
[image: Oracle Corporation]

Oracle® Fusion Middleware

Developing Persistence Architectures Using Oracle TopLink Database Web Services

12c (12.1.3)

E49895-01

May 2014

This document provides information on using Oracle TopLink with EclipseLink DBWS (Database web services) to provide a persistence framework.

Oracle Fusion Middleware Developing Persistence Architectures Using Oracle TopLink Database Web Services, 12c (12.1.3)

E49895-01

Copyright © 1997, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

List of Examples

List of Figures

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

1 EclipseLink DBWS Overview

	1.1 Understanding XML-to-Relational Mapping (XRM)
	1.1.1 Configuration
	1.1.2 XML Schema Definition

	1.2 Understanding the DBWS Builder File Properties
	1.3 Creating EclipseLink DBWS Services
	1.3.1 Creating EclipseLink DBWS Services Using the DBWSBuilder Utility
	1.3.1.1 Creating an EclipseLink DBWS Service from a Database Table
	1.3.1.2 Creating an EclipseLink DBWS Service from a SQL Statement
	1.3.1.3 Creating an EclipseLink DBWS Service from a Stored Procedure

	1.3.2 Customizing an EclipseLink DBWS Service
	1.3.2.1 Performing Simple Customization
	1.3.2.2 Performing Intermediate Customization
	1.3.2.3 Performing Advanced Customization

	1.3.3 Using DBWSBuilder API

	1.4 Using the DBWS Design Time Component

2 Creating DBWS Services

	2.1 Creating EclipseLink DBWS Service from a Database Table
	2.1.1 Generated EclipseLink DBWS service descriptor
	2.1.2 SOAP Messaging

	2.2 Using an EclipseLink SessionCustomizer
	2.2.1 Example
	2.2.2 Advanced Customization

	2.3 Using Existing EclipseLink ORM and OXM Mappings
	2.4 Creating a DBWS Service from SQL Statements
	2.4.1 Creating from Results Sets from Custom SQL SELECT Statements
	2.4.1.1 Generated EclipseLink DBWS Service Descriptor

	2.4.2 Creating based on Schema-formatted Results from Custom SQL SELECT Statements
	2.4.2.1 Additional information at Design Time
	2.4.2.2 Understanding Issues and Limitations

	2.5 Creating from a Stored Procedure
	2.5.1 Example

	2.6 Creating from a Stored Function
	2.6.1 Example

	2.7 Creating from a Stored Procedure with complex PL/SQL arguments
	2.7.1 Example

	2.8 Creating from a Stored Function with complex PL/SQL arguments
	2.8.1 Example

	2.9 Creating from an Overloaded PL/SQL Stored Procedure
	2.9.1 Example

3 Advanced Methods of Accessing DBWS Designtime API

	3.1 Using DBWSBuilder with Ant
	3.1.1 Example

List of Examples

	1-1 Example DBWS Service descriptor file
	1-2 Example Simple XML Format (SXF) document
	1-3 Simple XML Format Schema
	1-4 Sample DBWS Builder XML file
	1-5 Sample DBWSBuilder XML File
	1-6 Sample DBWS Builder XML File
	1-7 Using a <procedure> Query
	1-8 DBWSBuilder-generated eclipselink-dbws-schema.xsd File
	1-9 Converting to an Attribute
	1-10 Sample Builder XML File
	1-11 Sample DBWSPackager
	1-12 DBWSBuilder usage
	2-1 Example
	2-2 Sample CRUD Operations
	2-3 ORM Project
	2-4 ORX Project
	2-5 Sample DBWS Service
	2-6 Using an ORM Map
	2-7 Using an OXM Map
	2-8 Sample DBWSBuilder XML File
	2-9 Sample XML File
	2-10 Sample eclipselink-dbws.xml File
	2-11 Sample Schema
	2-12 Instance document:
	2-13 Sample Schema
	2-14 Executing Additional SQL Statements
	3-1 Sample DBWS Builder File (dbws-builder.xml)
	3-2 Sample Build XML File (build.xml)
	3-3 Sample Build Properties File (build.properties)

List of Figures

	1-1 EclipseLink XR Architecture
	1-2 Typical EclipseLink DBWS Service Files
	1-3 Contents of WAR File
	1-4 Hierarchy of Concrete Implementation

Preface

Oracle TopLink provides specific annotations (Oracle TopLink extensions) in addition to supporting the standard Java Persistence Architecture (JPA) annotations. You can use these Oracle TopLink extensions to take advantage of Oracle TopLink's extended functionality and features within your JPA entities.

TopLink uses (and includes) EclipseLink as its default JPA provider.

Audience

This document is intended for application developers who want to develop applications using Oracle TopLink with Java Persistence Architecture (JPA). This document does not include details about related common tasks, but focuses on Oracle TopLink functionality.

Developers should be familiar with the concepts and programming practices of

	
Java SE and Java EE.

	
Java Persistence Architecture 2.0 specification (http://jcp.org/en/jsr/detail?id=317)

	
EclipseLink (http://www.eclipse.org/eclipselink)

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents:

	
Understanding Oracle TopLink

	
Solutions Guide for Oracle TopLink

	
Oracle Fusion Middleware Java API Reference for EclipseLink

	
Oracle TopLink Release Notes

	
EclipseLink Documentation Center at http://www.eclipse.org/eclipselink/documentation/

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	
monospace

	
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 EclipseLink DBWS Overview

This chapter introduces and describes EclipseLink DBWS which provides Java EE-compliant, client-neutral access to relational database artifacts via a Web service. EclipseLink DBWS extends EclipseLink's core capabilities while leveraging its existing ORM and OXM components.

EclipseLink DBWS includes two parts

	
A design-time component, the DBWSBuilder command-line utility, that generates the necessary deployment artifacts.

	
A runtime provider component that takes a service descriptor (along with related deployment artifacts) and realizes it as a JAX-WS 2.0 Web service. The runtime provider uses EclipseLink to bridge between the database and the XML SOAP Messages used by Web service clients.

An EclipseLink DBWS service may include any number of the following operations:

	
insert – inserts into the database persistent entities described by an XML document.

	
update – updates database persistent entities described by an XML document.

	
delete – removes from the database persistent entities described by an XML document.

	
query – retrieves from the database persistent entities described by an XML document.

Selection criteria for Query operations can be specified by:

	
custom SQL SELECT statement

	
Stored Procedure invocation

	
EclipseLink Named Query (that can use the complete range of EclipseLink ORM Expression Framework APIs)

	
JP-QL

The XML documents used by an operation conform to an XML Schema Definition (.xsd file).

This chapter includes the following sections:

	
Understanding XML-to-Relational Mapping (XRM)

	
Understanding the DBWS Builder File Properties

	
Creating EclipseLink DBWS Services

	
Using the DBWS Design Time Component

1.1 Understanding XML-to-Relational Mapping (XRM)

EclipseLink's ORM and OXM features provides the basis for a powerful bridge between a database's relational structure(s) and XML's hierarchical structure.

Figure 1-1 EclipseLink XR Architecture

[image: Description of Figure 1-1 follows]

1.1.1 Configuration

A typical EclipseLink DBWS service is packaged in an archive (.jar or .war file) with a service descriptor file eclipselink-dbws.xml in the META-INF directory (or WEB-INF/classes/META-INF when packaged in a .war file). To bridge the relational database and XML worlds, an EclipseLink sessions.xml (eclipselink-dbws-sessions.xml) points to two Eclipse projects: one for the ORM side, the other for the OXM side. The service also requires an XML Schema Definition file eclipselink-dbws-schema.xsd which in conjunction with the OXM project, specifies how information from the database is to be "shaped" into XML documents.

Figure 1-2 Typical EclipseLink DBWS Service Files

[image: Typical EclipseLink DBWS Service Files]

	
Note:

Not all files are displayed.

The EclipseLink DBWS service descriptor file, eclipselink-dbws.xml, is easy to read, with minimal required information and simple defaults for omitted fields. This allows for auto-generation by a utility or manual editing. Example 1-1 illustrates a sample DBWS service descriptor file.

Example 1-1 Example DBWS Service descriptor file

<?xml version="1.0" encoding="UTF-8"?>
<dbws
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 >
 <name>example</name>
 <sessions-file>example-dbws-sessions.xml</sessions-file>
 <query>
 <name>countEmployees
 <result>
 <type>xsd:int</type>
 </result>
 <sql><!--[CDATA[select count(*) from EMP]]--></sql>
 </query>
</dbws>

Table 1-1 describes the elements of the EclipseLink DBWS service descriptor file.

Table 1-1 EclipseLink DBWS Service Descriptor File Elements

	Element	Description	Required?	Default
	
name

	
Name of the EclipseLink DBWS service.

	
Yes, set by the projectName property in the DBWSBuilder.

	
None

	
sessions-file

	
Name of the EclipseLink sessions.xml file.

	
No

	
eclipselink-dbws-sessions.xml

	
Any of the following:

	
insert

	
update

	
delete

	
query

	
Service operations

	
At least one operation

	
None

1.1.2 XML Schema Definition

The EclipseLink DBWS service schema file eclipselink-dbws-schema.xsd can be created by hand, or auto-generated by the design-time DBWSBuilder utility that derives XML element-tag names from Database metadata (column names, types, nullable, and so on).

The DBWSBuilder utility will not generate an XML Schema Definition when the information returned by a query operation has no pre-determined structure, such as:

	
a resultSet from a custom SQL query operation

	
the results from a Stored Procedure query operation

	
the row-count from an update operation

In these cases, the EclipseLink DBWS runtime provider uses information only available at the time of query execution to build the XML document:

Example 1-2 Example Simple XML Format (SXF) document

Element tag names are direct copies of table's column names.

<?xml version = '1.0' encoding = 'UTF-8'?>
<simple-xml-format>
 <simple-xml>
 <EMPNO>7788</EMPNO>
 <ENAME>SCOTT</ENAME>
 <JOB>ANALYST</JOB>
 <MGR>7566</MGR>
 <HIREDATE>1987-04-19T00:00:00.000-0400</HIREDATE>
 <SAL>3000</SAL>
 <DEPTNO>20</DEPTNO>
 </simple-xml>
 <simple-xml>
 <EMPNO>7369</EMPNO>
 <ENAME>SMITH</ENAME>
 <JOB>CLERK</JOB>
 <MGR>7902</MGR>
 <HIREDATE>1980-12-17T00:00:00.000-0400</HIREDATE>
 <SAL>800</SAL>
 <DEPTNO>20</DEPTNO>
 </simple-xml>
</simple-xml-format>

These XML documents are "dumb," as they cannot be validated against any pre-determined schema - or more accurately, only the following very permissive "sequence-of-any" schema can validate such documents:

Example 1-3 Simple XML Format Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 >
 <xsd:complexType name="simple-xml-format">
 <xsd:sequence>
 <xsd:any minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

The element tags simple-xml-format and simple-xml can be customized by setting the appropriate properties on an operation.

1.2 Understanding the DBWS Builder File Properties

Use the <property> element in the DBWS Builder XML file to define the necessary server properties, as shown in Example 1-4

Example 1-4 Sample DBWS Builder XML file

<?xml version="1.0" encoding="UTF-8"?>
<dbws-builder xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 <properties>
 <property name="projectName">procedure_test</property>
 <property name="logLevel">off</property>
 <property name="username">myName</property>
...
 </properties>
...

See Example 1-5 and Example 1-6 for additional samples of a DBWS Builder XML file.

Table 1-2 defines the valid <property> values:

Table 1-2 DBWS Builder File Properties

	Property	Description
	
projectName

	
Name of the DBWS project.

Default = myProject

	
logLevel

	
Defines the amount and detail TopLink writes to the log. Valid values: off, severe, warning, info (default), config, fine, fine, finest, and all.

See in "logging.level" in Java Persistence API (JPA) Extensions Reference for Oracle TopLink for details.

	
username

	
Username used to log into the database.

	
password

	
Password of the username used to log into the database.

	
url

	
Database URL.

	
driver

	
Database driver.

	
platformClassname

	
Specify the database platform. This must be a fully qualified class name that extends DatabasePlatform.

Default = org.eclipse.persistence.platform.database.OraclePlatform

	
targetNamespace

	
The target namespace value applied to generated types.

Default = urn:projectName

	
orSessionCustomizerClassName

	
Name of the session customizer applied to the ORM session.

See in "session.customizer" in Java Persistence API (JPA) Extensions Reference for Oracle TopLink for details.

	
oxSessionCustomizerClassName

	
Name of the session customizer applied to the OXM session.

See in "session.customizer" in Java Persistence API (JPA) Extensions Reference for Oracle TopLink for details.

	
dataSource

	
JNDI name of the data source, as defined on the target application server.

	
wsdlLocationURI

	
Location URI value, set in generated WSDL.

Default = REPLACE_WITH_ENDPOINT_ADDRESS

1.3 Creating EclipseLink DBWS Services

You can generate a WAR file containing the EclipseLink DBWS service descriptor along with all required deployment artifacts for a JAX-WS 2.0 Web service (WSDL, XML schema, web.xml, EclipseLink object-relational mapping (ORM) and object-XML mapping (OXM) native project XML files, and so on).

Figure 1-3 Contents of WAR File

[image: Contents of WAR File]

Table 1-3 EclipseLink DBWS Service .war File Contents

	File	Description
	
web.xml

	
The Web application deployment file, required for deployment as a JAX-WS Web service.

See JSR-109 for details.

	
eclipselink-dbws.xml

	
The EclipseLink DBWS service descriptor file, described in Table 1-1.

	
eclipselink-dbws-or.xml

	
The EclipseLink ORM project XML file.

	
eclipselink-dbws-ox.xml

	
The EclipseLink OXM project XML file.

	
eclipselink-dbws-sessions.xml

	
The EclipseLink sessions.xml file for the EclipseLink DBWS service.

	
eclipselink-dbws-schema.xsd

	
Contains XML type definitions for operation arguments and return types.

The DBWSBuilder utility automatically generates this file from database metadata to derive element-tag names and types.

	
eclipselink-dbws.wsdl

	
Contains entries for all operations in the EclipseLink DBWS service, required for deployment as a JAX-WS Web service.

See JSR-109 for details (http://jcp.org/en/jsr/detail?id=109).

	
swaref.xsd

	
Contains XML type definitions for SOAP attachments, optional

Note that the files swaref.xsd and web.xml have names and content determined by their roles in Web deployment and cannot be changed.

The deployable .war file has been verified to work with the Oracle WebLogic Server 10.3 JavaEE container. See http://www.oracle.com/technology/software/products/ias/htdocs/wls_main.html?rssid=rss_otn_soft for more information.

An alternate deployable JAR file has been verified to work as a JavaSE 6 "containerless" EndPoint. See http://java.sun.com/javase/6/docs/api/javax/xml/ws/Endpoint.html and http://wiki.eclipse.org/EclipseLink/Examples/DBWS/AdvancedJavase6Containerless for more information.

1.3.1 Creating EclipseLink DBWS Services Using the DBWSBuilder Utility

This section describes how to create EclipseLink DBWS services using the DBWSBuilder utility.

You can use the EclipseLink DBWS design-time utility DBWSBuilder to create deployment files. DBWSBuilder is a Java application that processes the operations described in an EclipseLink DBWS builder XML file to produce all the required deployment artifacts.

Be sure to set the following environment variables in the <ECLIPSELINK_HOME>\bin\setenv.cmd (or setenv.sh file) before invoking DBWSBuilder:

	
JAVA_HOME

	
DRIVER_CLASSPATH

There are script files provided for invoking DBWSBuilder. They are located in the <ECLIPSELINK_HOME>\utils\dbws directory. The scripts are dbwsbuilder.cmd for Windows usage, and dbwsbuilder.sh for other operating systems. Run the dbwsbuilder.cmd (or dbwsbuilder.sh) script without any arguments to display the help information

Using DBWSBuilder, you can generate an EclipseLink DBWS service from the following sources:

	
an existing relational database table;

	
one or more SQL SELECT statements;

	
a stored procedure.

1.3.1.1 Creating an EclipseLink DBWS Service from a Database Table

You can create an EclipseLink DBWSBuilder XML file with a <table> query operation, as follows:

Example 1-5 Sample DBWSBuilder XML File

<?xml version="1.0" encoding="UTF-8"?>
<dbws-builder xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <properties>
 <property name="projectName">table_test</property>
 ... database properties ...
 </properties>
 <table
 schemaPattern="%"
 tableNamePattern="dbws_crud"
 />
</dbws-builder>

For more information, see "Creating EclipseLink DBWS Service from a Database Table".

1.3.1.2 Creating an EclipseLink DBWS Service from a SQL Statement

You can create an EclipseLink DBWS builder XML file with a <sql> query operation, as follows:

Example 1-6 Sample DBWS Builder XML File

<?xml version="1.0" encoding="UTF-8"?>
<dbws-builder xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 <properties>
 <property name="projectName">sql_test</property>
 ... database properties ...
 </properties>
 <sql name="employeeInfo" simpleXMLFormatTag="employee-info" xmlTag="aggregate-counts">
 <text>
 <![CDATA[select count(*) as "COUNT", max(SAL) as "MAX-Salary" from EMP]]>
 </text>
 </sql>
</dbws-builder>

1.3.1.2.1 Using Parameter Binding

The SQL SELECT statement for a <sql> operation may have parameters that must be bound to a datatype from the eclipselink-dbws-schema.xsd, or to any of the basic XSD datatypes. The SQL SELECT string uses JDBC-style ? markers to indicate the position of the argument. The <sql> operation uses nested <binding> elements to match the datatype to the parameters. The order in which <binding> elements are defined must match the order of ? markers in the SQL string:

<?xml version="1.0" encoding="UTF-8"?>
<dbws-builder xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 <properties>
 <property name="projectName">sql_binding_test</property>
 ... database properties ...
 </properties>
 <sql name="findEmpByName" isCollection="true" isSimpleXMLFormat="true">
 <text>
 <![CDATA[select * from EMP where EMPNO = ? and LAST_NAME = ?]]>
 </text>
 <binding name="EMPNO" type="xsd:int"/>
 <binding name="LAST_NAME" type="xsd:string"/>
 </sql>
</dbws-builder>

The argument named EMPNO is bound to an integer type, while the argument named LAST_NAME is bound to a string type.

For more information, see "Creating a DBWS Service from SQL Statements".

1.3.1.3 Creating an EclipseLink DBWS Service from a Stored Procedure

You can create an EclipseLink DBWS builder XML File with a <procedure> query operation, as shown in Example 1-7.

Example 1-7 Using a <procedure> Query

<?xml version="1.0" encoding="UTF-8"?>
<dbws-builder xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 <properties>
 <property name="projectName">procedure_test</property>
 ... database properties ...
 </properties>
 <procedure
 returnType="empType"
 catalogPattern="SOME_PKG"
 schemaPattern="SCOTT"
 procedurePattern="GetEmployeeByEMPNO_DEPTNO"/>
 </procedure>
</dbws-builder>

For more information, see "Creating from a Stored Procedure".

1.3.2 Customizing an EclipseLink DBWS Service

There are a number use-cases that require an EclipseLink DBWS Service to be customized. The use-cases can be subdivided into the following categories:

	
Simple – changing an <element-tag> to an "attribute";

	
Intermediate – customizing the EclipseLink ORM or OXM projects;

	
Advanced – manually generating all required deployment artifacts.

1.3.2.1 Performing Simple Customization

By default, DBWSBuilder-generated eclipselink-dbws-schema.xsd file derives <element-tag> names from the database table metadata, as shown in Example 1-8.

Example 1-8 DBWSBuilder-generated eclipselink-dbws-schema.xsd File

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 >
 <xsd:complexType name="empType">
 <xsd:sequence>
 <xsd:element name="empno" type="xsd:int" xsi:nil="false"/>
 <xsd:element name="ename" type="xsd:string" xsi:nil="true"/>
 <xsd:element name="job" type="xsd:string" xsi:nil="true"/>
 <xsd:element name="mgr" type="xsd:int" minOccurs="0" xsi:nil="true"/>
 <xsd:element name="hiredate" type="xsd:dateTime" xsi:nil="true"/>
 <xsd:element name="sal" type="xsd:decimal" xsi:nil="true"/>
 <xsd:element name="comm" type="xsd:int" minOccurs="0" xsi:nil="true"/>
 <xsd:element name="deptno" type="xsd:int" xsi:nil="true"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Use the NamingConventionTransformer to change an <element> tag to an attribute, as shown in Example 1-9.

Example 1-9 Converting to an Attribute

public interface NamingConventionTransformer {

 public enum ElementStyle {
 ELEMENT, ATTRIBUTE, NONE
 };

 public String generateSchemaName(String tableName);

 public String generateElementAlias(String originalElementName);

 public ElementStyle styleForElement(String originalElementName);
}

1.3.2.2 Performing Intermediate Customization

The primary reason to use an EclipseLink SessionCustomizer is to enable programmatic access to the EclipseLink API. Using this API, you can retrieve the object-relational or object-XML mapping descriptors from the session, and then use these descriptors to add, change, or delete mappings. You could also consider turning off the session cache, or changing the transaction isolation level of the database connection.

The following example shows how to implement a org.eclipse.persistence.config.SessionCustomizer:

package some.java.package;

import org.eclipse.persistence.config.SessionCustomizer;
import org.eclipse.persistence.sessions.Session;
import org.eclipse.persistence.sessions.DatabaseLogin;

public class MySessionCustomizer implements SessionCustomizer {

 public MySessionCustomizer() {
 }

 public void customize(Sesssion session) {
 DatabaseLogin login = (DatabaseLogin)session.getDatasourceLogin();
 login.setTransactionIsolation(DatabaseLogin.TRANSACTION_READ_UNCOMMITTED);
 }
}

In the DBWSBuilder builder XML file, specify if the customization applies to the ORM project or the OXM project, as the following example shows:

<?xml version="1.0" encoding="UTF-8"?>
<dbws-builder xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 <properties>
 <property name="projectName">customize_test</property>
 ...
 <property name="orSessionCustomizerClassName">some.java.package.MyORSessionCustomizer</property>

or

<?xml version="1.0" encoding="UTF-8"?>
<dbws-builder xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 <properties>
 <property name="projectName">customize_test</property>
 ...
 <property name="oxSessionCustomizerClassName">some.java.package.MyOXSessionCustomizer</property>

For more information, see "Sessions" in Understanding Oracle TopLink

1.3.2.3 Performing Advanced Customization

You can customize an EclipseLink DBWS service by creating your own project.xml and sessions.xml files. Using your preferred utility, you can do the following:

	
map your objects to your relational database in an EclipseLink relational project;

	
map your objects to your XML schema in an EclipseLink XML project:

	
create an EclipseLink sessions.xml file that references both projects.

In this way, you can control all aspects of the relational and XML mapping. This approach is best when you want to customize most or all details. See "Using Existing EclipseLink ORM and OXM Mappings" for more information.

1.3.3 Using DBWSBuilder API

The EclipseLink DBWS design-time utility, DBWSBuilder, is a Java application that generates EclipseLink DBWS files and assembles them into deployable archives.

It is normally invoked from the command-line via its main method:

prompt > dbwsbuilder.cmd -builderFile {path_to_builder.xml} -stageDir {path_to_stageDir} -packageAs {packager}

The given builder XML file (Example 1-10) is parsed by the OXM Project org.eclipse.persistence.tools.dbws.DBWSBuilderModelProject producing model objects that represent properties and <table> operations. Thus the public class org.eclipse.persistence.tools.dbws.DBWSBuilder can be populated programmatically through property setters (i.e. setDriver(), setUrl()) - table; SQL operations via addSqlOperation().

Example 1-10 Sample Builder XML File

<?xml version="1.0" encoding="UTF-8"?>
<dbws-builder xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 <properties>
 <property name="projectName">test</property>
 <property name="driver">oracle.jdbc.OracleDriver</property>
 <property name="password">tiger</property>
 <property name="url">jdbc:oracle:thin:@localhost:1521:ORCL</property>
 <property name="username">scott</property>
 </properties>
 <table
 catalogPattern="%"
 schemaPattern="SCOTT"
 tableNamePattern="EMP"
 />
</dbws-builder>

The packager specified on the command-line is represented by a class that implements the org.eclipse.persistence.tools.dbws.DBWSPackager interface. There is a hierarchy of concrete implementations of this interface, shown in Figure 1-4:

Figure 1-4 Hierarchy of Concrete Implementation

[image: Description of Figure 1-4 follows]

The primary responsibility of a DBWSPackager is to provide java.io.OutputStream's for the output generated by DBWSBuilder:

Example 1-11 Sample DBWSPackager

// call-backs for stream management
public OutputStream getSchemaStream() throws FileNotFoundException;
public void closeSchemaStream(OutputStream schemaStream);

public OutputStream getSessionsStream(String sessionsFileName) throws FileNotFoundException;
public void closeSessionsStream(OutputStream sessionsStream);

public OutputStream getServiceStream() throws FileNotFoundException;
public void closeServiceStream(OutputStream serviceStream);

public OutputStream getOrStream() throws FileNotFoundException;
public void closeOrStream(OutputStream orStream);

public OutputStream getOxStream() throws FileNotFoundException;
public void closeOxStream(OutputStream oxStream);

public OutputStream getWSDLStream() throws FileNotFoundException;
public void closeWSDLStream(OutputStream wsdlStream);

public OutputStream getSWARefStream() throws FileNotFoundException;
public void closeSWARefStream(OutputStream swarefStream);

public OutputStream getWebXmlStream() throws FileNotFoundException;
public void closeWebXmlStream(OutputStream webXmlStream);

public OutputStream getProviderClassStream() throws FileNotFoundException;
public void closeProviderClassStream(OutputStream codeGenProviderStream);

public OutputStream getProviderSourceStream() throws FileNotFoundException;
public void closeProviderSourceStream(OutputStream sourceProviderStream);

Once all the model objects have been built, the builder is invoked either through the start() method, or alternatively via the build(...) method, which overrides the streams from the DBWSPackager, allowing the streams to be managed externally to the packager:

public void start() ...

public void build(OutputStream dbwsSchemaStream, OutputStream dbwsSessionsStream,
 OutputStream dbwsServiceStream, OutputStream dbwsOrStream, OutputStream dbwsOxStream,
 OutputStream swarefStream, OutputStream webXmlStream, OutputStream wsdlStream,
 OutputStream codeGenProviderStream, OutputStream sourceProviderStream, Logger logger) ...

1.4 Using the DBWS Design Time Component

You can use the EclipseLink DBWS design-time utility DBWSBuilder to create deployment files. DBWSBuilder is a Java application that processes the operations described in an EclipseLink DBWS builder XML file to produce all the required deployment artifacts.

Be sure to set the following environment variables in the <ECLIPSELINK_HOME>\utils\dbws\setenv.cmd (or setenv.sh file) before invoking DBWSBuilder:

	
JAVA_HOME

	
DRIVER_CLASSPATH

There are script files provided for invoking DBWSBuilder. They are located in the <ECLIPSELINK_HOME>\utils\dbws directory. The scripts are dbwsbuilder.cmd for Windows usage, and dbwsbuilder.sh for other operating systems.

Example 1-12 DBWSBuilder usage

prompt > dbwsbuilder.cmd -builderFile {path_to_dbws_builder.xml} -stageDir {path_to_stageDir}
-packageAs[:archive_flag - archive, noArchive, ignore] {packager} [additional args]
Available packagers:
 -packageAs:[default=not supported] jdev
 -pac