
[image: Oracle Corporation]




Oracle® Fusion Middleware

Developing Remote Clients for Oracle Coherence

12c (12.1.3)

E47883-03

March 2016

Documentation for Developers and Architects that describes how to configure Coherence*Extend and how to develop remote clients in Java, C++, and .NET. Includes instructions for developing remote clients using Coherence REST.




Oracle Fusion Middleware Developing Remote Clients for Oracle Coherence, 12c (12.1.3)

E47883-03

Copyright © 2008, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author:  Joseph Ruzzi

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

List of Examples

List of Figures

List of Tables

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions


What's New in This Guide

	New and Changed Features for 12c (12.1.3)
	Other Significant Changes in This Document for 12c (12.1.3)
	New and Changed Features for 12c (12.1.2)
	Other Significant Changes in This Document for 12c (12.1.2)


Part I Getting Started

1 Introduction to Coherence*Extend

	1.1 Overview of Coherence*Extend
	1.2 Extend Client Types
	1.2.1 Data Clients
	1.2.2 Real Time Clients



	1.3 Extend Client APIs
	1.4 POF Serialization
	1.5 Understanding Extend Client Configuration Files
	1.6 Non-Native Client Support
	1.6.1 REST Client Support
	1.6.2 Memcached Client Support





2 Installing a Client Distribution

	2.1 Installing Coherence for Java
	2.2 Installing the C++ Client Distribution
	2.2.1 Supported Environments
	2.2.2 Microsoft-Specific Requirements
	2.2.3 Extracting the Coherence for C++ Distribution



	2.3 Installing the .NET Client Distribution
	2.3.1 Prerequisites
	2.3.2 Running the Installer
	2.3.3 Coherence .NET Version Number Mapping
	2.3.4 Deploying Coherence for .NET



	2.4 Compatibility Between Coherence*Extend Versions


3 Building Your First Extend Client

	3.1 Overview of the Extend Example
	3.2 Step 1: Configure the Cluster Side
	3.3 Step 2: Configure the Client Side
	3.4 Step 3: Create the Sample Client
	3.5 Step 4: Start the Cache Server Process
	3.6 Step 5: Run the Application


4 Setting Up Coherence*Extend

	4.1 Overview
	4.2 Configuring the Cluster Side
	4.2.1 Setting Up Extend Proxy Services
	4.2.1.1 Defining a Proxy Service
	4.2.1.2 Defining Multiple Proxy Service Instances
	4.2.1.3 Defining Multiple Proxy Services
	4.2.1.4 Disabling Cluster Service Proxies
	4.2.1.5 Specifying Read-Only NamedCache Access
	4.2.1.6 Specifying NamedCache Locking



	4.2.2 Defining Caches for Use By Extend Clients
	4.2.3 Disabling Storage on a Proxy Server



	4.3 Configuring the Client Side
	4.3.1 Defining a Remote Cache
	4.3.2 Using a Remote Cache as a Back Cache
	4.3.3 Defining Remote Invocation Schemes
	4.3.4 Defining Multiple Remote Addresses
	4.3.5 Detecting Connection Errors
	4.3.6 Disabling TCMP Communication



	4.4 Using Address Provider References for TCP Addresses
	4.5 Using the Name Service Acceptor to Connect to a Proxy
	4.6 Using a Custom Address Provider for TCP Addresses
	4.7 Load Balancing Connections
	4.7.1 Using Proxy-Based Load Balancing
	4.7.1.1 Understanding the Proxy-Based Load Balancing Default Algorithm
	4.7.1.2 Implementing a Custom Proxy-Based Load Balancing Strategy



	4.7.2 Using Client-Based Load Balancing



	4.8 Using Network Filters with Extend Clients


5 Best Practices for Coherence*Extend

	5.1 Run Proxy Servers with Local Storage Disabled
	5.2 Do Not Run a Near Cache on a Proxy Server
	5.3 Configure Heap NIO Space to be Equal to the Max Heap Size
	5.4 Configure Proxy Service Thread Pooling
	5.4.1 Understanding Proxy Service Threading
	5.4.2 Setting Proxy Service Thread Pooling Thresholds
	5.4.3 Setting an Exact Number of Threads



	5.5 Be Careful When Making InvocationService Calls
	5.6 Be Careful When Placing Collection Classes in the Cache
	5.7 Configure POF Serializers for Cache Servers
	5.8 Use Node Locking Instead of Thread Locking


Part II Creating Java Extend Clients

Part III Creating C++ Extend Clients

6 Setting Up C++ Application Builds

	6.1 Setting up the Compiler for Coherence-Based Applications
	6.2 Including Coherence Header Files
	6.3 Linking the Coherence Library
	6.4 Setting the run-time Library and Search Path
	6.5 Deploying Coherence for C++


7 Configuration and Usage for C++ Clients

	7.1 General Instructions
	7.2 Implementing the C++ Application
	7.3 Compiling and Linking the Application
	7.4 Configure Paths
	7.5 Configure Coherence*Extend
	7.5.1 Configure Coherence*Extend in the Cluster
	7.5.2 Configuring Coherence*Extend on the Client
	7.5.2.1 Defining a Local Cache for C++ Clients
	7.5.2.2 Defining a Near Cache for C++ Clients



	7.5.3 Connection Error Detection and Failover



	7.6 Obtaining a Cache Reference with C++
	7.7 Cleaning up Resources Associated with a Cache
	7.8 Configuring and Using the Coherence for C++ Client Library
	7.8.1 Setting the Configuration File Location with an Environment Variable
	7.8.2 Setting the Configuration File Location Programmatically



	7.9 Operational Configuration File (tangosol-coherence-override.xml)
	7.10 Configuring a Logger
	7.11 Launching a Coherence DefaultCacheServer Proxy


8 Using the Coherence C++ Object Model

	8.1 Using the Object Model
	8.1.1 Coherence Namespaces
	8.1.2 Understanding the Base Object
	8.1.3 Automatically Managed Memory
	8.1.3.1 Referencing Managed Objects
	8.1.3.2 Using handles
	8.1.3.3 Managed Object Instantiation



	8.1.4 Managed Strings
	8.1.4.1 String Instantiation
	8.1.4.2 Auto-Boxed Strings



	8.1.5 Type Safe Casting
	8.1.5.1 Down Casting



	8.1.6 Managed Arrays
	8.1.7 Collection Classes
	8.1.8 Managed Exceptions
	8.1.9 Object Immutability
	8.1.10 Integrating Existing Classes into the Object Model



	8.2 Writing New Managed Classes
	8.2.1 Specification-Based Managed Class Definition
	8.2.2 Equality, Hashing, Cloning, Immutability, and Serialization
	8.2.3 Threading
	8.2.4 Weak References
	8.2.5 Virtual Constructors
	8.2.6 Advanced Handle Types
	8.2.7 Thread Safety
	8.2.7.1 Synchronization and Notification
	8.2.7.2 Thread Safe Handles
	8.2.7.3 Escape Analysis
	8.2.7.4 Thread-Local Allocator






	8.3 Diagnostics and Troubleshooting
	8.3.1 Thread Dumps
	8.3.2 Memory Leak Detection
	8.3.3 Memory Corruption Detection



	8.4 Application Launcher - Sanka
	8.4.1 Command line syntax
	8.4.2 Built-in Executables
	8.4.3 Sample Custom Executable Class





9 Using the Coherence for C++ Client API

	9.1 CacheFactory
	9.2 NamedCache
	9.3 QueryMap
	9.4 ObservableMap
	9.5 InvocableMap
	9.6 Filter
	9.7 Value Extractors
	9.8 Entry Processors
	9.9 Entry Aggregators


10 Building Integration Objects (C++)

	10.1 Overview of Building Integration Objects (C++)
	10.2 POF Intrinsics
	10.3 Serialization Options
	10.3.1 Managed<T> (Free-Function Serialization)
	10.3.2 PortableObject (Self-Serialization)
	10.3.3 PofSerializer (External Serialization)



	10.4 Using POF Object References
	10.4.1 Enabling POF Object References
	10.4.2 Registering POF Object Identities for Circular and Nested Objects



	10.5 Registering Custom C++ Types
	10.6 Implementing a Java Version of a C++ Object
	10.7 Understanding Serialization Performance
	10.8 Using POF Annotations to Serialize Objects
	10.8.1 Annotating Objects for POF Serialization
	10.8.2 Registering POF Annotated Objects
	10.8.3 Enabling Automatic Indexing
	10.8.4 Providing a Custom Codec





11 Querying a Cache (C++)

	11.1 Overview of Query Functionality
	11.2 Performing Simple Queries
	11.2.1 Querying Partitioned Caches
	11.2.2 Querying Near Caches



	11.3 Understanding Query Concepts
	11.4 Performing Queries Involving Multi-Value Attributes
	11.5 Using a Chained Extractor in a Query
	11.6 Using a Query Recorder


12 Performing Continuous Queries (C++)

	12.1 Overview of Performing Continuous Queries (C++)
	12.1.1 Understanding the Use Cases for Continuous Query Caching



	12.2 Understanding Continuous Query Caching Implementation
	12.3 Defining a Continuous Query Cache
	12.4 Cleaning up Continuous Query Cache Resources
	12.5 Caching Only Keys Versus Keys and Values
	12.5.1 CacheValues Property and Event Listeners
	12.5.2 Using ReflectionExtractor with Continuous Query Caches



	12.6 Listening to a Continuous Query Cache
	12.6.1 Avoiding Unexpected Results
	12.6.2 Achieving a Stable Materialized View
	12.6.3 Support for Synchronous and Asynchronous Listeners



	12.7 Making a Continuous Query Cache Read-Only


13 Performing Remote Invocations (C++)

	13.1 Overview of Performing Remote Invocations (C++)
	13.2 Configuring and Using the Remote Invocation Service
	13.3 Registering Invocable Implementation Classes


14 Using Cache Events (C++)

	14.1 Overview of Map Events (C++)
	14.1.1 Caches and Classes that Support Events



	14.2 Signing Up for all Events
	14.3 Using a Multiplexing Map Listener
	14.4 Configuring a MapListener for a Cache
	14.5 Signing Up for Events on Specific Identities
	14.6 Filtering Events
	14.7 Using Lite Events
	14.8 Listening to Queries
	14.9 Using Synthetic Events
	14.10 Using Backing Map Events
	14.11 Using Synchronous Event Listeners


15 Performing Transactions (C++)

	15.1 Using the Transaction API within an Entry Processor
	15.2 Creating a Stub Class for a Transactional Entry Processor
	15.3 Registering a Transactional Entry Processor User Type
	15.4 Configuring the Cluster-Side Transactional Caches
	15.5 Configuring the Client-Side Remote Cache
	15.6 Using a Transactional Entry Processor from a C++ Client


Part IV Creating .NET Extend Clients

16 Configuration and Usage for .NET Clients

	16.1 General Instructions
	16.2 Configuring Coherence*Extend
	16.2.1 Configuring Coherence*Extend in the Cluster
	16.2.2 Configuring Coherence*Extend on the Client
	16.2.2.1 Defining a Local Cache for .NET Clients
	16.2.2.2 Defining a Near Cache for .NET Clients



	16.2.3 Connection Error Detection and Failover



	16.3 Starting a Coherence DefaultCacheServer Process
	16.4 Obtaining a Cache Reference with .NET
	16.5 Cleaning Up Resources Associated with a Cache
	16.6 Using Network Filters
	16.6.1 Custom Filters
	16.6.2 Configuring Filters





17 Building Integration Objects (.NET)

	17.1 Overview of Building Integration Objects (.NET)
	17.2 Creating an IPortableObject Implementation
	17.3 Implementing a Java Version of a .NET Object
	17.3.1 Creating a PortableObject Implementation (Java)



	17.4 Registering Custom Types on the .NET Client
	17.5 Registering Custom Types in the Cluster
	17.6 Evolvable Portable User Types
	17.7 Making Types Portable Without Modification
	17.8 Using POF Object References
	17.8.1 Enabling POF Object References
	17.8.2 Registering POF Object Identities for Circular and Nested Objects



	17.9 Using POF Annotations to Serialize Objects
	17.9.1 Annotating Objects for POF Serialization
	17.9.2 Registering POF Annotated Objects
	17.9.3 Enabling Automatic Indexing
	17.9.4 Providing a Custom Codec





18 Using the Coherence .NET Client Library

	18.1 Setting Up the Coherence .NET Client Library
	18.2 Using the Coherence .NET APIs
	18.2.1 CacheFactory
	18.2.2 IConfigurableCacheFactory
	18.2.3 DefaultConfigurableCacheFactory
	18.2.4 Logger
	18.2.5 Using the Common.Logging Library
	18.2.6 INamedCache
	18.2.7 IQueryCache
	18.2.8 QueryRecorder
	18.2.9 IObservableCache
	18.2.9.1 Responding to Cache Events



	18.2.10 IInvocableCache
	18.2.11 Filters
	18.2.12 Value Extractors
	18.2.13 Entry Processors
	18.2.14 Entry Aggregators





19 Performing Continuous Queries (.NET)

	19.1 Overview of Performing Continuous Queries (.NET)
	19.1.1 Understanding Use Cases for Continuous Query Caching



	19.2 Understanding the Continuous Query Caching Implementation
	19.3 Constructing a Continuous Query Cache
	19.4 Cleaning Up Continuous Query Cache Resources
	19.5 Caching Only Keys Versus Keys and Values
	19.6 Listening to a Continuous Query Cache
	19.6.1 Achieving a Stable Materialized View
	19.6.2 Support for Synchronous and Asynchronous Listeners



	19.7 Making a Continuous Query Cache Read-Only


20 Performing Remote Invocations (.NET)

	20.1 Overview of Performing Remote Invocations
	20.2 Configuring and Using the Remote Invocation Service


21 Performing Transactions (.NET)

	21.1 Using the Transaction API within an Entry Processor
	21.2 Creating a Stub Class for a Transactional Entry Processor
	21.3 Registering a Transactional Entry Processor User Type
	21.4 Configuring the Cluster-Side Transactional Caches
	21.5 Configuring the Client-Side Remote Cache
	21.6 Using a Transactional Entry Processor from a .NET Client


22 Managing ASP.NET Session State

	22.1 Overview
	22.2 Setting Up Coherence Session Management
	22.2.1 Enable the Coherence Session Provider
	22.2.2 Configure the Cluster-Side ASP Session Caches
	22.2.3 Configure a Client-Side ASP Session Remote Cache
	22.2.4 Overriding the Default Session Cache Name



	22.3 Selecting a Session Model
	22.3.1 Specify the Session Model
	22.3.1.1 Registering the Backing Map Listener






	22.4 Specifying a Serializer
	22.4.1 Using POF for Session Serialization



	22.5 Sharing Session State Across Applications


Part V Using Coherence REST

23 Introducing Coherence REST

	23.1 Overview of Coherence REST
	23.2 Dependencies for Coherence REST
	23.3 Overview of Configuration for Coherence REST
	23.4 Understanding Data Format Support
	23.4.1 Using XML as the Data Format
	23.4.2 Using JSON as the Data Format



	23.5 Authenticating and Authorizing Coherence REST Clients


24 Building Your First Coherence REST Application

	24.1 Overview of the Coherence REST Example
	24.2 Step 1: Configure the Cluster Side
	24.3 Step 2: Create a User Type
	24.4 Step 3: Configure REST Services
	24.5 Step 4: Start the Cache Sever Process
	24.6 Step 5: Access REST Services From a Client


25 Performing Grid Operations with REST

	25.1 Specifying Key and Value Types
	25.2 Performing Single-Object REST Operations
	25.3 Performing Multi-Object REST Operations
	25.4 Performing Partial-Object REST Operations
	25.5 Performing Queries with REST
	25.5.1 Using Direct Queries
	25.5.2 Using Named Queries
	25.5.3 Specifying a Query Sort Order
	25.5.4 Limiting the Size of a Query
	25.5.5 Retrieving Only Keys
	25.5.6 Using Custom Query Engines
	25.5.6.1 Implementing Custom Query Engines
	25.5.6.2 Enabling Custom Query Engines






	25.6 Performing Aggregations with REST
	25.6.1 Aggregation Syntax for REST
	25.6.2 Listing of Pre-Defined Aggregators
	25.6.3 Creating Custom Aggergators



	25.7 Performing Entry Processing with REST
	25.7.1 Entry Processor Syntax for REST
	25.7.2 Listing of Pre-defined Entry Processors
	25.7.3 Creating Custom Entry Processors



	25.8 Understanding Concurrency Control
	25.9 Specifying Cache Aliases


26 Deploying Coherence REST

	26.1 Deploying with the Embedded HTTP Server
	26.2 Deploying to WebLogic Server
	26.2.1 Task 1: Configure a WebLogic Server Domain for Coherence REST
	26.2.2 Task 2: Package the Coherence REST Web Application
	26.2.3 Task 3: Package the Coherence Application
	26.2.4 Task 4: Package the Enterprise Application
	26.2.5 Task 5: Deploy the Enterprise Application



	26.3 Deploying to a Java EE Server (Generic)
	26.3.1 Packaging Coherence REST for Deployment
	26.3.2 Deploying to GlassFish
	26.3.3 Deploying to a Servlet Container





27 Modifying the Default REST Implementation

	27.1 Using Custom Providers and Resources
	27.2 Changing the Embedded HTTP Server
	27.2.1 Using Grizzly HTTP Server
	27.2.2 Using Simple HTTP Server





Part VI Appendices

A REST Configuration Elements

	A.1 REST Configuration File
	Element Reference
	aggregator
	aggregators
	engine
	marshaller
	processor
	processors
	query
	query-engines
	resource
	resources
	rest





B Integrating with F5 BIG-IP LTM

	B.1 Basic Concepts
	B.2 Creating Nodes
	B.3 Configuring a Load Balancing Pool
	B.3.1 Creating a Load Balancing Pool
	B.3.2 Adding a Load Balancing Pool Member



	B.4 Configuring a Virtual Server
	B.5 Configuring Coherence*Extend to Use BIG-IP LTM
	B.6 Using Advanced Health Monitoring
	B.6.1 Creating a Custom Health Monitor to Ping Coherence
	B.6.2 Associating a Custom Health Monitor With a Load Balancing Pool



	B.7 Enabling SSL Offloading
	B.7.1 Import the Server's SSL Certificate and Key
	B.7.2 Create the Client SSL Profile
	B.7.3 Associate the Client SSL Profile







List of Examples

	3-1 Sample Coherence*Extend Application
	4-1 Extend Proxy Service Configuration
	4-2 Remote Cache Definition
	4-3 Remote Invocation Scheme Definition
	5-1 Disabling Storage
	5-2 Casting an ArrayList Object
	5-3 Configuring a POFSerializer for a Distributed Cache
	7-1 Sample Run of the build.cmd File
	7-2 Cache Configuration for Two Clustered Services
	7-3 A Caching Scheme that Connects to a Remote Coherence Cluster
	7-4 Local Cache Configuration
	7-5 Near Cache Configuration
	7-6 Setting the Configuration File Location
	7-7 Creating a Coherence Cache Factory
	7-8 Configuring a CacheFactory and a Local Member
	7-9 Setting the Cache Configuration File Location for the Server/Cluster
	7-10 Sample Operational Configuration
	7-11 Operational Configuration File that Includes a Logger
	7-12 Sample Command to Start the DefaultCacheServer
	8-1 Examples of Constructing String Objects
	8-2 Constructing String Objects with the "<<" Operator
	8-3 Autoboxing Examples
	8-4 Type Safe Casting Examples
	8-5 Down Casting Examples
	8-6 Object Type Checking with the instanceof<H> Function
	8-7 Indexing an Array
	8-8 Storing Managed Object Instances
	8-9 A Try/Catch Block with Managed Exceptions
	8-10 An Interface Defined by interface_spec
	8-11 A Derived Interface Defined by interface_spec
	8-12 An Implementation Defined by cloneable_spec
	8-13 Defining a Class Without the use of specs
	8-14 Using specs to Define a Class
	8-15 Creating a Runnable Instance and Spawning a Thread
	8-16 A Sample COH_SYNCHRONIZED Macro Code Block
	8-17 Thread-safe Handle
	8-18 Thread-safe Handle as a Non-Managed Class
	8-19 Sample Thread Dump
	8-20 Data Returned by a Heap Analyzer
	8-21 Results from a Memory Corruption Run
	9-1 Using the EqualsFilter Method
	9-2 Using the GreaterEqualsFilter Method
	9-3 Using the LikeFilter Method
	9-4 Using the AndFilter Method
	9-5 Using the OrFilter Method
	10-1 A Non-Managed Class
	10-2 Managed Class using Serialization
	10-3 Instances of a Class Wrapped with Managed<T>
	10-4 A Managed Class that Implements PortableObject
	10-5 A Managed Class without Managed<T>
	10-6 A non-PortableObject Version of a Managed Class
	10-7 An External Class Responsible for Serialization
	11-1 Querying Cache Content
	11-2 Using the LimitFilter Method
	11-3 Indexing a Queryable Attribute
	11-4 Selecting Entries of a Cache that Satisfy a Particular Filter
	11-5 Selecting and Sorting Entries
	11-6 Using the keySet Form of a Query
	11-7 Indexing and Querying Multi-Value Attributes
	11-8 Using a ChainedExtractor Implementation
	12-1 Using Filters for Querying
	12-2 Placing a Listener into a Continuous Query Cache
	12-3 Creating a Continuous Query Cache with a Filter and a Listener
	12-4 Processing the Data, then Adding the Listener
	12-5 Adding the Listener, then Processing the Data
	13-1 Sample Remote Invocation Scheme Configuration
	13-2 Reference to a Remote Invocation Service
	14-1 ObservableMap methods
	14-2 Example MapListener implementation
	14-3 Printing Events
	14-4 Holding a Reference to a Listener
	14-5 Removing a Reference to a Listener
	14-6 Using MultiplexingMapListener to Route Events
	14-7 Printing Events that Occur Against a Specified Integer Key
	14-8 Triggering an Event for a Specified Integer Key Value
	14-9 Adding a Listener with a Filter that Allows only Deleted Events
	14-10 Inserting and Removing Data from the Cache
	14-11 Inserting, Updating, and Removing a Value
	14-12 Requesting Only "Lite" Events
	14-13 Filtering for Cache Events
	14-14 Filtering for Specialized Events
	14-15 Communicating Only Specialized Events over the Network
	14-16 Differentiating Between Client-Induced and Synthetic Events
	15-1 Entry Processor for Extend Client Transaction
	15-2 Transaction Entry Processor C++ Stub Class
	15-3 Transaction Entry Processor C++ Stub Class Header File
	16-1 Configuration of a Default Cache Server for Coherence*Extend
	16-2 Configuration to Connect to a Remote Coherence Cluster
	16-3 Configuring a Local Cache
	16-4 Near Cache Configuration
	16-5 Command to Start a Coherence Default Cache Server
	16-6 Obtaining a Reference to a Cache
	16-7 Obtaining and Releasing a Reference to a Cache
	16-8 Methods on the IWrapperStreamFactory Interface
	17-1 A User-Defined Portable Class
	17-2 A User-Defined Class in Java
	17-3 Storing Mapping Information in the POF User Type Configuration File
	17-4 Using a Serializer in the Cache Configuration File
	17-5 Specifying a POF Configuration File
	17-6 Cluster-side POF Configuration File
	17-7 Configuring the Server to Use the POF Configuration
	17-8 Modifying a Class to Support Class Evolution
	17-9 Modifying a Java Type Class to Support Class Evolution
	17-10 An Implementation of IPofSerializer for the .NET Type
	17-11 An Implementation of PofSerializer for the Java Type Class
	17-12 Registering the IPofSerializer Implementation of the .NET Type
	17-13 Registering the PofSerializer Implementation of the Java Type
	18-1 Sample Application Configuration File
	18-2 Configuring a Factory for INamedCache Instances
	18-3 Configuring a ConfigurableCacheFactory Implementation
	18-4 Specifying a Different Cache Configuration Desriptor File
	18-5 Configuring a Logger
	18-6 Querying Keys on a Particular Value
	18-7 Filtering on an Inserted Object
	18-8 Filtering on Removed Object
	18-9 Filtering on a Changed Object
	18-10 Marshalling and Executing a Call on the UI Thread
	18-11 Calling Methods in Response to a Cache Event
	18-12 Retrieving Keys Equal to a Numeric Value
	18-13 Retrieving Keys Greater Than or Equal To a Numeric Value
	18-14 Retrieving Keys Based on a String Value
	18-15 Retrieving Keys Based on a Case-Sensitive String Value
	18-16 Retrieving Cache Entries Greater Than a Numeric Value
	18-17 Retrieving Cache Entries Based on a String Value
	18-18 Conditional Put of a Key Value Based on a Numeric Value
	18-19 Setting a Key Value Based on a Numeric Value
	18-20 Returning the Size of the Cache
	18-21 Returning an IDictionary
	19-1 Obtaining and Releasing a Reference to a Continuous Query Cache
	19-2 Caching Only the Keys in a Continuous Query Cache
	19-3 Placing a Listener on a Continuous Query Cache
	19-4 Processing Data, then Placing the Listener
	19-5 Placing the Listener, then Processing Data
	19-6 Providing the Listener During Continuous Query Cache Construction
	19-7 Making a Continuous Query Cache Read-Only
	20-1 Configuring a Remote Invocation Service
	20-2 Obtaining a Reference to a Remote Invocation Service
	20-3 Executing an Agent on a Grid Node
	21-1 Entry Processor for Extend Client Transaction
	21-2 Transaction Entry Processor .NET Stub Class




List of Figures

	1-1 Conceptual View of Coherence*Extend Components
	8-1 A Bi-Directional Relationship
	8-2 Establishing a Weak Reference
	8-3 Weak and Strong References to a Tree
	8-4 Artifacts after Deleting the Weak References
	18-1 Add Reference Window
	18-2 File System Displaying the Configuration Files
	B-1 Conceptual View of F5 BIG-IP LTM
	B-2 Example Node Configuration
	B-3 Example Pool Configuration
	B-4 Example Pool Members
	B-5 Example Virtual Server
	B-6 Example Virtual Server Using a Configured Pool
	B-7 Example Coherence*Extend Ping Health Monitor
	B-8 Example Coherence*Extend Health Monitor Implemented in a Shell Script
	B-9 Associating a Coherence*Extend Pool With a Custom Health Monitor
	B-10 Example SSL Certificate Configuration in BIG-IP System
	B-11 Example SSL Profile Configuration
	B-12 Example Virtual Server Configuration That Includes a Client SSL Profile




List of Tables

	2-1 Platform and Operating System Support for Coherence for C++
	6-1 Compiler Settings for MSVC (Visual Studio)
	6-2 Compiler Settings for g++
	6-3 Names of Linking Libraries for Release and Debug Versions
	6-4 Name of the Coherence for C++ Library and Environment Variables
	6-5 Cache Configuration System Property Value for Various Operating Systems
	8-1 Advanced Handle Types Supported by Coherence for C++
	10-1 Requirements and Limitations of Serialization Options
	23-1 Coherence REST Dependencies
	25-1 Parameter Type Hints
	A-1 REST Configuration Elements
	A-2 aggregator Subelements
	A-3 aggregators Subelements
	A-4 engine Subelements
	A-5 marshaller Subelements
	A-6 processor Subelements
	A-7 processors Subelements
	A-8 query Subelements
	A-9 query-engines Subelements
	A-10 resource Subelements
	A-11 resources Subelements
	A-12 rest Subelements





Preface

Welcome to Developing Remote Clients for Oracle Coherence. This document describes how to configure Coherence*Extend and how to develop remote clients in Java, C++, and .NET. This document also includes instructions for developing remote clients using Coherence REST.


Audience

This document is targeted at software developers and architects. It provides detailed technical information for writing and deploying C++ and .NET applications that interact with remote caches that reside in a Coherence cluster. The documentation assumes users are familiar with these respective technologies. In addition, users must be familiar with Java when serializing data to the cluster.





Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.


Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.





Related Documents

For more information, see the following documents that are included in the Oracle Coherence documentation set:

	
Administering HTTP Session Management with Oracle Coherence*Web


	
Administering Oracle Coherence


	
Developing Applications with Oracle Coherence


	
Integrating Oracle Coherence


	
Managing Oracle Coherence


	
Securing Oracle Coherence


	
Tutorial for Oracle Coherence


	
Java API Reference for Oracle Coherence


	
C++ API Reference for Oracle Coherence


	
.NET API Reference for Oracle Coherence


	
Release Notes for Oracle Coherence








Conventions

The following text conventions are used in this document:


	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.












What's New in This Guide

The following topics introduce the new and changed features of Oracle Coherence and other significant changes that are described in this guide, and provides pointers to additional information. This document is the new edition of the formerly titled Oracle Coherence Client Guide.


New and Changed Features for 12c (12.1.3)

Oracle Coherence 12c (12.1.3) does not contain any new and changed features for this features document.





Other Significant Changes in This Document for 12c (12.1.3)

For 12c (12.1.3), this guide has been updated in several ways. Following are the sections that have been added or changed.

	
Revised the Coherence*Extend compatibility statement. See "Compatibility Between Coherence*Extend Versions".


	
Revised F5 integration instructions. See Appendix B, "Integrating with F5 BIG-IP LTM."


	
Revised Jersey dependencies. See "Dependencies for Coherence REST".








New and Changed Features for 12c (12.1.2)

Oracle Coherence 12c (12.1.2) includes the following new and changed features for this document.

	
Address provider references, which allow proxy service, remote cache, and remote invocation addresses to be defined in an operational override file and referenced from a cache configuration file. See "Using Address Provider References for TCP Addresses".


	
Name service, which allows extend clients to connect to a proxy by specifying a proxy service name instead of a proxy service address. See "Using the Name Service Acceptor to Connect to a Proxy".


	
Dynamic thread pool, which manages the number of worker threads available to a proxy service based on the number of client requests, total backlog of requests, and the total number of idle threads. See "Configure Proxy Service Thread Pooling".


	
REST conditional GET requests, which allows a client to determine if it has the last version of an object. See "GET Operation".


	
REST Queries,

	
Named queries, which allow queries to be defined in the REST configuration file and then used by name in a request URL. See "Using Named Queries".


	
Query size limits, which controls the size of a query result set. See "Limiting the Size of a Query".


	
Custom Query engines, which allow different query semantics to be used instead of the default CohQL semantics. See "Using Custom Query Engines".





	
Context path configuration, which allows multiple Coherence REST applications to be deployed to the embedded HTTP server. See "Deploying with the Embedded HTTP Server".








Other Significant Changes in This Document for 12c (12.1.2)

For 12c (12.1.2), this guide has been updated in several ways. Following are the sections that have been added or changed.

	
Revised instructions for proxy load balancing. See "Load Balancing Connections".


	
Revised the Coherence REST dependencies section. See "Dependencies for Coherence REST".


	
Revised the instructions for deploying Coherence REST on WebLogic Server to include new packaging requirements for a WebLogic Server domain. "Deploying to WebLogic Server".










Part I


Getting Started


Part I contains the following chapters:

	
Chapter 1, "Introduction to Coherence*Extend"


	
Chapter 2, "Installing a Client Distribution"


	
Chapter 3, "Building Your First Extend Client"


	
Chapter 4, "Setting Up Coherence*Extend"


	
Chapter 5, "Best Practices for Coherence*Extend"







1 Introduction to Coherence*Extend


This chapter describes Coherence*Extend and includes information about native Coherence clients (Java, C++, and .NET) and non-native Coherence clients (REST and Memcached).

This chapter includes the following sections:

	
Overview of Coherence*Extend


	
Extend Client Types


	
Extend Client APIs


	
POF Serialization


	
Understanding Extend Client Configuration Files


	
Non-Native Client Support






1.1 Overview of Coherence*Extend

Coherence*Extend "extends" the reach of the core Coherence TCMP cluster to a wider range of consumers, including desktops, remote servers, and computers located across WAN connections. Typical uses of Coherence*Extend include providing desktop applications with access to Coherence caches (including support for Near Cache and Continuous Query) and linking multiple Coherence clusters connected through a high-latency, unreliable WAN.

Coherence*Extend consists of two basic components: an extend client running outside the cluster and an extend proxy service running in the cluster hosted by one or more cache servers (DefaultCacheServer) that are storage disabled. The client APIs include implementations of both the CacheService and InvocationService interfaces which route all requests to the proxy. The proxy responds to client requests by delegating to an actual Coherence clustered services (for example, a partitioned or replicated cache service or an invocation service).

Coherence*Extend uses the Extend-TCP transport binding (a low-level messaging protocol) to communicate between the client and the cluster. The protocol is a high performance, scalable TCP/IP-based communication layer. The transport binding is configuration-driven and is completely transparent to the client application that uses Coherence*Extend.

Figure 1-1 provides a conceptual view of the Coherence*Extend components and shows an extend client connecting to an extend proxy service using Extend-TCP.


Figure 1-1 Conceptual View of Coherence*Extend Components

[image: Description of Figure 1-1 follows]






Like cache clients, an extend client retrieves Coherence clustered service using a cache factory. After a service is obtained, a client uses the service in the same way as if it were part of the Coherence cluster. The fact that operations are being sent to a remote cluster node is transparent to the client application.






1.2 Extend Client Types

Extend clients can be created for the Java, .NET, and C++ platforms and have access to the same rich API as the standard Coherence API without being full data members of the cluster. Typically, client applications are granted only read access to cluster data, although it is possible to enable direct read/write access. There are two categories of clients: Data Clients and Real Time Extend Clients.


1.2.1 Data Clients

Data clients are extend clients that are able to access (put, get, query) data in the cluster and also make invocation service requests using standard Coherence APIs. In particular, data clients provide:

	
Key-based cache access through the NamedCache interface


	
Attribute-based cache access using filters


	
Custom processing and aggregation of cluster side entries using the InvocableMap interface


	
In-Process caching through LocalCache


	
Remote invocation of custom tasks in the cluster through the Invocation Service




For a complete list of Data Client features, see Oracle Fusion Middleware Licensing Information.




	
Note:

Data clients cannot be notified of changes to data in a cluster. Further, data clients do not have the ability to use Near Caches or Continuous Query caches, as those capabilities also rely on the ability to receive notifications of data changes from the cluster. For these capabilities, real-time clients must be used.











1.2.2 Real Time Clients

Real Time Clients (Extend-TCP) provides the same capabilities associated with data clients; but, unlike data clients, a real-time client also supports:

	
Event Notifications – Using the standard Coherence event model, data changes that occur within the cluster are visible to the client application. Only events that a client application registers for are delivered over the wire. This model results in efficient use of network bandwidth and client processing.


	
Local Caches – While the client application can directly access the caches managed by the cluster, that may be inefficient depending on the network infrastructure. For efficiency, a real-time client can use both Near Caching and Continuous Query Caching to maintain cache data locally. If the server to which the client application is attached happens to fail, the connection is automatically reestablished to another server, and any locally cached data is re-synchronized with the cluster.




For a complete list of Real Time Client features, see Oracle Fusion Middleware Licensing Information.








1.3 Extend Client APIs

Java, C++, and .NET (C#) native libraries are available for building extend clients. Each API is delivered in its own distribution and must be installed separately. Extend clients use their respective APIs to perform cache operations such as access, modify, and query data that is in a cluster. The C++ and C# APIs follow the Java API as close as possible to provide a consistent experience between platforms.

As an example, a Java client gets a NamedCache instance using the CacheFactory.getCache method as follows:


NamedCache cache = CacheFactory.getCache("dist-extend");


For C++, the API is as follows:


NamedCache::Handle hCache = CacheFactory::getCache("dist-extend");


For C#, the API is as follows:


INamedCache cache = CacheFactory.GetCache("dist-extend");


This and many other API features are discussed throughout this guide:

	
Java – See Part I, "Creating Java Extend Clients" for details on using the API and refer to Java API Reference for Oracle Coherence for detailed API documentation.


	
C++ – See Part I, "Creating C++ Extend Clients" for details on using the API and refer to C++ API Reference for Oracle Coherence for detailed API documentation.


	
.NET – See Part I, "Creating .NET Extend Clients" for details on using the API and refer to .NET API Reference for Oracle Coherence for detailed API documentation.









1.4 POF Serialization

Like cache clients, extend clients must serialize objects that are to be stored in the cluster. C++ and C# clients use Coherence's Portable Object Format (POF), which is a language agnostic binary format. Java extend clients typically use POF for serialization as well; however, there are several other options for serializing Java objects, such as Java native serialization and custom serialization routines. See Developing Applications with Oracle Coherence for details.

Clients that serialize objects into the cluster can perform get and put based operations on the objects. However, features such as queries and entry processors require Java-based cache servers to interact with the data object, rather then simply holding onto a serialized representation of it. To interact with the object and access its properties, a Java version of the object must be made available to the cache servers.

See Developing Applications with Oracle Coherence for det