

Oracle® Fusion Middleware
Integrating Oracle Coherence

12c (12.1.3)

E47886-01

May 2014

Documentation for developers and administrators that
describes how to integrate Oracle Coherence with
Coherence*Web, EclipseLink JPA, Hibernate, Spring,
memcached adapters, and Coherence GoldenGate HotCache.

Oracle Fusion Middleware Integrating Oracle Coherence, 12c (12.1.3)

E47886-01

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Thomas Pfaeffle

Contributing Author: Noah Arliss, Jason Howes, Mark Falco, Alex Gleyzer, Gene Gleyzer, David Leibs,
Tim Middleton, Andy Nguyen, Tom Beerbower, John Speidel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

List of ExamplesList of FigureswList of Tables

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents ... xi
Conventions .. xii

What's New in This Guide .. xiii

New and Changed Features for 12c (12.1.3) .. xiii
Other Significant Changes in this Document for 12c (12.1.3) ... xiii

1 Integrating TopLink Grid with Oracle Coherence

What is TopLink Grid? .. 1-1
What are the JPA on the Grid Configurations? ... 1-2
What are the Benefits of Using TopLink Grid with Oracle Coherence? 1-2

Required Files ... 1-3
JPA on the Grid Configurations ... 1-3

Understanding JPA on the Grid... 1-3
JPA on the Grid API... 1-4
Grid Cache Configuration... 1-5

Reading Objects in Grid Cache Configuration ... 1-6
Writing Objects in Grid Cache Configuration .. 1-6
Grid Cache Configuration Examples ... 1-7

Configuring the Cache for the Grid Cache Configuration ... 1-7
Configuring an Entity for the Grid Cache Configuration.. 1-8
Inserting Objects for the Grid Cache Configuration... 1-8
Querying Objects for the Grid Cache Configuration.. 1-8

Grid Read Configuration .. 1-9
Reading Objects in Grid Read Configuration .. 1-9
Writing Objects in Grid Read Configuration... 1-11
Grid Read Configuration Examples .. 1-11

Configuring the Cache in Grid Read Configuration ... 1-11
Reading Objects for the Grid Read Configuration... 1-12
Inserting Objects for the Grid Read Configuration ... 1-13
Querying Objects for the Grid Read Configuration .. 1-13

iv

Grid Entity Configuration.. 1-13
Reading Objects in Grid Entity Configuration .. 1-14
Writing Objects in Grid Entity Configuration ... 1-14
Limitations on Writing Objects in Grid Entity Configuration .. 1-15
Grid Entity Configuration Examples ... 1-15

Configuring the Cache for the Grid Entity Configuration .. 1-15
Configuring an Entity for the Grid Entity Configuration .. 1-16
Persisting Objects for the Grid Entity Configuration ... 1-16
Querying Objects for the Grid Entity Configuration .. 1-16

Handling Grid Read and Grid Entity Failovers ... 1-17
Wrapping and Unwrapping Entity Relationships ... 1-17
Working with Queries .. 1-18

Querying Objects by ID... 1-18
Querying Objects with Criteria.. 1-18
Using Indexes in Queries .. 1-18
Limitations on Queries.. 1-19

EclipseLink Native ORM Configurations .. 1-19
Understanding EclipseLink Native ORM.. 1-19
API for EclipseLink Native ORM ... 1-20
Configuring an Amendment Method .. 1-20

Configuring the Amendment Method in JDeveloper... 1-21
Configuring the EclipseLink Native ORM Cache Store and Cache Loader 1-24

Using POF Serialization with TopLink Grid and Coherence... 1-25
Implement a Serialization Routine ... 1-26
Define a Cache Configuration File.. 1-28
Define a POF Configuration File... 1-29

Best Practices ... 1-32
Changing Compiled Java Classes with Byte Code Weaving.. 1-32
Deferring Database Queries with Lazy Loading.. 1-33
Defining Near Caches for Applications Using TopLink Grid ... 1-33
Ensuring Prefixed Cache Names Use Wildcard in Cache Configuration............................... 1-34
Overriding the Default Cache Name ... 1-35

2 Integrating JPA Using the Coherence API

Using TopLink Grid with Coherence Client Applications .. 2-1
API for Coherence with TopLink Grid Configurations.. 2-2
Sample Cache Configuration File for Coherence with TopLink Grid.. 2-2
Sample Project for Using Coherence with TopLink Grid .. 2-4

Using Third Party JPA Providers .. 2-4
API for Native Coherence JPA CacheStore and CacheLoader .. 2-4
Steps to Use a Third Party JPA Provider and Native Coherence JPA API................................ 2-5

Obtain a JPA Provider Implementation .. 2-5
Configure a Coherence JPA Cache Store ... 2-5

Map the Persistent Classes ... 2-5
Configure JPA .. 2-5
Configure a Coherence Cache for JPA.. 2-6
Configure the Persistence Unit .. 2-7

v

3 Integrating Coherence Applications with Coherence*Web

Merging Coherence Cache and Session Information.. 3-1

4 Integrating Hibernate and Coherence

5 Integrating Spring with Coherence

6 Enabling ECID in Coherence Logs

7 Integrating with Oracle Coherence GoldenGate HotCache

Overview .. 7-1
How Does HotCache Work? ... 7-2

How the GoldenGate Java Adapter uses JPA Mapping Metadata ... 7-4
Supported Database Operations .. 7-4

Prerequisites .. 7-4
Configuring GoldenGate.. 7-5

Monitor Table Changes ... 7-5
Filter Changes Made by the Current User.. 7-6

Configuring HotCache .. 7-7
Create a Properties File with GoldenGate for Java Properties .. 7-7
Add Java Boot Options to the Properties File .. 7-8

Java Classpath Files .. 7-9
HotCache-related Properties ... 7-9
Coherence-related Properties.. 7-9
Logging Properties... 7-10

Provide Coherence*Extend Connection Information .. 7-10
Configuring the GoldenGate Java Client ... 7-11

Edit the GoldenGate Java Client Extracts File .. 7-12
Using Portable Object Format with HotCache .. 7-13
Enabling Wrapper Classes for TopLink Grid Applications ... 7-13

8 Using Memcached Clients with Oracle Coherence

Overview of the Oracle Coherence Memcached Adapter .. 8-1
Setting Up the Memcached Adapter... 8-2

Define the Memcached Adapter Socket Address.. 8-2
Define Memcached Adapter Proxy Service.. 8-2

Connecting to the Memcached Adapter... 8-4
Securing Memcached Client Communication.. 8-4

Performing Memcached Client Authentication... 8-4
Performing Memcached Client Authorization .. 8-5

Sharing Data Between Memcached and Coherence Clients.. 8-5

vi

List of Examples

1–1 Configuring the Cache in Grid Cache Configuration.. 1-7
1–2 Configuring the Entity in Grid Cache Configuration.. 1-8
1–3 Inserting Objects in Grid Cache Configuration .. 1-8
1–4 Querying Objects in Grid Cache Configuration... 1-9
1–5 Configuring the Cache in Grid Read Configuration .. 1-12
1–6 Configuring the Entity in Grid Read Configuration... 1-12
1–7 Inserting Objects in Grid Read Configuration... 1-13
1–8 Querying Objects in Grid Read Configuration.. 1-13
1–9 Configuring the Cache in Grid Entity Configuration... 1-15
1–10 Configuring an Entity in Grid Entity Configuration .. 1-16
1–11 Persisting Objects in Grid Entity Configuration ... 1-16
1–12 Querying Objects in Grid Entity Configuration .. 1-16
1–13 Unwrapping an Entity .. 1-17
1–14 Exposing a Coherence Query Index to TopLink Grid.. 1-19
1–15 Configuration for an Integrated EclipseLinkNativeCacheStore 1-24
1–16 Configuration for an Integrated EclipseLinkNativeCacheLoader 1-25
1–17 Sample Entity Class that Implements PortableObject .. 1-26
1–18 Sample Cache Configuration File .. 1-28
1–19 Simplified POF Configuration File.. 1-30
1–20 Sample POF Configuration File with Definitions for TopLink Classes 1-31
1–21 Session Customizer to Prepend .. 1-34
2–1 Configuring the Cache for Coherence with TopLink Grid... 2-3
2–2 Sample persistence.xml File for JPA .. 2-6
2–3 Assigning Named Caches to a JPA Caching Scheme .. 2-6
6–1 Using a DMS Context in Coherence Client Code .. 6-1
7–1 Mapping Instances of Employee Class to Rows with Java Code.. 7-2
7–2 Simplified Java Code for Mapping Instances of Employee Class to Rows 7-3
7–3 Mapping Instances of Employee Class to Rows with XML.. 7-3
7–4 Simplified XML for Mapping Instances of Employee Class to Rows 7-3
7–5 Sample Commands to Create a User, Grant Permissions, and Enable Logging 7-5
7–6 Sample GoldenGate Java Adapter ggsci Script to Monitor Table Changes 7-6
7–7 Sample Extract .prm File for the GoldenGate Java Adapter... 7-6
7–8 .properties File for a HotCache Project .. 7-8
7–9 Coherence*Extend Section of a Client Cache Configuration File 7-10
7–10 Coherence*Extend Section of a Server Cache Configuration File..................................... 7-11
7–11 Sample .prm Parameter File for GoldenGate for Java Client .. 7-12
7–12 Sample POF Configuration File for HotCache .. 7-13

vii

viii

List of Figures

1–1 JPA on the Grid Approach... 1-4
1–2 Reading Objects in Grid Cache Configuration ... 1-6
1–3 Writing and Persisting Objects in grid Cache Configuration... 1-7
1–4 Reading Objects with a Query ... 1-10
1–5 Writing and Persisting Objects in Grid Read Configuration... 1-11
1–6 Writing and Persisting Objects in Grid Entity Configuration... 1-14
1–7 tlMap Descriptors in the JDeveloper Structure Pane.. 1-21
1–8 Advanced Properties Dialog Box... 1-22
1–9 After Load Tab for a TopLink Descriptor ... 1-23
1–10 Searching for the Class containing the Amendment Method ... 1-23
1–11 Selecting the Amendment Method.. 1-24
2–1 Coherence with TopLink Grid Approach ... 2-2
7–1 How HotCache Propagates Database Changes to the Cache... 7-2
7–2 EMPLOYEE Table Before and After an Update ... 7-4
8–1 Conceptual View of a Memcached Client Connection.. 8-2

ix

wList of Tables

1–1 TopLink Grid Classes to Build JPA on the Grid Applications .. 1-4
1–2 EclipseLink Classes for Native ORM Configurations ... 1-20
2–1 TopLink Grid Classes to build Coherence with TopLink Grid Applications 2-2
2–2 JPA-Related CacheStore and CacheLoader API Included with Coherence 2-4

x

xi

Preface

Oracle Coherence (Coherence) is a JCache-compliant in-memory caching and data
management solution for clustered Java Platform Enterprise Edition (Java EE)
applications and application servers. Coherence makes sharing and managing data in
a cluster as simple as it is on a single server. It accomplishes this by coordinating
updates to the data using clusterwide concurrency control, replicating and distributing
data modifications across the cluster using the highest performing clustered protocol
available, and delivering notifications of data modifications to any servers that request
them. Developers can take advantage of Coherence features using the standard Java
collections API to access and modify data, and use the standard JavaBeans event
model to receive data change notifications.

Audience
This guide is for software developers and architects who will be integrating Coherence
with TopLink-Grid, JPA, Hibernate, Spring, memcached adapters, and Coherence
GoldenGate HotCache.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information about Oracle Coherence, see the following:

■ Oracle Fusion Middleware Developing Applications with Oracle Coherence

■ Oracle Fusion Middleware Developing Remote Clients for Oracle Coherence

■ Oracle Fusion Middleware Tutorial for Oracle Coherence

■ Oracle Fusion Middleware Administering HTTP Session Management with Oracle
Coherence*Web

xii

■ Oracle Fusion Middleware Managing Oracle Coherence

■ Oracle Fusion Middleware Administering Oracle Coherence

■ Oracle Fusion Middleware Securing Oracle Coherence

■ Oracle Fusion Middleware Java API Reference for Oracle Coherence

■ Oracle Fusion Middleware .NET API Reference for Oracle Coherence

■ Oracle Fusion Middleware C++ API Reference for Oracle Coherence

Conventions
The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiii

What's New in This Guide

The following topics introduce the new and changed features of Oracle Coherence and
other significant changes that are described in this guide, and provides pointers to
additional information. This document is the new edition of the formerly titled Oracle
Coherence Integration Guide for Oracle TopLink with Coherence Grid.

New and Changed Features for 12c (12.1.3)
Oracle Coherence 12c (12.1.3) includes the following new and changed features for this
document.

■ Support for memcached adapters has been added to Coherence has been added.
The memcached adapter allows Coherence to be used as a distributed cache for
memcached-based clients. See Chapter 8, "Using Memcached Clients with Oracle
Coherence."

Other Significant Changes in this Document for 12c (12.1.3)
For 12c (12.1.3), this guide has been updated in several ways. Following are the
sections that have been added or changed.

■ Support for WebLogic Portal has been removed from Coherence 12.1.3, hence, the
chapter has been removed from this book. The use of WebLogic Portal is still
supported by earlier versions of Coherence. For example, for the Coherence 12.1.2
release, see "Integrating WebLogic Portal and Coherence" in Integrating Oracle
Coherence. For the Coherence 3.7.1 release, see "Integrating WebLogic Portal and
Coherence" in Coherence Integration Guide for Oracle Coherence (3.7.1).

xiv

1

Integrating TopLink Grid with Oracle Coherence 1-1

1Integrating TopLink Grid with Oracle
Coherence

This chapter describes how Oracle TopLink Grid enables you to scale out Java
Persistence API (JPA) applications using Oracle Coherence. TopLink Grid provides
applications with a number of options on how they can scale, ranging from using
Coherence as a distributed shared (L2) cache up to directing JP QL queries to
Coherence for parallel execution across the grid to reduce database load. With TopLink
Grid, you do not have to rewrite your applications to scale out. You can use your
investment in JPA, and still take advantage of the scalability of Coherence.

This chapter contains the following sections:

■ What is TopLink Grid?

■ Required Files

■ JPA on the Grid Configurations

■ EclipseLink Native ORM Configurations

■ Using POF Serialization with TopLink Grid and Coherence

■ Best Practices

1.1 What is TopLink Grid?
Oracle TopLink Grid is a feature of Oracle TopLink that provides integration between
the EclipseLink JPA and Coherence. Standard JPA applications interact directly with
their primary data store, typically a relational database. However, with TopLink Grid
you can store some or all of your domain model in the Coherence data grid. This
configuration is also known as JPA on the Grid.

You can easily configure TopLink Grid to use Coherence as the primary data store,
execute queries against the grid, and allow Coherence to manage the persistence of
new and modified data. Coherence provides the layer between JPA and the data store,
where direct database calls can be offloaded from every application instance. This
makes it possible for clustered application deployments to scale beyond the bounds of
standard database operations.

The Oracle TopLink Grid page on the Oracle Technology Network provides additional
information and code examples for Coherence for TopLink Grid.

http://www.oracle.com/technetwork/middleware/ias/tl-grid-097210.
html

What is TopLink Grid?

1-2 Oracle Fusion Middleware Integrating Oracle Coherence

1.1.1 What are the JPA on the Grid Configurations?
These are the typical JPA on the Grid configurations that applications can use:

■ Grid Cache configuration, which uses Coherence as the TopLink L2 (shared) cache.
This configuration applies the Coherence data grid to JPA applications that rely on
database-hosted data that cannot be entirely preloaded into a Coherence cache.
Some reasons why it might not be able to be preloaded include extremely complex
queries that exceed the feature set of Coherence Filters, third-party database
updates that create stale caches, reliance on native SQL queries, stored procedures
or triggers, and so on.

In this configuration, you can scale TopLink up into large clusters while avoiding
the requirement to coordinate local L2 caches. Updates made to entities are
available in all Coherence cluster members immediately, upon committing a
transaction. For more information, see "Grid Cache Configuration" on page 1-5.

■ Grid Read configuration, which is optimal for entities that require fast access to
large amounts of (fairly stable) data and must write changes synchronously to the
database. In these entities, cache warming could be used to populate the
Coherence cache, but individual queries could also be directed to the database if
necessary. For more information, see "Grid Read Configuration" on page 1-9.

■ Grid Entity configuration, which is optimal for applications that require fast access
to large amounts of (fairly stable) data and perform relatively few updates. This
configuration can be combined with a Coherence cache store using write-behind to
improve application response time by performing database updates
asynchronously. For more information, see "Grid Entity Configuration" on
page 1-13.

1.1.2 What are the Benefits of Using TopLink Grid with Oracle Coherence?
TopLink Grid provides the following benefits:

■ Simple application configuration using annotations or XML configurations that
align with standard JPA.

■ The ability to store complex object graphs with relationships in Coherence.

■ The ability to selectively choose which entities are stored in the grid and which are
stored directly in the backing database.

■ Allows you to execute JP QL queries in the Grid or directly against the database.

■ Allows you to store entities with both eager and lazy relationships into Coherence.

TopLink Grid integrates the EclipseLink JPA implementation with Oracle Coherence
and provides these development approaches:

■ You can build applications using JPA and transparently use the power of the data
grid for improved scalability and performance. In this JPA on the Grid approach,
TopLink Grid provides a set of cache and query configuration options that allow
you to control how EclipseLink JPA uses Coherence. These implementations reside
in the oracle.eclipselink.coherence.integrated package. See "JPA on the Grid
Configurations" on page 1-3 for more information.

■ If you have existing Native ORM applications, then you can use the EclipseLink
Native Object Relational Mapping (ORM) framework with them. The Native ORM
approach is very similar to JPA on the Grid, however, it does not use annotations to
configure how the cache is used. Instead, this approach employs an amendment
method that defines the appropriate cache behavior. See "EclipseLink Native ORM
Configurations" on page 1-19 for more information.

JPA on the Grid Configurations

Integrating TopLink Grid with Oracle Coherence 1-3

■ You can use the Coherence API with caches backed by TopLink Grid to access
relational data with special cache loader and cache store interfaces which have
been implemented for JPA.

In this traditional Coherence approach, TopLink Grid provides the CacheLoader
and CacheStore implementations in the oracle.eclipselink.coherence.
standalone package that are optimized for EclipseLink JPA. This technique is
described in "Using TopLink Grid with Coherence Client Applications" on
page 2-1.

When integrating JPA applications with the Coherence data grid, note the potential
benefits and restrictions. You must understand how the grid works and how it relates
to your JPA configurations to realize the full potential.

1.2 Required Files
The required files for working with TopLink Grid are the javax.persistence_2.2.0.
0_1-0-2.jar, the eclipselink.jar, and the toplink-grid.jar. Assuming that you
performed a standard installation of Coherence, these files can be found in the
following locations:

■ .../Oracle_Home/oracle_common/modules/javax.persistence_2.2.0.0_1-0-2.
jar

■ .../Oracle_Home/oracle_common/modules/oracle.toplink12.1.3/eclipselink.
jar

■ .../Oracle_Home/oracle_common/modules/oracle.toplink12.1.3/toplink-grid.
jar

1.3 JPA on the Grid Configurations
This section describes JPA on the Grid and how to read and write objects in the Grid
Cache, Grid Read, and Grid Entity configurations. It also describes how to work with
queries against the Coherence cache under these configurations.

This section contains the following:

■ Understanding JPA on the Grid

■ JPA on the Grid API

■ Grid Cache Configuration

■ Grid Read Configuration

■ Grid Entity Configuration

■ Handling Grid Read and Grid Entity Failovers

■ Wrapping and Unwrapping Entity Relationships

■ Working with Queries

1.3.1 Understanding JPA on the Grid
The expression JPA on the Grid refers to using JPA and the power of the data grid to
build applications with improved scalability and performance. In the JPA on the Grid
approach, TopLink Grid provides a set of cache and query configuration options that
allow you to control how EclipseLink JPA uses Coherence.

JPA on the Grid Configurations

1-4 Oracle Fusion Middleware Integrating Oracle Coherence

You can configure Coherence as a distributed shared (L2) cache or use Coherence as
the primary data store. You can also configure entities to execute queries in the
Coherence data grid instead of the database. This allows clustered application
deployments to scale beyond database-bound operations.

Figure 1–1 illustrates the relationship between an application, TopLink, Coherence,
and the database.

Figure 1–1 JPA on the Grid Approach

1.3.2 JPA on the Grid API
The API used by JPA on the Grid configurations are shipped in the toplink-grid.jar
file. Table 1–1 lists some of the key classes in the oracle.eclipselink.coherence.
integrated package that are used in JPA on the Grid configurations.

Table 1–1 TopLink Grid Classes to Build JPA on the Grid Applications

Class Name Description

oracle.eclipseLink.coherence.integrated.
EclipseLinkJPACacheLoader

Provides JPA-aware versions of the Coherence
CacheLoader interface.

oracle.eclipseLink.coherence.integrated.
EclipseLinkJPACacheStore

Provides JPA-aware versions of the Coherence
CacheStore interface.

oracle.eclipselink.coherence.integrated.config.
CoherenceReadCustomizer

Enables a Coherence read configuration.

oracle.eclipselink.coherence.integrated.config.
CoherenceReadWriteCustomizer

Enables a Coherence read/write configuration.

JPA on the Grid Configurations

Integrating TopLink Grid with Oracle Coherence 1-5

The configuration also uses the standard JPA run-time configuration file persistence.
xml and the JPA mapping file orm.xml. You must also use the Coherence cache
configuration file coherence-cache-config.xml to override the default Coherence
settings and define the cache store caching scheme.

1.3.3 Grid Cache Configuration
The Grid Cache configuration can be considered as the base configuration for TopLink
Grid. In this configuration, Coherence acts as the TopLink shared (L2) cache. This
brings the power of the Coherence data grid to JPA applications that rely on
database-hosted data that cannot be entirely preloaded into a Coherence cache. Some
reasons why the data might not be able to be preloaded include extremely complex
queries that exceed the abilities of Coherence Filters, third-party database updates that
create stale caches, and reliance on native SQL queries, stored procedures, or triggers.

By using Coherence as the TopLink Grid cache, you can scale TopLink up into large
clusters while avoiding the need to coordinate local shared caches. Updates made to
entities are available in all Coherence cluster members immediately, upon committing
a transaction.

In general, read and write operations in a Grid Cache configuration have the following
characteristics:

■ A primary key query will attempt to get entities first from the Coherence cache. If
the attempt is unsuccessful, the database will be queried and the Coherence cache
will be updated with the query results. See the following section, "Reading Objects
in Grid Cache Configuration".

■ A nonprimary key query will be executed against the database and the results will
be checked against the Coherence cache. This is to avoid the negative performance
impact of constructing entities that are already cached. Newly queried entities are
put into the Coherence cache.

■ A write operation will update the database and, if successfully committed, will
put updated entities into the Coherence cache. See "Writing Objects in Grid Cache
Configuration" on page 1-6.

See "Grid Cache Configuration Examples" on page 1-7 for detailed examples.

To use Coherence as a distributed cache for an entity, you must enable shared caching
in EclipseLink. Shared caching is enabled by default for all entities, but the default can
be explicitly set to true or false by setting the eclipselink.cache.shared.default
property in the persistence.xml file. Specific entities can override the default using
the @Cache annotation or by specifying the corresponding XML <cache> element in the
eclipselink-orm.xml file. For more information, see:

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#How_to_
Use_the_.40Cache_Annotation

oracle.eclipselink.coherence.integrated.config.
GridCacheCustomizer

Enables cache instances to be cached in Coherence
instead of in the internal EclipseLink shared cache. All
calls to the internal TopLink L2 cache are redirected to
Coherence.

oracle.eclipselink.coherence.integrated.
querying.IgnoreDefaultRedirector

Allows queries to bypass the Coherence cache and be
sent directly to the database.

Table 1–1 (Cont.) TopLink Grid Classes to Build JPA on the Grid Applications

Class Name Description

JPA on the Grid Configurations

1-6 Oracle Fusion Middleware Integrating Oracle Coherence

1.3.3.1 Reading Objects in Grid Cache Configuration
In the Grid Cache configuration, all read queries are directed to the database except
primary key queries, which are directed to the Coherence cache first. Any cache misses
will result in a database query.

All entities queried from the database are placed in the Coherence cache. This makes
the entities immediately available to all members of the cluster. This is valuable
because, by default, TopLink uses the cache to avoid constructing new entities from
database results.

For each row resulting from a query, TopLink uses the primary key of the result row to
query the corresponding entity from the cache. If the cache contains the entity then the
entity is used and a new entity is not built. This approach can greatly improve
application performance, especially with a warmed cache, because it reduces the cost
of a query by eliminating the cost associated with object building.

Figure 1–2 illustrates the path of a read query in the Grid Cache configuration:

1. The application issues a find query.

2. For primary key queries, TopLink queries the Coherence cache first.

3. If the object does not exist in the Coherence cache, TopLink queries the database.

For all read queries except primary key queries, TopLink queries the database first.

4. Read objects are put into the Coherence cache.

Figure 1–2 Reading Objects in Grid Cache Configuration

1.3.3.2 Writing Objects in Grid Cache Configuration
In the Grid Cache configuration, TopLink performs all database write operations
(insert, update, delete). The Coherence cache is then updated to reflect the changes
made to the database. TopLink offers a number of performance features when writing

JPA on the Grid Configurations

Integrating TopLink Grid with Oracle Coherence 1-7

large amounts of data including batch writing, parameter binding, stored procedure
support, and statement ordering to ensure that database constraints are satisfied.

Figure 1–3 illustrates the path for writing and persisting objects in the Grid Cache
configuration:

1. The application issues a commit query.

2. TopLink updates the database.

3. After a successful transaction, TopLink updates the Coherence cache.

Figure 1–3 Writing and Persisting Objects in grid Cache Configuration

1.3.3.3 Grid Cache Configuration Examples
You can obtain the code in these examples at the following URL:

http://www.oracle.
com/technetwork/middleware/toplink/examples-325517-en-ca.html

1.3.3.3.1 Configuring the Cache for the Grid Cache Configuration The cache configuration
file (coherence-cache-config.xml) in Example 1–1 defines the cache and configures a
wrapper serializer to support serialization of relationships.

Example 1–1 Configuring the Cache in Grid Cache Configuration

<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>*</cache-name>
<scheme-name>eclipselink-distributed</scheme-name>

</cache-mapping>
</caching-scheme-mapping>
<caching-schemes>
<distributed-scheme>

JPA on the Grid Configurations

1-8 Oracle Fusion Middleware Integrating Oracle Coherence

<scheme-name>eclipselink-distributed</scheme-name>
<service-name>EclipseLinkJPA</service-name>
<!--
Configure a wrapper serializer to support serialization of relationships.

-->
<serializer>
<class-name>oracle.eclipselink.coherence.integrated.cache.

WrapperSerializer</class-name>
</serializer>
<backing-map-scheme>
<!--
Backing map scheme with no eviction policy.

-->
<local-scheme>
<scheme-name>unlimited-backing-map</scheme-name>

</local-scheme>
</backing-map-scheme>
</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>
</caching-schemes>

</cache-config>

1.3.3.3.2 Configuring an Entity for the Grid Cache Configuration To configure an entity to
use Grid Cache, use the @Customizer annotation and the GridCacheCustomizer class
as shown in Example 1–2. This class intercepts all TopLink calls to the internal TopLink
Grid cache and redirects them to the Coherence cache.

Example 1–2 Configuring the Entity in Grid Cache Configuration

import oracle.eclipselink.coherence.integrated.config.GridCacheCustomizer;
import org.eclipse.persistence.annotations.Customizer;

@Entity
@Customizer(GridCacheCustomizer.class)
public class Employee {
...

1.3.3.3.3 Inserting Objects for the Grid Cache Configuration In Example 1–3, TopLink
performs the insert to create a new employee. Entities are persisted through the
EntityManager and placed in the database. After a successful transaction, the
Coherence cache is updated.

Example 1–3 Inserting Objects in Grid Cache Configuration

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee-pu");

// Create an employee with an address and telephone number.
EntityManager em = emf.createEntityManager();
em.getTransaction().begin();
Employee employee = createEmployee();
em.persist(employee);
em.getTransaction().commit();
em.close();

1.3.3.3.4 Querying Objects for the Grid Cache Configuration In Example 1–4, the named
JPQL query is directed to the database. Query results are resolved against the
Coherence cache to avoid the cost of building objects that have previously been
cached.

JPA on the Grid Configurations

Integrating TopLink Grid with Oracle Coherence 1-9

Example 1–4 Querying Objects in Grid Cache Configuration

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee-pu");

EntityManager em = emf.createEntityManager();
List<Employee> employees = em.createQuery("select e from Employee e where e.
lastName = :lastName").setParameter("lastName", "Smith").getResultList();

for (Employee employee : employees) {
System.err.println(employee);
for (PhoneNumber phone : employee.getPhoneNumbers()) {

System.err.println("\t" + phone);
}

}

emf.close();

1.3.4 Grid Read Configuration
Use the Grid Read configuration for entities that require fast access to large amounts of
(fairly stable) data and write changes synchronously to the database. For these entities,
cache warming would typically be used to populate the Coherence cache, but
individual queries could be directed to the database if necessary.

In general, read and write operations in a Grid Read configuration have the following
characteristics:

■ Read operations get objects from the Coherence cache. Configuring a cache loader
has no impact on JPQL queries. See the next section, "Reading Objects in Grid
Read Configuration".

■ Write operations update the database and, if successfully committed, updated
entities are put into the Coherence cache. See "Writing Objects in Grid Read
Configuration" on page 1-11.

See "Grid Read Configuration Examples" on page 1-11 for detailed examples.

1.3.4.1 Reading Objects in Grid Read Configuration
In the Grid Read configuration, all primary key and non-primary key queries are
directed to the Coherence cache. To reduce query processing time, TopLink Grid
supports parallel processing of queries across the data grid. Coherence contains data
already in object form, avoiding the performance impact of database communication
and object construction.

With the Grid Read configuration, if Coherence does not contain the entity requested
by the find(...) method, then null is returned. However, if a cache loader is
configured for the entity's cache, Coherence will attempt to load the object from the
database. This is true only for primary key queries.

Configuring a cache loader has no impact on JPQL queries translated to Coherence
filters. When searching with a filter, Coherence will operate only on the set of entities
in the caches; the database will not be queried. However, it is possible to direct a query,
on a query-by-query basis, to the database instead of to Coherence by using the
oracle.eclipselink.coherence.integrated.querying.IgnoreDefaultRedirector
class, as shown in following example:

query.setHint(QueryHints.QUERY_REDIRECTOR, new IgnoreDefaultRedirector());

Any objects retrieved by a database query will be added to the Coherence cache so that
they are available for subsequent queries. Because this configuration resolves all

JPA on the Grid Configurations

1-10 Oracle Fusion Middleware Integrating Oracle Coherence

queries for an entity through Coherence by default, the Coherence cache should be
warmed with all of the data that is to be queried.

In the Grid Read configuration, projection queries (reports) that extract data from a
single entity type will also be directed to Coherence. For example, the following JPQL
query will return the first and last names of all employees contained in the Coherence
cache.

select e.firstName, e.lastName from Employee e

This type of query is useful when the entire entity is not required, for example when
populating a drop-down list in a user interface.

A cache store is not compatible with the Grid Read configuration because the
EclipseLink JPA will perform all database updates and then propagate the updated
objects into Coherence. If you use a cache store, Coherence will attempt to write the
objects again.

For complete information on using EclipseLink JPA query hints, see "JPA Query
Customization Extensions" in Java Persistence API (JPA) Extensions Reference for Oracle
TopLink and "About JPA Query Hints" in Oracle Fusion Middleware Understanding Oracle
TopLink.

Figure 1–4 illustrates the path for a query in the Grid Read configuration:

1. The application issues a JPQL query.

2. TopLink executes a Filter on the Coherence cache.

3. TopLink returns results from the Coherence cache only; the database is not
queried.

Figure 1–4 Reading Objects with a Query

JPA on the Grid Configurations

Integrating TopLink Grid with Oracle Coherence 1-11

1.3.4.2 Writing Objects in Grid Read Configuration
In the Grid Read configuration, TopLink performs all database write operations
(insert, update, delete) directly. The Coherence caches are then updated to reflect the
changes made to the database. TopLink offers a number of performance features when
writing large amounts of data. These include batch writing, parameter binding, stored
procedure support, and statement ordering to ensure that database constraints are
satisfied.

This approach offers the best possibilities: database updates are performed efficiently
and queries continue to be executed in parallel across the Coherence data grid, with the
option of directing individual queries to the database.

Figure 1–5 illustrates the path for writing and persisting objects in the Grid Read
configuration:

1. The application issues a commit query.

2. TopLink updates the database.

3. After a successful transaction, TopLink updates the Coherence cache.

Figure 1–5 Writing and Persisting Objects in Grid Read Configuration

1.3.4.3 Grid Read Configuration Examples
You can obtain the code in these examples at the following URL:

http://www.oracle.
com/technetwork/middleware/toplink/examples-325517-en-ca.html

1.3.4.3.1 Configuring the Cache in Grid Read Configuration The cache configuration file
(coherence-cache-config.xml) in Example 1–5 defines the cache and configures a
wrapper serializer to support serialization of relationships. The oracle.eclipselink.
coherence.integrated.EclipseLinkJPACacheLoader class defines the cache store
scheme.

JPA on the Grid Configurations

1-12 Oracle Fusion Middleware Integrating Oracle Coherence

Example 1–5 Configuring the Cache in Grid Read Configuration

<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>*</cache-name>
<scheme-name>eclipselink-distributed-readonly</scheme-name>

</cache-mapping>
</caching-scheme-mapping>
<caching-schemes>
<distributed-scheme>
<scheme-name>eclipselink-distributed-readonly</scheme-name>
<service-name>EclipseLinkJPAReadOnly</service-name>
<!--
Configure a wrapper serializer to support serialization of relationships.

-->
<serializer>
<class-name>oracle.eclipselink.coherence.integrated.cache.

WrapperSerializer</class-name>
</serializer>
<backing-map-scheme>
<read-write-backing-map-scheme>
<internal-cache-scheme>
<local-scheme />

</internal-cache-scheme>
<!--
Define the cache scheme.

-->
<cachestore-scheme>
<class-scheme>
<class-name>oracle.eclipselink.coherence.integrated.

EclipseLinkJPACacheLoader</class-name>
<init-params>
<param-type>java.lang.String</param-type>
<param-value>{cache-name}</param-value>

</init-param>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>employee-pu</param-value>

</init-param>
</init-params>

</class-scheme>
</cachestore-scheme>
<read-only>true</readonly>

</read-write-backing-map-scheme>
</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>
</caching-schemes>

</cache-config>

1.3.4.3.2 Reading Objects for the Grid Read Configuration To configure an entity to read
through a Coherence cache, use the @Customizer annotation and the
CoherenceReadCustomizer class as shown in Example 1–6:

Example 1–6 Configuring the Entity in Grid Read Configuration

import oracle.eclipselink.coherence.integrated.config.CoherenceReadCustomizer;
import org.eclipse.persistence.annotations.Customizer;

@Entity

JPA on the Grid Configurations

Integrating TopLink Grid with Oracle Coherence 1-13

@Customizer(CoherenceReadCustomizer.class)
public class Employee {
...
}

1.3.4.3.3 Inserting Objects for the Grid Read Configuration In Example 1–7, TopLink
performs an insert to create a new employee. If the transaction is successful, the new
object is placed into the Coherence cache under its primary key.

Example 1–7 Inserting Objects in Grid Read Configuration

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee-pu");
// Create an employee with an address and telephone number
EntityManager em = emf.createEntityManager();
em.getTransaction().begin();
Employee employee = createEmployee();
em.persist(employee);
em.getTransaction().commit();
em.close();

emf.close();

1.3.4.3.4 Querying Objects for the Grid Read Configuration When finding an employee, the
read query is directed to the Coherence cache. The JPQL query is translated to
Coherence filters, as shown in Example 1–8.

Example 1–8 Querying Objects in Grid Read Configuration

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee-pu");
EntityManager em = emf.createEntityManager();
List<Employee> employees = em.createQuery("select e from Employee e where e.
lastName = :lastName").setParameter("lastName", "Smith").getResultList();
for (Employee employee : employees) {
System.err.println(employee);
for (PhoneNumber phone : employee.getPhoneNumbers()) {
System.err.println("\t" + phone);

}
}

emf.close();

To retrieve an object from the Coherence cache with a specific ID (key), use the em.
find(Entity.class, ID) method. You can also configure a Coherence cache loader to
query the database to find the object, if the cache does not contain the object with the
specified ID.

1.3.5 Grid Entity Configuration
The Grid Entity configuration should be used by applications that require fast access
to large amounts of (fairly stable) data, but perform relatively few updates. This
configuration can be combined with a Coherence cache store using write-behind to
improve application response time by performing database updates asynchronously.

In general, read and write operations in a Grid Entity configuration have the following
characteristics:

■ Read operations get objects from the Coherence cache. See "Reading Objects in
Grid Entity Configuration" on page 1-14.

■ Write operations put objects into the Coherence cache. If a cache store is
configured, TopLink also performs write operations on the database. See "Writing

JPA on the Grid Configurations

1-14 Oracle Fusion Middleware Integrating Oracle Coherence

Objects in Grid Entity Configuration" on page 1-14.

See "Grid Entity Configuration Examples" on page 1-15 for detailed examples.

1.3.5.1 Reading Objects in Grid Entity Configuration
In the Grid Entity configuration, querying objects is identical to the Grid Read
configuration. See "Reading Objects in Grid Cache Configuration" on page 1-6 for
more information.

1.3.5.2 Writing Objects in Grid Entity Configuration
In the Grid Entity configuration, all objects that are persisted, updated, or merged
through an EntityManager instance will be put in the appropriate Coherence cache. To
persist objects in a Coherence cache to the database, an EclipseLink JPA cache store
(oracle.eclipselink.coherence.integrated.EclipseLinkJPACacheStore) must be
configured for each cache.

You can also configure the cache store to use write-behind to asynchronously
batch-write updated objects. See Oracle Fusion Middleware Developing Applications with
Oracle Coherence for more information.

Figure 1–6 illustrates the path for writing and persisting objects in the Grid Entity
configuration.

1. The application issues a commit call.

2. TopLink directs all queries to update the Coherence cache.

3. By configuring a Coherence cache store (optional), TopLink will also update the
database.

Figure 1–6 Writing and Persisting Objects in Grid Entity Configuration

JPA on the Grid Configurations

Integrating TopLink Grid with Oracle Coherence 1-15

1.3.5.3 Limitations on Writing Objects in Grid Entity Configuration
When using a cache store, Coherence assumes that all write operations succeed and
will not inform TopLink of a failure. This could result in the Coherence cache differing
from the database. You cannot use optimistic locking to protect against data corruption
that may occur if the database is concurrently modified by Coherence and a
third-party application.

Because the order in which Coherence cache members write updates to the database is
unpredictable, referential integrity cannot be guaranteed. Referential integrity
constraints must be removed from the database. If they are not, write operations could
fail with the following error:

org.eclipse.persistence.exceptions.DatabaseException
Internal Exception: java.sql.BatchUpdateException: ORA-02292: integrity constraint
violated - child record found
Error Code: 2292

1.3.5.4 Grid Entity Configuration Examples
You can obtain the code in these examples at the following URL:

http://www.oracle.
com/technetwork/middleware/toplink/examples-325517-en-ca.html

1.3.5.4.1 Configuring the Cache for the Grid Entity Configuration The cache configuration
file (coherence-cache-config.xml) in Example 1–9 configures a wrapper serializer to
support serialization of relationships. The oracle.eclipselink.coherence.
integrated.EclipseLinkJPACacheStore class defines the cache store scheme.

Example 1–9 Configuring the Cache in Grid Entity Configuration

<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>*</cache-name>
<scheme-name>eclipselink-distributed-readwrite</scheme-name>

</cache-mapping>
</caching-scheme-mapping>
<caching-schemes>
<distributed-scheme>
<scheme-name>eclipselink-distributed-readwrite</scheme-name>
<service-name>EclipseLinkJPAReadWrite</service-name>
<!--
Configure a wrapper serializer to support serialization of relationships.

-->
<serializer>
<class-name>oracle.eclipselink.coherence.integrated.cache.

WrapperSerializer</class-name>
</serializer>
<backing-map-scheme>
<read-write-backing-map-scheme>
<internal-cache-scheme>
<local-scheme />
</internal-cache-scheme>
<!--
Define the cache scheme

-->
<cachestore-scheme>
<class-scheme>
<class-name>oracle.eclipselink.coherence.integrated.

JPA on the Grid Configurations

1-16 Oracle Fusion Middleware Integrating Oracle Coherence

EclipseLinkJPACacheStore</class-name>
<init-params>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>{cache-name}</param-value>

</init-param>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>employee-pu</param-value>

</init-param>
</init-params>

</class-scheme>
</cachestore-scheme>

</read-write-backing-map-scheme>
</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>
</caching-schemes>

</cache-config>

1.3.5.4.2 Configuring an Entity for the Grid Entity Configuration To configure an entity to
read through Coherence, use the @Customizer annotation and the
CoherenceReadWriteCustomizer class as shown Example 1–10:

Example 1–10 Configuring an Entity in Grid Entity Configuration

import oracle.eclipselink.coherence.integrated.config.
CoherenceReadWriteCustomizer;
import org.eclipse.persistence.annotations.Customizer;

@Entity
@Customizer(CoherenceReadWriteCustomizer.class)
public class Employee {
...
}

1.3.5.4.3 Persisting Objects for the Grid Entity Configuration In Example 1–11, TopLink
performs the insert to create a new employee. Entities persist through the
EntityManager instance and are placed in the appropriate Coherence cache.

Example 1–11 Persisting Objects in Grid Entity Configuration

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee-pu");

// Create an employee with an address and telephone number.
EntityManager em = emf.createEntityManager();
em.getTransaction().begin();
Employee employee = createEmployee();
em.persist(employee);
em.getTransaction().commit();
em.close();

1.3.5.4.4 Querying Objects for the Grid Entity Configuration When finding an employee,
the read query is directed to the Coherence cache, as shown in Example 1–12.

Example 1–12 Querying Objects in Grid Entity Configuration

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee-pu");

EntityManager em = emf.createEntityManager();

JPA on the Grid Configurations

Integrating TopLink Grid with Oracle Coherence 1-17

List<Employee> employees = em.createQuery("select e from Employee e where e.
lastName = :lastName").setParameter("lastName", "Smith").getResultList();

for (Employee employee : employees) {
System.err.println(employee);
for (PhoneNumber phone : employee.getPhoneNumbers()) {

System.err.println("\t" + phone);
}

}

emf.close();

To get an object from the Coherence cache with a specific ID (key), use the em.
find(Entity.class, ID) method. You can also configure a Coherence cache store to
query the database to find the object, if the cache does not contain the object with the
specified ID.

1.3.6 Handling Grid Read and Grid Entity Failovers
In the Grid Read and Grid Entity configurations, TopLink Grid will attempt to
translate JPQL queries into Coherence Filters and execute the query in the grid.
However some queries cannot be translated into filters. When TopLink Grid
encounters such a query, it automatically fails over to the database to execute the
query. In TopLink, you can specify a user-defined translation failure delegate object
that will be called if the JPQL-to-filter translation fails. You configure the translation
failure delegate by declaring the eclipselink.coherence.query.
translation-failure-delegate persistence unit property. For example:

<property name="eclipselink.coherence.query.translation-failure-delegate"
value="org.example.ExceptionFailoverPolicy"/>

A translation failure delegate must implement oracle.eclipselink.coherence.
integrated.querying.TranslationFailureDelegate class which defines the single
method translationFailed(DatabaseQuery query, Record arguments, Session
session).

1.3.7 Wrapping and Unwrapping Entity Relationships
When storing entities with relationships in the Coherence cache, TopLink Grid
generates a wrapper class that maintains the relationship information. In this way,
when the object is read from the Coherence cache (eager or lazy), the relationships can
be resolved.

If you read entities directly from the Coherence cache using the Coherence API, the
wrappers are not automatically removed. You can configure automatic unwrapping
programatically by calling the setNotEclipseLink(true) method on the serializer, as
shown in Example 1–13. You can also set the system property as eclipselink.
coherence.not-eclipselink to automatically unwrap an entity.

When configured properly, a cache get operation will return the unwrapped entity.

Example 1–13 Unwrapping an Entity

WrapperSerializer wrapperSerializer = (WrapperSerializer)myCache.
getCacheService().getSerializer();
wrapperSerializer.setNotEclipseLink(true); // So the Serializer will unwrap an
Entity when clients use a get() call from the cache.

JPA on the Grid Configurations

1-18 Oracle Fusion Middleware Integrating Oracle Coherence

1.3.8 Working with Queries
This section includes information on the following topics:

■ Querying Objects by ID

■ Querying Objects with Criteria

■ Using Indexes in Queries

■ Limitations on Queries

1.3.8.1 Querying Objects by ID
To get an entity from the Coherence cache with a specific ID (key), use the em.
find(Entity.class, ID) method. For example, the following code will get the entity
with key 8, from the Coherence Employee cache.

em.find(Employee.class, 8)

If the entity is not found in the Coherence cache, TopLink executes a SELECT statement
against the database. If a result is found, then the entity is constructed and placed into
the Coherence cache. The query’s specific behavior will depend on your Coherence
cache configuration:

■ calling the find method with a Grid Cache Configuration performs a SELECT
statement against the database on a cache miss and then updates the cache.

■ calling the find method with a Grid Read Configuration or a Grid Entity
Configuration performs a get operation on the Coherence cache. A cache miss
results in a SELECT statement against the database by using a CacheLoader
instance, if it is configured.

1.3.8.2 Querying Objects with Criteria
To retrieve an entity that matches a specific selection criterion, use the em.
createQuery("...") method. The query’s specific behavior will depend on your
Coherence cache configuration:

■ For the Grid Cache Configuration, the query will always execute a SELECT
statement against the database. For example, the following code will execute a
SELECT statement to find employees named John.

em.createQuery("select e from Employee e where e.name=’John’")

■ For the Grid Read Configuration and Grid Entity Configuration, the query will be
executed against the Coherence cache. If the cache does not contain any entities
that match the selection criteria, then nothing will be returned. This is an example
of why the cache should be warmed before performing the query.

■ For the cache store and cache loader, queries are performed only on primary keys

1.3.8.3 Using Indexes in Queries
Indexes allow values (or attributes of those values) and corresponding keys to be
correlated within a cache to improve query performance. TopLink Grid allows you to
declare indexes with the @Property annotation. The IntegrationProperties class
provides the INDEXED property.

In Example 1–14, the @Property annotation declares that the name attribute is to be
indexed. TopLink Grid will define an index for that attribute in the Publisher cache.

EclipseLink Native ORM Configurations

Integrating TopLink Grid with Oracle Coherence 1-19

Example 1–14 Exposing a Coherence Query Index to TopLink Grid

import static oracle.eclipselink.coherence.IntegrationProperties.INDEXED;
import oracle.eclipselink.coherence.integrated.config.CoherenceReadCustomizer;

@Customizer(CoherenceReadCustomizer.class)
public class Publisher implements Serializable {
...
 @Property(name=INDEXED, value="true")
 private String name;
 ...

With an index in place, you can issue a JPQL query, such as the following, to return all
the Publishers in the cache with a name beginning with S.

SELECT Publisher p WHERE p.name like 'S%'

Internally, Coherence will process the query by consulting the name index to find
matches rather than by deserializing and examining every Publisher object stored in
the grid. By avoiding deserialization, you achieve a significant positive improvement
on query execution time, eliminate garbage collection of the temporarily deserialized
objects, and reduce CPU usage.

1.3.8.4 Limitations on Queries
The following are limitations on querying Coherence caches:

■ Because the Coherence Filter framework is limited to a single cache, JPQL join
queries cannot be translated to Filters. All join queries will execute on the
database.

■ This release of TopLink Grid does not provide support for JPQL bulk updates and
deletions.

1.4 EclipseLink Native ORM Configurations
This section describes the EclipseLink Native Object Relational Mapping (ORM), an
extensible object-relational mapping framework. It also describes how to configure
amendment methods with Oracle JDeveloper and how to configure EclipseLink
Native ORM cache stores and cache loaders.

This section contains the following:

■ Understanding EclipseLink Native ORM

■ API for EclipseLink Native ORM

■ Configuring an Amendment Method

■ Configuring the EclipseLink Native ORM Cache Store and Cache Loader

1.4.1 Understanding EclipseLink Native ORM
EclipseLink Native ORM provides an extensible object-relational mapping framework.
It provides high-performance object persistence with extended capabilities configured
declaratively through XML. These extended capabilities include caching (including
support for clustered caching), advanced database-specific capabilities, and
performance tuning and management options.

Like JPA on the Grid configurations, applications that employ EclipseLink ORM can
access Coherence caches. However, unlike JPA on the Grid configurations, EclipseLink
ORM applications do not use the @Customizer annotation to configure how the cache

EclipseLink Native ORM Configurations

1-20 Oracle Fusion Middleware Integrating Oracle Coherence

is used. Instead, they typically call an amendment method that defines the appropriate
cache behavior.

1.4.2 API for EclipseLink Native ORM
The cache store and cache loader API used in EclipseLink Native ORM configurations
are shipped in the toplink-grid.jar file. Table 1–2 describes the API for EclipseLink
Native ORM. These classes can be found in the oracle.eclipselink.coherence.
integrated package.

Note that the second initialization parameter in the signatures, sessionName,
represents the name of the mapping project that must be listed in the native
EclipseLink configuration file, META-INF/sessions.xml.

The EclipseLinkNativeCacheStore and EclipseLinkNativeCacheLoader classes
allow applications that use EclipseLink Native ORM to access Coherence caches. Use
these classes when Coherence cache behavior has been configured through an
amendment method. These classes can be used to configure a cache store or cache
loader for each persistent class in the same way as described in "JPA on the Grid
Configurations" on page 1-3.

Use the Coherence cache configuration file coherence-cache-config.xml to define the
cache store caching scheme and to override any default Coherence settings.

The configuration uses the native EclipseLink sessions.xml file and the project.xml
file. The sessions.xml file, and all of the deployment XML files (which have
user-defined names) listed in it, must be available on the classpath or packaged within
a JAR file within the META-INF directory.

You must also configure an amendment method to define the appropriate cache
behavior. See "Configuring an Amendment Method" for more information.

1.4.3 Configuring an Amendment Method
An amendment method is a method that uses the EclipseLink descriptor API to
customize the ORM mapping metadata for a class. The method is called when the
descriptor is loaded at runtime. The purpose of the amendment methods provided by
TopLink Grid is to define how the Coherence cache is going to be used. Amendment
methods are the TopLink native ORM alternative to the @Customizer annotation; they
produce the same configuration.

The TopLink Grid customizer classes in the toplink-grid.jar file
(CoherenceReadCustomizer, CoherenceReadWriteCustomizer, and

Table 1–2 EclipseLink Classes for Native ORM Configurations

Class Name Description

EclipseLinkNativeCacheStore(String cacheName,
String sessionName)

Coherence cache store that should be used with native
EclipseLink configuration (sessions.xml).

EclipseLinkNativeCacheLoader(String cacheName,
String sessionName)

Coherence cache loader that should be used with native
EclipseLink configuration (sessions.xml).

oracle.eclipselink.coherence.integrated.config.
CoherenceReadCustomizer

Enables a Coherence read configuration.

oracle.eclipselink.coherence.integrated.config.
CoherenceReadWriteCustomizer

Enables a Coherence read/write configuration.

oracle.eclipselink.coherence.integrated.config.
GridCacheCustomizer

Enables entity instances to be cached in Coherence
instead of in the internal EclipseLink shared cache

EclipseLink Native ORM Configurations

Integrating TopLink Grid with Oracle Coherence 1-21

GridCacheCustomizer) provide an afterLoad amendment method that can be selected
to enable the appropriate Coherence cache behavior.

You can select the amendment method using either JDeveloper or EclipseLink
Workbench. The following section describes how to configure the amendment method
with JDeveloper. A description of EclipseLink Workbench is beyond the scope of this
document.

1.4.3.1 Configuring the Amendment Method in JDeveloper
To configure an amendment method:

1. In the JDeveloper Structure pane, expand the desired tlMap descriptor name.

Figure 1–7 tlMap Descriptors in the JDeveloper Structure Pane

2. Right-click the desired TopLink descriptor element. Select Advanced Properties to
open the Advanced Properties dialog box. Select the After Loading check box and
click OK.

EclipseLink Native ORM Configurations

1-22 Oracle Fusion Middleware Integrating Oracle Coherence

Figure 1–8 Advanced Properties Dialog Box

3. In the After Load tab of the tlMap configuration window, enter the name of the
class containing the afterLoad amendment method you want to use for the
selected TopLink descriptor. You can also use the class browser to search for the
class. Figure 1–9 illustrates the After Load tab of the tlMap configuration window.

EclipseLink Native ORM Configurations

Integrating TopLink Grid with Oracle Coherence 1-23

Figure 1–9 After Load Tab for a TopLink Descriptor

Figure 1–10 illustrates the class browser with the with the
CoherenceReadCustomizer class selected.

Figure 1–10 Searching for the Class containing the Amendment Method

EclipseLink Native ORM Configurations

1-24 Oracle Fusion Middleware Integrating Oracle Coherence

4. In the After Load tab of the tlMap configuration window, select the amendment
method from the Static Method dropdown list. For the Coherence Customizer
classes, this will be the afterLoad method.

Figure 1–11 Selecting the Amendment Method

1.4.4 Configuring the EclipseLink Native ORM Cache Store and Cache Loader
The coherence-cache-config.xml file must specify the cache loader or cache store
class and provide parameters for the cache name and session name (that is, project
name). The following examples illustrate that aside from changing the class name
(EclipseLinkNativeCacheStore or EclipseLinkNativeCacheLoader), you do not have
to make any changes to the Coherence cache configuration depending on whether you
are using the cache loader or cache store.

Example 1–15 illustrates a configuration in the coherence-cache-config.xml file for a
cache that can communicate with EclipseLink Native ORM applications. The
class-name element identifies the EclipseLinkNativeCacheStore class as the cache
store scheme. The param-value elements specify the cache name and the session
(project) name that are passed to the class.

Example 1–15 Configuration for an Integrated EclipseLinkNativeCacheStore

...
<distributed-scheme>
 <scheme-name>eclipselink-native-distributed-store</scheme-name>
 <service-name>EclipseLinkNative</service-name>
 <serializer>
 <class-name>oracle.eclipselink.coherence.integrated.cache.
WrapperSerializer</class-name>
 </serializer>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>
 <!-- Define the cache scheme -->
 <cachestore-scheme>
 <class-scheme>
 <class-name>oracle.eclipselink.coherence.integrated.
EclipseLinkNativeCacheStore</class-name>

Using POF Serialization with TopLink Grid and Coherence

Integrating TopLink Grid with Oracle Coherence 1-25

 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>coherence-native-project</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
...

Example 1–16 illustrates an integrated EclipseLinkNativeCacheLoader instance
configuration in the coherence-cache-config.xml file. The cache name
({cache-name}) and session name (coherence-native-project) parameter values are
passed to the class.

Example 1–16 Configuration for an Integrated EclipseLinkNativeCacheLoader

...
<cachestore-scheme>
 <class-scheme>
 <class-name>oracle.eclipselink.coherence.integrated.
EclipseLinkNativeCacheLoader</class-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>coherence-native-project</param-value>
 </init-param>
 </init-params>
 </class-scheme>
</cachestore-scheme>
...

1.5 Using POF Serialization with TopLink Grid and Coherence
This section describes how to use Portable Object Format (POF) serialization to
optimize the performance of applications that use TopLink Grid and Coherence
caches.

Serialization is the process of encoding an object into a binary format. It is a critical
component when working with Coherence as data must be moved around the
network. The Portable Object Format (also referred to as POF) is a language agnostic
binary format. POF was designed to be incredibly efficient in both space and time and
has become a cornerstone element in working with Coherence. Using POF has many
advantages ranging from performance benefits to language independence. It's
recommended that you look closely at POF as your serialization solution when
working with Coherence.

Using POF Serialization with TopLink Grid and Coherence

1-26 Oracle Fusion Middleware Integrating Oracle Coherence

This section focuses only on the changes and additions that you need to make to your
TopLink application files to make them eligible to participate in POF serialization. For
more detailed information on using and configuring POF, see "Using Portable Object
Format" in the Oracle Fusion Middleware Developing Applications with Oracle Coherence.

This section contains the following:

■ Implement a Serialization Routine

■ Define a Cache Configuration File

■ Define a POF Configuration File

1.5.1 Implement a Serialization Routine
You must implement serialization routines that know how to serialize and deserialize
your Entities. You can do this by implementing the PortableObject interface or by
creating a serializer using the com.tangosol.io.pof.PofSerializer interface.

■ Implement the PortableObject interface in your Entity class files

The com.tangosol.io.pof.PortableObject interface provides classes with the
ability to self-serialize and deserialize their state to and from a POF data stream.
To use this interface, you must also provide implementations of the required
methods readExternal and writeExternal.

Example 1–17 illustrates a sample Entity class file that implements the
PortableObject interface. Note the implementations of the required readExternal
and writeExternal methods.

Also note that the class includes an @OneToOne annotation to define the
relationship mapping between the Trade object and a Security object. TopLink
supports all of the relationship mappings defined by the JPA specification:
one-to-one, one-to-many, many-to-many, and many-to-many. These relationships
can be expressed as annotations.

Example 1–17 Sample Entity Class that Implements PortableObject

package oracle.toplinkgrid.codesample.pof.models.trader;

import java.io.IOException;
import java.io.Serializable;

import javax.persistence.Entity;
import javax.persistence.FetchType;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.OneToOne;

import com.tangosol.io.pof.PofReader;
import com.tangosol.io.pof.PofWriter;
import com.tangosol.io.pof.PortableObject;

/**
 * This class will not be stored within Coherence as Trades are not high
 * throughput objects in this model.
 *
 */
@Entity
public class Trade implements Serializable, PortableObject{
 /**
 *

Using POF Serialization with TopLink Grid and Coherence

Integrating TopLink Grid with Oracle Coherence 1-27

 */
 private static final long serialVersionUID = -244532585419336780L;
 @Id
 @GeneratedValue
 protected long id;
 @OneToOne(fetch=FetchType.EAGER)
 protected Security security;
 protected int quantity;
 protected double amount;
 public long getId() {
 return id;
 }
 public void setId(long id) {
 this.id = id;
 }
 public Security getSecurity() {
 return security;
 }
 public void setSecurity(Security security) {
 this.security = security;
 }
 public int getQuantity() {
 return quantity;
 }
 public void setQuantity(int quantity) {
 this.quantity = quantity;
 }
 public double getAmount() {
 return amount;
 }
 public void setAmount(double amount) {
 this.amount = amount;
 }
 public void readExternal(PofReader pofreader) throws IOException {
 id = pofreader.readLong(0);
 quantity = pofreader.readInt(2);
 amount = pofreader.readDouble(3);

 }
 public void writeExternal(PofWriter pofwriter) throws IOException {
 pofwriter.writeLong(0, id);
 pofwriter.writeInt(2, quantity);
 pofwriter.writeDouble(3, amount);

 }
}

■ Create a POFSerializer for the Entities

An alternative to implementing the PortableObject interface is to implement the
com.tangosol.io.pof.PofSerializer interface to create your own serializer and
deserializer. This interface provides you with a way to externalize your
serialization logic from the Entities you want to serialize. This is particularly
useful when you do not want to change the structure of your classes to work with
POF and Coherence. The POFSerializer interface provides these methods:

■ public Object deserialize(PofReader in)

■ public void serialize(PofWriter out, Object o)

Using POF Serialization with TopLink Grid and Coherence

1-28 Oracle Fusion Middleware Integrating Oracle Coherence

1.5.2 Define a Cache Configuration File
In the cache configuration file, create cache mappings corresponding to the Entities
you will be working with. Identify the serializer (such as com.tangosol.io.pof.
ConfigurablePofContext) and the POF configuration file pof-config.xml. Identify
the EclipseLink cache store (such as oracle.eclipselink.coherence.integrated.
EclipseLinkJPACacheStore) in the <cachestore-scheme> attribute.

Example 1–18 Sample Cache Configuration File

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.
com/coherence/coherence-cache-config http://xmlns.oracle.
com/coherence/coherence-cache-config/1.0/coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>ATTORNEY_JPA_CACHE</cache-name>
 <scheme-name>eclipselink-jpa-distributed</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>CONTACT_JPA_CACHE</cache-name>
 <scheme-name>eclipselink-jpa-distributed-load</scheme-name>
 </cache-mapping>
...
additional cache mappings
...
<caching-schemes>
 <distributed-scheme>
 <scheme-name>eclipselink-jpa-distributed-load</scheme-name>
 <service-name>EclipseLinkJPA</service-name>

 <serializer>
 <instance>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>String</param-type>
 <param-value>trader-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </instance>
 </serializer>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 <distributed-scheme>
 <scheme-name>eclipselink-jpa-distributed</scheme-name>
 <service-name>EclipseLinkJPA</service-name>
 <serializer>
 <instance>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>

Using POF Serialization with TopLink Grid and Coherence

Integrating TopLink Grid with Oracle Coherence 1-29

 <init-param>
 <param-type>String</param-type>
 <param-value>trader-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </instance>
 </serializer>

 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>
 <!-- Define the cache scheme -->
 <cachestore-scheme>
 <class-scheme>
 <class-name>oracle.eclipselink.coherence.integrated.
EclipseLinkJPACacheStore</class-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>coherence-pu</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

1.5.3 Define a POF Configuration File
Provide a file that identifies the Entity classes that will participate in POF serialization.
Coherence provides a POF configuration file which is named pof-config.xml by
default. Use the file to assign type-ids of TopLink classes to the Entity classes.

TopLink Grid simplifies the assignment of type-ids to TopLink-Grid required classes.
If the allow-interfaces element is set to true in the POF configuration file, then only
one type-id entry is needed for TopLink-Grid classes.

■ oracle.eclipselink.coherence.integrated.cache.
TopLinkGridPortableObject— the TopLink Grid analog of the PortableObject
interface. TopLink Grid classes that implement the TopLinkGridPortableObject
interface can be POF serialized by the TopLinkGridSerializer class. This allows
you to register a single class for all implementors of this interface when the
allow-interfaces POF configuration element is set to true.

■ oracle.eclipselink.coherence.integrated.cache.
TopLinkGridSerializer—the associated serializer for all implementors of the
TopLinkGridPortableObject interface. This allows you to register a single class
for all implementors of this interface in your POF configuration XML file when the
allow-interfaces POF configuration element is set to true.

Using POF Serialization with TopLink Grid and Coherence

1-30 Oracle Fusion Middleware Integrating Oracle Coherence

Example 1–19 illustrates the assignment of the TopLinkGridPortableObject and
TopLinkGridSerializer serializer class to the Attorney Entity.

Example 1–19 Simplified POF Configuration File

<?xml version="1.0"?>
<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
http://xmlns.oracle.com/coherence/coherence-pof-config/1.0/coherence-pof-config.
xsd">
 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>coherence-pof-config.xml</include>
 <user-type>
 <type-id>1163</type-id>
 <class-name>oracle.toplinkgrid.codesample.pof.models.trader.
Attorney</class-name>
 </user-type>
 ...
 additional type IDs for Entity classes
 ...
 <user-type>
 <type-id>1130</type-id>

<class-name>oracle.eclipselink.coherence.integrated.cache.TopLinkGridPortableO
bject</class-name>
 <serializer>

<class-name>oracle.eclipselink.coherence.integrated.cache.TopLinkGridSerialize
r</class-name>
 </serializer>
 </user-type>
...

 <allow-interfaces>true</allow-interfaces>
 </pof-config>

If you cannot set allow-interfaces to true, then you must define individual type-id
entries for the following classes:

■ oracle.eclipselink.coherence.integrated.internal.cache.
ElementCollectionUpdateProcessor—Entry processor used by TopLink Grid to
update an ElementCollection object within the cache.

■ oracle.eclipselink.coherence.integrated.internal.cache.
RelationshipUpdateProcessor—An internal file, used to update lazy-loaded
relationship data into the grid.

■ oracle.eclipselink.coherence.integrated.internal.cache.
VersionPutProcessor—An internal file, used for optimistic lock-aware updates to
the grid.

Note: the allow-subclasses element is not required for a TopLink
Grid POF configuration.

Using POF Serialization with TopLink Grid and Coherence

Integrating TopLink Grid with Oracle Coherence 1-31

■ oracle.eclipselink.coherence.integrated.internal.cache.
VersionRemoveProcessor—An internal file, used for optimistic lock-aware
removals from the grid.

■ oracle.eclipselink.coherence.integrated.internal.cache.
SerializableWrapper —A generic wrapper class for non POF serialization. It
provides for serialization to a node which may not have the correct dynamic
wrapper defined which would otherwise result in an exception.

■ oracle.eclipselink.coherence.integrated.internal.cache.
LockVersionExtractor—Used during conditional puts of Optimistically Locked
objects. This class is used to extract the version value from the object.

■ oracle.eclipselink.coherence.integrated.internal.querying.
FilterExtractor—used by the filters to extract values from the objects stored in
the caches. It supports both attribute access and method access.

■ oracle.eclipselink.coherence.integrated.internal.querying.
EclipseLinkFilterFactory$SubClassOf—An inner class. This is a Filter
extension that filters on the type of Entity, eliminating superclasses from
polymorphic queries. A type-id is needed for this class needed only if you are
using this operation.

■ oracle.eclipselink.coherence.integrated.internal.querying.
EclipseLinkFilterFactory$$IsNull—An inner class. IsNull is equivalent to the
Coherence IsNullFilter except that it provides support for a ValueExtractor
instead of an explicit method name. A type-id is needed for this class needed only
if you are using this operation.

■ oracle.eclipselink.coherence.integrated.internal.querying.
EclipseLinkFilterFactory$$IsNotNull—An inner class. IsNotNull is equivalent
to the Coherence IsNotNullFilter except that it provides support for a
ValueExtractor instead of an explicit method name. A type-id is needed for this
class needed only if you are using this operation.

Example 1–20 illustrates a sample POF configuration file that includes definitions for
the TopLink Grid support files.

Example 1–20 Sample POF Configuration File with Definitions for TopLink Classes

 ...
 additional type IDs for Entity classes
 ...
 <user-type>
 <type-id>1144</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.cache.
ElementCollectionUpdateProcessor</class-name>
 </user-type>
 <user-type>
 <type-id>1143</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.querying.
FilterExtractor</class-name>
 </user-type>
 <user-type>
 <type-id>1142</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.cache.
LockVersionExtractor</class-name>
 </user-type>
 <user-type>
 <type-id>1141</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.cache.

Best Practices

1-32 Oracle Fusion Middleware Integrating Oracle Coherence

VersionPutProcessor</class-name>
 </user-type>
 <user-type>
 <type-id>1140</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.cache.
VersionRemoveProcessor</class-name>
 </user-type>
 <user-type>
 <type-id>1139</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.cache.
RelationshipUpdateProcessor</class-name>
 </user-type>
 <user-type>
 <type-id>1138</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.cache.
SerializableWrapper</class-name>
 </user-type>
 <user-type>
 <type-id>1137</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.querying.
EclipseLinkFilterFactory$SubClassOf</class-name>
 </user-type>
 <user-type>
 <type-id>1136</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.querying.
EclipseLinkFilterFactory$$IsNull</class-name>
 </user-type>
 <user-type>
 <type-id>1135</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.querying.
EclipseLinkFilterFactory$$IsNotNull</class-name>
 </user-type>
 </user-type-list>

 <allow-interfaces>false</allow-interfaces>
 </pof-config>

1.6 Best Practices
This section contains best practice recommendations on how to use TopLink Grid with
byte code weaving, lazy loading, near caches, and cache configurations.

This section contains the following:

■ Changing Compiled Java Classes with Byte Code Weaving

■ Deferring Database Queries with Lazy Loading

■ Defining Near Caches for Applications Using TopLink Grid

■ Ensuring Prefixed Cache Names Use Wildcard in Cache Configuration

■ Overriding the Default Cache Name

1.6.1 Changing Compiled Java Classes with Byte Code Weaving
Byte code weaving is a technique for changing the byte code of compiled Java classes.
You can configure byte code weaving to enable a number of EclipseLink JPA
performance optimizations, including support for the lazy loading of one-to-one and
many-to-one relationships, attribute-level change tracking, and fetch groups.

Best Practices

Integrating TopLink Grid with Oracle Coherence 1-33

Weaving can be performed either dynamically when entity classes are loaded, or
statically as part of the build process. Static byte code weaving can be incorporated
into an Ant build using the weaver task provided by EclipseLink.

Dynamic byte code weaving is automatically enabled in Java EE 5-compliant
application servers such as Oracle WebLogic. However, in Java SE it must be explicitly
enabled by using the JRE 1.5 javaagent JVM command line argument. See "Using
Weaving" in Solutions Guide for Oracle TopLink

To enable byte code weaving in a Coherence cache server, the Java VM should be
invoked with -javaagent:<PATH>\eclipselink.jar. Java SE client applications
should be run with the -javaagent argument.

See "Using Weaving" in Solutions Guide for Oracle TopLink for more information on
configuring and disabling static and dynamic byte code weaving.

1.6.2 Deferring Database Queries with Lazy Loading
Lazy loading is a technique used to defer the querying of objects from the database
until they are required. This can reduce the amount of data loaded by an application
and improve throughput. A TopLink Grid JPA or native ORM application should
lazily load all relationships. Lazy loading is the default for one-to-many and
many-to-many relationships in JPA, but is eager for one-to-one and many-to-one
relationships. You must explicitly select lazy loading on these relationship types. For
example, you can specify lazy loading as an attribute for many of the relationship
annotations:

...
@ManyToOne(fetch=FetchType.LAZY)
private Publisher parent
 ...

For maximum efficiency, lazy loading should be specified for all one-to-one and
many-to-one entity relationships that TopLink Grid stores in the Coherence cache.
Lazy loading is implemented through byte code weaving in EclipseLink and must be
enabled explicitly if not running in a Java EE 5-compliant application server. For more
information, see "Changing Compiled Java Classes with Byte Code Weaving" on
page 1-32.

1.6.3 Defining Near Caches for Applications Using TopLink Grid
Near cache is one of the standard cache configurations offered by Oracle Coherence.
The use of near caches can improve throughput by avoiding network access when an
object is retrieved repeatedly. For example, in an environment where users are pinned
to a particular Web server, near caching may improve performance.

The near cache is a hybrid cache consisting of a front cache, which is of limited size
and offers fast data access, and a larger back cache, which can be scalable, can load on
demand, and provide failover protection.

For applications using TopLink Grid, you configure the near cache in the same way as
any other application using Oracle Coherence. See "Near Cache" and "Defining Near
Cache Schemes" in the Oracle Fusion Middleware Developing Applications with Oracle
Coherence for more information on near caches.

Best Practices

1-34 Oracle Fusion Middleware Integrating Oracle Coherence

1.6.4 Ensuring Prefixed Cache Names Use Wildcard in Cache Configuration
When using TopLink Grid with applications that use Coherence caches and
Coherence*Web, you might want to apply different configuration properties to the
TopLink Grid caches for entities and the Coherence*Web caches. The most efficient
way to specify and configure a set of caches is to use a wildcard character ("*").
However, this will match both sets of caches. To separate the Coherence*Web caches
from entity caches, you must create a wildcard pattern that will match entities only.
One way to do this is to prepend a unique prefix to the entity cache names.

The following steps describe how to create and use a custom session customizer to
prepend a specified prefix to TopLink Grid-enabled classes.

1. Create a session customizer class that will prepend TopLink-enabled classes with a
specified prefix.

Example 1–21 illustrates a custom session customizer class,
CacheNamePrefixCustomizer, which implements the EclipseLink
SessionCustomizer class. The class defines a PREFIX_PROPERTY myapp.
cache-prefix that represents the prefix that will be added to the TopLink-enabled
classes. The value of the property can be either specified in the persistence.xml
file (described in Step 2) or passed in an optional property map to the
Persistence.createEntityManagerFactory method.

Example 1–21 Session Customizer to Prepend

import java.util.Collection;

import oracle.eclipselink.coherence.IntegrationProperties;
import oracle.eclipselink.coherence.integrated.cache.CoherenceInterceptor;
import oracle.eclipselink.coherence.integrated.internal.cache.
CoherenceCacheHelper;
import org.eclipse.persistence.config.SessionCustomizer;
import org.eclipse.persistence.descriptors.ClassDescriptor;
import org.eclipse.persistence.sessions.Session;

public class CacheNamePrefixCustomizer implements SessionCustomizer {

 private static final String PREFIX_PROPERTY = "myapp.cache-prefix";

 public void customize(Session session) throws Exception {
 // Look up custom persistence unit cache prefix property
 String prefix = (String) session.getProperty(PREFIX_PROPERTY);
 if (prefix == null) {
 throw new RuntimeException(
 "Cache name prefix customizer configured but prefix property '" +

Note: Near caches are used only on a Coherence cache get
operation, but not when a Filter operation is executed. This is
because the Filter operation is sent to each member, and they return
results directly to the caller. In this case, a near cache will not add
value.

This can also become an issue if you are using JPQL queries. In the
TopLink Grid Grid Read or Grid Entity configurations, JPQL queries
are mapped to Filter operations. In the case of either of these
configurations, if you execute TopLink JPQL queries, you will not see
any cache hits.

Best Practices

Integrating TopLink Grid with Oracle Coherence 1-35

 PREFIX_PROPERTY + "' not specified");
 }
 // Iterate over all entity descriptors
 Collection<ClassDescriptor> descriptors = session.getDescriptors().values();
 for (ClassDescriptor classDescriptor : descriptors) {
 // If entity is TopLink Grid-enabled, prepend cache name with prefix
 if (CoherenceInterceptor.class.equals(classDescriptor.
getCacheInterceptorClass())) {
 String cacheName = CoherenceCacheHelper.getCacheName(classDescriptor);
 classDescriptor.setProperty(IntegrationProperties.COHERENCE_CACHE_
NAME, prefix + cacheName);
 }
 }
 }
}

2. Edit the persistence.xml file to declare a value for the prefix property.

In the following example, MyApp_ is defined as the value of the prefix property
myapp.cache-prefix in the persistence.xml file. The myapp.cache-prefix prefix
property is defined in the custom session customizer file.

<property name="myapp.cache-prefix" value="MyApp_"/>

See http://www.eclipse.org/eclipselink/ for more information on the EclipseLink
SessionCustomizer class.

3. Edit the persistence.xml file to add the name of the custom session customizer
class as the value of the eclipselink.session.customizer context property.

<property name="eclipselink.session.customizer"
value="CacheNamePrefixCustomizer"/>

4. Edit the coherence-cache-config.xml file to add the name of the prefix with a
wildcard character to the cache mapping.

<cache-mapping>
 <cache-name>MyApp_*</cache-name>
 <scheme-name>eclipselink-distributed-readonly</scheme-name>
</cache-mapping>

1.6.5 Overriding the Default Cache Name
There may be situations where you want to override the default name given to an
entity cache. In TopLink Grid, entity cache names default to the entity name. The
following list describes how the name of the cache can be determined, and how you
can change it explicitly:

Cache Name—the cache name can be set either by default, or set explicitly:

■ Default: cache name defaults to entity name. The entity name, in turn can be set
either by default, or set explicitly:

– Default: Entity name defaults to class short name.

– Explicit: Entity name can be set explicitly by using the name property of the
@Entity annotation.

■ Explicit: the cache name can be set explicitly by using the @Property annotation.

For example, the following code fragment illustrates the Employee class. By default,
the entity cache name would be Employee. However, you can force the name of the
Employee entity cache to be EMP_CACHE by using the @Property annotation.

Best Practices

1-36 Oracle Fusion Middleware Integrating Oracle Coherence

import static oracle.eclipselink.coherence.IntegrationProperties.COHERENCE_CACHE_
NAME;
import org.eclipse.persistence.annotations.Property;

 ...
 @Entity(name="Emp")
 @Property(name=COHERENCE_CACHE_NAME, value="EMP_CACHE")
 public class Employee implements Serializable {
...

Notice that the code explicitly specifies the entity name as Emp. If the name="Emp" value
were not present, then the entity name would have defaulted to the short class name
Employee.

2

Integrating JPA Using the Coherence API 2-1

2Integrating JPA Using the Coherence API

This chapter describes how to use the Coherence API with caches backed by TopLink
Grid to access relational data. It also describes how to use the native, entity-based
Coherence implementations of the cache store and cache loader to access relational
data. These implementations use JPA to load and store objects to the database.

This chapter contains the following sections:

■ Using TopLink Grid with Coherence Client Applications

■ Using Third Party JPA Providers

2.1 Using TopLink Grid with Coherence Client Applications
This section describes how to use the Coherence API with caches backed by TopLink
Grid to access relational data. Access to the relational data is provided with JPA cache
loader and cache store interfaces which have been optimized for EclipseLink JPA.

In this traditional Coherence approach, TopLink Grid provides the CacheLoader and
CacheStore implementations in the oracle.eclipselink.coherence.standalone
package that are optimized for EclipseLink JPA.

Figure 2–1 illustrates the relationship between the client application (which employs
Coherence APIs), the Coherence cache, TopLink Grid, and the database.

Note: Only resource-local and bootstrapped entity managers can be
used with Coherence API and JPA. Container-managed entity
managers and those that use Java Transaction Architecture (JTA)
transactions are not currently supported.

Using TopLink Grid with Coherence Client Applications

2-2 Oracle Fusion Middleware Integrating Oracle Coherence

Figure 2–1 Coherence with TopLink Grid Approach

2.1.1 API for Coherence with TopLink Grid Configurations
TopLink Grid uses the standard JPA run-time configuration file persistence.xml and
the JPA mapping file orm.xml. The Coherence cache configuration file
coherence-cache-config.xml must be specified to override the default Coherence
settings and to define the cache store caching scheme.

The TopLink Grid cache store and cache loader implementations are shipped in the
toplink-grid.jar file. The JAR file in installed with the Coherence product in the
...\oracle_common\modules\oracle.toplink_12.1.3 folder.

The TopLink Grid cache store and cache loader classes which are optimized for
EclipseLink JPA and designed for use by Coherence applications, are in the
oracle.eclispelink.coherence.standalone package. Table 2–1 describes these
classes.

2.1.2 Sample Cache Configuration File for Coherence with TopLink Grid
In the cache configuration file (coherence-cache-config.xml), define the cache as
illustrated in Example 2–1. For TopLink Grid, you have to define only two parameters:

■ The name of the cache for the entity being stored. Unless explicitly overridden in JPA
this is the entity name that, by default, is the unqualified name of the entity class.
In Example 2–1, the name of the cache is Employee. You can use the built-in
Coherence macro {cache-name} to supply the name of the cache that is
constructing and using the cache store.

Table 2–1 TopLink Grid Classes to build Coherence with TopLink Grid Applications

Class Name Description

EclipseLinkJPACacheLoader Provides JPA-aware versions of the Coherence CacheLoader class.

EclipseLinkJPACacheStore Provides JPA-aware versions of the Coherence CacheStore class.

Using TopLink Grid with Coherence Client Applications

Integrating JPA Using the Coherence API 2-3

■ The name of the persistence unit containing the entity being stored. In Example 2–1,
employee-pu is a persistence unit defined in the META-INF/persistence.xml file
that includes the Employee entity.

To define more entity caches, add additional <cache-mapping> elements.

Example 2–1 Configuring the Cache for Coherence with TopLink Grid

<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>Employee</cache-name>
<scheme-name>distributed-eclipselink</scheme-name>

</caching-scheme-mapping>
</caching-scheme-mapping>
<caching-schemes>
<distributed-scheme>
<scheme-name>distributed-eclipselink</scheme-name>
<service-name>EclipseLinkJPA</service-name>
<backing-map-scheme>
<read-write-backing-map-scheme>
<internal-cache-scheme>
<local-scheme />

</internal-cache-scheme>
<!--
Define the cache scheme.

-->
<cachestore-scheme>
<class-scheme>
<!--
Because the client code is using Coherence API, use the "standalone"

version of the cache loader.
-->
<class-name>oracle.eclipselink.coherence.standalone.EclipseLinkJPACa

cheStore</class-name>
<init-params>

 <!-- This parameter is the name of the cache containing the entity. -->
<init-param>
<param-type>java.lang.String</param-type>
<param-value>{cache-name}</param-value>

</init-param>

 <!-- This parameter is the persistence unit name. -->
<init-param>
<param-type>java.lang.String</param-type>
<param-value>employee-pu</param-value>

</init-param>
</init-params>

</class-scheme>
</cachestore-scheme>

</read-write-backing-map-scheme>
</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>
</caching-schemes>

</cache-config>

Using Third Party JPA Providers

2-4 Oracle Fusion Middleware Integrating Oracle Coherence

2.1.3 Sample Project for Using Coherence with TopLink Grid
"Using JPA with Coherence" in the Oracle Fusion Middleware Tutorial for Oracle Coherence
provides a sample project that uses the TopLink Grid cache store and cache loader
classes which are optimized for EclipseLink JPA and designed for use by Coherence
applications. These classes can be found in the
oracle.eclispelink.coherence.standalone package.

The project uses the Oracle Express Database and the Eclipse IDE to configure a
project for JPA, create the JPA persistence unit and entities, edit the persistence.xml
file, create a cache configuration file for JPA, automatically generate JPA objects for a
database table, and create a class to interact with the data objects.

2.2 Using Third Party JPA Providers
Oracle Coherence provides its own implementations of the CacheLoader and
CacheStore classes which can be used with JPA. The JpaCacheLoader and
JpaCacheStore classes do not have to use EclipseLink JPA—they can use any JPA
implementation to load and store entities to and from a data store. The entities must be
mapped to the data store and a JPA persistence unit configuration must exist. A JPA
persistence unit is defined as a logical grouping of user-defined entity classes that can
be persisted and their settings.

Coherence also provides a default cache configuration file named
coherence-cache-config.xml. The JPA run-time configuration file, persistence.xml,
and the default JPA Object-Relational mapping file, orm.xml, are typically provided by
the JPA implementation.

2.2.1 API for Native Coherence JPA CacheStore and CacheLoader
The JpaCacheLoader and JpaCacheStore classes can be found in the
coherence-jpa.jar file, which is installed in the ...\coherence\lib folder in the
Coherence installation. The CacheLoader and CacheStore interfaces can be found in
the coherence.jar file, which is also installed in the ...\coherence\lib folder.

Table 2–2 describes the default JPA implementations provided by Coherence.

Table 2–2 JPA-Related CacheStore and CacheLoader API Included with Coherence

Class Name Description

com.tangosol.net.cache.CacheLoa
der

A JCache cache loader.

com.tangosol.net.cache.CacheSto
re

A JCache cache store. The CacheStore interface extends CacheLoader.

com.tangosol.coherence.jpa.JpaC
acheLoader

The JPA implementation of the Coherence CacheLoader interface. Use this
class as a load-only implementation. It can use any JPA implementation to
load entities from a data store. The entities must be mapped to the data store
and a JPA persistence unit configuration must exist.

Use the JpaCacheStore class for a full load and store implementation.

com.tangosol.coherence.jpa.JpaC
acheStore

The JPA implementation of the Coherence CacheStore interface. Use this
class as a full load and store implementation. It can use any JPA
implementation to load and store entities to and from a data store. The
entities must be mapped to the data store and a JPA persistence unit
configuration must exist.

Note: The persistence unit is assumed to be set to use RESOURCE_LOCAL
transactions.

Using Third Party JPA Providers

Integrating JPA Using the Coherence API 2-5

2.2.2 Steps to Use a Third Party JPA Provider and Native Coherence JPA API
To use a third party JPA provider and the native Coherence JPA API to load and store
objects to the database:

1. Obtain a JPA Provider Implementation. The provider implementation allows you
to map, query, and store Java objects to a database.

2. Configure a Coherence JPA Cache Store. The JPA cache store configuration maps
database entities to Java objects.

2.2.2.1 Obtain a JPA Provider Implementation
A JPA provider allows you to work directly with Java objects, rather then with SQL
statements. You can map, store, update and retrieve data, and the provider will
perform the translation between database entities and Java objects.

The Coherence JPA cache store and cache loader work with any JPA-compliant
implementation. Oracle recommends using EclipseLink JPA, the reference
implementation for the JPA 2.0 specification. Oracle TopLink and TopLink Grid for
Coherence integration include EclipseLink as their JPA implementations.

The TopLink Grid and EclipseLink JAR files (toplink-grid.jar and
eclipselink.jar) are included in the Coherence installation and can be found in the
...\oracle_common\modules\oracle.toplink_12.1.3 folder.

2.2.2.2 Configure a Coherence JPA Cache Store
JPA is a standard API for mapping, querying, and storing Java objects to a database.
The characteristics of the different JPA implementations can differ, however, when it
comes to caching, threading, and overall performance. EclipseLink provides a
high-performance JPA implementation with many advanced features.

Coherence provides a default entity-based cache store implementation,
JpaCacheStore, and a corresponding cache loader, JpaCacheLoader. You can find
additional information in the Javadoc for these classes.

To configure a Coherence JpaCacheStore:

1. Map the Persistent Classes

2. Configure JPA

3. Configure a Coherence Cache for JPA

4. Configure the Persistence Unit

2.2.2.2.1 Map the Persistent Classes Map the entity classes to the database. This will
allow you to load and store objects through the JPA cache store. JPA mappings are
standard, and can be specified in the same way for all JPA providers.

You can map entities either by annotating the entity classes or by adding an orm.xml
or other XML mapping file. See the JPA provider documentation for more information
about how to map JPA entities.

2.2.2.2.2 Configure JPA Edit the persistence.xml file to create the JPA configuration.
This file contains the properties that dictate run-time operation.

Set the transaction type to RESOURCE_LOCAL and provide the required JDBC properties
for your JPA provider (such as driver, url, user, and password) with the appropriate
values for connecting and logging into your database. List the classes that are mapped
using JPA annotations in <class> elements. Example 2–2 illustrates a sample
persistence.xml file with the typical properties that you can set.

Using Third Party JPA Providers

2-6 Oracle Fusion Middleware Integrating Oracle Coherence

Example 2–2 Sample persistence.xml File for JPA

<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance" version="1.0"
xmlns="http://java.sun.com/xml/ns/persistence">
<persistence-unit name="EmpUnit" transaction-type="RESOURCE_LOCAL">
 <provider>
 org.eclipse.persistence.jpa.PersistenceProvider
 </provider>
 <class>com.oracle.coherence.handson.Employee</class>
 <properties>
 <property name="eclipselink.jdbc.driver"
value="oracle.jdbc.OracleDriver"/>
 <property name="eclipselink.jdbc.url"
value="jdbc:oracle:thin:@localhost:1521:XE"/>
 <property name="eclipselink.jdbc.user" value="scott"/>
 <property name="eclipselink.jdbc.password" value="tiger"/>
 </properties>
</persistence-unit>
</persistence>

2.2.2.2.3 Configure a Coherence Cache for JPA Create a coherence-cache-config.xml
file to override the default Coherence settings and define the JpaCacheStore caching
scheme. The caching scheme should include a <cachestore-scheme> element that lists
the JpaCacheStore class and includes the following parameters.

■ The entity name of the entity being stored. Unless it is explicitly overridden in JPA,
this is the unqualified name of the entity class. Example 2–3 uses the built-in
Coherence macro {cache-name} that translates to the name of the cache that is
constructing and using the cache store. This works because a separate cache must
be used for each type of persistent entity and Coherence ensures that the name of
each cache is set to the name of the entity that is being stored in it.

■ The fully qualified name of the entity class. If the classes are all in the same package
and use the default JPA entity names, then you can again use the {cache-name}
macro for the part that is variable across the different entity types. In this way, the
same caching scheme can be used for all of the entities that are cached within the
same persistence unit.

■ The persistence unit name. This should be the same as the name specified in the
persistence.xml file.

The various named caches are then directed to use the JPA caching scheme.
Example 2–3 is a sample coherence-cache-config.xml file that defines a NamedCache
class named Employee that caches instances of the Employee class. To define additional
entity caches for more classes, add more <cache-mapping> elements to the file.

Example 2–3 Assigning Named Caches to a JPA Caching Scheme

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <!-- Set the name of the cache to be the entity name. -->
 <cache-name>Employee</cache-name>
 <!-- Configure this cache to use the following defined scheme. -->
 <scheme-name>jpa-distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <distributed-scheme>
 <scheme-name>jpa-distributed</scheme-name>
 <service-name>JpaDistributedCache</service-name>

Using Third Party JPA Providers

Integrating JPA Using the Coherence API 2-7

 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>
 <!- Define the cache scheme. -->
 <cachestore-scheme>
 <class-scheme>
 <class-name>
 com.tangosol.coherence.jpa.JpaCacheStore
 </class-name>
 <init-params>

 <!-- This param is the entity name. -->
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>

 <!-- This param is the fully qualified entity class. -->
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>com.acme.{cache-name}</param-value>
 </init-param>

 <!-- This param should match the value of the -->
 <!-- persistence unit name in persistence.xml. -->
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>EmpUnit</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

2.2.2.2.4 Configure the Persistence Unit When using the JpaCacheStore class, configure
the persistence unit to ensure that no changes are made to entities when they are
inserted or updated. Any changes made to entities by the JPA provider are not
reflected in the Coherence cache. This means that the entity in the cache will not match
the database contents. In particular, entities should not use ID generation, for example,
@GeneratedValue, to obtain an ID. IDs should be assigned in application code before
an object is put into Coherence. The ID is typically the key under which the entity is
stored in Coherence.

Optimistic locking (for example, @Version) should not be used because it might lead to
the failure of a database transaction commit transaction. See Caching Data Sources and
Sample CacheStore in Oracle Fusion Middleware Developing Applications with Oracle
Coherence for more information about how a cache store works, and how to set up your
database schema.

When using either the JpaCacheStore or JpaCacheLoader class, L2 ("shared") caching
should be disabled in your persistence unit. See the documentation for your provider.
In Oracle TopLink, this can be specified on an individual entity with

Using Third Party JPA Providers

2-8 Oracle Fusion Middleware Integrating Oracle Coherence

@Cache(shared=false) or as the default in the persistence.xml file with the
following property:

<property name="eclipselink.cache.shared.default" value="false"/>

When using EclipseLink with TopLink Grid, the TopLink Grid implementations will
automatically disable L2 caching, optimistic lock checking, and versioning. Essentially,
TopLink Grid implementations understand the cache store context in which the
persistence unit is being deployed and adjust the configuration accordingly.

3

Integrating Coherence Applications with Coherence*Web 3-1

3Integrating Coherence Applications with
Coherence*Web

This chapter provides more detailed information on how to configure applications
running under Coherence*Web so that they can share Coherence cache and session
information.

You can find more information on Coherence*Web and how to enable it for
applications running on a variety of application servers in Oracle Fusion Middleware
Administering HTTP Session Management with Oracle Coherence*Web.

3.1 Merging Coherence Cache and Session Information
In Coherence, the cache configuration deployment descriptor provides detailed
information about the various caches that can be used by applications within a cluster.
Coherence provides a sample cache configuration deployment descriptor, named
coherence-cache-config.xml, in the root of the coherence.jar library.

In Coherence*Web, the session cache configuration deployment descriptor provides
detailed information about the caches, services, and attributes used by HTTP session
management. Coherence*Web provides a sample session cache configuration
deployment descriptor, named default-session-cache-config.xml, in the
coherence-web.jar library. You can use this file as the basis for any custom session
cache configuration file you may need to write.

At run time, Coherence uses the first coherence-cache-config.xml file that is found
in the classpath, and it must precede the coherence.jar library; otherwise, the sample
coherence-cache-config.xml file in the coherence.jar file is used.

In the case of Coherence*Web, it first looks for a custom session cache configuration
XML file in the classloader that was used to start Coherence*Web. If no custom session
cache configuration XML resource is found, then it will use the
default-session-cache-config.xml file packaged in coherence-web.jar.

If your Coherence applications are using Coherence*Web for HTTP session
management, the start-up script for the application server and the Coherence cache
servers must reference the session cache configuration file—not the cache
configuration file. In this case, you must complete these steps:

1. Extract the session cache configuration file from the coherence-web.jar library.

2. Merge the cache information from the Coherence cache configuration file into the
session cache configuration file.

Merging Coherence Cache and Session Information

3-2 Oracle Fusion Middleware Integrating Oracle Coherence

Note that in the cache scheme mappings in this file, you cannot use wildcards to
specify cache names. You must provide, at least, a common prefix for application
cache names.

3. Ensure that modified session cache configuration file is used by the Coherence
members in the cluster.

The cache and session configuration must be consistent across WebLogic Servers
and Coherence cache servers.

4

Integrating Hibernate and Coherence 4-1

4Integrating Hibernate and Coherence

This chapter describes where you can find information on integrating Oracle
Coherence with Hibernate, an object-relational mapping tool for Java environments.
The functionality in Oracle Coherence and Hibernate can be combined such that
Hibernate can act as the Coherence cache store or Coherence can act as the Hibernate
L2 cache.

You can find information on integrating Coherence with Hibernate in the Coherence
Community projects at the following URL:

https://java.net/projects/cohhib

4-2 Oracle Fusion Middleware Integrating Oracle Coherence

5

Integrating Spring with Coherence 5-1

5Integrating Spring with Coherence

This chapter describes where you can find information on integrating Oracle
Coherence with Spring, a platform for building and running Java-based enterprise
applications. You can find information on how to configure the Oracle Coherence
cache to consume objects provided by the Spring platform in Coherence Community
projects. Coherence Community projects provide example implementations for
commonly used design patterns based on Oracle Coherence. See the following URL:

https://java.net/projects/cohspr/

5-2 Oracle Fusion Middleware Integrating Oracle Coherence

6

Enabling ECID in Coherence Logs 6-1

6Enabling ECID in Coherence Logs

This chapter describes how Oracle Coherence can use the Execution Context ID
(ECID). This globally unique ID can be attached to requests between Oracle
components. The ECID allows you to track log messages pertaining to the same
request when multiple requests are processed in parallel.

Coherence logs will include ECID only if the client already has an activated ECID
prior to calling Coherence operations. The ECID may be passed from another
component or obtained in the client code. To activate the context, use the get and
activate methods on the oracle.dms.context.ExecutionContext interface in the
Coherence client code. The ECID will be attached to the executing thread. Use the
deactivate method to release the context, for example:

Example 6–1 Using a DMS Context in Coherence Client Code

...
// Get the context associated with this thread
ExecutionContext ctx = ExecutionContext.get();
ctx.activate();
...
set additional execution context values (optional)
perform some cache operations
...
// Release the context
ctx.deactivate();
...

ECID logging will occur only on the node where the client is running. If a client
request is processed on some other node and an exception is thrown by Coherence,
then the remote error will be returned to the originating node and it will be logged on
the Coherence client. The log message will contain the ECID of the request. Messages
logged on the remote node will not contain the ECID.

For more information on how to include the ECID in a Coherence log message, see
“Changing the Log Message Format” in the Oracle Fusion Middleware Developing
Applications with Oracle Coherence.

6-2 Oracle Fusion Middleware Integrating Oracle Coherence

7

Integrating with Oracle Coherence GoldenGate HotCache 7-1

7Integrating with Oracle Coherence
GoldenGate HotCache

This chapter describes how to use Oracle Coherence GoldenGate HotCache
(HotCache) with applications using Coherence caches. HotCache allows changes to the
database to be propagated to objects in the Coherence cache.

A detailed description Oracle GoldenGate is beyond the scope of this documentation.
For more information, see Oracle GoldenGate for Oracle Installation and Setup Guide to
install GoldenGate on Oracle databases and Oracle GoldenGate for Java Administrator’s
Guide.

This chapter contains the following sections:

■ Overview

■ How Does HotCache Work?

■ Prerequisites

■ Configuring GoldenGate

■ Configuring HotCache

■ Configuring the GoldenGate Java Client

■ Using Portable Object Format with HotCache

■ Enabling Wrapper Classes for TopLink Grid Applications

7.1 Overview
Third-party updates to the database can cause Coherence applications to work with
data which could be stale and out-of-date. HotCache solves this problem by
monitoring the database and pushing any changes into the Coherence cache.
HotCache employs an efficient push model which processes only stale data. Low
latency is assured because the data is pushed when the change occurs in the database.

HotCache can be added to any Coherence application. Standard JPA is used to capture
the mappings from database data to Java objects. The configuration can be captured in
XML exclusively or in XML with annotations.

Note: To use HotCache, you must have licenses for Oracle
GoldenGate and Coherence Grid Edition. HotCache can be used with
Oracle GoldenGate 11gR1 and 11gR2 releases.

How Does HotCache Work?

7-2 Oracle Fusion Middleware Integrating Oracle Coherence

The following scenario describes how HotCache could be used to work with the
database and with applications that use Coherence caches. Figure 7–1 illustrates the
scenario.

1. Start GoldenGate—see "Starting the Application" in Oracle GoldenGate for Java
Administrator’s Guide for details. GoldenGate monitors the transaction log for
changes of interest. These changes will be placed into a "trail file".

2. Start the Coherence cache server and warm the cache, if required.

3. Start HotCache so that it can propagate changes in the trail file into the cache. If
changes occur during cache warming, then they will be applied to the cache once
HotCache is started so no changes are lost.

4. Start an application client. As part of its operation, assume that the application
performs repeated queries on the cache.

5. A third-party application performs a direct database update.

6. GoldenGate detects the database change which is then propagated to the
Coherence cache by HotCache.

7. The application client detects the change in cache.

Figure 7–1 How HotCache Propagates Database Changes to the Cache

7.2 How Does HotCache Work?
HotCache processes database change events delivered by GoldenGate and maps those
changes onto the affected objects in the Coherence cache. It is able to do this through
the use of Java Persistence API (JPA) mapping metadata. JPA is the Java standard for
object-relational mapping in Java and it defines a set of annotations (and
corresponding XML) that describe how Java objects are mapped to relational tables.
As Example 7–1 illustrates, instances of an Employee class could be mapped to rows in
an EMPLOYEE table with the following annotations.

Example 7–1 Mapping Instances of Employee Class to Rows with Java Code

@Entity
@Table(name="EMPLOYEE")
Public class Employee {
 @Id
 @Column(name="ID")

How Does HotCache Work?

Integrating with Oracle Coherence GoldenGate HotCache 7-3

 private int id;
 @Column(name="FIRSTNAME")
 private String firstName;
…
}

The @Entity annotation marks the Employee class as being persistent and the @Id
annotation identifies the id field as containing its primary key. In the case of
Coherence cached objects, the @Id field must also contain the value of the key under
which the object is cached. The @Table and @Column annotations associate the class
with a named table and a field with a named column, respectively.

For simplification, JPA assumes a number of default mappings such as table
name=class name and column name=field name so many mappings need only be
specified when the defaults are not correct. In Example 7–1, both the table and field
names match the Java names so the @Table and @Column can be removed to make the
code more compact, as illustrated in Example 7–2.

Example 7–2 Simplified Java Code for Mapping Instances of Employee Class to Rows

@Entity
Public class Employee {
 @Id
 private int id;
 private String firstName;
…
}

Note that the Java code in the previous examples can also be expressed as XML.
Example 7–3 illustrates the XML equivalent of the Java code in Example 7–1.

Example 7–3 Mapping Instances of Employee Class to Rows with XML

<entity class="Employee">
 <table name="EMPLOYEE"/>
 <attributes>
 <id name="id">
 <column name="ID"/>
 </id>
 <basic name="firstName"/>
 <column name="FIRSTNAME"/>
 </basic>
 ...
 </attributes>
</entity>

Similarly, Example 7–4 illustrates the XML equivalent for the simplified Java code in
Example 7–2.

Example 7–4 Simplified XML for Mapping Instances of Employee Class to Rows

<entity class="Employee">
 <attributes>
 <id name="id"/>
 <basic name="firstName"/>
 ...
 </attributes>
</entity>

Prerequisites

7-4 Oracle Fusion Middleware Integrating Oracle Coherence

7.2.1 How the GoldenGate Java Adapter uses JPA Mapping Metadata
JPA mapping metadata provides mappings from object to relational; however, it also
provides the inverse relational to object mappings which HotCache can use. Given the
Employee example, consider an update to the FIRSTNAME column of a row in the
EMPLOYEE table. Figure 7–2 illustrates the EMPLOYEE table before the update, where the
first name John is associated with employee ID 1, and the EMPLOYEE table after the
update where first name Bob is associated with employee ID 1.

Figure 7–2 EMPLOYEE Table Before and After an Update

With GoldenGate monitoring changes to the EMPLOYEE table and to the HotCache
configured on the appropriate trail file, the adapter will process an event indicating
the FIRSTNAME column of the EMPLOYEE row with primary key 1 has been changed to
Bob. The adapter will use the JPA mapping metadata to first identify the class
associated with the EMPLOYEE table, Employee, and then determine the column
associated with an Employee's ID field, ID. With this information, the adapter can
extract the ID column value from the change event and update the firstName field
(associated with the FIRSTNAME column) of the Employee cached under the ID column
value.

7.2.2 Supported Database Operations
Database INSERT, UPDATE, and DELETE operations are supported by the GoldenGate
Java Adapter. INSERT operations into a mapped table will result in the addition of a
new instance of the associated class populated with the data from the newly inserted
row. Changes applied through an UPDATE operation will be propagated to the
corresponding cached object. If the cache does not contain an object corresponding to
the updated row, the cache is unchanged. A DELETE operation will result in the
removal of the corresponding object from the cache, if one exists.

7.3 Prerequisites
The instructions in the following sections assume that you have set up your database
to work with GoldenGate. This includes the following tasks:

■ creating a database and tables

Configuring GoldenGate

Integrating with Oracle Coherence GoldenGate HotCache 7-5

■ granting user permissions

■ enabling logging

■ provisioning the tables with data

Example 7–5 illustrates a list of sample commands that creates a user named csdemo
and grants user permissions to the database.

Note the ALTER DATABASE ADD SUPPLEMENTAL LOG DATA command. When supplemental
logging is enabled, all columns are specified for extra logging. At the very least,
minimal database-level supplemental logging must be enabled for any change data
capture source database.

Example 7–5 Sample Commands to Create a User, Grant Permissions, and Enable
Logging

CREATE USER csdemo IDENTIFIED BY csdemo;
GRANT DBA TO csdemo;
grant alter session to csdemo;
grant create session to csdemo;
grant flashback any table to csdemo;
grant select any dictionary to csdemo;
grant select any table to csdemo;
grant select any transaction to csdemo;
grant unlimited tablespace to csdemo;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

The instructions in the following sections also assume that you have installed Oracle
GoldenGate and started the manager. This includes the following tasks:

■ downloading and installing Oracle GoldenGate

■ running ggsci to create the GoldenGate subdirectories

■ creating a manager parameter (mgr.prm) file, specifying the listener port

■ adding JVM libraries to the libraries path

■ starting the manager

A detailed description of these tasks is beyond the scope of this documentation. For
more information, see Oracle GoldenGate for Oracle Installation and Setup Guide to install
GoldenGate on Oracle databases and Oracle GoldenGate for Java Administrator’s Guide.

7.4 Configuring GoldenGate
Updating the cache from a GoldenGate trail file requires configuring GoldenGate and
HotCache. You then enable HotCache by configuring the GoldenGate Java Adapter.

■ Monitor Table Changes

■ Filter Changes Made by the Current User

7.4.1 Monitor Table Changes
Indicate the table that you want to monitor for changes by using the ADD TRANDATA
command. The ADD TRANDATA command can be used on the command line or as part of
a ggsci script. For example, to monitor changes to tables in the csdemo schema, use the
following command:

ADD TRANDATA csdemo.*

Configuring GoldenGate

7-6 Oracle Fusion Middleware Integrating Oracle Coherence

Example 7–6 illustrates a sample ggsci script named cs-cap.ggsci.

■ The script starts the manager and logs into the database. It stops and deletes any
running extract named cs-cap.

■ The ADD TRANDATA command instructs the extract that tables named csdemo*
should be monitored for changes.

■ The SHELL command deletes all trail files in the dirdat directory to ensure that if
the extract is being recreated, there will be no old trail files. Note that the rm -f
command is platform-specific. An extract named cs-cap is created using
parameters from the dirprm/cs-cap.prm file. A trail is added at dirdat/cs from
the extract cs-cap file.

■ The start command starts the cs-cap.ggsci script.

■ The ADD EXTRACT command automatically uses the cs-cap.prm file as the source of
parameters, so a PARAMS dirprm/cs-cap.prm, statement is not necessary.

Example 7–6 Sample GoldenGate Java Adapter ggsci Script to Monitor Table Changes

start mgr
DBLOGIN USERID csdemo, PASSWORD csdemo
STOP EXTRACT cs-cap
DELETE EXTRACT cs-cap
ADD TRANDATA csdemo.*
ADD EXTRACT cs-cap, tranlog, begin now
SHELL rm -f dirdat/cs*
ADD EXTTRAIL dirdat/cs, EXTRACT cs-cap
start cs-cap

7.4.2 Filter Changes Made by the Current User
Configure GoldenGate to ignore changes made by the user that the Coherence
CacheStores are logged in as. This avoids GoldenGate processing any changes made to
the database by Coherence that are already in the cache.

The TranLogOptions excludeUSER command can be used on the command line or in a
ggsci script. For example, the following command instructs GoldenGate extract
process to ignore changes to the database tables made by the Coherence CacheStore
user logged in as csdemo.

TranLogOptions excludeUser csdemo

Example 7–7 illustrates a sample extract .prm file named cs-cap.prm. The user that the
Coherence CacheStore is logged in as is csdemo. The recoveryOptions OverwriteMode
line indicates that the extract overwrites the existing transaction data in the trail after
the last write-checkpoint position, instead of appending the new data. The EXTRAIL
parameter identifies the trail as dirdat/cs. The BR BROFF parameter controls the
Bounded Recovery (BR) feature. The BROFF value turns off Bounded Recovery for the
run and for recovery. The GETUPDATEBEFORES parameter indicates that the before
images of updated columns are included in the records that are processed by Oracle
GoldenGate. The TABLE parameter identifies csdemo.* as the tables that should be
monitored for changes. The TranLogOptions excludeUSER parameter indicates that
GoldenGate should ignore changes to the tables made by the Coherence CacheStore
user logged in as csdemo.

Example 7–7 Sample Extract .prm File for the GoldenGate Java Adapter

EXTRACT cs-cap
USERID csdemo, PASSWORD csdemo

Configuring HotCache

Integrating with Oracle Coherence GoldenGate HotCache 7-7

RecoveryOptions OverwriteMode
EXTTRAIL dirdat/cs
BR BROFF
getUpdateBefores
TABLE csdemo.*;
TranLogOptions excludeUser csdemo --ignore changes made by csuser

7.5 Configuring HotCache
HotCache is configured with system properties, EclipseLink JPA mapping metadata
(as described in"How Does HotCache Work?" on page 7-2), and a JPA persistence.
xml file. The connection from HotCache to the Coherence cluster is made by using
Coherence*Extend (TCP).

The following sections describe the properties needed to configure HotCache and
provides details about connecting with Coherence*Extend.

■ Create a Properties File with GoldenGate for Java Properties

■ Add Java Boot Options to the Properties File

■ Provide Coherence*Extend Connection Information

7.5.1 Create a Properties File with GoldenGate for Java Properties
Create a text file with the filename extension .properties. In the file, enter the
configuration for HotCache. A minimal configuration should contain the list of event
handlers, the fully-qualified Java class of the event handler, whether the user-exit
checkpoint file is being used, and the name of the Java writer.

Example 7–8 illustrates a .properties file that contains the minimal configuration for
a HotCache project. The following properties are used in the file:

■ gg.handlerlist=cgga

The gg.handlerlist property specifies a comma-separated list of active handlers.
This example defines the logical name cgga as database change event handler. The
name of a handler can be defined by the user, but it must match the name used in
the gg.handler.{name}.type property in the following bullet.

■ gg.handler.cgga.type=oracle.toplink.goldengate.CoherenceAdapter

The gg.handler.{name}.type property defines handler for HotCache. The {name}
field should be replaced with the name of an event handler listed in the gg.
handlerlist property. The only handler that can be set for HotCache is oracle.
toplink.goldengate.CoherenceAdapter.

■ goldengate.userexit.nochkpt=true

The goldengate.userexit.nochkpt property is used to disable the user-exit
checkpoint file. This example defines the user-exit checkpoint file to be disabled.

Note: The path to the .properties file must be set as the value of the
GoldenGate Java Adapter GGS_USEREXIT_CONF variable in a .prm file,
for example:

SetEnv(GGS_USEREXIT_CONF="dirprm/cs-cgga.properties")

This is described in "Edit the GoldenGate Java Client Extracts File" on
page 7-12.

Configuring HotCache

7-8 Oracle Fusion Middleware Integrating Oracle Coherence

■ goldengate.userexit.writers=jvm

The goldengate.userexit.writers property specifies the name of the writer. The
value of goldengate.userexit.writers must be jvm to enable calling out to the
GoldenGate Java Adapter.

■ -Dlog4j.configuration=my-log4j.properties

The -Dlog4j.configuration property specifies a user-defined Log4J properties
file, my-log4j.properties, in the dirprm directory (note that the dirprm directory
is already on the classpath). This statement is optional, because properties can be
loaded from classpath (that is, log4j.configuration=my-log4j.properties). For
more information on configuring logging properties for HotCache, see "Logging
Properties" on page 7-10.

There are many other properties that can be used to control the behavior of the
GoldenGate Java Adapter. For more information, see the Oracle GoldenGate for Java
Administrator’s Guide.

Example 7–8 .properties File for a HotCache Project

==
List of active event handlers. Handlers not in the list are ignored.
==
gg.handlerlist=cgga

==
Coherence cache updater
==
gg.handler.cgga.type=oracle.toplink.goldengate.CoherenceAdapter

==
Native JNI library properties
==
goldengate.userexit.nochkpt=true
goldengate.userexit.writers=jvm

======================================
Java boot options
======================================
jvm.bootoptions=-Djava.class.path=dirprm:/home/oracle/app/oracle/product/11.2.
0/dbhome_2/jdbc/lib/ojdbc6.jar:ggjava/ggjava.
jar:/home/oracle/Oracle/Middleware/coherence/lib/coherence.
jar:/home/oracle/Oracle/Middleware/oracle_common/modules/javax.persistence_2.0.0.
0_2-0.jar:/home/oracle/Oracle/Middleware/oracle_common/modules/oracle.toplink_12.
1.2/eclipselink.jar:/home/oracle/Oracle/Middleware/oracle_common/modules/oracle.
toplink_12.1.2/toplink-grid.jar:/home/oracle/cgga/workspace/CacheStoreDemo/bin
-Xmx32M -Xms32M -Dtoplink.goldengate.persistence-unit=employee -Dlog4j.
configuration=my-log4j.properties -Dtangosol.coherence.distributed.
localstorage=false -Dtangosol.coherence.
cacheconfig=/home/oracle/cgga/workspace/CacheStoreDemo/client-cache-config.xml
-Dtangosol.coherence.ttl=0

The Java boot options are described in the following section.

7.5.2 Add Java Boot Options to the Properties File
This section describes the properties that must appear in the Java boot options section
of the .properties file. These options are defined by using the jvm.bootoptions
property.

Configuring HotCache

Integrating with Oracle Coherence GoldenGate HotCache 7-9

A sample jvm.bootoptions listing is illustrated in Java boot options section of
Example 7–8.

■ Java Classpath Files

■ HotCache-related Properties

■ Coherence-related Properties

■ Logging Properties

7.5.2.1 Java Classpath Files
The following is a list of directories and JAR files that should be included in the Java
classpath. The directories and JAR files are defined with the java.class.path
property.

■ dirprm —the GoldenGate dirprm directory which contains the extract .prm files

■ ggjava.jar —contains the GoldenGate Java adapter libraries

■ coherence.jar—contains the Oracle Coherence libraries

■ javax.persistence_2.0.0.0_2-0.jar—contains the Java persistence libraries

■ eclipselink.jar—contains the EclipseLink libraries

■ toplink-grid.jar—contains the HotCache files and the Oracle TopLink libraries

■ domain classes—the JAR file or directory containing the user classes cached in
Coherence that are mapped with JPA for use in HotCache. Also, the Coherence
configuration files, persistence.xml file, and any orm.xml file.

7.5.2.2 HotCache-related Properties
The toplink.goldengate.persistence-unit property is required as it identifies the
persistence unit defined in persistence.xml file that HotCache should load. The
persistence unit contains information such as the list of participating domain classes,
configuration options, and optionally, database connection information.

The toplink.goldengate.on-error property is optional. It controls how the adapter
responds to errors while processing a change event. This response applies to both
expected optimistic lock exceptions and to unexpected exceptions. This property is
optional, as its value defaults to "Refresh". Refresh causes the adapter to attempt to
read the latest data for a given row from the database and update the corresponding
object in the cache. Refresh requires a database connection to be specified in the
persistence.xml file. This connection will be established during initialization of
HotCache. If a connection cannot be made, then an exception is thrown and HotCache
will fail to start.

The other on-error strategies do not require a database connection. They are:

■ Ignore—Log the exception only. The cache may be left with stale data. Depending
on application requirements and cache eviction policies this may be acceptable.

■ Evict—Log a warning and evict the object corresponding to the change database
row from the cache

■ Fail—Throw an exception and exit HotCache

7.5.2.3 Coherence-related Properties
Any Coherence property can be passed as a system property in the Java boot options.
The tangosol.coherence.distributed.localstorage system property with a value
of false is the only Coherence property that is required to be passed in the Java boot

Configuring HotCache

7-10 Oracle Fusion Middleware Integrating Oracle Coherence

options. Like all Coherence properties, precede the property name with the -D prefix
in the jvm.bootoptions statement, for example:

-Dtangosol.coherence.distributed.localstorage=false

7.5.2.4 Logging Properties
The following logging properties can be defined for HotCache.

The -Dlog4j.configuration=default-log4j.properties property specifies the
default Log4J configuration file. Example properties are located in $GOLDEN_GATE_
HOME/ggjava/resources/classes/ directory. You can merge these with your existing
Log4J configuration.

The Log4J properties file that is bundled with GoldenGate for Java is for
demonstration purposes only. The file can be used as-is, or you can merge its contents
with the existing Log4J properties.

If the file is used as-is, then it should be copied into the dirprm directory, given a new
name, and specified with the -Dlog4j.configuration property. For example, the
following line specifies the user-defined my-log4j.properties file in the dirprm
directory (note the dirprm directory is already on the classpath):

-Dlog4j.configuration=my-log4j.properties

Using the default properties file in its current location can cause problems during
upgrades: your changes will lost when a new distribution is installed.

To allow HotCache to log warnings, add the following line to the property file:

log4j.logger.oracle.toplink.goldengate=WARN, stdout, rolling

To allow HotCache to log errors, add the following line to the property file you use:

-Dlog4j.logger.oracle.toplink.goldengate=DEBUG, stdout, rolling

7.5.3 Provide Coherence*Extend Connection Information
Oracle recommends that the connection between HotCache and the Coherence cluster
be made with Coherence*Extend. For more information on Coherence*Extend, see
Oracle Fusion Middleware Developing Remote Clients for Oracle Coherence.

The Coherence configuration files must be in a directory referenced by the jvm.
bootoptions=-Djava.class.path= ... entry in the .properties file. For an example,
see the jvm.bootoptions entry in Example 7–8.

Example 7–9 illustrates the section of a client cache configuration file that uses
Coherence*Extend to connect to the Coherence cluster. In the client cache
configuration file, Coherence*Extend is configured in the <remote-cache-scheme>
section. By default, the connection port for Coherence*Extend is 9099.

Example 7–9 Coherence*Extend Section of a Client Cache Configuration File

<cache-config>
 ...
 <caching-schemes>
 <remote-cache-scheme>

Note: A Coherence Log4J configuration can co-exist with the
GoldenGate Log4J configuration. Both can be included in the same file
that is configured on the jvm.bootoptions path.

Configuring the GoldenGate Java Client

Integrating with Oracle Coherence GoldenGate HotCache 7-11

 <scheme-name>CustomRemoteCacheScheme</scheme-name>
 <service-name>CustomExtendTcpCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <remote-addresses>
 <socket-address>
 <address>localhost</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 </tcp-initiator>
 <outgoing-message-handler>
 ...
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 ...
</cache-config>

Example 7–10 illustrates the section of a server cache configuration file that listens for
Coherence*Extend connections. In the server cache configuration file,
Coherence*Extend is configured in the <proxy-scheme> section. By default, the listener
port for Coherence*Extend is 9099.

Example 7–10 Coherence*Extend Section of a Server Cache Configuration File

<cache-config>
 ...
 <caching-schemes>
 ...
 <proxy-scheme>
 <scheme-name>CustomProxyScheme</scheme-name>
 <service-name>CustomProxyService</service-name>
 <thread-count>2</thread-count>
 <acceptor-config>
 <tcp-acceptor>
 <local-address>
 <address>localhost</address>
 <port>9099</port>
 </local-address>
 </tcp-acceptor>
 </acceptor-config>
 <load-balancer>proxy</load-balancer>
 <autostart>true</autostart>
 </proxy-scheme>

 </caching-schemes>
</cache-config>

7.6 Configuring the GoldenGate Java Client
The GoldenGate Java client provides a way to process GoldenGate data change events
in Java by configuring an event handler class. The configuration for the GoldenGate
Java client allows it to monitor an extract and to pass data change events to HotCache.

This configuration is provided in an extracts .prm file and is described in the following
section. The extracts .prm file also contains a reference to the event handler class. This
is the same event handler class that is specified in the properties file described in
"Create a Properties File with GoldenGate for Java Properties" on page 7-7.

Configuring the GoldenGate Java Client

7-12 Oracle Fusion Middleware Integrating Oracle Coherence

7.6.1 Edit the GoldenGate Java Client Extracts File
This section describes the parameters that can be defined in the extract .prm file for a
GoldenGate Java client. The parameters are illustrated in Example 7–11 and constitute
a minimal configuration for a HotCache project.

For more information on these parameters and others that can be added to a .prm
extracts file, see Oracle GoldenGate for Windows and UNIX Reference Guide.

■ SetEnv (GGS_USEREXIT_CONF = "dirprm/cs-cgga.properties")

The GGS_USEREXIT_CONF property provides a reference to the .properties file that
you created in "Create a Properties File with GoldenGate for Java Properties" on
page 7-7. It is assumed that the file is named cs-cgga.properties and is stored in
the dirprm folder.

■ GETUPDATEBEFORES

The GETUPDATEBEFORES property indicates that the before and after values of
columns that have changed are written to the trail if the before values are present
and can be compared. If before values are not present only after values are written.

■ CUserExit libggjava_ue.so CUSEREXIT PassThru IncludeUpdateBefores

The CUSEREXIT parameter includes the following:

– The location of the user exit library, which will be libggjava_ue.so for UNIX
or ggjava_ue.dll for Windows

– CUSEREXIT—the callback function name that must be uppercase

– PASSTHRU—avoids the need for a dummy target trail

– INCLUDEUPDATEBEFORES—needed for transaction integrity

■ NoTcpSourceTimer

Use the NOTCPSOURCETIMER parameter to manage the timestamps of replicated
operations for reporting purposes within the Oracle GoldenGate environment.
NOTCPSOURCETIMER retains the original timestamp value. Use NOTCPSOURCETIMER
when using timestamp-based conflict resolution in a bidirectional configuration.

Example 7–11 illustrates a sample .prm file for GoldenGate for Java client.

Example 7–11 Sample .prm Parameter File for GoldenGate for Java Client

Extract cs-cgga
USERID csdemo, PASSWORD csdemo

SetEnv (GGS_USEREXIT_CONF = "dirprm/cs-cgga.properties")

-- the user-exit library (unix/linux)
CUserExit libggjava_ue.so CUSEREXIT PassThru IncludeUpdateBefores

-- the user-exit library (windows)
-- CUserExit ggjava_ue.dll CUSEREXIT PassThru IncludeUpdateBefores
-- pass all trail data to user-exit (don't ignore/omit/filter data)
GetUpdateBefores

-- TcpSourceTimer (default=on) adjusts timestamps in replicated records for more
-- accurate lag calculation, if time differences between source/target
NoTcpSourceTimer

-- pass all data in trail to user-exit. Can wildcard tables, but not schema name
Table csdemo.*;

Enabling Wrapper Classes for TopLink Grid Applications

Integrating with Oracle Coherence GoldenGate HotCache 7-13

7.7 Using Portable Object Format with HotCache
Serialization is the process of encoding an object into a binary format. It is a critical
component to working with Coherence as data must be moved around the network.
Portable Object Format (also known as POF) is a language-agnostic binary format.
POF was designed to be very efficient in both space and time and has become a
cornerstone element in working with Coherence.

POF serialization can be used with HotCache but requires a small update to the POF
configuration file pof-config.xml to allow for TopLink Grid framework classes to be
registered.

Classes that participate in POF serialization must be registered in the pof-config.xml
file. The POF configuration file has a <user-type-list> element that contains a list of
classes that implement PortableObject or have a PofSerializer associated with
them. In the case of TopLink Grid, you must register TopLinkPortableObject as the
class and TopLinkGridSerializer as the serializer. The <type-id> for each class must
be unique, and must match across all cluster instances. For more information on
configuring a POF file, see "Registering POF Objects" in Oracle Fusion Middleware
Developing Applications with Oracle Coherence.

The <allow-interfaces> element must be set to true to allow you to register a single
class for all implementors of the TopLinkPortableObject interface.

Example 7–12 illustrates a sample pof-config.xml file for HotCache. The value
integer_value represents a unique integer value greater than 1000.

Example 7–12 Sample POF Configuration File for HotCache

<?xml version='1.0'?><pof-config xmlns:xsi="http://www.w3.
org/2001/XMLSchema-instance"xmlns="http://xmlns.oracle.
com/coherence/coherence-pof-config"xsi:schemaLocation="http://xmlns.oracle.
com/coherence/coherence-pof-configcoherence-pof-config.xsd">
<user-type-list>
<include>coherence-pof-config.xml</include>
<!-- User types must be above 1000 -->
...
 <user-type>
 <type-id><integer_value></type-id>
 <class-name>oracle.eclipselink.coherence.integrated.cache.
TopLinkGridPortableObject</class-name>
 <serializer>
 <class-name>oracle.eclipselink.coherence.integrated.cache.
TopLinkGridSerializer</class-name>
 </serializer>
 </user-type>
 ...
</user-type-list>
 <allow-interfaces>true</allow-interfaces>
 ...
</pof-config>

7.8 Enabling Wrapper Classes for TopLink Grid Applications
TopLink Grid applications which depend on HotCache to pump changed data to the
Coherence cache can use the toplink.goldengate.enable-toplinkgrid-client
context property set to true to generate Java wrapper classes for Coherence cache
inserts.

Enabling Wrapper Classes for TopLink Grid Applications

7-14 Oracle Fusion Middleware Integrating Oracle Coherence

TopLink Grid depends on wrappers to encode relationship information so that eager
and lazy JPA relationships can be rebuilt when retrieved from Coherence by TopLink
Grid JPA clients. If you are using TopLink Grid with HotCache and the property is
not set to true, then relationships between objects will be null when retrieved from the
Coherence cache.

This context property can be set in the persistence.xml file or as a system property in
the Java boot options section of the HotCache .properties file.

8

Using Memcached Clients with Oracle Coherence 8-1

8Using Memcached Clients with Oracle
Coherence

This chapter provides instructions for configuring the Oracle Coherence memcached
adapter. The memcached adapter allows Coherence to be used as a distributed cache
for memcached-based clients. The instructions in this chapter assume that an existing
memcached client is being used to connect to Coherence. A simple hello world client
that is written using the spymemcached API is provided for demonstration purposes.

This chapter contains the following sections:

■ Overview of the Oracle Coherence Memcached Adapter

■ Setting Up the Memcached Adapter

■ Connecting to the Memcached Adapter

■ Securing Memcached Client Communication

■ Sharing Data Between Memcached and Coherence Clients

8.1 Overview of the Oracle Coherence Memcached Adapter
The memcached adapter provides access to Coherence caches over the memcached
binary protocol and allows Coherence to be used as a drop-in replacement for a
memcached server. The adapter supports any memcached client API that supports the
memcached binary protocol. This allows memcached clients that are written in many
different programming languages to use Coherence.

The memcached adapter is located on a Coherence proxy server and is implemented
as a Coherence*Extend-styled acceptor. Memcached clients connect to the acceptor,
which manages the distributed cache operations on the cluster. The cache operations
are performed as entry processor operations. The acceptor must first be enabled within
a proxy service in order to interact with Coherence cached data. Additional features
for securing memcached client communication and for sharing data with native
Coherence clients are provided and can be configured as required.

Figure 8–1 shows a conceptual view of a memcached client connecting to the
memcached acceptor located on a Coherence proxy server in order to use a distributed
cache.

Setting Up the Memcached Adapter

8-2 Oracle Fusion Middleware Integrating Oracle Coherence

Figure 8–1 Conceptual View of a Memcached Client Connection

8.2 Setting Up the Memcached Adapter
Memcached adapters are configured within a proxy service using a specific
memcached acceptor. The acceptor configuration defines the socket address and the
distributed cache for use by memcached clients.

8.2.1 Define the Memcached Adapter Socket Address
The memcached adapter uses a socket address (IP, or DNS name, and port) for clients
to connect to. The socket address is configured in an operational override
configuration file using the <address-provider> element. The address is then
referenced from a proxy service definition using the configured id attribute. For
details on the <address-provider> element, see Oracle Fusion Middleware Developing
Applications with Oracle Coherence.

The following example configures a socket address and uses 198.168.1.5 for the IP
address, 9099 for the port, and memcached for the ID.

...
<cluster-config>
 <address-providers>
 <address-provider id="memcached">
 <socket-address>
 <address>198.168.1.5</address>
 <port>9099</port>
 </socket-address>
 </address-provider>
 </address-providers>
</cluster-config>
...

8.2.2 Define Memcached Adapter Proxy Service
A proxy service allows remote clients to interact with the caching services of a
Coherence cluster without becoming cluster members. A proxy service for the
memcached adapter includes a specific memcached acceptor that accepts memcached
client requests on a defined socket address and then delegates the requests to a
distributed cache.

To create a proxy service for memcached clients, edit the cache configuration file and
add a <proxy-scheme> element and include the <memcached-acceptor> element within

Note: The memcached adapter can only use a distributed cache.

Setting Up the Memcached Adapter

Using Memcached Clients with Oracle Coherence 8-3

the <acceptor-config> element. The <memcached-acceptor> element must include the
name of the cache to use and a reference to an address provider definition that defines
the socket address to listen to for memcached client communication. For a detailed
reference of the <memcached-acceptor> element, see Oracle Fusion Middleware
Developing Applications with Oracle Coherence.

The following example creates a proxy service and defines a memcached acceptor. The
example references the address provider that was defined in Section 8.2.1.

...
<caching-schemes>
 <proxy-scheme>
 <service-name>MemcachedProxyService</service-name>
 <acceptor-config>
 <memcached-acceptor>
 <cache-name>hello-example</cache-name>
 <address-provider>memcached</address-provider>
 </memcached-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...
The cache name refers to the hello-example cache. The cache name must resolve to a
distributed cache. The following example shows the definition of the hello-example
cache and the distributed scheme to which it maps.

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation=
 "http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>hello-example</cache-name>
 <scheme-name>distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>MemcachedTest</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

 <proxy-scheme>
 <service-name>MemcachedProxyService</service-name>
 <acceptor-config>
 <memcached-acceptor>
 <cache-name>hello-example</cache-name>
 <address-provider>memcached</address-provider>
 </memcached-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>

Connecting to the Memcached Adapter

8-4 Oracle Fusion Middleware Integrating Oracle Coherence

 </caching-schemes>
</cache-config>

8.3 Connecting to the Memcached Adapter
Memcached clients must specify the address and port of a proxy service for the
memcached adapter. The proxy service address is used in place of the memcached
server address. Refer to your memcached client documentation for details on how to
specify the address of a memcached server.

The following example shows a simple hello world client that uses the spymemcached
client API to connect to the proxy service for the memcached adapter that was defined
in Section 8.2.

import net.spy.memcached.AddrUtil;
import net.spy.memcached.BinaryConnectionFactory;
import net.spy.memcached.MemcachedClient;

public class MemcachedExample {
 public static void main(String[] args) throws Exception {
 String key = "k1";
 String value = "Hello World!";

 MemcachedClient c = new MemcachedClient(
 new BinaryConnectionFactory(),
 AddrUtil.getAddresses("198.168.1.5:9099"));

 c.add(key, 0, value);
 System.out.println((String)c.get(key));
 c.shutdown();
 }
}

8.4 Securing Memcached Client Communication
The memcached adapter can use both authentication and authorization to restrict
access to cluster resources. Authentication support is provided for the SASL (Simple
Authentication and Security Layer) plain authentication. Authorization is
implemented using Oracle Coherence*Extend-styled authorization, which relies on
interceptor classes that provide fine-grained access for cache service operations. The
memcached adapter authentication and authorization features reuses much of the
existing security capabilities of Oracle Coherence: references are provided to existing
content where applicable.

8.4.1 Performing Memcached Client Authentication
Memcached clients can use SASL plain authentication to provide a username and
password when connecting to the memcached adapter. To use SASL plain
authentication, you must create an IdentityAsserter implementation on the proxy.
The memcached adapter calls the IdentityAsserter implementation and passes the
com.tangosol.net.security.UsernameAndPassword object as a token. For details on
creating and enabling an IdentityAsserter implementation, see Oracle Fusion
Middleware Securing Oracle Coherence. Refer to your memcached client documentation
for details on establishing a SASL plain connection.

In addition to an IdentityAsserter implementation, authentication must be enabled
on a memcached adapter to use SASL plain authentication. To enable authentication,

Sharing Data Between Memcached and Coherence Clients

Using Memcached Clients with Oracle Coherence 8-5

edit the proxy service definition in the cache configuration file and add a
<memcached-auth-method> element, within the <memcached-acceptor> element, and
set it to plain.

...
<caching-schemes>
 <proxy-scheme>
 <service-name>MemcachedProxyService</service-name>
 <acceptor-config>
 <memcached-acceptor>
 <cache-name>hello-example</cache-name>
 <memcached-auth-method>plain</memcached-auth-method>
 <address-provider>memcached</address-provider>
 </memcached-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
 </proxy-scheme>
</caching-schemes>
...

8.4.2 Performing Memcached Client Authorization
The memcached adapter relies on the Oracle Coherence*Extend authorization
framework to restrict which operations a memcached client performs on a cluster. For
detailed instructions about implementing Oracle Coherence*Extend-style
authorization, see Oracle Fusion Middleware Securing Oracle Coherence.

8.5 Sharing Data Between Memcached and Coherence Clients
The memcached adapter stores entries in a cache using a binary format. If you intend
to share the data with Coherence clients, then memcached clients must use a
serialization format that Coherence clients also support. Coherence clients typically
use Portable Object Format (POF), which is highlighted in this section. For details
about POF, see Oracle Fusion Middleware Developing Applications with Oracle Coherence.

To share data between memcached and coherence clients:

1. Edit the proxy service definition in the cache configuration file and add an
<interop-enabled> element, within the <memcached-acceptor> element, and set it
to true.

...
<proxy-scheme>
 <service-name>MemcachedProxyService</service-name>
 <acceptor-config>
 <memcached-acceptor>
 <cache-name>hello-example</cache-name>
 <interop-enabled>true</interop-enabled>
 <address-provider>memcached</address-provider>
 </memcached-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>
...

2. Enable POF on the distributed cache that is used by the memcached acceptor.

...
<distributed-scheme>

Sharing Data Between Memcached and Coherence Clients

8-6 Oracle Fusion Middleware Integrating Oracle Coherence

 <scheme-name>distributed</scheme-name>
 <service-name>MemcachedTest</service-name>
 <serializer>
 <instance>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>String</param-type>
 <param-value>memcached-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </instance>
 </serializer>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
</distributed-scheme>

3. Register POF types in the defined POF configuration file. For the above example,
the POF configuration file is named memcached-pof-config.xml. The file must be
found on the classpath before the coherence.jar file. The following example
defines a POF user type for the PofUser object:

<?xml version='1.0'?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
 coherence-pof-config.xsd">
 <user-type-list>
 <include>coherence-pof-config.xml</include>

 <!-- User types must be above 1000 -->
 <user-type>
 <type-id>1001</type-id>
 <class-name>memcached.PofUser</class-name>
 </user-type>

 </user-type-list>
</pof-config>

Create a Memcached Client that Uses POF
Many memcached client libraries include the ability to plug in custom serializers.
Refer to your memcached client documentation for details on how to plug in custom
serializers. The following excerpt shows a spymemcached client that adds the PofUser
object that was registered in step 3 and uses a spymemcached transcoder to plug in the
POF serializer.

MemcachedClient client = m_client;
String key = "pofKey";
PofUser user = new PofUser("memcached", 1);
PofTranscoder<PofUser> tc = new PofTranscoder("memcached-pof-config.xml");

if (!client.set(key, 0, user, tc).get())
 {
 throw new Exception("failed to set value");
 }

Sharing Data Between Memcached and Coherence Clients

Using Memcached Clients with Oracle Coherence 8-7

The POF transcoder plug-in is defined as follows:

import com.tangosol.io.pof.ConfigurablePofContext;
import com.tangosol.util.Binary;
import com.tangosol.util.ExternalizableHelper;

import net.spy.memcached.CachedData;
import net.spy.memcached.compat.SpyObject;
import net.spy.memcached.transcoders.Transcoder;

public class PofTranscoder<T> extends SpyObject implements Transcoder<T>
 {

 public PofTranscoder(String sLocator)
 {
 m_ctx = new ConfigurablePofContext(sLocator);
 }

 @Override
 public boolean asyncDecode(CachedData arg0)
 {
 return Boolean.FALSE;
 }

 @Override
 public T decode(CachedData cachedData)
 {
 int nFlag = cachedData.getFlags();
 Binary bin = new Binary(cachedData.getData());
 return (T) ExternalizableHelper.fromBinary(bin, m_ctx);
 }

 @Override
 public CachedData encode(Object obj)
 {

 byte[] oValue = ExternalizableHelper.toByteArray(obj, m_ctx);
 return new CachedData(FLAG, oValue, CachedData.MAX_SIZE);
 }

 @Override
 public int getMaxSize()
 {
 return CachedData.MAX_SIZE;
 }

 protected ConfigurablePofContext m_ctx;

 protected static final int FLAG = 4;

Sharing Data Between Memcached and Coherence Clients

8-8 Oracle Fusion Middleware Integrating Oracle Coherence

	Contents
	List of Examples
	List of Figures
	wList of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.1.3)
	Other Significant Changes in this Document for 12c (12.1.3)

	1 Integrating TopLink Grid with Oracle Coherence
	1.1 What is TopLink Grid?
	1.1.1 What are the JPA on the Grid Configurations?
	1.1.2 What are the Benefits of Using TopLink Grid with Oracle Coherence?

	1.2 Required Files
	1.3 JPA on the Grid Configurations
	1.3.1 Understanding JPA on the Grid
	1.3.2 JPA on the Grid API
	1.3.3 Grid Cache Configuration
	1.3.3.1 Reading Objects in Grid Cache Configuration
	1.3.3.2 Writing Objects in Grid Cache Configuration
	1.3.3.3 Grid Cache Configuration Examples
	1.3.3.3.1 Configuring the Cache for the Grid Cache Configuration
	1.3.3.3.2 Configuring an Entity for the Grid Cache Configuration
	1.3.3.3.3 Inserting Objects for the Grid Cache Configuration
	1.3.3.3.4 Querying Objects for the Grid Cache Configuration

	1.3.4 Grid Read Configuration
	1.3.4.1 Reading Objects in Grid Read Configuration
	1.3.4.2 Writing Objects in Grid Read Configuration
	1.3.4.3 Grid Read Configuration Examples
	1.3.4.3.1 Configuring the Cache in Grid Read Configuration
	1.3.4.3.2 Reading Objects for the Grid Read Configuration
	1.3.4.3.3 Inserting Objects for the Grid Read Configuration
	1.3.4.3.4 Querying Objects for the Grid Read Configuration

	1.3.5 Grid Entity Configuration
	1.3.5.1 Reading Objects in Grid Entity Configuration
	1.3.5.2 Writing Objects in Grid Entity Configuration
	1.3.5.3 Limitations on Writing Objects in Grid Entity Configuration
	1.3.5.4 Grid Entity Configuration Examples
	1.3.5.4.1 Configuring the Cache for the Grid Entity Configuration
	1.3.5.4.2 Configuring an Entity for the Grid Entity Configuration
	1.3.5.4.3 Persisting Objects for the Grid Entity Configuration
	1.3.5.4.4 Querying Objects for the Grid Entity Configuration

	1.3.6 Handling Grid Read and Grid Entity Failovers
	1.3.7 Wrapping and Unwrapping Entity Relationships
	1.3.8 Working with Queries
	1.3.8.1 Querying Objects by ID
	1.3.8.2 Querying Objects with Criteria
	1.3.8.3 Using Indexes in Queries
	1.3.8.4 Limitations on Queries

	1.4 EclipseLink Native ORM Configurations
	1.4.1 Understanding EclipseLink Native ORM
	1.4.2 API for EclipseLink Native ORM
	1.4.3 Configuring an Amendment Method
	1.4.3.1 Configuring the Amendment Method in JDeveloper

	1.4.4 Configuring the EclipseLink Native ORM Cache Store and Cache Loader

	1.5 Using POF Serialization with TopLink Grid and Coherence
	1.5.1 Implement a Serialization Routine
	1.5.2 Define a Cache Configuration File
	1.5.3 Define a POF Configuration File

	1.6 Best Practices
	1.6.1 Changing Compiled Java Classes with Byte Code Weaving
	1.6.2 Deferring Database Queries with Lazy Loading
	1.6.3 Defining Near Caches for Applications Using TopLink Grid
	1.6.4 Ensuring Prefixed Cache Names Use Wildcard in Cache Configuration
	1.6.5 Overriding the Default Cache Name

	2 Integrating JPA Using the Coherence API
	2.1 Using TopLink Grid with Coherence Client Applications
	2.1.1 API for Coherence with TopLink Grid Configurations
	2.1.2 Sample Cache Configuration File for Coherence with TopLink Grid
	2.1.3 Sample Project for Using Coherence with TopLink Grid

	2.2 Using Third Party JPA Providers
	2.2.1 API for Native Coherence JPA CacheStore and CacheLoader
	2.2.2 Steps to Use a Third Party JPA Provider and Native Coherence JPA API
	2.2.2.1 Obtain a JPA Provider Implementation
	2.2.2.2 Configure a Coherence JPA Cache Store
	2.2.2.2.1 Map the Persistent Classes
	2.2.2.2.2 Configure JPA
	2.2.2.2.3 Configure a Coherence Cache for JPA
	2.2.2.2.4 Configure the Persistence Unit

	3 Integrating Coherence Applications with Coherence*Web
	3.1 Merging Coherence Cache and Session Information

	4 Integrating Hibernate and Coherence
	5 Integrating Spring with Coherence
	6 Enabling ECID in Coherence Logs
	7 Integrating with Oracle Coherence GoldenGate HotCache
	7.1 Overview
	7.2 How Does HotCache Work?
	7.2.1 How the GoldenGate Java Adapter uses JPA Mapping Metadata
	7.2.2 Supported Database Operations

	7.3 Prerequisites
	7.4 Configuring GoldenGate
	7.4.1 Monitor Table Changes
	7.4.2 Filter Changes Made by the Current User

	7.5 Configuring HotCache
	7.5.1 Create a Properties File with GoldenGate for Java Properties
	7.5.2 Add Java Boot Options to the Properties File
	7.5.2.1 Java Classpath Files
	7.5.2.2 HotCache-related Properties
	7.5.2.3 Coherence-related Properties
	7.5.2.4 Logging Properties

	7.5.3 Provide Coherence*Extend Connection Information

	7.6 Configuring the GoldenGate Java Client
	7.6.1 Edit the GoldenGate Java Client Extracts File

	7.7 Using Portable Object Format with HotCache
	7.8 Enabling Wrapper Classes for TopLink Grid Applications

	8 Using Memcached Clients with Oracle Coherence
	8.1 Overview of the Oracle Coherence Memcached Adapter
	8.2 Setting Up the Memcached Adapter
	8.2.1 Define the Memcached Adapter Socket Address
	8.2.2 Define Memcached Adapter Proxy Service

	8.3 Connecting to the Memcached Adapter
	8.4 Securing Memcached Client Communication
	8.4.1 Performing Memcached Client Authentication
	8.4.2 Performing Memcached Client Authorization

	8.5 Sharing Data Between Memcached and Coherence Clients

