Session Cache in Weblogic Server Administration Console 2-12
Using a Custom Session Cache Configuration File.. 2-13
Scoping the Session Cookie Path ... 2-15
Updating the Session ID .. 2-15
Sharing Coherence*Web Sessions with Other Application Servers... 2-16
WebLogic Server and Coherence: Compatibility.. 2-16

3 Using Coherence*Web with GlassFish Server

Overview of GlassFish Server ... 3-1
Overview of Coherence*Web on GlassFish .. 3-1
Configuring And Deploying Coherence*Web on GlassFish Server—Main Steps 3-2

Download Oracle Coherence.. 3-2
Set the Session Persistence Type .. 3-3
Override the Default Coherence*Web Cache or Cluster Configuration.................................... 3-3
Copy the Coherence*Web and Session Cache Files to the Application 3-3
Make Your Web Applications Distributable.. 3-3
Configure Coherence*Web ... 3-3
Start a Cache Server ... 3-6
Configure Cluster Nodes .. 3-7

Configuring EAR-Scoped Cluster Nodes.. 3-7
Configuring WAR-Scoped Cluster Nodes .. 3-8

4 Using Coherence*Web on Other Application Servers

Installing Coherence*Web Using the WebInstaller .. 4-1
Application Server-Specific Installation Instructions ... 4-2

Installing on Oracle WebLogic Server 10.n ... 4-2
Installing on Caucho Resin 3.1.n... 4-2

General Instructions for Installing Coherence*Web Session Management Module 4-2
Deploying and Running Applications In Process.. 4-4
Deploying and Running Applications Out-of-Process.. 4-4
Migrating to Out-of-Process Topology.. 4-5
Deploying and Running Applications Out-of-Process with Coherence*Extend............... 4-5

Enabling Sticky Sessions for Apache Tomcat Servers .. 4-6
Decoding URL Session IDs for IBM WebSphere 7.n Servers... 4-6

Coherence*Web WebInstaller Ant Task.. 4-6
Using the Coherence*Web WebInstaller Ant Task ... 4-7
Configuring the WebInstaller Ant Task ... 4-8
WebInstaller Ant Task Examples... 4-8

Testing HTTP Session Management .. 4-9
How the Coherence*Web WebInstaller Instruments a Java EE Application 4-10
Installing Coherence*Web into Applications Using Java EE Security 4-11
Preventing Cross-Site Scripting Attacks... 4-11

v

5 Coherence*Web Session Management Features

Session Models ... 5-2
Monolithic Model... 5-3
Traditional Model .. 5-4
Split Model .. 5-5
Session Model Recommendations ... 5-6
Configuring a Session Model ... 5-7
Sharing Data in a Clustered Environment ... 5-7
Scalability and Performance ... 5-8

Session and Session Attribute Scoping .. 5-10
Session Scoping ... 5-10

Preventing Web Applications from Sharing Session Data ... 5-11
Working with Multiple Cache Configurations.. 5-12
Keeping Session Cookies Separate .. 5-12

Session Attribute Scoping .. 5-12
Sharing Session Information Between Multiple Applications .. 5-13

Cluster Node Isolation ... 5-13
Application Server-Scoped Cluster Nodes.. 5-14
EAR-Scoped Cluster Nodes... 5-15
WAR-Scoped Cluster Nodes ... 5-16

Session Locking Modes.. 5-17
Optimistic Locking.. 5-17
Last-Write-Wins Locking ... 5-18
Member Locking ... 5-18
Application Locking .. 5-18
Thread Locking.. 5-18
Troubleshooting Locking in HTTP Sessions ... 5-19
Enabling Sticky Session Optimizations ... 5-19

Deployment Topologies... 5-20
In-Process Topology ... 5-20
Out-of-Process Topology ... 5-20

Migrating from In-Process to Out-of-Process Topology .. 5-21
Out-of-Process with Coherence*Extend Topology .. 5-21
Configuring Coherence*Web with Coherence*Extend ... 5-22

Configure the Cache for Proxy and Storage JVMs.. 5-22
Configure the Cache for Web Tier JVMs .. 5-23

Accessing Sessions with Lazy Acquisition .. 5-24
Overriding the Distribution of HTTP Sessions and Attributes... 5-24

Implementing a Session Distribution Controller.. 5-25
Registering a Session Distribution Controller Implementation ... 5-26

Detecting Changed Attribute Values .. 5-26
Saving Non-Serializable Attributes Locally .. 5-26
Securing Coherence*Web Deployments .. 5-27
Customizing the Name of the Session Cache Configuration File ... 5-27
Configuring Logging for Coherence*Web ... 5-28
Getting Concurrent Access to the Same Session Instance .. 5-28

vi

6 Monitoring Applications

Managing and Monitoring Applications with JMX .. 6-1
Managing and Monitoring Applications on WebLogic Server ... 6-4

Running Performance Reports .. 6-5
Web Session Storage Report ... 6-6
Web Session Overflow Report ... 6-7
Web Report ... 6-9
WebLogic Web Report.. 6-10
Web Service Report... 6-10

7 Cleaning Up Expired HTTP Sessions

Understanding the Session Reaper... 7-1
Configuring the Session Reaper.. 7-3
Getting Session Reaper Performance Statistics ... 7-4
Understanding Session Invalidation Exceptions for the Session Reaper 7-4

8 Working with JSF and MyFaces Applications

Configuring for all JSF and MyFaces Web Applications: .. 8-1
Configuring for Instrumented Applications that use MyFaces .. 8-2
Configuring for Instrumented Applications that use Mojarra ... 8-2

A Coherence*Web Context Parameters

B Capacity Planning

C Session Cache Configuration File

D Session Cache Confguration File Without a Near Cache

E Oracle Coherence*Web Extension for OVAB

Versions Supported .. E-1
Oracle Coherence*Web Introspection Parameters.. E-1
Reference System Prerequisites ... E-2
Requirements ... E-2

Deployment Model Requirement ... E-2
Requirement to Manually Update Custom Cluster Configuration Files.................................. E-2

Resulting Artifact Type.. E-2
Wiring .. E-2
Wiring Properties .. E-2
Oracle Coherence*Web Appliance Properties... E-3
Supported Template Types ... E-4

vii

List of Examples

2–1 Coherence Web Storage Mode in weblogic.xml.. 2-11
2–2 Removing Session Affinity Suffix.. 2-16
3–1 Configuring the glassfish-web.xml File for Coherence*Web ... 3-3
3–2 Setting the Persistence Type in the glassfish-web.xml File... 3-7
4–1 Task Import Statement for Coherence*Web WebInstaller.. 4-7
5–1 Configuring the Session Model... 5-7
5–2 Configuration to Prevent Applications from Sharing Session Data................................. 5-11
5–3 GlobalScopeController Specified in the web.xml File .. 5-13
5–4 Sample Session Distribution Controller Implementation ... 5-25
5–5 Configuring Cache Delegator in the web.xml File.. 5-29
6–1 Specifying a Report Group on the Command Line ... 6-6
8–1 Setting STATE_SAVING_METHOD in the web.xml File... 8-1
8–2 Setting DELEGATE_FACES_SERVLET in the web.xml File.. 8-2
8–3 Declaring the Faces Servlet in the web.xml File ... 8-2
C–1 Contents of the default-session-cache-config.xml File ... C-2
D–1 session-cache-config.xml File Without a Near Cache Configuration................................. D-1

viii

List of Figures

2–1 Coherence Web Local Storage Enabled Checkbox.. 2-13
5–1 Traditional, Monolithic, and Split Session Models .. 5-3
5–2 Monolithic Session Model.. 5-4
5–3 Traditional Session Model ... 5-5
5–4 Split Session Model... 5-6
5–5 Performance as a Function of Session Size.. 5-9
5–6 Application Server-Scoped Cluster ... 5-14
5–7 EAR-Scoped Cluster .. 5-15
5–8 WAR-Scoped Clusters ... 5-16
5–9 In-Process Deployment Topology ... 5-20
5–10 Out-of-Process Deployment Topology ... 5-21
5–11 Out-of-Process with Coherence*Extend Deployment Topology 5-22
6–1 HttpSessionManager Displayed in the JConsole Monitoring Tool 6-4

ix

List of Tables

1–1 Web Containers which can use Coherence*Web .. 1-2
2–1 Context Parameters Configured by Coherence*Web ... 2-5
2–2 Context Parameter Provided by the Coherence*Web .. 2-5
2–3 Context Parameter Value that Should Not be Changed .. 2-6
2–4 WebLogic-Generated HTTP Session Cookie Parameters... 2-6
2–5 Coherence MBean Attribute for Coherence*Web .. 2-12
3–1 Default Context Parameter Values Provided by Coherence*Web...................................... 3-4
3–2 Coherence*Web Context Parameters that are not Valid for the GlassFish Server 3-4
3–3 Valid GlassFish Session Configuration Parameters in glassfish-web.xml 3-5
3–4 GlassFish Context Parameters that are not Valid for Coherence*Web in glassfish.web.xml .

3-6
4–1 Example Context Parameter Settings for Coherence*Web .. 4-3
4–2 Coherence*Web WebInstaller Ant Task Attributes .. 4-8
4–3 Load Balancer Command-Line Options.. 4-10
5–1 Summary of coherence-session-locking-mode Context Parameter Values.................... 5-17
5–2 System Property Values for Proxy JVMs... 5-23
5–3 System Property Values for Storage JVMs.. 5-23
6–1 Object Name for HttpSessionManagerMBean... 6-1
6–2 Information Returned by the HttpSessionManager ... 6-2
6–3 Object Name for WebLogicHttpSessionManagerMBean... 6-4
6–4 Information Returned by the WebLogicHttpSessionManager MBean.............................. 6-5
6–5 Contents of the Web Session Storage Report ... 6-6
6–6 Contents of the Web Session Overflow Report ... 6-8
6–7 Contents of the Web Report ... 6-9
6–8 Contents of the WebLogic Web Report ... 6-10
6–9 Contents of the Web Service Report... 6-11
A–1 Context Parameters for Coherence*Web ... A-1
C–1 Cache-Related Values Used in default-session-cache-config.xml C-1
C–2 Services-Related Values Used in default-session-cache-config.xml.................................. C-2
E–1 Oracle Coherence*Web Appliance System Properties .. E-3
E–2 Oracle Coherence*Web Appliance User Properties... E-3

x

xi

Preface

This guide describes how to deploy Oracle Coherence*Web (Coherence*Web), an
HTTP session management module, to GlassFish Server, WebLogic Server and other
application servers. It also describes the different session management features that
you can configure.

This guide also describes how you can integrate Coherence*Web with WebLogic
Portal, to provide session state management based on Oracle Coherence caches.

Audience
This guide is intended for application developers who want to be able to manage
session state in clustered environments.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following in the Oracle Coherence documentation set:

■ Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ Oracle Fusion Middleware Developing Remote Clients for Oracle Coherence

■ Oracle Fusion Middleware Tutorial for Oracle Coherence

■ Oracle Fusion Middleware Integrating Oracle Coherence

■ Oracle Fusion Middleware Managing Oracle Coherence

■ Oracle Fusion Middleware Administering Oracle Coherence

■ Oracle Fusion Middleware Securing Oracle Coherence

■ Oracle Fusion Middleware Java API Reference for Oracle Coherence

xii

■ Oracle Fusion Middleware .NET API Reference for Oracle Coherence

■ Oracle Fusion Middleware C++ API Reference for Oracle Coherence

Conventions
The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiii

What's New in This Guide

The following topics introduce the new and changed features of Oracle Coherence and
other significant changes that are described in this guide, and provides pointers to
additional information. This document is the new edition of the formerly titled User's
Guide for Oracle Coherence*Web.

New and Changed Features for 12c (12.1.3)
Oracle Coherence 12c (12.1.3) includes the following new and changed features for this
document.

■ Coherence*Web for 12.1.3 is compatible with a number of different application
servers. In the case of WebLogic Server, however, Weblogic Server 12.1.3 requires
you to use Coherence*Web 12.1.3. Weblogic Server 12.1.3 is not compatible with
earlier versions of Coherence*Web. For information on the compatibility between
earlier versions of Coherence*Web and WebLogic Server, see "Using
Coherence*Web with WebLogic Server" in Administering HTTP Session Management
with Oracle Coherence*Web (12.1.2).

■ The coherence-web-spi.war file, which provided an SPI implementation of
Coherence*Web, has been removed from the Coherence 12.1.3 release. The sections

■ Support for ColdFusion has been removed from Coherence 12.1.3. It can still be
used with earlier versions of Coherence. For example, for the Coherence 12.1.2
release, see "Working with ColdFusion Applications" in Administering HTTP
Session Management with Oracle Coherence*Web (12.1.2). For Coherence 3.7.1.x, see
"Working with ColdFusion Applications" in Coherence User's Guide for Oracle
Coherence*Web (3.7.1.x)

■ Support for WebLogic Portal has been removed from Coherence 12.1.3. The use of
WebLogic Portal is still supported by earlier versions of Coherence. For example,
for the Coherence 12.1.2 release, see "Using Coherence*Web with WebLogic Portal"
in Administering HTTP Session Management with Oracle Coherence*Web (12.1.2). For
Coherence 3.7.1.x, see "Using Coherence*Web with WebLogic Portal" in Coherence
User's Guide for Oracle Coherence*Web (3.7.1.x).

Other Significant Changes in this Document for 12c (12.1.3)
For 12c (12.1.3), this guide has been updated in several ways. Following are the
sections that have been added or changed.

■ Because Coherence 12.1.3 does not support ColdFusion, the chapter "Working with
ColdFusion Applications" has been removed.

xiv

■ Because Coherence 12.1.3 does not support Oracle WebLogic Portal, the chapter
"Using Coherence*Web with WebLogic Portal" and the appendix "Cache
Configuration for WebLogic Portal and Oracle Coherence" have been removed.

■ Because coherence-web-spi.war file, which provided an SPI implementation of
Coherence*Web, has been removed from the Coherence 12.1.3 release, the sections
"Configuring for Non-Instrumented Applications that Use MyFaces and
Coherence SPI" and "Configuring for Non-Instrumented Applications that use
Mojarra and Coherence SPI" sections have bee removed from Chapter 8, "Working
with JSF and MyFaces Applications."

1

Introduction to Coherence*Web 1-1

1Introduction to Coherence*Web

[2] This chapter describes the advantages of using Coherence*Web for managing session
state in clustered environments. It lists the containers that can use Coherence*Web and
provides an installation and deployment roadmap. More detailed information on
installation, deployment, and features are provided in following chapters.

This chapter contains the following sections:

■ Understanding Coherence*Web

■ Supported Web Containers

■ Installation and Deployment Road Map

Understanding Coherence*Web
Coherence*Web is an HTTP session management module dedicated to managing
session state in clustered environments. Built on top of Oracle Coherence (Coherence),
Coherence*Web:

■ brings Coherence data grid’s data scalability, availability, reliability, and
performance to in-memory session management and storage.

■ can configure fine-grained session and session attribute scoping by way of
pluggable policies (see "Session and Session Attribute Scoping" on page 5-10).

■ can be deployed to many mainstream application servers such as Oracle GlassFish
Server, Oracle WebLogic Server, IBM WebSphere, Tomcat, and so on (see
"Supported Web Containers" on page 1-1).

■ allows storage of session data outside of the Java EE application server, freeing
application server heap space and enabling server restarts without session data
loss (see "Deployment Topologies" on page 5-20).

■ enables session sharing and management across different Web applications,
domains and heterogeneous application servers (see "Session and Session
Attribute Scoping" on page 5-10).

■ can be used in advanced session models (that is, Monolithic, Traditional, and Split
Session) that define how the session state is serialized or deserialized in the cluster
(see "Session Models" on page 5-2).

Supported Web Containers
For WebLogic Server 12c (12.1.3), Coherence*Web is integrated with the product. No
installation is necessary. For more information, see Chapter 2, "Using Coherence*Web
with WebLogic Server."

Supported Web Containers

1-2 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

For third-party application servers, Coherence*Web provides a generic installer, the
WebInstaller, that transparently instruments your Web applications. Chapter 4, "Using
Coherence*Web on Other Application Servers," describes how to use the WebInstaller
to install Coherence*Web on these servers.

Table 1–1 summarizes the Web containers supported by the Coherence*Web session
management module. It also provides links to the information required to install
Coherence*Web. Notice that all of the Web containers (except Oracle WebLogic Server
10.3.4) share the same general installation instructions. A few, such as Caucho Resin,
and WebLogic 10.n, require extra, container-specific steps that you must complete
before starting the general installation instructions.

Note: The value in the Server Type Alias column is used only by the
Coherence*Web WebInstaller installation. The value is passed to the
WebInstaller through the -server command-line option.

Table 1–1 Web Containers which can use Coherence*Web

Application Server Server Type Alias See this Installation Section

Apache Tomcat 5.5.n Tomcat/5.5.x "General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2 and "Enabling Sticky
Sessions for Apache Tomcat Servers" on page 4-6

Apache Tomcat 6.0.n Tomcat/6.0.x "General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2 and "Enabling Sticky
Sessions for Apache Tomcat Servers" on page 4-6

Apache Tomcat 7.n Tomcat/7.x "General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2 and "Enabling Sticky
Sessions for Apache Tomcat Servers" on page 4-6

Caucho Resin 3.1.n Resin/3.1.x "Installing on Caucho Resin 3.1.n" on page 4-2

IBM WebSphere 5.n WebSphere/5.x "General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2

IBM WebSphere 6.n WebSphere/6.x "General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2

IBM WebSphere 7.n WebSphere/7.x "General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2 and "Decoding URL
Session IDs for IBM WebSphere 7.n Servers" on page 4-6

IBM WebSphere 8.n WebSphere/8.x "General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2

IBM WebSphere 8.5 WebSphere/8.x "General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2

JBoss Application Server Generic or
Jetty/5.1.x

"General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2

Jetty 5.1.n Jetty/5.1.x "General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2

Jetty 6.1.n Generic "General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2

Oracle GlassFish 3.n N/A Chapter 3, "Using Coherence*Web with GlassFish Server"

Oracle OC4J 10.1.2.n Oracle/10.1.2.x "General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2

Oracle OC4J 10.1.3.n Oracle/10.1.3.x "General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2

Installation and Deployment Road Map

Introduction to Coherence*Web 1-3

Installation and Deployment Road Map
There are deployment decisions you should make before you configure and deploy
Coherence*Web. Coherence*Web is supported on many different application servers.
Regardless of which application server you are using, you might have to change some
Coherence*Web configuration options to meet your particular requirements, such as
packaging considerations, session model, session locking mode, and deployment
topology.

Choose Your Cluster Node Isolation
Cluster node isolation refers to the scope of the Coherence nodes that are created
within each application server JVM. Several different isolation modes are supported.

For example: you might be deploying multiple applications to the container that
require the use of the same cluster (or one Coherence node); you might have multiple
Web applications packaged in a single EAR file that use a single cluster; or you might
have Web applications that must keep their session data separate and must be
deployed to their own individual Coherence cluster. These choices and the
deployment descriptors and elements that must be configured are described in
"Cluster Node Isolation" on page 5-13.

Choose Your Locking Mode
Locking mode refers to the behavior of HTTP sessions when they are accessed
concurrently by multiple Web container threads. Coherence*Web offers several
different session locking options. For example, you can allow multiple nodes in a
cluster to access an HTTP session simultaneously, or allow only one thread at a time to
access an HTTP session. You can also allow multiple threads to access the same Web
application instance while prohibiting concurrent access by threads in different Web
application instances. These choices, and the deployment descriptors and elements
that must be configured, are described in "Session Locking Modes" on page 5-17.

Choose How to Scope Sessions and Session Attributes
Session and session attribute scoping refers to the fine-grained control over how both
session data and session attributes are scoped (or shared) across application
boundaries. Coherence*Web supports sharing sessions across Web applications and
restricts which session attributes are shared across the application boundaries. These
choices, and the deployment descriptors and elements that must be configured, are
described in "Session and Session Attribute Scoping" on page 5-10.

Oracle WebLogic 12.1.3 N/A WebLogic Server 12c (12.1.3), Coherence*Web is integrated
with the product. No installation is necessary. See
Chapter 2, "Using Coherence*Web with WebLogic Server".

Sun Application Server 8.n Generic "General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2

Sun GlassFish 2.n Generic "General Instructions for Installing Coherence*Web Session
Management Module" on page 4-2

Table 1–1 (Cont.) Web Containers which can use Coherence*Web

Application Server Server Type Alias See this Installation Section

Installation and Deployment Road Map

1-4 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Choose When to Clean Up Expired HTTP Sessions
Coherence*Web provides a session reaper, which invalidates sessions that have
expired. Chapter 7, "Cleaning Up Expired HTTP Sessions," describes the session
reaper.

Choose the Installation Method
The installation procedure that you follow depends on your application server.
"Supported Web Containers" on page 1-1 provides a list of the application servers and
the corresponding instructions for installing Coherence*Web.

If you are using a recent release of WebLogic Server (such as 12c (12.1.3)) Coherence
and Coherence*Web are installed with the WebLogic Server product. No separate
Coherence*Web installation is necessary. See Chapter 2, "Using Coherence*Web with
WebLogic Server."

For other application servers, use the generic Java EE WebInstaller described in
Chapter 4, "Using Coherence*Web on Other Application Servers."

2

Using Coherence*Web with WebLogic Server 2-1

2Using Coherence*Web with WebLogic Server

[3] This chapter describes how to configure and deploy Coherence*Web, the session state
persistence and management module, for use with WebLogic Server. The functionality
that allows Coherence*Web to be used with this application server is contained in the
Coherence*Web.

This chapter also provides an overview of Managed Coherence Servers and Grid
Archive (GAR) format for packaging Coherence applications for the grid. A detailed
discussion of Managed Coherence Servers and the GAR format is beyond the scope of
this document. For more information, see Oracle Fusion Middleware Developing Oracle
Coherence Applications for Oracle WebLogic Server.

Note: Coherence*Web for 12.1.3 is compatible with a number of
different application servers. In the case of WebLogic Server, however,
Weblogic Server 12.1.3 requires you to use Coherence*Web 12.1.3.
Weblogic Server 12.1.3 is not compatible with earlier versions of
Coherence*Web. For information on the compatibility between earlier
versions of Coherence*Web and WebLogic Server, see "Using
Coherence*Web with WebLogic Server" in Administering HTTP
Session Management with Oracle Coherence*Web (12.1.2)

This chapter contains the following sections:

■ Overview of Coherence*Web

■ Overview of Managed Coherence Servers

■ Configuring and Deploying Coherence*Web: Main Steps

■ Coherence MBean Attributes for Coherence*Web

■ Scoping the Session Cookie Path

■ Updating the Session ID

■ Sharing Coherence*Web Sessions with Other Application Servers

■ WebLogic Server and Coherence: Compatibility

Coherence*Web provides session state persistence and management. It is a session
management module that uses Coherence caches for storing and managing session
data. Coherence*Web is an alternative to the WebLogic Server in-memory HTTP state
replication services. Consider using Coherence*Web if you are encountering any of
these situations:

■ Your application works with large HTTP session state objects

Overview of Coherence*Web

2-2 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

■ You run into memory constraints, due to storing HTTP session object data

■ You want to offload HTTP session storage to an existing Coherence cluster

■ You want to share session state across enterprise applications and Web modules

Overview of Coherence*Web
The classes that define the Coherence*Web are contained in the coherence-web.jar
file. To use the functionality provided by Coherence*Web, the coherence.jar classes
must also be available to the Web application. Both of these files can be found in the
coherence\lib directory.

In WebLogic Server 12c (12.1.3) and later, the coherence-web.jar and the
coherence.jar files appear on the WebLogic Server system classpath. The
coherence-web.jar will load application classes with the appropriate classloader in
WebLogic Server. This means that you do not have to include the coherence.jar or
coherence-web.jar files in the web application’s classpath.

Coherence cache configurations and services used by Coherence*Web are defined in
the default-session-cache-config.xml file, which can be found in the
coherence-web.jar file. The default cache and services configuration defined in the
default-session-cache-config.xml file should satisfy most Web applications.

You can create your own custom session cache configuration by packaging a file
named session-cache-config.xml in your Web application. For more information
see, "Using a Custom Session Cache Configuration File" on page 2-13.

When Coherence*Web is started on WebLogic Server, it first looks for a file named
session-cache-config.xml. For example, the file can be placed in a WAR file’s
WEB-INF/classes directory, or packaged in a JAR file and placed in an EAR file’s
APP-INF/lib directory. If no custom session cache configuration XML resource is
found, then it will use the default-session-cache-config.xml file packaged in
coherence-web.jar.

In Coherence*Web, the following default cache configurations are defined:

■ Coherence*Web for WebLogic Server is configured with local-storage disabled.
The server will serve requests and will not be used to host data. This means a
Coherence cache server must be running in its own JVM, separate from the JVM
running WebLogic Server.

■ The timeout for requests to the cache server to respond is 30 seconds. If a request
to the cache server has not responded in 30 seconds, a
com.tangosol.net.RequestTimeoutException exception is thrown.

All Coherence*Web-enabled applications running on the 12c (12.1.3) release of
WebLogic Server have application server-scope. In this configuration, all deployed
applications become part of one Coherence node. See "Cluster Node Isolation" on
page 5-13 for more information about cluster node scope.

Coherence*Web provides several session locking modes to control concurrent access of
sessions. Both Coherence*Web employs Last Write Wins locking by default. See
"Session Locking Modes" on page 5-17 for more information about locking modes.

By itself, Coherence*Web does not require a load balancer to run in front of the
WebLogic Server tier. However, a load balancer will improve performance. It is
required if the same session will be used concurrently and locking is not enabled. The
default load balancer enforces HTTP session JVM affinity, however, other load
balancing alternatives are available. WebLogic Server ships with several different

Configuring and Deploying Coherence*Web: Main Steps

Using Coherence*Web with WebLogic Server 2-3

proxy plug-ins which enforce JVM session stickiness. Documentation for configuring
the WebLogic Server proxy plug-in is available at this URL:

http://download.oracle.com/docs/cd/E17904_01/web.1111/e13709/load_
balancing.htm

Overview of Managed Coherence Servers
Oracle WebLogic Server and Coherence have defined Managed Coherence Servers
which provide Coherence applications with the same benefits as other Java EE
applications that are hosted on WebLogic Server, for example:

■ Coherence applications can be deployed in a manner similar to other Java EE
applications.

■ Coherence applications in the grid can be managed by using WebLogic Server
Console and WLST.

■ Coherence clusters can be configured by using WebLogic configuration.

■ Coherence Grid Archives can be integrated into Enterprise Archives (EAR files).

■ Coherence applications can integrate with existing Coherence-based functionality.

Note: Using multiple Coherence clusters in a single WebLogic Server
domain is not recommended.

For more information on Managed Coherence Servers, see "Creating Coherence
Applications for WebLogic Server" in Oracle Fusion Middleware Developing Oracle
Coherence Applications for Oracle WebLogic Server.

Configuring and Deploying Coherence*Web: Main Steps
The following steps summarize how to prepare your deployments to use
Coherence*Web with applications running on WebLogic Server:

1. Install WebLogic Server and Oracle Coherence. See "Installing WebLogic Server
and Oracle Coherence" on page 2-4.

2. (Optional) Modify the web.xml file in the deployment if your application requires
advanced configuration for Coherence*Web. "Configure Coherence*Web" on
page 2-4 describes the parameters that can be configured for Web applications. The
entire set of Coherence*Web parameters are described in Appendix A,
"Coherence*Web Context Parameters."

3. (Optional) Configure the WebLogic-generated HTTP session cookie parameters in
the weblogic.xml or weblogic-application.xml file. See "Configure the Session
Cookies" on page 2-6.

4. (Optional for testing; strongly suggested for production) Start a Cache Server Tier
in a separate JVM from the one running WebLogic Server. See "Start a Cache
Server" on page 2-9.

5. Set the Coherence*Web storage mode. See "Configure Coherence*Web Storage
Mode" on page 2-11.

6. Deploy the application to WebLogic Server. See "Deploying Applications to
WebLogic Server" on page 2-11.

Configuring and Deploying Coherence*Web: Main Steps

2-4 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Installing WebLogic Server and Oracle Coherence
WebLogic Server is installed by executing the fmw_version_wls.jar. This installer
provides the full install and allows you to individually select the components to install
(bits, examples, Javadoc). The installer supports both a graphical mode using the
Oracle Universal Installer (OUI) and a silent mode. Installing Coherence is an option in
the WebLogic Server installer.

Use the java command to run the installer on the target computer, for example:

java -jar fmw_version_wls.jar

WebLogic Server is always installed to the ORACLE_HOME/wlserver directory;
Coherence is always installed to the ORACLE_HOME/coherence directory.

For detailed instructions on installing WebLogic Server, see Installing Oracle WebLogic
Server.

Configure Coherence*Web
Coherence*Web provides a default configuration that should satisfy most Web
applications. Table 2–1 describes the context parameters configured by
Coherence*Web. Table 2–2 describes the compatibility mode context parameter. For
complete descriptions of all Coherence*Web parameters, see Appendix A,
"Coherence*Web Context Parameters."

You can also configure the context parameters on the command line as system
properties. The system properties have the same name as the context parameters, but
the dash (-) is replaced with a period (.). For example, to declare a value for the
context parameter coherence-enable-sessioncontext on the command line, enter it
like this:

-Dcoherence.enable.sessioncontext=true

If both a system property and the equivalent context parameter are configured, the
value from the system property is used.

Table 2–1 Context Parameters Configured by Coherence*Web

Parameter Name Description

coherence-application-name Coherence*Web uses the value of this parameter to determine the
name of the application that uses the ApplicationScopeController
interface to scope attributes. The value for this parameter should be
provided in the following format:

application name + ! + Web module name

The application name is the name of the application that uses the
ApplicationScopeController interface and Web module name is the
name of the Web module in which it appears.

For example, if you have an EAR file named test.ear and a
Web-module named app1 defined in the EAR file, then the default
value for the coherence-application-name parameter would be
test!app1.

If this parameter is not configured, then Coherence*Web uses the
name of the class loader instead. Also, if the parameter is not
configured and the ApplicationScopeController interface is
configured, then a warning is logged saying that the application name
was not configured. See "Session Attribute Scoping" on page 5-12 for
more information.

coherence-reaperdaemon-assume-locali
ty

This setting allows the session reaper to assume that the sessions that
are stored on this node (for example, by a distributed cache service)
are the only sessions that this node must check for expiration.

The default is false.

coherence-scopecontroller-class This value specifies the class name of the optional
com.tangosol.coherence.servlet.HttpSessionCollection$Attribu
teScopeController interface implementation.

Valid values include:

■ com.tangosol.coherence.servlet.AbstractHttpSessionCollection
$ApplicationScopeController (default)

■ com.tangosol.coherence.servlet.AbstractHttpSessionCollection
$GlobalScopeController

The default set by Coherence*Web is
com.tangosol.coherence.servlet.AbstractHttpSessionCollection
$ApplicationScopeController.

Configuring and Deploying Coherence*Web: Main Steps

Using Coherence*Web with WebLogic Server 2-5

Table 2–2 describes the coherence-session-weblogic-compatibility-mode context
parameter which is specifically provided by Coherence*Web.

Table 2–2 Context Parameter Provided by the Coherence*Web

Parameter Name Description

coherence-session-weblogic-compatibi
lity-mode

This parameter is provided by Coherence*Web. If its value is set to
true, it determines that a single session ID (with the cookie path set to
"/") will map to a unique Coherence*Web session instance in each Web
application. If it is false, then the standard behavior will apply: a
single session ID will map to a single session instance using
Coherence*Web in WebLogic Server. All other session persistence
mechanisms in WebLogic use a single session ID in each Web
application to refer to different session instances.

This parameter defaults to true unless the global scope controller is
specified. If this controller is specified, then the parameter defaults to
false.

Configuring and Deploying Coherence*Web: Main Steps

2-6 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Table 2–3 describes the coherence-factory-class context parameter. The default
value, which is set by Coherence*Web, should not be changed.

Table 2–3 Context Parameter Value that Should Not be Changed

Parameter Name Description

coherence-factory-class The fully qualified name of the class that implements the
SessionHelper.Factory factory class. Coherence*Web sets the default
value to weblogic.servlet.internal.session.WebLogicSPIFactory.
This value should not be changed.

Configure the Session Cookies
If you are using Coherence*Web, then WebLogic Server generates and parses the
session cookie. In this case, any native Coherence*Web session cookie configuration
parameters will be ignored. To configure the session cookies, use the
WebLogic-generated HTTP session cookie parameters in the weblogic.xml or
weblogic-application.xml files. Table 2–4 describes these parameters.

In this table, Updatable? indicates whether the value of the parameter can be changed
while the server is running. Not applicable indicates that there is no corresponding
Coherence session cookie parameter.

Table 2–4 WebLogic-Generated HTTP Session Cookie Parameters

This Session Cookie
Parameter...

Replaces this
Coherence*Web
Cookie Parameter Description

cookie-comment Not applicable Specifies the comment that identifies the session tracking
cookie in the cookie file.

The default is null.

Updatable? Yes

cookie-domain coherence-session-
cookie-domain

Specifies the domain for which the cookie is valid. For
example, setting cookie-domain to.mydomain.com returns
cookies to any server in the *.mydomain.com domain.

The domain name must have at least two components. Setting
a name to *.com or *.net is not valid.

If not set, this attribute defaults to the server that issued the
cookie.

For more information, see Cookie.setDomain() in the Servlet
specification.

The default is null.

Updatable? Yes

cookie-max-age-secs coherence-session-
max-age

Sets the life span of the session cookie, in seconds, after which
it expires on the client. For more information about cookies, see
"Using Sessions and Session Persistence" in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

The default value is -1 (unlimited).

Updatable? Yes

cookie-name coherence-session-
cookie-name

Defines the session-tracking cookie name. Defaults to
JSESSIONID if not set. You can set this to a more specific name
for your application.

The default is JSESSIONID.

Updatable? Yes

Configuring and Deploying Coherence*Web: Main Steps

Using Coherence*Web with WebLogic Server 2-7

cookie-path coherence-session-
cookie-path

Defines the session-tracking cookie path.

If not set, this attribute defaults to a slash ("/") where the
browser sends cookies to all URLs served by WebLogic Server.
You can set the path to a narrower mapping, to limit the
request URLs to which the browser sends cookies.

The default is null.

Updatable? Yes

cookie-secure coherence-session-
cookie-secure

Tells the browser that the cookie can be returned only over an
HTTPS connection. This ensures that the cookie ID is secure
and should be used only on Web sites that use HTTPS. Session
cookies sent over HTTP will not work if this feature is enabled.

Disable the url-rewriting-enabled element if you intend to
use this feature.

WebLogic Server generates the session cookie.

The default is false.

Updatable? Yes

cookies-enabled coherence-session-
cookies-enabled

Enables use of session cookies by default and is recommended,
but you can disable them by setting this property to false. You
might turn this option off for testing purposes.

The default is true.

Updatable? Yes

debug-enabled Not applicable Enables the debugging feature for HTTP sessions. Support it
by enabling HttpSessionDebug logging and the WebLogic
Server trace logger.

The default value is false.

Updatable? Yes

encode-session-id-in-qu
ery-params

Not applicable Is set to true if the latest servlet specification requires
containers to encode the session ID in path parameters. Certain
Web servers do not work well with path parameters. In such
cases, the encode-session-id-in-query-params element
should be set to true.

WebLogic Server generates the HTTP response.

The default value is false.

Updatable? Yes

http-proxy-caching-of-c
ookies

Not applicable When set to false, WebLogic Server adds the following header
and response to indicate that the proxy caches are not caching
the cookies:

“Cache-control: no-cache=set-cookie”

WebLogic Server generates the HTTP response.

The default value is true.

Updatable? Yes

Table 2–4 (Cont.) WebLogic-Generated HTTP Session Cookie Parameters

This Session Cookie
Parameter...

Replaces this
Coherence*Web
Cookie Parameter Description

Configuring and Deploying Coherence*Web: Main Steps

2-8 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

id-length coherence-session-
id-length

Sets the size of the session ID.

The minimum value is 8 bytes and the maximum value is
Integer.MAX_VALUE.

If you are writing a Wireless Application Protocol (WAP)
application, you must use URL rewriting because the WAP
protocol does not support cookies. Also, some WAP devices
have a 128-character limit on URL length (including
attributes), which limits the amount of data that can be
transmitted using URL rewriting. To allow more space for
attributes, use this attribute to limit the size of the session ID
that is randomly generated by WebLogic Server.

You can also limit the length to a fixed 52 characters, and
disallow special characters, by setting the WAPEnabled
attribute. For more information, see "URL Rewriting and
Wireless Access Protocol" in Developing Web Applications for
WebLogic Server.

The default is 52.

Updatable? No

invalidation-interval-s
ecs

Not applicable Sets the time, in seconds, that Coherence*Web waits between
checks for timed-out and invalid sessions, and deleting the old
sessions and freeing up memory. Use this element to tune
WebLogic Server for best performance on high traffic sites.

The default is 60.

Updatable? No

timeout-secs Not applicable Sets the time, in seconds, that Coherence*Web waits before
timing out a session.

On busy sites, you can tune your application by adjusting the
timeout of sessions. While you want to give a browser client
every opportunity to finish a session, you do not want to tie up
the server needlessly if the user has left the site or otherwise
abandoned the session.

This element can be overridden by the session-timeout
element (defined in minutes) in web.xml.

The default is 3600 seconds.

Updatable? No

tracking-enabled Not applicable Enables session tracking between HTTP requests.

WebLogic Server generates the HTTP response.

The default is true.

Updatable? No

url-rewriting-enabled coherence-session-
urlencode-enabled

Enables URL rewriting, which encodes the session ID into the
URL and provides session tracking if cookies are disabled in
the browser and the encodeURL or encodeRedirectedURL
methods are used when writing out URLs. For more
information, see:

http://www.jguru.com/faq/view.jsp?EID=1045

WebLogic Server generates the HTTP response.

The default is true.

Updatable? Yes

Table 2–4 (Cont.) WebLogic-Generated HTTP Session Cookie Parameters

This Session Cookie
Parameter...

Replaces this
Coherence*Web
Cookie Parameter Description

Configuring and Deploying Coherence*Web: Main Steps

Using Coherence*Web with WebLogic Server 2-9

Start a Cache Server
A Coherence cache server is responsible for storing and managing all cached data.
Coherence is integrated within WebLogic Server as a container subsystem. The use of a
container aligns the lifecycle of a Coherence cluster member with the lifecycle of a
managed server: starting or stopping a managed server JVM starts and stops a
Coherence cluster member. Managed servers that are cluster members are referred to
as managed Coherence servers.

Coherence clusters are different than WebLogic Server clusters. They use different
clustering protocols and are configured separately. Multiple WebLogic Server clusters
can be associated with a Coherence cluster and a WebLogic Server domain can contain
only a single Coherence cluster. Managed servers that are configured as Coherence
cluster members are referred to as managed Coherence servers.

Managed Coherence servers can be explicitly associated with a Coherence cluster or
they can be associated with a WebLogic Server cluster that is associated with a
Coherence cluster. WebLogic Server-managed servers that are members of a Coherence
cluster and are storage-enabled, act as cache servers.

For more information on Coherence clusters in a WebLogic server environment, see
"Configuring and Managing Coherence Clusters" in Administering Clusters for Oracle
WebLogic Server. For more information on Coherence applications in a WebLogic
Server environment, see Oracle Fusion Middleware Developing Oracle Coherence
Applications for Oracle WebLogic Server.

You can start a Coherence cache server or cluster either from the WebLogic Server
Administration Console or from the command line, as described in the following
sections.

■ Starting a Coherence Cache Server from WebLogic Server Administration Console

■ Starting a Coherence Cache Server from the Command Line

Starting a Coherence Cache Server from WebLogic Server Administration Console
Using the WebLogic Server Administration Console, you can enable storage for each
WebLogic Server that is a member of a Coherence cluster. The Coherence session
caches have a separate flag for enabling storage. For more information on this flag, see
"Enabling the Coherence Session Cache in Weblogic Server Administration Console"
on page 2-12.

Note: If your managed server is a member of a Coherence cluster
and is using Coherence*Web, then you can enable session storage by
adding the -Dtangosol.coherence.session.localstorage=true
system property to the startup command.

Coherence session caches automatically start with the WebLogic Server cluster. For an
example of working with Coherence cache servers in the WebLogic Server
Administration Console, see "Caching Sessions with Managed Coherence Servers" in
Oracle Fusion Middleware Tutorial for Oracle Coherence.

The following steps summarize how to start a Coherence cluster in the WebLogic
Server Administration Console.

1. Configure the Coherence Cluster.

For detailed information, see "Configuring and Managing Coherence Clusters" in
Administering Clusters for Oracle WebLogic Server.

Configuring and Deploying Coherence*Web: Main Steps

2-10 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

2. Configure WebLogic Servers and clusters that will be associated with the
Coherence cluster.

For detailed information, see "Configuring and Managing Coherence Clusters" in
Administering Clusters for Oracle WebLogic Server.

3. Enable Coherence*Web for the selected WebLogic Servers or clusters.

For detailed information, see "Enabling the Coherence Session Cache in Weblogic
Server Administration Console" on page 2-12.

Starting a Coherence Cache Server from the Command Line
Instead of using the WebLogic Server Administration Console, there may be situations
when you might need to start a Coherence cache server or cluster from the command
line. You can start the Coherence cache server from the command line either in
standalone mode, or as part of a WebLogic Server instance.

■ To Start a Standalone Coherence Cache Server

■ To Start a Storage-Enabled or -Disabled WebLogic Server Instance

To Start a Standalone Coherence Cache Server Follow these steps to start a standalone
Coherence cache server:

1. Create a script for starting a Coherence cache server. The following is a simple
example of a script that creates and starts a storage-enabled cache server. This
example assumes that you are using a Sun JVM. See "JVM Tuning" in Oracle Fusion
Middleware Developing Applications with Oracle Coherence for more information.

java -server -Xms512m -Xmx512m
-cp <Coherence installation dir>/lib/coherence-web.jar:<Coherence installation
dir>/lib/coherence.jar -Dtangosol.coherence.management.remote=true
-Dtangosol.coherence.cacheconfig=session_cache_configuration_file
-Dtangosol.coherence.session.localstorage=true
-Dtangosol.coherence.cluster=Coherence_cluster_name
com.tangosol.net.DefaultCacheServer

You must include coherence-web.jar and coherence.jar on the classpath. The
variable session_cache_configuration_file represents the absolute path to the
cache configuration file on your file system. For Coherence*Web, the default
session cache configuration file is named default-session-cache-config.xml.
Note that the cache configuration defined for the cache server must match the
cache configuration defined for the application servers which run on the same
Coherence cluster.

If your application uses additional Coherence caches, then you must merge the
cache configuration information with a customized session cache configuration
file. This customized session cache configuration file, typically named
session-cache-config.xml, should contain the contents of
default-session-cache-config.xml file and the additional caches used by your
application.

The cache and session configuration must be consistent across WebLogic Server
and Coherence cache servers.

For more information on merging these files, see "Merging Coherence Cache and
Session Information" in Oracle Fusion Middleware Integrating Oracle Coherence.

The variable Coherence_cluster_name represents the name of the Coherence
cluster. A cluster name check has been added to 10.3.6 and later versions of
WebLogic Server. The tangosol.coherence.cluster property must be added to

Configuring and Deploying Coherence*Web: Main Steps

Using Coherence*Web with WebLogic Server 2-11

the cache server because you are declaring the cluster name in the WebLogic
Server application. If the Coherence servers are started in standalone mode, they
must pass this property, otherwise the cluster will not form between the WLS
servers and the standalone cache server.

2. Start one or more Coherence cache servers using the script described in the
previous step.

To Start a Storage-Enabled or -Disabled WebLogic Server Instance By default, a
Coherence*Web-enabled WebLogic Server instance starts in storage-disabled mode. To
start the WebLogic Server instance in storage-enabled mode, follow these steps:

1. Create a script for starting a Coherence cache server. This can be similar to the
script described in the previous section.

2. Include the command-line property to enable local storage,
-Dtangosol.coherence.session.localstorage=true, in the server startup
command. The WebLogic Server instance will start with Coherence*Web-enabled
and local storage enabled.

To start a Coherence*Web-enabled WebLogic Server instance, omit this system
property. Local storage will be disabled by default.

For more information about working with WebLogic Server through the command
line, see "weblogic.Server Command-Line Reference" in Oracle Fusion Middleware
Command Reference for Oracle WebLogic Server.

Configure Coherence*Web Storage Mode
You can enable Coherence*Web session storage by specifying coherence-web as the
value of the persistent-store-type attribute in the weblogic.xml session
configuration. This configuration provides application server-level cluster node
scoping for web applications deployed on WebLogic Server. No shared libraries need
to be deployed or depended upon.

Coherence*Web is initialized only when a web application that requires session
persistence is started in the WebLogic Server instance.

Example 2–1 illustrates a sample weblogic.xml file where coherence-web is the value
of the persistent-store-type attribute.

Example 2–1 Coherence Web Storage Mode in weblogic.xml

<weblogic-web-app>
 ...
<session-descriptor>
 <persistent-store-type>coherence-web</persistent-store-type>
</session-descriptor>
 ...
</weblogic-web-app>

Deploying Applications to WebLogic Server
If you are using the default session cache configuration file with your web application,
then you can package and deploy it like any other Java EE application. However, if
you are using a custom session cache configuration file, then you must package and
deploy the application in a GAR file.

Coherence MBean Attributes for Coherence*Web

2-12 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

GAR files deploy like any other Java EE application, except that you create a
Coherence tier and nodes belonging to the tier. You can configure and deploy a
standalone GAR or an embedded GAR.

For information about configuring and deploying standalone GAR files and
embedded GAR files, see "Deploying Coherence Applications to WebLogic Server" in
Oracle Fusion Middleware Administering Oracle Coherence and "Creating Coherence
Applications for WebLogic Server" in Developing Oracle Coherence Applications for Oracle
WebLogic Server.

Coherence MBean Attributes for Coherence*Web
WebLogic Server defines a cluster MBean
(weblogic.management.configuration.ClusterMBean) which represents a cluster in
the domain. The cluster MBean defines a number of attributes, operations, and
MBeans related to the management of the cluster. Among the MBeans defined by the
cluster MBean are the CoherenceMemberConfigMBean and the CoherenceTierMBean
MBeans.

The CoherenceMemberConfigMBean and the CoherenceTierMBean MBeans each define
an isCoherenceWebLocalStorageEnabled attribute that indicates whether a cluster or
member is acting as a storage tier for Coherence*Web. This attribute is defined in
Table 2–5.

Table 2–5 Coherence MBean Attribute for Coherence*Web

Attribute Description

isCoherenceWebLocalStorageEnabled If this attribute is set to true in CoherenceTierMBean, it indicates
that a cluster is acting as a storage tier for Coherence*Web.
Coherence*Web cache services will start with storage enabled when
the server starts. When deploying a Coherence*Web-enabled
application, there must be a running WebLogic cluster in the
domain which has this attribute enabled.

If this attribute is set to true in CoherenceMemberConfigMBean, it
indicates that this node is acting as a storage node for
Coherence*Web. Coherence*Web cache services will start with
storage enabled when the server starts. When deploying a
Coherence*Web-enabled application, there must be a running
WebLogic cluster in the domain which has this attribute enabled.

Default: false

Enabling the Coherence Session Cache in Weblogic Server Administration Console
The Coherence Web Local Storage Enabled checkbox in the WebLogic Server
Administration Console corresponds to the isCoherenceWebLocalStorageEnabled
attribute described in the previous section. The checkbox indicates whether the cluster
is acting as a storage tier for Coherence*Web. To navigate to this checkbox:

1. Select Environment, then Clusters in the Domain Structure Window.

2. Select a defined cluster in the Clusters table.

3. Select Configuration tab then the Coherence tab in the Settings for cluster page.

Figure 2–1 illustrates the Coherence Web Local Storage Enabled checkbox in the
WebLogic Server Administration Console Settings for cluster page.

Using a Custom Session Cache Configuration File

Using Coherence*Web with WebLogic Server 2-13

Figure 2–1 Coherence Web Local Storage Enabled Checkbox

Using a Custom Session Cache Configuration File
The coherence-web.jar file contains a default-session-cache-config.xml cache
configuration file which should be sufficient for most applications. However, if you are
working with technologies such as Coherence*Extend or Push Replication, or if you
have WebLogic Server nodes that are to act as storage-enabled cache servers with a
custom session cache configuration, then you must provide a custom session cache
configuration file. Custom session cache configuration files must be packaged in a
GAR file for deployment.

To use a custom session cache configuration file on WebLogic Server and package it in
a GAR file, follow these steps for web applications and for the WebLogic Server nodes
acting as cache servers:

For web applications using Coherence*Web:

1. If you are using a custom session cache configuration file (which should be named
session-cache-config.xml), then package it in your web application:

■ For a WAR file, place the session cache configuration file in the
WEB-INF/classes folder

■ For an EAR file, package the session cache configuration file in a JAR file and
place it in the shared library (the APP-INF/lib folder) in an EAR file

Note that you can customize the session cache configuration file name, but then
you must provide the new file name as the value of the
coherence-cache-configuration-path context parameter in the web.xml file.

2. If you do not want the WebLogic Server cluster members running the
Coherence*Web application to act as a cache server, then ensure that the
Coherence Web Local Storage Enabled checkbox in the WebLogic Server

Using a Custom Session Cache Configuration File

2-14 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Administration Console "Settings for cluster" page is not selected for the cluster
members. This will cause the custom session cache configuration file to be read.

For WebLogic Server nodes acting as cache servers:

1. If you are using a custom session cache configuration file, then construct a GAR
file containing the file and a coherence-application.xml file. The GAR file has
the following structure:

my.gar
session-cache-config.xml
META-INF
 coherence-application.xml
 MANIFEST.MF

For more information on the packaging requirements for a GAR file, see
"Packaging Coherence Applications for WebLogic Server" in Oracle Fusion
Middleware Administering Oracle Coherence and "Creating Coherence Applications
for Oracle WebLogic Server" in Developing Oracle Coherence Applications for Oracle
WebLogic Server.

a. Create the custom session cache configuration file and name it
session-cache-config.xml.

If you are deploying a GAR file, set the local-storage parameter in the
custom session-cache-config.xml file to true, to configure all caches to start
with storage enabled, for example:

<local-storage>true</local-storage>

Note: The local-storage parameter specifies whether a cluster node
contributes storage to the cluster. In WebLogic Server, the
local-storage parameter does not enable storage in Coherence*Web
for WebLogic Server members that have a GAR file deployed to them.

b. Create a coherence-application.xml file. In the file, use the
cache-configuration-ref parameter to reference your custom
session-cache-config.xml file, for example:

<?xml version="1.0"?>
<coherence-application>
 xmlns="http://xmlns.oracle.com/weblogic/coherence-application">
<cache-configuration-ref>session-cache-config.xml</cache-configuration-ref>
</coherence-application>

2. Deploy the GAR file to the WebLogic Server cluster that is to act as the
storage-enabled Coherence cluster members.

Note that storage must be enabled in either of the following ways:

■ Enable storage in the session-cache-config.xml file (see Step 1a).

■ Enable storage in the server itself either by selecting the Coherence Web Local
Storage Enabled checkbox in the WebLogic Server Administration Console or
by setting the JVM argument tangosol.coherence.session.localstorage to
true.

For information on deploying GAR files, see "Deploying Coherence Applications
To a WebLogic Server Domain" in Oracle Fusion Middleware Administering Oracle
Coherence. and "Deploying Coherence Applications in WebLogic Server" in
Developing Oracle Coherence Applications for Oracle WebLogic Server.

Updating the Session ID

Using Coherence*Web with WebLogic Server 2-15

Scoping the Session Cookie Path
WebLogic Server and Coherence*Web handle session scoping and the session lifecycle
in different ways. This can impact your decision to implement a single sign-on (SSO)
strategy for your applications.

By default, WebLogic Server uses the same session ID in every Web application for a
given client, and sets the session cookie path to a forward slash (/). This is a
requirement of the WebLogic Server default thin SSO implementation, which is
enabled by default. By generating a session cookie with a path of "/", clients always
return the same session ID in every request to the server. In WebLogic Server, a single
session ID can be mapped to multiple session objects. Each Web application will have
a different session object instance even though the session ID is identical (unless
session sharing is enabled).

In contrast, Coherence*Web maps a session ID to a single session instance. This means
that the behavior of having multiple session instances mapped to the same ID is not
replicated by default if an application uses Coherence*Web. Because the session cookie
is mapped to "/" by default, a single Coherence*Web session is shared across all Web
applications. The default configuration in Coherence*Web is that all session attributes
are scoped to a Web application. For most purposes, this single session approach is
transparent. The major difference of having a single session across all Web applications
is the impact of session invalidation. If Coherence*Web is enabled and you invalidate a
session in one Web application, then you invalidate that session in all Web applications
that use that session instance. If your Web applications do not use thin SSO, then you
can avoid this issue by scoping the session cookie to the Web application path.

Therefore, you have the following options regarding SSO:

■ Enable "WebLogic Server session compatibly mode". This configuration is set with
the coherence-session-weblogic-compatibility-mode parameter and mirrors all
of the native WebLogic Server session persistence types: memory (single-server,
non-replicated), file system persistence, JDBC persistence, cookie-based session
persistence, and in-memory replication (across a cluster). By default, this mode is
enabled. See "Using Sessions and Session Persistence" in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server for more information.

■ Enable thin SSO functionality. Clients will use a single session across all Web
applications. This means that the session life cycle will be inconsistent with all
other session persistence types.

■ Disable the thin SSO functionality by scoping the session cookie path to the Web
application context path. This will allow the session life cycle to be consistent with
all other session persistence types.

One advantage of enabling thin SSO with Coherence*Web is that it will work across all
Web applications that are using the same Coherence cluster for Coherence*Web. The
Coherence cluster is completely independent from the WebLogic Server cluster. The
thin SSO functionality can even span multiple domains by enabling cross-domain trust
in the WebLogic Server security layer.

Updating the Session ID
When a user successfully authenticates a protected resource, the session ID is changed
for security purposes.

In previous releases of WebLogic Server, a new session would be created, all of the
session attributes from the old session would be copied into the new session, and then

Sharing Coherence*Web Sessions with Other Application Servers

2-16 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

the old session would be invalidated. This would trigger the session listeners (if any
were registered), so session lifecycle and session attribute listeners would be executed.

The current release of WebLogic Server implements the
HttpServletRequest.changeSessionId method from the Java Servlet 3.1 Specification.
The implementation of the changeSessionId method allows the actual session ID to be
updated. This means that no session lifecycle events will be triggered and no listeners
will be executed. Most users should not notice any changes in the behavior of their
applications.

For more information on the HttpServletRequest.changeSessionId method, see the
Java Servlet 3.1 Specification and Javadoc available from this URL:

http://jcp.org/en/jsr/detail?id=340

Sharing Coherence*Web Sessions with Other Application Servers
If you are running Coherence*Web on WebLogic Server and on other application
servers within a single cluster, then the session cookies created by WebLogic Server
will not be decoded correctly by Coherence*Web on the other servers. This is because
WebLogic Server adds a session affinity suffix to the cookie which is not part of the
session ID stored in Coherence*Web. The other application servers must remove the
WebLogic session affinity suffix from the session cookie value for Coherence*Web to be
able to retrieve the session from the Coherence cache.

To strip the WebLogic session affinity suffix from the session cookie, add the
coherence-session-affinity-token context parameter to the web.xml file used in the
other application servers. Set the parameter value to an exclamation point (!), as
illustrated in Example 2–2. The session affinity suffix will be removed from the session
cookie when it is processed by the other application server.

Example 2–2 Removing Session Affinity Suffix

...
<context-param>
 <param-name>coherence-session-affinity-token</param-name>
 <param-value>!</param-value>
</context-param>
...

See Appendix A, "Coherence*Web Context Parameters" for more information on the
coherence-session-affinity-token context parameter.

WebLogic Server and Coherence: Compatibility
Coherence*Web for 12.1.3 is compatible with a number of different application servers.
In the case of WebLogic Server, however, Weblogic Server 12.1.3 requires you to use
Coherence*Web 12.1.3. Weblogic Server 12.1.3 is not compatible with earlier versions
of Coherence*Web. For information on the compatibility between earlier versions of
Coherence*Web and WebLogic Server, see "Using Coherence*Web with WebLogic
Server" in Administering HTTP Session Management with Oracle Coherence*Web (12.1.2).

3

Using Coherence*Web with GlassFish Server 3-1

3Using Coherence*Web with GlassFish Server

[4] This chapter describes how to configure and deploy Coherence*Web, the session state
persistence and management module, for use with GlassFish Server.

This chapter contains the following sections:

■ Overview of GlassFish Server

■ Overview of Coherence*Web on GlassFish

■ Configuring And Deploying Coherence*Web on GlassFish Server—Main Steps

Overview of GlassFish Server
Oracle GlassFish Server delivers a flexible, lightweight and extensible Java EE 6
platform. It provides a small footprint, fully featured Java EE application server that is
completely supported for commercial deployment and is available as a standalone
offering. Oracle GlassFish Server is best suited for applications requiring lightweight
infrastructure and the most recent implementations of Java Enterprise Edition. This
chapter describes how to set up and deploy Coherence*Web so that it can be used by
applications running on GlassFish Server.

Overview of Coherence*Web on GlassFish
Coherence*Web provides functionality in Web applications deployed on Oracle
GlassFish Servers. In previous releases, the Coherence*Web WebInstaller was required
to pre-process applications before they could use Coherence*Web for session storage.
With the current release, the WebInstaller pre-processing step is not required for
GlassFish 3.1 applications.

Functionality for GlassFish is provided in the coherence-web.jar file which can be
found in the coherence/lib folder. Coherence cache configurations and services for
GlassFish are defined in the default-session-cache-config.xml file, which can be
found in the coherence-web.jar file. The default cache and services configuration
defined in the default-session-cache-config.xml file should satisfy most Web
applications.

Since Coherence*Web uses Coherence caches to store session data, the coherence.jar
file must also be available to the Web application’s classloader. See "Configure Cluster
Nodes" on page 3-7 for more information on configuring Coherence*Web to run on
EAR-scoped or WAR-scoped cluster nodes.

By default, the Coherence node running on GlassFish Server is configured as
storage-disabled. A separate Coherence cache server must be running for the Web
application to work.

Configuring And Deploying Coherence*Web on GlassFish Server—Main Steps

3-2 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Coherence*Web provides several session locking modes to control concurrent access of
sessions. On GlassFish Servers, Coherence*Web employs Last Write Wins Locking by
default. This allows concurrent access to a session by multiple threads in a single JVM
or multiple JVMs while prohibiting concurrent modification. See "Session Locking
Modes" on page 5-17 for more information about locking modes.

The split session model (SplitHttpSessionModel), where small session attributes are
stored as a single cache entry, and large attributes are stored as individual cache
entries, is the default session model used. See "Session Models" on page 5-2 for more
information.

Heap space is made available in GlassFish Server by storing session data in the
Coherence data grid. Storing session data outside of GlassFish Server allows the Web
application and the server to be restarted without any loss of session data. It also
allows sessions to be shared across different web applications. Coherence*Web can run
on GlassFish Server in either EAR-scoped or WAR-scoped cluster nodes. Application
Server-scope is not supported.

Configuring And Deploying Coherence*Web on GlassFish Server—Main
Steps

The following steps summarize how to prepare your deployments to use
Coherence*Web with applications running on GlassFish Server:

1. Download Oracle Coherence to your file system. See "Download Oracle
Coherence".

2. Set the session persistence type to coherence-web for the Web application in
glassfish-web.xml file. See "Set the Session Persistence Type" on page 3-3.

3. (Optional) If you must override the default Coherence*Web cache or cluster
configuration, edit the default-session-cache-config.xml file. See "Override the
Default Coherence*Web Cache or Cluster Configuration" on page 3-3.

4. Make the coherence-web.jar file available to the Web application. See "Copy the
Coherence*Web and Session Cache Files to the Application" on page 3-3.

5. Edit the web.xml file to make your Web application available to a server cluster.
See "Make Your Web Applications Distributable" on page 3-3.

6. (Optional) Edit the web.xml file in the WAR deployment if your application
requires advanced configuration for Coherence*Web. See "Configure
Coherence*Web".

7. (Optional for testing; strongly suggested for production) Start a Cache Server Tier
in a JVM that is separate from the one running GlassFish Server. See "Start a Cache
Server" on page 3-6.

8. Package the application. Coherence*Web can be configured for EAR-scoped or
WAR-scoped cluster nodes on GlassFish Server. See "Configure Cluster Nodes" on
page 3-7.

Download Oracle Coherence
All of the files supporting Coherence*Web are included in the Coherence distribution.
You can get the latest release of Oracle Coherence at this URL:

http://www.oracle.com/technetwork/middleware/coherence/overview/index.html

Configuring And Deploying Coherence*Web on GlassFish Server—Main Steps

Using Coherence*Web with GlassFish Server 3-3

Set the Session Persistence Type
Create or edit the glassfish-web.xml file in the WEB-INF directory of the Web
application. Set the session persistence type for the Web application to be
coherence-web, for example:

Example 3–1 Configuring the glassfish-web.xml File for Coherence*Web

<glassfish-web-app>
 <session-config>
 <session-manager persistence-type="coherence-web" />
 </session-config>
</glassfish-web-app>

Override the Default Coherence*Web Cache or Cluster Configuration
The default-session-cache-config.xml file provides the default definition of the
session caches and services which Coherence*Web uses to implement HTTP session
management. The default-session-cache-config.xml file contained in the
coherence-web.jar file should satisfy most Web applications. If necessary, you can
provide an alternate cache and cluster configuration in your own custom session cache
configuration file and tangosol-coherence-override.xml file. You must include the
file in the WEB-INF/classes directory in the Web application.

For information on specifying the name of the custom session cache configuration file,
see "Customizing the Name of the Session Cache Configuration File" on page 5-27.

Copy the Coherence*Web and Session Cache Files to the Application
The coherence-web.jar file provides the functionality for Coherence*Web on
GlassFish. You must make the coherence-web.jar file available to the applications
that you want to run on GlassFish Server.

Copy the coherence-web.jar file to the /WEB-INF/lib/ directory of each Web
application that you intend to deploy on GlassFish Server.

Make Your Web Applications Distributable
Your Web application must be configured to run in a distributed environment, such as
a server cluster. Add the <distributable/> element to the web.xml deployment
descriptor of your Web application. The <distributable/> element is a child of the
root <web-app> element. The web.xml file is located in the WEB-INF directory of your
Web application.

Configure Coherence*Web
Coherence*Web provides a default configuration that should satisfy most Web
applications. The Coherence*Web configuration is defined using <context-param>
elements in the web.xml file. The default values can be overridden by adding or
editing <context-params> elements in the web.xml file.

Note: If you make any changes to the Coherence*Web configuration
after a Web application has been started, then you must restart the
Web application. There are no dynamically updatable configuration
options in Coherence*Web.

Configuring And Deploying Coherence*Web on GlassFish Server—Main Steps

3-4 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Table 3–1 describes the default values provided for Coherence*Web on GlassFish
Servers. See Appendix A, "Coherence*Web Context Parameters" for more information
about these parameters.

Table 3–1 Default Context Parameter Values Provided by Coherence*Web

Parameter Name Description and Default Value

coherence-application-name The default is ServletContext path + ServletContext name

A consistent and unique string to represent the Web application
name.

coherence-cluster-owned The default is false

Because all Coherence nodes start when the Web application starts,
they should also shutdown the Coherence node when the Web
application stops.

coherence-reaperdaemon-assume-localit
y

The default is false

Sessions can be stored on standalone cache servers.

coherence-scopecontroller-class The default is
com.tangosol.coherence.servlet.AbstractHttpSessionCollectio
n$ApplicationScopeController

coherence-session-locking The default is false

Session locking is disabled by default. This configuration enables a
"last writer wins" policy.

coherence-session-locking-mode The default is none.

Session locking is disabled by default. This configuration enables a
"last writer wins" policy.

coherence-sessioncollection-class The default is
com.tangosol.coherence.servlet.SplitHttpSessionCollection

SplitHttpSessionCollection is the recommended default model.

Coherence*Web context parameters that configure the session cookie are not honored
because GlassFish Server generates and parses the session cookie. Even though
Coherence*Web can be configured to enable servlet contexts to be clustered, GlassFish
does not support this functionality.

Table 3–2 describes the Coherence*Web context parameters that are not valid when
used with GlassFish. GlassFish will return a warning log if these context parameters
are present. See Appendix A, "Coherence*Web Context Parameters" for more
information about these parameters.

Table 3–2 Coherence*Web Context Parameters that are not Valid for the GlassFish Server

Parameter Name Reason Why it is Not Valid

coherence-distributioncontroller-clas
s

The value for GlassFish Server is
com.tangosol.coherence.servlet.glassfish31.GlassFishHybridC
ontroller.

coherence-preserve-attributes GlassFish Server caches nonserializable user data in the session.

coherence-session-cookie-domain This parameter is not valid because GlassFish Server is responsible
for generating and parsing the session cookie.

coherence-session-cookie-max-age This parameter is not valid because GlassFish Server is responsible
for generating and parsing the session cookie.

coherence-session-cookie-name This parameter is not valid because GlassFish Server is responsible
for generating and parsing the session cookie.

Configuring And Deploying Coherence*Web on GlassFish Server—Main Steps

Using Coherence*Web with GlassFish Server 3-5

Table 3–3 describes the valid session configuration parameters in the
glassfish-web.xml file. They are valid because GlassFish creates the session cookie
and performs URL encoding in servlets.

coherence-session-cookie-path This parameter is not valid because GlassFish Server is responsible
for generating and parsing the session cookie.

coherence-session-cookies-enabled This parameter is not valid because GlassFish Server is responsible
for generating and parsing the session cookie, as well as encoding
URLs with session id.

coherence-eventlisteners This parameter is not valid because Coherence*Web on GlassFish
automatically registers session event listeners registered in web.xml.

coherence-servletcontext-clustered This parameter is not valid because Coherence*Web does not support
a clustered ServletContext in Coherence*Web for GlassFish.

coherence-session-id-length This parameter is not valid because GlassFish Server is responsible
for generating and parsing the session cookie.

coherence-session-urldecode-bycontain
er

This parameter is not valid because GlassFish Server is responsible
for generating and parsing the session cookie, as well as encoding
and decoding URLs.

coherence-session-urlencode-enabled This parameter is not valid because GlassFish Server is responsible
for generating and parsing the session cookie, as well as encoding
URLs with session id.

coherence-session-urlencode-name This parameter is not valid because GlassFish Server is responsible
for generating and parsing the session cookie, as well as encoding
URLs with session id.

Table 3–3 Valid GlassFish Session Configuration Parameters in glassfish-web.xml

Parameter Name Reason Why it is Valid

session-config/cookie-properties/cook
ieComment

GlassFish generates the session cookie.

session-config/cookie-properties/cook
ieMaxAgeSeconds

GlassFish generates the session cookie.

session-config/cookie-properties/cook
iePath

GlassFish generates the session cookie.

session-config/cookie-properties/cook
ieSecure

GlassFish generates the session cookie.

session-config/cookie-properties/cook
ieDomain

GlassFish generates the session cookie.

session-config/session-properties/ena
bleCookies

GlassFish Server generates the session cookie.

session-config/session-properties/ena
bleURLRewriting

GlassFish Server generates the session cookie.

Table 3–2 (Cont.) Coherence*Web Context Parameters that are not Valid for the GlassFish Server

Parameter Name Reason Why it is Not Valid

Configuring And Deploying Coherence*Web on GlassFish Server—Main Steps

3-6 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Table 3–4 describes the configuration parameters in the glassfish-web.xml file which
are not valid when using Coherence*Web on GlassFish. If these parameters are
configured in the glassfish-web.xml file, then they are ignored.

Table 3–4 GlassFish Context Parameters that are not Valid for Coherence*Web in glassfish.web.xml

Parameter Name Reason Why it is Not Valid

session-config/session-manager/manage
r-properties/maxSessions

Coherence*Web controls session management. Because sessions can
be shared across applications, it is not possible to count the number
of sessions for a specific application.

session-config/session-manager/manage
r-properties/ persistenceFrequency

Coherence*Web always flushes session data to the cache at the end of
a request (although it might do so asynchronously).

session-config/session-manager/manage
r-properties/sessionFilename

This parameter is relevant only for the file session persistence type.

session-config/session-manager/store-
properties/ directory

This parameter is relevant only for the file session persistent type.

session-config/session-manager/store-
properties/ persistenceScope

This parameter is relevant only for the GlassFish Server native
replicated session persistent type.

Start a Cache Server
A Coherence cache server is responsible for storing and managing all cached data. It
can be run either in a dedicated JVM (out-of-process) or within a GlassFish Server
instance (in-process). The senior node (which is the first node) in a Coherence data
cluster can take several seconds to start up; the start-up time required by subsequent
nodes is minimal.

If you are using an out-of-process topology (storage-disabled GlassFish Server
instances and stand alone Coherence cache servers), then start the cache servers first,
followed by the GlassFish Server instances. This will ensure that there is minimal
(measured in milliseconds) startup time for applications using Coherence. Any
additional Web applications that use Coherence are guaranteed not to be the senior
data member, so they will have minimal impact on GlassFish Server startup.

To Start a Stand-Alone Coherence Cache Server
1. Create a script for starting a Coherence cache server.

The following is a sample script that starts a cache server. This example assumes
that you are using a Sun JVM. See "JVM Tuning" in Oracle Fusion Middleware
Developing Applications with Oracle Coherence for more information.

java -server -Xms512m -Xmx512m
-cp <Coherence installation dir>/lib/coherence-web.jar:<Coherence installation
dir>/lib/coherence.jar -Dtangosol.coherence.management.remote=true

session-config/session-manager/persis
tence-type

This parameter must be set to coherence-web to enable
Coherence*Web.

session-config/session-manager/manage
r-properties/reap-interval-in-seconds

This value sets the coherence-reaperdaemon-cycle-seconds
Coherence*Web configuration parameter. The default for the
GlassFish Server is 60 seconds.

session-config/session-properties/tim
eoutSeconds

This value sets the coherence-session-expire-seconds
Coherence*Web configuration parameter. It overrides the equivalent
parameter in the web.xml file.

Table 3–3 (Cont.) Valid GlassFish Session Configuration Parameters in glassfish-web.xml

Parameter Name Reason Why it is Valid

Configuring And Deploying Coherence*Web on GlassFish Server—Main Steps

Using Coherence*Web with GlassFish Server 3-7

-Dtangosol.coherence.cacheconfig=default-session-cache-config.xml
-Dtangosol.coherence.session.localstorage=true
com.tangosol.net.DefaultCacheServer

You must include coherence-web.jar and coherence.jar on the classpath. For
Coherence*Web, use the default-session-cache-config.xml file as the cache
configuration file. This is the file you obtained in "Copy the Coherence*Web and
Session Cache Files to the Application" on page 3-3. Note that the cache
configuration defined for the cache server must match the cache configuration
defined for the application servers which run on the same Coherence cluster.

If you have additional Coherence caches running on Coherence*Web, then you
must merge the cache configuration information (typically defined in the
coherence-cache-config.xml file) with the session configuration contained in the
default-session-cache-config.xml file. The cache and session configuration
must be consistent for the GlassFish Server and the Coherence cache servers.

For more information on merging these files, see "Merging Coherence Cache and
Session Information" in Oracle Fusion Middleware Integrating Oracle Coherence.

2. Start one or more Coherence cache servers using the script described in the
previous step.

To Start a Storage-Enabled or -Disabled GlassFish Server Instance
By default, a Coherence*Web-enabled GlassFish Server instance starts in
storage-disabled mode.

There are several ways to start the GlassFish Server instance in storage-enabled mode.
One way is to include the command line property
-Dtangosol.coherence.session.localstorage=true in the server startup command.

Another way is to set the local-storage element in the
default-session-cache-config.xml file to true, for example:

...
<local-storage>true</local-storage>
...

Configure Cluster Nodes
On the GlassFish Server, Coherence*Web can be configured only for EAR- or
WAR-scoped cluster nodes. Because of the way that GlassFish Server class loaders
work, it is not possible to configure application server-scoped cluster nodes. See
"Cluster Node Isolation" on page 5-13 for more information on application server-,
EAR-, and WAR-scoped cluster nodes.

Configuring EAR-Scoped Cluster Nodes
To use Coherence*Web in EAR-scoped cluster nodes:

1. Copy the coherence.jar and coherence-web.jar files to the WEB-INF/lib
directory of each WAR in the EAR file.

2. Set the session persistence type to coherence-web in the glassfish-web.xml file,
as illustrated in Example 3–2.

Example 3–2 Setting the Persistence Type in the glassfish-web.xml File

<glassfish-web-app>
 ...
 <session-config>

Configuring And Deploying Coherence*Web on GlassFish Server—Main Steps

3-8 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

 <session-manager persistence-type="coherence-web"/>
 </session-config>
...
</glassfish-web-app>

3. Copy the session cache configuration file default-session-cache-config.xml to
the /WEB-INF/classes/ directory of each WAR file in the EAR file.

Configuring WAR-Scoped Cluster Nodes
To use Coherence*Web in WAR-scoped cluster nodes:

1. Copy the coherence.jar and coherence-web.jar files to the /WEB-INF/lib/
directory of each Web application that you intend to deploy on GlassFish Server.

2. Set the session persistence type to coherence-web in the glassfish-web.xml file.
See Example 3–2.

3. Copy the session cache configuration file default-session-cache-config.xml to
the /WEB-INF/classes/ directory of each Web application that you intend to
deploy on GlassFish Server.

This packaging means that each deployed WAR file will create a Coherence node in
the cluster. If you package multiple WAR files in an EAR file, then each WAR file will
create a Coherence node in the cluster.

4

Using Coherence*Web on Other Application Servers 4-1

4Using Coherence*Web on Other Application
Servers

Before Proceeding: Consult "Supported Web Containers" on
page 1-1 to see if you must perform any application server-specific
installation steps.

[5] This chapter describes how to configure and deploy Coherence*Web, the session state
persistence and management module, for use with a variety of application servers. The
functionality that allows Coherence*Web to be used with these application servers is
provided by running the automated Coherence*Web WebInstaller.

This chapter provides instructions on how to use the Coherence*Web WebInstaller to
install Coherence*Web for Java EE applications on a variety of different application
servers.

This chapter contains the following sections:

■ Installing Coherence*Web Using the WebInstaller

■ Coherence*Web WebInstaller Ant Task

■ Testing HTTP Session Management

■ How the Coherence*Web WebInstaller Instruments a Java EE Application

■ Installing Coherence*Web into Applications Using Java EE Security

■ Preventing Cross-Site Scripting Attacks

Installing Coherence*Web Using the WebInstaller
Coherence*Web can be enabled for Java EE applications on several different Web
containers. To do this, you must run the ready-to-deploy application through the
automated Coherence*Web WebInstaller before deploying it. The automated installer
prepares the application for deployment. It performs the installation process in two
discrete steps: an inspection step and an installation step. For more information about
what the installer does during these steps, see "How the Coherence*Web WebInstaller
Instruments a Java EE Application" on page 4-10.

The installer can be run either from the Java command line or from Ant tasks. The
following sections describe the Java command-line method. For Ant task-based
installation, see "Coherence*Web WebInstaller Ant Task" on page 4-6.

Installing Coherence*Web Using the WebInstaller

4-2 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Application Server-Specific Installation Instructions
All of the Web containers listed in "Supported Web Containers" on page 1-1 that can be
installed with the WebInstaller share the same general installation instructions. These
instructions are described in "General Instructions for Installing Coherence*Web
Session Management Module" on page 4-2.

A few of the Web containers, such as Caucho Resin, and WebLogic 10.n, require extra,
container-specific steps that you must complete before starting the general installation
procedure. The following sections describe application server-specific installation
steps:

■ Installing on Oracle WebLogic Server 10.n

■ Installing on Caucho Resin 3.1.n

Installing on Oracle WebLogic Server 10.n
Complete the following steps to install the Coherence*Web Session Management
Module into Oracle WebLogic Server release 10 to 10.2:

1. Obtain the coherence-web.jar file from the coherence/lib directory.

2. For each WebLogic Server 10.n installation that will be running in the server
cluster, update the libraries using the following command:

java -cp coherence.jar;coherence-web.jar
com.tangosol.coherence.servlet.WebPluginInstaller <wls-home-path> -install

3. Follow the instructions described in "General Instructions for Installing
Coherence*Web Session Management Module" on page 4-2 to complete the
installation. Use the value WebLogic/10.x for the server type.

Installing on Caucho Resin 3.1.n
Complete the following steps to install the Coherence*Web Session Management
Module into a Caucho Resin 3.1.n server:

1. Obtain the coherence-web.jar file from the coherence/lib directory.

2. For each Caucho Resin installation that will be running in the server cluster,
update the libraries using the following command:

java -cp coherence.jar;coherence-web.jar
com.tangosol.coherence.servlet.WebPluginInstaller <resin-home-path> -install

3. Follow the instructions described in "General Instructions for Installing
Coherence*Web Session Management Module" on page 4-2 to complete the
installation. Use the value Resin/3.1.x for the server type.

General Instructions for Installing Coherence*Web Session Management Module
Complete the following steps to install Coherence*Web for a Java EE application on
any of the Web containers listed under "Supported Web Containers" on page 1-1.

If you are installing Coherence*Web for a Java EE application on an Apache Tomcat
Server, see also "Enabling Sticky Sessions for Apache Tomcat Servers" on page 4-6 for
additional instructions.

If you are installing Coherence*Web for a Java EE application on IBM WebSphere
Server, see also "Decoding URL Session IDs for IBM WebSphere 7.n Servers" on
page 4-6 for additional instructions.

Installing Coherence*Web Using the WebInstaller

Using Coherence*Web on Other Application Servers 4-3

To install Coherence*Web for the Java EE application you are deploying:
1. Ensure that the application directory and the EAR file or WAR file are not being

used or accessed by another process.

2. Change the current directory to the Coherence library directory (%COHERENCE_
HOME%\lib on Windows and $COHERENCE_HOME/lib on UNIX).

3. Ensure that the paths are configured so that Java commands will run.

4. Complete the application inspection step by running the following command.
Specify the full path to your application and the name of your server found in
Table 1–1 (replacing the <app-path> and <server-type> with them in the
following command line):

java -jar webInstaller.jar <app-path> -inspect -server:<server-type>

The system will create (or update, if it already exists) the coherence-web.xml
configuration descriptor file for your Java EE application in the directory where
the application is located. This configuration descriptor file contains the default
Coherence*Web settings for your application as recommended by the installer.

5. If necessary, review and modify the Coherence*Web settings based on your
requirements.

You can modify the Coherence*Web settings by editing the coherence-web.xml
descriptor file. Appendix A, "Coherence*Web Context Parameters," describes the
Coherence*Web settings that can be modified. Use the param-name and
param-value subelements of the context-param parameter to enable the features
you want. Table 4–1 describes some examples of different settings.

Table 4–1 Example Context Parameter Settings for Coherence*Web

Parameter Name Description

coherence-servletcontext-clu
stered

true Clusters all ServletContext (global) attributes so that servers in a
cluster share the same values for those attributes, and also receive
the events specified by the Servlet Specification when those
attributes change.

coherence-enable-sessioncont
ext

true Allows an application to enumerate all of the sessions that exist
within the application, or to obtain any one of those sessions to
examine or manipulate.

coherence-session-id-length 32 Enables you to increase the length of the HttpSession ID, which is
generated using a SecureRandom algorithm; the length can be any
value, although in practice it should be small enough to fit into a
cookie or a URL (depending on how session IDs are maintained.)
Increasing the length can decrease the chance of a session being
purposely hijacked.

coherence-session-urlencode-
enabled

true By default, the HttpSession ID is managed in a cookie. If the
application supports URL encoding, this option enables it.

6. Complete the Coherence*Web application installation step by running the
following command, replacing <app-path> with the full path to your application:

java -jar webInstaller.jar <app-path> -install

The installer requires a valid coherence-web.xml configuration descriptor file to
reside in the same directory as the application. The command creates a
default-session-cache-config.xml file in the WEB-INF\classes directory of the
application archive file. This file contains the session and cache configuration
information.

Installing Coherence*Web Using the WebInstaller

4-4 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

7. Deploy the updated application and verify that everything functions as expected,
using the lightweight load balancer provided with the Coherence distribution.
Remember that the lightweight load balancer is not a production-ready utility, in
contrast to the load balancer provided by WebLogic Server.

The application can be deployed and run in any of the deployment topologies
supported by Coherence: in-process, out-of-process, or out-of-process with
Coherence*Extend. See the following sections for information on deploying and
running your applications under these topologies. For more information on the
topologies themselves, see "Deployment Topologies" on page 5-20.

Deploying and Running Applications In Process
Coherence*Web can be run in-process with the application server. This is where session
data is stored with the application server. See "In-Process Topology" on page 5-20 for
more information on this topology.

For the application server:
1. Start the application server in storage-enabled mode. Add the system property

tangosol.coherence.session.localstorage=true to the Java options of your
application server startup script.

2. Deploy the coherence.jar and coherence-web.jar files as shared libraries.

3. Deploy and run your application.

Deploying and Running Applications Out-of-Process
In the out-of-process deployment topology, a stand-alone cache server stores the
session data and the application server is configured as a cache client. See
"Out-of-Process Topology" on page 5-20 for more information on this topology.

The cache server and the application server must use the same cache and session
configuration. This configuration is generated in the
default-session-cache-config.xml file by the Coherence*Web WebInstaller. The
WebInstaller generates the file in the WEB-INF\classes directory of the instrumented
application.

For the cache server:
1. Add the tangosol.coherence.cacheconfig system property to the cache server

startup script to locate the file configuration file. You must also include the system
property tangosol.coherence.session.localstorage=true to enable storage for
the cache server.

2. Add the coherence.jar and coherence-web.jar files to the classpath in the cache
server startup script.

Following is a sample startup script:

java -server -Xms512m -Xmx512m
-cp <Coherence installation dir>/lib/coherence.jar:<Coherence installation
dir>/lib/coherence-web.jar -Dtangosol.coherence.management.remote=true
-Dtangosol.coherence.cacheconfig=default-session-cache-config.xml
-Dtangosol.coherence.session.localstorage=true
com.tangosol.net.DefaultCacheServer

For the application server (cache client):
1. Deploy the coherence.jar and coherence-web.jar files as shared libraries.

Installing Coherence*Web Using the WebInstaller

Using Coherence*Web on Other Application Servers 4-5

2. The default-session-cache-config.xml file should already be present in the
WEB-INF\classes directory of the instrumented application.

By default, the file should specify that local storage is disabled (if you are not sure,
you can either inspect the file to confirm that the local-storage element is set to
false or add the system property
tangosol.coherence.session.localstorage=false to the startup script).

3. Deploy the application to the server.

Migrating to Out-of-Process Topology
If you have been running and testing your application with Coherence*Web
in-process, you can easily migrate to the out-of-process topology. Simply set up your
cache server and application server as described in "Deploying and Running
Applications Out-of-Process" on page 4-4.

Deploying and Running Applications Out-of-Process with Coherence*Extend
The out-of-process with Coherence*Extend topology is similar to the out-of-process
topology except that the communication between the application server tier and the
cache server tier is over Coherence*Extend (TCP/IP). Coherence*Extend consists of
two components: an extend client (or proxy) running outside the cluster and an extend
proxy service running in the cluster hosted by one or more cache servers. See
"Out-of-Process with Coherence*Extend Topology" on page 5-21 for more information
on this topology.

In these deployments, there are three types of participants:

■ Cache servers (storage servers), which are used to store the actual session data in
memory.

■ Web (application) servers, which are the Extend clients in this topology. They are
not members of the cluster; instead, they connect to a proxy node in the cluster
that will issue requests to the cluster on their behalf.

■ Proxy servers, which are storage-disabled members (nodes) of the cluster that
accept and manage TCP/IP connections from Extend clients. Requests that arrive
from clients will be sent into the cluster, and responses will be sent back through
the TCP/IP connections.

For the cache server:
Follow the instructions for configuring the cache server in "Deploying and Running
Applications Out-of-Process" on page 4-4. Also, edit the cache server’s copy of the
default-session-cache-config.xml file to add the system properties
tangosol.coherence.session.proxy=false and
tangosol.coherence.session.localstorage=true.

See "Configure the Cache for Proxy and Storage JVMs" on page 5-22 for more
information and an example of a default-session-cache-config.xml file with these
context parameters.

For the Web tier (application) server:
Follow the instructions for configuring the application server in "Deploying and
Running Applications Out-of-Process" on page 4-4. Also, complete these steps:

1. Ensure that Coherence*Web is configured to use the Optimistic Locking mode.
Optimistic locking is the default locking mechanism for Coherence*Web
(see"Optimistic Locking" on page 5-17).

Coherence*Web WebInstaller Ant Task

4-6 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

2. Edit the application server’s copy of the default-session-cache-config.xml file
to add the proxy JVM host names, IP addresses and ports. To do this, add a
<remote-addresses> section to the file. In most cases, you should include the host
name and IP address, and port of all proxy JVMs for load balancing and failover.

See "Configure the Cache for Web Tier JVMs" on page 5-23 for more information and
an example of a default-session-cache-config.xml file with a <remote-addresses>
section.

For the proxy server:
With a few changes, the proxy server can use the same cache and session configuration
as the application server and the cache server. Edit the
default-session-cache-config.xml file to add these system properties:

■ tangosol.coherence.session.localstorage=false to disable local storage.

■ tangosol.coherence.session.proxy=true to indicate that a proxy service is being
used.

■ tangosol.coherence.session.proxy.localhost to indicate the host name or IP
address of the NIC to which the proxy will bind.

■ tangosol.coherence.session.proxy.localport to indicate a unique port number
to which the proxy will bind.

See "Configure the Cache for Proxy and Storage JVMs" on page 5-22 for more
information and an example of a default-session-cache-config.xml file with these
context parameters.

Enabling Sticky Sessions for Apache Tomcat Servers
If you want to employ sticky sessions for the Apache Tomcat Server, you must
configure the jvmRoute attribute in the server’s server.xml file. You can find more
information on this attribute at this URL:

http://tomcat.apache.org/connectors-doc/reference/workers.html

Decoding URL Session IDs for IBM WebSphere 7.n Servers
If set to true, the coherence-session-urldecode-bycontainer context parameter
allows the container to decode the URL. This context parameter must be set to false if
you are installing Coherence*Web for a Java EE application on release 7.n of the IBM
WebSphere application server. Instead of the WebSphere application server,
Coherence*Web will handle the decoding of session IDs.

The Coherence*Web WebInstaller, when run for the WebSphere 7.n application server
type, will automatically set this parameter to false unless you explicitly set it to true.

Coherence*Web WebInstaller Ant Task
The Coherence*Web WebInstaller Ant task enables you to run the installer from within
your existing Ant build files.

This section contains the following information:

■ Using the Coherence*Web WebInstaller Ant Task

■ Configuring the WebInstaller Ant Task

■ WebInstaller Ant Task Examples

Coherence*Web WebInstaller Ant Task

Using Coherence*Web on Other Application Servers 4-7

Using the Coherence*Web WebInstaller Ant Task
To use the Coherence*Web WebInstaller Ant task, add the task import statement
illustrated in Example 4–1 to your Ant build file. In this example, ${coherence.home}
refers to the root directory of your Coherence installation.

Example 4–1 Task Import Statement for Coherence*Web WebInstaller

<taskdef name="cwi" classname="com.tangosol.coherence.misc.CoherenceWebAntTask">
 <classpath>
 <pathelement location="${coherence.home}/lib/webInstaller.jar"/>
 </classpath>
</taskdef>

The following procedure describes the basic process of installing Coherence*Web into
a Java EE application from an Ant build:

1. Build your Java EE application as you ordinarily would.

2. Run the Coherence*Web Ant task with the operations attribute set to inspect.

3. Make any necessary changes to the generated Coherence*Web XML descriptor file.

4. Run the Coherence*Web Ant task with the operations attribute set to install.

Performing Iterative Development
If you are performing iterative development on your application, such as modifying
JavaServer Pages (JSPs), Servlets, static resources, and so on, use the following
installation process:

1. Run the Coherence*Web Ant task with the operations attribute set to uninstall,
the failonerror attribute set to false, and the descriptor attribute set to the
location of the previously generated Coherence*Web XML descriptor file (from
Step 2 of "Using the Coherence*Web WebInstaller Ant Task").

2. Build your Java EE application as you ordinarily would.

3. Run the Coherence*Web Ant task with the operations attribute set to inspect,
and the install and descriptor attributes set to the location of the previously
generated Coherence*Web XML descriptor file (from Step 2 of "Using the
Coherence*Web WebInstaller Ant Task" on page 4-7).

Changing the Coherence*Web Configuration Settings of a Java EE Application
If you must change the Coherence*Web configuration settings of a Java EE application
that is using Coherence*Web, follow these steps:

1. Run the Coherence*Web Ant task with the operations attribute set to uninstall
and the descriptor attribute set to the location of the Coherence*Web XML
descriptor file for the Java EE application.

2. Change the necessary configuration parameters in the Coherence*Web XML
descriptor file.

3. Run the Coherence*Web Ant task with the operations attribute set to install and
the descriptor attribute set to the location of the modified Coherence*Web XML
descriptor file (from Step 2 of "Using the Coherence*Web WebInstaller Ant Task"
on page 4-7).

Coherence*Web WebInstaller Ant Task

4-8 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Configuring the WebInstaller Ant Task
Table 4–2 describes the attributes that can be used with the Coherence*Web
WebInstaller Ant task.

Table 4–2 Coherence*Web WebInstaller Ant Task Attributes

Attribute Description Required?

app Path to the target Java EE application. This can be a path
to a WAR file, an EAR file, an expanded WAR directory,
or an expanded EAR directory.

Yes, if the operations
attribute is set to any value
other than version.

backup Path to a directory that holds a backup of the original
target Java EE application. This attribute defaults to the
directory that contains the Java EE application.

No

descriptor Path to the Coherence*Web XML descriptor file. This
attribute defaults to the coherence-web.xml file in the
directory that contains the target Java EE application.

No

failonerror Stops the Ant build if the Coherence*Web installer exits
with a status other than 0. The default is true.

No

nowarn Suppresses warning messages. This attribute can be
either true or false. The default is false.

No

operations A comma- or space-separated list of operations to
perform; each operation must be one of inspect,
install, uninstall, or version.

Yes

server The alias of the target Java EE application server. No

touch Touches JSPs and TLDs that are modified by the
Coherence*Web installer. This attribute can be either
true, false, or M/d/y h:mm a' The default is false.

No

verbose Displays verbose output. This attribute can be either
true or false. The default is false.

No

WebInstaller Ant Task Examples
The following list provides sample commands for the WebInstaller Ant task.

■ Inspect the myWebApp.war Web application and generate a Coherence*Web XML
descriptor file called my-coherence-web.xml in the current working directory:

<cwi app="myWebApp.war" operations="inspect"
descriptor="my-coherence-web.xml"/>

■ Install Coherence*Web into the myWebApp.war Web application using the
Coherence*Web XML descriptor file called my-coherence-web.xml found in the
current working directory:

<cwi app="myWebApp.war" operations="install"
descriptor="my-coherence-web.xml"/>

■ Uninstall Coherence*Web from the myWebApp.war Web application:

<cwi app="myWebApp.war" operations="uninstall">

■ Install Coherence*Web into the myWebApp.war Web application located in the
/dev/myWebApp/build directory using the Coherence*Web XML descriptor file
called my-coherence-web.xml found in the /dev/myWebApp/src directory, and
place a backup of the original Web application in the /dev/myWebApp/work
directory:

Testing HTTP Session Management

Using Coherence*Web on Other Application Servers 4-9

<cwi app="/dev/myWebApp/build/myWebApp.war" operations="install"
descriptor="/dev/myWebApp/src/my-coherence-web.xml"
backup="/dev/myWebApp/work"/>

■ Install Coherence*Web into the myWebApp.war Web application located in the
/dev/myWebApp/build directory using the Coherence*Web XML descriptor file
called coherence-web.xml found in the /dev/myWebApp/build directory. If the Web
application has not already been inspected (that is,
/dev/myWebApp/build/coherence-web.xml does not exists); inspect the Web
application before installing Coherence*Web:

<cwi app="/dev/myWebApp/build/myWebApp.war" operations="inspect,install"/>

■ Reinstall Coherence*Web into the myWebApp.war Web application located in the
/dev/myWebApp/build directory, using the Coherence*Web XML descriptor file
called my-coherence-web.xml found in the /dev/myWebApp/src directory:

<cwi app="/dev/myWebApp/build/myWebApp.war" operations="uninstall,install"
descriptor="/dev/myWebApp/src/my-coherence-web.xml"/>

Testing HTTP Session Management
Coherence comes with a lightweight software load balancer; it is intended only for
testing purposes. The load balancer is very easy to use and is very useful when testing
functionality such as session management. Follow these steps to test HTTP session
management with the lightweight load balancer:

1. Start multiple application server processes on one or more server machines, each
running your application on a unique IP address and port combination.

2. Open a command (or shell) window.

3. Change the current directory to the Coherence library directory (%COHERENCE_
HOME%\lib on Windows and $COHERENCE_HOME/lib on UNIX).

4. Ensure that paths are configured so that Java commands will run.

5. Start the software load balancer with the following command lines (each of these
command lines makes the application available on the default HTTP port 80).

For example, to test load balancing locally on one machine with two application
server instances on ports 7001 and 7002:

java -jar coherence-loadbalancer.jar localhost:80 localhost:7001 localhost:7002

To run the load balancer locally on a machine named server1 that load balances to
port 7001 on server1, server2, and server3:

java -jar coherence-loadbalancer.jar server1:80 server1:7001 server2:7001
server3:7001

Assuming that you use the preceding command line, an application that
previously was accessed with the URL http://server1:7001/my.jsp would now
be accessed with the URL http://server1:80/my.jsp or just
http://server1/my.jsp.

Note: Ensure that your application uses only relative redirections or
the address of the load balancer.

Table 4–3 describes the command-line options for the load balancer:

Table 4–3 Load Balancer Command-Line Options

Option Description

backlog Sets the TCP/ IP accept backlog option to the specified value, for
example: -backlog=64

random Specifies the use of a random load-balancing algorithm (default).

roundrobin Specifies the use of a round-robin load-balancing algorithm

threads Uses the specified number of request or response thread pairs (so the
total number of additional daemon threads will be two times the
specified value), for example: -threads=64.

How the Coherence*Web WebInstaller Instruments a Java EE Application

4-10 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

How the Coherence*Web WebInstaller Instruments a Java EE Application
During the inspection step, the Coherence*Web WebInstaller performs the following
tasks:

1. Generates a template coherence-web.xml configuration file that contains basic
information about the application and target Web container along with a set of
default Coherence*Web configuration context parameters appropriate for the
target Web container. See Appendix A, "Coherence*Web Context Parameters" for
descriptions of all possible parameters.

The WebInstaller sets the servlet container to start in storage-disabled mode (that
is, it sets tangosol.coherence.session.localstorage to false).

If an existing coherence-web.xml configuration file exists (for example, from a
previous run of the Coherence*Web WebInstaller), the context parameters in the
existing file are merged with those in the generated template.

2. Enumerates the JSP from each Web application in the target Java EE application
and adds information about each JSP to the coherence-web.xml configuration file.

3. Enumerates the TLDs from each Web application in the target Java EE application
and adds information about each TLD to the coherence-web.xml configuration
file.

During the installation step, the Coherence*Web WebInstaller performs the following
tasks:

1. Creates a backup of the original Java EE application so that it can be restored
during the uninstallation step.

2. Adds the Coherence*Web configuration context parameters generated in Step 1 of
the inspection step to the web.xml descriptor file of each Web application
contained in the target Java EE application.

3. Unregisters any application-specific ServletContextListener,
ServletContextAttributeListener, ServletRequestListener,
ServletRequestAttributeListener, HttpSessionListener, and
HttpSessionAttributeListener classes (including those registered by TLDs) from
each Web application.

4. Registers a Coherence*Web ServletContextListener class in each web.xml
descriptor file. At run time, the Coherence*Web ServletContextListener class
propagates each ServletContextEvent event to each application-specific
ServletContextListener listener.

5. Registers a Coherence*Web ServletContextAttributeListener listener in each
web.xml descriptor file. At run time, the Coherence*Web
ServletContextAttributeListener propagates each

Preventing Cross-Site Scripting Attacks

Using Coherence*Web on Other Application Servers 4-11

ServletContextAttributeEvent event to each application-specific
ServletContextAttributeListener listener.

6. Wraps each application-specific Servlet declared in each web.xml descriptor file
with a Coherence*Web SessionServlet. At run time, each Coherence*Web
SessionServlet delegates to the wrapped Servlet.

7. Adds the following directive to each JSP enumerated in Step 2 of the inspection
step:

<%@ page extends="com.tangosol.coherence.servlet.api22.JspServlet" %>

During the uninstallation step, the Coherence*Web WebInstaller replaces the
instrumented Java EE application with the backup of the original version created in
Step (1) of the installation process.

Installing Coherence*Web into Applications Using Java EE Security
To install Coherence*Web into an application that uses Java EE security, follow these
additional steps during installation:

1. Enable Coherence*Web session cookies.

See the coherence-session-cookies-enabled configuration element in Table A–1
for additional details.

2. Change the Coherence*Web session cookie name to a name that is different from
the one used by the target Web container.

By default, most containers use JSESSIONID for the session cookie name, so a good
choice for the Coherence*Web session cookie name is CSESSIONID. See the
coherence-session-cookie-name configuration element in Table A–1 for
additional details.

3. Enable session replication for the target Web container.

If session replication is not enabled, or the container does not support a form of
session replication, then you will be forced to re-authenticate to the Web
application during failover. See your Web container's documentation for
instructions on enabling session replication.

This configuration causes two sessions to be associated with a given authenticated
user:

■ A Coherence*Web session that contains all session data created by the Web
application

■ A session created by the Web container during authentication that stores only
information necessary to identify the user

Preventing Cross-Site Scripting Attacks
Use the coherence-session-cookie-httponly context parameter to append the
HttpOnly attribute to the session cookie. The HttpOnly attribute is used to help prevent
attacks such as cross-site scripting, since it does not allow the cookie to be accessed by
a client-side script such as JavaScript. Note that not all browsers support this
functionality. This context parameter is available for instrumented applications only.

Preventing Cross-Site Scripting Attacks

4-12 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

5

Coherence*Web Session Management Features 5-1

5Coherence*Web Session Management
Features

[6] This chapter describes the features of Coherence*Web, including session models,
session scoping, session locking, deployment topologies, and logging. You can
configure Coherence*Web in many ways to meet the demands of your environment.
Consequently, you might have to change some default configuration options. This
chapter provides an in-depth look at the features that Coherence*Web supports so that
you can make the appropriate configuration and deployment decisions.

■ Session Models, which describes how Coherence*Web stores session state

■ Session and Session Attribute Scoping, which allows fine-grained control over
how both session data and session attributes are scoped (or shared) across
application boundaries

■ Cluster Node Isolation, which determines the number of Coherence nodes that are
created within an application server JVM and where the Coherence library is
deployed in the application’s classpath

■ Session Locking Modes, which determines how applications will obtain
concurrent access to HTTP sessions

■ Deployment Topologies, which determines how the session data is stored and
managed between the cache servers and application servers

■ Accessing Sessions with Lazy Acquisition, which describes how to save processing
time and power by directing Coherence*Web to acquire sessions only when the
servlet or filter attempts to access it

■ Overriding the Distribution of HTTP Sessions and Attributes, which describes
how you can control whether a session or its attributes remain local (stored on the
originating server's heap and accessible only by that server) or distributed (stored
within the Coherence grid, and thus, accessible to other server JVMs)

■ Detecting Changed Attribute Values, which describes how Coherence*Web tracks
attributes retrieved from the session that may have changed during the course of
processing a request

■ Saving Non-Serializable Attributes Locally, which describes how Coherence*Web
can handle session attributes that are not serializable.

■ Securing Coherence*Web Deployments, which describes how to prevent
unauthorized Coherence TCMP cluster members from accessing HTTP session
cache servers by enabling Secure Socket Layer (SSL).

■ Customizing the Name of the Session Cache Configuration File, which describes
how you can choose a custom name for your session cache configuration file.

Session Models

5-2 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

■ Configuring Logging for Coherence*Web, which describes the types of logging
which are supported for Coherence*Web.

■ Getting Concurrent Access to the Same Session Instance, which describes how you
can use a cache delegator to ensure that the local cache should be used for storing
and retrieving the session instance before attempting to use the distributed cache.

Session Models
A session model describes how Coherence*Web stores the session state in Coherence.
Session data is managed by an HttpSessionModel object while the session collection in
a Web application is managed by an HttpSessionCollection object. You must
configure only the collection type in the web.xml file—the model is implicitly derived
from the collection type. Coherence*Web includes these different session model
implementations:

■ Monolithic Model, which stores all session state as a single entity, serializing and
deserializing all attributes as a single operation

■ Traditional Model, which stores all session state as a single entity but serializes
and deserializes attributes individually

■ Split Model, which extends the Traditional Model, but separates the larger session
attributes into independent physical entities

These sections provide additional information on session models:

■ Session Model Recommendations, provides recommendations on which session
model to choose for your applications

■ Configuring a Session Model, describes how to change the session model by using
a system property or a context parameter

■ Sharing Data in a Clustered Environment, describes how data is shared between
and within JVMs

■ Scalability and Performance. describes the impact of session models on scalability
and performance

Note: In general, Web applications that are part of the same
Coherence cluster must use the same session model type. Inconsistent
configurations could result in deserialization errors.

Figure 5–1 illustrates the three session models.

Session Models

Coherence*Web Session Management Features 5-3

Figure 5–1 Traditional, Monolithic, and Split Session Models

Monolithic Model
The Monolithic model is represented by the MonolithicHttpSessionModel and
MonolithicHttpSessionCollection objects. These are similar to the Traditional
model, except that they solve the shared object issue by serializing and deserializing
all attributes into a single object stream. As a result, the Monolithic model often does
not perform as well as the Traditional model.

Figure 5–2 illustrates the relationship between the logical representation of data and its
physical representation in the session storage cache. In its logical representation
session data consists of metadata, and various attributes. In its physical representation
in the session storage cache, the metadata and attributes are serialized into a single
stream. A session ID is associated with the metadata and attributes.

Session Models

5-4 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Figure 5–2 Monolithic Session Model

Traditional Model
The Traditional model is represented by the TraditionalHttpSessionModel and
TraditionalHttpSessionCollection objects. The
TraditionalHttpSessionCollection object stores an HTTP session object in a single
cache, but serializes each attribute independently.

This model is suggested for applications with relatively small HTTP session objects (10
KB or less) that do not have issues with object sharing between session attributes.
Object sharing between session attributes occurs when multiple attributes of a session
have references to the same exact object, meaning that separate serialization and
deserialization of those attributes cause multiple instances of that shared object to exist
when the HTTP session is later deserialized.

Figure 5–3 illustrates the relationship between the logical representation of data and its
physical representation in the session storage cache. In its logical representation
session data consists of metadata, and various attributes. In its physical representation
in the session storage cache, the metadata and attributes are converted to binaries, and
a session ID is associated with them. Note that the attributes are serialized
individually instead of as a single binary BLOB (such as in the Monolithic case).

Session Models

Coherence*Web Session Management Features 5-5

Figure 5–3 Traditional Session Model

Split Model
The Split model is represented by the SplitHttpSessionModel and
SplitHttpSessionCollection objects. SplitHttpSessionCollection is the default
used by Coherence*Web.

These models store the core HTTP session metadata and all of the small session
attributes in the same manner as the Traditional model, thus ensuring high
performance by keeping that block of binary session data small. All large attributes are
split into separate cache entries to be managed individually, thus supporting very
large HTTP session objects without unduly increasing the amount of data that must be
accessed and updated within the cluster for each request. In other words, only the
large attributes that are modified within a particular request incur any network
overhead for their updates, and (because it uses near caching) the Split model
generally does not incur any network overhead for accessing either the core HTTP
session data or any of the session attributes.

Session Models

5-6 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Figure 5–4 illustrates the relationship between the logical representation of data and its
physical representation in the session storage cache. In this model, large objects are
stored as separate cache entries with their own session ID.

Figure 5–4 Split Session Model

Session Model Recommendations
The following are recommendations on which session model to choose for your
applications:

■ The Split model is the recommended session model for most applications.

Session Models

Coherence*Web Session Management Features 5-7

■ The Traditional model might be more optimal for applications that are known to
have small HTTP session objects.

■ The Monolithic model is designed to solve a specific class of problems related to
multiple session attributes that have references to the same shared object, and that
must maintain that object as a shared object.

Note: See Appendix A, "Coherence*Web Context Parameters" for
descriptions of the parameters used to configure session models.

Configuring a Session Model
By default, Coherence*Web uses the split session model, where large attributes are
split into separate cache entries to be managed individually. You can change the
session model used by Coherence*Web by configuring the
-Dcoherence.sessioncollection.class system property or by setting the equivalent
coherence-sessioncollection-class context parameter in the Web application’s
web.xml file. As the value of the context parameter (or system property), use the
fully-qualified class name of the HttpSessionCollection implementation.

■ com.tangosol.coherence.servlet.SplitHttpSessionCollection (default)
configures the Split model.

■ com.tangosol.coherence.servlet.MonolithicHttpSessionCollection
configures the Monolithic model.

■ com.tangosol.coherence.servlet.TraditionalHttpSessionCollection
configures the Traditional model.

Example 5–1 illustrates a web.xml entry to configure the Monolithic model.

Example 5–1 Configuring the Session Model

...
<context-param>
 <param-name>coherence-sessioncollection-class</param-name>

<param-value>com.tangosol.coherence.servlet.MonolithicHttpSessionCollection</param
-value>
</context-param>
...

Sharing Data in a Clustered Environment
Clustering can boost scalability and availability for applications. Clustering solutions
such as Coherence*Web solve many problems for developers, but successful
developers must be aware of the limitations of the underlying technology, and how to
manage those limitations. Understanding what the platform provides, and what users
require, gives developers the ability to eliminate the gap between the two.

Session attributes must be serializable if they are to be processed across multiple JVMs,
which is a requirement for clustering. It is possible to make some fields of a session
attribute non-clustered by declaring those fields as transient. While this eliminates the
requirement for all fields of the session attributes to be serializable, it also means that
these attributes are not fully replicated to the backup server(s). Developers who follow
this approach should be very careful to ensure that their applications are capable of
operating in a consistent manner even if these attribute fields are lost. In most cases,
this approach ends up being more difficult than simply converting all session

Session Models

5-8 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

attributes to serializable objects. However, it can be a useful pattern when very large
amounts of user-specific data are cached in a session.

The Java EE Servlet specification (versions 2.2, 2.3, and 2.4) states that the servlet
context should not be shared across the cluster. Non-clustered applications that rely on
the servlet context as a singleton data structure have porting issues when moving to a
clustered environment.

A more subtle issue that arises in clustered environments is the issue of object sharing.
In a non-clustered application, if two session attributes reference a common object,
changes to the shared object are visible as part of both session attributes. However, this
is not the case in most clustered applications. To avoid unnecessary use of compute
resources, most session management implementations serialize and deserialize session
attributes individually on demand. Coherence*Web (Traditional and Split session
models) normally operates in this manner. If two session attributes that reference a
common object are separately deserialized, the shared common object is instantiated
twice. For applications that depend on shared object behavior and cannot be readily
corrected, Coherence*Web provides the option of a Monolithic session model, which
serializes and deserializes the entire session object as a single operation. This provides
compatibility for applications that were not originally designed with clustering in
mind.

Many projects require sharing session data between different Web applications. The
challenge that arises is that each Web application typically has its own class loader.
Consequently, objects cannot readily be shared between separate Web applications.
There are two general methods used as a work around, each with its own set of
trade-offs.

■ Place common classes in the Java CLASSPATH, allowing multiple applications to
share instances of those classes at the expense of a slightly more complicated
configuration.

■ Use Coherence*Web to share session data across class loader boundaries. Each
Web application is treated as a separate cluster member, even if they run within
the same JVM. This approach provides looser coupling between Web applications
(assuming serialized classes share a common serial Version UID), but suffers from
a performance impact because objects must be serialized-deserialized for transfer
between cluster members.

Scalability and Performance
Moving to a clustered environment makes session size a critical consideration.
Memory usage is a factor regardless of whether an application is clustered or not, but
clustered applications must also consider the increased CPU and network load that
larger sessions introduce. While non-clustered applications using in-memory sessions
are not required to serialize-deserialize session state, clustered applications must do
this every time session state is updated. Serializing session state and then transmitting
it over the network becomes a critical factor in application performance. For this
reason and others, a server should generally limit session size to no more than a few
kilobytes.

While the Traditional and Monolithic session models for Coherence*Web have the
same limiting factor, the Split session model was explicitly designed to efficiently
support large HTTP sessions. Using a single clustered cache entry to contain all of the
small session attributes means that network traffic is minimized when accessing and
updating the session or any of its smaller attributes. Independently deserializing each
attribute means that CPU usage is minimized. By splitting out larger session attributes
into separate clustered cache entries, Coherence*Web ensures that the application only

Session Models

Coherence*Web Session Management Features 5-9

pays the cost for those attributes when they are actually accessed or updated.
Additionally, because Coherence*Web leverages the data management features of
Coherence, all of the underlying features are available for managing session attributes,
such as near caching, NIO buffer caching, and disk-based overflow.

Figure 5–5 illustrates performance as a function of session size. Each session consists of
ten 10-character Strings and from zero to four 10,000-character Strings. Each HTTP
request reads a single small attribute and a single large attribute (for cases where there
are any in the session), and 50 percent of requests update those attributes. Tests were
performed on a two-server cluster. Note the similar performance between the
Traditional and Monolithic models; serializing-deserializing Strings consumes
minimal CPU resources, so there is little performance gain from deserializing only the
attributes that are actually used. The performance gain of the Split model increases to
over 37:1 by the time session size reaches one megabyte (100 large Strings). In a
clustered environment, it is particularly true that application requests that access only
essential data have the opportunity to scale and perform better; this is part of the
reason that sessions should be kept to a reasonable size.

Figure 5–5 Performance as a Function of Session Size

Another optimization is the use of transient data members in session attribute classes.
Because Java serialization routines ignore transient fields, they provide a very
convenient means of controlling whether session attributes are clustered or isolated to
a single cluster member. These are useful in situations where data can be "lazy loaded"
from other data sources (and therefore recalculated during a server failover process),
and also in scenarios where absolute reliability is not critical. If an application can
withstand the loss of a portion of its session state with zero (or acceptably minimal)
impact on the user, then the performance benefit may be worth considering. In a
similar vein, it is not uncommon for high-scale applications to treat session loss as a
session timeout, requiring the user to log back in to the application (which has the
implicit benefit of properly setting user expectations regarding the state of their
application session).

Sticky load balancing plays a critical role because session state is not globally visible
across the cluster. For high-scale clusters, user requests normally enter the application
tier through a set of stateless load balancers, which redistribute (more or less
randomly) these requests across a set of sticky load balancers, such as Microsoft IIS or
Apache HTTP Server. These sticky load balancers are responsible for the more
computationally intense act of parsing the HTTP headers to determine which server
instance is processing the request (based on the server ID specified by the session
cookie). If requests are misrouted for any reason, session integrity is lost. For example,
some load balancers may not parse HTTP headers for requests with large amounts of

Session and Session Attribute Scoping

5-10 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

POST data (for example, more than 64KB), so these requests are not routed to the
appropriate server instance. Other causes of routing failure include corrupted or
malformed server IDs in the session cookie. Most of these issues can be handled with
proper selection of a load balancer and designing tolerance into the application
whenever possible (for example, ensuring that all large POST requests avoid accessing
or modifying session state).

Sticky load balancing aids the performance of Coherence*Web but is not required.
Because Coherence*Web is built on the Coherence data management platform, all
session data is globally visible across the cluster. A typical Coherence*Web
deployment places session data in a near cache topology, which uses a partitioned
cache to manage huge amounts of data in a scalable and fault-tolerant manner,
combined with local caches in each application server JVM to provide instant access to
commonly used session state. While a sticky load balancer is not required when
Coherence*Web is used, there are two key benefits to using one. Due to the use of near
cache technology, read access to session attributes is instant if user requests are
consistently routed to the same server, as using the local cache avoids the cost of
deserialization and network transfer of session attributes. Additionally, sticky load
balancing allows Coherence to manage concurrency locally, transferring session locks
only when a user request is rebalanced to another server.

Session and Session Attribute Scoping
Coherence*Web allows fine-grained control over how both session data and session
attributes are scoped (or shared) across application boundaries.

Session Scoping
Coherence*Web allows session data to be shared by different Web applications
deployed in the same or different Web containers. To do so, you must correctly
configure the session cookie context parameters and make the classes of objects stored
in session attributes available to each Web application.

If you are using cookies to store session IDs (that is, you are not using URL rewriting),
you must set the session cookie path to a common context path for all Web
applications that share session data. For example, to share session data between two
Web applications registered under the context paths /web/HRPortal and /web/InWeb,
you should set the coherence-session-cookie-path parameter to /web. On the other
hand, if the two Web applications are registered under the context paths /HRPortal
and /InWeb, you should set the coherence-session-cookie-path parameter to a slash
(/).

If the Web applications that you would like to share session data are deployed on
different Web containers running on different machines (that are not behind a common
load balancer), you must also configure the session cookie domain to a domain shared
by the machines. For example, to share session data between two Web applications
running on server1.mydomain.com and server2.mydomain.com, you must set the
coherence-session-cookie-domain context parameter to
.mydomain.com.

To correctly serialize or deserialize objects stored in shared sessions, the classes of all
objects stored in session attributes must be available to Web applications that share
session data.

Note: For advanced use cases where EAR cluster node-scoping or
application server JVM cluster scoping is employed and you do not
want session data shared across individual Web applications, see
"Preventing Web Applications from Sharing Session Data".

Session and Session Attribute Scoping

Coherence*Web Session Management Features 5-11

Preventing Web Applications from Sharing Session Data
Sometimes you might want to explicitly prevent HTTP session data from being shared
by different Java EE applications that participate in the same Coherence cluster. For
example, assume you have two applications, HRPortal and InWeb, that share cached
data in their Enterprise JavaBeans (EJB) tiers but use different session data. In this case,
it is desirable for both applications to be part of the same Coherence cluster, but
undesirable for both applications to use the same clustered service for session data.
One way to do this is to use the ApplicationScopeController interface to define the
scope of an application’s attributes. "Session Attribute Scoping" on page 5-12 describes
this technique. Another way is to specify a unique session cache service name for each
application.

Follow these steps to specify a unique session cache service name for each application:

1. Locate the <service-name/> elements in each
default-session-cache-config.xml file found in your application.

2. Set the elements to a unique value for each application.

This forces each application to use a separate clustered service for session data.

3. Include the modified default-session-cache-config.xml file with the
application.

Example 5–2 illustrates a sample default-session-cache-config.xml file for an
HRPortal application. To prevent the HRPortal application from sharing session data
with the InWeb application, rename the <service-name> element for the replicated
scheme to ReplicationSessionsMiscHRP. Rename the <service-name> element for the
distributed schemes to DistributedSessionsHRP.

Example 5–2 Configuration to Prevent Applications from Sharing Session Data

<replicated-scheme>
 <scheme-name>default-replicated</scheme-name>
 <service-name>ReplicatedSessionsMisc</service-name> // rename this to
ReplicatedSessionsMiscHRP
 <backing-map-scheme>
 <class-scheme>
 <scheme-ref>default-backing-map</scheme-ref>
 </class-scheme>
 </backing-map-scheme>
</replicated-scheme>

<distributed-scheme>
 <scheme-name>session-distributed</scheme-name>
 <service-name>DistributedSessions</service-name> // rename this to
DistributedSessionsHRP
 <lease-granularity>member</lease-granularity>
 <backing-map-scheme>
 <class-scheme>
 <scheme-ref>default-backing-map</scheme-ref>
 </class-scheme>
 </backing-map-scheme>
</distributed-scheme>

Session and Session Attribute Scoping

5-12 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

<distributed-scheme>
 <scheme-name>session-certificate</scheme-name>
 <service-name>DistributedSessions</service-name> // rename this to
DistributedSessionsHRP
 <lease-granularity>member</lease-granularity>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>session-certificate-autoexpiring</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
</distributed-scheme>

Working with Multiple Cache Configurations
If you are working with two or more applications running under Coherence*Web, then
they could have multiple different cache configurations. In this case, the cache
configuration on the cache server must contain the union of these cache configurations
regardless of whether you run in storage-enabled or storage-disabled mode. This will
allow the applications to be supported in the same cache cluster.

Keeping Session Cookies Separate
If you are using cookies to store session IDs, you must ensure that session cookies
created by one application are not propagated to another application. To do this, you
must set each application's session cookie domain and path in their web.xml file. To
prevent cookies from being propagated, ensure that no two applications share the
same context path.

For example, assume you have two Web applications registered under the context
paths /web/HRPortal and /web/InWeb. To prevent the Web applications from sharing
session data through cookies, set the cookie path to /web/HRPortal in one application,
and set the cookie path to /web/InWeb in the other application.

If your applications are deployed on different Web containers running on separate
machines, then you can configure the cookie domain to ensure that they are not in the
same domain.

For example, assume you have two Web applications running on
server1.mydomain.com and server2.mydomain.com. To prevent session cookies from
being shared between them, set the cookie domain in one application to
server1.mydomain.com, and set the cookie domain in the other application to
server2.mydomain.com.

Session Attribute Scoping
In the case where sessions are shared across Web applications there are many instances
where the application might scope individual session attributes so that they are either
globally visible (that is, all Web applications can see and modify these attributes) or
scoped to an individual Web application (that is, not visible to any instance of another
application).

Coherence*Web provides the ability to control this behavior by using the
AttributeScopeController interface. This optional interface can selectively scope
attributes in cases when a session might be shared across multiple applications. This
allows different applications to potentially use the same attribute names for the
application-scope state without accidentally reading, updating, or removing other
applications' attributes. In addition to having application-scoped information in the

Cluster Node Isolation

Coherence*Web Session Management Features 5-13

session, this interface allows the session to contain global (unscoped) information that
can be read, updated, and removed by any of the applications that shares the session.

Two implementations of the AttributeScopeController interface are available:
ApplicationScopeController and GlobalScopeController. The
GlobalScopeController implementation does not scope attributes, while
ApplicationScopeController scopes all attributes to the application by prefixing the
name of the application to all attribute names.

Use the coherence-application-name context parameter to specify the name of the
application (and the Web module in which the application appears). The
ApplicationScopeController interface will use the name of the application to scope
the attributes. If you do not configure this parameter, then Coherence*Web uses the
name of the class loader instead. For more information, see the description of
coherence-application-name in Table 2–1.

Note: After a configured AttributeScopeController
implementation is created, it is initialized with the name of the Web
application, which it can use to qualify attribute names. Use the
coherence-application-name context parameter to configure the
name of your Web application.

Sharing Session Information Between Multiple Applications
Coherence*Web allows multiple applications to share the same session object. To do
this, the session attributes must be visible to all applications. You must also specify
which URLs served by WebLogic Server will be able to receive cookies.

To allow the applications to share and modify the session attributes, reference the
GlobalScopeController
(com.tangosol.coherence.servlet.AbstractHttpSessionCollection$GlobalScopeC
ontroller) interface as the value of the coherence-scopecontroller-class context
parameter in the web.xml file. GlobalScopeController is an implementation of the
com.tangosol.coherence.servlet.HttpSessionCollection$AttributeScopeControl
ler interface that allows individual session attributes to be globally visible.

Example 5–3 illustrates the GlobalScopeController interface specified in the web.xml
file.

Example 5–3 GlobalScopeController Specified in the web.xml File

<?xml version="1.0" encoding="UTF-8"?>
 <web-app>
 ...
 <context-param>
 <param-name>coherence-scopecontroller-class</param-name>
 <param-value>com.tangosol.coherence.servlet.
AbstractHttpSessionCollection$GlobalScopeController</param-value>
 </context-param>
 ...
 </web-app>

Cluster Node Isolation
There are several different ways in which you can deploy Coherence*Web. One of the
things to consider when deciding on a deployment option is cluster node isolation.
Cluster node isolation considers:

Cluster Node Isolation

5-14 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

■ The number of Coherence nodes that are created within an application server JVM

■ Where the Coherence library is deployed

Applications can be application server-scoped, EAR-scoped, or WAR-scoped. This
section describes these considerations. For detailed information about the XML
configuration for each of these options, see "Configure Coherence*Web Storage Mode"
on page 2-11.

Application Server-Scoped Cluster Nodes
With this configuration, all deployed applications in a container using Coherence*Web
become part of one Coherence node. This configuration produces the smallest number
of Coherence nodes in the cluster (one for each Web container JVM) and, because the
Coherence library (coherence.jar) is deployed in the container's class path, only one
copy of the Coherence classes is loaded into the JVM. This minimizes the use of
resources. On the other hand, because all applications are using the same cluster node,
all applications are affected if one application malfunctions.

Figure 5–6 illustrates an application server-scoped cluster with two cluster nodes
(application server instances). Because Coherence*Web has been deployed to each
instance’s class path, each instance can be considered to be a Coherence node. Each
node contains two EAR files; each EAR file contains two WAR files. All of the
application running in each instance share the same Coherence library and classes.

Figure 5–6 Application Server-Scoped Cluster

For WebLogic Server, all Coherence*Web-enabled applications have application server
scope. "Configure Coherence*Web Storage Mode" on page 2-11 describes the XML
configuration requirements for application server-scoped cluster nodes for WebLogic
Server.

All Coherence*Web-enabled applications have application server scope. Application
server scope is not available for GlassFish Server.

Note: Consider the use of the application server-scoped cluster
configuration very carefully. Do not use it in environments where
application interaction is unknown or unpredictable.

An example of such an environment might be a deployment where
multiple application teams are deploying applications written
independently, without carefully coordinating and enforcing their
conventions and naming standards. With this configuration, all
applications are part of the same cluster—the likelihood of collisions
between namespaces for caches, services, and other configuration
settings is quite high and could lead to unexpected results.

For these reasons, Oracle Coherence strongly recommends that you
use EAR-scoped and WAR-scoped cluster node configurations. If you
are in doubt regarding which deployment topology to choose, or if
this warning applies to your deployment, then do not choose the
application server-scoped cluster node configuration.

Cluster Node Isolation

Coherence*Web Session Management Features 5-15

EAR-Scoped Cluster Nodes
With this configuration, all deployed applications within each EAR file become part of
one Coherence node. This configuration produces one Coherence node for each
deployed EAR file that uses Coherence*Web. Because the Coherence library
(coherence.jar) is deployed in the application's classpath, only one copy of the
Coherence classes is loaded for each EAR file. Since all Web applications in the EAR
file use the same cluster node, all Web applications in the EAR file are affected if one of
the Web applications malfunctions.

Figure 5–7 illustrates four EAR-scoped cluster nodes. Since Coherence*Web has been
deployed to each EAR file, each EAR file becomes a cluster node. All applications
running inside each EAR file have access to the same Coherence libraries and classes.

Figure 5–7 EAR-Scoped Cluster

EAR-scoped cluster nodes reduce the deployment effort because no changes to the
application server class path are required. This option is also ideal if you plan to
deploy only one EAR file to an application server.

Cluster Node Isolation

5-16 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

For more information on XML configuration requirements for EAR-scoped cluster
nodes, see "Configuring EAR-Scoped Cluster Nodes" on page 3-7.

Note: This configuration is not available for Coherence*Web
applications running on the WebLogic Server platform. Applications
running on the WebLogic Server platform can be only application
server-scoped.

WAR-Scoped Cluster Nodes
With this configuration, each deployed Web application becomes its own Coherence
node. This configuration produces the largest number of Coherence nodes in the
cluster (one for each deployed WAR file that uses Coherence*Web) and because the
Coherence library (coherence.jar) is deployed in the Web application's class path,
there will be as many copies of the Coherence classes loaded as there are deployed
WAR files. This results in the largest resource utilization of the three options. However,
because each deployed Web application is its own cluster node, Web applications are
completely isolated from other potentially malfunctioning Web applications.

WAR scoped cluster nodes reduce the deployment effort because no changes to the
application server class path are required. This option is also ideal if you plan to
deploy only one WAR file to an application server.

Figure 5–8 illustrates two different configurations of WAR files in application servers.
Because each WAR file contains a copy of Coherence*Web (and Coherence), it can be
considered a cluster node.

Figure 5–8 WAR-Scoped Clusters

For more information on XML configuration requirements for WAR-scoped cluster
nodes, see "Configuring WAR-Scoped Cluster Nodes" on page 3-8.

Note: This configuration is not available for Coherence*Web
applications running on the WebLogic Server platform. Applications
running on the WebLogic Server platform can be only application
server-scoped.

Session Locking Modes

Coherence*Web Session Management Features 5-17

Session Locking Modes
Oracle Coherence provides the following configuration options for concurrent access
to HTTP sessions.

■ Optimistic Locking, which allows concurrent access to a session by multiple
threads in a single member or multiple members, while prohibiting concurrent
modification.

■ Last-Write-Wins Locking, which is a variation of Optimistic Locking. This allows
concurrent access to a session by multiple threads in a single member or multiple
members. In this case, the last write is saved. This is the default locking mode.

■ Member Locking, which allows concurrent access and modification of a session by
multiple threads in the same member, while prohibiting concurrent access by
threads in different members.

■ Application Locking, which allows concurrent access and modification of a session
by multiple threads in the same Web application instance, while prohibiting
concurrent access by threads in different Web application instances.

■ Thread Locking, which prohibits concurrent access and modification of a session
by multiple threads in a single member.

Note: Generally, Web applications that are part of the same cluster
must use the same locking mode and sticky session optimizations
setting. Inconsistent configurations could result in deadlock.

You can specify the session locking mode used by your Web applications by setting the
coherence-session-locking-mode context parameter. Table 5–1 lists the context
parameter values and the corresponding session locking modes they specify. For more
information about the coherence-session-locking-mode context parameter, see the
following sections and Appendix A, "Coherence*Web Context Parameters."

Table 5–1 Summary of coherence-session-locking-mode Context Parameter Values

Locking Mode coherence-session-locking-mode Values

Optimistic Locking optimistic

Last-Write-Wins Locking none

Member Locking member

Application Locking app

Thread Locking thread

Optimistic Locking
Optimistic Locking mode allows multiple Web container threads in one or more
members to access the same session concurrently. This setting does not use explicit
locking; rather an optimistic approach is used to detect and prevent concurrent
updates upon completion of an HTTP request that modifies the session. The exception

Session Locking Modes

5-18 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

ConcurrentModificationException is thrown when the session is flushed to the
cache, which is after the Servlet request has finished processing. To view the exception,
set the weblogic.debug.DebugHttpSessions system property to true in the container's
startup script (for example: -Dweblogic.debug.DebugHttpSessions=true).

The Optimistic Locking mode can be configured by setting the
coherence-session-locking-mode parameter to optimistic.

Last-Write-Wins Locking
Coherence*Web is configured with Last-Write Wins Locking by default.
Last-Write-Wins Locking mode is a variation on the Optimistic Locking mode. It
allows multiple Web container threads in one or more members to access the same
session concurrently. This setting does not use explicit locking; it does not prevent
concurrent updates upon completion of an HTTP request that modifies the session.
Instead, the last write, that is, the last modification made, is allowed to modify the
session.

The Last-Write-Wins Locking mode can be configured by setting the
coherence-session-locking-mode parameter to none. This value will allow
concurrent modification to sessions with the last update being applied.

Member Locking
The Member Locking mode allows multiple Web container threads in the same cluster
node to access and modify the same session concurrently, but prohibits concurrent
access by threads in different members. This is accomplished by acquiring a
member-level lock for an HTTP session when the session is acquired. The lock is
released on completion of the of the HTTP request. For more information about
member-level locks, see <lease-granularity> in the "distributed-scheme" section of
Oracle Fusion Middleware Developing Applications with Oracle Coherence Oracle.

The Member Locking mode can be configured by setting the
coherence-session-locking-mode parameter to member.

Application Locking
The Application Locking mode restricts session access (and modification) to threads in
a single Web application instance at a time. This is accomplished by acquiring both a
member-level and application-level lock for an HTTP session when the session is
acquired, and releasing both locks upon completion of the HTTP request. For more
information about member-level locks, see <lease-granularity> in the
"distributed-scheme" section of Oracle Fusion Middleware Developing Applications with
Oracle Coherence.

The Application Locking mode can be configured by setting the
coherence-session-locking-mode parameter to app.

Thread Locking
Thread Locking mode restricts session access (and modification) to a single thread in a
single member at a time. This is accomplished by acquiring both a member level,
application-level, and thread-level lock for an HTTP session when the session is
acquired, and releasing all three locks upon completion of the request. For more
information about member-level locks, see <lease-granularity> in the
"distributed-scheme" section of the Oracle Fusion Middleware Developing Applications
with Oracle Coherence.

Session Locking Modes

Coherence*Web Session Management Features 5-19

The Thread Locking mode can be configured by setting the
coherence-session-locking-mode parameter to thread.

Troubleshooting Locking in HTTP Sessions
Enabling Member, Application, or Thread Locking for HTTP session access indicates
that Coherence*Web will acquire a clusterwide lock for every HTTP request that
requires access to a session. By default, threads that attempt to access a locked session
(locked by a thread in a different member) block access until the lock can be acquired.
If you want to enable a timeout for lock acquisition, configure it with the
coherence-session-get-lock-timeout context parameter, for example:

...
<context-param>
 <param-name>coherence-session-get-lock-timeout</param-name>
 <param-value>30</param-value>
 </context-param>
...

Many Web applications do not have such a strict concurrency requirement. For these
applications, using the Optimistic Locking mode has the following advantages:

■ The overhead of obtaining and releasing clusterwide locks for every HTTP request
is eliminated.

■ Requests can be load-balanced away from failing or unresponsive members to
active members without requiring the unresponsive member to release the
clusterwide lock on the session.

Coherence*Web provides a diagnostic invocation service that is executed when a
member cannot acquire the cluster lock for a session. You can control if this service is
enabled by setting the coherence-session-log-threads-holding-lock context
parameter. If this context parameter is set to true (default), then the invocation service
will cause the member that has ownership of the session to log the stack trace of the
threads that are currently holding the lock.

Note that the coherence-session-log-threads-holding-lock context parameter is
available only when the coherence-sticky-sessions context parameter is set to true.
This requirement exists because Coherence Web will acquire a cluster-wide lock for
every session access request unless sticky session optimization is enabled. By enabling
sticky session optimization, frequent lock-holding, and the subsequent production of
numerous log files, can be avoided.

Like all Coherence*Web messages, the Coherence logging-config operational
configuration element controls how the message is logged. For more information on
how to configure logging in Coherence, see the description of logging-config, in
"Operation Configuration Elements" in Oracle Fusion Middleware Developing
Applications with Oracle Coherence.

Enabling Sticky Session Optimizations
If Member, Application, or Thread Locking is a requirement for a Web application that
resides behind a sticky load balancer, Coherence*Web provides an optimization for
obtaining the clusterwide lock required for HTTP session access. By definition, a sticky
load balancer attempts to route each request for a given session to the same
application server JVM that it previously routed requests to for that same session. This
should be the same application server JVM that created the session. The sticky session
optimization takes advantage of this behavior by retaining the clusterwide lock for a
session until the session expires or until it is asked to release it. If, for whatever reason,

Deployment Topologies

5-20 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

the sticky load balancer sends a request for the same session to another application
server JVM, that JVM will ask the JVM that owns the lock on the session to release the
lock as soon as possible. For more information, see the SessionOwnership entry in
Table C–2.

Sticky session optimization can be enabled by setting the coherence-sticky-sessions
context parameter to true. This setting requires that Member, Application, or Thread
Locking is enabled.

Deployment Topologies
Coherence*Web supports most of the same deployment topologies that Coherence
does including in-process, out-of-process (that is, client/server deployment), and
bridging clients and servers over Coherence*Extend. The major supported deployment
topologies are described in the following sections.

■ In-Process Topology, also known as local storage enabled, is where session data is
stored in-process with the application server

■ Out-of-Process Topology, also known as local storage disabled, is where the
application servers are configured as cache clients and dedicated JVMs run as
cache servers, physically storing and managing the clustered data.

■ Out-of-Process with Coherence*Extend Topology, means communication between
the application server tier and the cache server tier are over Coherence*Extend
(TCP/IP).

In-Process Topology
The in-process topology is not recommended for production use and is supported
mainly for development and testing. By storing the session data in-process with the
application server, this topology is very easy to get up and running quickly for smoke
tests, developing and testing. In this topology, local storage is enabled (that is,
tangosol.coherence.distributed.localstorage=true).

Figure 5–9 illustrates the in-process topology. All of the application servers
communicate with the same session data cache.

Figure 5–9 In-Process Deployment Topology

Out-of-Process Topology
For the out-of-process deployment topology, the application servers (that is,
application server tier) are configured as cache clients (that is,
tangosol.coherence.distributed.localstorage=false) and there are dedicated
JVMs running as cache servers, physically storing and managing the clustered data.

This approach has these benefits:

Deployment Topologies

Coherence*Web Session Management Features 5-21

■ Session data storage is offloaded from the application server tier to the cache
server tier. This reduces heap usage, garbage collection times, and so on.

■ The application and cache server tiers can be scaled independently. If more
application processing power is needed, just start more application servers. If
more session storage capacity is needed, just start more cache servers.

The Out-of-Process topology is the default recommendation of Oracle Coherence due
to its flexibility. Figure 5–10 illustrates the out-of-process topology. Each of the servers
in the application tier maintain their own near cache. These near caches communicate
with the session data cache which runs in a separate cache server tier.

Figure 5–10 Out-of-Process Deployment Topology

Migrating from In-Process to Out-of-Process Topology
You can easily migrate your application from an in-process to an out of process
topology. To do this, you must run a cache server in addition to the application server.
Start the cache server in storage-enabled mode and ensure that it references the same
session and cache configuration file (default-session-cache-config.xml) that the
application server uses. Start the application server in storage-disabled mode. See
"Migrating to Out-of-Process Topology" on page 4-5 for detailed information.

Out-of-Process with Coherence*Extend Topology
Coherence*Extend consists of two components: an extend client (or proxy) running
outside the cluster and an extend proxy service running in the cluster hosted by one or
more cache servers. The out-of-process with Coherence*Extend topology is similar to
the out-of-process topology except that the communication between the application
server tier and the cache server tier is over Coherence*Extend (TCP/IP). For
information about configuring this scenario, see "Configuring Coherence*Web with
Coherence*Extend" on page 5-22. For information about Coherence*Extend, see Oracle
Fusion Middleware Developing Remote Clients for Oracle Coherence.

This approach has the same benefits as the out-of-process topology and the ability to
divide the deployment of application servers and cache servers into segments. This is
ideal in an environment where application servers are on a network that does not
support UDP. The cache servers can be set up in a separate dedicated network, with
the application servers connecting to the cluster by using TCP.

Figure 5–11 illustrates the out-of-process with Coherence*Extend topology. Near
caches in the servers in the application server tier use an extend proxy to communicate
with the session data cache in the cache server tier.

Deployment Topologies

5-22 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Figure 5–11 Out-of-Process with Coherence*Extend Deployment Topology

Configuring Coherence*Web with Coherence*Extend
One of the deployment options for Coherence*Web is to use Coherence*Extend to
connect Web container JVMs to the cluster by using TCP/IP. This configuration should
be considered if any of the following situations applies:

■ The Web tier JVMs are in a DMZ while the Coherence cluster is behind a firewall.

■ The Web tier is in an environment that does not support UDP.

■ Web tier JVMs experience long or frequent garbage collection (GC) pauses.

■ Web tier JVMs are restarted frequently.

In these deployments, there are three types of participants:

■ Web tier JVMs, which are the Extend clients in this topology. They are not
members of the cluster; instead, they connect to a proxy node in the cluster that
will issue requests to the cluster on their behalf.

■ Proxy JVMs, which are storage-disabled members (nodes) of the cluster that accept
and manage TCP/IP connections from Extend clients. Requests that arrive from
clients will be sent into the cluster, and responses will be sent back through the
TCP/IP connections.

■ Storage JVMs, which are used to store the actual session data in memory.

To Configure Coherence*Web to Use Coherence*Extend
1. Configure Coherence*Web to use the Optimistic Locking mode (see "Optimistic

Locking" on page 5-17).

2. Configure a cache configuration file for the proxy and storage JVMs (see
"Configure the Cache for Proxy and Storage JVMs" on page 5-22).

3. Modify the Web tier cache configuration file to point to one or more of the proxy
JVMs (see "Configure the Cache for Web Tier JVMs" on page 5-23).

Configure the Cache for Proxy and Storage JVMs
The session cache configuration file
(WEB-INF/classes/default-session-cache-config.xml) is an example

Deployment Topologies

Coherence*Web Session Management Features 5-23

Coherence*Web session cache configuration file that uses Coherence*Extend. Use this
file for the proxy and server JVMs. It contains system property overrides that allow the
same file to be used for both proxy and storage JVMs.

When used by a proxy JVM, the system properties described in Table 5–2 should be
specified.

Note: If you are writing applications for the WebLogic Server
platform and you are using a customized session cache configuration
file, then the file must be packaged in a GAR file for deployment. For
more information, see "Using a Custom Session Cache Configuration
File" on page 2-13.

For more information on the packaging requirements for a GAR file,
see also "Packaging Coherence Applications for WebLogic Server" in
Oracle Fusion Middleware Administering Oracle Coherence and "Creating
Coherence Applications for Oracle WebLogic Server" in Developing
Oracle Coherence Applications for Oracle WebLogic Server.

Table 5–2 System Property Values for Proxy JVMs

System Property Name Value

tangosol.coherence.session.localstorage false

tangosol.coherence.session.proxy true

tangosol.coherence.session.proxy.localhost The host name or IP address of the NIC
to which the proxy will bind.

tangosol.coherence.session.proxy.localport A unique port number to which the
proxy will bind.

When used by a cache server, specify the system properties described in Table 5–3.

Table 5–3 System Property Values for Storage JVMs

System Property Name Value

tangosol.coherence.session.localstorage true

tangosol.coherence.session.proxy false

Configure the Cache for Web Tier JVMs
Coherence*Extend clients must also include a session cache configuration file. The file
can be based on the default-session-cache-config.xml file that is found in the
coherence-web.jar file.

To Install the Session Cache Configuration File for the Web Tier:
1. Extract the default-session-cache-config.xml file from the coherence-web.jar

file.

2. Add proxy JVM host names and IP addresses and ports within the
<remote-addresses> element. In most cases, you should include the host name
and IP address, and port of all proxy JVMs for load balancing and failover. For
example:

<remote-cache-scheme>
 <scheme-name>session-remote</scheme-name>
 <initiator-config>

Accessing Sessions with Lazy Acquisition

5-24 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

 <serializer>
 <instance>
 <class-name>com.tangosol.io.DefaultSerializer</class-name>
 </instance>
 </serializer>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 </initiator-config>
</remote-cache-scheme>

Note: The <remote-addresses> element contains the proxy server(s)
to which the Web container connects. By default, the Web container
will pick an address at random (if there is more than one address in
the configuration). If the connection between the Web container and
the proxy is broken, the container will connect to another proxy in the
list.

3. Rename the file to default-session-cache-config-web-tier.xml.

4. Place the file in the WEB-INF/classes directory of your Web application. If you
used the WebInstaller to install Coherence*Web, replace the existing file that was
added by the WebInstaller.

Accessing Sessions with Lazy Acquisition
By default, Web applications instrumented with the WebInstaller will always acquire a
session whenever a servlet or filter is called. The session is acquired regardless of
whether the servlet or filter actually needs a session. This can be expensive in terms of
time and processing power if you run many servlets or filters that do not require a
session.

To avoid this behavior, enable lazy acquisition by setting the
coherence-session-lazy-access context parameter to true in the web.xml file. The
session will be acquired only when the servlet or filter attempts to access it.

Overriding the Distribution of HTTP Sessions and Attributes
The Coherence*Web Session Distribution Controller, described by the
HttpSessionCollection.SessionDistributionController interface, enables you to
override the default distribution of HTTP sessions and attributes in a Web application.
You override the default distribution by setting the
coherence-distributioncontroller-class context parameter (see "Registering a
Session Distribution Controller Implementation" on page 5-26). The value of the
context parameter indicates an implementation of the
SessionDistributionController interface.

An implementation of the SessionDistributionController interface can identify
sessions or attributes in any of the following ways:

■ Distributed, where a distributed session or attribute is stored within the Coherence
data grid, and thus, accessible to other server JVMs. All sessions (and their

Overriding the Distribution of HTTP Sessions and Attributes

Coherence*Web Session Management Features 5-25

attributes) are managed in a distributed manner. This is the default behavior and
is provided by the
com.tangosol.coherence.servlet.AbstractHttpSessionCollection$Distribute
dController implementation of the SessionDistributionController interface.

■ Local, where a local session or attribute is stored on the originating server's heap,
and thus, only accessible by that server. The
com.tangosol.coherence.servlet.AbstractHttpSessionCollection$LocalContr
oller class provides this behavior. This option is not recommended for production
purposes, but it can be useful for testing the difference in scalable performance
between local-only and fully distributed implementations.

■ Hybrid, which is similar to distributed in that all sessions and serializable
attributes are managed in a distributed manner. However, unlike distributed,
session attributes that do not implement the Serializable interface will be kept
local. The
com.tangosol.coherence.servlet.AbstractHttpSessionCollection$HybridCont
roller class provides this behavior.

At any point during the life of a session, the session or attributes for that session can
change from local or distributed. However, when a session or attribute is distributed it
cannot change back to local.

You can use the Session Distribution Controller in any of the following ways:

■ You can allow new sessions to remain local until you add an attribute (for
example, when you add the first item to an online shopping cart); the idea is that a
session must be fault-tolerant only when it contains valuable data.

■ Some Web frameworks use session attributes to store the UI rendering state. Often,
this data cannot be distributed because it is not serializable. Using the Session
Distribution Controller, these attributes can be kept local while allowing the rest of
the session attributes to be distributed.

■ The Session Distribution Controller can assist in the conversion from
nondistributed to distributed systems, especially when the cost of distributing all
sessions and all attributes is a consideration.

Implementing a Session Distribution Controller
Example 5–4 illustrates a sample implementation of the
HttpSessionCollection.SessionDistributionController interface. In the sample,
sessions are tested to see if they have a shopping cart attached (only these sessions will
be distributed). Next, the session is tested whether it contains a certain attribute. If the
attribute is found, then it is not distributed.

Example 5–4 Sample Session Distribution Controller Implementation

import com.tangosol.coherence.servlet.HttpSessionCollection;
import com.tangosol.coherence.servlet.HttpSessionModel;

/**
* Sample implementation of SessionDistributionController
*/
public class CustomSessionDistributionController
 implements HttpSessionCollection.SessionDistributionController
 {
 public void init(HttpSessionCollection collection)
 {
 }

Detecting Changed Attribute Values

5-26 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

 /**
 * Only distribute sessions that have a shopping cart.
 *
 * @param model Coherence representation of the HTTP session
 *
 * @return true if the session should be distributed
 */
 public boolean isSessionDistributed(HttpSessionModel model)
 {
 return model.getAttribute("shopping-cart") != null;
 }

 /**
 * If a session is "distributed", then distribute all attributes with the
 * exception of the "ui-rendering" attribute.
 *
 * @param model Coherence representation of the HTTP session
 * @param sName name of the attribute to check
 *
 * @return true if the attribute should be distributed
 */
 public boolean isSessionAttributeDistributed(HttpSessionModel model,
 String sName)
 {
 return !"ui-rendering".equals(sName);
 }
 }

Registering a Session Distribution Controller Implementation
After you have written your SessionDistributionController implementation, you
can register it with your application by using the
coherence-distributioncontroller-class context parameter. See Appendix A,
"Coherence*Web Context Parameters" for more information about this parameter.

Detecting Changed Attribute Values
By default, Coherence*Web tracks if attributes retrieved from the session have changed
during the course of processing a request. This is done by caching the initial serialized
binary form of the attribute when it is retrieved from the session. At the end of
processing a request, Coherence*Web will compare the current binary value of the
attribute with the "old" version of the binary. If the values do not match, then the
current value is written to the cache.

If you know that your application does not mutate session attributes without doing a
corresponding set, then you should set the coherence-enable-suspect-attributes
context parameter to false. This will improve memory use and near-cache
optimization.

Saving Non-Serializable Attributes Locally
By default, Coherence*Web attempts to serialize all session attributes. If you are
working with any session attributes that are not serializable, you can store them
locally by setting the coherence-preserve-attributes parameter to true. This
parameter requires you to use a load balancer to retrieve non-serializable attributes for
a session.

Customizing the Name of the Session Cache Configuration File

Coherence*Web Session Management Features 5-27

Note that if the client (application server) fails, then the attributes will be lost. Your
application must be able to recover from this.

The default for this parameter is false. If you are using Coherence*Web on GlassFish,
then this value will be set to true because the GlassFish Server requires local sessions
to be available.

See Appendix A, "Coherence*Web Context Parameters" for more information about
the coherence-preserve-attributes parameter.

Securing Coherence*Web Deployments
To prevent unauthorized Coherence TCMP cluster members from accessing HTTP
session cache servers, Coherence provides a Secure Socket Layer (SSL)
implementation. This implementation can be used to secure TCMP communication
between cluster nodes and TCP communication between Coherence*Extend clients
and proxies. Coherence allows you to use the Transport Layer Security (TLS) 1.0
protocol which is the next version of the SSL 3.0 protocol; however, the term SSL is
used since it is the more widely recognized term.

This section provides only an overview of using SSL in a Coherence environment. For
more information and sample configurations, see "Using SSL to Secure
Communication" in Oracle Fusion Middleware Securing Oracle Coherence.

Using SSL to Secure TCMP Communications
A Coherence cluster can be configured to use SSL with TCMP. Coherence allows you
to use both one-way and two-way authentication. Two-Way authentication is typically
used more often than one-way authentication, which has fewer use cases in a cluster
environment. In addition, it is important to realize that TCMP is a peer-to-peer
protocol that generally runs in trusted environments where many cluster nodes are
expected to remain connected with each other. The implications of SSL on
administration and performance should be carefully considered.

In this configuration, you can use the pre-defined, out-of-the-box SSL socket provider
that allows for two-way communication SSL connections based on peer trust, or you
can define your own SSL socket provider.

Using SSL to Secure Extend Client Communication
Communication between extend clients and extend proxies can be secured using SSL.
SSL requires configuration on both the client side as well as the cluster side. On the
cluster side, you configure SSL in the cluster-side cache configuration file by defining a
SSL socket provider for a proxy service. You can define the SSL socket provider either
for all proxy services or for individual proxy services.

On the client side, you configure SSL in the client-side cache configuration file by
defining a SSL socket provider for a remote cache scheme and, if required, for a remote
invocation scheme. Like the cluster side, you can define the SSL socket provider either
for all remote services or for individual remote services.

Customizing the Name of the Session Cache Configuration File
By default, Coherence*Web uses the information in the
default-session-cache-config.xml file to configure the session caches in
Coherence*Web. You can direct Coherence*Web to use a different file by specifying the
coherence-cache-configuration-path context parameter in the web.xml file, for
example:

Configuring Logging for Coherence*Web

5-28 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

...
<context-param>
 <param-name>coherence-cache-configuration-path</param-name>
 <param-value>my-default-session-cache-config-name.xml</param-value>
</context-param>
...

Configuring Logging for Coherence*Web
Coherence*Web uses the logging framework provided by Coherence. Coherence has
its own logging framework and also supports the use of log4j, slf4j, and Java logging
to provide a common logging environment for an application. Logging in Coherence
occurs on a dedicated and low-priority thread to reduce the impact of logging on the
critical portions of the system. Logging is pre-configured and the default settings
should be changed as required. For more information, see "Configuring Logging" in
Oracle Fusion Middleware Developing Applications with Oracle Coherence.

The Coherence*Web logging level can also be set using the context parameter/system
property coherence-session-logger-level. This is an alternative way to set the
logging level for Coherence*Web (as opposed to using JDK logging). See Appendix A,
"Coherence*Web Context Parameters" for more information on this parameter.

WARNING: Applications that use the JDK logging framework can
configure Coherence to use JDK logging as well. Note, however,
that setting the log level to FINEST can expose session IDs in the
log file.

Getting Concurrent Access to the Same Session Instance
A cache delegator class is a class that is responsible for manipulating (getting, putting,
or deleting) any data in the distributed cache. Use the
<coherence-cache-delegator-class> context parameter in the web.xml file to specify
the name of the class responsible for the data manipulation.

One of the possible values for the context parameter is the
com.tangosol.coherence.servlet.LocalSessionCacheDelegator class. This class
indicates that the local cache should be used for storing and retrieving the session
instance before attempting to use the distributed cache. This delegator is useful for
applications that require concurrent access to the same session instance.

Note: This feature must be enabled when working with PeopleSoft
applications.

To enable the LocalSessionCacheDelegator cache delegator, the following items must
be configured in web.xml:

■ The coherence-cache-delegator-class context parameter with the value set to
com.tangosol.coherence.servlet.LocalSessionCacheDelegator.

■ The coherence-preserve-attributes context parameter set to true to allow
nonserializable objects to be stored in the session object.

■ The coherence-distributioncontroller-class context parameter with the value
set to
com.tangosol.coherence.servlet.AbstractHttpSessionCollection$HybridCont

Getting Concurrent Access to the Same Session Instance

Coherence*Web Session Management Features 5-29

roller. This value forces all sessions and serializable attributes to be managed in a
distributed manner. All session attributes that do not implement the Serializable
interface will be kept local. Note that the use of this context parameter also
requires coherence-sticky-sessions optimization to be enabled.

Example 5–5 illustrates a sample configuration for the cache delegator in the web.xml
file.

Example 5–5 Configuring Cache Delegator in the web.xml File

...
 <context-param>
 <param-name>coherence-cache-delegator-class</param-name>
 <param-value>com.tangosol.coherence.servlet.LocalSessionCacheDelegator
</param-value>
 </context-param>
 <context-param>
 <param-name>coherence-preserve-attributes</param-name>
 <param-value>true</param-value>
 </context-param>
 <context-param>
 <param-name>coherence-distributioncontroller-class</param-name>

<param-value>com.tangosol.coherence.servlet.AbstractHttpSessionCollection$HybridCo
ntroller</param-value>
 </context-param>
...

Also, when using LocalSessionCacheDelegator as the cache delegator, you should
not configure a near cache in the session-cache-config.xml file. This is because local
session instances are used. Appendix D, "Session Cache Confguration File Without a
Near Cache" illustrates a sample session-cache-config.xml file that omits a near
cache configuration.

Getting Concurrent Access to the Same Session Instance

5-30 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

6

Monitoring Applications 6-1

6Monitoring Applications

[7] This chapter describes how to use the provided JMX MBeans to monitor the health
and performance of Coherence*Web on your system.It also describes how to run the
Reporter—a JMX-based reporting utility that provides several preconfigured reports
that help administrators and developers manage capacity and troubleshoot problems.

This chapter contains the following sections:

■ Managing and Monitoring Applications with JMX

■ Running Performance Reports

Note: To enable Coherence*Web JMX Management and Monitoring,
this section assumes that you have first set up the Coherence
Clustered JMX Framework. To set up this framework, see the
configuration and installation instructions in "Using JMX to Manage
Coherence" in Oracle Fusion Middleware Managing Oracle Coherence.

Managing and Monitoring Applications with JMX
The management attributes and operations for Web applications that use
Coherence*Web for HTTP session management are visible through the
HttpSessionManagerMBean MBean
(com.tangosol.coherence.servlet.management.HttpSessionManagerMBean).

During startup, each Coherence*Web Web application registers a single instance of the
HttpSessionManager class. You can use a monitoring tool, such as JConsole, to view
the values of the MBean attributes. The MBean is unregistered when the Web
application shuts down.

Table 6–1 describes the object name that the MBean uses for registration.

Table 6–1 Object Name for HttpSessionManagerMBean

Managed Bean Object Name

HttpSessionManager type=HttpSessionManager, nodeId=cluster node id,
appId=web application id

Table 6–2 describes the information that HttpSessionManager provides. All of the
names represent attributes, except resetStatistics, which is an operation.

Several of the MBean attributes use the following prefixes:

Managing and Monitoring Applications with JMX

6-2 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

■ LocalSession, which indicates a session that is not distributed to all members of
the cluster. The session remains local to the originating server until a later point in
the life of the session.

■ LocalAttribute, which indicates a session attribute that is not distributed to all
members of the cluster.

■ Overflow, a cache which stores the large session attributes when the Split Session
model is used.

Table 6–2 Information Returned by the HttpSessionManager

Attribute Name
Data
Type Description

AverageReapDuration long The average reap duration (the time it takes to complete a reap cycle)
in milliseconds, since the statistic was reset. See "Getting Session
Reaper Performance Statistics" on page 7-4.

CollectionClassName String The fully qualified class name of the HttpSessionCollection
implementation in use. The HttpSessionCollection interface is an
abstract model for a collection of HttpSessionModel objects. The
interface is not at all affected by how the sessions communicate
between the clients and the servers.

FactoryClassName String The fully-qualified class name of the Factory implementation being
used. The SessionHelper.Factory class is used by the
SessionHelper class to obtain objects that implement various
important parts of the servlet specification. The Factory
implementation can be placed in front of the application instead of
the application server's own objects. This changes the apparent
implementation of the application server itself (for example, adding
clustering.)

LastReapDuration long The amount of time, in milliseconds, it took for the last reap cycle to
finish. See "Getting Session Reaper Performance Statistics" on
page 7-4.

LocalAttributeCacheName String The name of the local cache that stores non-distributed session
attributes. If the attribute displays null then local session attribute
storage is disabled.

LocalAttributeCount Integer The number of non-distributed session attributes stored in the local
session attribute cache. If the attribute displays -1, then local session
attribute storage is disabled.

LocalSessionCacheName String The name of the local cache that stores nondistributed sessions. If the
attribute displays a null value, then local session storage is disabled.

LocalSessionCount Integer The number of nondistributed sessions stored in the local session
cache. If the attribute displays a -1 value, then local session storage is
disabled.

MaxReapedSessions long The maximum number of sessions reaped in a reap cycle since the
statistic was reset. See "Getting Session Reaper Performance
Statistics" on page 7-4.

NextReapCycle java.lang.
Date

The time, expressed as a java.lang.Date data type, for the next reap
cycle. See "Getting Session Reaper Performance Statistics" on
page 7-4.

OverflowAverageSize Integer The average size (in bytes) of the session attributes stored in the
overflow clustered cache since the last time statistics were reset. If
the attribute displays -1, then a SplitHttpSessionCollection
model is not in use.

Managing and Monitoring Applications with JMX

Monitoring Applications 6-3

Figure 6–1 illustrates the attributes of the HttpSessionManager MBean displayed in the
JConsole monitoring tool.

OverflowCacheName String The name of the clustered cache that stores the large attributes that
exceed a certain size and thus are determined to be more efficiently
managed as separate cache entries and not as part of the serialized
session object itself. A null value is displayed if a
SplitHttpSessionCollection model is not in use.

OverflowMaxSize Integer The maximum size (in bytes) of a session attribute stored in the
overflow clustered cache since the last time statistics were reset. The
attribute displays a -1 value if a SplitHttpSessionCollection
model is not in use.

OverflowThreshold Integer The minimum length (in bytes) that the serialized form of an
attribute value must be stored in the separate overflow cache that is
reserved for large attributes. The attribute displays a -1 value if a
SplitHttpSessionCollection model is not in use.

OverflowUpdates Integer The number of updates to session attributes stored in the overflow
clustered cache since the last time statistics were reset. The attribute
displays a -1 value if a SplitHttpSessionCollection model is not in
use.

ReapedSessions long The number of sessions reaped during the last cycle. See "Getting
Session Reaper Performance Statistics" on page 7-4.

ReapedSessionsTotal long The number of expired sessions that have been reaped since the
statistic was reset. See "Getting Session Reaper Performance
Statistics" on page 7-4.

ServletContextCacheName String The name of the clustered cache that stores
javax.servlet.ServletContext attributes. The attribute displays
null if ServletContext is not clustered.

ServletContextName String The name of the Web application ServletContext.

SessionAverageLifetime Integer The average lifetime (in seconds) of session objects invalidated
(either due to expiration or to an explicit invalidation) since the last
time statistics were reset.

SessionAverageSize Integer The average size (in bytes) of session objects placed in the session
storage clustered cache since the last time statistics were reset.

SessionCacheName String The name of the clustered cache that stores serialized session objects.

SessionIdLength Integer The length (in characters) of generated session IDs.

SessionMaxSize Integer The maximum size (in bytes) of a session object placed in the session
storage clustered cache since the last time statistics were reset.

SessionMinSize Integer The minimum size (in bytes) of a session object placed in the session
storage clustered cache since the last time statistics were reset.

SessionStickyCount Integer The number of session objects that belong to this instance of the Web
application. The attribute displays -1 if sticky session optimizations
are disabled.

SessionTimeout Integer The session expiration time (in seconds). The attribute displays -1 if
sessions never expire.

SessionUpdates Integer The number of updates of session object stored in the session storage
clustered cache since the last time statistics were reset.

resetStatistics (operation) void Reset the session management statistics.

Table 6–2 (Cont.) Information Returned by the HttpSessionManager

Attribute Name
Data
Type Description

Managing and Monitoring Applications with JMX

6-4 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Figure 6–1 HttpSessionManager Displayed in the JConsole Monitoring Tool

Managing and Monitoring Applications on WebLogic Server
For WebLogic Server, management attributes and operations for Web applications that
use Coherence*Web for HTTP session management are visible through the
WebLogicHttpSessionManagerMBean MBean
(com.tangosol.coherence.servlet.management.WebLogicHttpSessionManagerMBean)
.

Table 6–3 describes the object name that the MBean uses for registration.

Table 6–3 Object Name for WebLogicHttpSessionManagerMBean

Managed Bean Object Name

WebLogicHttpSessionManager type=WebLogicHttpSessionManager, nodeId=cluster
node id, appId=web application id

The WebLogicHttpSessionManager class extends the HttpSessionManager class. In
addition to the information described in Table 6–2, the WebLogicHttpSessionManager
class also returns the information listed in Table 6–4. Enterprise Manager uses this
information to correlate the Coherence*Web instances to the server.

Table 6–4 Information Returned by the WebLogicHttpSessionManager MBean

Attribute Name
Data
Type Description

ApplicationId String The WebLogic Web application ID.

ApplicationName String The name of this Web application.

ApplicationVersion String The version of this Web application.

DomainName String The WebLogic domain name on which the application is deployed.

IsEar Boolean Displays true if this Web application is a module of an EAR file.

IsListenAddressEnabled Boolean Displays true if a HTTP port is available on this server.

IsSSLListenPortEnabled Boolean Displays true if a HTTPS port is available on this server.

ListenAddress String The address on which the server is listening.

ListenPort Integer The port on which this server listens for HTTP requests.

ServerName String The WebLogic Server name on which the application is deployed.

SSLListenPort Integer The port on which this server is listening for HTTPS requests.

Running Performance Reports

Monitoring Applications 6-5

Running Performance Reports

Note: You can find a detailed discussion of the Reporter, including
configuring the Reporter, running preconfigured reports, and creating
custom reports, in the chapters under "Using JMX Reporting" in Oracle
Fusion Middleware Managing Oracle Coherence.

Coherence includes a JMX-based reporting utility known as the Reporter. The Reporter
provides several preconfigured reports that help administrators and developers
manage capacity and troubleshoot problems. These reports are specially tuned for
Coherence*Web:

■ Web Session Storage Report, which records statistics about the activity between
the cluster and the cache where the cluster’s session objects and data are stored.

■ Web Session Overflow Report, which records statistics about the activity between
the cluster and the cache where session objects and data are allowed to overflow
from the Web session storage cache.

■ Web Report, which records information about Coherence*Web activity for the
cluster.

■ WebLogic Web Report, which is intended for WebLogic Server environments. This
report provides the same information as Web Report, but includes the name of the
WebLogic Server and the WebLogic Server domain.

■ Web Service Report, which records information about the service running the
Coherence*Web application.

The Coherence*Web reports should be run as part of a batch report. They are defined
in both the report-web-group.xml and the comprehensive report-all.xml batch
reports. You can also include them in a custom batch report. The Coherence*Web
reports are not defined in the default report group batch file, report-group.xml.

The Reporter runs the report-group.xml batch report by default. Use the
tangosol.coherence.management.report.configuration system property to run

Running Performance Reports

6-6 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

report-web-group.xml, report-all.xml, or a custom batch report instead.
Example 6–1 illustrates a command line where the property is used to change the
report group batch file that is run to report-web-group.xml.

Example 6–1 Specifying a Report Group on the Command Line

java -Dcom.sun.management.jmxremote
-Dtangosol.coherence.management=all
-Dtangosol.coherence.management.remote=true
-Dtangosol.coherence.management.report.autostart=false
-Dtangosol.coherence.management.report.distributed=false
-Dtangosol.coherence.management.report.configuration=reports/report-web-group.xml
-jar coherence.jar

The report-web-group.xml, report-all.xml, and report-group.xml report group
batch files, can be found in the reports folder in the coherence.jar file.

Web Session Storage Report
The Web Session Storage report records statistics on the activity between the cluster
and the cache where session objects and data are stored. The statistics include
information about the number of put, get, and prune operations performed on the
session storage cache, and the amount of time spent on these operations.

The report is a tab-delimited file that is prefixed with the date in YYYYMMDDHH format
and appended with -session-storage.txt. For example
2010013113-session-storage.txt would be created on January 31, 2010 1:00 pm.
Table 6–5 describes the contents of the Web Session Storage report.

Table 6–5 Contents of the Web Session Storage Report

Column Title
Data
Type Description

Batch Counter long A sequential counter to help integrate information
between related files. This value resets when the reporter
restarts and is not consistent across nodes. However, it is
helpful when trying to integrate files.

Cache Name String Always session-storage. It is used to maintain
consistency with the Cache Utilization report.

Evictions long The total number of sessions that have been evicted for
the cache across the cluster since the last time the report
was created.

Report Time Date The system time when the report was created.

Tier String The value can be either front or back. Describes whether
the cache resides in the front tier (local cache) or back tier
(remote cache).

TotalFailures long The total number of session storage write failures for the
cache across the cluster since the last time the report was
created.

TotalGets long The total number of session get operations across the
cluster since the last time the report was created.

TotalGetsMillis long The total number of milliseconds spent for each get()
invocation (GetsMillis) to get the sessions across the
cluster since the last time the report was created.

TotalHits long The total number of session hits across the cluster since
the last time the report was created.

Running Performance Reports

Monitoring Applications 6-7

Web Session Overflow Report
The Web Session Overflow report records statistics on the activity between the cluster
and the cache where the overflow of session objects and data is stored. The statistics
include information about the number of put, get, and prune operations performed on
the session overflow cache, and the amount of time spent on these operations.

The report is a tab-delimited file that is prefixed with the date in YYYYMMDDHH format
and appended with -cache-session-overflow.txt. For example
2010013113-cache-session-storage.txt would be created on January 31, 2010 1:00
pm. Table 6–6 describes the contents of the Web Session Overflow report.

TotalHitsMillis long The total number of milliseconds spent for each get()
invocation that is a hit (HitsMillis) for the session
storage across the cluster since the last time the report
was created.

TotalMisses long The total number of sessions get operations that returned
misses for the cache across the cluster since the last time
the report was created.

TotalMissesMillis long The total number of milliseconds spent for each get()
invocation that is a miss (MissesMillis) for the session
storage across the cluster since the last time the report
was created.

TotalPrunes long The total number of times the session storage cache has
been pruned across the cluster since the last time the
report was created.

TotalPrunesMillis long The total number of milliseconds spent for the prune
operation (PrunesMillis) to prune the session storage
cache across the cluster since the last time the report was
created.

TotalPuts long The total number of session updates (put operations)
across the cluster since the last time the report was
created.

TotalPutsMillis long The total number of milliseconds spent for each put()
invocation (PutsMillis) to update sessions across the
cluster since the last time the report was created.

TotalQueue long The sum of the queue links for the session storage cache
across the cluster.

TotalWrites long The total number of sessions written to an external cache
storage for the cache across the cluster since the last time
the report was created.

TotalWritesMillis long The total number of milliseconds spent for each write
operation (WritesMillis) to update an external cache
storage across the cluster since the last time the report
was created.

Table 6–5 (Cont.) Contents of the Web Session Storage Report

Column Title
Data
Type Description

Running Performance Reports

6-8 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Table 6–6 Contents of the Web Session Overflow Report

Column Title
Data
Type Description

Batch Counter long A sequential counter to help integrate information between
related files. This value does reset when the Reporter
restarts and is not consistent across nodes. However, it is
helpful when trying to integrate files.

Cache Name String Always session-overflow. It is used to maintain
consistency with the Cache Utilization report.

Evictions long The total number of session overflows that have been
evicted for the cache across the cluster since the last time
the report was created.

Report Time Date The system time when the report executed.

Tier String The value can be either front or back. Describes whether
the cache resides in the front-tier (local cache) or back tier
(remote cache).

TotalFailures long The total number of session overflows storage write
failures for the cache across the cluster since the last time
the report was created.

TotalGets long The total number of session overflows get operations
across the cluster since the last time the report was created.

TotalGetsMillis long The total number of milliseconds spent for each get()
invocation (GetsMillis) to get the session overflows across
the cluster since the last time the report was created.

TotalHits long The total number of session overflow hits across the cluster
since the last time the report was created.

TotalHitsMillis long The total number of milliseconds spent for each get()
invocation that is a hit (HitsMillis) for the session
overflow across the cluster since the last time the report
was created.

TotalMisses long The total number of session overflow get operations that
returned misses for the cache across the cluster since the
last time the report was created.

TotalMissesMillis long The total number of milliseconds spent for each get()
invocation that is a miss (MissesMillis) for the session
overflow across the cluster since the last time the report
was created.

TotalPrunes long The total number of times the session overflow cache has
been pruned across the cluster since the last time the report
was created.

TotalPrunesMillis long The total number of milliseconds spent for the prune
operations (PrunesMillis) to prune the session overflow
cache across the cluster since the last time the report was
created.

TotalPuts long The total number of session overflows (put operations)
across the cluster since the last time the report was created.

TotalPutsMillis long The total number of milliseconds spent per put()
invocation (PutsMillis) to update session overflows
across the cluster since the last time the report was created.

TotalQueue long The sum of the queue link size for the session overflow
cache across the cluster.

Running Performance Reports

Monitoring Applications 6-9

Web Report
The Web Report (report-web.xml) provides information about Coherence*Web
activity for the cluster. The report is a tab-delimited file that is prefixed with the date
and hour in YYYYMMDDHH format and appended with -web.txt. For example
2009013102-web.txt would be created on January 1, 2009 at 2:00 am. Table 6–7
describes the contents of the Web Report.

Table 6–7 Contents of the Web Report

Column
Data
Type Description

Application String The application name.

Batch Counter long A sequential counter to help integrate
information between related files. This value
does reset when the Reporter restarts and is
not consistent across nodes. However, it is
helpful when trying to integrate files.

Current Overflow Updates long The number of overflow updates since the last
time the report was created.

Current Session Updates long The number of session updates since the last
time the report was created.

LocalAttributeCount long The attribute count on the node.

LocalSessionCount long The session count on the node.

Node Id integer The node identifier.

OverflowAvgSize float The average size for attribute overflows.

OverflowMaxSize long The maximum size for an attribute overflow.

OverflowUpdates long The total number of attribute overflow updates
since the last time statistics were reset.

Report Time Date The system time when the report was created.

SessionAverageLifetime float The average number of seconds a session is
active.

SessionAverageSize float The average size for a session.

SessionMaxSize long The maximum size for a session.

SessionMinSize long The minimum size for a session.

SessionStickyCount long The number of sticky sessions on the node.

SessionUpdateCount long The number of session updates since the last
time statistics were reset.

TotalWrites long The total number of session overflows written to an
external cache storage for the cache across the cluster since
the last time the report was created.

TotalWritesMillis long The total number of milliseconds spent for each write
operation (WritesMillis) to update an external session
overflow storage across the cluster since the last time the
report was created.

Table 6–6 (Cont.) Contents of the Web Session Overflow Report

Column Title
Data
Type Description

Running Performance Reports

6-10 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

WebLogic Web Report
The Weblogic Web Report (report-web-weblogic.xml) provides information on
Coherence*Web activity when it is being used in WebLogic Server environments. This
report provides the same information as provided by the Web Report (see "Web
Report", above), with additional columns for the WebLogic Server name and domain
name. The report is a tab-delimited file that is prefixed with the date and hour in
YYYYMMDDHH format and appended with -web-weblogic.txt. For example
2009013102-web-weblogic.txt would be created on January 1, 2009 at 2:00 am.

Table 6–8 Contents of the WebLogic Web Report

Column Data Type Description

Application String The application name.

Batch Counter long A sequential counter to help integrate
information between related files. This value
does reset when the Reporter restarts and is
not consistent across nodes. However, it is
helpful when trying to integrate files.

Current Overflow Updates long The number of overflow updates since the last
time the report was created.

Current Session Updates long The number of session updates since the last
time the report was created.

DomainName String The name of the WebLogic Server domain in
which Coherence*Web is running.

LocalAttributeCount long The attribute count on the node.

LocalSessionCount long The session count on the node.

Node Id integer The node identifier.

OverflowAvgSize float The average size for attribute overflows.

OverflowMaxSize long The maximum size for an attribute overflow.

OverflowUpdates long The total number of attribute overflow updates
since the last time statistics were reset.

Report Time Date The system time when the report was created.

ServerName String The name of the WebLogic Server on which
Coherence*Web is running.

SessionAverageLifetime float The average number of seconds a session is
active.

SessionAverageSize float The average size for a session.

SessionMaxSize long The maximum size for a session.

SessionMinSize long The minimum size for a session.

SessionStickyCount long The number of sticky sessions on the node.

SessionUpdateCount long The number of session updates since the last
time statistics were reset.

Web Service Report
The Web Service report provides information about the service running the
Coherence*Web application. The report records the requests processed, request
failures, and request backlog, tasks processed, task failures, and task backlog. Request
Count and Task Count are useful to determine performance and throughput of the

Running Performance Reports

Monitoring Applications 6-11

service. RequestPendingCount and Task Backlog are useful in determining capacity
issues or blocked processes. Task Hung Count, Task Timeout Count, Thread Abandoned
Count, Request Timeout Count are the number of unsuccessful executions that have
occurred in the system.

The report is a tab-delimited file that is prefixed with the date and hour in YYYYMMDDHH
format and appended with -web-session-service.txt. For example
2009013102-web-session-service.txt would be created on January 1, 2009 at 2:00
am. Table 6–9 describes the contents of the Web Service Report.

Table 6–9 Contents of the Web Service Report

Column Title
Data
Type Description

Batch Counter Long A sequential counter to help integrate information
between related files. This value does reset when
the Reporter restarts and is not consistent across
nodes. However, it is helpful when trying to
integrate files.

Node Id String The numeric node identifier.

Refresh Time Date The system time when the service information
was updated from a remote node.

Request Count Long The number of requests by the Coherence*Web
application since the last report was created.

RequestPendingCount Long The number of pending requests by the
Coherence*Web application at the time of the
report.

RequestPendingDuration Long The duration for the pending requests of the
Coherence*Web application at the time of the
report.

Request Timeout Count Long The number of request timeouts by the
Coherence*Web application since the last report
was created.

Report Time Date The system time when the report executed.

Service String A static value (DistributedSessions) used as the
service name if merging the information with the
service file.

Task Backlog Long The task backlog of the Coherence*Web
application at the time of the report was created.

Task Count Long The number of tasks executed by the
Coherence*Web application since the last report
was created.

Task Hung Count Long The number of tasks that were hung by the
Coherence*Web application since the last report
was created.

Task Timeout Count Long The number of task timeouts by the
Coherence*Web application since the last report
was created.

Thread Abandoned Count Long The number of threads abandoned by the
Coherence*Web application since the last report
was created.

Running Performance Reports

6-12 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

7

Cleaning Up Expired HTTP Sessions 7-1

7Cleaning Up Expired HTTP Sessions

[8] This chapter describes how to configure and use the Session Reaper. The Session
Reaper is responsible for destroying any session that is no longer used, which is
determined by when that session has timed out.

This chapter contains the following sections:

■ Understanding the Session Reaper

■ Configuring the Session Reaper

■ Getting Session Reaper Performance Statistics

■ Understanding Session Invalidation Exceptions for the Session Reaper

As part of Coherence*Web Session Management Module, HTTP sessions that have
expired are eventually cleaned up by the Session Reaper. The Session Reaper provides
a service similar to the JVM Garbage Collection (GC) capability: the Session Reaper is
responsible for destroying any session that is no longer used, which is determined by
when that session has timed out.

Each HTTP session contains two pieces of information that determine when it has
timed out. The first is the LastAccessedTime property of the session, which is the time
stamp of the most recent activity involving the session. The second is the
MaxInactiveInterval property of the session, which specifies how long the session is
kept active without any activity; a typical value for this property is 30 minutes. The
MaxInactiveInterval property defaults to the value configured for Coherence*Web,
but it can be modified on a session-by-session basis.

Each time that an HTTP request is received by the server, if there is an HTTP session
associated with that request, then the LastAccessedTime property of the session is
automatically updated to the current time. As long as requests continue to arrive
related to that session, it is kept active, but when a period of inactivity occurs longer
than that specified by the MaxInactiveInterval property, then the session expires.
Session expiration is passive—occurring only due to the passing of time. The
Coherence*Web Session Reaper scans for sessions that have expired, and when it finds
expired sessions it destroys them.

Understanding the Session Reaper
The Session Reaper configuration addresses three basic questions:

■ On which servers will the Reaper run?

■ How frequently will the Reaper run?

■ When the Reaper runs, on which servers will it look for expired sessions?

Understanding the Session Reaper

7-2 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Every application server running Coherence*Web runs the Session Reaper. That means
that if Coherence is configured to provide a separate cache tier (made up of cache
servers), then the Session Reaper does not run on those cache servers.

By default, the Session Reaper runs concurrently on all of the application servers, so
that all of the servers share the workload of identifying and cleaning up expired
sessions. The coherence-reaperdaemon-cluster-coordinated context parameter
causes the cluster to coordinate reaping so that only one server at a time performs the
actual reaping; the use of this option is not suggested, and it cannot be used with the
Coherence*Web over Coherence*Extend topology.

The coherence-reaperdaemon-cluster-coordinated context parameter should not be
used if sticky optimization (coherence-sticky-sessions) is also enabled. Because
only one server at a time performs the reaping, sessions owned by other nodes cannot
be reaped. This means that it will take longer for sessions to be reaped as more nodes
are added to the cluster. Also, the reaping ownership does not circulate over the nodes
in the cluster in a controlled way; one node can be the reaping node for a long time
before it is taken over by another node. During this time, only its own sessions are
reaped.

The Session Reaper is configured to scan the entire set of sessions over a certain
period, called a reaping cycle, which defaults to five minutes. This length of the
reaping cycle is specified by the coherence-reaperdaemon-cycle-seconds context
parameter. This setting indicates to the Session Reaper how aggressively it must work.
If the cycle length is configured too short, the Session Reaper uses additional resources
without providing additional benefit. If the cycle length is configured too long, then
expired sessions will use heap space in the Coherence caches unnecessarily. In most
situations, it is far preferable to reduce resource usage than to ensure that sessions are
cleaned up quickly after they expire. Consequently, the default cycle of five minutes is
a good balance between promptness of cleanup and minimal resource usage.

During the reaping cycle, the Session Reaper scans for expired sessions. In most cases,
the Session Reaper takes responsibility for scanning all of the HTTP sessions across the
entire cluster, but there is an optimization available for the single tier topology. In the
single tier topology, when all of the sessions are being managed by storage-enabled
Coherence cluster members that are also running the application server, the session
storage is colocated with the application server. Consequently, it is possible for the
Session Reaper on each application server to scan only the sessions that are stored
locally. This behavior can be enabled by setting the
coherence-reaperdaemon-assume-locality configuration option to true.

Regardless of whether the Session Reaper scans only colocated sessions or all sessions,
it does so in a very efficient manner by using these advanced capabilities of the
Coherence data grid:

■ The Session Reaper delegates the search for expired sessions to the data grid using
a custom ValueExtractor implementation. This ValueExtractor takes advantage
of the BinaryEntry interface so that it can determine if the session has expired
without even deserializing the session. As a result, the selection of expired
sessions can be delegated to the data grid just like any other parallel query, and
can be executed by storage-enabled Coherence members in a very efficient
manner.

■ The Session Reaper uses the com.tangosol.net.partition.PartitionedIterator
class to automatically query on a member-by-member basis, and in a random
order that avoids harmonics in large-scale clusters.

Each storage-enabled member can very efficiently scan for any expired sessions, and it
has to scan only one time per application server per reaper cycle. The result is a default

Configuring the Session Reaper

Cleaning Up Expired HTTP Sessions 7-3

Session Reaper configuration that works well for application server clusters with one
or multiple servers.

The Session Reaper can invalidate sessions either in parallel or serially. By default, it
invalidates sessions in parallel. This ensures that sessions are invalidated in a timely
manner. However, if the application server JVM has a high system load due to a large
number of concurrent threads then you have the option of invalidating serially. To
configure the reaper to invalidate sessions serially, set the
coherence-reaperdaemon-parallel context parameter to false.

Coherence*Web uses a work manager to retrieve threads to execute the parallel
reaping. WebLogic Server defines a default work manager, wm/CoherenceWorkManager,
which it will attempt to use. If no work manager is defined with that name, it will use
the default work manager implemented in Coherence.

To ensure that the Session Reaper does not impact the smooth operation of the
application server, it breaks up its work into chunks and schedules that work in a
manner that spreads the work across the entire reaping cycle. Because the Session
Reaper has to know how much work it must schedule, it maintains statistics on the
amount of work that it performed in previous cycles, and uses statistical weighting to
ensure that statistics from recent reaping cycles count more heavily. There are several
reasons why the Session Reaper breaks up the work in this manner:

■ If the Session Reaper consumed a large number of CPU cycles simultaneously, it
could cause the application to be less responsive to users. By doing a small portion
of the work at a time, the application remains responsive.

■ One of the key performance enablers for Coherence*Web is the near-caching
feature of Coherence; because the sessions that are expired are accessed through
that same near cache to clean them, expiring too many sessions too quickly could
cause the cache to evict sessions that are being used on that application server,
leading to performance loss.

The Session Reaper performs its job efficiently, even with the default configuration by:

■ Delegating as much work as possible to the data grid

■ Delegating work to only one member at a time

■ Enabling the data grid to find expired sessions without deserializing them

■ Restricting the usage of CPU cycles

■ Avoiding cache-thrashing of the near caches that Coherence*Web relies on for
performance

Configuring the Session Reaper
The following are suggestions for tuning the default Session Reaper configuration:

■ If the application is deployed with the in-process topology, then set the
coherence-reaperdaemon-assume-locality configuration option to true.

■ Because all of the application servers are responsible for scanning for expired
sessions, it is reasonable to increase the coherence-reaperdaemon-cycle-seconds
configuration option if the cluster is larger than 10 application servers. The larger
the number of application servers, the longer the cycle can be; for example, with
200 servers, it would be reasonable to set the length of the reaper cycle as high as
30 minutes (that is, setting the coherence-reaperdaemon-cycle-seconds
configuration option to 1800).

Getting Session Reaper Performance Statistics

7-4 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Getting Session Reaper Performance Statistics
The HttpSessionManagerMBeanWeb provides several attributes that serve as
performance statistics for the Session Reaper. These statistics, described in the
following list, include the average time duration for a reap cycle, the number of
sessions reaped, and the time until the next reap cycle:

■ AverageReapDuration, which is the average reap duration (the time it takes to
complete a reap cycle), in milliseconds, since the statistic was reset

■ LastReapDuration, which is the time in milliseconds it took for the last reap cycle
to finish

■ MaxReapedSessions, which is the maximum number of sessions reaped in a reap
cycle since the statistic was reset

■ NextReapCycle, which is the time (as a java.lang.Date data type) for the next
reap cycle

■ ReapedSessions, which is the number of sessions reaped during the last cycle

■ ReapedSessionsTotal, which is the number of expired sessions that have been
reaped since the statistic was reset

These attributes are also described in Table 6–2 in the section "Managing and
Monitoring Applications with JMX" on page 6-1.

You can access these attributes in a monitoring tool such as JConsole. However, you
must set up the Coherence Clustered JMX Framework before you can access them. The
configuration and installation instructions for the framework is provided in "Using
JMX to Manage Coherence" in Oracle Fusion Middleware Managing Oracle Coherence.

Understanding Session Invalidation Exceptions for the Session Reaper
Each Coherence*Web instance has a Session Reaper that will periodically iterate
through all of the sessions in the session cache and check for expired sessions. If
multiple Web applications are using Coherence*Web, then a reaper from one Web
application can invalidate sessions used in a different application. Session listeners
registered with the Web application that is reaping expired sessions will be executed.

Session attribute listeners will attempt to retrieve the session attribute values during
invalidation. If the session attributes are dependent on classes that exist only in the
original Web application, then a class not found exception will be thrown and logged in
the Session Reaper. These exceptions will not cause any disruption in the Web
application or the application server.

Coherence*Web provides a context parameter,
coherence-session-log-invalidation-exceptions, to control whether these
exceptions are logged. The default value, true, allows the exceptions to be logged. If
you want to suppress the logging of these exceptions, set this context parameter to
false.

8

Working with JSF and MyFaces Applications 8-1

8Working with JSF and MyFaces Applications

[9] This chapter describes how to configure Coherence*Web for JavaServer Faces (JSF) and
MyFaces applications. JSF is a framework that enables you to build user interfaces for
Web applications. MyFaces, from the Apache Software Foundation, provides JSF
components that extend the JSF specification. MyFaces components are completely
compatible with the JSF 1.1 Reference Implementation or any other compatible
implementation.

This chapter contains the following sections:

■ Configuring for all JSF and MyFaces Web Applications:

■ Configuring for Instrumented Applications that use MyFaces

■ Configuring for Instrumented Applications that use Mojarra

Configuring for all JSF and MyFaces Web Applications:
JSF and MyFaces attempts to cache the state of the view in the session object. This state
data should be serializable by default, but there could be situations where this would
not be the case. For example:

■ If Coherence*Web reports IllegalStateException due to a non-serializable class,
and all the attributes placed in the session by your Web-application are
serializable, then you must configure JSF/MyFaces to store the state of the view in
a hidden field on the rendered page.

■ If the Web application puts non-serializable objects in the session object, you must
set the coherence-preserve-attributes context parameter to true.

The JSF parameter javax.faces.STATE_SAVING_METHOD identifies where the state of
the view is stored between requests. By default, the state is saved in the servlet session.
Set the STATE_SAVING_METHOD parameter to client in the context-param stanza of the
web.xml file, so that JSF stores the state of the entire view in a hidden field on the
rendered page. If you do not, then JSF may attempt to cache that state, which is not
serializable, in the session object.

Example 8–1 illustrates setting the STATE_SAVING_METHOD parameter in the web.xml
file.

Example 8–1 Setting STATE_SAVING_METHOD in the web.xml File

...
<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
</context-param>

Configuring for Instrumented Applications that use MyFaces

8-2 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

...

Configuring for Instrumented Applications that use MyFaces
If you are deploying the MyFaces application with the Coherence*Web WebInstaller
(that is, an instrumented application), then you might have to complete an additional
step based on the version of MyFaces.

■ If you are using Coherence*Web WebInstaller to deploy a Web-application built
with a pre-1.1.n version of MyFaces, then nothing more needs to be done.

■ If you are using Coherence*Web WebInstaller to deploy a Web-application built
with a 1.2.x version of MyFaces, then add the context parameter
org.apache.myfaces.DELEGATE_FACES_SERVLET to the web.xml file. This
parameter allows you to specify a custom servlet instead of the default
javax.faces.webapp.FacesServlet.

Example 8–2 illustrates setting the DELEGATE_FACES_SERVLET context parameter in
the web.xml file.

Example 8–2 Setting DELEGATE_FACES_SERVLET in the web.xml File

...
<context-param>
 <param-name>org.apache.myfaces.DELEGATE_FACES_SERVLET</param-name>
 <param-value>com.tangosol.coherence.servlet.api23.ServletWrapper</param-value>
</context-param>
...

Configuring for Instrumented Applications that use Mojarra
If you are using Coherence*Web WebInstaller to deploy a Web application based on
the JSF Reference Implementation (Mojarra), then you must declare the FacesServlet
class in the servlet stanza of the web.xml file.

Example 8–3 Declaring the Faces Servlet in the web.xml File

...
<servlet>
 <servlet-name>Faces Servlet (for loading config)</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 </servlet>
...

A

Coherence*Web Context Parameters A-1

ACoherence*Web Context Parameters

[10] This appendix describes the Coherence*Web context parameters. The parameters can
be configured in the web.xml file or they can also be entered on the command line as
system properties. The system properties have the same name as the context
parameters, but the dash (-) is replaced with a period (.).

For example, the context parameter coherence-enable-sessioncontext can be
declared on the command line by:

-Dcoherence.enable.sessioncontext=true

If both a system property and the equivalent context parameter are configured, the
value from the system property is honored.

Table A–1 describes the context parameters for Coherence*Web.

Table A–1 Context Parameters for Coherence*Web

Parameter Name Description

coherence-application-name Coherence*Web uses the value of this parameter to determine the name of the
application that uses the ApplicationScopeController interface to scope
attributes. The value for this parameter should be provided in the following
format:

application name + ! + Web module name

The application name is the name of the application that uses the
ApplicationScopeController interface and Web module name is the name of
the Web module in which it appears.

For example, if you have an EAR file named test.ear and a Web-module
named app1 defined in the EAR file, then the default value for the
coherence-application-name parameter would be test!app1.

If this parameter is not configured, then Coherence*Web uses the name of the
class loader instead. Also, if the parameter is not configured and the
ApplicationScopeController interface is configured, then a warning is
logged saying that the application name was not configured. See "Session
Attribute Scoping" on page 5-12 for more information.

coherence-attribute-overflow-
threshold

For the Split Model, described in "Session Models" on page 5-2, this value
specifies the minimum length (in bytes) that the serialized form of an attribute
value must be for it to be stored in the separate overflow cache that is reserved
for large attributes.

If unspecified, this parameter defaults to 1024.

coherence-cache-configuration
-path

Specifies the name of the file that Coherence*Web should use to obtain session
cache information, instead of using the default
default-session-cache-config.xml file. See "Customizing the Name of the
Session Cache Configuration File" on page 5-27.

A-2 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

coherence-cache-delegator-cla
ss

Specifies a cache delegator class that is responsible for manipulating (getting,
putting, or deleting) data in the distributed cache. Valid value is:

■ com.tangosol.coherence.servlet.LocalSessionCacheDelegator—This
class indicates that the local cache should be used for storing and
retrieving the session instance before attempting to use the distributed
cache. See "Getting Concurrent Access to the Same Session Instance" on
page 5-28 for more information.

coherence-cluster-owned If true, Coherence*Web automatically shuts down the Coherence node when
the Web application shuts down. You must use the WAR-scoped cluster node
deployment model in this case. See "WAR-Scoped Cluster Nodes" on page 5-16
for more information.

If false, the Web application is responsible for shutting down the Coherence
node (see com.tangosol.net.CacheFactory.shutdown()in the Javadoc). You
must carefully consider a cluster node-scoping deployment model in this case
and the circumstances under which the application shuts down the Coherence
node and the side effects of doing so. See "Cluster Node Isolation" on
page 5-13 for more information on cluster node scoping.

Note: When using the WebInstaller, a value of true instructs the WebInstaller
to place the Coherence library in the WEB-INF/lib directory of each Web
application found in your Java EE application.

If unspecified, this parameter defaults to false.

coherence-configuration-consi
stency

If true, Coherence*Web runs a configuration check at startup to determine
whether all nodes in the Web tier have the same Coherence*Web
configuration. If the configuration of a particular node is not consistent, then it
will fail to start (which, in turn, prevents the application from starting).

If false, (there is no checking) and the configurations are not consistent, then
the cluster members might exhibit inconsistent behavior in managing the
session data.

If unspecified, this parameter defaults to false.

coherence-contextless-session
-retain-millis

Specifies the number of milliseconds that a server holds a lock on a session
while accessing it without the session being implied by the current request
context. A session is implied by the current request context if and only if the
current thread is processing a servlet request, and the request is associated
with that session. All other access to a session object is out of context. For
example, if a reference to an arbitrary session is obtained from a
SessionContext object (if that option is enabled), or if the application has code
that holds on to session object references to manage sessions directly. Because
session access requires session ownership, out of context access to the session
object automatically obtains ownership on behalf of the caller; that ownership
will be retained for the number of milliseconds specified by this option so that
repeated calls to the session do not individually obtain and release ownership,
which is potentially an expensive operation. The valid range is 10 to 10000
(from 1/100th of a second up to 10 seconds).

If unspecified, this parameter defaults to 200.

Table A–1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

Coherence*Web Context Parameters A-3

coherence-distributioncontrol
ler-class

This value specifies a class name of the
com.tangosol.coherence.servlet.HttpSessionCollection$SessionDistrib
utionController interface implementation.

Valid values include:

■ com.tangosol.coherence.servlet.AbstractHttpSessionCollection$Distr
ibutedController an implementation of the
SessionDistributionController interface that forces all sessions (and
thus their attributes) to be managed in a distributed manner. This is the
default behavior, but by having an implementation that forces this, the
raw overhead of using a HttpSessionController can be measured.

■ com.tangosol.coherence.servlet.AbstractHttpSessionCollection$Hybri
dController an implementation of the SessionDistributionController
interface that forces all sessions and serializable attributes to be managed
in a distributed manner. All session attributes that do not implement the
Serializable interface will be kept local.

■ com.tangosol.coherence.servlet.AbstractHttpSessionCollection$Local
Controller an implementation of the SessionDistributionController
interface that forces all sessions (and thus their attributes) to be managed
locally. This might not be useful for production purposes, but it can be
useful for testing the difference in scalable performance between
local-only and fully-distributed implementations.

coherence-enable-sessionconte
xt

When set to true, this parameter allows the application to iterate sessions
from the session context, thus disobeying the deprecation in the servlet
specification.

If unspecified, this parameter defaults to false.

coherence-eventlisteners This is the comma-delimited list of names of application classes that want to
receive events from the Web container. This list comes from the application
listeners declared in the listener elements of the web.xml file.

coherence-enable-suspect-attr
ibutes

If set to true, Coherence*Web attempts to detect whether the value of any
session-related attributes have changed. Attributes that can be changed
(determined with a simple check) and that can be accessed by a get method
are deemed to be suspect. Changeable objects might have been changed by
application code and must be re-serialized back into the cache. See "Detecting
Changed Attribute Values" on page 5-26 for more information.

If unspecified, this parameter defaults to true.

coherence-factory-class This is the fully qualified name of the class that implements the
SessionHelper.Factory factory class.

This parameter defaults to
com.tangosol.coherence.servlet.apinn.DefaultFactory where nn is 22, 23,
24, or 25 for Servlet 2.2, 2.3, 2.4, or 2.5 containers respectively.

coherence-local-session-cache
name

This name overrides the name of the local cache that stores nondistributed
sessions when the coherence-distributioncontroller-class parameter is
specified.

If unspecified, this parameter defaults to local-session-storage.
Appendix C, "Session Cache Configuration File" describes this parameter.

coherence-local-attribute-cac
hename

This name overrides the name of the local cache that stores non-distributed
sessions when either the coherence-sessiondistributioncontroller-class
parameter is specified or the coherence-preserve-attributes parameter is
true.

If unspecified, this parameter defaults to local-attribute-storage.
Appendix C, "Session Cache Configuration File" describes this parameter.

Table A–1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

A-4 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

coherence-preserve-attributes This value, if set to true, specifies that non-serializable attributes should be
preserved as local ones. This parameter requires a load balancer to be present
to retrieve non-serializable attributes for a session.

These attributes will be lost if the client (application server) fails. The
application would need to be able to recover from this.

If you are using Coherence*Web on GlassFish, this value will be set to true
because the GlassFish Server requires local sessions to be available.

If unspecified, this parameter defaults to false.

coherence-reaperdaemon-assume
-locality

This setting allows the Session Reaper to assume that the sessions that are
stored on this node (for example, by a distributed cache service) are the only
sessions that this node must check for expiration. This value must be set to
false if the session storage cache is being managed by nodes that are not
running a reaper, for example if cache servers are being used to manage the
session storage cache.

If cache servers are being used, select the Split Model and run the session
overflow storage in a separate distributed cache service that is managed
entirely by the cache servers. Leave the session storage cache itself in a
distributed cache service that is managed entirely by the application server
JVMs so they can take advantage of this assume locality feature. See Chapter 7,
"Cleaning Up Expired HTTP Sessions" for more information about the Session
Reaper.

If unspecified, this parameter defaults to true.

coherence-reaperdaemon-cluste
r-coordinated

If true, the Session Reaper coordinates reaping in the cluster such that only
one server will perform reaping within a given reaping cycle, and it will be
responsible for checking all of the sessions that are being managed in the
cluster. See Chapter 7, "Cleaning Up Expired HTTP Sessions" for more
information about the Session Reaper.

This option should not be used if sticky optimization
(coherence-sticky-sessions) is also enabled. See "Understanding the Session
Reaper" on page 7-1 for more information.

If unspecified, this parameter defaults to false.

coherence-reaperdaemon-cycle-
seconds

This is the number of seconds that the daemon rests between reaping. For
production clusters with long session timeout intervals, this can safely be set
higher. For testing, particularly with short session timeout intervals, it can be
set much lower. Setting it too low can cause more network traffic and use more
processing cycles, and has benefit only if the application requires the sessions
to be invalidated quickly when they have expired. See Chapter 7, "Cleaning
Up Expired HTTP Sessions" for more information about the Session Reaper.

If unspecified, this parameter defaults to 300.

coherence-reaperdaemon-parall
el

If set to true, the Session Reaper will invalidate expired sessions in parallel.
When set to false, expired sessions will be invalidated serially. See
"Understanding the Session Reaper" on page 7-1.

The default is true.

coherence-reaperdaemon-priori
ty

This is the priority for the Session Reaper daemon. For more information, see
Chapter 7, "Cleaning Up Expired HTTP Sessions" and the source for the
java.lang.Thread class.

If unspecified, this parameter defaults to 5.

coherence-reaperdaemon-sweep-
modulo

This parameter is deprecated as of Coherence Release 3.5.

Table A–1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

Coherence*Web Context Parameters A-5

coherence-scopecontroller-cla
ss

This value specifies a class name of the optional
com.tangosol.coherence.servlet.HttpSessionCollection$AttributeScope
Controller interface implementation. See "Session Attribute Scoping" on
page 5-12 for more information.

Valid values include:

■ com.tangosol.coherence.servlet.AbstractHttpSessionCollection$Appli
cationScopeController

■ com.tangosol.coherence.servlet.AbstractHttpSessionCollection$Globa
lScopeController

The default value for Coherence*Web is
com.tangosol.coherence.servlet.AbstractHttpSessionCollection$Applic
ationScopeController

For Coherence*Web WebInstaller, there is no declared default value.

coherence-servletcontext-clus
tered

This value is either true or false to indicate whether the attributes of the
ServletContext will be clustered. If true, then all serializable ServletContext
attribute values will be shared among all cluster nodes.

If unspecified, this parameter defaults to false, primarily because the servlet
specification indicates that the ServletContext attributes are local to a JVM
and should not be clustered.

coherence-servletcontext-cach
ename

This specifies the name of the Coherence cache to be used to hold the servlet
context data if the servlet context is clustered.

If unspecified, this parameter defaults to servletcontext-storage.
Appendix C, "Session Cache Configuration File" describes this parameter.

coherence-session-affinity-to
ken

Configures the session affinity suffix token with a given value. For example, to
set the session affinity suffix to abcd, add the following code to the Web
application’s web.xml file:

<context-param>
 <param-name>coherence-session-affinity-token</param-name>
 <param-value>abcd</param-value>
</context-param>

To strip the session affinity suffix from the token, enter an exclamation point
(!) as the parameter value. See "Sharing Coherence*Web Sessions with Other
Application Servers" on page 2-16 for more information.

coherence-session-app-locking This value, if set to true, will prevent two threads in different applications
from processing a request for the same session at the same time. If set to true
the value of the coherence-session-member-locking parameter will be
ignored, because application locking implies member locking. A value of
false is incompatible with thread locking.

If unspecified, this parameter defaults to false.

See also coherence-session-member-locking, coherence-session-locking,
and coherence-session-thread-locking parameter descriptions in this table
and "Session Locking Modes" on page 5-17.

coherence-session-cachename This name overrides the name of the clustered cache that stores the sessions.

If unspecified, this parameter defaults to session-storage. Appendix C,
"Session Cache Configuration File" describes this parameter.

coherence-session-cookie-doma
in

This specifies the domain of the session cookie as defined by Request for
Comments 2109: HTTP State Management Mechanism (RFC 2109). By default, no
domain is set explicitly by the session management implementation. See
"Session and Session Attribute Scoping" on page 5-10 for more information.

Table A–1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

A-6 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

coherence-session-cookie-http
only

Appends the HttpOnly attribute to the session cookie. Note that not all
browsers support this functionality. This context parameter can be used only
with instrumented applications. See "Preventing Cross-Site Scripting Attacks"
on page 4-11 for more information.

coherence-session-cookie-name This specifies the name of the session cookie.

If unspecified, this parameter defaults to JSESSIONID.

coherence-session-cookie-path This specifies the path of the session cookie as defined by RFC 2109. By
default, no path is set explicitly by the session management implementation.
See "Session and Session Attribute Scoping" on page 5-10 for more
information.

coherence-session-cookie-max-
age

This specifies the maximum age in seconds of the session cookie as defined by
RFC 2109. A value of -1 indicates that the cookie will not persist on the client; a
positive value gives the maximum age that the cookie will be persistent for the
client. Zero is not permitted.

If unspecified, this parameter defaults to -1.

coherence-session-cookie-secu
re

If true, this value ensures that the session cookie will be sent only from a Web
client over a Secure Socket Layer (SSL) connection. If unspecified, the default
is false.

coherence-session-cookies-ena
bled

If unspecified, this parameter defaults to true to enable session cookies.

coherence-session-deathcert-c
achename

This name overrides the name of the clustered cache that stores the IDs of
recently departed sessions.

If unspecified, this parameter defaults to session-death-certificates.
Appendix C, "Session Cache Configuration File" describes this parameter.

coherence-session-expire-seco
nds

This value overrides the session expiration time, and is expressed in seconds.
Setting it to -1 causes sessions to never expire. See Chapter 7, "Cleaning Up
Expired HTTP Sessions" for more information.

If unspecified, this parameter defaults to 1800.

coherence-session-get-lock-ti
meout

This value configures a timeout for lock acquisition for Coherence*Web. See
"Troubleshooting Locking in HTTP Sessions" on page 5-19 for more
information.

coherence-session-id-length This is the length, in characters, of generated session IDs. The suggested
absolute minimum length is 8.

If unspecified, this parameter defaults to 12.

coherence-session-lazy-access This value enables lazy acquisition of sessions. A session will be acquired only
when the servlet or filter attempts to access it. This is relevant only for
instrumented Web applications. See "Accessing Sessions with Lazy
Acquisition" on page 5-24.

If unspecified, this parameter defaults to false.

coherence-session-locking If false, concurrent modification to sessions, with the last update being saved,
will be allowed. If coherence-session-app-locking,
coherence-session-member-locking, or coherence-session-thread-locking
are set to true, then this value is ignored (being logically true). See
"Optimistic Locking" on page 5-17 and "Last-Write-Wins Locking" on
page 5-18.

If unspecified, this parameter defaults to false.

See also coherence-session-app-locking,
coherence-session-member-locking, and
coherence-session-thread-locking in this table.

Table A–1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

Coherence*Web Context Parameters A-7

coherence-session-locking-mod
e

The value of this context parameter determines the locking mode that will
govern concurrent access to HTTP sessions.

■ none—This value allows concurrent access to a session by multiple
threads in a single member or multiple members. In this case, the last
write is saved. This is the default locking mode. See "Last-Write-Wins
Locking" on page 5-18.

■ optimistic—This value allows multiple web container threads in one or
more members to access the same session concurrently. See "Optimistic
Locking" on page 5-17.

■ app—This value prevent two threads in different applications from
processing a request for the same session at the same time. If this
parameter is set to app, then the value of the
coherence-session-member-locking parameter will be ignored, because
application locking implies member locking. A value of false is
incompatible with thread locking. See "Application Locking" on
page 5-18.

■ member—This value allows multiple web container threads in the same
cluster node to access and modify the same session concurrently, but
prohibits concurrent access by threads in different members. See "Member
Locking" on page 5-18.

■ thread—This value prevents two threads in the same JVM from
processing a request for the same session at the same time. If set to true,
the value of the coherence-session-member-locking parameter is
ignored, because thread locking implies member locking. See "Thread
Locking" on page 5-18.

For example, to set the coherence-session-locking-mode context parameter
to application locking in web.xml:

<context-param>
 <param-name>coherence-session-locking-mode</param-name>
 <param-value>app</param-value>
</context-param>

coherence-session-log-invalid
ation-exceptions

During session invalidation, many class not found exceptions might be thrown
and logged in the session reaper. If this context parameter is set to false, then
the exceptions will be suppressed. If set to true, then the exceptions will be
logged.

If unspecified, this parameter defaults to true.

For more information on session invalidation and the cause of the class not
found exceptions that might occur during operation of the session reaper, see
"Understanding Session Invalidation Exceptions for the Session Reaper" on
page 7-4.

coherence-session-log-threads
-holding-lock

If true, this value specifies if a diagnostic invocation service is executed when
a member cannot acquire the cluster lock for a session. The invocation service
will cause the member that has ownership of the session to log the stack trace
of the threads that are currently holding the lock. The
coherence-session-log-threads-holding-lock context parameter is
available only when the coherence-sticky-sessions context parameter is set
to true.

If unspecified, this parameter defaults to true.

See "Troubleshooting Locking in HTTP Sessions" on page 5-19 for more
information.

Table A–1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

A-8 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

coherence-session-logger-leve
l

An alternative way to set the logging level for Coherence*Web (as opposed to
JDK logging). The valid values for this parameter are the same as for JDK
logging: SEVERE, WARNING, INFO, CONFIG, FINE, FINER (default), and FINEST. See
"Configuring Logging for Coherence*Web" on page 5-28 for more information.

See also the Javadoc for java.util.logging:

http://docs.oracle.com/javase/1.4.2/docs/api/java/util/logging/Leve
l.html

coherence-session-management-
cachename

This name overrides the name of the clustered cache that stores the
management and configuration information for the session management
implementation. Generally, it should be configured as a replicated cache.

If unspecified, this parameter defaults to session-management. Appendix C,
"Session Cache Configuration File" describes this parameter.

coherence-session-member-lock
ing

If true, this value prevents two threads in different members from processing
a request for the same session at the same time.

If unspecified, this parameter defaults to false.

See also coherence-session-thread-locking, coherence-session-locking,
and coherence-session-app-locking in this table.

coherence.session.optimizeMod
ifiedSessions

This JVM system property, if set to true, enables near cache optimizations
which can improve performance with applications that use Last-Write-Wins
locking.

If unspecified, this value defaults to false.

This parameter can be set only on the command line as a system property.

coherence-session-overflow-ca
chename

For the Split Model, this value overrides the name of the clustered cache that
stores the large attributes that exceed a certain size and thus are determined to
be more efficiently managed as separate cache entries and not as part of the
serialized session object itself.

If unspecified, this parameter defaults to session-overflow. Appendix C,
"Session Cache Configuration File" describes this parameter.

coherence-session-strict-spec If false, then the implementation will not be required to adhere to the servlet
specification. The implementation will ignore certain types of exceptions and
the application will not terminate. Setting, getting, and removing attributes, or
invalidating sessions will not generate any callbacks to session listeners. Any
ClassNotFound exceptions will not be propagated back to the caller if an
attribute cannot be deserialized because the class does not exist in the
invoking application.

If true, then the implementation strictly adheres to the servlet specification.
ClassNotFound exceptions must be handled by the application, and session
listener events will be sent, even if retrieving the attribute value fails.

If unspecified, this parameter defaults to true.

coherence-session-thread-lock
ing

If true, this value prevents two threads in the same JVM from processing a
request for the same session at the same time. If set to true, the value of the
coherence-session-member-locking parameter is ignored, because thread
locking implies member locking.

If unspecified, this parameter defaults to false.

See also coherence-session-app-locking, coherence-session-locking, and
coherence-session-member-locking parameter descriptions in this table and
"Session Locking Modes" on page 5-17.

coherence-session-urldecode-b
ycontainer

If true, this value uses the container's decoding of the URL session ID. If
coherence-session-urlencode-name has been overridden, this must be set to
false. Setting this to false will not work in some containers.

If unspecified, this parameter defaults to true.

Table A–1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

Coherence*Web Context Parameters A-9

coherence-session-urlencode-b
ycontainer

If true, this value uses the container's encoding of the URL session ID. Setting
this to true could conflict with the setting for
coherence-session-urlencode-name if it has been specified.

If unspecified, this parameter defaults to false.

coherence-session-urlencode-e
nabled

If true, this value enables URL encoding of session IDs.

If unspecified, this parameter defaults to true.

coherence-session-urlencode-n
ame

This is the parameter name to encode the session ID into the URL. On some
containers, this value cannot be overridden.

If unspecified, this parameter defaults to jsessionid.

coherence-session-weblogic-co
mpatibility-mode

If true, a single session ID (with the cookie path set to "/") will map to a
unique Coherence*Web session instance in each Web application. If false,
then the standard behavior will apply: that is, a single session ID will map to a
single session instance. All other session persistence mechanisms in WebLogic
Server use a single session ID in each Web application to refer to different
session instances.

If unspecified, this parameter defaults to true. An exception is when the
application is configured to use the global scope controller. In this case, the
default is false.

See "Scoping the Session Cookie Path" on page 2-15.

coherence-sessioncollection-c
lass

This is the fully-qualified class name of the HttpSessionCollection
implementation to use. Possible values include:

■ com.tangosol.coherence.servlet.MonolithicHttpSessionCollection

■ com.tangosol.coherence.servlet.SplitHttpSessionCollection
(default)

■ com.tangosol.coherence.servlet.TraditionalHttpSessionCollection

A value must be specified for this parameter. See "Configuring a Session
Model" on page 5-7.

coherence-shutdown-delay-seco
nds

This value determines how long the session management implementation
waits before shutting down after receiving the last indication that the
application has been stopped, either from ServletContextListener events
(Servlet 2.3 or later) or by the destruction of Servlet and Filter objects. This
value is expressed in seconds. A value of zero indicates synchronous
shutdown; any positive value indicates asynchronous shutdown.

If unspecified, this parameter defaults to 0, because some servers are not
capable of asynchronous shutdown.

coherence-sticky-sessions If true, this value specifies whether sticky session optimizations will be used.
This should be enabled only if a sticky load balancer is being used. This
feature requires member, application or thread locking to be enabled. See
"Enabling Sticky Session Optimizations" on page 5-19.

See also coherence-session-thread-locking,
coherence-session-member-locking, and coherence-session-app-locking
in this table.

If unspecified, this parameter defaults to false.

coherence-web-sessions-enable
d

Enables Coherence*Web sessions in WebLogic Portal applications.

Table A–1 (Cont.) Context Parameters for Coherence*Web

Parameter Name Description

A-10 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

B

Capacity Planning B-1

BCapacity Planning

[11] This appendix helps you estimate the number of cache servers that an application will
need. These equations will help you only to arrive at a reasonable estimate; they do not
account for the effects of cache indexes, nonapplication objects that might reside on the
cache server heap, failover headroom, and so on.

To find the number of cache servers that you will need, you must first calculate the
application’s heap requirements and the cache server’s available tenured generation.

1. Calculate your application’s total heap requirements.

When trying to determine the number of cache servers that you will need for your
application, a good starting point is to determine your application’s total heap
requirements. The total heap requirement can be calculated as the number of
sessions that you will run, multiplied by the average number of cached objects per
session, multiplied by average number of bytes per cached object. Because you
typically make one backup copy per cache entry, multiply the total by 2. Written as
an equation, this becomes:

Total_Heap_Requirement = 2 * (Number_of_Sessions) * (Average_Number_of_Cached_
Objects per Session) * (Average_Number_of_Bytes per Cached_Object)

The units of measure for Total_Heap_Requirement are bytes. The Average_
Number_of_Bytes per Cached_Object, means the number of bytes in the
serialized byte stream of primary copies only. Note that this equation does not
address unserialized object size. Space requirements for backup copies are
accounted for separately.

2. Calculate the available tenured generation in a cache server JVM.

The available tenured generation is a function of the maximum heap size
allocation and other user-specified JVM heap-sizing parameters. Another factor in
the available tenured generation is the percentage of the heap that is available for
storage. Typically, 66% is used as the maximum percentage of the heap available
for storage, but this figure might be too low for your system. Make it a variable:

Percent_of_Heap_Available_for_Storage = 0.66

Available_Tenured_Generation = (Maximum_Heap_Size) * (Percent_of_Heap_
Available_for_Storage)

3. Calculate the number of cache servers that will be needed.

To calculate the number of cache servers that will be needed, divide the total heap
requirement by the available tenured generation.

Number_of_Cache_Servers = (Total_Heap_Requirement / Available_Tenured_
Generation)

B-2 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

C

Session Cache Configuration File C-1

CSession Cache Configuration File

Table C–1 Cache-Related Values Used in default-session-cache-config.xml

Value Description

local-attribute-storage This local cache is used to store attributes that are not distributed. This can happen
under these conditions:

■ A coherence-distributioncontroller-class is configured. Attributes for local
sessions will be stored in this cache.

■ A non-serializable attribute is set on a distributed session. If
coherence-preserve-attributes is set to true, then non-serializable attributes
will be placed in the cache. Table A–1 describes this parameter.

local-session-storage This local cache is used to store session models that are considered to be local by the
configured (if any) coherence-distributioncontroller-class parameter. Table A–1
describes this parameter.

servletcontext-storage If ServletContext attribute clustering (see the
coherence-servletcontext-clustered parameter in Table A–1) is enabled (it is
disabled by default), this cache is used to store ServletContext attributes. This cache
is replicated by default, because it is expected that there will a few read-mostly
attributes.

session-management This cache is used to store internal configuration and management information for
the session management implementation. This information is updated infrequently;
therefore, it is a replicated cache by default.

session-overflow If the coherence-sessioncollection-class parameter (described in Table A–1) is set
to com.tangosol.coherence.servlet.SplitHttpSessionCollection, then this cache
will hold large session attributes. By default, session attributes larger than 1 K will be
stored in this cache. This is configured as a distributed cache.

session-storage This cache is used to store session models. By default it is mapped to a near cache
backed by a distributed cache because it is expected that a container will access and
modify a subset of sessions multiple times (if sticky session load balancing is
configured.) See "Session Models" on page 5-2 for more information.

[12] This appendix describes the contents of the session cache configuration file
default-session-cache-config.xml. Coherence*Web uses the caches and services
defined in the file to implement HTTP session management. This file is deployed in
the WEB-INF/classes directory. Table C–1 describes the default cache-related values
used in the default-session-cache-config.xml file.

Table C–2 describes the services-related values used in the
default-session-cache-config.xml file.

Table C–2 Services-Related Values Used in default-session-cache-config.xml

Value Description

DistributedSessions This distributed service is used by the following caches:

■ session-storage

■ session-overflow

■ session-death-certificates

The tangosol.coherence.session.localstorage system property controls if a
JVM stores and manages data for these caches. Under most circumstances, this
should be set to false for Web container JVMs. See "Deployment Topologies" on
page 5-20 for more details.

ReplicatedSessionsMisc This replicated service is used by the session-management and
servletcontext-storage caches.

SessionOwnership This invocation service is used by the sticky session optimization feature (if
coherence-sticky-sessions is set to true).

C-2 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Example C–1 illustrates the contents of the default-session-cache-config.xml file.
The cache- and services-related values described in Table C–1 and Table C–2 appear in
bold.

Example C–1 Contents of the default-session-cache-config.xml File

<?xml version="1.0"?>
<!-- -->
<!-- -->
<!-- Cache configuration descriptor for Coherence*Web -->
<!-- -->
<!-- -->

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"

xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">

 <scope-name>oracle.coherence.web</scope-name>

 <caching-scheme-mapping>
 <!--
 The clustered cache used to store Session management data.
 -->
 <cache-mapping>
 <cache-name>session-management</cache-name>
 <scheme-name>replicated</scheme-name>
 </cache-mapping>

 <!--
 The clustered cache used to store ServletContext attributes.
 -->
 <cache-mapping>
 <cache-name>servletcontext-storage</cache-name>
 <scheme-name>replicated</scheme-name>
 </cache-mapping>

 <!--
 The clustered cache used to store Session attributes.
 -->

Session Cache Configuration File C-3

 <cache-mapping>
 <cache-name>session-storage</cache-name>
 <scheme-name>session-near</scheme-name>
 </cache-mapping>

 <!--
 The clustered cache used to store the "overflowing" (split-out due to size)
 Session attributes. Only used for the "Split" model.
 -->
 <cache-mapping>
 <cache-name>session-overflow</cache-name>
 <scheme-name>session-distributed</scheme-name>
 </cache-mapping>

 <!--
 The local cache used to store Sessions that are not yet distributed (if
 there is a distribution controller).
 -->
 <cache-mapping>
 <cache-name>local-session-storage</cache-name>
 <scheme-name>unlimited-local</scheme-name>
 </cache-mapping>

 <!--
 The local cache used to store Session attributes that are not distributed
 (if there is a distribution controller or attributes are allowed to become
 local when serialization fails).
 -->
 <cache-mapping>
 <cache-name>local-attribute-storage</cache-name>
 <scheme-name>unlimited-local</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <!--
 Replicated caching scheme used by the Session management and ServletContext
 attribute caches.
 -->
 <replicated-scheme>
 <scheme-name>replicated</scheme-name>
 <service-name>ReplicatedSessionsMisc</service-name>
 <request-timeout>30s</request-timeout>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>unlimited-local</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </replicated-scheme>

 <!--
 Near caching scheme used by the Session attribute cache. The front cache
 uses a Local caching scheme and the back cache uses a Distributed caching
 scheme.
 -->
 <near-scheme>
 <scheme-name>session-near</scheme-name>
 <front-scheme>
 <local-scheme>

C-4 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

 <scheme-ref>session-front</scheme-ref>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <distributed-scheme>
 <scheme-ref>session-distributed</scheme-ref>
 </distributed-scheme>
 </back-scheme>
 <invalidation-strategy>present</invalidation-strategy>
 </near-scheme>

 <local-scheme>
 <scheme-name>session-front</scheme-name>
 <eviction-policy>HYBRID</eviction-policy>
 <high-units>1000</high-units>
 <low-units>750</low-units>
 </local-scheme>

 <distributed-scheme>
 <scheme-name>session-distributed</scheme-name>
 <scheme-ref>session-base</scheme-ref>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>unlimited-local</scheme-ref>
 </local-scheme>
 <!-- for disk overflow use this backing scheme instead:
 <overflow-scheme>
 <scheme-ref>session-paging</scheme-ref>
 </overflow-scheme>
 -->
 </backing-map-scheme>
 </distributed-scheme>

 <!--
 "Base" Distributed caching scheme that defines common configuration.
 -->
 <distributed-scheme>
 <scheme-name>session-base</scheme-name>
 <service-name>DistributedSessions</service-name>
 <thread-count>0</thread-count>
 <lease-granularity>member</lease-granularity>
 <local-storage system-property="tangosol.coherence.session.localstorage">
 false</local-storage>
 <partition-count>257</partition-count>
 <backup-count>1</backup-count>
 <backup-storage>
 <type>on-heap</type>
 </backup-storage>
 <request-timeout>30s</request-timeout>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>unlimited-local</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <!--
 Disk-based Session attribute overflow caching scheme.
 -->

Session Cache Configuration File C-5

 <overflow-scheme>
 <scheme-name>session-paging</scheme-name>
 <front-scheme>
 <local-scheme>
 <scheme-ref>session-front</scheme-ref>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <external-scheme>
 <bdb-store-manager/>
 </external-scheme>
 </back-scheme>
 </overflow-scheme>

 <!--
 Local caching scheme definition used by all caches that do not require an
 eviction policy.
 -->
 <local-scheme>
 <scheme-name>unlimited-local</scheme-name>
 <service-name>LocalSessionCache</service-name>
 </local-scheme>

 <!--
 Clustered invocation service that manages sticky session ownership.
 -->
 <invocation-scheme>
 <service-name>SessionOwnership</service-name>
 <request-timeout>30s</request-timeout>
 </invocation-scheme>
 </caching-schemes>
</cache-config>

C-6 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

D

Session Cache Confguration File Without a Near Cache D-1

DSession Cache Confguration File Without a
Near Cache

[13] This appendix illustrates a sample session cache configuration file
(session-cache-config.xml) that does not contain a near cache configuration.
Typically, you would omit the near cache configuration when you are using local
session instances. "Getting Concurrent Access to the Same Session Instance" on
page 5-28 describes a use case where you would use local session instances instead of a
near cache.

In Example D–1, the scheme-name under cache-mapping has been changed from
session-storage to session-distributed. The near-scheme section has been
removed, but the local-scheme and distributed-scheme remain. This is noted in
bold font in the example.

Example D–1 session-cache-config.xml File Without a Near Cache Configuration

<?xml version="1.0"?>
<!-- -->
<!-- -->
<!-- Cache configuration descriptor for Coherence*Web -->
<!-- -->
<!-- -->

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"

xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">

 <caching-scheme-mapping>
 <!--
 The clustered cache used to store Session management data.
 -->
 <cache-mapping>
 <cache-name>session-management</cache-name>
 <scheme-name>replicated</scheme-name>
 </cache-mapping>

 <!--
 The clustered cache used to store ServletContext attributes.
 -->
 <cache-mapping>
 <cache-name>servletcontext-storage</cache-name>
 <scheme-name>replicated</scheme-name>
 </cache-mapping>

D-2 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

 <!--
 The clustered cache used to store Session attributes.
 -->
<!--
session-near has been changed to session-distributed
-->
 <cache-mapping>
 <cache-name>session-storage</cache-name>
 <scheme-name>session-distributed</scheme-name>
 </cache-mapping>

 <!--
 The clustered cache used to store the "overflowing" (split-out due to size)
 Session attributes. Only used for the "Split" model.
 -->
 <cache-mapping>
 <cache-name>session-overflow</cache-name>
 <scheme-name>session-distributed</scheme-name>
 </cache-mapping>

 <!--
 The local cache used to store Sessions that are not yet distributed (if
 there is a distribution controller).
 -->
 <cache-mapping>
 <cache-name>local-session-storage</cache-name>
 <scheme-name>unlimited-local</scheme-name>
 </cache-mapping>

 <!--
 The local cache used to store Session attributes that are not distributed
 (if there is a distribution controller or attributes are allowed to become
 local when serialization fails).
 -->
 <cache-mapping>
 <cache-name>local-attribute-storage</cache-name>
 <scheme-name>unlimited-local</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <!--
 Replicated caching scheme used by the Session management and ServletContext
 attribute caches.
 -->
 <replicated-scheme>
 <scheme-name>replicated</scheme-name>
 <service-name>ReplicatedSessionsMisc</service-name>
 <request-timeout>30s</request-timeout>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>unlimited-local</scheme-ref>
 </local-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </replicated-scheme>

<!--
The near-scheme section has been removed

Session Cache Confguration File Without a Near Cache D-3

-->
 <local-scheme>
 <scheme-name>session-front</scheme-name>
 <eviction-policy>HYBRID</eviction-policy>
 <high-units>1000</high-units>
 <low-units>750</low-units>
 </local-scheme>

 <distributed-scheme>
 <scheme-name>session-distributed</scheme-name>
 <scheme-ref>session-base</scheme-ref>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>unlimited-local</scheme-ref>
 </local-scheme>
 <!-- for disk overflow use this backing scheme instead:
 <overflow-scheme>
 <scheme-ref>session-paging</scheme-ref>
 </overflow-scheme>
 -->
 </backing-map-scheme>
 </distributed-scheme>

 <!--
 Distributed caching scheme used by the "recently departed" Session cache.
 -->
 <distributed-scheme>
 <scheme-name>session-certificate</scheme-name>
 <scheme-ref>session-base</scheme-ref>
 <backing-map-scheme>
 <local-scheme>
 <eviction-policy>HYBRID</eviction-policy>
 <high-units>4000</high-units>
 <low-units>3000</low-units>
 <expiry-delay>86400</expiry-delay>
 </local-scheme>
 </backing-map-scheme>
 </distributed-scheme>

 <!--
 "Base" Distributed caching scheme that defines common configuration.
 -->
 <distributed-scheme>
 <scheme-name>session-base</scheme-name>
 <service-name>DistributedSessions</service-name>
 <thread-count>0</thread-count>
 <lease-granularity>member</lease-granularity>
 <local-storage
system-property="tangosol.coherence.session.localstorage">false</local-storage>
 <partition-count>257</partition-count>
 <backup-count>1</backup-count>
 <backup-storage>
 <type>on-heap</type>
 </backup-storage>
 <request-timeout>30s</request-timeout>
 <backing-map-scheme>
 <local-scheme>
 <scheme-ref>unlimited-local</scheme-ref>
 </local-scheme>
 </backing-map-scheme>

D-4 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

 <autostart>true</autostart>
 </distributed-scheme>

 <!--
 Disk-based Session attribute overflow caching scheme.
 -->
 <overflow-scheme>
 <scheme-name>session-paging</scheme-name>
 <front-scheme>
 <local-scheme>
 <scheme-ref>session-front</scheme-ref>
 </local-scheme>
 </front-scheme>
 <back-scheme>
 <external-scheme>
 <bdb-store-manager/>
 </external-scheme>
 </back-scheme>
 </overflow-scheme>

 <!--
 Local caching scheme definition used by all caches that do not require an
 eviction policy.
 -->
 <local-scheme>
 <scheme-name>unlimited-local</scheme-name>
 <service-name>LocalSessionCache</service-name>
 </local-scheme>

 <!--
 Clustered invocation service that manages sticky session ownership.
 -->
 <invocation-scheme>
 <service-name>SessionOwnership</service-name>
 <request-timeout>30s</request-timeout>
 </invocation-scheme>
 </caching-schemes>
</cache-config>

E

Oracle Coherence*Web Extension for OVAB E-1

EOracle Coherence*Web Extension for OVAB

[14] This appendix describes Coherence*Web extensions for Oracle Virtual Assembly Builder,
a tool for virtualizing installed Oracle components, modifying those components, and
then deploying them into your own environment. Using Oracle Virtual Assembly
Builder, you capture the configuration of existing software components in artifacts
called software appliances. Appliances can then be grouped, and their relationships
defined into artifacts called software assemblies which provide a blueprint describing a
complete multi-tier application topology.

The Oracle Coherence*Web introspection extension for Coherence*Web extends the
functionality of the WebLogic Server Introspector. It examines the configuration of
Coherence cache clusters and servers configured as part of a WebLogic domain.

This appendix has the following sections:

■ Versions Supported

■ Oracle Coherence*Web Introspection Parameters

■ Reference System Prerequisites

■ Requirements

■ Resulting Artifact Type

■ Wiring

■ Wiring Properties

■ Oracle Coherence*Web Appliance Properties

■ Supported Template Types

Versions Supported
The plug-in extension works with Oracle WebLogic Server 11gR1 version 11.1.1.4.0,
which includes Coherence 3.6.

Oracle Coherence*Web Introspection Parameters
There are no additional parameters required beyond those needed by Oracle WebLogic
Server. For the parameters required by WebLogic Server, see “Using the Introspection
Plug-in for Oracle Virtual Assembly Builder,” in Administering Server Environments for
Oracle WebLogic Server.

Reference System Prerequisites

E-2 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Reference System Prerequisites
There are no additional prerequisites beyond those defined by Oracle WebLogic
Server. For the prerequisites required by WebLogic Server, see “Using the Introspection
Plug-in for Oracle Virtual Assembly Builder,” in Administering Server Environments for
Oracle WebLogic Server.

Requirements
Oracle Coherence*Web has the following requirements:

Note: In addition to the Coherence*Web requirements described in
this section, all of WebLogic Server requirements must also be
satisfied. For the WebLogic Server requirements, see “Using the
Introspection Plug-in for Oracle Virtual Assembly Builder,” in
Administering Server Environments for Oracle WebLogic Server.

Deployment Model Requirement
The plug-in extension requires you to use an out-of-process deployment model for
Oracle Coherence*Web, in which storage-enabled cache servers are executed as
separate processes rather than running within Oracle WebLogic Server. For more
information on the out-of-process deployment model, see "Out-of-Process Topology"
on page 5-20.

Requirement to Manually Update Custom Cluster Configuration Files
The plug-in extension examines Oracle Coherence*Web configuration defined through
the WebLogic Server Administration Console and WebLogic Server MBeans (including
WLST). It does not examine or modify custom cluster configuration files such as
tangosol-coherence-override.xml. Custom cluster configuration files are passed
through to the deployed environment, but no configuration changes are made to those
files to reflect the deployed environment.

After deployment, ensure that you make appropriate manual configuration changes to
any custom cluster configuration files.

Resulting Artifact Type
For each Coherence cluster that is defined in an introspected WebLogic domain, the
plug-in extension creates a new appliance within the atomic Oracle WebLogic Server
assembly.

Wiring
No wiring can be performed for Coherence cluster appliances. Each cluster appliance
has a fixed, pre-defined connection to the domain's Administration Server, which is
used at rehydration time to modify the cluster's configuration.

Wiring Properties
None.

Oracle Coherence*Web Appliance Properties

Oracle Coherence*Web Extension for OVAB E-3

Oracle Coherence*Web Appliance Properties
Each Oracle Coherence*Web cluster appliances has the following system and user
properties:

Table E–1 describes Oracle Coherence*Web cluster appliance system properties:

Table E–1 Oracle Coherence*Web Appliance System Properties

Name Type Req’d Default Description

cache-servers String false none A list of the cache servers that are part of
the cluster.

targets String false none A list of WebLogic Server Managed
Servers that are part of the cluster.

<cacheserver>.node-m
anager-type

String false none For each cache server in the above list,
there is a property indicating the Node
Manager type.

well-known-addresses String false none A list of well-known-addresses defined
for the cluster. If no well-known-address
are defined for this cluster (meaning it
uses multicast), then this property will
not be present.

<wellknownaddress>.s
erver

String false none For each of the well-known-addresses in
the above list, there is a property
indicating which cache server the well
known address maps to (based on
matching listen address and port
information).

Table E–2 describes Oracle Coherence*Web cluster appliance user properties:

Table E–2 Oracle Coherence*Web Appliance User Properties

Name Type Req’d Default Description

<cacheserver>.node-ma
nager-port

String false none For each of the cache servers in the
cluster, the Node Manager port is listed
and may be modified by the user.

<cacheserver>.unicast-l
isten-port

String false none For each of the cache servers in the
cluster, the unicast listen port of that
server is listed and may be modified by
the user.

multicast-listen-address String false none The cluster-wide multicast listen address.
If one or more well-known-addresses are
listed (meaning the cluster uses unicast
for cluster discovery), then this multicast
property will not be present.

multicast-listen-port String false none The cluster-wide multicast listen port. If
one or more well-known-addresses are
listed (meaning the cluster uses unicast
for cluster discovery), then this multicast
property will not be present.

unicast-listen-port String false none The default unicast listen port for the
cluster. This value is used by any cache
servers that do not have a unicast listen
port defined, as well as by any WebLogic
Server Managed Servers that join the
cluster.

Supported Template Types

E-4 Oracle Fusion Middleware Administering HTTP Session Management with Oracle Coherence*Web

Supported Template Types
The supported template type is Oracle Enterprise Linux (OEL).

<wellknownaddress>.s
erver

String true none If any of the defined well known
addresses could not be correlated with a
cache server (based on matching listen
address and port information), they will
be listed here, and the user is responsible
for specifying a cache server name to be
used as the well known address. This
property is mandatory, meaning it must
be specified either as an appliance
property or via a deployment plan.

Table E–2 (Cont.) Oracle Coherence*Web Appliance User Properties

Name Type Req’d Default Description

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.1.3)
	Other Significant Changes in this Document for 12c (12.1.3)

	1 Introduction to Coherence*Web
	Understanding Coherence*Web
	Supported Web Containers
	Installation and Deployment Road Map
	Choose Your Cluster Node Isolation
	Choose Your Locking Mode
	Choose How to Scope Sessions and Session Attributes
	Choose When to Clean Up Expired HTTP Sessions
	Choose the Installation Method

	2 Using Coherence*Web with WebLogic Server
	Overview of Coherence*Web
	Overview of Managed Coherence Servers
	Configuring and Deploying Coherence*Web: Main Steps
	Installing WebLogic Server and Oracle Coherence
	Configure Coherence*Web
	Configure the Session Cookies
	Start a Cache Server
	Starting a Coherence Cache Server from WebLogic Server Administration Console
	Starting a Coherence Cache Server from the Command Line
	To Start a Standalone Coherence Cache Server
	To Start a Storage-Enabled or -Disabled WebLogic Server Instance

	Configure Coherence*Web Storage Mode
	Deploying Applications to WebLogic Server

	Coherence MBean Attributes for Coherence*Web
	Enabling the Coherence Session Cache in Weblogic Server Administration Console

	Using a Custom Session Cache Configuration File
	Scoping the Session Cookie Path
	Updating the Session ID
	Sharing Coherence*Web Sessions with Other Application Servers
	WebLogic Server and Coherence: Compatibility

	3 Using Coherence*Web with GlassFish Server
	Overview of GlassFish Server
	Overview of Coherence*Web on GlassFish
	Configuring And Deploying Coherence*Web on GlassFish Server—Main Steps
	Download Oracle Coherence
	Set the Session Persistence Type
	Override the Default Coherence*Web Cache or Cluster Configuration
	Copy the Coherence*Web and Session Cache Files to the Application
	Make Your Web Applications Distributable
	Configure Coherence*Web
	Start a Cache Server
	Configure Cluster Nodes
	Configuring EAR-Scoped Cluster Nodes
	Configuring WAR-Scoped Cluster Nodes

	4 Using Coherence*Web on Other Application Servers
	Installing Coherence*Web Using the WebInstaller
	Application Server-Specific Installation Instructions
	Installing on Oracle WebLogic Server 10.n
	Installing on Caucho Resin 3.1.n

	General Instructions for Installing Coherence*Web Session Management Module
	Deploying and Running Applications In Process
	Deploying and Running Applications Out-of-Process
	Migrating to Out-of-Process Topology
	Deploying and Running Applications Out-of-Process with Coherence*Extend

	Enabling Sticky Sessions for Apache Tomcat Servers
	Decoding URL Session IDs for IBM WebSphere 7.n Servers

	Coherence*Web WebInstaller Ant Task
	Using the Coherence*Web WebInstaller Ant Task
	Configuring the WebInstaller Ant Task
	WebInstaller Ant Task Examples

	Testing HTTP Session Management
	How the Coherence*Web WebInstaller Instruments a Java EE Application
	Installing Coherence*Web into Applications Using Java EE Security
	Preventing Cross-Site Scripting Attacks

	5 Coherence*Web Session Management Features
	Session Models
	Monolithic Model
	Traditional Model
	Split Model
	Session Model Recommendations
	Configuring a Session Model
	Sharing Data in a Clustered Environment
	Scalability and Performance

	Session and Session Attribute Scoping
	Session Scoping
	Preventing Web Applications from Sharing Session Data
	Working with Multiple Cache Configurations
	Keeping Session Cookies Separate

	Session Attribute Scoping
	Sharing Session Information Between Multiple Applications

	Cluster Node Isolation
	Application Server-Scoped Cluster Nodes
	EAR-Scoped Cluster Nodes
	WAR-Scoped Cluster Nodes

	Session Locking Modes
	Optimistic Locking
	Last-Write-Wins Locking
	Member Locking
	Application Locking
	Thread Locking
	Troubleshooting Locking in HTTP Sessions
	Enabling Sticky Session Optimizations

	Deployment Topologies
	In-Process Topology
	Out-of-Process Topology
	Migrating from In-Process to Out-of-Process Topology

	Out-of-Process with Coherence*Extend Topology
	Configuring Coherence*Web with Coherence*Extend
	Configure the Cache for Proxy and Storage JVMs
	Configure the Cache for Web Tier JVMs

	Accessing Sessions with Lazy Acquisition
	Overriding the Distribution of HTTP Sessions and Attributes
	Implementing a Session Distribution Controller
	Registering a Session Distribution Controller Implementation

	Detecting Changed Attribute Values
	Saving Non-Serializable Attributes Locally
	Securing Coherence*Web Deployments
	Customizing the Name of the Session Cache Configuration File
	Configuring Logging for Coherence*Web
	Getting Concurrent Access to the Same Session Instance

	6 Monitoring Applications
	Managing and Monitoring Applications with JMX
	Managing and Monitoring Applications on WebLogic Server

	Running Performance Reports
	Web Session Storage Report
	Web Session Overflow Report
	Web Report
	WebLogic Web Report
	Web Service Report

	7 Cleaning Up Expired HTTP Sessions
	Understanding the Session Reaper
	Configuring the Session Reaper
	Getting Session Reaper Performance Statistics
	Understanding Session Invalidation Exceptions for the Session Reaper

	8 Working with JSF and MyFaces Applications
	Configuring for all JSF and MyFaces Web Applications:
	Configuring for Instrumented Applications that use MyFaces
	Configuring for Instrumented Applications that use Mojarra

	A Coherence*Web Context Parameters
	B Capacity Planning
	C Session Cache Configuration File
	D Session Cache Confguration File Without a Near Cache
	E Oracle Coherence*Web Extension for OVAB
	Versions Supported
	Oracle Coherence*Web Introspection Parameters
	Reference System Prerequisites
	Requirements
	Deployment Model Requirement
	Requirement to Manually Update Custom Cluster Configuration Files

	Resulting Artifact Type
	Wiring
	Wiring Properties
	Oracle Coherence*Web Appliance Properties
	Supported Template Types

