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This document is targeted at software developers and architects. It provides detailed technical information for writing and deploying C++ and .NET applications that interact with remote caches that reside in a Coherence cluster. The documentation assumes users are familiar with these respective technologies. In addition, users must be familiar with Java when serializing data to the cluster.





Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.


Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.





Related Documents

For more information, see the following documents that are included in the Oracle Coherence documentation set:

	
Administering HTTP Session Management with Oracle Coherence*Web


	
Administering Oracle Coherence


	
Developing Applications with Oracle Coherence


	
Integrating Oracle Coherence


	
Managing Oracle Coherence


	
Securing Oracle Coherence


	
Tutorial for Oracle Coherence


	
Java API Reference for Oracle Coherence


	
C++ API Reference for Oracle Coherence


	
.NET API Reference for Oracle Coherence


	
Release Notes for Oracle Coherence








Conventions

The following text conventions are used in this document:


	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.












What's New in This Guide

The following topics introduce the new and changed features of Oracle Coherence and other significant changes that are described in this guide, and provides pointers to additional information. This document is the new edition of the formerly titled Oracle Coherence Client Guide.


New and Changed Features for 12c (12.1.3)

Oracle Coherence 12c (12.1.3) does not contain any new and changed features for this features document.





Other Significant Changes in This Document for 12c (12.1.3)

For 12c (12.1.3), this guide has been updated in several ways. Following are the sections that have been added or changed.

	
Revised the Coherence*Extend compatibility statement. See "Compatibility Between Coherence*Extend Versions".


	
Revised F5 integration instructions. See Appendix B, "Integrating with F5 BIG-IP LTM."


	
Revised Jersey dependencies. See "Dependencies for Coherence REST".








New and Changed Features for 12c (12.1.2)

Oracle Coherence 12c (12.1.2) includes the following new and changed features for this document.

	
Address provider references, which allow proxy service, remote cache, and remote invocation addresses to be defined in an operational override file and referenced from a cache configuration file. See "Using Address Provider References for TCP Addresses".


	
Name service, which allows extend clients to connect to a proxy by specifying a proxy service name instead of a proxy service address. See "Using the Name Service Acceptor to Connect to a Proxy".


	
Dynamic thread pool, which manages the number of worker threads available to a proxy service based on the number of client requests, total backlog of requests, and the total number of idle threads. See "Configure Proxy Service Thread Pooling".


	
REST conditional GET requests, which allows a client to determine if it has the last version of an object. See "GET Operation".


	
REST Queries,

	
Named queries, which allow queries to be defined in the REST configuration file and then used by name in a request URL. See "Using Named Queries".


	
Query size limits, which controls the size of a query result set. See "Limiting the Size of a Query".


	
Custom Query engines, which allow different query semantics to be used instead of the default CohQL semantics. See "Using Custom Query Engines".





	
Context path configuration, which allows multiple Coherence REST applications to be deployed to the embedded HTTP server. See "Deploying with the Embedded HTTP Server".








Other Significant Changes in This Document for 12c (12.1.2)

For 12c (12.1.2), this guide has been updated in several ways. Following are the sections that have been added or changed.

	
Revised instructions for proxy load balancing. See "Load Balancing Connections".


	
Revised the Coherence REST dependencies section. See "Dependencies for Coherence REST".


	
Revised the instructions for deploying Coherence REST on WebLogic Server to include new packaging requirements for a WebLogic Server domain. "Deploying to WebLogic Server".










Part I


Getting Started


Part I contains the following chapters:

	
Chapter 1, "Introduction to Coherence*Extend"


	
Chapter 2, "Installing a Client Distribution"


	
Chapter 3, "Building Your First Extend Client"


	
Chapter 4, "Setting Up Coherence*Extend"


	
Chapter 5, "Best Practices for Coherence*Extend"







1 Introduction to Coherence*Extend


This chapter describes Coherence*Extend and includes information about native Coherence clients (Java, C++, and .NET) and non-native Coherence clients (REST and Memcached).

This chapter includes the following sections:

	
Overview of Coherence*Extend


	
Extend Client Types


	
Extend Client APIs


	
POF Serialization


	
Understanding Extend Client Configuration Files


	
Non-Native Client Support






1.1 Overview of Coherence*Extend

Coherence*Extend "extends" the reach of the core Coherence TCMP cluster to a wider range of consumers, including desktops, remote servers, and computers located across WAN connections. Typical uses of Coherence*Extend include providing desktop applications with access to Coherence caches (including support for Near Cache and Continuous Query) and linking multiple Coherence clusters connected through a high-latency, unreliable WAN.

Coherence*Extend consists of two basic components: an extend client running outside the cluster and an extend proxy service running in the cluster hosted by one or more cache servers (DefaultCacheServer) that are storage disabled. The client APIs include implementations of both the CacheService and InvocationService interfaces which route all requests to the proxy. The proxy responds to client requests by delegating to an actual Coherence clustered services (for example, a partitioned or replicated cache service or an invocation service).

Coherence*Extend uses the Extend-TCP transport binding (a low-level messaging protocol) to communicate between the client and the cluster. The protocol is a high performance, scalable TCP/IP-based communication layer. The transport binding is configuration-driven and is completely transparent to the client application that uses Coherence*Extend.

Figure 1-1 provides a conceptual view of the Coherence*Extend components and shows an extend client connecting to an extend proxy service using Extend-TCP.


Figure 1-1 Conceptual View of Coherence*Extend Components

[image: Description of Figure 1-1 follows]






Like cache clients, an extend client retrieves Coherence clustered service using a cache factory. After a service is obtained, a client uses the service in the same way as if it were part of the Coherence cluster. The fact that operations are being sent to a remote cluster node is transparent to the client application.






1.2 Extend Client Types

Extend clients can be created for the Java, .NET, and C++ platforms and have access to the same rich API as the standard Coherence API without being full data members of the cluster. Typically, client applications are granted only read access to cluster data, although it is possible to enable direct read/write access. There are two categories of clients: Data Clients and Real Time Extend Clients.


1.2.1 Data Clients

Data clients are extend clients that are able to access (put, get, query) data in the cluster and also make invocation service requests using standard Coherence APIs. In particular, data clients provide:

	
Key-based cache access through the NamedCache interface


	
Attribute-based cache access using filters


	
Custom processing and aggregation of cluster side entries using the InvocableMap interface


	
In-Process caching through LocalCache


	
Remote invocation of custom tasks in the cluster through the Invocation Service




For a complete list of Data Client features, see Oracle Fusion Middleware Licensing Information.




	
Note:

Data clients cannot be notified of changes to data in a cluster. Further, data clients do not have the ability to use Near Caches or Continuous Query caches, as those capabilities also rely on the ability to receive notifications of data changes from the cluster. For these capabilities, real-time clients must be used.











1.2.2 Real Time Clients

Real Time Clients (Extend-TCP) provides the same capabilities associated with data clients; but, unlike data clients, a real-time client also supports:

	
Event Notifications – Using the standard Coherence event model, data changes that occur within the cluster are visible to the client application. Only events that a client application registers for are delivered over the wire. This model results in efficient use of network bandwidth and client processing.


	
Local Caches – While the client application can directly access the caches managed by the cluster, that may be inefficient depending on the network infrastructure. For efficiency, a real-time client can use both Near Caching and Continuous Query Caching to maintain cache data locally. If the server to which the client application is attached happens to fail, the connection is automatically reestablished to another server, and any locally cached data is re-synchronized with the cluster.




For a complete list of Real Time Client features, see Oracle Fusion Middleware Licensing Information.








1.3 Extend Client APIs

Java, C++, and .NET (C#) native libraries are available for building extend clients. Each API is delivered in its own distribution and must be installed separately. Extend clients use their respective APIs to perform cache operations such as access, modify, and query data that is in a cluster. The C++ and C# APIs follow the Java API as close as possible to provide a consistent experience between platforms.

As an example, a Java client gets a NamedCache instance using the CacheFactory.getCache method as follows:


NamedCache cache = CacheFactory.getCache("dist-extend");


For C++, the API is as follows:


NamedCache::Handle hCache = CacheFactory::getCache("dist-extend");


For C#, the API is as follows:


INamedCache cache = CacheFactory.GetCache("dist-extend");


This and many other API features are discussed throughout this guide:

	
Java – See Part I, "Creating Java Extend Clients" for details on using the API and refer to Java API Reference for Oracle Coherence for detailed API documentation.


	
C++ – See Part I, "Creating C++ Extend Clients" for details on using the API and refer to C++ API Reference for Oracle Coherence for detailed API documentation.


	
.NET – See Part I, "Creating .NET Extend Clients" for details on using the API and refer to .NET API Reference for Oracle Coherence for detailed API documentation.









1.4 POF Serialization

Like cache clients, extend clients must serialize objects that are to be stored in the cluster. C++ and C# clients use Coherence's Portable Object Format (POF), which is a language agnostic binary format. Java extend clients typically use POF for serialization as well; however, there are several other options for serializing Java objects, such as Java native serialization and custom serialization routines. See Developing Applications with Oracle Coherence for details.

Clients that serialize objects into the cluster can perform get and put based operations on the objects. However, features such as queries and entry processors require Java-based cache servers to interact with the data object, rather then simply holding onto a serialized representation of it. To interact with the object and access its properties, a Java version of the object must be made available to the cache servers.

See Developing Applications with Oracle Coherence for det