ORACLE"

Oracle® Fusion Middleware

Developing Applications for Oracle CQL Data Cartridges
12c Release (12.1.3)

E50463-05

October 2015

This guide introduces data cartridges in Oracle Event
Processing. Data cartridges extend Oracle Continuous Query
Language (Oracle CQL) to support domain-specific abstract
data types of the following forms: simple types, complex types,
array types, and domain-specific functions.

Oracle Fusion Middleware Developing Applications for Oracle CQL Data Cartridges, 12c Release (12.1.3)
E50463-05

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Madhubala Ponnekanti, Oracle® Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ...ttt vii
BN o 1T Ve < ISR PR RRRRRRRRN Vii
ReElated DIOCUITIEIES......veiieeieeiieeieeeeeeete ettt ettt eat e et eeat e e et e eaaeeaeesaseesessassesseessssassessnsesnsessnseenseean Vii
(@16) 4N 1< a1) o =TT viii
SYNtaxX DIAIaImSovoviuiiiiiiiiiciiccc s viii

What'sS NEW IN THIS GUITE..........oeeeeeeeeeeeeeeeeeeeeeeeeeee et iX

1 Introduction to Data Cartridges

2

3

4

1.1 Oracle CQL Data Cartridge Framework ... 1-1
1.2 INAINES ..ot 11
1.3 APPLCation CONLEXLcccoviiiiiiiiii s 1-2

Configure Oracle JDBC and Oracle Spatial Data Cartridges

2.1 How to Configure Oracle Spatial Application Contextcccocovievrerniiiceereinieece, 2-1
2.2 How to Configure Oracle JDBC Data Cartridge Application Contextc.ccccoeeuerrirrnnnn. 2-3

Oracle JDBC Data Cartridge

3.1 Understanding the Oracle Event Processing JDBC Data Cartridge..........cccccoeveveveiirereinicnnen. 3-1
3.1.1 Data Cartridge Name.......ccccovoiiiieiiiccic e 3-2
312 SCOPE...viiiiiiit s 3-2
3.1.3 Parameter SpecifiCationcccciiiiiiiiiiiicc e 3-2
3.1.4 Oracle Event Processing JDBC Data Cartridge Application Context........cc.c.cceeurnu... 3-3

3.2 Using the Oracle Event Processing JDBC Data Cartridgeccccoeveeeireieiiiineeicccicee 3-5
3.2.1 Defining SQL Statements: function Element............ccocooooriiiniiniiine 3-6
3.2.2 Defining Oracle CQL Queries With the Oracle Event Processing JDBC Data

Cartride v s 3-11

Oracle Spatial Data Cartridge

41 Understanding Oracle Spatial..........cccouoiiiiiiiiiiii 4-1
4.1.1 Data Cartridge NAmMe...........cooouiiiiiii 4-2

4.2

B 1.2 SCOPC...cuieiteteiicte ettt 4-2

4.1.3 Datatype Mapping ... 4-10
41.4 Oracle Spatial Application COntextcccciviiiiiiniiiiiii e 4-10
Using Oracle Spatial ... 4-11
4.2.1 How to Access Oracle Spatial Java API Geometry Types.........cccccoeuenivirieiiiiicciennnes 4-11
4.2.2 How to Create @ GEOMELTYcoouiviiiiiiciiicc 4-12
42.3 How to Access Geometry Type Public Methods and Fieldsccccoooiiiininnnnce. 4-13
424 How to Use Geometry Relation Operators ..o, 4-14
42.5 How to Use Geometry Filter Operators ..o, 4-14
42.6 How to Use Geometry Aggregate Operatorscccoooimeieiiiicieieinicciecciee 4-15
4.2.7 How to Use the Default Geodetic Coordinatesccccoevvviviiiiiiiniiininiiininns 4-15
4.2.8 How to Use Other Geodetic Coordinatescccooevvuiiviireriiiiiniiinceeeans 4-16

5 Oracle Big Data Cartridges

6

51

52

Hadoop Data Cartrid@ecccceiiiiiiiiiiiecieceeeeeee e 5-1
5.1.1 Understanding the Oracle Event Processing Hadoop Data Cartridge.............cc.c....... 5-1
5.1.2 Using Hadoop Data Sources in Oracle CQLccccooioiiiiiiiic, 5-3
NOSQL Data Cartridge........ccoceueeiurieieiiiicie et e 5-6
5.2.1 Oracle CQL ProceSSOr QUETIESccveeuiieireeeireeireesreeeteeereeereeseeenreesseeseessseesssessseesseessees 5-6
5.2.2 Data Cartridge NaIME........cccccoiiiiiiiiiiiiccc e 5-6
5.2.3 Using a NoSQL Database in Oracle CQL ... 5-7

Oracle Java Data Cartridge

6.1

6.2

Understanding the Oracle Java Data Cartridgecccoovoeeeiniiiiiiniicc e 6-1
6.1.1 Data Cartridge Name...........ccooriiiiiiiiiii e 6-1
6.1.2 Class LOAdiNg........ccceuoiiurieiiiiiicicect 6-2
6.1.3 Method ReSOIULION.......ccimiiiiiiiiiiiiic e 6-4
6.1.4 Datatype Mappingcccocovioieieioiiiiiieeeeee s 6-5
6.1.5 Oracle CQL Query Support for the Oracle Java Data Cartridge...........cccoevuvvrninnnne 6-7
Using the Oracle Java Data Cartridge...........cocooeueioiiiiiiiiiiciccc e 6-7
6.2.1 How to Query Using the Java API.........cccooooiiiiii 6-7
6.2.2 How to Query Using Exported Java Classes..........cccocvvvurirrvrerinnrnninrrreeeeeeenes 6-8
6.2.3 Java Cast FUNCHONccoiiiiiieieeeee ettt ettt et s ae et e bt te s b eseeneens 6-10

Data Cartridge Framework

7.1
7.2

7.3

7.4

ADOUL The SPLL.....coiiiiiii ettt 7-1
INEEITACES ..o 7-2
7.2.1 Interface DeSCIiPHONScccoviiiiiiiiiiiicieice s 7-2
7.2.2 EXCEPHONS....ciiiiiiiiiciiiiii s 7-3
Cartridge EXamPLES.......c.coiiiiiiiiiiccceeccee e 7-3
7.3.1 Arithmetic Cartridge.......ccovviiiiiiniiiiiiiii s 7-3
7.3.2 Data Source Cartridgeococoeueieiiiiieiiiiicie e 7-4
SOUICE COAE ..ttt 7-4

741 Arithmetic Cartridge.......cooooiiiieioiii 7-4
742 Data Source Cartrid@ecccovururererererererirrirrrree e 7-8

A Oracle Spatial Command and API Reference

Al
A2
A3
A4
A5
A6
A7
A8
A9
A0
All
A2
Al3
A4
A.15
A.l6
A7
A.18
A.19
A20
A2l
A22
A23
A24
A25
A26
A27

ANYINTERACT ...ttt ettt et stesae st este st e s sesaessa e sesseessasssensesssensesssessesnsesseensesnenn A-2
DULEET vttt ettt e s e s e st s b e b e s e b et et et enbe st e st e st eseeseeneeseesessensennn A-2
DUHEIPOLYZON.....ociiiiiiiiiii s A-3
CONTAIN. ..ttt ettt ettt et e st e et e te et e e st e beeseesbeesaesseessaseessasseassasssansaaseessesssesseessesseessenses A-4
CONVETETOZ2DD ..ttt ettt et e e et e st e et esabe e baesabeessaessse e baesnseenseesasaensaennses A-4
CONVETETO3DD ..ttt ettt st et s bt et e st e e s bt e sabe e bt e sabe e beesseebeesabeenseesases A-5
CLEALECITCLE .evviviecteee ettt ettt ettt et e ettt eeteeebe et eebeebesbeesseebeenbeesseaseessenseeasesseensesssensessean A-5
CreateELEININTOoocviiiiiieieceeec ettt et e b et e e e e aeeraesreenteerean A-6
CIEAtEGEOMELTY ...ttt A-8
createLinearLineString ... A-9
createLinearMultiLineSIING ... A-9
createlinearPOlYGOM.o A-10
CrEAtEIMUIIPOINTveviiiiceiecieciectee ettt sttt e et e s e beessesseessesseenseernenseesnas A-11
CTEATEPIOINT ..eenvieiieieeie ettt ettt e s abe e te e s st e e ae e st e e beessbeenbaessbeensaesssesnseenssenn A-11
CreateRECIANELE ... A-12
6§11 721 Lo TE TSSO U TP A-13
EINFOZENETALON ... A-13
FILTERcctietteteeteeete ettt ettt ettt ettt et e et e eta e beesaesbeesaesseessessaesbasssessaessasseessanseessesssensesssensensnas A-15
GEE2AMDI ..o A-16
IINSIDEE. ... ittt ettt e et et e e e e s s e esaesseessesseessesssesseassensaessenseensenssensesssensennen A-16
IINSIIDIESD ...ttt ettt ettt et s et e s st e be s st e sesntenseenseseentesseensesaeensesneensesnnan A-17
INDN ettt ettt et et e e be et e be et e e ta e beete e beeaaeebeeabeebe e beeta e beera e beerb e beesteareeaseeaeenteerseteeras A-18
OFASZENEIALOTeviiee e e A-18
tO_GEOMIELIY ... A-19
tO_JBD_GEOMELTY ...ttt A-19
EO_JGEOMELTY ...t A-20
WITHINDISTANCE ... oottt ettt ettt et e et be b et e e b e sreessesseenseessenseessenseesnas A-20

Vi

Preface

This reference contains a complete description of the Oracle Continuous Query
Language (Oracle CQL), a query language based on SQL with added constructs that
support streaming data. Using Oracle CQL, you can express queries on data streams to
perform event processing using Oracle Event Processing. Oracle CQL is a new
technology but it is based on a subset of SQL99.

Audience

This document is intended for all users of Oracle CQL.

Related Documents

For more information, see the following;:

Developing Applications for Oracle Event Processing
Getting Started with Oracle Event Processing
Getting Started with Oracle Edge Analytics

Schema Reference for Oracle Event Processing
Customizing Oracle Event Processing

Using Visualizer for Oracle Event Processing
Customizing Oracle Event Processing
Administering Oracle Event Processing

Oracle CQL Language Reference for Oracle Event Processing
Java API Reference for Oracle Event Processing

Java API Reference for Oracle Edge Analytics

Using Oracle Stream Explorer

Getting Started with Oracle Stream Explorer

Oracle Database SQL Language Reference at: ht t p: / / docs. or acl e. cont cd/
E16655 01/ server.121/e17209/toc. ht m

SQL99 Specifications (ISO/IEC 9075-1:1999, ISO/IEC 9075-2:1999, ISO/IEC
9075-3:1999, and ISO/IEC 9075-4:1999)

Vii

http://docs.oracle.com/cd/E16655_01/server.121/e17209/toc.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/toc.htm

¢ Oracle Event Processing Forum: ht t p: // f or ums. or acl e. conmi f or uns/
forum j spa?forum D=820.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nmonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Syntax Diagrams

Syntax descriptions are provided in this book for various Oracle CQL, SQL, PL/SQL,
or other command-line constructs in graphic form or Backus Naur Form (BNF). See

Oracle Database SQL Language Reference for information about how to interpret these
descriptions.

viii

http://forums.oracle.com/forums/forum.jspa?forumID=820
http://forums.oracle.com/forums/forum.jspa?forumID=820

What's New Iin This Guide

This document is new for the 12c release. The information is moved here from the

previous Oracle Fusion Middleware Developing Applications for Oracle Event Processing
and updated for the 12c release.

Sections Changes Made

Entire Guide

Product renamed to Oracle Event Processing
Data Cartridge Framework New section that describes the interfaces that make up the Data

Cartridges Framework. Use this framework to design and create your
own data cartridges.

1

Introduction to Data Cartridges

Oracle Event Processing data cartridges extend Oracle Continuous Query Language
(Oracle CQL) to support domain-specific abstract data types of the following forms:
simple types, complex types, array types, and domain-specific functions.

This chapter includes the following sections:
® Oracle CQL Data Cartridge Framework
¢ Names

e Application Context.

1.1 Oracle CQL Data Cartridge Framework

1.2 Names

The Oracle CQL data cartridge framework enables you to tightly integrate arbitrary
domain data types and functions with the Oracle CQL language. The tight integration
means that you can use the data cartridge extensions within Oracle CQL queries in the
same way that you use Oracle CQL native types and built-in functions. The
framework supports both simple and complex data types. Complex data types allow
you to use object-oriented programming.

Currently, Oracle Event Processing provides the following data cartridges:

® Oracle JDBC data cartridge: This data cartridge allows you to incorporate arbitrary
SQL functions against multiple tables and data sources in Oracle CQL queries and
views as you would Oracle CQL native types.

* Oracle Spatial: This data cartridge exposes Oracle Spatial types, methods, fields,
and constructors that you can use in Oracle CQL queries and views as you would
Oracle CQL native types.

* Hadoop Big Data cartridge: This data cartridge extends an Oracle CQL processor to
access large quantities of data in a Hadoop distributed file system (HDEFS).

¢ NoSQLDB Big Data cartridge: This data cartridge extends an Oracle CQL processor
to access large quantities of data in an Oracle NoSQL Database

® Oracle Java data cartridge: This data cartridge exposes Java types, methods, fields,
and constructors that you can use in Oracle CQL queries and views as you would
Oracle CQL native types.

Each data cartridge is identified by a unique data cartridge name that defines a name
space for the data cartridge implementation. Use the data cartridge name to
disambiguate references to types, methods, fields, and constructors.

Introduction to Data Cartridges 1-1

Application Context

How you access data cartridge types, methods, fields, and constructors using Oracle
CQL is the same for all data cartridge implementations. For example, you can
reference a data-cartridge function with f unc_expr , which optionally takes a link
name. For more information, see Oracle CQL Language Reference for Oracle Stream
Explorer. What you access in each data cartridge is unique to each data cartridge
implementation. For more information, see:

* Oracle Java Data Cartridge
® Oracle Spatial Data Cartridge

* Oracle Big Data Cartridges.

Note:

To simplify Oracle data cartridge type names, you can use aliases as described
in Oracle Fusion Middleware Oracle CQL Language Reference for Oracle
Event Processing.

1.3 Application Context

Depending on the data cartridge implementation, you might be able to define an
application context that the Oracle Event Processing server propagates to the functions
and types that an instance of the data cartridge provides. For example, you might be
able to configure an Oracle Event Processing server resource or a default data
cartridge option and associate this application context information with a particular
data cartridge instance.

Depending on the data cartridge implementation, you might be able to define an
application context that the Oracle Event Processing server propagates to an instance
of the data cartridge and the complex objects it provides.

The following figure illustrates this application context.

Figure 1-1 Data Cartridge Application Context

Cartridge Application

FRUVIDES PHOWIDES

Extensible
~—~

For example, you might be able to configure an Oracle Event Processing server
resource or a default data cartridge option and associate this application context
information with a particular data cartridge instance.

You define an application context for an instance of an Oracle Spatial data cartridge
using a data cartridge implementation-provided element (call it

DATA_CARTRI DGE_CONTEXT) in your Oracle Event Processing application's Event
Processing Network (EPN) assembly file as the following example shows.

<DATA_CARTRI DGE_CONTEXT i d="M/Context" ATTRI BUTE="" ... />

1-2 Developing Applications for Oracle CQL Data Cartridges

Application Context

Where DATA_CARTRI DGE_CONTEXT is the name of the data cartridge
implementation-provided element and ATTRI BUTE is one of one or more attributes
that the data cartridge exposes for configuration.

In your Oracle CQL query, you use the i d of the DATA CARTRI DGE_CONTEXT
(MyCont ext in the following example) in links instead of the

DATA_CARTRI DGE_NAME alone. The Oracle Event Processing server will set the
context object into the data cartridge instance before locating the data cartridge
complex object.

Note:
The i d value must not equal the DATA_CARTRI DGE_NAME.

In the following example, the default link (@DATA_CARTRI DGE_NANE) propagates the
default application context to the myMet hod call.

<view id="viewl">
sel ect com mypackage. MyType. myMet hod@ATA CARTRI DGE_NAME(...)
from S[NOW

</ vi ew>

In the following example, the link (@ Cont ext) propagates the user-defined
application context to the myMet hod call.

<view id="viewl">
sel ect com mypackage. MyType. myMet hod@Cont ext (.. .)
from S[NOW

</ vi ew>
You can configure an application context for the following data cartridges:

® Oracle Spatial data cartridge

® Oracle JDBC data cartridge

For more information on data cartridges, see Oracle CQL Language Reference for Oracle
Stream Explorer.

Introduction to Data Cartridges 1-3

Application Context

1-4 Developing Applications for Oracle CQL Data Cartridges

2

Configure Oracle JDBC and Oracle Spatial
Data Cartridges

This chapter describes how to configure the Oracle JDBC cartridge and Oracle Spatial
cartridge, which extend Oracle Continuous Query Language (CQL) for use with
Oracle Event Processing.

This chapter includes the following sections:
* How to Configure Oracle Spatial Application Context

* How to Configure Oracle JDBC Data Cartridge Application Context.

2.1 How to Configure Oracle Spatial Application Context

You define an application context for an instance of Oracle Spatial using element
spati al : cont ext in your Oracle Event Processing application's Event Processing
Network (EPN) assembly file.

All constructors and methods from com or acl e. cartri dge. spati al . Geonetry
and Oracle Spatial functions are aware of spat i al : cont ext . For example, the SRID
is automatically set from the value in the Oracle Spatial application context.

For more information, see:

e "SDO_SRID" in the Oracle Spatial Developer’s Guide at: ht t p: / /
downl oad. or acl e. conf docs/ cd/ E11882_01/ appdev. 112/ 11830/
sdo_obj rel schena. ht n#SPATL492

e Oracle CQL Language Reference for Oracle Stream Explorer.

To configure Oracle Spatial application context:

1. In Oracle JDeveloper, open the EPN diagram.

2. Import the package com or acl e. cep. cartri dge. spati al into your Oracle
Event Processing application's MANI FEST. MF file.

3. Right-click the EPN node and select Configure Spatial Context > New Spatial
Context.

4. Edit the EPN file to add the required namespace and schema location entries as
follows:

<?xnl version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://wwmv. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http:// www. w3. or g/ 2001/ XM_Schena- i nst ance"
xmi ns: osgi ="http://ww. springfranmework. or g/ schena/ osgi "
xm ns:w evs="http://ww. bea. conf ns/w evs/ spring"
xm ns: spatial ="http://ww.oracl e. conf ns/ ocep/ spatial "

Configure Oracle JDBC and Oracle Spatial Data Cartridges 2-1

http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11830/sdo_objrelschema.htm#SPATL492
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11830/sdo_objrelschema.htm#SPATL492
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11830/sdo_objrelschema.htm#SPATL492

How to Configure Oracle Spatial Application Context

xsi : schemaLocat i on="
http://ww. springframework. or g/ schenma/ beans
http://ww. springframework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ osgi
http://ww. springfranmework. or g/ schema/ 0sgi / spring- osgi . xsd
http://ww. bea. com ns/w evs/ spring
http://ww. bea. com ns/ W evs/ spring/ ocep-epn. xsd
http://ww:. oracl e. conf ns/ ocep/ spati al
http://ww:. oracl e. com’ ns/ ocep/ spati al / ocep-spati al . xsd">

5. Edit the EPN file to add a spat i al : cont ext element as follows.
<spatial : context id="Spatial GRS80" />
6. Assign a value to the i d attribute that is unique in this EPN.

This is the name you will use to reference this application context in subsequent
Oracle CQL queries.

Note:

The i d value must not equal the Oracle Spatial name spat i al . For more
information, see Oracle CQL Language Reference for Oracle Stream Explorer.

7. Configure the other attributes of the spat i al : cont ext element to suit your
application requirements.

Table 2-1 lists the attributes of the spat i al : cont ext element.

Table 2-1 spatial:context Element Attributes

Attribute Description

anyi nt eract - The default tolerance for contain or inside operator.
tolerance Default: 0.0000005

r of Defines the Reciprocal Of Flattening (ROF) parameter used

for buffering and projection.
Default: 298.257223563

sma Defines the Semi-Major Axis (SMA) parameter used for
buffering and projection.

Default: 6378137.0

srid SRID integer. Valid values are:
* CARTESI AN: for cartesian coordinate system.
e LAT_LNG WES84_SRI D: for WGS84 coordinate system.

¢ An integer value from the Oracle Spatial
SDO_COORD_SYS table COORD_SYS_| D column.

Default : LAT_LNG WGS84_SRI D

tol erance The minimum distance to be ignored in geometric
operations including buffering.

Default: 0.000000001

The following example shows how to create a spatial context named
Spat i al GRS80 in an EPN assembly file using the Geodetic Reference System 1980
(GRS80) coordinate system (sri d="4269").

<spatial : context id="Spatial GRS80" srid="4269" sma="63787.0" rof="298.25722101" />

2-2 Developing Applications for Oracle CQL Data Cartridges

How to Configure Oracle JDBC Data Cartridge Application Context

8. Create Oracle CQL queries that reference this application context by name.

The following example shows how to reference a spati al : cont ext in an Oracle
CQL query. In this case, the query uses link name Spat i al GRS80 to propagate
this application context to the Oracle Spatial. The spat i al : cont ext attribute
settings of Spat i al GRS80 are applied to the cr eat ePoi nt method call. Because
the application context defines the SRID, you do not need to pass that argument
into the cr eat ePoi nt method.

<view id="createPoint">
sel ect

comoracl e.cep.cartridge. spatial.Geonetry. creat ePoi nt @patial GRS80(I ng, lat, 0d)
from Cust omer Pos[NOW

</ vi ew>

For more information, see Oracle CQL Language Reference for Oracle Event Processing.

2.2 How to Configure Oracle JDBC Data Cartridge Application Context

You define an application context for an instance of an Oracle JDBC data cartridge
using;:

e Ajdbc:jdbc-context elementin the EPN assembly file.

e Ajc:jdbc-ctx element in the component configuration file.

Thej c: j dbc- ct X element:
— references one and only one j dbc: j dbc- cont ext
— references one and only one dat a- sour ce

— defines one or more SQL functions

Note:

You must provide alias names for every SELECT list column in the SQL
function.

For more information see, Oracle CQL Language Reference for Oracle Event Processing.

To configure Oracle JDBC data cartridge application context:

1. Open the EPN editor in the Oracle JDeveloper.

2. Right-click the EPN node and select Configure Spatial Context > New Spatial
Context.

3. Edit the EPN file to add the required namespace and schema location entries as
follows:

<?xnml version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://wwmv. spri ngframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: osgi ="http://ww. springfranmework. org/ schema/ osgi "
xm ns: W evs="http://ww. bea. com ns/w evs/ spring"
xm ns: jdbc="http://ww:. oracl e. con ns/ ocep/ j dbc"
xsi : schemaLocat i on="

http://ww. springframework. or g/ schema/ beans

Configure Oracle JDBC and Oracle Spatial Data Cartridges 2-3

How to Configure Oracle JDBC Data Cartridge Application Context

10.

11.

http://ww. springframework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ osgi
http://ww. springfranmework. or g/ schema/ 0sgi / spring- osgi . xsd
http://ww. bea. com ns/w evs/ spring

http://ww:. bea. com ns/w evs/ spring/ ocep-epn. xsd
http://ww:. oracl e. cont ns/ ocep/ j dbc
http://ww:. oracl e. com ns/ ocep/ j dbc/ ocep-j dbc. xsd" >

Edit the EPN file to add a j dbc: j dbc- cont ext element as follows.
<j dbc:jdbc-context id="JdbcCartridgelne"/>
Assign a value to the i d attribute that is unique in this EPN.

This is the name you will use to reference this application context in subsequent
Oracle CQL queries.

Note:

The i d value must not equal the Oracle JDBC data cartridge name j dbc. For
more information, see Oracle CQL Language Reference for Oracle Stream Explorer.

Right-click the desired processor and select Go to Configuration Source.

Edit the component configuration file to add the required namespace entries as
follows:

<?xnl version="1.0" encodi ng="UTF-8"?>
<wl evs: config
xm ns: w evs="http://ww. bea. com ns/w evs/ confi g/ application”
xm ns: xsi ="http: // www. w3. or g/ 2001/ XM_.Schena- i nst ance"
xm ns:jc="http://ww.oracle.conm ns/ocep/ config/jdbc
xsi : schemalLocat i on="
http://ww. oracl e. conf ns/ ocep/ confi g/ j dbc
http://ww. oracl e. conf ns/ ocep/ confi g/ j dbc/ ocep_j dbc_cont ext _confi g. xsd">

Edit the component configuration file to add aj c: j dbc- ct X element as follows.

<jc:jdbec-ctx>
</jc:jdbc-ctx>

Add a name child element whose value is the name of the Oracle JDBC application
context you defined in the EPN assembly file as follows.

<jc:jdbec-ctx>
<nane>JdbcCartri dgeOne</ nane>
</jc:jdbc-ctx>

Add a dat a- sour ce child element whose value is the name of a datasource
defined in the Oracle Event Processing server confi g. xni file.

For more information, see: Administering Oracle Stream Explorer and Oracle CQL

Language Reference for Oracle Stream Explorer.

The following example shows how to specify the data source named St ockDS.

<jc:jdbe-ctx>

<name>JdbcCartri dgeOne</ name>

<dat a- sour ce>St ockDS</ dat a- sour ce>
</jc:jdbc-ctx>

Create one or more SQL functions using the f unct i on child element as follows.

2-4 Developing Applications for Oracle CQL Data Cartridges

How to Configure Oracle JDBC Data Cartridge Application Context

<jc:jdbc-ctx>
<nane>JdbcCartri dgeOne</ nane>
<dat a- sour ce>St ockDS</ dat a- sour ce>
<function name="get Det ai | sByCOr der | dName" >
<param name="inpOrderld" type="int" />
<param name="i npNane" type="char" />
<ret urn-conponent - t ype>
com oracl e. cep. exanpl e. j dbc_cartri dge. Ret Event
</ return-conponent -t ype>
<sql ><! [CDATA]
SELECT
Enpl oyee. enpNane as enpl oyeeNane,
Enpl oyee. enpEmai | as enpl oyeeEnai |,
OrderDetails.description as description
FROM
Pl acedOrders, OrderDetails , Enployee
VWHERE
Pl acedOrders. enpl d = Enpl oyee. enpld AND
PllacedOrders.orderld = OrderDetails.orderld AND
Enpl oyee. enpNane = :inpName AND
PlacedOrders.orderld = :inpOrderld
></ sql >
</function>
</jc:jdbc-ctx>

Note:

You must provide alias names for every SELECT list column in the SQL query.

For more information, see Oracle CQL Language Reference for Oracle Stream Explorer.

12. Create Oracle CQL queries that invoke the SQL functions using the Oracle JDBC
data cartridge application context.

The following example shows how to reference a j dbc: j dbc- cont ext inan
Oracle CQL query. In this case, the query uses link name JdbcCar t ri dgeOne to
propagate this application context to the Oracle JDBC data cartridge. The Oracle
CQL query in invokes the function get Det ai | sByOr der | dNane defined by
Oracle JDBC data cartridge context JdbcCar t ri dgeOne.

<processor >
<name>Pr oc</ name>
<rul es>
<query id="ql"><![CDATAl
RSt r ean(
sel ect
current Order. orderld,
details. orderlnfo.enpl oyeeNane,
details. orderlnfo.enpl oyeeemi |,
details.orderlnfo.description
from
OderArrival [now] as currentOrder,
TABLE(get Det ai | sByOr der | dNanme@dbcCart ri dgeOne(
current Order.orderld, currentOder.enpNane
) as orderlnfo
) as details
)
></ query>
</rul es>

</ processor>

For more information, see Oracle CQL Language Reference for Oracle Stream Explorer.

Configure Oracle JDBC and Oracle Spatial Data Cartridges 2-5

How to Configure Oracle JDBC Data Cartridge Application Context

2-6 Developing Applications for Oracle CQL Data Cartridges

3

Oracle JDBC Data Cartridge

You can use the Oracle Event Processing JDBC data cartridge to execute a SQL query
against a database and use the returned results in a CQL query.

When using functionality provided by the cartridge, you are associating a SQL query
with a JDBC cartridge function definition. Then, from a CQL query, you can call the
JDBC cartridge function, which executes the associated SQL query against the
database. The function call must be enclosed in the TABLE clause, which lets you use
the SQL query results as a CQL relation in the CQL query making that function call.

Note:

Oracle recommends the Oracle JDBC data cartridge for accessing relational
database tables from an Oracle CQL statement.

For information the TABLE clause, see Using the TABLE Clause.

This chapter includes the following sections:
* Understanding the Oracle Event Processing JDBC Data Cartridge

e Using the Oracle Event Processing JDBC Data Cartridge.

3.1 Understanding the Oracle Event Processing JDBC Data Cartridge

Oracle Event Processing streams contain streaming data, and a database typically
stores historical data. Use the Oracle Event Processing JDBC data cartridge to associate
historical data (stored in one or more tables) with the streaming data coming from
Oracle Event Processing streams. The Oracle Event Processing JDBC data cartridge
executes arbitrary SQL query against a database and uses the results in the CQL
query. This section describes how to associate streaming and historical data using the
Oracle Event Processing JDBC data cartridge.

This section describes:

® Data Cartridge Name

® Scope

® Parameter Specification

¢ Oracle Event Processing JDBC Data Cartridge Application Context.

Oracle JDBC Data Cartridge 3-1

Understanding the Oracle Event Processing JDBC Data Cartridge

3.1.1 Data Cartridge Name

The Oracle Event Processing JDBC data cartridge uses the cartridge ID
com or acl e. cep. cartridge. j dbc. This ID is reserved and cannot be used by any
other cartridges.

For more information, see Oracle Event Processing JDBC Data Cartridge Application
Context.

3.1.2 Scope

The Oracle Event Processing JDBC data cartridge supports arbitrarily complex SQL
statements with the following restrictions:

* You can use only native SQL types in the SELECT list of the SQL query.
* You cannot use user-defined types and complex database types in the SELECT list.

* You can provide alias names for every SELECT list column in the SQL query. If you
provide alias names, make sure the select list is consistent with the return type
property names.

Note:

To use the Oracle Event Processing JDBC data cartridge, your data source
must use Oracle JDBC driver version 11.2 or higher.

For more information, see Administering Oracle Stream Explorer.

3.1.3 Parameter Specification

Use the par amelement to specify the parameters for JDBC functions. The parameters
are specified as name and val ue pairs. The nane attribute specifies event data of the
specified t ype. The t ype attribute can be any Oracle CQL data type. See Oracle CQL
Language Reference for Oracle Stream Explorer for information about Oracle CQL data

types.

The following example shows an example configuration file that uses par amand
t ype pairs to specify parameters for the get Det ai | sByOr der | dNane function.

Note:

The Ret Event class used in the example is an example of how to return a
complex type as a table function. The full code for this class is shown in Using
the Oracle Event Processing JDBC Data Cartridge.

<jc:jdbe-ctx>

<nanme>JdbcCartri dgeOne</ nane>

<dat a- sour ce>St ockDS</ dat a- sour ce>

<function name="get Det ai | sByCOr der | dName" >
<param name="inpOrderld" type="int" />
<param name="i npNane" type="char" />
<ret urn-conponent - t ype>

com oracl e. cep. exanpl e. j dbc_cartri dge. Ret Event

</ return-conponent -t ype>

3-2 Developing Applications for Oracle CQL Data Cartridges

Understanding the Oracle Event Processing JDBC Data Cartridge

<sql ><! [CDATA]
SELECT
Enpl oyee. enpNane as enpl oyeeNane,
Enpl oyee. enpEmai | as enpl oyeeEmai |,
OrderDetails.description as description
FROM
Pl acedOrders, OrderDetails , Enployee
VWHERE
Pl acedOr ders. enpl d = Enpl oyee. enpld AND
PllacedOrders. orderld = OrderDetails.orderld AND
Enpl oyee. enpNane = :inpName AND
PlacedOrders.orderld = :inpOrderld
></ sql >
</function>
</jc:jdbc-ctx>

3.1.4 Oracle Event Processing JDBC Data Cartridge Application Context

To use the Oracle Event Processing JDBC data cartridge, you must declare and
configure one or more application-scoped JDBC cartridge context while developing an
application, as described in the following steps:

® Declare a JDBC Cartridge Context in the EPN File

¢ Configure the JDBC Cartridge Context in the Application Configuration File.

3.1.4.1 Declare a JDBC Cartridge Context in the EPN File
To declare a JDBC cartridge context in the EPN file:

1. Edit your Oracle Event Processing application EPN assembly file to add the
required namespace and schema location entries.

2. Add an entry with the tag j dbc- cont ext in the EPN file and specify the i d
attribute. The i d represents the name of this application-scoped context and is
used in CQL queries that reference functions defined in this context. The i d is also
used when this context is configured in the application configuration file.

<?xnl version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwmv springframeworKk. org/ schema/ beans"
xm ns: xsi ="http:// www. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: osgi ="http://wwmv. springframework. or g/ schema/ osgi "
xm ns:w evs="http://ww. bea. conf ns/w evs/spring"
xm ns:jdbc="http://wwn. oracl e. conf ns/ ocep/j dbc"
xsi:schemaLocat i on="
http://ww. springframewor k. or g/ schema/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ osgi
http://ww. springframewor k. org/ schema/ 0sgi / spring-0sgi . xsd
http://ww. bea. com ns/w evs/ spring
http://ww. bea. com ns/w evs/ spring/http://ww. bea.com ns/w evs/ spring/ ocep-epn. xsd
http://ww. oracl e. com ns/ ocep/ j dbc
http://ww. or acl e. com ns/ ocep/ j dbc/ ocep-j dbc. xsd" >

The following example shows how to create an Oracle Event Processing JDBC data
cartridge application context named JdbcCar t ri dgeOne in an EPN assembly file.

<jdbc: jdbc-context id="JdbcCartridgene"/>

3.1.4.2 Configure the JDBC Cartridge Context in the Application Configuration File

To configure the JDBC cartridge context, add the configuration details in the
component configuration file that is typically placed under the application's /wlevs

Oracle JDBC Data Cartridge 3-3

Understanding the Oracle Event Processing JDBC Data Cartridge

directory. This configuration is similar to configuring other EPN components such as
channel and processor.

To configure the JDBC cartridge context in the application configuration file:

1. Before adding the JDBC context configuration, add the required namespace entry
to the configuration XML file, as shown in the following example:

<?xnm version="1.0" encodi ng="UTF-8"?>
<j dbcct xconfig: config xn ns:jdbcct xconfig="http://ww. bea. com ns/w evs/ config/
application”

xmns:jc="http://ww.oracl e.com ns/ ocep/ config/jdbc">

2. The JDBC cartridge context configuration is done under the parent level tag j dbc-
ct X. A context defines one or more functions, each of which is associated with a
single SQL query. The configuration also specifies the data source representing the
database against which the SQL queries are to be executed. Each function can have
input parameters that are used to pass arguments to the SQL query defining the
function, and each function specifies the return-component-type. Since the call to
this function is always enclosed within a TABLE clause, the function always
returns a Collection type. The return-component-type property indicates the type
of the component of that collection.

The value of the name property must match the value used for the i d attribute in
the EPN file.

Note:

The Ret Event class used in the example is an example of how to return a
complex type as a table function. The full code for this class is shown in Using
the Oracle Event Processing JDBC Data Cartridge.

<jc:jdbc-ctx>
<nane>JdbcCartri dgeOne</ nane>
<dat a- sour ce>St ockDS</ dat a- sour ce>
<function name="get Det ai | sByOr der | dName" >
<param name="inpOrderld" type="int" />
<param name="i npNane" type="char" />
<ret urn-conponent - t ype>
com oracl e. cep. exanpl e. j dbc_cartri dge. Ret Event
</ return-conponent -t ype>
<sql ><! [CDATA]
SELECT
Enpl oyee. enpNane as enpl oyeeNane,
Enpl oyee. enpEmai | as enpl oyeeEmai |,
OrderDetails.description as description
FROM
Pl acedOrders, OrderDetails , Enployee
VWHERE
Pl acedOr ders. enpl d = Enpl oyee. enpld AND
PllacedOrders. orderld = OrderDetails.orderld AND
Enpl oyee. enpNane = :inpName AND
PlacedOrders.orderld = :inpOrderld
></ sql >
</function>
</jc:jdbc-ctx>

<processor >
<name>Pr oc</ name>
<rul es>
<query id="qgl"><![CDATAl

3-4 Developing Applications for Oracle CQL Data Cartridges

Using the Oracle Event Processing JDBC Data Cartridge

RSt r ean(

sel ect
current Order. orderld,
details. orderlnfo.enpl oyeeNane,
details. orderlnfo.enpl oyeeemai |,
details.orderlnfo.description

from
OderArrival [now as currentOrder,
TABLE(get Det ai | sByCOr der | dNanme@adbcCart ri dgeOne(

current Order.orderld, currentO der.enpNane
) as orderlnfo

) as details

></ query>
</rul es>
</ processor>

For more information, see Developing Applications for Event Processing with Oracle
Stream Explorer.

3.2 Using the Oracle Event Processing JDBC Data Cartridge

In general, you use the Oracle Event Processing JDBC data cartridge as follows:

1. Declare and define an Oracle Event Processing JDBC cartridge application-scoped
context.

For more information, see Oracle Event Processing JDBC Data Cartridge
Application Context.

2. Define one or more SQL statements in the j ¢: j dbc- ct x element in the
component configuration file.

For more information, see Defining SQL Statements: function Element.

3. If you specify the f unct i on element r et ur n- conrponent - t ype child element as
a Java bean, implement the bean and ensure that the class is on your Oracle Event
Processing application classpath.

The following example shows a typical implementation.

Note:

The Ret Event class is an example of how to return a complex type as a table
function.

package com oracl e. cep. exanpl e. jdbc_cartridge;

public class RetEvent

{
public String enpl oyeeNane;
public String enpl oyeeEmail ;
public String description;

/* Default constructor is mandatory */
public RetEvent1() {}

/* May contain getters and setters for the fields */

public String get Enpl oyeeNane() {
return this.enpl oyeeNane;

Oracle JDBC Data Cartridge 3-5

Using the Oracle Event Processing JDBC Data Cartridge

}

public void setEnpl oyeeName(String enpl oyeeNane) {
this. enpl oyeeNane = enpl oyeeNane;
}

/* May contain other hel per methods */

public int getEnployeeNameLength() {
return enpl oyeeNane. | ength();

}
}

You must declare the fields as public.

The return-component-type class for a JDBC cartridge context function must have a
one-to-one mapping for fields in the SELECT list of the SQL query that defines the
function. In other words, every field in the SELECT list of the SQL query defining a
function must have a corresponding field (matching name) in the Java class that is
declared to be the return-component-type for that function; otherwise Oracle Event
Processing throws an error.

For more information, see:
¢ return-component-type
o Developing Applications for Event Processing with Oracle Stream Explorer.

4. Define one or more Oracle CQL queries that call the SQL statements defined in the
j c:jdbc-ct x element using the Oracle CQL TABLE clause and access the
returned results by SQL SELECT list alias names.

For more information, see Defining Oracle CQL Queries With the Oracle Event
Processing JDBC Data Cartridge.

3.2.1 Defining SQL Statements: function Element

Within the j c: j dbc- cxt element in the component configuration file, you can define
a JDBC cartridge context function using the f unct i on child element.

<jc:jdbc-ctx>
<name>JdbcCartri dgeOne</ name>
<dat a- sour ce>St ockDS</ dat a- sour ce>
<function name="get Det ai | sByOr der | dName" >
<param name="i npOrderd" type="int" />
<param name="i npName" type="char" />
<return-conponent -t ype>
com oracl e. cep. exanpl e. j dbc_cartridge. Ret Event
</return-conponent - t ype>
<sql ><! [CDATA]
SELECT
Enpl oyee. enpNane as enpl oyeeNane,
Enpl oyee. enpEmai | as enpl oyeeEmi | ,
OrderDetails.description as description
FROM
Pl acedOrders, OrderDetails , Enployee
WHERE
Pl acedOr ders. enpl d = Enpl oyee. enpl d AND
PlacedOrders.orderld = OrderDetails.orderld AND
Enpl oyee. enpNanme = :i npName AND
PlacedOrders.orderld = :inpOrderld
></ sql >

3-6 Developing Applications for Oracle CQL Data Cartridges

Using the Oracle Event Processing JDBC Data Cartridge

</function>
</jc:jdbc-ctx>

You may define one or more f unct i on elements within a given j c: j dbc- cxt
element.

This section describes:
e function Element Attributes
¢ function Element Child Elements

¢ function Element Usage.

3.2.1.1 function Element Attributes
Each f unct i on element supports the attributes that Table 3-1 lists.

Table 3-1 function Element Attributes

Attribute Description

name The name of the JDBC cartridge context function.

The combination of name and signature must be unique within a given Oracle
Event Processing JDBC data cartridge application context. For more information,
see Overloading JDBC Cartridge Context Functions.

3.2.1.2 function Element Child Elements

Each f unct i on element supports the following child elements:
® param

¢ return-component-type

e sql.

3.2.1.2.1 param

The par amchild element specifies an optional input parameter.

The SQL statement may take zero or more parameters. Each parameter is defined in a
par amelement.

The par amchild element supports the attributes that Table 3-2 lists.

Table 3-2 param Element Attributes

Attribute Description

nane The name of the input parameter.

A valid parameter name is formed by a combination of A-Z,a-z,0-9 and _
(underscore).

type The data type of the parameter.

Datatype Support — You may specify only Oracle CQL native
com bea. w evs. ede. api . Type data types for the input parameter par amelement
t ype attribute.

Oracle JDBC Data Cartridge 3-7

Using the Oracle Event Processing JDBC Data Cartridge

Note:

Datatype names are case sensitive. Use the case that the
com bea. w evs. ede. api . Type class specifies.

For more information, see Table 3-3.

3.2.1.2.2 return-component-type

The r et ur n- comrponent - t ype child element specifies the return type of the
function. This child element is mandatory.

This represents the component type of the collection type returned by the JDBC data
cartridge function. Because the function is always called from within an Oracle CQL
TABLE clause, it always returns a collection type.

For more information, see Using the TABLE Clause.

Datatype Support — You may specify any one of the following types as the value of
the r et ur n- conponent - t ype element:

* Oracle CQL native com bea. W evs. ede. api . Type datatype.
® Oracle CQL extensible Java cartridge type, such as a Java bean.
For more information, see:

e Table 3-3

® Oracle Java Data Cartridge.

3.2.1.2.3 sql

The sql child element specifies a SQL statement. This child element is mandatory.

Each f unct i on element may contain one and only one, single-line, SQL statement.
You define the SQL statement itself within a <! [CDATA[> block.

Within the SQL statement, you specify input parameters by par amelement nane
attribute using a colon (:) prefix.

Note:

You must provide alias names for every SELECT list column in the JDBC
cartridge context function.

Datatype Support — Table 3-3 lists the SQL types you may use in your Oracle Event
Processing JDBC data cartridge context functions and their corresponding Oracle
Event Processing Java type and com bea. W evs. ede. api . Type type.

Table 3-3 SQL Column Types and Oracle Event Processing Type Equivalents

SQL Type Oracle Event com.bea.wlevs.ede.api.Typ
Processing Java Type e

NUMBER java. mat h. Bi gDeci m bigdecimal
al

NUVBER | ong bi gi nt

3-8 Developing Applications for Oracle CQL Data Cartridges

Using the Oracle Event Processing JDBC Data Cartridge

SQL Type Oracle Event com.bea.wlevs.ede.api.Typ
Processing Java Type e
RAW byt e[] byt e
CHAR, VARCHAR java.lang. String char
NUMBER doubl e doubl e
FLQOAT, NUVBER fl oat fl oat
| NTEGER, NUMBER i nt i nt
TI MESTAMP java.sql.Timestamp tinestanp
Note:

In cases where the size of the Java type exceeds that of the SQL type, your
Oracle Event Processing application must restrict values to the maximum size
of the SQL type. The choice of type to use on the CQL side should be driven
by the range of values in the database column. For example, if the SQL column
is a number that contains values in the range of integer, use the "int" type on
CQL side. If you choose an incorrect type and encounter out-of-range values,
Oracle Event Processing throws a numeric overflow error.

Note:

The Oracle Event Processing JDBC data cartridge does not support Oracle
Spatial data types.

For more information, see function Element Usage.

3.2.1.3 function Element Usage

This section provides examples of different JDBC cartridge context functions you can
define using the Oracle Event Processing JDBC data cartridge, including;:

¢ Multiple Parameter JDBC Cartridge Context Functions
¢ Invoking PL/SQL Functions

* Complex JDBC Cartridge Context Functions

* Overloading JDBC Cartridge Context Functions.

3.2.1.3.1 Multiple Parameter JDBC Cartridge Context Functions

Using the Oracle Event Processing JDBC data cartridge, you can define JDBC cartridge
context functions that take multiple input parameters.

The following example shows an Oracle Event Processing JDBC data cartridge
application context that defines an JDBC cartridge context function that takes two
input parameters.

<function name="get Det ai | sByOrder | dNane" >
<param name="i npOrder|d" type="int" />
<param name="i npNane" type="char" />

Oracle JDBC Data Cartridge 3-9

Using the Oracle Event Processing JDBC Data Cartridge

<ret urn-conponent -t ype>
com oracl e. cep. exanpl e. j dbc_cartri dge. Ret Event
</ return-conponent - t ype>

<sql ><! [CDATA]
SELECT
Enpl oyee. enpNane as enpl oyeeNane,
Enpl oyee. enpEnai | as enpl oyeeEmai |,
OrderDetails.description as description
FROM
Pl acedOrders, OrderDetails , Enployee
WHERE
Pl acedOrders. enpl d = Enpl oyee. enpl d AND
PlacedOrders. orderld = OrderDetails.orderld AND
Enpl oyee. empNane = :inpName AND
Pl acedOrders.orderld = :inpOderld
></sql >

</function>

3.2.1.3.2 Invoking PL/SQL Functions

Using the Oracle Event Processing JDBC data cartridge, you can define JDBC cartridge
context functions that invoke PL/SQL functions that the database defines.

The following example shows an Oracle Event Processing JDBC data cartridge
application context that defines a JDBC cartridge context function that invokes
PL/SQL function get Or der Ant .

<function name="get Or der Amount ">
<param name="inpld" type="int" />
<ret urn-conponent - t ype>
com oracl e. cep. exanpl e. j dbc_cartri dge. Ret Event
</return-conponent -type>

<sql ><! [CDATA]
SELECT get OrderAnt (:inpld) as orderAnt
FROM dual

></sql >

</function>

3.2.1.3.3 Complex JDBC Cartridge Context Functions

Using the Oracle Event Processing JDBC data cartridge, you can define arbitrarily
complex JDBC cartridge context functions including subqueries, aggregation, GROUP
BY, ORDER BY, and HAVI NG

The following example shows an Oracle Event Processing JDBC data cartridge
application context that defines a complex JDBC cartridge context function.

<function name="get H ghVal ueOr der sPer Enp" >
<param nanme="limt" type="int"/>
<par am nane="i npNane" type="char"/>
<ret urn-conponent - t ype>
com oracl e. cep. exanpl e. j dbc_cartri dge. Ret Event
</ return-conponent - t ype>
<sql ><! [CDATA
sel ect description as description, sunm(ant) as totalant, count(*) as nunfimes
from OrderDetails
where orderid in (
select orderid from PlacedOrders where enpid in (
sel ect enpid from Enpl oyee where enpNane = :inpNane
)

)
group by description
having sum(ant) > :limt
></sql >

3-10 Developing Applications for Oracle CQL Data Cartridges

Using the Oracle Event Processing JDBC Data Cartridge

</function>

3.2.1.3.4 Overloading JDBC Cartridge Context Functions

Using the Oracle Event Processing JDBC data cartridge, you can define JDBC cartridge
context functions with the same name in the same application context provided that
each function has a unique signature.

The following example shows an Oracle Event Processing JDBC data cartridge
application context that defines two JDBC cartridge context functions named
get Det ai | s. Each function is distinguished by a unique signature.

<jc:jdbec-ctx>
<name>JdbcCartri dgeOne</ name>
<dat a- sour ce>St ockDS</ dat a- sour ce>
<function name="getDetails">
<param name="i npNane" type="char" />
<return-conponent -t ype>
com oracl e. cep. exanpl e.j dbc_cartri dge. Ret Event
</return-conponent -t ype>
<sql ><! [CDATA]
SELECT
Enpl oyee. enpNane as enpl oyeeNane,
Enpl oyee. enpEnai | as enpl oyeeEmi |,
OrderDetails. description as description
FROM
Pl acedOrders, OrderDetails , Enployee
WHERE
Pl acedOr ders. enpl d = Enpl oyee. enpl d AND
PlacedOrders.orderld = OrderDetails.orderld AND
Enpl oyee. empNane=: i npNane
ORDER BY
description desc
></sql >
</function>
<function name="get Details">
<param name="inpOrderld" type="int" />
<sql ><! [CDATA[return-conponent-type
SELECT
Enpl oyee. enpNane as enpl oyeeNane,
Enpl oyee. enpEnai | as enpl oyeeEmai |,
OrderDetails. description as description
FROM
Pl acedOrders, OrderDetails , Enployee
WHERE
Pl acedCr ders. enpl d= Enpl oyee. enpl d AND
PlacedOrders. orderld = OrderDetails.orderld AND
Pl acedOrders.orderld = :inpOderld
></sql >
</function>
</jc:jdbc-ctx>

3.2.2 Defining Oracle CQL Queries With the Oracle Event Processing JDBC Data
Cartridge

This section describes how to define Oracle CQL queries that invoke SQL statements
using the Oracle Event Processing JDBC data cartridge, including;:

¢ Using SELECT List Aliases
e Using the TABLE Clause

¢ Using a Native CQL Type as a return-component-type.

Oracle JDBC Data Cartridge 3-11

Using the Oracle Event Processing JDBC Data Cartridge

For more information, see Developing Applications for Event Processing with Oracle
Stream Explorer.

3.2.2.1 Using SELECT List Aliases

Consider the Oracle Event Processing JDBC data cartridge context function.

<jc:jdbc-ctx>
<name>JdbcCartri dgeOne</ name>
<dat a- sour ce>St ockDS</ dat a- sour ce>
<function name="get Det ai | sByOr der | dName" >
<param name="inpOrderld" type="int" />
<param nane="i npNane" type="char" />
<return-conponent -t ype>
com oracl e. cep. exanpl e.j dbc_cartridge. Ret Event
</ return-conponent - t ype>
<sql ><! [CDATA[
SELECT
Enpl oyee. enpNane as enpl oyeeNane,
Enpl oyee. enpEmai | as enpl oyeeEmi | ,
OrderDetails.description as description
FROM
Pl acedOrders, OrderDetails , Enployee
VHERE
Pl acedOrders. enpl d = Enpl oyee. enpl d AND
PlacedOrders.orderld = OrderDetails.orderld AND
Enpl oyee. enpNanme = :i npName AND
PlacedOrders.orderld = :inpOrderld
></sql >
</function>
</jc:jdbc-ctx>

You must assign an alias to each column in the SELECT list. When you invoke the
JDBC cartridge context function in an Oracle CQL query, you access the columns in
the result set by their SQL SELECT list aliases.

For more information, see Using the TABLE Clause.

3.2.2.2 Using the TABLE Clause

Consider the Oracle Event Processing JDBC data cartridge SQL statement. The TABLE
clause is described in Oracle CQL Language Reference for Oracle Stream Explorer.

<jc:jdbec-ctx>
<nane>JdbcCartri dgeOne</ nane>
<dat a- sour ce>St ockDS</ dat a- sour ce>
<function nane="get Detai | sByOr der | dName" >
<param name="inpOrder|d" type="int" />
<param name="i npNane" type="char" />
<ret urn-conponent - t ype>
com oracl e. cep. exanpl e. j dbc_cartri dge. Ret Event
</ return-conponent - t ype>
<sql ><! [CDATA
SELECT
Enpl oyee. empNane as enpl oyeeNang,
Enpl oyee. enpEnai | as enpl oyeeEmi |,
OrderDetail s. description as description
FROM
Pl acedOrders, OrderDetails , Enployee
VWHERE
Pl acedOr ders. enpl d = Enpl oyee. enpld AND
PllacedOrders. orderld = OrderDetails.orderld AND
Enpl oyee. enpNane = :inpName AND
Pl acedOrders.orderld = :inpOrderld
></ sql >
</function>

3-12 Developing Applications for Oracle CQL Data Cartridges

Using the Oracle Event Processing JDBC Data Cartridge

</jc:jdbc-ctx>

The Oracle CQL query in the below example invokes the JDBC cartridge context
function defined in the above example.

<processor >
<name>Pr oc</ nanme>
<rul es>
<query id="ql"><![CDATAl
RSt r ean(
sel ect
current Order. orderld,
details. orderlnfo.enpl oyeeNane,
details. orderlnfo.enpl oyeeEmai |,
details.orderlnfo.description
details. orderlnfo.get Enpl oyeeNaneLengt h()
from
OderArrival [now as currentOrder,
TABLE(get Det ai | sByOr der | dNanme@dbcCart ri dgeOne(
current Order.orderld, currentOder.enpNane
) as orderlnfo
) as details

)
></ query>
</rul es>
</ processor>

You must wrap the Oracle Event Processing JDBC data cartridge context function
invocation in an Oracle CQL query TABLE clause.

You access the result set using;:

TABLE_CLAUSE_ALI AS. JDBC_CARTRI DGE_FUNCTI ON_ALI AS. SQL_SELECT LI ST_ALI AS
or
TABLE_CLAUSE_ALI AS. JDBC_CARTRI DGE_FUNCTI ON_ALI AS. METHOD_NANE

Where:

e TABLE CLAUSE ALl AS: the outer AS alias of the TABLE clause.

e JDBC_CARTRI DGE_FUNCTI ON_ALI AS: the inner AS alias of the JDBC cartridge
context function.

e SQL_SELECT_LI ST_ALI AS: the JDBC cartridge context function SELECT list alias.

e METHOD_NAME: the name of the method that the r et ur n- conponent -t ype class
provides.

You access the JDBC cartridge context function result set in the Oracle CQL query
using:

details. order | nfo. enpl oyeeNane

details. orderlnfo.enpl oyeeEmai |

details.orderlnfo.description
details. orderlnfo. get Enpl oyeeNaneLengt h()

The component type of the collection type returned by the JDBC data cartridge
function is defined by the f unct i on element r et ur n- conponent -t ype child
element. Because the function is always called from within an Oracle CQL TABLE
clause, it always returns a collection type.

You can access both fields and methods of the r et ur n- conponent -t ype in an
Oracle CQL query.

Oracle JDBC Data Cartridge 3-13

Using the Oracle Event Processing JDBC Data Cartridge

package com oracl e. cep. exanpl e. jdbc_cartridge;

public class RetEvent

{
String enpl oyeeNane;
String enpl oyeeEmail ;
String description;

/* Default constructor is mandatory */
public RetEventl() {}

/* May contain getters and setters for the fields */

public String get Enpl oyeeNanme() {
return this.enpl oyeeNane;

}

public void setEnpl oyeeNane(String enpl oyeeNanme) {
this. enpl oyeeNane = enpl oyeeNane;
}

/* May contain other hel per methods */

public int getEnpl oyeeNameLength() {
return enpl oyeeNane. | ength();

}
}

This class provides helper methods, like get Enpl oyeeNanmeLengt h, that you can
invoke within the Oracle CQL query.

For more information, see Oracle CQL Language Reference for Oracle Stream Explorer and
return-component-type.

3.2.2.3 Using a Native CQL Type as a return-component-type

Following is a JDBC cartridge context that defines a function that has a native CQL
type bi gi nt as return-component-type.

<jc:jdbec-ctx>
<name>JdbcCartri dgeOne</ nane>
<dat a- sour ce>nyJdbcDat aSour ce</ dat a- sour ce>
<function name="get Order Ant">
<param nane="inpld" type="int" />
<r et urn-conponent - t ype>bi gi nt </ r et ur n-conponent -t ype> <!-- native CQL as
return conponent type -->
<sql ><! [CDATA]
SELECT
getOrderAnt (:inpld) as orderAnt
FROM (select :inpld as iid from
dual) >
</sql >
</function>
</jc:jdbc-ctx>

The following example shows how the get Or der Ant function in the above example
can be used in a CQL query.

<query id="qgl"><![CDATAl
RSt r ean(
sel ect
current Order.orderld,
details.orderlnfo as orderAnt

3-14 Developing Applications for Oracle CQL Data Cartridges

Using the Oracle Event Processing JDBC Data Cartridge

from
OderArrival [now as currentOrder,
TABLE(get Or der Ant @dbcCartridgeTwo(current Order. orderld) as
orderInfo of bigint) as details

)

></ query>

Note that the alias or der | nf o itself is of type bi gi nt and can be accessed as
details.orderlnfo as orderAnt in the select list of the CQL query.

The "of bigint" clause used inside the TABLE construct is optional. If specified, the
type mentioned should match the return-component-type.

Oracle JDBC Data Cartridge 3-15

Using the Oracle Event Processing JDBC Data Cartridge

3-16 Developing Applications for Oracle CQL Data Cartridges

A

Oracle Spatial Data Cartridge

This chapter provides a reference and guide to using the Oracle Spatial cartridge,
which extends Oracle Continuous Query Language (Oracle CQL) to provide advanced
spatial features for location-enabled applications.

You can use Oracle Spatial types, methods, fields, and constructors in Oracle CQL
queries and views as you would Oracle CQL native types when you create Oracle
Event Processing applications.

This chapter includes the following sections:
¢ Understanding Oracle Spatial

¢ Using Oracle Spatial.

4.1 Understanding Oracle Spatial

Oracle Spatial is an Oracle Database option that provides advanced spatial features to
support high-end geographic information systems (GIS) and location-enabled business
intelligence solutions (LBS).

Oracle Spatial is an optional data cartridge that enables you to write Oracle CQL
queries and views that seamlessly interact with Oracle Spatial classes in your Oracle
Event Processing application.

With Oracle Spatial, you can configure Oracle CQL queries that perform the most
important geographic domain operations such as storing spatial data, performing
proximity and overlap comparisons on spatial data, and integrating spatial data with
the Oracle Event Processing server by providing the ability to index on spatial data.

To use Oracle Spatial, you require a working knowledge of the Oracle Spatial API. For
more information about Oracle Spatial, see:

e Product overview: htt p: / / www. or acl e. cont i n/ pr oduct s/ dat abase/
options/spatial/index. htm

* Oracle Spatial documentation: ht t p: / / www. or acl e. com pl s/ db112/
portal . portal db?
sel ect ed=7&f rane=#or acl e_spatial _and | ocati on_i nformati on

® Oracle Spatial Java API reference: ht t p: / / downl oad. or acl e. conf docs/ cd/
E11882 01/ appdev. 112/e11829/toc. ht m

This section describes:
® Data Cartridge Name
® Scope

¢ Datatype Mapping

Oracle Spatial Data Cartridge 4-1

http://www.oracle.com/in/products/database/options/spatial/index.html
http://www.oracle.com/in/products/database/options/spatial/index.html
http://www.oracle.com/pls/db112/portal.portal_db?selected=7&frame=#oracle_spatial_and_location_information
http://www.oracle.com/pls/db112/portal.portal_db?selected=7&frame=#oracle_spatial_and_location_information
http://www.oracle.com/pls/db112/portal.portal_db?selected=7&frame=#oracle_spatial_and_location_information
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11829/toc.htm
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11829/toc.htm

Understanding Oracle Spatial

® Oracle Spatial Application Context.

4.1.1 Data Cartridge Name

Oracle Spatial uses the cartridge ID com or acl e. cep. cartrdi ges. spati al and
registers the server-scoped reserved link name spati al .

Use the spati al link name to associate an Oracle Spatial method call with the Oracle
Spatial application context.

For more information, see:
® Oracle Spatial Application Context

¢ Geometry APL

4.1.2 Scope

Oracle Spatial is based on the Oracle Spatial Java API. Oracle Spatial exposes Oracle
Spatial functionality in the com or acl e. cep. cartri dge. spati al . Geonetry
class. Oracle Spatial functionality that is not in the Oracle Spatial Java API is not
accessible from Oracle Spatial.

Using Oracle Spatial, your Oracle CQL queries can access the Oracle Spatial
functionality that Table 4-1 describes.

4-2 Developing Applications for Oracle CQL Data Cartridges

Understanding Oracle Spatial

Table 4-1 Oracle Spatial Scope

Oracle Spatial Feature Scope

Geometry Types The following geometry types from the Oracle Spatial Java APL

e 2D points.

* 2D circles, which support the Cartesian coordinate system
and the geodetic (geographical) coordinates.

e 2D simple polygons.

e 2D rectangles.

¢ Compound 2D geometries, which includes compound line
strings and compound polygons.

¢ 3D geometries, excluding 3D circles and compound 3D
geometries.
You can create a compound 3D geometry with the
Geonet ry3D. cr eat eGeonet r y generic method. Be aware
that spatial operations on the resulting compound 3D object
raise an exception.

¢ Solid (filled) 3D geometries

The following geometry operations:

¢ Creating geometry types

* Accessing geometry type public member functions and
public fields

¢ Inside and contain operations on all 2D geometry objects. A
2D geometry object is inside when all of its points are within
an outer geometry without touching any of the outer
geometry boundaries.

® Spatial operations between any two types of 2D geometries.
You can execute spatial operations on any two arbitrary 2D
geometries such as check whether a rectangle is inside a
polygon. Note that any geometry that consists of arcs such as
a compound polygon must use a non-zero tolerance to
densify its arcs first.

* Spatial operations on the following 3D geometries: 3D points,
3D lines, 3D rectangles, and 3D polygons.

For more information, see:

¢ Geometry Types

¢ Element Info Array

Coordinate Systems * Cartesian and WGS84 geodetic coordinates (default)
* Specifying the default coordinate system through SRID
¢ Using other geodetic coordinates

For more information, see Ordinates and Coordinate Systems
and the SDO_SRID.

Geometric Index e R-Tree
For more information, see Geometric Index.

Geometric Relation e ANYINTERACT
Operators ¢ CONTAIN

e INSIDE

e INSIDE3D

e WITHINDISTANCE
For more information, see Geometric Relation Operators.

Oracle Spatial Data Cartridge 4-3

Understanding Oracle Spatial

Oracle Spatial Feature Scope

Geometric Filter e FILTER
Operators e NN

For more information, see Geometric Filter Operators.

Geometry API For a complete list of the methods that
com oracl e. cep. cartridge. spatial.CGeonetry
provides, see Geometry APL

Geometric Aggregations ¢ MBR(minimum bounding rectangle)
For more information, see Geometric Aggregations.

For more information on how to access these Oracle Spatial features using Oracle
Spatial, see Using Oracle Spatial.

4.1.2.1 Geometry Types

The Oracle Spatial data model consists of geometries. A geometry is an ordered
sequence of vertices. The semantics of the geometry are determined by its type. Oracle
Spatial enables you to access the following Oracle Spatial types directly in Oracle CQL
queries and views:

* SDO_GTYPES: Oracle Spatial supports the following geometry types:
— 2D points
— 2D simple polygons
— 2D rectangles
— 3D points
— 3D lines
— 3D rectangles
- 3D polygons

Table 4-2 describes the geometry types from the
comoracle.cep.cartridge. spatial.Geonetry class that you can use.

Table 4-2 Oracle Spatial Geometry Types

Geometry Type Description
GTYPE_PO NT Point geometry type that contains one point.
GTYPE_CURVE Curve geometry type that contains one line string that can contain

straight or circular arc segments, or both.

LI NE and CURVE are synonymous in this context.

GTYPE_POLYGON Polygon geometry type that contains one polygon.

GTYPE_SURFACE Polygon or surface geometry type that contains one polygon with
or without holes or one surface consisting of one or more polygons.
In a three-dimensional polygon, all points must be on the same
plane.

4-4 Developing Applications for Oracle CQL Data Cartridges

Understanding Oracle Spatial

Geometry Type Description

GTYPE_COLLECTI O Collection geometry type that is a heterogeneous collection of
N elements.

COLLECTI ONis a superset that includes all other types.

GTYPE_MULTI PO N Multipoint geometry type that has one or more points.
T MULTI PO NT is a superset of POl NT.

GTYPE_MULTI CURV Multiline or multicurve geometry type that has one or more line
E strings.

MULTI LI NE and MULTI CURVE are synonymous in this context, and
each is a superset of both LI NE and CURVE.

GTYPE_MULTI POLY Multipolygon or multisuraface geometry type that can have

GON multiple, disjoint polygons (more than one exterior boundary) or

GTYPE_MULTI SURF surfaces.

ACE MULTI POLYGON s a superset of POLYGON, and MULTI SURFACE is a
superset of SURFACE.

GIYPE_SOLI D Solid geometry that consists of multiple surfaces and is completely

enclosed in a three-dimensional space. Can be a cuboid or a
frustum.

GI'YPE_MULTI SOLI Multisolid geometry that consists of multiple, disjoint solids (more
D than one exterior boundary).

MULTI SOLI Dis a superset of SOLI D.

e SDO _ELEMENT_I NFQ You can create the Element Info array using:

— comoracle.cep.cartridge.spatial.CGeonetry. createEl em nfo
static method

— einfogenerat or function
For more information, see Element Info Array.

* ORDI NATES: You can create the ordinates using the Oracle Spatial
or dsgener at or function.

For more information, see Ordinates and Coordinate Systems and the SDO_SRID.
For more information, see:
* How to Access Oracle Spatial Java API Geometry Types
¢ How to Create a Geometry

¢ How to Access Geometry Type Public Methods and Fields .

4.1.2.2 Element Info Array

The Element Info attribute is defined using a varying length array of numbers. This
attribute specifies how to interpret the ordinates stored in the Ordinates attribute.

Oracle Spatial provides the following helper function for generating Element Info
attribute values:

Oracle Spatial Data Cartridge 4-5

Understanding Oracle Spatial

comoracl e.cep.cartridge. spatial.Geonetry. createEl em nfo(int SDO STARTI NG OFFSET,
int SDO ETYPE , int SDO | NTERPRETATI ON)

You can also use the ei nf ogener at or function.

For more information, see:

¢ “createElemInfo”

e “einfogenerator”

® Oracle Spatial Developer’s Guide.

4.1.2.3 Ordinates and Coordinate Systems and the SDO_SRID

Table 4-3 lists the coordinate systems that Oracle Spatial supports by default and the
SDO_SRI Dvalue that identifies each coordinate system.

Table 4-3 Oracle Spatial Coordinate Systems

Coordinate SDO_SRI Description
System D
Cartesian 0 Cartesian coordinates are coordinates that measure the

position of a point from a defined origin along axes that are
perpendicular in the represented space.

Geodetic 8307 Geodetic coordinates (sometimes called geographic

(WGS84) coordinates) are angular coordinates (longitude and
latitude), closely related to spherical polar coordinates, and
are defined relative to a particular Earth geodetic datum.

This is the default coordinate system in Oracle Spatial.

You can specify the SDO_SRI Dvalue as an argument to each Oracle Spatial method
and constructor you call or you can configure the SDO_SRI Din the Oracle Spatial
application context once and use

com oracl e. cep. cartridge. spati al . Geonet r y methods without having to set
the SDO_SRI Das an argument each time. Using the application context, you can also
specify any coordinate system that Oracle Spatial supports.

4-6 Developing Applications for Oracle CQL Data Cartridges

Understanding Oracle Spatial

Note:

If youuseacom oracl e. cep. cartridge. spati al . Geonet ry method

that does not take an SDO_SRI Dvalue, then you must use the Oracle Spatial

application context. For example, the following method call causes a runtime
exception:

comoracl e.cep.cartridge. spatial.Geonetry.createPoint(lng, |at)

Instead, you must use the spat i al link name to associate the method call
with the Oracle Spatial application context:

comoracl e.cep.cartridge. spatial.Geonetry. createPoi nt @patial (Ing, |at)

If you use a Geonet r y method that takes an SDO_SRI Dvalue, then the use of
the spati al link name is optional. For example, both the following method
calls are valid:

comoracl e.cep.cartridge. spatial.Geonetry. createPoint (8307, Ing, lat)
comoracl e.cep.cartridge. spatial . Geonetry. creat ePoi nt @patial (Ing, |at)

For more information, see Oracle Spatial Application Context.

Ordinates define the array of coordinates for a geometry using a double array. Oracle
Spatial provides the or dsgener at or helper function for generating the array of
coordinates. For syntax, see ordsgenerator.

For more information, see:
e Oracle Spatial Developer’s Guide
e How to Use the Default Geodetic Coordinates

e How to Use Other Geodetic Coordinates .

4.1.2.4 Geometric Index

Oracle Spatial uses a spatial index to implement the primary filter. The purpose of the
spatial index is to quickly create a subset of the data and reduce the processing burden
on the secondary filter.

A spatial index, like any other index, provides a mechanism to limit searches, but in
this case the mechanism is based on spatial criteria such as intersection and
containment.

Oracle Spatial uses R-Tree indexing for the default indexing mechanism. A spatial R-
tree index can index spatial data of up to four dimensions. An R-tree index
approximates each geometry by a single rectangle that minimally encloses the
geometry (called the Minimum Bounding Rectangle, or MBR)

For more information, see: Geometric Filter Operators.

4.1.2.5 Geometric Relation Operators

Oracle Spatial supports the following Oracle Spatial geometric relation operators:
e ANYINTERACT

¢ CONTAIN

Oracle Spatial Data Cartridge 4-7

Understanding Oracle Spatial

e INSIDE
e INSIDE3D
o WITHINDISTANCE

You can use any of these operators in either the Oracle CQL query projection clause or
where clause.

When you use a geometric relation operator in the where clause of an Oracle CQL
query, Oracle Spatial enables Rtree indexing on the relation specified in the where
clause.

Oracle Spatial supports only geometric relations between point and other geometry
types.

For more information, see How to Use Geometry Relation Operators .

4.1.2.6 Geometric Filter Operators

Oracle Spatial supports the following Oracle Spatial geometric filter operators:
e FILTER

e NN

These filter operators perform primary filtering and so they may only appear in an
Oracle CQL query where clause.

These filter operators use the spatial index to identify the set of spatial objects that are
likely to interact spatially with the given object.

For more information, see:
e Geometric Index

* How to Use Geometry Filter Operators .

4.1.2.7 Geometric Aggregations

The geometry aggregation operator MBRmay only appear in an Oracle CQL query
projection clause.

For more information, see, How to Use Geometry Aggregate Operators .

4.1.2.8 Geometry API

Oracle Spatial is based on the Oracle Spatial Java API. Oracle Spatial exposes Oracle
Spatial functionality in the com or acl e. cep. cartri dge. spati al . Geonetry
class. This Geonet r y class also extends

oracl e. spati al . geonetry. J3D_Geonet ry. Oracle Spatial supports 2D and 3D
geometries and automatically zero-pads the Z coordinates for J3D_Geonetry
methods.

Oracle Spatial functionality inaccessible from the Geonet r y class (or not conforming
to the scope and geometry types that Oracle Spatial supports) is inaccessible from
Oracle Spatial.

This section describes:
® com.oracle.cep.cartridge.spatial. Geometry Methods

e oracle.spatial.geometry.JGeometry Methods

4-8 Developing Applications for Oracle CQL Data Cartridges

Understanding Oracle Spatial

For more information, see:
® Scope

® ordsgenerator

Note:

To simplify Oracle Spatial type names, you can use aliases as described in

Oracle CQL Language Reference for Oracle Stream Explorer.

4.1.2.8.1 com.oracle.cep.cartridge.spatial. Geometry Methods

Table 4-4 lists the public methods that the Geonet ry class provides.

Table 4-4 Oracle Spatial Geometry Methods

Linear line and multi line strings

Linear polygons
Minimum Bounding Rectangle (MBR)

Points

Rectangles

Type and type conversion

Type Method
Buffers buffer
bufferPolygon
Circles createCircle
Conversions convertTo2D
convertTo3D
Distance distance
Element information createElemInfo
Geometries createGeometry

createLinearLineString
createLinearMultiLineString

createLinearPolygon

get2dMbr

createMultiPoint
createPoint

createRectangle

createGeometry
to_J3D_Geometry
to_JGeometry

Note:

Ceorret ry class methods are case sensitive and you must use them in the case

shown.

4.1.2.8.2 oracle.spatial.geometry.JGeometry Methods

The following JGeonet r y public methods are applicable to Oracle Spatial:

Oracle Spatial Data Cartridge 4-9

Understanding Oracle Spatial

e doubl e area(doubl e tol erance):returns the total planar surface area of a
2D geometry.

e doubl e | engt h(doubl e tol erance): returns the perimeter of a 2D geometry.
All edge lengths are added.

e doubl e[] get MBR() : returns the Minimum Bounding Rectangle (MBR) of this
geometry. It returns a double array containing the mi nX, mi nY, maxX, and maxY
value of the MBR for 2D.

For more information, see:

e http://downl oad. oracl e. conf docs/ cd/ B28359 01/ appdev. 111/
b28401/ or acl e/ spati al / geonetry/ JGeonetry. htni

e http://downl oad. oracl e. conf docs/ cd/ B28359 01/ appdev. 111/
b28401/ or acl e/ spati al / geonetry/ J3D CGeonetry. htm

4.1.3 Datatype Mapping

The Oracle Spatial cartridge supports one data type:
com oracl e. cep.cartridge. spatial . Geonetry.

The Geometry class extends or acl e. spati al . geonetry. J3D_Geonetry and
supports all the public methods, fields, and constructors that J3D_Geonet ry and its
parent class or acl e. spati al . geonmet ry. JGeonet ry provide.

For a complete list of the methods that
comoracl e. cep. cartridge. spati al . Geonet ry provides, see Geometry APIL

4.1.4 Oracle Spatial Application Context

You can define an application context for an instance of Oracle Spatial and propagate
this application context at runtime. This allows you to associate specific Oracle Spatial
application defaults (such as an SDO_SRI D) with a particular Oracle Spatial instance.

Before you can define an Oracle Spatial application context, edit your Oracle Event
Processing application EPN assembly file to add the required namespace and schema
location entries:

<?xnml version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. spri ngframeworKk. or g/ schema/ beans"”
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: osgi ="http://ww. springfranmework. org/ schema/ osgi "
xm ns: W evs="http://ww. bea. com ns/w evs/spring"
xm ns: spatial ="http://wwv. oracl e. com ns/ ocep/ spatial "
xsi : schemaLocat i on="
http://ww. springframework. or g/ schema/ beans
http://ww. springframework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ osgi
http://ww:. springfranmework. or g/ schema/ osgi / spring- osgi . xsd
http://ww. bea. com ns/w evs/ spring
http://ww:. bea. com ns/w evs/spring/spring-wevs-vil 1 1 6.xsd"
http://ww:. oracl e. con ns/ ocep/ spati al
http://ww:. oracl e. comi ns/ ocep/ spati al / ocep-spati al . xsd">

The following example shows how to create a spatial context named Spat i al GRS80
in an EPN assembly file using the Geodetic Reference System 1980 (GRS80) coordinate
system.

<spatial : context id="Spatial GRS80" srid="4269" snma="6378137" rof="298.25722101" />

4-10 Developing Applications for Oracle CQL Data Cartridges

http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28401/oracle/spatial/geometry/JGeometry.html
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28401/oracle/spatial/geometry/JGeometry.html
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28401/oracle/spatial/geometry/J3D_Geometry.html
http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28401/oracle/spatial/geometry/J3D_Geometry.html

Using Oracle Spatial

The following example shows how to reference a spati al : cont ext in an Oracle
CQL query. In this case, the query uses link name Spat i al GRS80 (defined in the
above example) to propagate this application context to Oracle Spatial. The

spati al : cont ext attribute settings of Spat i al GRS80 are applied to the

cr eat ePoi nt method call.

<view id="createPoint">
sel ect comoracle.cep.cartridge.spatial.Geonetry. createPoi nt @pati al GRS80(
Ing, lat)
from Cust omer Pos[NOW
</ vi ew>

For more information (including a complete list of all spat i al : cont ext attributes),
see Developing Applications for Event Processing with Oracle Stream Explorer.

4.2 Using Oracle Spatial

This section describes common use-cases that highlight how you can use Oracle
Spatial in your Oracle Event Processing applications, including;:

* How to Access Oracle Spatial Java API Geometry Types

¢ How to Create a Geometry

¢ How to Access Geometry Type Public Methods and Fields
* How to Use Geometry Relation Operators

¢ How to Use Geometry Filter Operators

¢ How to Use Geometry Aggregate Operators

* How to Use the Default Geodetic Coordinates

e How to Use Other Geodetic Coordinates

For more information, see Geometry APL

4.2.1 How to Access Oracle Spatial Java APl Geometry Types

This procedure describes how to access Oracle Spatial geometry types SDO_GTYPE,
SDO_ELEMENT_| NFO, and ORDI NATES using Oracle Spatial in an Oracle CQL query.

To access the geometry types that the Oracle Spatial Java APl supports:

1. Import the package com or acl e. cep. cartridge. spati al into your Oracle
Event Processing application's MANI FEST. MF file.

2. Define your Oracle Event Processing application event type using the appropriate
Oracle Spatial data types.

The following example shows how to define event type MySpat i al Event with
two event properties x and y of type
comoracle.cep.cartridge. spatial.Geonetry.

<wl evs: event -t ype-repository>
<wl evs: event-type type-name="MSpati al Event">
<wW evs: properties>
<wl evs: property nane="x" type="com oracl e.cep.cartridge.spatial.Ceonetry"/>
<wl evs: property nanme="y" type="com oracl e.cep.cartridge.spatial.Ceonetry"/>
</w evs: properties>

Oracle Spatial Data Cartridge 4-11

Using Oracle Spatial

</w evs: event-type>
</w evs: event -t ype-reposi tory>

You can use these event properties in an Oracle CQL query like this:

CONTAI N@patial (x, y, 20.0d)

For more information, see Developing Applications for Event Processing with Oracle
Stream Explorer.

Choose an SDO_GTYPE, for example, GTYPE_PCOLYGON.

For more information, see Geometry Types.

Choose the Element Info appropriate for your ordinates.

For more information, see Element Info Array

Define your coordinate values.

For more information, see Ordinates and Coordinate Systems and the SDO_SRID.
Create your Oracle CQL query as the following example shows.

vi ew i d="ShopGeoni' >
select comoracle.cep.cartridge.spatial.Geonetry.createCGeonetry@patial (
comoracl e.cep.cartridge. spatial . Geonetry. GTYPE_POLYGON,
comoracl e. cep.cartridge. spatial . Geonetry. createEl em nfo(1, 1003, 1),
ordsgener at or @pati al (
Ingl, latl, Ing2, lat2, Ing3, lat3,
Ing4, lat4, Ing5 lat5, Ing6, laté6
)
) as geom
from ShopDesc
</ vi ew>

4.2.2 How to Create a Geometry

You can use Oracle Spatial to create a geometry in an Oracle CQL query by invoking:

static methods in com or acl e. cartri dge. spati al . Geonetry

methods in or acl e. spati al . geonmet ry. JGeomnet ry that conform to the scope
and geometry types that Oracle Spatial supports.

constructor methods in or acl e. spati al . geonetry. J3D Geonetry

static methods from or acl e. spati al . geonetry. J3D_Geonetry

For more information, see Geometry API.

Using a Static Method in the Oracle Spatial Geometry Class

The following example shows how to create a point geometry using a static method in
comoracle.cartridge. spatial . Geonet ry. In this case, you must use a link
(@pati al) to identify the data cartridge that provides this class. The advantage of
using this approach is that the Oracle Spatial application context is applied to set the
SRID and other Oracle Spatial options, either by default or based on an application
context you configure (see Oracle Spatial Application Context).

<view id="CustonerPosGeont >

sel ect comoracle.cep.cartridge.spatial.Geometry. createPoint @patial (

4-12 Developing Applications for Oracle CQL Data Cartridges

Using Oracle Spatial

Ing, lat) as geom
from Cust omer Pos[NOW
</ vi ew>

Using an Oracle Spatial J3D_Geometry Constructor

The following example shows how to create a geometry using a constructor method in
oracl e. spatial . geonetry. J3D_Ceonet ry. In this case, you do not use a link
(@pati al) because J3D_Geonet ry is just a Java class. The disadvantage of this
approach compared with using com or acl e. cartri dge. spati al . Geonetry is
that you must set the SRID because no application context is available.

<view id="CustomerPosCGeoni >
sel ect oracle.spatial.geometry.J3D Geonetry(
oracl e.spatial.geonetry. GTYPE_PONT, srid, x, y, z) as geom
from Cust onmer Pos[NOW
</ view>

Using a Static Method in the Oracle Spatial J3D_Geometry

The following example shows how to create a geometry using a static method in
oracl e. spatial.geonetry. J3D Geonetry.

<view id="CustonerPosCGeoni >
sel ect oracle.spatial.geonetry.J3D _Geonetry.createArc@patial (
x1, y1, x2, y2, x3, y3) as geom
from Cust omer Pos[NOW
</ vi ew>

For more information, see Geometry Types.

4.2.3 How to Access Geometry Type Public Methods and Fields

Using Oracle Spatial, you can access the public member functions and public member
fields of Oracle Spatial classes directly in Oracle CQL.

Oracle Spatial functionality inaccessible from the Geonet r y class (or not conforming
to the scope and geometry types that Oracle Spatial supports) is inaccessible from
Oracle Spatial.

In the following example, the view ShopGeomcreates an Oracle Spatial geometry
called geom The view shopMBR calls JGeonet r y static method get MBR which
returns a doubl e[] as stream element rbr . The query gshopMBR accesses this
doubl e[] using regular Java APL

<vi ew i d="ShopGeoni' >
select comoracle.cep.cartridge.spatial.Geonetry.createCGeonetry@patial (
comoracl e.cep.cartridge. spatial . Geonetry. GTYPE_POLYGON,
comoracl e.cep.cartridge. spatial.Geonetry. createEl em nfo(1, 1003, 1),
ordsgener at or @pati al (
Ingl, latl, Ing2, lat2, Ing3, lat3,
Ing4, lat4, Ing5 lath, Ing6, lat6
)
) as geom
from ShopDesc
</ vi ew>
<view id="shopMBR'>
sel ect geom get MBR() as nbr
from ShopGeom
</ vi ew>
<query id="qgshopMBR">

Oracle Spatial Data Cartridge 4-13

Using Oracle Spatial

select nbr[0], nbr[1], nbr[2], nbr[3]
from shopMBR
</ query>

For more information, see:
* Geometry Types

® Oracle Java Data Cartridge.

4.2.4 How to Use Geometry Relation Operators

Using Oracle Spatial, you can access the following Oracle Spatial geometry relation
operators in either the WHERE or SELECT clause of an Oracle CQL query:

e ANYINTERACT

e CONTAIN

e INSIDE

e INSIDE3D

e WITHINDISTANCE

In the following example, the view op_i n_wher e uses the CONTAI N geometry
relation operator in the WHERE clause: in this case, Oracle Spatial uses R-Tree indexing.
The view op_i n_pr oj uses CONTAI Nin the SELECT clause.

<view i d="op_i n_where">
RSt r eam
sel ect
| oc. customerld,
shop. shopl d
from
LocGeonttrean] NON as | oc,
ShopGeonRel ation as shop
wher e
CONTAI N@pat i al (shop. geom |oc. curlLoc, 5.0d) = true

)

</ vi ew>
<view id="op_in_proj">
RSt r eam
sel ect
| oc. customerld,
shop. shopl d,
CONTAI N@pat i al (shop. geom | oc. curLoc, 5.0d)
from
LocGeonstrean] NON as | oc,
ShopGeonRel ation as shop
)
</ vi ew>

For more information, see Geometric Relation Operators.

4.2.5 How to Use Geometry Filter Operators

Using Oracle Spatial, you can access the following Oracle Spatial geometry filter
operators in the WHERE clause of an Oracle CQL query:

e FILTER

4-14 Developing Applications for Oracle CQL Data Cartridges

Using Oracle Spatial

e NN

In the following example, the view f i | t er uses the FI LTER geometry filter operator
in the WHERE clause.

<view id="filter">
RSt r eam(
sel ect loc.customerld, shop.shopld
from LocGeontStreanf NON as |oc, ShopGeonRel ation as shop
where FILTER@pati al (shop. geom loc.curloc, 5.0d) = true

)

</ vi ew>

For more information, see Geometric Filter Operators.

4.2.6 How to Use Geometry Aggregate Operators

Using the Oracle Spatial data cartridge, you can access the following Oracle Spatial
aggregate operators in the SELECT clause of an Oracle CQL query:

* MBR

In the following example, the view vaggr nbr uses the MBR geometry aggregate
operator in the SELECT clause. The query gaggr nmbr access the doubl e[] returned
by the MBR geometry aggregate operator directly using standard Java APL

<vi ew i d="vaggr nbr" >
sel ect MBR@pati al 1(shop. geom) as mbr
from ShopGeonRel ation as shop
</ vi ew>
<query id="qgaggrmbr">
select nbr[0], nbr[1], nbr[2], nbr[3], nbr[4], nbr[5], nbr[6]
from vaggr nbr
</ query>

For more information, see Geometric Filter Operators.

4.2.7 How to Use the Default Geodetic Coordinates

When you create an Oracle CQL query using the default Oracle Spatial application
context, the default SRI Dwill be set to CARTESI AN.

The following example shows, the cr eat ePoi nt method call uses the default link
(@pati al). This guarantees that the default Oracle Spatial application context is
applied.

<view id="createPoint">
sel ect comoracle.cep.cartridge.spatial.CGeonmetry.createPoint @patial (
Ing, lat)
from Cust omer Pos[NOW
</ vi ew>

For more information, see:

¢ Oracle Spatial Application Context

* Ordinates and Coordinate Systems and the SDO_SRID.

Oracle Spatial Data Cartridge 4-15

Using Oracle Spatial

4.2.8 How to Use Other Geodetic Coordinates

This procedure describes how to use the Oracle Spatial application context to specify a
geodetic coordinate system other than the default Cartesian geodetic coordinate
system in an Oracle CQL query:

For more information, see:
® Oracle Spatial Application Context

¢ Ordinates and Coordinate Systems and the SDO_SRID.

To use other geodetic coordinates:

1. Create an Oracle Spatial application context and define the sri d attribute for the
geodetic coordinate system you want to use.

The following example shows how to create a spatial context named
Spat i al GRS80 in an EPN assembly file using the Geodetic Reference System 1980
(GRS80) coordinate system.

<spatial : context id="Spatial GRS80" srid="4269" sma="6378137" rof="298.25722101" />
2. In your Oracle CQL query, use the id of this spat i al : cont ext in your links.

The following example shows how to reference a spat i al : cont ext in an Oracle
CQL query. In this case, the query uses link name Spat i al GRS80 to propagate
this application context to Oracle Spatial. The spat i al : cont ext attribute
settings of Spat i al GRS80 are applied to the cr eat ePoi nt method call.

<view id="createPoint">
sel ect comoracle.cep.cartridge.spatial.Geonetry. creat ePoi nt @pat i al GRS80(
Ing, lat)
from Cust omer Pos[NOW
</ vi ew>

4-16 Developing Applications for Oracle CQL Data Cartridges

5

Oracle Big Data Cartridges

Oracle Event Processing supports Big Data with the Hadoop and NoSQLDB
cartridges. Hadoop is a cartridge extension for an Oracle CQL processor to access
large quantities of data in a Hadoop distributed file system (HDFS). HDFS is a non-
relational data store. NoSQL is a cartridge extension for an Oracle CQL processor to
access large quantities of data in an Oracle NoSQL Database. The Oracle NoSQLDB
Database stores data in key-value pairs.

This chapter includes the following sections:
e Hadoop Data Cartridge
* NoSQL Data Cartridge

5.1 Hadoop Data Cartridge

Hadoop is an open source technology that provides access to large data sets that are
distributed across clusters. One strength of the Hadoop software is that it provides
access to large quantities of data not stored in a relational database. The Oracle Event
Processing data cartridge is based on the Cloudera distribution for Hadoop (CDH),
version 3ub

The content in this guide assumes that you are already familiar with, and likely
running, a Hadoop system. If you need more information about Hadoop, start with
the Hadoop project web site at ht t p: / / hadoop. apache. org/ .

Note:

You can use the Hadoop data cartridge on UNIX and Windows even through
Hadoop itself runs only in the Linux environment.

5.1.1 Understanding the Oracle Event Processing Hadoop Data Cartridge

You can use the Hadoop data cartridge to integrate an existing Hadoop data source
into an event processing network that can process data from files on the Hadoop
distributed file system. With the data source integrated, you can write Oracle CQL
query code that incorporates data from files on the Hadoop system.

When integrating a Hadoop system, keep the following guidelines in mind:

¢ The Hadoop cluster must have been started through its own mechanism and must
be accessible. The cluster is not managed directly by Oracle Event Processing.

¢ A file from a Hadoop system supports only joins using a single key in Oracle CQL.
However, any property of the associated event type may be used as key. In other
words, with the exception of a key whose type is byte array, you can use keys
whose type is other than a String type.

Oracle Big Data Cartridges 5-1

http://hadoop.apache.org/

Hadoop Data Cartridge

¢ Joins must use the equals operator. Other operators are not supported in a join
condition.

¢ For the event type you define to represent data from the Hadoop file, only tuple-
based event types are supported.

* The order of properties in the event type specification must match the order of
fields in the Hadoop file.

¢ To avoid throwing a NullPointerExeption, wait for the Hadoop Data Cartridge to
finish processing before attempting to shut down the server or undeploy.

® Only the following Oracle CQL to Hadoop types are supported. Any other type
will cause a configuration exception to be raised.

Table 5-1 Mapping Between Datatypes for Oracle CQL and Hadoop

Oracle CQL Datatype Hadoop Datatype
int i nt

bi gi nt | ong

f1 oat f1 oat

doubl e doubl e

char chararray
java.lang. String chararray
byte byt earray

5.1.1.1 Usage Scenario: Using Purchase Data to Develop Buying Incentives

To understand how a Hadoop data source might be used with an Oracle Event
Processing application, consider a scenario with an application that requires quick
access to a very large amount of customer purchase data in real time.

In this case, the data stored in Hadoop includes all purchases by all customers from all
stores. Values in the data include customer identifiers, store identifiers, product
identifiers, and so on. The purchase data includes information about which products
are selling best in each store. To render the data to a manageable state, a MapReduce
function is used to examine the data and produce a list of top buyers (those to whom
incentives will be sent).

This data is collected and managed by a mobile application vendor as part of a service
designed to send product recommendations and incentives (including coupons) to
customers. The data is collected from multiple retailers and maintained separately for
each retailer.

The Oracle Event Processing application provides the middle-tier logic for a client-side
mobile application that is designed to offer purchase incentives to top buyers. It works
in the following way:

1. Retailers arrange with the mobile application vendor to provide purchase data as
part of a program to offer incentives to top buyers. The data, regularly refreshed
from store sales data, is stored in a Hadoop system and a MapReduce function is
used to identify top buyers.

5-2 Developing Applications for Oracle CQL Data Cartridges

Hadoop Data Cartridge

2. The mobile application vendor provides the application for download, noting
which retailers support the program.

3. App users each create a user ID that is correlated by the app vendor to data about
customers from the retailers.

4. The mobile application is designed to send location data to the Oracle Event
Processing application, along with the user ID. This information -- location
coordinates and user ID -- forms the event data received by the Oracle Event
Processing application.

5. As the Oracle Event Processing application receives event data from the mobile
application, it uses Oracle CQL queries to:

* Determine whether the user is near a store from a participating retailer.

e Establish (from Hadoop-based data) whether the user is a top buyer for the
retailer.

* Locate purchase information related to that user as a buyer from that retailer.

¢ If the user is a top buyer, the application correlates products previously
purchased with incentives currently being offered to buyers of those products.

6. The Oracle Event Processing application pushes an incentive announcement to the
user.

5.1.1.2 Data Cartridge Name
The Oracle Event Processing Hadoop cartridge uses the cartridge ID
com oracl e. cep. cartridge. hadoop.

5.1.2 Using Hadoop Data Sources in Oracle CQL

You use the Hadoop support included with Oracle Event Processing by integrating a
file in an existing Hadoop system into an event processing network. With the file
integrated, you have access to data in the file from Oracle CQL code.

This section describes the following:

¢ Configuring Integration of Oracle Event Processing and Hadoop
* Integrating a File from a Hadoop System Into an EPN

¢ Using Hadoop Data in Oracle CQL.

5.1.2.1 Configuring Integration of Oracle Event Processing and Hadoop

In order to use Hadoop from Oracle Event Processing, you must first make
configuration changes on both the Oracle Event Processing and Hadoop servers:

® On the Oracle Event Processing server, add the following Hadoop configuration
files at the server's bootclasspath: core-site.xml, hdfs.xml, and mapred.xml. See
Administering Oracle Stream Explorer for information about the bootclasspath.

¢ To the Hadoop server, copy the Pig JAR file to the lib directory and include it as
part of the HADOOP_CLASSPATH defined in the hadoop-env.sh file.

Oracle Big Data Cartridges 5-3

Hadoop Data Cartridge

Note:

A connection with a Hadoop data source through the cartridge might require
many input/output operations, such that undeploying the application can
time out or generate errors that prevent the application from being deployed
again. Before undeploying an application that uses a Hadoop cartridge, be
sure to discontinue event flow into the application.

5.1.2.2 Integrating a File from a Hadoop System Into an EPN

Integrating a file from an existing Hadoop system is similar to the way you might
integrate a table from an existing relational database. For a Hadoop file, you use the
fil e XML element from the Oracle Event Processing schema specifically added for
Hadoop support.

The file element is from the http:/ /www.oracle.com/ns/ocep/hadoop namespace. So
your EPN assembly file needs to reference that namespace. The f i | e element includes
the following attributes:

¢ i d-- Uniquely identifies the file in the EPN. You will use this attribute's value to
reference the data source in a processor.

e event -t ype -- A reference to the event-type to which data from the file should be
bound. The event-type must be defined in the EPN.

e pat h -- The path to the file in the Hadoop file system.

¢ separat or -- Optional. The character delimiter to use when parsing the lines in
the Hadoop file into separate fields. The default delimiter is the comma (',")
character.

e operation-timeout -- Optional. The maximum amount of time, in milliseconds,
to wait for the operation to complete.

With the Hadoop file to integrate specified with the file element, you use the table-
source element to add the file as a data source for the Oracle CQL processor in which
you will be using the file's data.

In the following example, note that the ht t p: / / www. or acl e. coni ns/ ocep/
hadoop namespace (and hadoop prefix) is referenced in the beans element. Thefi | e
element references a Cust onmer Descri pti on. t xt file for data, along with a

Cust omer Descri pti on event type defined in the event type repository.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. org/ schema/ beans"
xm ns: w evs="http:// wwmv. bea. conf ns/ w evs/ spring"
xm ns: hadoop="htt p: / / www. or acl e. conf ns/ ocep/ hadoop"
Xsi : schemaLocat i on="
http://ww:. bea. com ns/w evs/ spring
http://ww:. bea. com ns/w evs/ spring/ ocep-epn. xsd
http://ww:. oracl e. com ns/ ocep/ hadoop
http://ww:. oracl e. com ns/ ocep/ hadoop/ ocep- hadoop. xsd" >
<I'-- Some schema references omtted for brevity. -->

<l-- Event types that will be used in the query. -->
<w evs: event -t ype-repository>
<wl evs: event-type type-name="Sal esEvent ">
<wl evs: cl ass>com bea. W evs. exanpl e. Sal esEvent </ w evs: cl ass>
</ wl evs: event - t ype>

5-4 Developing Applications for Oracle CQL Data Cartridges

Hadoop Data Cartridge

<wl evs: event-type type-name="Cust omer Description">
<wl evs: properties>
<wl evs: property nane="userld" type="char"/>
<wl evs: property name="creditScore" type="int"/>
<wl evs: property nane="address" type="char"/>
<wl evs: property nanme="cust oner Nane" type="char"/>
</w evs: properties>
</ wl evs: event -t ype>
</w evs: event -t ype-repository>

<I-- Input adapter omtted for brevity. -->

<l-- Channel sending Sal esEvent instances to the processor. -->
<wl evs: channel id="S1" event-type="Sal esEvent" >

<wl evs:|istener ref="P1"/>
</w evs: channel >

<I-- The file element to integrate CustonerDescription.txt file from
the Hadoop systeminto the EPN. -->

<hadoop: file id="CustonerDescription" event-type="CustonerDescription"
pat h="Cust omer Descri ption.txt" />

<I-- The file fromthe Hadoop systemtied into the query processor
with the table-source elenent. -->

<w evs: processor id="P1">
<wl evs:tabl e-source ref="CustonerDescription" />

</ wl evs: processor >

<I-- Oher stages onitted for brevity. -->

</ beans>

5.1.2.3 Using Hadoop Data in Oracle CQL

After you have integrated a Hadoop file into an event processing network, you can
query the file from Oracle CQL code.

The following example illustrates how you can add a file from a Hadoop system into
an EPN. With the file added to the EPN, you can query it from Oracle CQL code, as
shown in the following example.

In the following example, the processor receives SalesEvent instances from a channel,
but also has access to a file in the Hadoop system as CustomerDescription instances.
The Hadoop file is essentially a CSV file that lists customers. Both event types have a
user | d property.

<nl:config
xsi: schemaLocation="http://ww:. bea. com ns/w evs/ confi g/ application
wl evs_appl i cation_config. xsd"
xm ns: nl="http://ww. bea. cont ns/ w evs/ confi g/ application"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schema- i nst ance" >
<processor >
<name>P1</ name>
<rul es>
<query id="ql"><![CDATA]
SELECT customer Nane, creditScore, price, item
FROM S1 [Nowj, CustomerDescription as cust
WHERE S1.userld = cust.userld
AND S1.price > 1000
></ query>
</rul es>

Oracle Big Data Cartridges 5-5

NoSQL Data Cartridge

</ processor >
</nl:config>

5.2 NoSQL Data Cartridge

The Oracle NoSQL Database is a distributed key-value database. In it, data is stored as
key-value pairs, which are written to particular storage node(s). Storage nodes are
replicated to ensure high availability, rapid failover in the event of a node failure and
optimal load balancing of queries.

The content in this guide assumes that you are already familiar with, and likely
running, an Oracle NoSQL database. If you need more information about Oracle
NoSQL, be sure to see its Oracle Technology Network page at ht t p: //

www. or acl e. com t echnet wor k/ dat abase/ dat abase-t echnol ogi es/
nosql db/ docunent ati on/i ndex. htm .

Note:

To use the NoSQL Data Cartridge, you must have a license for NoSQL
Enterprise Edition.

5.2.1 Oracle CQL Processor Queries

You can use the Oracle Event Processing NoSQL Database data cartridge to refer to
data stored in Oracle NoSQL Database as part of an Oracle CQL query. The cartridge
makes it possible for queries to retrieve values from an Oracle NoSQL Database store
by specifying a key in the query and then referring to fields of the value associated
with the key.

When integrating an Oracle NoSQL database, keep the following guidelines in mind:

¢ The NoSQL database must have been started through its own mechanisms and
must be accessible. It is not managed directly by Oracle Event Processing.

* This release of the cartridge provides access to the database using release 2.1.54 of
the Oracle NoSQL Database API.

¢ The property used as a key in queries must be of type St ri ng. Joins can use a
single key only.

* Joins must use the equals operator. Other operators are not supported in a join
condition.

* Runaway queries that involve the NoSQL database are not supported. A runaway
query has an execution time that takes longer than the execution time estimated by
the optimizer.

5.2.2 Data Cartridge Name

The Oracle Event Processing NoSQL cartridge uses the cartridge ID
com oracl e. cep. cartridge. nosql db.

5-6 Developing Applications for Oracle CQL Data Cartridges

http://www.oracle.com/technetwork/database/database-technologies/nosqldb/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/nosqldb/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/nosqldb/documentation/index.html

NoSQL Data Cartridge

5.2.3 Using a NoSQL Database in Oracle CQL

To use the Oracle Event Processing NoSQL Database data cartridge in a CQL
application, you must declare and configure it in one or more application-scoped
cartridge contexts for the application.

5.2.3.1 Integrating a NoSQL Database Into an EPN

Integrating an existing NoSQL database is similar to the way you might integrate a
table from a relational database. For a NoSQL database, you update the EPN assembly
file in the following ways (see the example in step 3):

1. Add namespace declarations to support for the st or e element for referencing the
NoSQL data source.

Your changes should add a namespace schema location to the schemaLocation
attribute, along with a namespace and prefix declaration:

¢ http://www.oracle.com/ns/oep/nosqldb http://www.oracle.com/ns/oep/
nosqldb/oep-nosqldb.xsd

¢ xmlns:nosqldb="http://www.oracle.com/ns/oep/nosqldb"

2. Add the st or e element to integrate the NoSQL database into the event processing
network as a relation source.

The store element supports the following attributes, all of which are required:
* i d -- The name that will be used to refer to the key-value store in CQL queries.

* st or e- nanme -- The name of the key-value store, which should match the name
specified in the KVStoreConfig class when creating the store.

e store-|ocations -- One or more host names and ports of active nodes in the
store. The attribute value is a space-separated list in which each entry is
formatted as "hostname:port". Nodes with the specified host name and port
values will be contacted in order when connecting to the store initially.

e event - t ype -- The object type for all objects retrieved for this relation from
values in the store. The attribute value should correspond to the name of a
wlevs:event-type entry specified in a wlevs:event-type-repository entry.

3. Add at abl e- sour ce element to connect the NoSQL database to the processor in
which queries will be executed.

The following example illustrates how you can connect an event processing network
to a NoSQL database. The st or e element provides access to a store named "kvstore-
customers”, using port 5000 on host kvhost-alpha or port 5010 on host kvhost-beta to
make the initial connection. It defines Oracle CQL processor P1 and makes the data in
the key-value store available to it as a relation named "CustomerDescription".

The store can be referred to within Oracle CQL queries using the name
"CustomerDescription". All values retrieved from the store should be serialized
instances of the CustomerDescription class.

<?xm version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://wwmv. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schema- i nst ance"
xm ns: osgi ="http:// ww. springframework. or g/ schena/ osgi "

Oracle Big Data Cartridges 5-7

NoSQL Data Cartridge

xm ns:wl evs="http:// ww. bea. con ns/w evs/spring"
xn ns: nosql db="htt p: //www. or acl e. cont ns/ oep/ nosql db"
xsi : schemaLocat i on="
http://ww. springframewor k. or g/ schena/ beans
http: //ww. spri ngframewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmework. or g/ schema/ osgi
http://ww. springframewor k. or g/ schena/ 0sgi / spri ng- 0sgi . xsd
http://ww. bea. com ns/w evs/ spring
http://ww. bea. com ns/w evs/ spring/ ocep- epn. xsd
http://ww:. oracl e. com ns/ oep/ nosql db
http://ww. oracl e. com ns/ oep/ nosql db/ oep- nosql db. xsd" >

<l-- Provide access to the CustonerDescription class, which represents
the type of values in the store. -->
<w evs: event -t ype-reposi tory>
<wl evs: event-type type-name="Cust omer Description">
<wl evs: cl ass>com bea. Wl evs. exanpl e. Cust oner Descri pti on</w evs: cl ass>
</ w evs: event -t ype>
<wl evs: event-type type-name="Sal esEvent">
<wl evs: cl ass>com bea. Wl evs. exanpl e. Sal esEvent </ w evs: cl ass>
</w evs: event -t ype>
</w evs: event -t ype-repository>

<I-- The store elenent declares the key-value store, along with the
event type to which incoming NoSQ data will be bound. -->
<nosql db: store store-name="kvst ore-cust oners"
store-|ocations="kvhost - al pha: 5000 kvhost - bet a: 5010"
i d="Cust omer Descri ption"
event -t ype="Cust omer Descri ption"/>

<wl evs: channel id="S1" event-type="Sal esEvent">
<w evs:|istener ref="P1"/>
</W evs: channel >

<!I- The tabl e-source elenment links the store to the CQL processor. -->
<w evs: processor id="P1">

<wl evs: tabl e-source ref="CustonerDescription" />
</ wl evs: processor >

</ beans>

If Oracle CQL queries refer to entries in a store specified by a st or e element, then the
values of those entries must be serialized instances of the type specified by the event-
type attribute. The event type class must implement j ava. i 0. Seri al i zabl e.

If a query retrieves a value from the store that is not a valid serialized form, or if the
value is not the serialized form for the specified class, then Oracle Event Processing
throws an exception and event processing is halted. You can declare multiple st or e
elements to return values of different types from the same or different stores.

5.2.3.2 Using NoSQL Data in Oracle CQL

After you have integrated a NoSQL database into an event processing network, you
can access data from Oracle CQL code. The query can look up an entry from the store
by specifying an equality relation in the query's WHERE clause.

<nl:config

xsi:schemalocation="http://ww. bea. com ns/w evs/ confi g/ application
wl evs_application_config. xsd"

xnm ns: nl="http://ww. bea. conf ns/ w evs/ confi g/ application"

5-8 Developing Applications for Oracle CQL Data Cartridges

NoSQL Data Cartridge

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" >
<processor >
<nane>Pl</ nane>
<rul es>
<query id="qgl"><![CDATA[
SELECT cust oner Name, creditScore, price, item
FROM S1 [Nowj, CustonerDescription as cust
VWHERE S1.userld = cust.userld
AND creditScore > 5
></ query>
</rul es>
</ processor >
</nl:config>

In this example, the event type instances representing data from the S1 channel and
CustomerDescription NoSQL data source are both implemented as JavaBeans classes.
Because both event types are JavaBeans classes, the Oracle CQL query can access the
customer description associated with a particular event by equating the event's user
ID with that of the customer description in the WHERE clause, treating both as
JavaBeans properties:

WHERE S1.userld = CustonerDescription.userld

This clause requests that an entry be retrieved from the store that has the key specified
by the value of the event's user | d field. Only equality relations are supported for
obtaining entries from the store.

Once an entry from the store has been selected, fields from the value retrieved from
the store can be referred to in the SELECT portion of the query or in additional clauses
in the WHERE clause.

The cr edi t Scor e value specified in the SELECT clause will include the value of the
credi t Scor e field of the Cust omer Descr i pt i on object retrieved from the store in
the query output. The reference to cr edi t Scor e in the WHERE clause will also further
restrict the query to events where the value of the Cust onmer Descri pti on

credi t Scor e field is greater than 5.

5.2.3.2.1 Formatting the Key Used to Obtain Entries from the NoSQL Store

The key used to obtain entries from the store can be formatted in one of two ways: by
beginning the value with a forward slash ('/') or by omitting a slash.

If the value specified on the left hand side of the equality relation starts with a forward
slash, then the key is treated as a full key path that specifies one or more major
components, as well as minor components if desired. For more details on the syntax of
key paths, see the information about the or acl e. kv. Key class in the Oracle NoSQL
Database API documentation at htt p: // docs. or acl e. coni cd/ NOSQL/ ht mi /

j avadoc/ i ndex. htmi .

For example, if the user | d field of a Sal esEvent object has the value "/users/
user42/-/custDesc", then that value will be treated as a full key path that specifies
"users" as the first major component, the user ID "user42" as the second major
component, and a minor component named "custDesc".

As a convenience, if the value specified on the left hand side of the equality relation
does not start with a forward slash, then it is treated as a single major component that
comprises the entire key.

Note that keys used to retrieve entries from the store must be specified in full by a
single field accessed by the Oracle CQL query. In particular, if a key path with

Oracle Big Data Cartridges 5-9

http://docs.oracle.com/cd/NOSQL/html/javadoc/index.html
http://docs.oracle.com/cd/NOSQL/html/javadoc/index.html

NoSQL Data Cartridge

multiple components is required to access entries in the key-value store, then the full
key path expression must be stored in a single field that is accessed by the query.

5-10 Developing Applications for Oracle CQL Data Cartridges

6

Oracle Java Data Cartridge

This chapter describes how to use the Oracle Java Data Cartridge, an extension of
Oracle Continuous Query Language (Oracle CQL). You can use Oracle CQL to write
CQL code that interacts with Java classes in your Oracle Event Processing application.

This chapter describes the types, methods, fields, and constructors that the Oracle Java
data cartridge exposes. You can use these types, methods, fields, and constructors in
Oracle CQL queries and views as you would Oracle CQL native types.

This chapter includes the following sections:
¢ Understanding the Oracle Java Data Cartridge

¢ Using the Oracle Java Data Cartridge.

6.1 Understanding the Oracle Java Data Cartridge

The Oracle Java data cartridge is a built-in Java cartridge that enables you to write
Oracle CQL queries and views that interact with the Java classes in your Oracle Event
Processing application.

This section describes:

¢ Data Cartridge Name
¢ (Class Loading

* Method Resolution

¢ Datatype Mapping

* Oracle CQL Query Support for the Oracle Java Data Cartridge.

6.1.1 Data Cartridge Name

The Oracle Java data cartridge uses the cartridge ID
com oracl e. cep. cartrdi ges.java.

The Oracle Java data cartridge is the default Oracle Event Processing data cartridge.

For types under the default Java package name or types under the system package of
j ava. | ang, you can reference the Java type in an Oracle CQL query unqualified by
package or data cartridge name:

<query id="ql"><![CDATAl

select String(“foo") ...
></ query>

Oracle Java Data Cartridge 6-1

Understanding the Oracle Java Data Cartridge

Note:

To simplify Oracle Java data cartridge type names, you can use aliases as
described in Oracle Fusion Middleware Oracle CQL Language Reference for
Oracle Event Processing.

For more information, see: Class Loading and Oracle Fusion Middleware Oracle CQL
Language Reference for Oracle Event Processing.

6.1.2 Class Loading

The Oracle Java data cartridge supports the following policies for loading the Java
classes that your Oracle CQL queries reference:

e Application Class Space Policy
* No Automatic Import Class Space Policy

¢ Server Class Space Policy

For more information, see:
¢ (lass Loading Example
e Method Resolution

* Developing Applications for Event Processing with Oracle Stream Explorer.

6.1.2.1 Application Class Space Policy
This is the default class loading policy.

In this mode, the Oracle Java data cartridge uses the class-space of the application in
scope when searching for a Java class.

This is only applicable when a type is specified only by its local name, that is, there is a
single identifier, and no other identifiers are being used for its package. That is:

select String(“foo") ...

And not:

sel ect java.lang. String(“foo") ..
In this case the procedure is as follows:

e Attempt to load the class defined by the single identifier (call it | D1) using the
application's class-space as usual; if this fails then:

¢ Verify if the application defines any class within its bundle's internal class-path
whose name matches | D1, independent of the package; if this fails then:

e Verify if application specifies an | npor t - Package MANI FEST header statement
which in conjunction with | D1 can be used to load a Java class.

For an example, see Class Loading Example.

6.1.2.2 No Automatic Import Class Space Policy

This is an optional class loading policy. To use this policy, you must include the
following MANI FEST header entry in your Oracle Event Processing application:

6-2 Developing Applications for Oracle CQL Data Cartridges

Understanding the Oracle Java Data Cartridge

OCEP_JAVA CARTRI DGE_CLASS_SPACE: APPLI CATI ON_NO_AUTO | MPORT_CLASS_SPACE
This mode is similar to the application class space policy except that Oracle Event
Processing does not attempt to combine the package with | D1.

For more information, see Application Class Space Policy.

6.1.2.3 Server Class Space Policy

This is an optional class loading policy. To use this policy, you must include the
following MANI FEST header entry in your Oracle Event Processing application:

OCEP_JAVA CARTRI DGE_CLASS_SPACE: SERVER CLASS SPACE

An Oracle CQL query can reference any exported Java class, regardless of whether or
not the class package is imported into the application or bundle

The query can also access all classes visible to the OSGi framework's parent class-
loader, which includes the runtime JDK classes.

This means that an Oracle CQL application may contain an Oracle CQL query that
references classes defined by other Oracle Event Processing applications, as long as
they are exported. This behavior facilitates the creation of Java-based cartridges whose
sole purpose is to provide new Java libraries.

Note:

You can only reference a Java class that is part of the internal class path of an
Oracle Event Processing application if it is exported, even when a processor
within this application defines the Oracle CQL query.

For an example, see Class Loading Example.

6.1.2.4 Class Loading Example

Consider the example that Figure 6-1 shows: application Bl imports package
package2 that application B2 exports.

Figure 6-1 Example Oracle Event Processing Event Processing Applications

b1.jar b2 jar
SMETA-INF/MANIFEST. HF JMETA-INF/MANIFEST.MF
Tuport-Package: packageZ Export-Package: packageZ
Juypackagel /4. class /packageZsC.class
suyprivatepackagel/B.class /privatepackagez/D.class

Table 6-1 summarizes which classes these two different applications can access
depending on whether they are running in the application class space or server class
space.

Table 6-1 Class Accessibility by Class Loading Policy

Class Loading Policy Application B1 Application B2

Application Class Space e nypackagel. A e package2.C
e nyprivat epackagel. B e privatepackage2.D
e package2.C

Server Class Space e package2.C e package2.C

Oracle Java Data Cartridge 6-3

Understanding the Oracle Java Data Cartridge

In application B1, you can use any of the Java classes A, B, and C in your Oracle CQL
queries:

select A ..
select B ...
select C ..

However, in application B2, you cannot use Java classes A and B in your Oracle CQL
queries. You can only use Java classes C and D:

select C ..
select D ...

6.1.3 Method Resolution

An Oracle CQL expression that accesses a Java method uses the following algorithm to
resolve the method:

1. All parameter types are converted to Java types as Datatype Mapping describes.
For example, an Oracle CQL | NTECERis converted to a Java primitive i nt .

2. Standard Java method resolution rules are applied as the Java Language
Specification, Third Edition, Section 15.12, "Method Invocation Expressions"
describes.

Note:

Variable arity methods are not supported. For more information, see the Java
Language Specification, Third Edition, Section 12.12.2.4.

As an example, consider the following Oracle CQL expression:

attribute. met hodA(10)

Where at t ri but e is of type nypackage. MyType which defines the following
overloaded methods:

e et hodA(int)

e met hodA(I nt eger)
e et hodA(Obj ect)
e et hodA(l ong)

As the literal 10 is of the primitive type i nt, the order of precedence is:
e et hodA(int)

e et hodA(l ong)

e met hodA(I nt eger)

e et hodA(Obj ect)

For more information, see Class Loading.

6-4 Developing Applications for Oracle CQL Data Cartridges

Understanding the Oracle Java Data Cartridge

6.1.4 Datatype Mapping

The Oracle Java data cartridge applies a fixed, asymmetrical mapping between Oracle
CQL native data types and Java data types.

® Table 6-2 lists the mappings between Oracle CQL native data types and Java data
types.

¢ Table 6-3 lists the mappings between Java data types and Oracle CQL native data
types.

Table 6-2 Oracle Java Data Cartridge: Oracle CQL to Java Data Type Mapping

Oracle CQL Native Data Type Java Data Type

Bl G NT | ong

BOOLEAN bool ean

BYTE byte[]

CHAR java.lang. String
DOUBLE doubl e

FLOAT f1 oat

| NTEGER i nt

| NTERVAL | ong

I NTERVAL_DAY long, java.lang.String
I NTERVAL_DAY_TO_SECOND java.lang. String

| NTERVAL_YEAR | ong, java.lang. String
| NTERVAL_MONTH long, java.lang.String
| NTERVAL_YEAR_TO_MONTH java.lang. String
XMLTYPE java.lang. String

Table 6-3 Oracle Java Data Cartridge: Java Data Type to Oracle CQL Mapping

Java Datatype Oracle CQL Native Data Type
| ong Bl G NT

bool ean BOOLEAN

byte[] BYTE

java.lang. String CHAR

doubl e DOUBLE

f1 oat FLOAT

i nt | NTEGER

Oracle Java Data Cartridge 6-5

Understanding the Oracle Java Data Cartridge

Java Datatype Oracle CQL Native Data Type

java.sql . Date | NTERVAL
j ava. sql . Ti mest anp

j ava. sql . SQLXM XMLTYPE

All other Java classes are mapped as a complex type.

For more information on these datatype mappings:

¢ Java Data Type String and Oracle CQL Data Type CHAR
¢ Literals

e Arrays

e (Collections

For more information on Oracle CQL native data types and their implicit and explicit
data type conversion, see Oracle CQL Language Reference for Oracle Stream Explorer.

6.1.4.1 Java Data Type String and Oracle CQL Data Type CHAR

Oracle CQL data type CHARis mapped to j ava. | ang. Stri ng and

java. |l ang. Stri ng is mapped to Oracle CQL data type CHAR This means you can
access j ava. | ang. St ri ng member fields and methods for an attribute defined as
Oracle CQL CHAR For example, if al is declared as type Oracle CQL CHAR, then you
can write a query like this:

<query id="ql"><![CDATA|
sel ect al.substring(l,?2)

></ query>

6.1.4.2 Literals

You cannot access member fields and methods on literals, even Oracle CQL CHAR
literals. For example, the following query is not allowed:

<query id="qgl-forbi dden"><![CDATA]
select "hello".substring(1,?2)

></ query>

6.1.4.3 Arrays

Java arrays are converted to Oracle CQL data cartridge arrays, and Oracle CQL data
cartridge arrays are converted to Java arrays. This applies to both complex types and
simple types.

You can use the data cartridge TABLE clause to access the multiple rows returned by a
data cartridge function in the FROMclause of an Oracle CQL query.

For more information, see Oracle CQL Language Reference for Oracle Stream Explorer and
Collections.

6-6 Developing Applications for Oracle CQL Data Cartridges

Using the Oracle Java Data Cartridge

6.1.4.4 Collections

Typically, the Oracle Java data cartridge converts an instance that implements the
java.util. Col | ecti on interface to an Oracle CQL complex type.

An Oracle CQL query can iterate through the members of the
java.util.Collection.

You can use the data cartridge TABLE clause to access the multiple rows returned by a
data cartridge function in the FROMclause of an Oracle CQL query.

For more information, see Oracle Fusion Middleware Oracle CQL Language Reference
for Oracle Event Processing and Arrays.

6.1.5 Oracle CQL Query Support for the Oracle Java Data Cartridge

You may use Oracle Java data cartridge types in expressions within a SELECT clause
and WHERE clause.

You may not use Oracle Java data cartridge types in expressions within an ORDER BY
clause.

For more information, see Oracle Fusion Middleware Oracle CQL Language Reference
for Oracle Event Processing and Using the Oracle Java Data Cartridge.

6.2 Using the Oracle Java Data Cartridge

This section describes common use-cases that highlight how you can use the Oracle
Java data cartridge in your Oracle Event Processing applications, including:

e How to Query Using the Java API

* How to Query Using Exported Java Classes

For more information, see Oracle Fusion Middleware Oracle CQL Language Reference
for Oracle Event Processing and Oracle CQL Query Support for the Oracle Java Data
Cartridge.

6.2.1 How to Query Using the Java API

This procedure describes how to use the Oracle Java data cartridge in an Oracle Event
Processing application that uses one event type defined as a tuple (St udent) that has
an event property type defined as a Java class (Addr ess. j ava).

To query with Java classes:

1. Implement the Addr ess. j ava class.
package test;

class Address {
String street;
String state;
String city;
String [] phones;
}

In this example, assume that the Addr ess. j ava class belongs to this application.

Oracle Java Data Cartridge 6-7

Using the Oracle Java Data Cartridge

If the Addr ess. j ava class belonged to another Oracle Event Processing
application, it must be exported in its parent application. For more information, see
How to Query Using Exported Java Classes.

2. Define the event type repository.

<event - type-repository>
<event -type nanme="Student">
<properties>
<property name="name" type="char"/>
<property name="address" type="Address"/>
</ properties>
</ event-type>

<event -type nane="Address">
<cl ass- name>t est . Addr ess</ cl ass- nanme>
</ event-type>
<event - type-repository>

Because the t est . Addr ess class belongs to this application, it can be declared in
the event type repository. This automatically makes the class globally accessible
within this application; its package does not need to be exported.

3. Assume that an adapter is providing St udent events to channel St udent St r eam
<channel id="StudentStreant event-type="Student"/>

4. Assume that the St udent St r eamis connected to a processor with the Oracle CQL
query 1.

<processor >
<rul es>

<query id="ql"><![CDATA]

sel ect

name,

address. street as street,

addr ess. phones[0] as primary_phone
from

St udent St ream

></ query>

</rul es>
</ processor >

The Oracle Java data cartridge allows you to access the addr ess event property
from within the Oracle CQL query using normal Java APL

6.2.2 How to Query Using Exported Java Classes

This procedure describes how to use the Oracle Java data cartridge in an Oracle Event
Processing application that uses one event type defined as a tuple (St udent) that has
an event property type defined as a Java class (Addr ess. j ava). In this procedure, the
Address.java class belongs to a separate Oracle Event Processing application. It is
exported in its parent application to make it accessible to other Oracle Event
Processing applications deployed to the same Oracle Event Processing server.

6-8 Developing Applications for Oracle CQL Data Cartridges

Using the Oracle Java Data Cartridge

To query with Java classes:

1. Implement the Addr ess. j ava class.
package test;

class Address {
String street;
String state;
String city;
String [] phones;
}

2. Export the t est package that contains the Addr ess. j ava class.

For more information, see Developing Applications for Event Processing with Oracle
Stream Explorer.

The t est package may be part of this Oracle Event Processing application or it
may be part of some other Oracle Event Processing application deployed to the
same Oracle Event Processing server as this application.

3. Define the event type repository.

<event -type-repository>
<event-type nane="Student">
<property nanme="nane" type="char"/>
<property nanme="address" type="Address"/>
</ event-type>
<event -type-repository>

4. Assume that an adapter is providing St udent events to channel St udent St r eam
<channel id="StudentStrean! event-type="Student"/>

5. Assume that the St udent St r eamis connected to a processor with the Oracle CQL
query q1l.

<processor >
<rul es>

<query id="qgl"><![CDATA]

sel ect

nane,

address. street as street,

address. phones[0] as prinary_phone
from

St udent St ream

></ query>

</rul es>
</ processor>

The Oracle Java data cartridge allows you to access the addr ess event property
from within the Oracle CQL query using normal Java APL

Oracle Java Data Cartridge 6-9

Using the Oracle Java Data Cartridge

6.2.3 Java Cast Function

The Java cartridge provides the Java Cast function that enables a Java extensible type
to be cast to another Java extensible type, providing the latter can be assigned from the
former. To use this function, you must have the Java cartridge installed.

Syntax

T cast @ava(l -val ue, class-literal <T>)

Parameters

| - val ue: A event attribute that contains the data that you want to cast. If | - val ue
cannot be assigned from T, then Java Cartridge raises a
Runt i mel nvocat i onExcept i on during the invocation of the cast function

cl ass-1iteral <T>: The name of the class to which you want to cast. For example, if
you want to castan i nt tol ong, thencl ass-1iteral <T>isLong. cl ass.

Example
Consider the following class hierarchy:

public class Parent

{

public class Child extends Parent

{

The following example casts an object of type Chi | d.

cast @ava(S. parent, Child.class)

6-10 Developing Applications for Oracle CQL Data Cartridges

v

Data Cartridge Framework

The Data Cartridge Framework is a service provider interface (SPI) that enables users

and vendors to create cartridges to extend Oracle CQL functionality. The Hadoop and
NoSQL cartridges described in Oracle Big Data Cartridges are examples of cartridges

created with the Data Cartridge Framework.

For example, with the Data Cartridge Framework, you can extend Oracle CQL
functionality to support the development of Developing Applications for Event Processing
with Oracle Stream Explorer telematic applications. Telematic applications encompass
telecommunications (electrical signals and electromagnetic waves), automotive
technologies, transportation, electrical engineering (sensors, instrumentation, and
wireless communications), and computer science (Internet of Things).

This chapter includes the following sections:
* About the SPI

* Interfaces

e Cartridge Examples

e Source Code

See Java API Reference for Oracle Stream Explorer.

7.1 About the SPI

An Oracle Event Processing cartridge is a single manageable unit that defines external
functions, types, indexes, Java classes, and data sources. The user of the cartridge
references the available functions, types, indexes, Java classes, and data sources from
Oracle CQL code with links of the following form:

myFunction@uyCartridge(argl)

A cartridge created with the Oracle Event Processing Data Cartridges Framework is an
Oracle Event Processing library. This means that you deploy the cartridge the same
way that you deploy a library, which is from the command line or in Oracle
JDeveloper. Once you deploy a cartridge, all of the external functions, types, indexes,
Java classes, and data sources are available to use in Oracle CQL queries. You must
deploy a cartridge before you deploy the application. You can update the cartridge
without updating your application.

See Java API Reference for Oracle Stream Explorer for information about deploying a
library from the command line. See also Getting Started with Event Processing for Oracle
Stream Explorer.

Data Cartridge Framework 7-1

Interfaces

7.2 Interfaces

The com or acl e. cep. cartri dge package contains the Cartridge Framework Java
interfaces. This section describes what you can do and what you must do when you
use the interfaces. Brief descriptions of the interfaces and exceptions follow.

You Can:
* Use any type system for the table and stream attribute types in Oracle CQL.
* Provide your own index data structure for invoking functions.

* Provide new Java classes that are visible within an Oracle CQL query. When you
deploy the cartridge, include the application or library that has the new Java
classes. Applications that access the new Java classes, must import the correct Java
packages in their MANI FEST. MF file with the | npor t - Package header entry.

You Must:

* Provide an MBean for all deployed cartridges that contains a list of all functions
that the cartridge supports. When the cartridge is undeployed the MBean instance
is unregistered.

¢ Implement the Ext er nal Funct i onProvi der.|i st Functi ons method.

* Provide a bean-stage MBean for table sources that you tie to a cartridge external
data source. This MBean provides a list of the table source custom properties
including its i d and pr ovi der name.

Optionally, a table source Spring bean factory can implement the
com bea. w evs. managenent. confi gurati on. spring. St ageFact or yAcc
ess interface to customize how to access the table source properties.

7.2.1 Interface Descriptions
The com or acl e. cep. cartri dge package provides the following Java interfaces.

Capabi i t yProvi der: An Ext er nal Connect i on can implement this interface to
specify the supported capabilities such as less than <, AND, OR, and so on.

Ext er nal Connect i on: Connect to an Ext er nal Dat aSour ce.

Ext er nal Const ant s: Define general constants used by the data cartridge. This
interface provides two constants: EQUALS for external connection capabilities, and
SERVER_CONTEXT_LI NK_I Dto denote an Ext er nal Funct i onPr ovi der linki d.

Ext er nal Dat aSour ce: Use the get Connnect i on method to connect to an external
source of contextual data to join with Oracle CQL processor events. The external data
source must support the configuration of its properties. For example, a NoSQLDB data
source supports the configuration of a host, a port, and a store name.

The external data source specifies the functions it supports. By default, all external
data sources support the equality function, for example:

SELECT * FROM S[NOW, MExternal Dat aSource
WHERE S.id = MyExternal DataSource.id

To make the data source available to Oracle CQL processors, register a Spring Bean
that implements the com or acl e. cep. cartri dge. Ext er nal Dat aSour ce

7-2 Developing Applications for Oracle CQL Data Cartridges

Cartridge Examples

interface and make that Spring bean the target of a table source (W evs: t abl e-
sour ce tag).

Ext er nal Funct i on: A function provided by an Ext er nal Funct i onPr ovi der or
other external entity.

Ext er nal Funct i onDef i ni ti on: Specify the metadata for functions used in Oracle
CQL queries and views that are provided by an Ext er nal Funct i onPr ovi der or
other external entity.

Ext er nal Funct i onPr ovi der : Defines a set of functions that can be directly
accessed from Oracle CQL queries and views. Use the get | Dmethod to register an
external function provider as an OSGi service. Also, the provider must specify the
Ext er nal Cont ant s. SERVER_CONTEXT_LI NK_I Dservice property to indicate the
link ID to use in Oracle CQL queries and views to identify the provider.

Ext er nal Pr edi cat e: Represent prepared statement predicates with attributes and a
predicate clause.

Ext er nal Pr epar edSt at enent : Represent a prepared statement from an external
function provider to execute the same or similar functions repeatedly and efficiently.

7.2.2 Exceptions
The com or acl e. cep. cartri dge package provides the following exceptions:

Anbi guousFunct i onExcept i on: Thrown when referenced function cannot be
determined by the Ext er nal Functi onProvi der due to ambiguity.

Cartri dgeExcepti on: Root cartridge exception.

Funct i onNot FoundExcept i on: Thrown when the referenced function in an Oracle
CQL statement is not supported by Ext er nal Funct i onPr ovi der .

7.3 Cartridge Examples

This section describes two cartridge examples: an arithmetic cartridge and a data
source cartridge. The arithmetic cartridge makes arithmetic functions available to
Oracle CQL queries similar to the spatial cartridge, which contains only functions,
described in Oracle Spatial Data Cartridge. The data cartridge defines a data source
similar to Hadoop described in Oracle Big Data Cartridges.

To make the cartridges available for Oracle CQL queries within Oracle Event
Processing applications, deploy each cartridge as a separate application library. After
you deploy the cartridges, deploy the Oracle Event Processing application or
applications that use the cartridges.

7.3.1 Arithmetic Cartridge

The arithmetic cartridge has the following function classes:

* A set of Java classes that provide the functionality for addition, array, and
exception operations.

e The Excepti onFuncti on. j ava and ArrayFunci t on. j ava classes to provide
array and exception functionality so that you can use arrays and throw exceptions
from an Oracle CQL query.

e AnArithmeticActivator.java class starts and stops the cartridge bundle.

Data Cartridge Framework 7-3

Source Code

All of the function classes implement the
com oracl e. cep. cartri dge. Ext er nal Functi onProvi der interface and have
a get Narme method that returns the name of the function to use in an Oracle CQL

query.

For example the AddFunct i on. j ava and AddLongFunct i on. j ava get Nane
methods return pl us for the function name. You use the function name in the Oracle
CQL query to call the function. The following query uses the pl us function in the
arithmetic cartridge to add two integers from i nput Channel .

SELECT plus@rithmetic(typelnt, typelnt2) AS typelnt FROMinput Channel

7.3.2 Data Source Cartridge
Data Source Cartridge Files
The cartridge example uses a set of Java classes that define the data source.

The MyCar t ri dgeSour ce. j ava class implements the

com oracl e. cep. cartri dge. Ext er nal Dat aSour ce i nterface. It defines the
data source connection functionality, and reads event data from and writes event data
to the database.

The MyAct i vat or . j ava class implements
org. osgi . framewor k. Bundl eAct i vat or and provides code to start and stop the
cartridge bundle.

The MyHandl er . j ava class implements
org. springfranmewor k. beans. factory. xm . NanespaceHandl er, and
provides code to manage the cartridge name space and register the Udds factory bean.

The UddsDef i ni ti onPar ser. | ava class extends
org. springfranmework. beans. factory. xm . Abst ract Si ngl eBeanDefiniti
onPar ser and provides code to parse and register UddsFact or yBean objects.

The UddsFact or yBean. j ava class extends
org. springfranmework. beans. factory. confi g. Abstract Fact or yBean and
provides code to manage events and the event type repository.

7.4 Source Code

This section provides the source code for the data source application and cartridge,
and the arithmetic cartridge.

e Arithmetic Cartridge

¢ Data Source Cartridge.

7.4.1 Arithmetic Cartridge

* AddFunction.java

* ArithmeticActivator.java
¢ ArrayFunction.java

¢ ExceptionFunction.java

* UserDefineFunctionClass.java

7-4 Developing Applications for Oracle CQL Data Cartridges

Source Code

AddFunction.java

package tests.functional.cartridge.userdefine.comon.libs.arithnetic;

inport java.util.Mp;
import com oracle. cep. cartridge. Ext ernal Functi on;

public class AddFunction inplements External Function{

@verride
public String getName() {
return "plus";

}

@verride

public Cass<?>[] getParaneterTypes() {
C ass<?>[] paraneters = new O ass<?>[2];
parameters[0] = java.lang.|nteger.class;
parameters[1] = java.lang.|nteger.class;
return paraneters;

}

@verride

public O ass<?> getReturnType() {
return java.lang. | nteger.class;

1

@verride
public Object execute(Chject[] args, String caller, Map<String, Object> context)
throws Exception {
if(args.length != 2)
throw new ||| egal Argunent Exception("add function need an 2 paraneters");
if(!(args[0] instanceof java.lang.Integer && args[1]
instanceof java.lang.Integer)) {
throw new I || egal Argunent Exception("add function only
support java.lang.Integer");
}

java.lang.Integer argl = (Integer) args[0];
java.lang.Integer arg2 = (Integer) args[1];
return new java.lang.|nteger(argl + arg2);
}
}

ArithmeticActivator.java

package tests.functional.cartridge.userdefine.comon.libs.arithnetic;

inport java.util.Hashtable;

i mport org.osgi.framework. Bundl eActi vator;

i mport org.osgi.framework. Bundl eCont ext ;

i mport org.osgi.framework. ServiceRegi stration;

i mport com oracl e. cep. cartridge. Ext ernal Functi onProvi der;

public class ArithmeticActivator inplements Bundl eActivator {
private ServiceRegistration reg;

@verride

public void start(Bundl eContext context) throws Exception {
Hasht abl e props = new Hashtabl e();
props. put ("server.context.link.id", "arithmetic");

Data Cartridge Framework 7-5

Source Code

this.reg = context.registerService(External FunctionProvider. cl ass. get Name(),
new User Defi neFunction(), props);
1

@verride
public void stop(Bundl eContext arg0) throws Exception {
this.reg.unregister();
1
}

ArrayFunction.java

package tests.functional.cartridge.userdefine.comon.libs.arithnetic;

inmport java.util.Arraylist;

inmport java.util.List;

inport java.util.Mp;

import com oracl e. cep. cartridge. Ext ernal Functi on;

public class ArrayFunction inplenents External Function {

@verride
public String getName() {
return "array";

}

@verride

public C ass<?>[] getParaneterTypes() {
C ass<?>[] paraneters = new C ass<?>[2];
parameters[0] = Integer.class; paraneters[1] = Integer.class;
return paraneters;

}

@verride
public O ass<?> getReturnType() {
return List.class;

}

@verride
public Qbject execute(Cbject[] args, String caller, Map<String, Object> context)
throws Exception {
if(args.length == 0) {
return null;
}
if(!(args[0] instanceof java.lang.Integer)) {
throw new |11 egal Argument Exception("median function only supports
java.lang. Integer");
}

List ret = new ArrayList();

for(Qbject obj:args) {
ret.add(obj);

}

return ret;

ExceptionFunction.java

package tests.functional.cartridge.userdefine.comon.libs.arithnetic;

inport java.util.Mp;

7-6 Developing Applications for Oracle CQL Data Cartridges

Source Code

import com oracle. cep. cartridge. Ext ernal Functi on;

public class ExceptionFunction inplenents External Function{

@verride
public String getName() {
return "exception”

}

@verride
public Cass<?>[] getParaneterTypes() {
return new O ass<?>[]{Integer.class};

}

@verride
public O ass<?> getReturnType() {
return Integer.class;

}
@verride

public Object execute(Chject[] args, String caller, Map<String, Object> context)

throws Exception {
throw new Nul | Poi nter Exception("l am an excpetion");

}
}

UserDefineFunctionClass.java

package tests.functional.cartridge.userdefine.comon.libs.arithnetic;

inmport java.util.Arraylist;
inmport java.util.List;
inport java.util.Mp;
inport java.util.Set;

i mport com oracl e. cep. cartridge. Ambi guousFunct i onExcepti on;

i mport com oracl e. cep. cartridge. Ext ernal Functi on;
i mport com oracl e. cep. cartridge. Ext ernal Functi onProvi der;;
i mport com oracl e. cep. cartridge. Functi onNot FoundExcept i on;

public class UserDefineFunction inplenments External FunctionProvider {

private Arraylist<External Function> functions = new

ArrayLi st <Ext ernal Function>();

public UserDefineFunction() {
functions. add(new AddFunction());
functions. add(new ArrayFunction());

1
@verride

functions. add(new Excepti onFunction());

publ i c External Function getFunction(String functionName, C ass<?> []
paramet er Types, String caller, Map<String, Object> context)
t hrows Anbi guousFuncti onException, FunctionNot FoundException {

i f("plus".equal sl gnoreCase(functionNane)) {

return new AddFunction();

} else if("array".equal sl gnoreCase(functionNanme)) {

return new ArrayFunction();

} else if("exception".equal slgnoreCase(functionName)) {

return new ExceptionFunction();

Data Cartridge Framework 7-7

Source Code

t hrow new Functi onNot FoundExcepti on(functi onNanme+" is not supported in
arithnetic");
}

@verride
public String getld() {
return "arithmetic";

}

@verride

public List<External Function> |istFunctions(String caller,
Map<String, Object> context) {
ArraylLi st <External Function> functionList = new ArrayLi st <External Function>();
functionList.addAl | (functions);
return functionList;

}

}

7.4.2 Data Source Cartridge

The Data Source cartridge is comprised of the following Java class files:
e MyCartridgeSource java

* MyActivator.java

e MyHandler.java

¢ UddsFactoryBean.java

MyCartridgeSource.java

package tests.functional.cartridge.userdefine.comon.libs. datasource;

inport java.nath. Bi gDeci nal ;

inport java.sql.Tinestanp;

inport java.util.Arraylist;

inport java.util.Date;

inport java.util.lterator;

inmport java.util.List;

inport java.util.Mp;

inport java.util.regex. Matcher;

inport java.util.regex.Pattern;

inport oracle.cep.dataStructures. external. Tupl eVal ue;

i mport org.springfranmework. 0sgi . ext ensi ons. annot ati on. Servi ceRef erence;
inport com bea. w evs. ede. api . Event Property;

inport com bea.w evs. ede. api . Event Type;

inport com bea. w evs. ede. api . Event TypeReposi tory;

import com bea. w evs. ede. api . Type;

i nport com bea. w evs. managenent. configuration. spring. St ageFact or yAccess;
import com oracle. cep. cartridge. Ext ernal Connecti on;

import com oracle. cep. cartridge. Ext ernal Dat aSour ce;

i mport com oracle. cep.cartridge. External Predi cate;

inport com oracle. cep.cartridge. Ext ernal PreparedSt at enent ;

public class MyCartridgeSource inplenents StageFactoryAccess,
Ext er nal Dat aSour ce {
I
@verride
public Map<?, ?> getCacheDataSource() {
return null;

7-8 Developing Applications for Oracle CQL Data Cartridges

Source Code

1
private Event TypeRepository etr;

@er vi ceRef erence

public void setEvent TypeRepository(Event TypeRepository etr) {

this.etr = etr;

}

private String event Type;

@verride

public String getEvent Type() {
Systemout. println("event type:" + this.eventType);
return eventType;

}

public void setEvent Type(String event Type) {
this.event Type = event Type;

}

private | ong maxThreshhold = 0;

@verride
public |ong getExternal RowsThreshol d() {
return maxThreshhol d;

}

public void setExternal RowsThreshol d(| ong maxThreshhol d) {
t hi s. maxThreshhol d = maxThr eshhol d;

}

private String pattern;

public String getPattern() {
return pattern;

}

public void setPattern(String pattern) {
this.pattern = pattern;

1
private String singularity;

public String getSingularity() {
return singularity;

}

public void setSingularity(String singularity) {
this.singularity = singularity;
1

private String id;

@verride
public String getld() {
return id;

}

public void setld(String id) {
this.id =id;

Data Cartridge Framework 7-9

Source Code

}

@verride
public String getJDBCDataSource() {
return nul l;
1

private O ass keyd ass;

@verride

public O ass getKeydass() {
return Long. cl ass;

1

public void setKeyC ass(String classNane) throws O assNot FoundException {
this. keydass = O ass. forName(cl assNane) ;

}

private String[] keyPropertyNanes;

@verride
public String[] getKeyPropertyNames() {
return keyPropertyNanes;

}

public void setKeyProperty(String names) {
keyPropertyNames = names.split(",");

}

@verride
public String getTabl eNane() {
return null;

}

public Cass getOhjectType() {
return External Dat aSour ce. cl ass;

}

@verride

public External Connection get Connection() throws Exception {
M/Ext er nal Connection connection = new
M/Ext er nal Connection(this.etr.getEvent Type(this.eventType));
connection. setPattern(pattern);
connection. setSingularity(singularity);
return connection;

}

public static class MyExternal Connection inplements External Connection {
private final Event Type targetEvent Type;

publ i c MyExternal Connecti on(Event Type eventtype) {
this.target Event Type = eventtype;

}

private String pattern;

public void setPattern(String pattern) {
this.pattern = pattern;

}

private String singularity;

7-10 Developing Applications for Oracle CQL Data Cartridges

Source Code

public void setSingularity(String singularity) {
this.singularity = singularity;

}

@verride
public void close() throws Exception {

}

@verride
publ i c External PreparedStatenent prepareStatenent(String relationNang,
List<String> relationAttrs, External Predicate predicate)
throws Exception {
return new MyExternal PreparedSt at ement (this.target Event Type,
predicate,this.pattern,this.singularity);

}

@verride
publ i ¢ bool ean supportsPredi cat e(Ext ernal Predi cate predicate)
throws Exception {
return true;
1
}

public static class MyExternal PreparedStatement inplenents
Ext ernal PreparedStat enent {
private External Predicate predicate;
private Chject[] keys = new Object[10];
private final Event Type targetEvent Type;
private Pattern pattern;
private Pattern singularity;

publ i c MyExternal PreparedSt at enent (Event Type tar get Event Type,
External Predicate predicate, String pattern,String singularity) {
this.target Event Type = target Event Type;
this.predicate = predicate;
if (pattern == null) {
this.pattern = Pattern.conpile(".*");
} else {
this.pattern = Pattern.conpile(pattern);
}
if (singularity == null) {
this.singularity = Pattern.conpile("$.2");
} else {
this.singularity = Pattern.conpile(singularity);
}
1

@wverride
public void close() throws Exception {}

@verride
public Iterator<Cbject> executeQuery() throws Exception {
Li st<Ooj ect> result = new ArrayLi st<Object>();
List attrs = predicate.getAttributes();
String val ue="";
for(int i = 0;i<attrs.size();i++) {
i f(keys[i+1] ==null) {
System out. println("enpty="+keys[i+1]);
return result.iterator();

val ue = keys[i+1].toString();

Data Cartridge Framework 7-11

Source Code

Mat cher m = this.pattern. mtcher(val ue);
if(!'mmatches()) {
System out. println("enpty="+val ue);
return result.iterator();
1
}

Tupl eVal ue event = (Tupl eVal ue) this.target Event Type. createEvent();
Event Property[] properties = this.targetEvent Type. get Properties();
for (int i =0; i < properties.length; i++) {

properties[i].setVal ue(event, createValue(properties[i], value));

Systemout. println("one="+val ue);
result.add(event);

Mat cher s = this.singularity.mtcher(value);
if(s.matches()) {
System out. print!|n("doubl e="+val ue);
result.add(event);

}

return result.iterator();

private Chject createVal ue(EventProperty property, String value) {

Type propertyType = property. get Type();

oj ect ret;

if (Type.INT == propertyType) {
ret = Integer.val ueCt (val ue);

} else if (Type.Bl G NT == propertyType) {
ret = Long.val ueCf (val ue);

} else if (Type. FLOAT == propertyType) {
ret = Float.val ueCf (val ue);

} else if (Type. DOUBLE == propertyType) {
ret = Doubl e. val ueO (val ue);

} else if (Type.BYTE == propertyType) {
ret = val ue. getBytes();

} else if (Type. BOOLEAN == propertyType) {
ret = fal se;

} else if (Type. TI MESTAMP == propertyType) {
ret = new Date();

} else if (Type.|NTERVAL == propertyType) {
ret = Long. val ueC (val ue);

} else {
ret = val ue;

}

return ret,

}

@verride

public void setBigDeci mal (int param ndex, BigDecimal x)
throws Exception {
this. keys[param ndex] = x;

}

@wverride
public void setBool ean(int paranm ndex, bool ean x) throws Exception {
this. keys[param ndex] = x;

1
@verride

public void setBytes(int param ndex, byte[] x) throws Exception {
this. keys[param ndex] = x;

7-12 Developing Applications for Oracle CQL Data Cartridges

Source Code

}

@wverride
public void setDoubl e(int param ndex, double x) throws Exception {
this. keys[param ndex] = x;

}

@wverride
public void setFloat(int param ndex, float x) throws Exception {
this. keys[param ndex] = x;

}

@wverride
public void setlInt(int paramndex, int x) throws Exception {
this. keys[param ndex] = x;

}

@wverride
public void setLong(int param ndex, long x) throws Exception {
this. keys[param ndex] = x;

}

@wverride
public void setNull (int param ndex, int x) throws Exception {
this. keys[param ndex] = x;

}

@wverride
public void setString(int param ndex, String x) throws Exception {
this. keys[param ndex] = x;

}

@wverride
public void setTinestanp(int paranindex, Tinmestanp x) throws Exception {
this. keys[param ndex] = x;

}

[l @verride
public O ass getBeand ass() {
return this.getdass();

}

[l @verride
public Map getlnstancePropertiesAshap() {
return null;

}

[l @verride
public String getProvider() {
return nul l;

}
}
MyActivator.java

package tests.functional.cartridge.userdefine.comon.libs.datasource;

i mport org.osgi.framework. Bundl eActivator;
i mport org. osgi . framework. Bundl eCont ext ;
i mport org.osgi.framework. ServiceRegi stration;

Data Cartridge Framework 7-13

Source Code

public class M/Activator inplenents BundleActivator {
private ServiceRegistration reg;

@verride

public void start(Bundl eContext context) throws Exception {
1

@verride

public void stop(Bundl eContext arg0) throws Exception {

1

}

MyHandler.java

package tests.functional.cartridge.userdefine.comon.libs.datasource;

i mport org.springframework. beans. factory. config. BeanDefini tion;

i mport org.springframework. beans. factory. confi g. BeanDefi ni ti onHol der;
i mport org.springframework. beans. factory. xm . NamespaceHandl er;

i mport org.springframework. beans. fact ory. xm . NanmespaceHand| er Support ;
i mport org.springframework. beans. factory. xm . Par ser Cont ext ;

i mport org.w3c. dom El enent;

i mport org.w3c. dom Node;

i mport
tests.functional.cartridge. external datasource. common. apps. cart 2. spring. Fil eDefinition
Par ser;

public class M/Handl er inplenents NanespaceHandl er {
private NamespaceHandl er Support support = new NamespaceHandl er Support () {
public void init() {
regi st er BeanDef i ni tionParser("udds", new UddsDefinitionParser());
}
b

@verride
publ i ¢ BeanDefinitionHol der decorate(Node node, BeanDefinitionHol der definition,
Par ser Cont ext parserContext) {
return this.support.decorate(node, definition, parserContext);

}

@verride
public void init() {
this.support.init();

1
@verride

publ i c BeanDefinition parse(El ement el ement, ParserContext parserContext) {
return this.support.parse(el ement, parserContext);

}
}

UddsDefinitionParser.java
package tests.functional.cartridge.userdefine.comon.libs. datasource;
i mport org.springframework. beans. fact ory. support. BeanDefi ni tionBuil der;

import org.springframework. beans. factory. xm . Abstract Si ngl eBeanDef i ni ti onPar ser;
i mport org.springframework. core. Conventions;

7-14 Developing Applications for Oracle CQL Data Cartridges

Source Code

i mport org.w3c.dom Attr;
i mport org.w3c. dom El enent;
i mport org. w3c. dom NanedNodeMap;

public class UddsDefinitionParser extends AbstractSingl eBeanDefinitionParser {
protected C ass<?> get BeanC ass(El ement el ement) {
return UddsFact oryBean. cl ass;

}

protected void doParse(El enent el enent, BeanDefinitionBuilder builder) {
NamedNodeMap attributes = el enent.get Attributes();

for (int x = 0; x < attributes.getLength(); x++) {
Attr attribute = (Attr) attributes.iten(x);
String name = attribute. getLocal Name();

if ("id".equal s(nane))
conti nue;
bui | der. addPr opert yVal ug(
Conventions. attribut eNaneToPr opert yNanme(name),
attribute. getVal ue());

UddsFactoryBean.java

package tests.functional.cartridge.userdefine.comon.libs.datasource;

i mport org.osgi . framework. Bundl eCont ext ;

i mport org. springframework. beans. f act ory. BeanNaneAwar e;

i mport org.springframework. beans. factory.InitializingBean;

i mport org.springframework. beans. factory. confi g. Abstract Fact or yBean;

i mport org.springframework. 0sgi. cont ext. Bundl eCont ext Awar e;

i mport org. springframework. 0sgi . ext ensi ons. annot ati on. Servi ceRef erence;
i mport com bea. w evs. ede. api . Event TypeReposi t ory;

public class UddsFactoryBean extends AbstractFact oryBean<M/Cartri dgeSour ce>
impl ements InitializingBean, BeanNameAware, Bundl eContextAware {

private EventTypeRepository etr;
private Bundl eContext bundl eContext;
private String beanNane;

private String event Type;

private String pattern;

private String singularity;

@er vi ceRef erence
public void set Event TypeRepository(Event TypeRepository etr) {
this.etr = etr;

}

@verride
public void setBundl eCont ext (Bundl eContext context) {
thi s. bundl eCont ext = context;

!
@verride

public void setBeanNanme(String nanme) {
thi s. beanName = nane;

}

Data Cartridge Framework 7-15

Source Code

public String getEvent Type() {
return this.eventType;

}

public void setEvent Type(String event Type) {
this.event Type = event Type;

1
private String keyProperty;

public String getKeyProperty() {
return keyProperty;

}

public void setKeyProperty(String names) {
keyProperty = nanes;

}

@verride
protected My/CartridgeSource createlnstance() throws Exception {
MyCartridgeSource ret = new MyCartridgeSource();
Systemout. println("id="+this.beanNane+", event Type="+t hi s. event Type);
ret.setld(this.beanName);
ret.set Event Type(this. event Type);
ret.setPattern(this.pattern);
ret.setSingularity(singularity);
ret.set KeyProperty(keyProperty);
return ret;

}

@verride
public O ass<?> get Ovj ect Type() {
return MyCartridgeSource. cl ass;

}

public void setPattern(String pattern) {
this.pattern = pattern;

}

public String getPattern() {
return pattern;

}

public void setSingularity(String singularity) {
this.singularity = singularity;

}

public String getSingularity() {
return singularity;

}
}

7-16 Developing Applications for Oracle CQL Data Cartridges

A

Oracle Spatial Command and API Reference

This command and API reference provides syntax and example information for Oracle
Spatial commands and APIs that apply to Oracle Event Processing.

ANYINTERACT
buffer
bufferPolygon
CONTAIN
convertTo2D
convertTo3D
createCircle
createElemInfo
createGeometry
createLinearLineString
createLinearMultiLineString
createLinearPolygon
createMultiPoint
createPoint
createRectangle
distance
einfogenerator
FILTER

get2dMbr

INSIDE

INSIDE3D

NN

ordsgenerator

to_Geometry

Oracle Spatial Command and API Reference A-1

ANYINTERACT

¢ to_J3D_Geometry
e to_]JGeometry
e WITHINDISTANCE.

A.1 ANYINTERACT

The ANYI NTERACT Oracle Spatial geometric relation operator returns t r ue when the
key interacts with the geometry (geom), and f al se otherwise.

Syntax
ANYI NTERACT@pat i al (geom key, tol)

¢ geom Any supported geometry type.

e key: A GTYPE_PO NT, GTYPE_CURVE, GTYPE_POLYGON, GTYPE_SURFACE,
GTYPE_COLLECTI ON, GTYPE_MULTI PO NT, GTYPE_MULTI CURVE,
GTYPE_MJLTI POLYGON, GTYPE_SOLI D, or GTYPE_MJLTI SCLI D geometry type.

The geometry type of this geometry must be GTYPE_PO NT or a
RUNTI ME_EXCEPTI ONwill be thrown.

® tol: The tolerance as a doubl e value. The tolerance value expands the thickness of
the boundaries.

Example

<vi ew i d="op_i n_where">
RSt r eam(
sel ect
| oc. customerld
shop. shopl d
from
LocCGeonttrean] NOW as | oc
ShopCGeonRel ation as shop
wher e
ANYI NTERACT@pat i al (shop. geom |oc.curLoc, 5.0d) = true
)

</ vi ew>
<view id="op_in_proj">
RSt r eam(
sel ect
| oc. customerld,
shop. shopl d,
ANYI NTERACT@pat i al (shop. geom | oc. curLoc, 5.0d)
from
LocGeonttrean] NON as | oc,
ShopGeonRel ation as shop
)
</ vi ew>

A.2 buffer

The com.oracle.cep.cartridge.spatial. Geometry buf f er method returns a new
oracle.spatial.geometry.JGeometry object that is the buffered version of the input
geometry.

A-2 Developing Applications for Oracle CQL Data Cartridges

bufferPolygon

Syntax

e puf f er W dt h: The distance value used for this buffer as a doubl e.

This value is assumed to be in the same unit as the Unit of Projection for projected
geometry. If the geometry is geodetic, this buffer width should be in meters.

e SMA: The Semi Major Axis as a doubl e.
Set this parameter when the geometry is geodetic.

¢ i Fl at : The Flattening from CS parameters as a doubl e.

Set this parameter when the geometry is geodetic.

e arcT:Thearc_tol erance for geodetic arc densification as a doubl e.

comoracle.cep.cartridge, spatial.geonetry. buffer(bufferWdth, SMA iFlat, actT)

Example
<view i d="LocGeon®t reant schema="custonerld curLoc">
sel ect
cust oner | d,
comoracle.cep.cartridge.spatial.Ceometry. buffer(13, 2, 4, 7)
from
Cust oner LocSt ream
</ vi ew>

A.3 bufferPolygon

Thecom oracl e. cep. cartridge. spati al . Geonet ry buf f er Pol ygon method
returns a com or acl e. cep. cartridge. spati al . Geonet ry object that is the
buffered version of the input or acl e. spati al . geonetry. JGeonet r y polygon.
This method creates buffered polygons to a specified distance around the input
features.

Syntax

comoracl e.cep.cartridge. spatial.Geonetry. buf f er Pol ygon(pol ygon, di stance)

* polygon: Anoracl e. spati al . geonmetry. JGeomnet ry polygon.

e di stance: A doubl e value that specifies the distance around the input features.

The di st ance value is assumed to be in the same unit as the Unit of Projection for
projected geometry. If the geometry is geodetic, the buffer di st ance should be in
meters.

Example

This method obtains parameters from the Oracle Spatial application context. You must
use the spati al link name (@pati al) to associate the method call with the Oracle
Spatial application context See Oracle Spatial Application Context.

comoracl e.cep.cartridge. spatial.Geonetry. buf f er Pol ygon@pati al (geom 1300)

The following example creates a buffered polygon. Because this example depends on
the Oracle Spatial application context, it uses the spat i al link name.

<vi ew i d="LocGeonttreant schema="customerld curlLoc">
sel ect

Oracle Spatial Command and API Reference A-3

CONTAIN

cust omer | d,
comoracle.cep.cartridge.spatial.Geonetry. buf f er Pol ygon@pati al (geom 13)
from
Cust omer LocSt ream
</ vi ew>

A.4 CONTAIN

The Oracle Spatial geometric relation CONTAI N operator returns t r ue when a
geometry is contained by another geometry, and f al se otherwise.

Syntax
CONTAI N@pat i al (geom key)

¢ geom Any supported geometry type.

e key: A GTYPE_PO NT, GTYPE_CURVE, GTYPE_POLYGON, GTYPE_SURFACE,
GTYPE_COLLECTI ON, GTYPE_MULTI PO NT, GTYPE_MULTI CURVE,
GTYPE_MJLTI POLYGON, GTYPE_SOLI D, or GTYPE_MJLTI SCLI D geometry type.

For more information, see Oracle Spatial Developer’s Guide.

Example

<view i d="op_i n_where">
RSt r eam
sel ect
| oc. customerld,
shop. shopl d
from
LocCGeonstrean] NON as | oc,
ShopGeonRel ation as shop
wher e
CONTAI N@pat i al (shop. geom loc.curlLoc, 5.0d) = true

)
</ vi ew>
<view id="op_in_proj">
RSt r eam
sel ect
| oc. customerld,
shop. shopl d,
CONTAI N@pat i al (shop. geom | oc. curLoc, 5.0d)
from
LocGeonstrean] NON as | oc,
ShopGeonRel ation as shop
)
</ vi ew>
A.5 convertTo2D

The com oracl e. cep. cartridge. spatial . Geonet ry convert To2D method
converts an or acl e. spati al . geometry. JGeomet ry 3D object to an
oracl e. spati al . geonetry. JGeonet ry 2D object.

Syntax

comoracl e.cep.cartridge. spatial.Geonetry. convert To2D(geom

The geomparameter is an oracle.spatial.geometry.JGeometry 3D object.

A-4 Developing Applications for Oracle CQL Data Cartridges

convertTo3D

Example
<vi ew i d="LocGeonttreant schema="customerld curlLoc">
sel ect
customerld,
comoracle.cep.cartridge. spatial . Geonet ry. convert To2D(geom)
from
Cust oner LocSt ream
</ vi ew>

A.6 convertTo3D

The com oracl e. cep. cartridge. spatial . Geonet ry convert To3D method
converts an or acl e. spati al . geonmetry. JGeomet ry 2D object into an

oracl e. spati al . geonetry. JGeonet ry 3D object. The conversion pads z
coordinates to zero.

Syntax

comoracl e.cep.cartridge. spatial.Geonetry. convert To3D(geom

The geomparameter is an or acl e. spati al . geonet ry. JGeonet ry 2D object.

Example

<view i d="LocGeonst reant schema="custonerld curlLoc">
sel ect
cust oner | d,
com oracl e.cep.cartridge. spatial.Geometry. convert To3D(geom
from
Cust oner LocSt ream
</ vi ew>

A.7 createCircle

Thecom oracl e. cep. cartridge. spati al. Geonetry creat eC rcl e method
returns a com or acl e. cep. cartridge. spati al . Geonet ry object that is a 2D or
3D circle.

Create a 2D Circle Syntax

comoracl e.cep.cartridge. spatial.Geonetry.createCrcle(x, y, radius)
comoracl e.cep.cartridge. spatial.Geonetry.createCircle(x, y, radius, srid)

* x: The x ordinate of the circle's center as a doubl e.
¢ y: The y ordinate of the circle's center as a doubl e.
e radius: Thearc_tol erance for geodetic arc densification as a doubl e.

e srid: The optional SDO_SRI D of the circle as an i nt . When the sri d parameter is
omitted, add the spatial link name as shown in the examples.

Create a 3D Circle Syntax

comoracl e.cep.cartridge. spatial.Geonetry.createGrcle(x1, yl, x2, y2, x3, y3)
comoracl e.cep.cartridge. spatial.Geonetry.createCircle(srid, x1, yl, x2, y2, x3,
y3)

Specify three coordinates to form the circumference with the following arguments:

Oracle Spatial Command and API Reference A-5

createEleminfo

* x1: The x ordinate of point 1 as a doubl e.
¢ y1: They ordinate of point 1 as a doubl e.
* x2: The x ordinate of point 2 as a doubl e.
¢ y2: They ordinate of point 2 as a doubl e.
* x3: The x ordinate of point 3 as a doubl e.
¢ y3: The y ordinate of point 3 as a doubl e.

¢ sri d: The optional SRI D of the circle as an i nt . When you omit the sri d
parameter, add the spatial link name (@pat i al) as shown in the examples.

Examples

If you omit the optional sr i d parameter, then the method obtains parameters from
the Oracle Spatial data cartridge application context. In this case, use the spatial link
name (@pati al) to associate the method call with the Oracle Spatial data cartridge
application context. See Oracle Spatial Application Context

comoracl e.cep.cartridge. spatial.Geonetry. createCircle@patial (x, y)

The following example creates a 2D circle with the sri d parameter. Because this
example uses the sr i d parameter, it does not need the spat i al link name.

<view id="LocGeonttreant schema="custonerld curlLoc">
sel ect
cust oner | d,
comoracle.cep.cartridge.spatial.CGeometry.createCircle(x, y, 300, srid)
from
Cust oner LocSt ream
</ vi ew>

A.8 createEleminfo

Thecom oracl e. cep. cartridge. spati al . Geonetry creat eEl em nfo
method returns a single element info value as ani nt [] from the given arguments.
See einfogenerator for an alternative.

Syntax

comoracl e.cep.cartridge. spatial . Geonetry. createEl em nfo(of fset, etype, interp)

e sof f set: The offset, as an i nt, within the ordinates array where the first ordinate
for this element is stored.

SDO_STARTI NG_OFFSET values start at 1 and not at 0. Thus, the first ordinate for
the first element will be at SDO_GEOVETRY. Or di nat es(1) . If there is a second
element, its first ordinate will be at SDO_GEOMETRY. Or di nates(n * 3 + 2),
where n reflects the position within the SDO_ORDI NATE_ARRAY definition.

e et ype: The type of the elementas ani nt .

Oracle Spatial supports SDO_ETYPE values 1, 1003, and 2003 are considered simple
elements (not compound types). They are defined by a single triplet entry in the
element info array. These types are:

- 1:point.

A-6 Developing Applications for Oracle CQL Data Cartridges

createEleminfo

— 1003: exterior polygon ring (must be specified in counterclockwise order).

— 2003: interior polygon ring (must be specified in clockwise order).

These types are further qualified by the SDO_| NTERPRETATI ON.

Note:

Do not mix 1-digit and 4-digit SDO_ETYPE values in the same geometry.

e interp: The interpretation as ani nt .

For an SDO_ETYPE that is a simple element (1, 1003, or 2003), the

SDO_| NTERPRETATI ON attribute determines how the sequence of ordinates for
this element is interpreted. For example, a polygon boundary may be made up of a
sequence of connected straight line segments.

If a geometry consists of more than one element, then the last ordinate for an
element is always one less than the starting offset for the next element. The last
element in the geometry is described by the ordinates from its starting offset to the
end of the ordinates varying length array.

Table A-1 describes the relationship between SDO_ETYPE and
SDO_| NTERPREATI ON.

Table A-1 SDO_ETYPE and SDO_INTERPRETATION

SDO_ETYP SDO_INTERPRETATIO Description

E N

0 Any numeric value Use to model geometry types not supported by
Oracle Spatial.

1 1 Point type.

1 0 Orientation for an oriented point.

1003 or 1 Simple polygon with vertices connected by

2003 straight line segments. You must specify a point
for each vertex; and the last point specified must
be exactly the same point as the first (within the
tolerance value), to close the polygon.
For example, for a 4-sided polygon, specify 5
points, with point 5 the same as point 1.

1003 or 3 Rectangle type (optimized rectangle). A

2003 bounding rectangle such that only two points,
the lower-left and the upper-right, are required
to describe it. The rectangle type can be used
with geodetic or non-geodetic data. However,
with geodetic data, use this type only to create a
query window (not for storing objects in the
database).

Example

<vi ew i d="ShopGeont' >
select comoracle.cep.cartridge.spatial.Geonetry.createGeonetry@patial (

Oracle Spatial Command and API Reference A-7

createGeometry

comoracl e.cep.cartridge. spatial.Geonetry. GTYPE_POLYGON,
comoracl e.cep.cartridge. spatial.Geonetry.createEl em nfo(1, 1003, 1),
ordsgener at or @pati al (
Ingl, latl, Ing2, lat2, Ing3, lat3,
Ing4, lat4, Ing5 lat5, Ing6, lat6
)

) as geom
from ShopDesc
</ vi ew>

A.9 createGeometry

The com oracl e. cep. cartridge. spati al . Geonetry creat eCeonetry
method returns a new 2D or acl e. cep. cartri dge. spati al . Geonet r y object.

Syntax

comoracl e.cep.cartridge.spatial.Geonetry(gtype, eleninfo, ordinates)
comoracl e.cep.cartridge.spatial.Geonetry(gtype, srid, elemnfo, ordinates)

¢ gtype: The geometry typeasani nt.

For more information, see Table A-2.

e el em nf o: The geometry element infoasanint[].

For more information, see createElemInfo.
¢ ordi nat es: The geometry ordinates as a doubl e[] .

* srid: The optional SDO_SRI D of the geometry as an i nt . When you omit the
sri d parameter, add the spatial link name (@pat i al) as shown in the examples.

Examples

If you omit the Sri d parameter, then this method obtains parameters from the Oracle
Spatial application context. In this case, you must use the spat i al link name to
associate the method call with the Oracle Spatial application context: For more
information, see Oracle Spatial Application Context.

comoracl e.cep.cartridge. spatial.Geonetry. creat eGeonetry@pati al (gtype, eleninfo,
or di nat es)

The following examples creates a geometry with the srid parameter. Because this
example uses the sr i d argument, it does not need the @pat i al link name.

<vi ew i d="ShopGeoni' >
sel ect comoracle.cep.cartridge.spatial.Geonetry.createCGeometry(
comoracl e.cep.cartridge. spatial . Geonetry. GTYPE_POLYGON,
srid,
comoracl e.cep.cartridge. spatial.Geonetry.createEl em nfo(1, 1003, 1,
srid),
ordsgener at or @pati al (
Ingl, latl, Ing2, lat2, Ing3, lat3,
Ing4, lat4, Ing5 lath, Ing6, |at6
)
) as geom
from ShopDesc
</ vi ew>

A-8 Developing Applications for Oracle CQL Data Cartridges

createLinearLineString

A.10 createLinearLineString

The com oracl e. cep. cartridge. spati al . Geonetry

creat eLi near Li neSt ri ng method returns a new 3D

com oracl e. cep. cartridge. spati al . Geonet ry geometry that is a linear line
string with element infoof {1, 2, 1}.If the dimensionality of the given coordinates
is 2, the z coordinates are padded to zero.

Syntax

comoracl e.cep.cartridge. spatial.Geonetry. createlLi nearLineString(coords, dim
comoracl e.cep.cartridge. spatial.Geonetry. createLinearLineString(srid, coords,

dim
e coor ds: The coordinates of the linear line string as a doubl e[] .
¢ di m The dimensionality of the given coordinates as an i nt .

¢ srid: The optional SDO_SRI D of the geometry as an i nt . When the srid parameter
is omitted, add the spatial link name as shown in the examples.

For more information, see Oracle Spatial Application Context.

Examples

If you omit the sri d parameter, then this method obtains parameters from the Oracle
Spatial data cartridge application context. You must use the spatial link name
(@pati al) to associate the method call with the Oracle Spatial data cartridge
application context. See Oracle Spatial Application Context.

comoracl e.cep.cartridge. spatial.Geonetry. createLinearLineString@patial (coords,

di m

The following examples creates a linear line string with the srid paramter. Because this
example uses the sr i d parameter, it does not use the @pat i al link.

<vi ew i d="LocGeonttreant schema="customerld curlLoc">
sel ect
customerld,
comoracle.cep.cartridge. spatial.Geometry. createLinearLineString(coords, dim srid)
from
Cust oner LocSt ream
</ vi ew>

A.11 createLinearMultiLineString

The com oracl e. cep. cartridge. spatial . Geonetry

createMul ti Li neStri ng method returns a new 3D

comoracl e.cep.cartridge. spati al . Geonet ry geometry that is a linear
multiline string. If the dimensionality of the given coordinates is 2, then the z
coordinates are padded to zero.

Syntax

comoracl e.oep.cartridge. spatial.Geonetry. createMiltiLineString(coords, dim
comoracle.cep.cartridge. spatial.Geonetry.createMiltiLineString(srid, coords, din

e coor ds: the coordinates of the linear line string as a doubl e[][] .

Oracle Spatial Command and API Reference A-9

createLinearPolygon

* di m the dimensionality of the given coordinates as an i nt .

¢ sri d: the optional SRI D of the geometry as an i nt . When you omit the srid
parameter, add the spatial link name (@pat i al) as shown in the examples.

Examples

If you omit the sri d parameter, then this method obtains parameters from the Oracle
Spatial data cartridge application context. You must use the spat i al link name
(@pati al) to associate the method call with the Oracle Spatial data cartridge
application context. See Oracle Spatial Application Context.

comoracl e.cep.cartridge. spatial.Geonetry. createlLinearMiltiLineString@patial (
coords, dim
The following example creates a linear multiline linear string. Because this example

uses the sri d argument, it does not use the spat i al link name.

<vi ew i d="LocGeonttreant schema="customerld curlLoc">

sel ect
cust oner |l d,
comoracle.cep.cartridge. spatial.Geometry. createLinearMl tiLineString(coords, dim
srid)
from
Cust oner LocStream
</ vi ew>

A.12 createLinearPolygon

The com oracl e. cep. cartridge. spatial . Geonet ry cr eat eLi near Pol ygon
method returns a new com or acl e. cep. cartri dge. spati al . Geonet ry object
that is a 2D simple linear polygon without holes. If the coordinate array does not close
itself (the last coordinate is not the same as the first), then this method copies the first
coordinate and appends this coordinate value to the end of the input coordinates
array.

Syntax
comoracl e.cep.cartridge. spatial . Geonetry. creat eLi near Pol ygon(coords{])
comoracl e.cep.cartridge. spatial.Geonetry. createlLi near Pol ygon(srid, coords[])

® coor ds: the coordinates of the linear polygon as a doubl e[] .

¢ srid: the optional SRI D of the geometry as an i nt . When you omit the srid
parameter, add the spatial link name (@ pat i al) as shown in the examples.

Examples

If you omit the sr i d parameter, then the method obtains parameters from the Oracle
Spatial application context. In this case, you must use the spat i al link name
(&@pati al) to associate the method call with the Oracle Spatial application context.
See Oracle Spatial Application Context.

comoracl e.cep.cartridge. spatial.Geonetry. createlLi near Pol ygon@pati al (coords)
The following example creates a linear polygon with the sri d parameter. Because this
example uses the sri d argument, it does not use the spat i al link name.

<vi ew i d="LocGeonBtreant schema="customerld curlLoc">
sel ect
customerld,

A-10 Developing Applications for Oracle CQL Data Cartridges

createMultiPoint

comoracle.cep.cartridge. spatial . Geonmetry. creat eLi near Pol ygon(coords, srid)
from
Cust omer LocSt ream
</ vi ew>

A.13 createMultiPoint

The com oracl e. cep. cartridge. spati al . Geonetry creat eMul ti Poi nt
method returns a com or acl e. cep. cartri dge. spati al . Geonet ry object which
is a multipoint geometry

Syntax
comoracl e.cep.cartridge. spatial.Geonetry. createMiltiPoint(coords[][], dim
comoracl e.cep.cartridge. spatial.Geonetry.createMiltiPoint(srid, coords[][], dim

* coords: the array of arrays of type doubl e each containing one point.
¢ di m the dimensionality of each point as an i nt .

¢ sri d: the optional SRI D of the geometry as an i nt . When you omit the srid
parameter, add the spatial link name (@pat i al) as shown in the examples.

Examples

If you omit the sri d parameter, then this method obtains parameters from the Oracle
Spatial data cartridge application context. In this case, you must use the spatial link
name (@pat i al) to associate the method call with the Oracle Spatial data cartridge
application context. See Oracle Spatial Application Context.

comoracl e.cep.cartridge. spatial.Geonetry.createMiltiPoint @patial (coords, dim

The following example creates a multipoint geometry with the sri d parameter.
Because this example uses the sr i d parameter, it does not use the spat i al link
name.

<vi ew i d="LocGeonttreant schema="customerld curlLoc">
sel ect
customerld,
comoracle.cep.cartridge. spatial.Geonmetry.createMiltiPoint(coords, dim srid)
from
Cust oner LocSt ream
</ vi ew>

A.14 createPoint

The com oracl e. cep. cartridge. spatial . Geonet ry cr eat ePoi nt method
returns anew com or acl e. cep. cartri dge. spati al . Geonet r y object thatis a
3D point.

Syntax

comoracl e.cep.cartridge. spatial.Geonetry.createPoint(x, y)
comoracle.cep.cartridge. spatial.Geonetry.createPoint(srid, x, y)

e X: the x coordinate of the lower left as a doubl e.

¢ y:they coordinate of the lower left as a doubl e.

Oracle Spatial Command and API Reference A-11

createRectangle

* srid: the optional SRI D of the geometry as an i nt . When you omit the sri d
parameter, add the spatial link name (@pat i al) as shown in the examples.

If you omit the Sri d parameter, then this method obtains parameters from the Oracle
Spatial application context. In this case, you must use the spatial link name

(@pati al) to associate the method call with the Oracle Spatial application context.
See Oracle Spatial Application Context

comoracl e.cep.cartridge. spatial.Geonetry. creat ePoi nt @patial (x,)

The following example creates a point with the sri d parameter. Because this example
uses the sr i d parameter, it does not use the spat i al link name.

<view id="LocGeontt reant schema="custonerld curLoc">
sel ect
cust omer | d,
comoracle.cep.cartridge.spatial.CGeonmetry.createPoint(lng, lat, srid)
from
Cust oner LocSt ream
</ vi ew>

A.15 createRectangle

Thecom oracl e. cep. cartridge. spati al . Geonetry creat eRectangl e
method returns a new com or acl e. cep. cartri dge. spati al . Geonet r y object
that is a 2D rectangle

Syntax

comoracl e.cep.cartridge. spatial.Geonetry. createRectangl e(x1, yl, x2, y2)
comoracl e.cep.cartridge. spatial.Geonetry. createRectangle(srid, x1, yl1, x2, y2)

e x1:the x coordinate of the lower left as a doubl e.

y1: the y coordinate of the lower left as a doubl e.

X2: the x coordinate of the upper right as a doubl e.

y2: the y coordinate of the upper right as a doubl e.

sri d: the optional SRI D of the geometry asan i nt .

Examples

If you omit the sr i d parameter, then this method obtains parameters from the Oracle
Spatial application context. In this case, you must use the spat i al link name
(&@pati al) to associate the method call with the Oracle Spatial application context.
See Oracle Spatial Application Context.

comoracle.cep.cartridge. spatial.Geonetry. createRectangl e@patial (x1, yl, x2, y2)

The following example creates a rectangle. Because this example uses the sri d
parameter, it does not need the spat i al link name.

<vi ew i d="LocGeonBtreant schema="customerld curlLoc">
sel ect
customerld,
comoracle.cep.cartridge. spatial . Geonetry. createRectangl e(x1, y1, x2, y2, srid)
from
Cust onmer LocSt ream
</ vi ew>

A-12 Developing Applications for Oracle CQL Data Cartridges

distance

A.16 distance

The com oracl e. cep. cartridge. spati al . Geonetry di st ance method
calculates the distance between two geometries as a doubl e.

Syntax

comoracl e.cep.cartridge.spatial.Geonetry. di stance(gl, g2)
comoracl e. cep.cartridge. spatial . Geonetry. di stance(geoParam g1, g2)

To calculate the distance between a

com oracl e. cep. cartridge. spati al . Geonet ry object and another, use the
non-static di st ance method of the current Geonet r y object with the following
arguments:

e g:theothercom oracl e. cep. cartridge. spati al . Georet r y object.

To calculate the distance between two
com oracl e. cep. cartridge. spati al . Geonet ry objects, use the static
di st ance method with the following arguments:

* g1:thefirstcom oracl e. cep. cartri dge. spati al . Geonet ry object.

e g2:thesecond com oracl e. cep. cartridge. spati al . Geonet ry object.

Examples

This method obtains parameters from the Oracle Spatial application context. You must
use the spat i al link name to associate the method call with the Oracle Spatial
application context. See Oracle Spatial Application Context.

comoracl e.cep.cartridge. spatial.Geonetry. di stance@pati al (geom
comoracl e.cep.cartridge. spatial.Geonetry. di stance@pati al (geonl, geonR)

The following example calculates the distance between two geometries. Because the
di st ance method depends on the Oracle Spatial application context, it must use the
spati al link name.

<view i d="LocGeonttreant schema="custonerld curlLoc">
sel ect
cust oner | d,
comoracle.cep.cartridge. spatial.Geometry. createRectangl e(x1, yl, x2, y2, srid)
from
Cust oner LocStream
wher e
comoracle.cep.cartridge. spatial.Geonmetry. di stance@pati al (geontl, geon2) < 5
</ vi ew>

A.17 einfogenerator

The ei nf ogener at or Oracle CQL function returns a single i nf 0 element value as in
i nt[] from the given arguments. Alternately, see createElemInfo if you prefer to use
thecom oracl e. cep. cartridge. spatial . Geonetry. creat eEl em nfo
method.

Syntax

ei nfogenerat or @patial (of fset, etype, interp)

Oracle Spatial Command and API Reference A-13

einfogenerator

e of f set: the offset, as an i nt, within the ordinates array where the first ordinate
for this element is stored.

SDO _STARTI NG_OFFSET values start at 1 and not at 0. Thus, the first ordinate for
the first element will be at SDO_GEOMETRY. Or di nat es(1) . If there is a second
element, its first ordinate will be at SDO_GEQOVETRY. Or di nates(n * 3 + 2),
where n reflects the position within the SDO_ORDI NATE_ARRAY definition.

e et ype: the type of the element as ani nt .

Oracle Spatial supports SDO_ETYPE values 1, 1003, and 2003 are considered simple
elements (not compound types). They are defined by a single triplet entry in the
element info array. These types are:

— 1: point.
— 1003: exterior polygon ring (must be specified in counterclockwise order).

— 2003: interior polygon ring (must be specified in clockwise order).

These types are further qualified by the SDO_| NTERPRETATI ON.

Note:

You cannot mix 1-digit and 4-digit SDO_ETYPE values in a single geometry.

* interp:the interpretation as ani nt.

For an SDO_ETYPE that is a simple element (1, 1003, or 2003) the

SDO_| NTERPRETATI ON attribute determines how the sequence of ordinates for
this element is interpreted. For example, a polygon boundary may be made up of a
sequence of connected straight line segments.

If a geometry consists of more than one element, then the last ordinate for an
element is always one less than the starting offset for the next element. The last
element in the geometry is described by the ordinates from its starting offset to the
end of the ordinates varying length array.

Table A-2 describes the relationship between SDO_ETYPE and
SDO_| NTERPREATI ON.

Table A-2 SDO_ETYPE and SDO_INTERPRETATION

SDO_ETYP SDO_INTERPRETATIO Description

E N

0 Any numeric value Used to model geometry types not supported by
Oracle Spatial.

1 1 Point type.

1 0 Orientation for an oriented point.

A-14 Developing Applications for Oracle CQL Data Cartridges

FILTER

SDO_ETYP SDO_INTERPRETATIO Description
E N

1003 or 1 Simple polygon whose vertices are connected by

2003 straight line segments. You must specify a point
for each vertex; and the last point specified must
be exactly the same point as the first (within the
tolerance value), to close the polygon.

For example, for a 4-sided polygon, specify 5
points, with point 5 the same as point 1.

1003 or 3 Rectangle type (sometimes called optimized

2003 rectangle). A bounding rectangle such that only
two points, the lower-left and the upper-right,
are required to describe it. The rectangle type can
be used with geodetic or non-geodetic data.
However, with geodetic data, use this type only
to create a query window (not for storing objects
in the database).

Examples

This is an Oracle CQL function so you invoke this function with the spatial link name
and without a package prefix. The following example creates the element information
for a geometry.

vi ew i d="ShopGeont >
select comoracle.cep.cartridge.spatial.Geonetry.createCGeonetry@patial (
comoracl e.cep.cartridge. spatial . Geonetry. GTYPE_POLYGON,
ei nf ogenerator @patial (1, 1003, 1),
ordsgenerat or @pati al (
Ingl, latl, Ing2, lat2, Ing3, lat3,
Ing4, lat4, Ing5 lat5, Ing6, lat6
)
) as geom
from ShopDesc
</ view>

A.18 FILTER

The FI LTER Oracle Spatial geometric filter operator returns true for object pairs that
are non-disjoint, and f al se otherwise.

FI LTER@pati al (key, tol)

e key: A GTYPE_PO NT, GTYPE_CURVE, GTYPE_PCLYGON, GTYPE_SURFACE,
GI'YPE_COLLECTI ON, GTYPE_MULTI PO NT, GTYPE_MJLTI CURVE,
GTYPE_MULTI POLYGON, GT'YPE_SOLI D, or GTYPE_MJLTI SCLI D geometry type.

e t 0l : the tolerance as a doubl e value.

For more information, see Oracle Spatial Developer’s Guide.

Example

This is an Oracle Spatial geometric filter operator so you invoke this function with the
spatial link name and without a package prefix. The following example test for object
pairs that are non-disjoint.

Oracle Spatial Command and API Reference A-15

get2dMbr

<view id="filter">
RSt r eam(
sel ect loc.customerld, shop.shopld
from LocGeontStreanf NON as |oc, ShopGeonRel ation as shop
where FILTER@patial (1 oc.curLoc, 5.0d) = true

)

</ vi ew>

A.19 get2dMbr

The com oracl e. cep. cartridge. spati al . Geonetry get 2dMor method
returns the Minimum Bounding Rectangle (MBR) of a given Geonetry as a
double[]]].

Syntax

comoracl e. cep.cartridge.spatial . Geonetry. get 2DVor (geom)

The geomparameter isa com or acl e. cep. cartridge. spati al . Geonetry
object for which the method returns the bounding rectangle. The returned bounding
rectangle contains the following values:

e [0][0]:m nX
e [0][1]:maxX
e [1][0]:mi nY

e [1][1]:maxy

Examples

The following example returns a bounding rectangle for geom

<view i d="LocCeonttreant schema="custonerld nbr">
sel ect
cust omer | d,
comoracl e.cep.cartridge.spatial.Geonetry. get 2dMor (geon)
from
Cust omer LocStream
wher e
comoracle.cep.cartridge.spatial.Geonetry. di stance@patial (geonl, geon?) <5
</ vi ew>

A.20 INSIDE
The | NSI DE Oracle Spatial geometric relation returns t r ue if GTYPE_PQ NT is inside
the geometry, and f al se otherwise.
Syntax
I NSI DE@pati al (geom key)
* geom any supported geometry type.

e key: A GTYPE_PO NT, GTYPE_CURVE, GTYPE_PCOLYGON, GTYPE_SURFACE,
GI'YPE_COLLECTI ON, GTYPE_MULTI PO NT, GTYPE_MULTI CURVE,
GTYPE_MULTI POLYGON, GTYPE_SOLI D, or GTYPE_MJLTI SCLI D geometry type.

For more information, see "SDO_INSIDE" in the Oracle Spatial Developer’s Guide.

A-16 Developing Applications for Oracle CQL Data Cartridges

INSIDE3D

Example
The following Oracle CQL query tests whether a point is inside the geometry.

<vi ew i d="op_i n_where">
RSt r eam(
sel ect
| oc. customerld
shop. shopl d
from
LocGeonttrean] NOW as | oc
ShopGeonRel ation as shop
wher e
I NSI DE@pat i al (shop. geom |oc.curLoc, 5.0d) = true

)
</ vi ew>
<view id="op_in_proj">
RSt r eam(
sel ect
| oc. customerld,
shop. shopl d,
I NSI DE@pat i al (shop. geom |oc.curLoc, 5.0d)
from
LocCGeonttrean] NON as | oc,
ShopGeonRel ation as shop
)
</ vi ew>

A.21 INSIDE3D

The | NSI DE3D Oracle Spatial geometric relation returns t r ue if the 3D geometry,
geonl, is inside the 3D space of geon®, and f al se otherwise.

Syntax

| NSI DE3D@pat i al (geonml, geon®)
| NSI DE3D@pat i al (geonml, geon®)

¢ geoni: The contained geometry, which can be any supported 3D geometry.

¢ geon®: The containing geometry, which can be any supported 3D geometry.

Example
The following Oracle CQL query tests whether a point is inside a 3D geometry.

<view i d="op_i n_where">
RSt r eam
sel ect
| oc. customerld,
shop. shopl d
from
LocGeonstrean] NON as | oc,
ShopGeonRel ation as shop
wher e
I NSI DE3D@pat i al (shop. geoml, shop. geon?) = true
)

</ vi ew>
<view id="op_in_proj">
RSt r eam

sel ect

Oracle Spatial Command and API Reference A-17

NN

A.22 NN

| oc. custonerl d,

shop. shopl d,

I NSI DE@pat i al (shop. geont, shop. geon®)
from

LocGeonttrean] NON as | oc,

ShopGeonRel ation as shop

)

</ vi ew>

The NN Oracle Spatial geometric filter operator returns the objects (nearest neighbors)
from geom that are nearest to the key. To determine how near two geometry objects
are to each other, Oracle Event Processing uses the shortest possible distance between
any two points on the surface of each object used.

Syntax
NN@pati al (geom key, tol)

* geom any supported geometry type.

e key: A GTYPE_PO NT, GTYPE_CURVE, GTYPE_POLYGON, GTYPE_SURFACE,
GTYPE_COLLECTI ON, GTYPE_MULTI PO NT, GTYPE_MULTI CURVE,
GTYPE_MJLTI POLYGON, GTYPE_SOLI D, or GTYPE_MJLTI SCLI D geometry type.

e t ol : the tolerance as a doubl e value.

For more information, see Oracle Spatial Developer’s Guide.

Examples
The following Oracle CQL query tests for nearest neighbors.

<view id="filter">
RSt r eam(
sel ect loc.customerld, shop.shopld
from LocGeontStreanf NON as |oc, ShopGeonRel ation as shop
where NN@pati al (shop. geom loc.curloc, 5.0d) = true
)

</ vi ew>

A.23 ordsgenerator

The or dsgener at or Oracle CQL function returns a doubl e array of 2D coordinates
from coordinate parameter values.

Syntax
ordsgenerator @patial (x1, y1, ..., xN, yN

The parameter values form a comma-separated list of coordinate values. This function
returns a doubl e array of 2D coordinates from the input.

Example

The following example creates an Oracle Spatial double array out of six doubl e
coordinate values.

A-18 Developing Applications for Oracle CQL Data Cartridges

to_Geometry

vi ew i d="ShopGeoni' >
select comoracle.cep.cartridge.spatial.Geonetry.createGeonetry@patial (
comoracl e.cep.cartridge. spatial.Geonetry. GTYPE_POLYGON,
comoracl e.cep.cartridge. spatial.Geonetry.createEl em nfo(1, 1003, 1),
ordsgener at or @pati al (
Ingl, latl, Ing2, lat2, Ing3, lat3,
Ing4, lat4, Ing5 lat5, Ing6, latéb
)

) as geom
from ShopDesc
</ vi ew>

A.24 to_Geometry

The com oracl e. cep. cartridge. spatial . Geonetryto_Geomnet ry method
converts an or acl e. spati al . geonetry. JGeonet ry type toa 3D
com oracl e. cep. cartridge. spati al . Geonetry type.

Syntax

com oracl e.cep.cartridge. spatial.Geonetry.to_Geonetry(geom

The geomparameter is the or acl e. spati al . geonet ry. JGeonet ry object to
convert. If the given geometry is already a Geonet ry type and a 3D geometry, then
no conversion is done. If the given geometry is a 2D geometry, then the given
geometry is converted to 3D by padding z coordinates.

Example
The following example converts the 2D geometry, geo, to a 3D geometry.

<view i d="LocStreant schema="custonerld |oc">
sel ect
customerld,
comoracle.cep.cartridge. spatial.Geonmetry.to_Geonetry(geom
from
Cust oner LocSt ream
</ vi ew>

A.25 to_J3D_Geometry

The com oracl e. cep. cartridge. spati al . Geonet ry to_J3D_Geometry method
converts acom oracl e. cep. cartridge. spati al . Geonmet r y object to an
oracl e. spati al . geonetry. J3D_Geonet ry object.

Syntax

comoracl e.cep.cartridge. spatial.Geonetry.to_J3D_Geonetry(g)

The g parameter is the com.oracle.cep.cartridge.spatial. Geometry object to convert.

Example
The following example shows how to use the t 0o_J3D_Geomnet r y method.

<view id="LocStream' schema="custonerld |oc">
sel ect
cust oner | d,
comoracle.cep.cartridge. spatial.Geometry.to_J3D Geonetry(geom
from

Oracle Spatial Command and API Reference A-19

to_JGeometry

Cust oner LocSt ream
</ vi ew>

A.26 to_JGeometry

The com oracl e. cep. cartridge. spati al . Geonetry.to_JGeonet ry method
converts acom or acl e. cep. cartridge. spati al . Geonet ry object to an
oracl e. spati al . geonetry. JGeonet ry 2D type.

Syntax

comoracl e.cep.cartridge. spatial.Geonetry.to_JGeonetry(g)

The g parameter is the com.oracle.cep.cartridge.spatial. Geometry object to convert.

Example

The following example converts the 2D geometry object, geom) to a 2D JGeometry
object.
<view id="LocStreant schema="custonerld |oc">
sel ect
cust oner |l d,
comoracle.cep.cartridge. spatial.Geometry.to_JGeonetry(geom
from

Cust oner LocSt ream
</ vi ew>

A.27 WITHINDISTANCE

The W THI NDI STANCE Oracle CQL query returns t r ue when the GT'YPE_PQO NT is
within the given distance of the geometry, and f al se otherwise.

Syntax
W THI NDI STANCE@ pat i al (geom key, dist)

* geom any supported geometry type.

e key: A GTYPE_PO NT, GTYPE_CURVE, GTYPE_PCLYGON, GT'YPE_SURFACE,
GI'YPE_COLLECTI ON, GTYPE_MULTI PO NT, GTYPE_MJLTI CURVE,
GTYPE_MJLTI POLYGON, GT'YPE_SQLI D, or GTYPE_MJLTI SCLI D geometry type.

e di st : the distance as a doubl e value.

See Oracle Spatial Developer’s Guide.

Example

The following Oracle CQL query tests whether | oc. cur Loc is within the 5. 0d
distance of shop. geom

<vi ew i d="op_i n_where">
RSt r eam(
sel ect
| oc. customerld
shop. shopl d
from
LocGeonttrean] NOW as | oc
ShopCGeonRel ation as shop
wher e

A-20 Developing Applications for Oracle CQL Data Cartridges

WITHINDISTANCE

W THI NDI STANCE@ pat i al (shop. geom loc.curLoc, 5.0d) = true
)

</ vi ew>
<view id="op_in_proj">
RSt r eam(
sel ect
| oc. custonerl d,
shop. shopl d,
W THI NDI STANCE@ pat i al (shop. geom | oc. curLoc, 5.0d)
from
LocGeontt rean{ NON as | oc,
ShopGeonRel ation as shop
)
</ vi ew>

Oracle Spatial Command and API Reference A-21

WITHINDISTANCE

A-22 Developing Applications for Oracle CQL Data Cartridges

	Contents
	Preface
	Audience
	Related Documents
	Conventions
	Syntax Diagrams

	What's New in This Guide
	1 Introduction to Data Cartridges
	1.1 Oracle CQL Data Cartridge Framework
	1.2 Names
	1.3 Application Context

	2 Configure Oracle JDBC and Oracle Spatial Data Cartridges
	2.1 How to Configure Oracle Spatial Application Context
	2.2 How to Configure Oracle JDBC Data Cartridge Application Context

	3 Oracle JDBC Data Cartridge
	3.1 Understanding the Oracle Event Processing JDBC Data Cartridge
	3.1.1 Data Cartridge Name
	3.1.2 Scope
	3.1.3 Parameter Specification
	3.1.4 Oracle Event Processing JDBC Data Cartridge Application Context
	3.1.4.1 Declare a JDBC Cartridge Context in the EPN File
	3.1.4.2 Configure the JDBC Cartridge Context in the Application Configuration File

	3.2 Using the Oracle Event Processing JDBC Data Cartridge
	3.2.1 Defining SQL Statements: function Element
	3.2.1.1 function Element Attributes
	3.2.1.2 function Element Child Elements
	3.2.1.2.1 param
	3.2.1.2.2 return-component-type
	3.2.1.2.3 sql

	3.2.1.3 function Element Usage
	3.2.1.3.1 Multiple Parameter JDBC Cartridge Context Functions
	3.2.1.3.2 Invoking PL/SQL Functions
	3.2.1.3.3 Complex JDBC Cartridge Context Functions
	3.2.1.3.4 Overloading JDBC Cartridge Context Functions

	3.2.2 Defining Oracle CQL Queries With the Oracle Event Processing JDBC Data Cartridge
	3.2.2.1 Using SELECT List Aliases
	3.2.2.2 Using the TABLE Clause
	3.2.2.3 Using a Native CQL Type as a return-component-type

	4 Oracle Spatial Data Cartridge
	4.1 Understanding Oracle Spatial
	4.1.1 Data Cartridge Name
	4.1.2 Scope
	4.1.2.1 Geometry Types
	4.1.2.2 Element Info Array
	4.1.2.3 Ordinates and Coordinate Systems and the SDO_SRID
	4.1.2.4 Geometric Index
	4.1.2.5 Geometric Relation Operators
	4.1.2.6 Geometric Filter Operators
	4.1.2.7 Geometric Aggregations
	4.1.2.8 Geometry API
	4.1.2.8.1 com.oracle.cep.cartridge.spatial.Geometry Methods
	4.1.2.8.2 oracle.spatial.geometry.JGeometry Methods

	4.1.3 Datatype Mapping
	4.1.4 Oracle Spatial Application Context

	4.2 Using Oracle Spatial
	4.2.1 How to Access Oracle Spatial Java API Geometry Types
	4.2.2 How to Create a Geometry
	4.2.3 How to Access Geometry Type Public Methods and Fields
	4.2.4 How to Use Geometry Relation Operators
	4.2.5 How to Use Geometry Filter Operators
	4.2.6 How to Use Geometry Aggregate Operators
	4.2.7 How to Use the Default Geodetic Coordinates
	4.2.8 How to Use Other Geodetic Coordinates

	5 Oracle Big Data Cartridges
	5.1 Hadoop Data Cartridge
	5.1.1 Understanding the Oracle Event Processing Hadoop Data Cartridge
	5.1.1.1 Usage Scenario: Using Purchase Data to Develop Buying Incentives
	5.1.1.2 Data Cartridge Name

	5.1.2 Using Hadoop Data Sources in Oracle CQL
	5.1.2.1 Configuring Integration of Oracle Event Processing and Hadoop
	5.1.2.2 Integrating a File from a Hadoop System Into an EPN
	5.1.2.3 Using Hadoop Data in Oracle CQL

	5.2 NoSQL Data Cartridge
	5.2.1 Oracle CQL Processor Queries
	5.2.2 Data Cartridge Name
	5.2.3 Using a NoSQL Database in Oracle CQL
	5.2.3.1 Integrating a NoSQL Database Into an EPN
	5.2.3.2 Using NoSQL Data in Oracle CQL
	5.2.3.2.1 Formatting the Key Used to Obtain Entries from the NoSQL Store

	6 Oracle Java Data Cartridge
	6.1 Understanding the Oracle Java Data Cartridge
	6.1.1 Data Cartridge Name
	6.1.2 Class Loading
	6.1.2.1 Application Class Space Policy
	6.1.2.2 No Automatic Import Class Space Policy
	6.1.2.3 Server Class Space Policy
	6.1.2.4 Class Loading Example

	6.1.3 Method Resolution
	6.1.4 Datatype Mapping
	6.1.4.1 Java Data Type String and Oracle CQL Data Type CHAR
	6.1.4.2 Literals
	6.1.4.3 Arrays
	6.1.4.4 Collections

	6.1.5 Oracle CQL Query Support for the Oracle Java Data Cartridge

	6.2 Using the Oracle Java Data Cartridge
	6.2.1 How to Query Using the Java API
	6.2.2 How to Query Using Exported Java Classes
	6.2.3 Java Cast Function

	7 Data Cartridge Framework
	7.1 About the SPI
	7.2 Interfaces
	7.2.1 Interface Descriptions
	7.2.2 Exceptions

	7.3 Cartridge Examples
	7.3.1 Arithmetic Cartridge
	7.3.2 Data Source Cartridge

	7.4 Source Code
	7.4.1 Arithmetic Cartridge
	7.4.2 Data Source Cartridge

	A Oracle Spatial Command and API Reference
	A.1 ANYINTERACT
	A.2 buffer
	A.3 bufferPolygon
	A.4 CONTAIN
	A.5 convertTo2D
	A.6 convertTo3D
	A.7 createCircle
	A.8 createElemInfo
	A.9 createGeometry
	A.10 createLinearLineString
	A.11 createLinearMultiLineString
	A.12 createLinearPolygon
	A.13 createMultiPoint
	A.14 createPoint
	A.15 createRectangle
	A.16 distance
	A.17 einfogenerator
	A.18 FILTER
	A.19 get2dMbr
	A.20 INSIDE
	A.21 INSIDE3D
	A.22 NN
	A.23 ordsgenerator
	A.24 to_Geometry
	A.25 to_J3D_Geometry
	A.26 to_JGeometry
	A.27 WITHINDISTANCE

