

[1] Oracle® Fusion Middleware
Developing Integration Projects with Oracle Data Integrator

12c (12.2.1.1)

E69522-01

May 2016

Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator, 12c (12.2.1.1)

E69522-01

Copyright © 2010, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Joshua Stanley, Rick Sapir, Aslam Khan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xv

Audience... xv
Documentation Accessibility ... xv
Related Documents ... xv
Conventions ... xvi

What's New In Oracle Data Integrator? .. xvii

1 Overview of an Integration Project

1.1 Oracle Data Integrator Project Quick Start List .. 1-1

2 Overview of Oracle Data Integrator Topology

2.1 Introduction to the Oracle Data Integrator Topology ... 2-1
2.1.1 Physical Architecture .. 2-1
2.1.2 Contexts... 2-2
2.1.3 Logical Architecture .. 2-2
2.1.4 Agents.. 2-2
2.1.5 Languages ... 2-5
2.1.6 Repositories .. 2-5

3 Creating and Using Data Models and Datastores

3.1 Introduction to Models .. 3-1
3.1.1 Datastores ... 3-2
3.1.2 Data Integrity ... 3-2
3.1.3 Reverse-engineering.. 3-2
3.1.4 Changed Data Capture ... 3-3
3.2 Creating and Reverse-Engineering a Model ... 3-3
3.2.1 Creating a Model ... 3-3
3.2.2 Creating a Model and Topology Objects.. 3-4
3.2.3 Reverse-engineering a Model .. 3-5
3.3 Creating and Reverse-Engineering a Datastore ... 3-7
3.3.1 Creating a Datastore.. 3-7
3.3.2 Reverse-Engineering File Datastores .. 3-8
3.3.2.1 Reverse-Engineering Fixed Files .. 3-8

iv

3.3.2.2 Reverse-Engineering Delimited Files .. 3-8
3.3.2.3 Reverse-Engineering COBOL Files .. 3-8
3.3.3 Adding and Deleting Datastore Attributes ... 3-9
3.3.4 Adding and Deleting Constraints and Filters ... 3-9
3.3.4.1 Keys .. 3-9
3.3.4.2 References ... 3-10
3.3.4.3 Conditions ... 3-10
3.3.4.4 Mandatory Attributes .. 3-11
3.3.4.5 Filter .. 3-11
3.4 Editing and Viewing a Datastore's Data... 3-11
3.5 Using Partitioning.. 3-12
3.5.1 Manually Defining Partitions and Sub-Partitions of Model Datastores................... 3-12
3.6 Checking Data Quality in a Model.. 3-13
3.6.1 Introduction to Data Integrity... 3-13
3.6.2 Checking a Constraint.. 3-13
3.6.3 Perform a Static Check on a Model, Sub-Model or Datastore.................................... 3-13
3.6.4 Reviewing Erroneous Records.. 3-14

4 Using Journalizing

4.1 Introduction to Changed Data Capture... 4-1
4.1.1 The Journalizing Components ... 4-2
4.1.2 Simple vs. Consistent Set Journalizing ... 4-2
4.2 Setting up Journalizing .. 4-3
4.2.1 Setting up and Starting Journalizing .. 4-3
4.2.2 Journalizing Infrastructure Details ... 4-7
4.2.3 Journalizing Status... 4-7
4.3 Using Changed Data .. 4-8
4.3.1 Viewing Changed Data... 4-8
4.3.2 Using Changed Data: Simple Journalizing .. 4-8
4.3.3 Using Changed Data: Consistent Set Journalizing ... 4-9
4.3.4 Journalizing Tools... 4-11
4.3.5 Package Templates for Using Journalizing... 4-11

5 Creating Data Models with Common Format Designer

5.1 Introduction to Common Format Designer .. 5-1
5.1.1 What is a Diagram? ... 5-1
5.1.2 Why assemble datastores and attributes from other models? 5-2
5.1.3 Graphical Synonyms ... 5-2
5.2 Using the Diagram.. 5-2
5.2.1 Creating a New Diagram.. 5-2
5.2.2 Create Datastores and Attributes .. 5-2
5.2.3 Creating Graphical Synonyms... 5-3
5.2.4 Creating and Editing Constraints and Filters.. 5-3
5.2.5 Printing a Diagram .. 5-4
5.3 Generating DDL scripts ... 5-5
5.4 Generating Mapping IN/OUT.. 5-6

v

6 Creating an Integration Project

6.1 Introduction to Integration Projects ... 6-1
6.1.1 Oracle Data Integrator Project Components.. 6-1
6.1.1.1 Oracle Data Integrator Project Components .. 6-1
6.1.1.2 Global Components.. 6-3
6.1.2 Project Life Cycle ... 6-3
6.2 Creating a New Project .. 6-3
6.3 Managing Knowledge Modules ... 6-3
6.3.1 Project and Global Knowledge Modules.. 6-4
6.3.2 Knowledge Module Naming Conventions.. 6-4
6.3.3 Choosing the Right Knowledge Modules .. 6-7
6.3.4 Importing and Replacing Knowledge Modules.. 6-7
6.3.5 Encrypting and Decrypting a Knowledge Module .. 6-9
6.4 Organizing the Project with Folders ... 6-10

7 Creating and Using Packages

7.1 Introduction to Packages ... 7-1
7.1.1 Introduction to Steps ... 7-1
7.1.2 Introduction to Creating Packages.. 7-3
7.1.3 Introduction to the Package editor.. 7-3
7.2 Creating a new Package ... 7-4
7.3 Working with Steps .. 7-4
7.3.1 Adding a Step... 7-4
7.3.1.1 Adding a Mapping step... 7-4
7.3.1.2 Adding a Procedure step... 7-5
7.3.1.3 Variable Steps.. 7-5
7.3.1.4 Adding Oracle Data Integrator Tool Steps ... 7-6
7.3.1.5 Adding a Model, Sub-Model or Datastore .. 7-7
7.3.2 Deleting a Step ... 7-7
7.3.3 Duplicating a Step.. 7-8
7.3.4 Running a Step ... 7-8
7.3.5 Editing a Step's Linked Object ... 7-8
7.3.6 Arranging the Steps Layout ... 7-8
7.4 Defining the Sequence of Steps... 7-9
7.5 Running a Package .. 7-11

8 Creating and Using Mappings

8.1 Introduction to Mappings.. 8-1
8.1.1 Parts of a Mapping .. 8-1
8.1.2 Navigating the Mapping Editor .. 8-3
8.2 Creating a Mapping.. 8-5
8.2.1 Creating a New Mapping ... 8-5
8.2.2 Adding and Removing Components.. 8-6
8.2.3 Connecting and Configuring Components.. 8-7
8.2.3.1 Attribute Matching... 8-7
8.2.3.2 Connector Points and Connector Ports ... 8-7

vi

8.2.3.3 Defining New Attributes ... 8-8
8.2.3.4 Defining Expressions and Conditions ... 8-9
8.2.4 Defining a Physical Configuration... 8-10
8.2.5 Running Mappings... 8-10
8.3 Using Mapping Components ... 8-11
8.3.1 The Expression Editor .. 8-12
8.3.2 Source and Target Datastores ... 8-13
8.3.3 Creating Multiple Targets ... 8-14
8.3.3.1 Specifying Target Order ... 8-14
8.3.4 Adding a Reusable Mapping .. 8-15
8.3.5 Creating Aggregates... 8-15
8.3.6 Creating Distincts ... 8-16
8.3.7 Creating Expressions.. 8-17
8.3.8 Creating Filters.. 8-17
8.3.9 Creating Joins and Lookups.. 8-18
8.3.10 Creating Pivots.. 8-21
8.3.10.1 Example: Pivoting Sales Data .. 8-22
8.3.10.2 The Row Locator.. 8-22
8.3.10.3 Using the Pivot Component... 8-22
8.3.11 Creating Sets .. 8-23
8.3.12 Creating Sorts .. 8-24
8.3.13 Creating Splits ... 8-25
8.3.14 Creating Subquery Filters.. 8-25
8.3.15 Creating Table Functions... 8-26
8.3.16 Creating Unpivots .. 8-28
8.3.16.1 Example: Unpivoting Sales Data... 8-28
8.3.16.2 The Row Locator.. 8-28
8.3.16.3 Using the Unpivot Component ... 8-29
8.3.17 Creating Flatten Components ... 8-30
8.3.17.1 Using a Flatten Component in a Mapping .. 8-30
8.3.17.2 Considerations for using Flatten component with JSON Source 8-31
8.3.18 Creating Jagged Components ... 8-31
8.4 Creating a Mapping Using a Dataset .. 8-32
8.4.1 Differences Between Flow and Dataset Modeling... 8-32
8.4.2 Creating a Dataset in a Mapping.. 8-33
8.4.3 Converting a Dataset to Flow-Based Mapping .. 8-33
8.5 Physical Design .. 8-33
8.5.1 About the Physical Mapping Diagram.. 8-34
8.5.2 Selecting LKMs, IKMs and CKMs.. 8-35
8.5.3 Configuring Execution Locations... 8-36
8.5.3.1 Moving Physical Nodes.. 8-37
8.5.3.2 Moving Expressions .. 8-37
8.5.3.3 Defining New Execution Units.. 8-37
8.5.4 Adding Commands to be Executed Before and After a Mapping 8-37
8.5.5 Configuring In-Session Parallelism.. 8-38
8.5.6 Configuring Parallel Target Table Load.. 8-38
8.5.7 Configuring Temporary Indexes.. 8-39

vii

8.5.8 Configuring Journalizing... 8-39
8.5.9 Configuring Extraction Options ... 8-39
8.5.10 Creating and Managing Physical Mapping Designs... 8-39
8.6 Reusable Mappings ... 8-40
8.6.1 Creating a Reusable Mapping... 8-40
8.7 Editing Mappings Using the Property Inspector and the Structure Panel...................... 8-41
8.7.1 Adding and Removing Components... 8-41
8.7.1.1 Adding Components... 8-41
8.7.1.2 Removing Components .. 8-42
8.7.2 Editing a Component ... 8-42
8.7.3 Customizing Tables .. 8-42
8.7.4 Using Keyboard Navigation for Common Tasks... 8-42
8.8 Flow Control and Static Control .. 8-43
8.8.1 Setting up Flow Control... 8-44
8.8.2 Setting up Static Control.. 8-44
8.8.3 Defining the Update Key... 8-44
8.9 Designing E-LT and ETL-Style Mappings ... 8-45

9 Creating and Using Dimensions and Cubes

9.1 Overview of Dimensional Objects.. 9-1
9.1.1 Overview of Dimensions .. 9-1
9.1.2 Overview of Cubes .. 9-5
9.1.2.1 Understanding Measure (Fact) ... 9-5
9.1.2.2 Cube Implementation .. 9-5
9.2 Creating Dimensional Objects through ODI... 9-5
9.2.1 Dimension and Cube Accordion ... 9-5
9.2.2 Using Dimensions in ODI... 9-6
9.2.3 Using Cubes in ODI... 9-7
9.2.3.1 Generic Properties .. 9-7
9.2.3.2 Cube Measures.. 9-8
9.2.4 Creating New Dimensional Models.. 9-8
9.2.5 Creating and Editing Dimensional Objects using the Editor 9-9
9.2.5.1 Using Dimension Editor .. 9-9
9.2.5.1.1 Definition Tab ... 9-9
9.2.5.1.2 Levels Tab.. 9-10
9.2.5.1.3 Hierarchies Tab... 9-13
9.2.5.2 Using the Cube Editor .. 9-14
9.2.5.2.1 Definition Tab ... 9-14
9.2.5.2.2 Details Tab... 9-14
9.3 Using Dimensional Components in Mappings ... 9-15
9.3.1 Using Dimension Component in Mapping... 9-15
9.3.1.1 Dimension Component Properties Editor ... 9-16
9.3.1.1.1 Attributes... 9-16
9.3.1.1.2 General Properties.. 9-16
9.3.1.1.3 Connector Points .. 9-17
9.3.1.1.4 History Properties .. 9-17
9.3.1.1.5 Target Properties .. 9-17

viii

9.3.2 Using Cube Component in Mappings... 9-18
9.3.2.1 Cube Component Properties Editor ... 9-18
9.3.2.1.1 Attributes... 9-19
9.3.2.1.2 General Properties.. 9-20
9.3.2.1.3 Target Properties .. 9-20
9.3.2.1.4 Connector Points .. 9-21
9.4 Expanding Dimensional Components.. 9-21
9.4.1 Expanding Dimension Component ... 9-21
9.4.2 Expanding Cube Component ... 9-22

10 Using Compatibility Mode

10.1 About Compatibility Mode .. 10-1
10.2 Creating Compatible Mappings .. 10-2
10.2.1 Creating Mappings using Upgrade Assistant .. 10-2
10.2.2 Creating Mappings with the 11g SDK in ODI 12c ... 10-2
10.3 About Internal Identifiers (IDs) ... 10-2
10.4 Renumbering Repositories ... 10-3

11 Creating and Using Procedures, Variables, Sequences, and User Functions

11.1 Working with Procedures... 11-1
11.1.1 Introduction to Procedures.. 11-1
11.1.2 Creating Procedures ... 11-2
11.1.2.1 Create a New Procedure... 11-2
11.1.2.2 Define the Procedure's Options... 11-3
11.1.2.3 Create and Manage the Procedure's Tasks .. 11-4
11.1.3 Using Procedures.. 11-10
11.1.3.1 Executing the Procedure... 11-10
11.1.3.2 Using a Procedure in a Package .. 11-10
11.1.3.3 Generating a Scenario for a Procedure... 11-11
11.1.4 Encrypting and Decrypting Procedures.. 11-11
11.2 Working with Variables .. 11-11
11.2.1 Introduction to Variables... 11-11
11.2.2 Creating Variables .. 11-12
11.2.3 Using Variables ... 11-14
11.2.3.1 Using Variables in Packages .. 11-15
11.2.3.2 Using Variables in Mappings .. 11-16
11.2.3.3 Using Variables in Object Properties .. 11-17
11.2.3.4 Using Variables in Procedures... 11-17
11.2.3.5 Using Variables within Variables.. 11-18
11.2.3.6 Using Variables in the Resource Name of a Datastore 11-19
11.2.3.7 Using Variables in a Server URL... 11-19
11.2.3.8 Using Variables in On Connect/Disconnect Commands.................................. 11-21
11.2.3.9 Passing a Variable to a Scenario .. 11-21
11.2.3.10 Generating a Scenario for a Variable .. 11-21
11.2.3.11 Tracking Variables and Sequences.. 11-21
11.3 Working with Sequences .. 11-22
11.3.1 Introduction to Sequences ... 11-22

ix

11.3.2 Creating Sequences... 11-23
11.3.2.1 Creating Standard Sequences .. 11-23
11.3.2.2 Creating Specific Sequences... 11-23
11.3.2.3 Creating Native Sequences .. 11-24
11.3.3 Using Sequences and Identity Columns ... 11-24
11.3.3.1 Tips for Using Standard and Specific Sequences.. 11-26
11.3.3.2 Identity Columns... 11-26
11.3.4 Sequence Enhancements.. 11-26
11.4 Working with User Functions.. 11-27
11.4.1 Introduction to User Functions... 11-27
11.4.2 Creating User Functions .. 11-28
11.4.3 Using User Functions ... 11-29

12 Using Scenarios

12.1 Introduction to Scenarios.. 12-1
12.2 Generating a Scenario.. 12-2
12.3 Regenerating a Scenario.. 12-3
12.4 Generating a Group of Scenarios... 12-3
12.5 Controlling Concurrent Execution of Scenarios and Load Plans 12-4
12.6 Exporting Scenarios ... 12-5
12.7 Importing Scenarios in Production ... 12-6
12.7.1 Import Scenarios ... 12-7
12.7.2 Replace a Scenario .. 12-7
12.7.3 Working with a Scenario from a Different Repository ... 12-7
12.8 Encrypting and Decrypting a Scenario... 12-8

13 Using Load Plans

13.1 Introduction to Load Plans ... 13-1
13.1.1 Load Plan Execution Lifecycle .. 13-2
13.1.2 Differences between Packages, Scenarios, and Load Plans.. 13-2
13.1.3 Load Plan Structure.. 13-2
13.1.4 Introduction to the Load Plan Editor... 13-4
13.2 Creating a Load Plan ... 13-6
13.2.1 Creating a New Load Plan .. 13-6
13.2.2 Defining the Load Plan Step Sequence.. 13-8
13.2.2.1 Adding Load Plan Steps ... 13-8
13.2.2.2 Editing Load Plan Steps.. 13-12
13.2.2.3 Deleting a Step ... 13-14
13.2.2.4 Duplicating a Step ... 13-14
13.2.3 Working with Variables in Load Plans.. 13-15
13.2.3.1 Declaring Load Plan Variables .. 13-15
13.2.3.2 Setting Variable Values in a Step... 13-15
13.2.4 Handling Load Plan Exceptions and Restartability... 13-16
13.2.4.1 Defining Exceptions Flows... 13-17
13.2.4.2 Using Exception Handling ... 13-17
13.2.4.3 Defining the Restart Behavior.. 13-18

x

13.3 Running Load Plans .. 13-19
13.4 Using Load Plans in Production .. 13-20
13.4.1 Scheduling and Running Load Plans in Production ... 13-20
13.4.2 Exporting, Importing and Versioning Load Plans... 13-20
13.4.2.1 Exporting Load Plans.. 13-20
13.4.2.2 Importing Load Plans ... 13-20
13.4.2.3 Versioning Load Plans.. 13-21

14 Using Web Services

14.1 Introduction to Web Services in Oracle Data Integrator.. 14-1
14.2 Oracle Data Integrator Run-Time Services and Data Services .. 14-2
14.3 Invoking Third-Party Web Services .. 14-2
14.3.1 Introduction to Web Service Invocation.. 14-3
14.3.2 Using HTTP Analyzer.. 14-3
14.3.2.1 Using HTTP Analyzer: Main Steps... 14-4
14.3.2.2 What Happens When You Run the HTTP Analyzer.. 14-4
14.3.2.3 How to Specify HTTP Analyzer Settings... 14-5
14.3.2.4 How to Use the Log Window .. 14-5
14.3.2.5 How to Use the Test Window.. 14-6
14.3.2.6 How to Use the Instances Window... 14-8
14.3.2.7 How to Use Multiple Instances ... 14-9
14.3.2.8 Using Credentials With HTTP Analyzer ... 14-9
14.3.2.9 Using SSL With HTTP Analyzer ... 14-9
14.3.2.10 How to Debug Web Pages Using the HTTP Analyzer 14-10
14.3.2.11 How to Use Rules to Determine Behavior ... 14-10
14.3.2.11.1 Using the Pass Through Rule ... 14-11
14.3.2.11.2 Using the Forward Rule .. 14-11
14.3.2.11.3 Using the URL Substitution Rule... 14-11
14.3.2.11.4 Using the Tape Rule... 14-11
14.3.2.12 How to Set Rules.. 14-12
14.3.2.13 Reference: Troubleshooting the HTTP Analyzer.. 14-12
14.3.2.13.1 Running the HTTP Analyzer While Another Application is Running 14-12
14.3.2.13.2 Changing Proxy Settings... 14-13
14.3.3 Using the OdiInvokeWebService Tool .. 14-13

15 Using Shortcuts

15.1 Introduction to Shortcuts .. 15-1
15.1.1 Shortcutting Concepts.. 15-1
15.1.2 Shortcut Objects .. 15-2
15.2 Introduction to the Shortcut Editor ... 15-2
15.3 Creating a Shortcut .. 15-3
15.4 Working with Shortcuts in your Projects ... 15-4
15.4.1 Duplicating a Selection with Shortcuts.. 15-4
15.4.2 Jump to the Reference Shortcut .. 15-5
15.4.3 Jump to the Base Object ... 15-5
15.4.4 Executing Shortcuts .. 15-5
15.4.5 Materializing Shortcuts.. 15-5

xi

15.4.6 Exporting and Importing Shortcuts ... 15-5
15.4.7 Using Release Tags ... 15-6
15.4.8 Advanced Actions .. 15-7

16 Using Groovy Scripting

16.1 Introduction to Groovy ... 16-1
16.2 Introduction to the Groovy Editor .. 16-1
16.3 Using the Groovy Editor... 16-2
16.3.1 Create a Groovy Script ... 16-3
16.3.2 Open and Edit an Existing Groovy Script... 16-3
16.3.3 Save a Groovy Script .. 16-3
16.3.4 Execute a Groovy Script... 16-3
16.3.5 Stop the Execution of a Groovy Script... 16-4
16.3.6 Perform Advanced Actions... 16-4
16.4 Automating Development Tasks - Examples .. 16-6

17 Exchanging Global ODI Objects

17.1 Using the Check for Updates Wizard ... 17-1

18 Organizing and Documenting Integration Projects

18.1 Organizing Projects with Folders .. 18-1
18.1.1 Creating a New Folder... 18-1
18.1.2 Arranging Project Folders ... 18-2
18.2 Organizing Models with Folders... 18-2
18.2.1 Creating a New Model Folder .. 18-2
18.2.2 Arranging Model Folders .. 18-2
18.2.3 Creating and Organizing Sub-Models... 18-2
18.3 Using Cross-References... 18-4
18.3.1 Browsing Cross-References ... 18-4
18.3.2 Resolving Missing References... 18-5
18.4 Using Markers and Memos .. 18-6
18.4.1 Markers .. 18-6
18.4.2 Memos .. 18-7
18.5 Handling Concurrent Changes.. 18-7
18.5.1 Concurrent Editing Check... 18-8
18.5.2 Object Locking... 18-8
18.6 Creating PDF Reports.. 18-9
18.6.1 Generating a Topology Report ... 18-9
18.6.2 Generating a Report for the Version Comparison Results 18-10
18.6.3 Generating a Report for an Oracle Data Integrator Object 18-10
18.6.4 Generating a Diagram Report... 18-10

19 Using Version Control (Legacy Mode)

19.1 Working with Object Flags ... 19-1
19.2 Working with Versions ... 19-2

xii

19.3 Working with the Version Comparison Tool .. 19-4
19.3.1 Viewing the Differences between two Versions .. 19-5
19.3.2 Using Comparison Filters.. 19-6
19.3.3 Generating and Printing a Report of your Comparison Results 19-6
19.4 Working with Labels ... 19-7
19.4.1 Working with Elements in a Label ... 19-8
19.4.2 Synchronizing Labels ... 19-8
19.4.3 Restoring and Checking in a Label .. 19-8
19.4.4 Importing and Exporting Labels .. 19-9

20 Integrating ODI with Version Control Systems

20.1 Introduction to ODI-VCS integration ... 20-2
20.2 Selecting the VCS to use with ODI .. 20-2
20.3 Creating an SVN Connection ... 20-3
20.3.1 HTTP Basic Authentication Options.. 20-3
20.3.2 Subversion Basic Authentication Options .. 20-4
20.3.3 SSH Authentication Options... 20-4
20.3.4 SSL Authentication Options.. 20-4
20.3.5 File Based Authentication Options .. 20-4
20.4 Editing an SVN Connection ... 20-5
20.5 Configuring Subversion Settings... 20-5
20.5.1 Subversion Settings .. 20-5
20.6 Configuring Subversion Repository with ODI.. 20-6
20.6.1 Options to Configure Subversion Repository with ODI... 20-6
20.7 Creating a Default Subversion Project Structure... 20-6
20.8 Populating a New ODI Repository from a Subversion Branch/Trunk 20-7
20.9 Populating a Restored ODI Repository from a Subversion Branch/Trunk.................... 20-7
20.10 Understanding Generic Profiles in ODI ... 20-7
20.11 Creating a Full Tag in the Subversion Repository .. 20-8
20.12 Creating a Partial Tag in the Subversion Repository.. 20-8
20.12.1 Create Partial Tag Options .. 20-9
20.13 Creating a Branch from a Tag .. 20-9
20.13.1 Create Branch from Tag Options.. 20-9
20.14 Unlocking the ODI Repository .. 20-10
20.15 Adding Non-versioned ODI Objects to the Subversion Repository 20-10
20.16 Adding a Single Non-versioned ODI Object to the Subversion Repository 20-10
20.17 Creating versions of a version controlled ODI Object.. 20-11
20.18 Restoring a Version Controlled ODI Object from its Previous Version 20-11
20.18.1 Restore Object from Subversion Options .. 20-11
20.19 Restoring a Version Controlled ODI Object Deleted in ODI Repository....................... 20-12
20.20 Viewing the Version History of a Version Controlled ODI Object 20-12
20.20.1 Version Search Criteria .. 20-13
20.21 Comparing Versions of an ODI Object from the Version History Dialog..................... 20-13
20.21.1 Icons on the Version Compare Results dialog.. 20-14
20.22 Viewing Version Tree of a Version Controlled ODI Object... 20-15
20.23 Comparing Versions of an ODI Object from the Version Tree Editor 20-15
20.24 Performing a Merge... 20-16

xiii

20.25 Performing a Branch Merge ... 20-16
20.25.1 Viewing Merge Summary ... 20-17

21 Release Management

21.1 Managing ODI Releases.. 21-1
21.2 Types of Deployment Archives ... 21-1
21.3 Creating a Deployment Archive from a VCS Label.. 21-2
21.4 Creating an Initial Deployment Archive from the ODI Repository 21-2
21.5 Creating a Patch Deployment Archive from the ODI Repository 21-3
21.6 Viewing Available Deployment Archives.. 21-4
21.7 Initializing an ODI Repository Using an Initial Deployment Archive 21-4
21.8 Updating an ODI Repository Using a Patch Deployment Archive.................................. 21-5
21.9 Viewing Deployment Archives Applied in an ODI Repository 21-6
21.10 Rolling Back a Patch Deployment Archive .. 21-6

22 Life Cycle Management Guidelines

22.1 Guidelines for Choosing the Authentication Type ... 22-1
22.2 General Branching Guidelines ... 22-2
22.3 General Tagging Guidelines... 22-2
22.4 Branching Guidelines for Single Development Team .. 22-3
22.5 Branching Guidelines for Parallel Development Teams.. 22-4
22.6 Guidelines for Release Branches for Parallel Development Teams.................................. 22-4
22.7 Guidelines for Versioning During Development.. 22-5
22.8 Guidelines for Deployment in Testing and Production Environments........................... 22-6
22.9 Guidelines for Initial Deployment and Patching .. 22-7

23 Exporting and Importing

23.1 Import and Export Concepts .. 23-1
23.1.1 Global Identifiers (GUIDs) .. 23-1
23.1.2 Export Keys.. 23-2
23.1.3 Relationships between Objects ... 23-2
23.1.4 Import Modes.. 23-3
23.1.5 Tips for Import/Export.. 23-7
23.2 Exporting and Importing Objects .. 23-8
23.2.1 Exporting an Object with its Child Components ... 23-9
23.2.2 Exporting an Object without its Child Components ... 23-9
23.2.3 Partial Export/Import.. 23-9
23.2.4 Exporting one ODI Object ... 23-10
23.2.5 Export Multiple ODI Objects .. 23-11
23.2.6 Importing Objects ... 23-11
23.2.7 Smart Export and Import... 23-14
23.2.7.1 Performing a Smart Export .. 23-14
23.2.7.2 Performing a Smart Import .. 23-17
23.3 Repository-Level Export/Import .. 23-19
23.3.1 Exporting and Importing the Master Repository... 23-19
23.3.2 Export/Import Topology and Security Settings .. 23-22

xiv

23.3.3 Exporting and Importing a Work Repository .. 23-23
23.4 Exporting the Technical Environment .. 23-24
23.5 Exporting and Importing the Log.. 23-25

xv

Preface

This manual describes how to develop data integration projects using Oracle Data
Integrator.

This preface contains the following topics:.

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This document is intended for developers and administrators who want to use Oracle
Data Integrator (ODI) as a development tool for their integration processes. This guide
explains how to work with the ODI graphical user interface, primarily ODI Studio and
ODI Console. It guides you through common tasks and examples of development, as
well as conceptual and background information on the features of ODI.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Data Integrator
Library.

■ Release Notes for Oracle Data Integrator

■ Understanding Oracle Data Integrator

■ Administering Oracle Data Integrator

xvi

■ Installing and Configuring Oracle Data Integrator

■ Upgrading Oracle Data Integrator

■ Application Adapters Guide for Oracle Data Integrator

■ Developing Knowledge Modules with Oracle Data Integrator

■ Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ Migrating From Oracle Warehouse Builder to Oracle Data Integrator

■ Oracle Data Integrator Tool Reference

■ Data Services Java API Reference for Oracle Data Integrator

■ Open Tools Java API Reference for Oracle Data Integrator

■ Getting Started with SAP ABAP BW Adapter for Oracle Data Integrator

■ Java API Reference for Oracle Data Integrator

■ Getting Started with SAP ABAP ERP Adapter for Oracle Data Integrator

■ Oracle Data Integrator 12c Online Help, which is available in ODI Studio through the
JDeveloper Help Center when you press F1 or from the main menu by selecting
Help, and then Search or Table of Contents.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvii

What's New In Oracle Data Integrator?

This chapter describes changes in the Oracle Data Integrator documentation
organization introduced with Oracle Data Integrator 12c (12.2.1.1).

To improve the organization of information about Oracle Data Integrator, three new
books have been added to the ODI documentation library:

■ Understanding Oracle Data Integrator: This book presents introductory and
conceptual information about ODI, including ODI terminology, architecture,
typical integration project designs, and ODI environments.

■ Administering Oracle Data Integrator: This manual describes how to perform
configuration and user management tasks in ODI. This includes configuring ODI
components, performing basic administrative tasks, running and monitoring
integration processes, and managing security in ODI.

■ Oracle Data Integrator Tool Reference: This guide describes how to use and develop
Open Tools using ODI to design integration scenarios.

Several chapters and many topics previously found in the Developer's Guide for Oracle
Data Integrator 12c (12.1.2) have been moved into these new books. Customers familiar
with previous versions of the ODI developer documentation may find useful the
following table, which provides the new locations of topics that have been moved to
other books in the ODI library.

See Also: For details about new and changed features in Oracle Data
Integrator, see "What's New in Oracle Data Integrator?" in
Administering Oracle Data Integrator.

Topic New Location

What's New in Oracle Data Integrator? Administering Oracle Data Integrator

Introduction to Oracle Data Integrator Understanding Oracle Data Integrator

Administering Repositories Administering Oracle Data Integrator

Setting Up the Topology Administering Oracle Data Integrator

Managing Agents Administering Oracle Data Integrator

Creating and Using Data Services Administering Oracle Data Integrator

Running and Monitoring Integration Processes Administering Oracle Data Integrator

Managing Security Settings Administering Oracle Data Integrator

Oracle Data Integrator Tools Reference Oracle Data Integrator Tool Reference

xviii

Part I
Part I Introduction to Developing with Oracle Data

Integrator

This part provides an introduction to Oracle Data Integrator and the basic steps of
creating an integration project with Oracle Data Integrator.

This part contains the following chapters:

■ Chapter 1, "Overview of an Integration Project"

■ Chapter 2, "Overview of Oracle Data Integrator Topology"

1

Overview of an Integration Project 1-1

1Overview of an Integration Project

[2] This chapter introduces the basic steps to creating an integration project with Oracle
Data Integrator (ODI). It will help you get started with ODI by outlining the basic
functionalities and the minimum required steps.

This section is not intended to be used for advanced configuration, usage or
troubleshooting.

1.1 Oracle Data Integrator Project Quick Start List
To perform the minimum required steps of a simple Oracle Data Integrator integration
project, follow the ODI Project Quick Start list and go directly to the specified sections
of this guide.

Prerequisites
Before performing the Quick Start procedure ensure that you have installed Oracle
Data Integrator, including setting up and configuring ODI agents, according to the
instructions in Installing and Configuring Oracle Data Integrator. You (or an
administrator) should perform post-installation configuration and user management
tasks as described in Administering Oracle Data Integrator

You should also be familiar with the material presented in Understanding Oracle Data
Integrator.

ODI Project Quick Start List
The ODI Project Quick Start list describes the essential steps to creating and running a
simple integration project. Once you are familiar with these essential steps, you can
review additional material in this guide to help you with more advanced topics,
complex integrations, and optional steps.

1. In Oracle Data Integrator, you perform developments on top of a logical topology.
Refer to Chapter 2, "Overview of Oracle Data Integrator Topology" if you are not
familiar with the topology. Create logical schemas and associate them with
physical schemas in the Global context. See 'Creating a Logical Schema" in
Administering Oracle Data Integrator for more information.

2. Mappings use data models containing the source and target datastores,
corresponding to data structures contained in a physical schema: tables, files, JMS
messages, or elements from an XML file. Data models are usually
reverse-engineered from your data server's metadata into an Oracle Data
Integrator repository.

Create one ore more models and datastores according to Chapter 3, "Creating and
Using Data Models and Datastores.".

Oracle Data Integrator Project Quick Start List

1-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

3. The developed integration components are stored in a project. Creating a new
project is covered in Chapter 6, "Creating an Integration Project.".

4. Consider how you will organize your integration project. Chapter 18, "Organizing
and Documenting Integration Projects", describes several built-in tools to assist
with organization: projects and models can be organized into hierarchical folders,
you can cross-reference and annotate objects with metadata using markers and
memos, and you can generate PDF-formatted reports for non-ODI users to review.

5. Version control can be a powerful tool for working on an integration project when
there are multiple developers involved, or if you want to preserve versions of files
so that you can revert to previous states of the project. Review Chapter 19, "Using
Version Control (Legacy Mode)", to see if ODI's build-in version control suits your
development requirements.

6. Mappings use Knowledge Modules to generate their code. For more information
refer to "What is E-LT?" in Understanding Oracle Data Integrator. Before creating
mappings you need to import the Knowledge Modules corresponding to the
technology of your data. Importing Knowledge Modules is described in
"Importing Objects" on page 23-11. Which Knowledge Modules you need to
import is discussed in Connectivity and Knowledge Modules Guide for Oracle Data
Integrator.

7. To load your target datastores with data from source datastores, you need to create
an mapping. A mapping consists of a set of rules that define the loading from one
or more source datastores to one or more target datastores. Creating a new
mapping for your integration project is described in "Creating a Mapping" on
page 8-5.

8. Once you have finished creating a mapping, you can run it, as described in
"Running Mappings" on page 8-10. Select Local (No Agent) to execute the
mapping directly by Oracle Data Integrator.

9. An integration workflow may require the loading of several target datastores in a
specific sequence. If you want to sequence your mappings, create a package. This
is an optional step described in "Creating a new Package" on page 7-4.

10. If your workflow is complex, involves many source or target datastores, or if you
need to manage execution of multiple mappings, packages, procedures, and
variables in a specific logical sequence, consider using load plans. Load plans
allow you to organize and run scenarios in a hierarchy of sequential and parallel
conditional steps. Load plans are described in Chapter 13, "Using Load Plans."

11. You can view and monitor the execution results in the Operator navigator. Follow
a mapping's execution using the Operator navigator is described in "Monitoring
Integration Processes" in Administering Oracle Data Integrator.

12. While developing your integration, you can use the debugger functionality to
identify and eliminate bugs in your project. The debugging tools are described in
"Debugging Integration Processes" in Administering Oracle Data Integrator.

2

Overview of Oracle Data Integrator Topology 2-1

2Overview of Oracle Data Integrator Topology

[3] This chapter provides an overview of Oracle Data Integrator topology concepts and
components relevant to ODI developers.

This chapter includes the following section:

■ Introduction to the Oracle Data Integrator Topology

2.1 Introduction to the Oracle Data Integrator Topology
The Oracle Data Integrator Topology is the physical and logical representation of the
Oracle Data Integrator architecture and components.

This section contains these topics:

■ Physical Architecture

■ Contexts

■ Logical Architecture

■ Agents

■ Languages

■ Repositories

2.1.1 Physical Architecture
The physical architecture defines the different elements of the information system, as
well as their characteristics taken into account by Oracle Data Integrator. Each type of
database (Oracle, DB2, etc.), Big Data source (Hive, HBase), file format (XML, Flat
File), or application software is represented in Oracle Data Integrator by a technology.

A technology handles formatted data. Therefore, each technology is associated with one
or more data types that allow Oracle Data Integrator to generate data handling scripts.

See Also: "Setting Up a Topology" in Administering Oracle Data
Integrator

Note: The Installation Guide for Oracle Data Integrator uses the term
"topology" in some sections to refer to the organization of servers,
folders, and files on your physical servers. This chapter refers to the
"topology" configured using the Topology Navigator in ODI Studio.

Introduction to the Oracle Data Integrator Topology

2-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

The physical components that store and expose structured data are defined as data
servers. A data server is always linked to a single technology. A data server stores
information according to a specific technical logic which is declared into physical
schemas attached to this data server. Every database server, JMS message file, group of
flat files, and so forth, that is used in Oracle Data Integrator, must be declared as a data
server. Every schema, database, JMS Topic, etc., used in Oracle Data Integrator, must
be declared as a physical schema.

Finally, the physical architecture includes the definition of the Physical Agents. These
are the Java software components that run Oracle Data Integrator jobs.

2.1.2 Contexts
Contexts bring together components of the physical architecture (the real Architecture)
of the information system with components of the Oracle Data Integrator logical
architecture (the Architecture on which the user works).

For example, contexts may correspond to different execution environments
(Development, Test and Production) or different execution locations (Boston Site,
New-York Site, and so forth.) where similar physical resource exist.

Note that during installation the default GLOBAL context is created.

2.1.3 Logical Architecture
The logical architecture allows you to identify as a single Logical Schema a group of
similar physical schemas (that contain datastores that are structurally identical) that
are located in different physical locations. Logical Schemas, like their physical
counterparts, are attached to a technology.

Contexts allow logical schemas to resolve to physical schemas. In a given context, a
logical schema resolves to a single physical schema.

For example, the Oracle logical schema Accounting may correspond to two Oracle
physical schemas:

■ Accounting Sample used in the Development context

■ Accounting Corporate used in the Production context

These two physical schemas are structurally identical (they contain accounting data),
but are located in different physical locations. These locations are two different Oracle
schemas (Physical Schemas), possibly located on two different Oracle instances (Data
Servers).

All the components developed in Oracle Data Integrator are designed on top of the
logical architecture. For example, a data model is always attached to logical schema,
and data flows are defined with this model. By specifying a context at run-time (either
Development or Production), the model's logical schema (Accounting) resolves to a single
physical schema (either Accounting Sample or Accounting Corporate), and the data
contained in this schema in the data server can be accessed by the integration
processes.

2.1.4 Agents
Oracle Data Integrator run-time Agents orchestrate the execution of jobs. These agents
are Java components.

The run-time agent functions as a listener and a scheduler agent. The agent executes jobs
on demand (model reverses, packages, scenarios, mappings, and so forth), for example

Introduction to the Oracle Data Integrator Topology

Overview of Oracle Data Integrator Topology 2-3

when the job is manually launched from a user interface or from a command line. The
agent is also used to start the execution of scenarios according to a schedule defined in
Oracle Data Integrator.

Third party scheduling systems can also trigger executions on the agent. See
"Scheduling a Scenario or a Load Plan with an External Scheduler" in Administering
Oracle Data Integrator for more information.

Typical projects only require a single Agent in production; however, "Load balancing
Agents" in Administering Oracle Data Integrator describes how to set up multiple
load-balanced agents.

ODI Studio can also directly execute jobs on demand. This internal "agent" can be used
for development and initial testing. However, it does not have the full production
features of external agents, and is therefore unsuitable for production data integration.
When running a job, in the Run dialog, select Local (No Agent) as the Logical Agent
to directly execute the job using ODI Studio. Note the following features are not
available when running a job locally:

■ Stale session cleanup

■ Ability to stop a running session

■ Load balancing

If you need any of these features, you should use an external agent.

Agent Lifecycle
The lifecycle of an agent is as follows:

1. When the agent starts it connects to the master repository.

2. Through the master repository it connects to any work repository attached to the
Master repository and performs the following tasks at startup:

■ Execute any outstanding tasks in all work repositories that need to be
executed upon startup of this agent.

■ Clean stale sessions in each work repository. These are the sessions left
incorrectly in a running state after an agent or repository crash.

■ Retrieve its list of scheduled scenarios in each work repository, and compute
its schedule.

3. The agent starts listening on its port.

■ When an execution request is received by the agent, the agent acknowledges
this request and starts the session.

■ The agent launches sessions according to the schedule.

■ The agent is also able to process other administrative requests in order to
update its schedule, stop a session, respond to a ping, or clean stale sessions.
The standalone agent can also process a stop signal to terminate its lifecycle.

Refer to "Running Integration Processes" in Administering Oracle Data Integrator for
more information about a session lifecycle.

Agent Features
Agents are not data transformation servers. They do not perform any data
transformation, but instead only orchestrate integration processes. They delegate data
transformation to database servers, operating systems, and scripting engines.

Introduction to the Oracle Data Integrator Topology

2-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Agents are multi-threaded lightweight components. An agent can run multiple
sessions in parallel. When declaring a physical agent, Oracle recommends that you
adjust the maximum number of concurrent sessions it is allowed to execute
simultaneously from a work repository. When this maximum number is reached, any
new incoming session will be queued by the agent and executed later when other
sessions have terminated. If you plan to run multiple parallel sessions, you can
consider load balancing executions, as described in "Load balancing Agents" in
Administering Oracle Data Integrator.

Agent Types
Oracle Data Integrator agents are available with three types: standalone agents,
standalone colocated agents, and Java EE agents.

For more information about agent types, see: "Run-Time Agent" in Understanding
Oracle Data Integrator.

Physical and Logical Agents
A physical agent corresponds to a single standalone agent or a Java EE agent. A
physical agent should have a unique name in the Topology.

Similarly to schemas, physical agents having an identical role in different
environments can be grouped under the same logical agent. A logical agent is related
to physical agents through contexts. When starting an execution, you indicate the
logical agent and the context. Oracle Data Integrator will translate this information
into a single physical agent that will receive the execution request.

Agent URL
An agent runs on a host and a port and is identified on this port by an application name.
The agent URL also indicates the protocol to use for the agent connection. Possible
values for the protocol are http or https. These four components make the agent URL.
The agent is reached using this URL.

For example:

■ A standalone agent started on port 8080 on the odi_production machine will be
reachable at the following URL:

http://odi_production:8080/oraclediagent.

■ A Java EE agent started as an application called oracledi on port 8000 in a WLS
server deployed on the odi_wls host will be reachable at the following URL:

http://odi_wls:8000/oracledi.

Apache Oozie
Apache Oozie is a workflow scheduler that helps you manage Apache Hadoop jobs. It
is a server-based Workflow Engine specialized in running workflow jobs with actions
that run Hardoop MapReduce jobs. Refer to Integrating Big Data with Oracle Data
Integrator for more information.

Note: The application name for a standalone agent is always
oraclediagent and cannot be changed.

Introduction to the Oracle Data Integrator Topology

Overview of Oracle Data Integrator Topology 2-5

2.1.5 Languages
Languages defines the programming and scripting languages, and language elements,
available when creating and editing expressions during integration development.
Languages provided by default in Oracle Data Integrator do not require any user
change.

2.1.6 Repositories
The topology contains information about the Oracle Data Integrator repositories.
Repository definition, configuration and installation is described in "Creating the
Oracle Data Integrator Master and Work Repository Schema" in Installing and
Configuring Oracle Data Integrator.

Introduction to the Oracle Data Integrator Topology

2-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Part II
Part II Managing and Reverse-Engineering

Metadata

This part describes how to manage and reverse-engineer metadata in Oracle Data
Integrator.

This part contains the following chapters:

■ Chapter 3, "Creating and Using Data Models and Datastores"

■ Chapter 4, "Using Journalizing"

■ Chapter 5, "Creating Data Models with Common Format Designer"

3

Creating and Using Data Models and Datastores 3-1

3Creating and Using Data Models and
Datastores

[4] This chapter describes how to create a model, how to reverse-engineer this model to
populate it with datastores and how to create manually datastores of a model. This
chapter also explains how to use partitioning and check the quality of the data in a
model.

This chapter includes the following sections:

■ Introduction to Models

■ Creating and Reverse-Engineering a Model

■ Creating and Reverse-Engineering a Datastore

■ Editing and Viewing a Datastore's Data

■ Using Partitioning

■ Checking Data Quality in a Model

3.1 Introduction to Models
A Model is the description of a set of datastores. It corresponds to a group of tabular
data structures stored in a data server. A model is based on a Logical Schema defined
in the topology. In a given Context, this Logical Schema is mapped to a Physical
Schema. The Data Schema of this Physical Schema contains physical data structure:
tables, files, JMS messages, elements from an XML file, that are represented as
datastores.

Models as well as all their components are based on the relational paradigm (table,
attributes, keys, etc.). Models in Data Integrator only contain Metadata, that is the
description of the data structures. They do not contain a copy of the actual data.

Models can be organized into model folders and the datastores of a model can be
organized into sub-models. "Organizing Models with Folders" on page 18-2 describes
how to create and organize model folders and sub-models.

Note: Frequently used technologies have their reverse and model
creation methods detailed in the Connectivity and Knowledge Modules
Guide for Oracle Data Integrator.

Introduction to Models

3-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

3.1.1 Datastores
A datastore represents a data structure. It can be a table, a flat file, a message queue or
any other data structure accessible by Oracle Data Integrator.

A datastore describes data in a tabular structure. Datastores are composed of
attributes.

As datastores are based on the relational paradigm, it is also possible to associate the
following elements to a datastore:

■ Keys

A Key is a set of attributes with a specific role in the relational paradigm. Primary
and Alternate Keys identify each record uniquely. Non-Unique Indexes enable
optimized record access.

■ References

A Reference is a functional link between two datastores. It corresponds to a
Foreign Key in a relational model. For example: The INVOICE datastore references
the CUSTOMER datastore through the customer number.

■ Conditions and Filters

Conditions and Filters are a WHERE-type SQL expressions attached to a datastore.
They are used to validate or filter the data in this datastore.

3.1.2 Data Integrity
A model contains constraints such as Keys, References or Conditions, but also
non-null flags on attributes. Oracle Data Integrator includes a data integrity
framework for ensuring the quality of a data model.

This framework allows to perform:

■ Static Checks to verify the integrity of the data contained in a data model. This
operation is performed to assess the quality of the data in a model when
constraints do not physically exist in the data server but are defined in Data
Integrator only.

■ Flow Check to verify the integrity of a data flow before it is integrated into a given
datastore. The data flow is checked against the constraints defined in Oracle Data
Integrator for the datastore that is the target of the data flow.

3.1.3 Reverse-engineering
A new model is created with no datastores. Reverse-engineering is the process that
populates the model in Oracle Data Integrator by retrieving metadata from the data
server containing the data structures. There are two different types of
reverse-engineering:

■ Standard reverse-engineering uses standard JDBC driver features to retrieve the
metadata. Note that unique keys are not reverse-engineered when using a
standard reverse-engineering.

■ Customized reverse-engineering uses a technology-specific Reverse Knowledge
Module (RKM) to retrieve the metadata, using a method specific to the given
technology. This method is recommended if a technology specific RKM exists
because it usually retrieves more information than the Standard
reverse-engineering method. See the Connectivity and Knowledge Modules Guide for
Oracle Data Integrator for a list of available RKMs.

Creating and Reverse-Engineering a Model

Creating and Using Data Models and Datastores 3-3

Other methods for reverse-engineering exist for flat file datastores. They are detailed
in "Reverse-Engineering File Datastores" on page 3-8.

Oracle Data Integrator is able to reverse-engineer models containing datastore
shortcuts. For more information, see Chapter 15, "Using Shortcuts".

3.1.4 Changed Data Capture
Change Data Capture (CDC), also referred to as Journalizing, allows to trap changes
occurring on the data. CDC is used in Oracle Data Integrator to eliminate the transfer
of unchanged data. This feature can be used for example for data synchronization and
replication.

Journalizing can be applied to models, sub-models or datastores based on certain type
of technologies.

For information about setting up Changed Data Capture, see Chapter 4, "Using
Journalizing".

3.2 Creating and Reverse-Engineering a Model
Now that the key components of an ODI model have been described, an overview is
provided on how to create and reverse-engineer a model:

■ Creating a Model

■ Creating a Model and Topology Objects

■ Reverse-engineering a Model

3.2.1 Creating a Model
A Model is a set of datastores corresponding to data structures contained in a Physical
Schema.

To create a Model:

1. In Designer Navigator expand the Models panel.

2. Right-click then select New Model.

3. Fill in the following fields in the Definition tab:

■ Name: Name of the model used in the user interface.

■ Technology: Select the model's technology.

■ Logical Schema: Select the Logical Schema on which your model will be
based.

4. On the Reverse Engineer tab, select a Context which will be used for the model's
reverse-engineering.

Note that if there is only one context that maps the logical schema, this context will
be set automatically.

5. Select Save from the File main menu.

The model is created, but contains no datastore yet.

Tip: To create a new model and new topology objects at the same
time, use the procedure described in "Creating a Model and Topology
Objects" on page 3-4.

Creating and Reverse-Engineering a Model

3-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

3.2.2 Creating a Model and Topology Objects
You can create a Model along with other topology objects, including new data servers,
contexts and schemas, at the same time:

1. In ODI Studio, select File and click New....

2. In the New Gallery dialog, select Create a New Model and Topology Objects and
click OK.

The Create New Model and Topology Objects wizard appears.

3. In the Model panel of the wizard, fill in the following fields.

■ Name: Name of the model used in the user interface.

■ Technology: Select the model's technology.

■ Logical Schema: Select the Logical Schema on which your model will be
based.

■ Context: Select the context that will be used for the model's
reverse-engineering.

4. Click Next.

5. In the Data Server panel of the wizard, fill in the following data server fields.

■ Name: Name of the data server, as it appears in the user interface.

Note: or naming data servers, it is recommended to use the following naming
standard: <TECHNOLOGY_NAME>_<SERVER_NAME>.

■ Technology: Technology linked to the data server.

Note: Appears only if the Technology selected for the Model is of the type
Generic SQL.

■ User: User name used for connecting to the data server.

■ Password: Password linked with the user name.

Note: This password is stored encrypted in the repository.

■ Driver List: Provides a list of available drivers available to be used with the
data server.

■ Driver: Name of the driver used for connecting to the data server.

■ URL: Provides the connection details.

■ Properties: Lists the properties that you can set for the selected driver.

6. Click Next.

7. In the Physical Schema panel of the wizard, fill in the physical schema fields.

■ Name: Name of the physical schema. It is calculated automatically and is
read-only.

■ Datasource (Catalog): Name of the catalog in the data server.

Note: Appears only if the Technology selected supports Catalogs.

■ Schema (Schema): Name of the schema in the data server. Schema, owner, or
library where the required data is stored.

Note: Oracle Data Integrator lists all the schemas present in the data server.
Sometimes, Oracle Data Integrator cannot draw up this list. In this case, you
should enter the schema name, respecting the case.

Creating and Reverse-Engineering a Model

Creating and Using Data Models and Datastores 3-5

■ Datasource (Work Catalog): Indicate the catalog in which you want to create
these objects. For some data validation or transformation operations, Oracle
Data Integrator may require work objects to be created.

Note: Appears only if the Technology selected supports Catalogs.

■ Schema (Work Schema): Indicates the schema in which you want to create
these objects. For some data validation or transformation operations, Oracle
Data Integrator may require work objects to be created. If you do not set a
Work Schema, it defaults to the Schema during execution

It is recommended that you create a specific schema dedicated to any work
tables. By creating a schema named SAS or ODI in all your data servers, you
ensure that all Oracle Data Integrator activity remains totally independent
from your applications.

Note: Oracle Data Integrator lists all the schemas present in the data server.
Sometimes, Oracle Data Integrator cannot draw up this list. In this case, you
should enter the schema name, respecting the case.

■ Driver: Name of the driver used for connecting to the data server.

■ URL: Provides the connection details.

■ Properties: Specifies the properties for the selected driver.

8. Click Next.

9. Click Finish. The model and topology objects are created, but the model contains
no datastore yet.

3.2.3 Reverse-engineering a Model
To automatically populate datastores into the model you need to perform a
reverse-engineering for this model.

Standard Reverse-Engineering
A Standard Reverse-Engineering uses the capacities of the JDBC driver used to
connect the data server to retrieve the model metadata.

To perform a Standard Reverse- Engineering:

1. In the Reverse Engineer tab of your Model:

■ Select Standard.

■ Select the Context used for the reverse-engineering

■ Select the Types of objects to reverse-engineer. Only object of these types will
be taken into account by the reverse-engineering process.

■ Enter in the Mask field the mask of tables to reverse engineer. The mask
selects the objects to reverse. This mask uses the SQL LIKE syntax. The percent
(%) symbol means zero or more characters, and the underscore (_) symbol
means one character.

■ Optionally, you can specify the characters to remove for the table alias. These
are the characters to delete in order to derive the alias. Note that if the
datastores already exist, the characters specified here will not be removed
from the table alias. Updating a datastore is not applied to the table alias.

2. In the Selective Reverse-Engineering tab select Selective Reverse-Engineering,
New Datastores, Existing Datastores and Objects to Reverse Engineer.

Creating and Reverse-Engineering a Model

3-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

3. A list of datastores to be reverse-engineered appears. Leave those you wish to
reverse-engineer checked.

4. Select Save from the File main menu.

5. Click Reverse Engineer in the Model toolbar menu.

6. Oracle Data Integrator launches a reverse-engineering process for the selected
datastores. A progress bar indicates the progress of the reverse-engineering
process.

The reverse-engineered datastores appear under the model node in the Models panel.

Customized Reverse-Engineering
A Customized Reverse-Engineering uses a Reverse-engineering Knowledge Module
(RKM), to retrieve metadata for a specific type of technology and create the
corresponding datastore definition in the data model.

For example, for the Oracle technology, the RKM Oracle accesses the database
dictionary tables to retrieve the definition of tables, attributes, keys, etc., that are
created in the model.

To perform a Customized Reverse-Engineering using a RKM:

1. In the Reverse Engineer tab of your Model:

■ Select Customized.

■ Select the Context used for the reverse-engineering

■ Select the Types of objects to reverse-engineer. Only object of these types will
be taken into account by the reverse-engineering process.

■ Enter in the Mask the mask of tables to reverse engineer.

■ Select the KM that you want to use for performing the reverse-engineering
process. This KM is typically called RKM <technology>.<name of the
project>.

■ Optionally, you can specify the characters to remove for the table alias. These
are the characters to delete in order to derive the alias. Note that if the
datastores already exist, the characters specified here will not be removed
from the table alias. Updating a datastore is not applied to the table alias.

2. Click Reverse Engineer in the Model toolbar menu, then Yes to validate the
changes.

3. Click OK.

4. The Session Started Window appears.

5. Click OK.

You can review the reverse-engineering tasks in the Operator Navigator. If the
reverse-engineering process completes correctly, reverse-engineered datastores appear
under the model node in the Models panel.

Note: The RKM must be available as a global RKM or imported into
the project. Refer to Chapter 6, "Creating an Integration Project," for
more information on KM import.

Creating and Reverse-Engineering a Datastore

Creating and Using Data Models and Datastores 3-7

3.3 Creating and Reverse-Engineering a Datastore
Although the recommended method for creating datastores in a model is
reverse-engineering, it is possible to manually define datastores in a blank model. It is
the recommended path for creating flat file datastores.

3.3.1 Creating a Datastore
To create a datastore:

1. From the Models tree in Designer Navigator, select a Model or a Sub-Model.

2. Right-click and select New Datastore.

3. In the Definition tab, fill in the following fields:

■ Name of the Datastore: This is the name that appears in the trees and that is
used to reference the datastore from a project.

■ Resource Name: Name of the object in the form recognized by the data server
which stores it. This may be a table name, a file name, the name of a JMS
Queue, etc.

■ Alias: This is a default alias used to prefix this datastore's attributes names in
expressions.

4. If the datastore represents a flat file (delimited or fixed), in the File tab, fill in the
following fields:

■ File Format: Select the type of your flat file, fixed or delimited.

■ Header: Number of header lines for the flat file.

■ Record Separator and Field Separator define the characters used to separate
records (lines) in the file, and fields within one record.

Record Separator: One or several characters separating lines (or records) in
the file:

– MS-DOS: DOS carriage return

– Unix: UNIX carriage return

– Other: Free text you can input as characters or hexadecimal codes

Field Separator: One ore several characters separating the fields in a record.

– Tabulation

Note: Do not use ODI reserved names like, for example, JRN_FLAG,
JRN_SUBSCRIBER, and JRN_DATE for the datastore name. These
names would cause Duplicate Attribute name SQL errors in ODI
intermediate tables such as error tables.

Note: If the Resource is a database table, it must respect the Database
rules for object and attributes identifiers. There is a limit in the object
identifier for most of the Technologies (in Oracle, typically 30
characters). To avoid these errors, ensure in the topology for a specific
technology that maximum lengths for the object names (tables and
columns) correspond to your database configuration.

Creating and Reverse-Engineering a Datastore

3-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

– Space

– Other: Free text you can input as characters or hexadecimal code

5. Select Save from the File main menu.

The datastore is created. If this is a File datastore, refer to Reverse-Engineering File
Datastores for creating attributes for this datastore. It is also possible to manually edit
attributes for all datastores. See Adding and Deleting Datastore Attributes for more
information.

3.3.2 Reverse-Engineering File Datastores
Oracle Data Integrator provides specific methods for reverse-engineering flat files. The
methods for reversing flat files are described below.

3.3.2.1 Reverse-Engineering Fixed Files
Fixed files can be reversed engineered using a wizard into which the boundaries of the
fixed attributes and their parameters can be defined.

1. Go to the Attributes tab the file datastore that has a fixed format.

2. Click the Reverse Engineer button. A window opens displaying the first records
of your file.

3. Click on the ruler (above the file contents) to create markers delimiting the
attributes. Right-click in the ruler to delete a marker.

4. Attributes are created with pre-generated names (C1, C2, and so on). You can edit
the attribute name by clicking in the attribute header line (below the ruler).

5. In the properties panel (on the right), you can edit the parameters of the selected
attribute.

6. You must set at least the Attribute Name, Datatype and Length for each attribute.
Note that attribute names of File datastores cannot contain spaces.

7. Click OK when the attributes definition is complete to close the wizard.

8. Select Save from the File main menu.

3.3.2.2 Reverse-Engineering Delimited Files
Delimited files can be reversed engineered using a a built-in JDBC which analyzes the
file to detect the attributes and reads the attribute names from the file header.

1. Go to the Attributes tab the file datastore that has a delimited format.

2. Click the Reverse Engineer button.

3. Oracle Data Integrator creates the list of attributes according to your file content.
The attribute type and length are set to default values. Attribute names are
pre-generated names (C1, C2, and so on) or names taken from the first Header line
declared for this file.

4. Review and if needed modify the Attribute Name, Datatype and Length for each
attribute. Note that attribute names of File datastores cannot contain spaces.

5. Select Save from the File main menu.

3.3.2.3 Reverse-Engineering COBOL Files
Fixed COBOL files structures are frequently described in Copybook files. Oracle Data
Integrator can reverse-engineer the Copybook file structure into a datastore structure.

Creating and Reverse-Engineering a Datastore

Creating and Using Data Models and Datastores 3-9

1. Go to the Attributes tab the file datastore that has a fixed format.

2. Click the Reverse Engineer COBOL Copybook button.

3. Fill in the following fields:

■ File: Location of the Copybook file.

■ Character Set: Copybook file character set.

■ Description format (EBCDIC or ASCII): Copybook file format

■ Data format (EBCDIC or ASCII): Data file format.

4. Click OK. The attributes described in the Copybook are reverse-engineered and
appear in the attribute list.

5. Select Save from the File main menu.

3.3.3 Adding and Deleting Datastore Attributes
To add attributes to a datastore:

1. In the Attributes tab of the datastore, click Add Attribute in the tool bar menu.

2. An empty line appears. Fill in the information about the new attribute. You should
at least fill in the Name, Datatype and Length fields.

3. Repeat steps 1 and 2 for each attribute you want to add to the datastore.

4. Select Save from the File main menu.

To delete attributes from a datastore:

1. In the Attributes tab of the datastore, select the attribute to delete.

2. Click the Delete Attribute button. The attribute disappears from the list.

3.3.4 Adding and Deleting Constraints and Filters
Oracle Data Integrator manages constraints on data model including Keys, References,
Conditions and Mandatory Attributes. It includes a data integrity framework for
ensuring the quality of a data model based on these constraints.

Filters are not constraints but are defined similarly to Conditions. A Filter is not used
to enforce a data quality rule on a datastore, but is used to automatically filter this
datastore when using it as a source.

3.3.4.1 Keys
To create a key for a datastore:

1. In the Designer Navigator, expand in the Model tree the model and then the
datastore into which you want to add the key.

2. Select the Constraints node, right-click and select New Key.

3. Enter the Name for the constraint, and then select the Key or Index Type. Primary
Keys and Alternate Keys can be checked and can act as an update key in an
interface. Non-Unique Index are used mainly for performance reasons.

4. In the Attributes tab, select the list of attributes that belong to this key.

5. In the Control tab, select whether this constraint should be checked by default in a
Static or Flow check.

Creating and Reverse-Engineering a Datastore

3-10 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

6. By clicking the Check button, you can retrieve the number of records that do not
respect this constraint.

7. Select Save from the File main menu.

3.3.4.2 References
To create a reference between two datastores:

1. In the Designer Navigator, expand in the Model tree the model and then one of
the datastores into which you want to add the reference.

2. Select the Constraints node, right-click and select New Reference.

3. Enter the Name for the constraint, and then select the Type for the reference. In a
User Reference the two datastores are linked based on attribute equality. In a
Complex User Reference any expression can be used to link the two datastores. A
Database Reference is a reference based on attribute equality that has been
reverse-engineered from a database engine.

4. If you want to reference a datastore that exists in a model, select the Model and
the Table that you want to link to the current datastore.

5. If you want to link a table that does not exist in a model, leave the Model and
Table fields undefined, and set the Catalog, Schema and Table names to identify
your datastore.

6. If you are defining a User or Database reference, in the Attributes tab, define the
matching attributes from the two linked datastores.

7. If you are defining a Complex User reference, enter in the Expression tab the
expression that relates attributes from the two linked datastores.

8. In the Control tab, select whether this constraint should be checked by default in a
Static or Flow check.

9. By clicking the Check button, you can retrieve the number of records that respect
or do not respect this constraint.

10. Select Save from the File main menu.

3.3.4.3 Conditions
To create a condition for a datastore:

1. In the Designer Navigator, expand in the Model tree the model and then one of
the datastores into which you want to add the condition.

2. Select the Constraints node, right-click and select New Condition.

3. Enter the Name for the constraint, and then select the Type for the condition. An
Oracle Data Integrator Condition is a condition that exists only in the model and
does not exist in the database. A Database Condition is a condition that is defined
in the database and has been reverse-engineered.

4. In the Where field enter the expression that implements the condition. This
expression is a SQL WHERE expression that valid records should respect.

5. Type in the Message field the error message for this constraint.

6. In the Control tab, select whether this constraint should be checked by default in a
Static or Flow check.

7. By clicking the Check button, you can retrieve the number of records that do not
respect this constraint.

Editing and Viewing a Datastore's Data

Creating and Using Data Models and Datastores 3-11

8. Select Save from the File main menu.

3.3.4.4 Mandatory Attributes
To define mandatory attributes for a datastore:

1. In the Designer Navigator, expand in the Model tree the model containing the
datastores.

2. Double-click the datastore containing the attribute that must be set as mandatory.
The Datastore Editor appears.

3. In the Attributes tab, check the Not Null field for each attribute that is mandatory.

4. Select Save from the File main menu.

3.3.4.5 Filter
To add a filter to a datastore:

1. In the Designer Navigator, expand in the Model tree the model and then one of
the datastores into which you want to add the filter.

2. Select the Filter node, right-click and select New Condition.

3. Enter the Name for the filter.

4. In the Where field enter the expression that implements the filter. This expression
is a SQL WHERE expression used to filter source records.

5. In the Control tab, check Filter Active for Static Control if you want data from
this table to be filtered prior to checking it a static control.

6. Select Save from the File main menu.

3.4 Editing and Viewing a Datastore's Data
To view a datastore's data:

1. Select the datastore from the model in the Designer Navigator.

2. Right-click and select View Data.

The data appear in a non editable grid.

To edit a datastore's data:

1. Select the datastore from the model in the Designer Navigator.

2. Right-click and select Data...

The data appear in an editable grid in the Data Editor. The Refresh button enables you
to edit and run again the query returning the datastore data. You can filter the data
and perform free queries on the datastore using this method.

It is possible to edit a datastore's data if the connectivity used and the data server
user's privileges allow it, and if the datastore structure enables to identify each row of
the datastore (PK, etc.).

Note: The data displayed is the data stored in the physical schema
corresponding to the model's logical schema, in the current working
context.

Using Partitioning

3-12 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

3.5 Using Partitioning
Oracle Data Integrator is able to use database-defined partitions when processing data
in partitioned tables used as source or targets of mappings. These partitions are
created in the datastore corresponding to the table, either through the
reverse-engineering process or manually. For example with the Oracle technology,
partitions are reverse-engineered using the RKM Oracle.

The partitioning methods supported depend on the technology of the datastore. For
example, for the Oracle technology the following partitioning methods are supported:
Range, Hash, List.

Once defined on a datastore, partitions can be selected when this datastore is used as a
source or a target of a mapping. Refer to Chapter 8, "Creating and Using Mappings,"
for information.

If using the common format designer, you can also create partitions when performing
the Generate DDL operation.

3.5.1 Manually Defining Partitions and Sub-Partitions of Model Datastores
Partition information can be reverse-engineered along with the datastore structures or
defined manually.

To manually define partitions and sub-partitions for a datastore:

1. In the Models accordion, double-click the datastore for which you want to define
the partition or sub-partition. The Datastore Editor opens.

2. In the Partitions tab, enter the following details to define the partition and
sub-partition:

■ Partition by

Select the partitioning method. This list displays the partitioning methods
supported by the technology on which the model relies.

■ Sub-Partition by

If you want to define sub-partitions in addition to partitions, select the
sub-partitioning method. This list displays the partitioning methods
supported by the technology on which the model relies.

3. Click Add Partition.

4. In the Name field, enter a name for the partition, for example: FY08.

5. In the Description field, enter a description for the partition, for example:
Operations for Fiscal Year 08.

6. If you want to add:

■ additional partitions, repeat steps 3 through 5.

■ a sub-partition of a selected partition, click Add Sub-Partition and repeat
steps 4 and 5.

7. From the File menu, select Save.

Note: Standard reverse-engineering does not support the
revers-engineering of partitions. To reverse-engineer partitions and
sub-partitions, you have to use customized reverse-engineering.

Checking Data Quality in a Model

Creating and Using Data Models and Datastores 3-13

3.6 Checking Data Quality in a Model
Data Quality control is essential in ensuring the overall consistency of the data in your
information system's applications.

Application data is not always valid for the constraints and declarative rules imposed
by the information system. You may, for instance, find orders with no customer, or
order lines with no product, etc. In addition, such incorrect data may propagate via
integration flows.

3.6.1 Introduction to Data Integrity
Oracle Data Integrator provides a working environment to detect these constraint
violation and store them for recycling or reporting purposes.

There are two different main types of controls: Static Control and Flow Control. We
will examine the differences between the two.

Static Control
Static Control implies the existence of rules that are used to verify the integrity of your
application data. Some of these rules (referred to as constraints) may already be
implemented in your data servers (using primary keys, reference constraints, etc.)

With Oracle Data Integrator, you can refine the validation of your data by defining
additional constraints, without implementing them directly in your servers. This
procedure is called Static Control since it allows you to perform checks directly on
existing - or static - data. Note that the active database constraints (these are those that
have Defined in the Database and Active selected on the Controls tab) need no
additional control from Oracle Data Integrator since they are already controlled by the
database.

Flow Control
The information systems targeted by transformation and integration processes often
implement their own declarative rules. The Flow Control function is used to verify an
application's incoming data according to these constraints before loading the data into
these targets. Setting up flow control is detailed in to Chapter 8, "Creating and Using
Mappings."

3.6.2 Checking a Constraint
While creating a constraint in Oracle Data Integrator, it is possible to retrieve the
number of lines violating this constraint. This action, referred as Synchronous Control
is performed from the Control tab of the given constraint Editor by clicking the Check
button.

The result of a synchronous control is not persistent. This type of control is used to
quickly evaluate the validity of a constraint definition.

3.6.3 Perform a Static Check on a Model, Sub-Model or Datastore
To perform a Static Check on a Model, Sub-Model or Datastore:

1. In the Models tree in the Designer Navigator, select the model that you want to
check.

2. Double-click this model to edit it.

Checking Data Quality in a Model

3-14 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

3. In the Control tab of the model Editor, select the Check Knowledge Module
(CKM) used in the static check.

4. From the File menu, select Save All.

5. Right-click the model, sub-model or datastore that you want to check in the Model
tree in the Designer Navigator and select Control > Check. Or, in the model editor
menu bar, click the Check Model button.

6. In the Run dialog, select the execution parameters:

■ Select the Context into which the step must be executed.

■ Select the Logical Agent that will run the step.

■ Select a Log Level.

■ Check the Delete Errors from the Checked Tables option if you want rows
detected as erroneous to be removed from the checked tables.

■ Select Recurse Sub-Models to check sub-models of this models

■ Optionally, select Simulation. This option performs a simulation of the run
operation and generates a run report, without actually affecting data.

See "Execution Parameters" in Administering Oracle Data Integrator for more
information about the execution parameters.

7. Click OK.

8. The Session Started Window (or, if running a simulation, the Simulation
window) appears.

9. Click OK.

You can review the check tasks in the Operator Navigator. If the control process
completes correctly, you can review the erroneous records for each datastore that has
been checked.

3.6.4 Reviewing Erroneous Records
To view a datastore's errors:

1. Select the datastore from the model in the Designer Navigator.

2. Right-click and select Control > Errors....

The erroneous rows detected for this datastore appear in a grid.

4

Using Journalizing 4-1

4Using Journalizing

[5] This chapter describes how to use Oracle Data Integrator's Changed Data Capture
feature to detect changes occurring on the data and only process these changes in the
integration flows.

This chapter includes the following sections:

■ Introduction to Changed Data Capture

■ Setting up Journalizing

■ Using Changed Data

4.1 Introduction to Changed Data Capture
Changed Data Capture (CDC) allows Oracle Data Integrator to track changes in source
data caused by other applications. When running mappings, thanks to CDC, Oracle
Data Integrator can avoid processing unchanged data in the flow.

Reducing the source data flow to only changed data is useful in many contexts, such
as data synchronization and replication. It is essential when setting up an
event-oriented architecture for integration. In such an architecture, applications make
changes in the data ("Customer Deletion," "New Purchase Order") during a business
process. These changes are captured by Oracle Data Integrator and transformed into
events that are propagated throughout the information system.

Changed Data Capture is performed by journalizing models. Journalizing a model
consists of setting up the infrastructure to capture the changes (inserts, updates and
deletes) made to the records of this model's datastores.

Oracle Data Integrator supports two journalizing modes:

■ Simple Journalizing tracks changes in individual datastores in a model.

■ Consistent Set Journalizing tracks changes to a group of the model's datastores,
taking into account the referential integrity between these datastores. The group of
datastores journalized in this mode is called a Consistent Set.

Introduction to Changed Data Capture

4-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

4.1.1 The Journalizing Components
The journalizing components are:

■ Journals: Where changes are recorded. Journals only contain references to the
changed records along with the type of changes (insert/update, delete).

■ Capture processes: Journalizing captures the changes in the source datastores
either by creating triggers on the data tables, or by using database-specific
programs to retrieve log data from data server log files. See the Connectivity and
Knowledge Modules Guide for Oracle Data Integrator for more information on the
capture processes available for the technology you are using.

■ Subscribers: CDC uses a publish/subscribe model. Subscribers are entities
(applications, integration processes, etc.) that use the changes tracked on a
datastore or on a consistent set. They subscribe to a model's CDC to have the
changes tracked for them. Changes are captured only if there is at least one
subscriber to the changes. When all subscribers have consumed the captured
changes, these changes are discarded from the journals.

■ Journalizing views: Provide access to the changes and the changed data captured.
They are used by the user to view the changes captured, and by integration
processes to retrieve the changed data.

These components are implemented in the journalizing infrastructure.

4.1.2 Simple vs. Consistent Set Journalizing
Simple Journalizing enables you to journalize one or more datastores. Each
journalized datastore is treated separately when capturing the changes.

This approach has a limitation, illustrated in the following example: You want to
process changes in the ORDER and ORDER_LINE datastores (with a referential
integrity constraint based on the fact that an ORDER_LINE record should have an
associated ORDER record). If you have captured insertions into ORDER_LINE, you
have no guarantee that the associated new records in ORDERS have also been
captured. Processing ORDER_LINE records with no associated ORDER records may
cause referential constraint violations in the integration process.

Consistent Set Journalizing provides the guarantee that when you have an ORDER_
LINE change captured, the associated ORDER change has been also captured, and vice
versa. Note that consistent set journalizing guarantees the consistency of the captured
changes. The set of available changes for which consistency is guaranteed is called the
Consistency Window. Changes in this window should be processed in the correct
sequence (ORDER followed by ORDER_LINE) by designing and sequencing
mappings into packages.

Notes:

■ The Changed Data Capture functionality described in this chapter
is only used for tracking and acting on changes in the source data.
You must still perform initial data loading, if you want to
populate a source datastore with data.

■ Changed Data Capture is often performed using Oracle
GoldenGate technology. For more information, see "Oracle
GoldenGate" in Connectivity and Knowledge Modules Guide for
Oracle Data Integrator.

Setting up Journalizing

Using Journalizing 4-3

Although consistent set journalizing is more powerful, it is also more difficult to set
up. It should be used when referential integrity constraints need to be ensured when
capturing the data changes. For performance reasons, consistent set journalizing is also
recommended when a large number of subscribers are required.

It is not possible to journalize a model (or datastores within a model) using both
consistent set and simple journalizing.

4.2 Setting up Journalizing
This section explains how to set up and start the journalizing infrastructure, and check
that this infrastructure is running correctly. It also details the components of this
infrastructure.

4.2.1 Setting up and Starting Journalizing
The basic process for setting up CDC on an Oracle Data Integrator data model is as
follows:

■ Set the CDC parameters in the data model

■ Add the datastores to the CDC

■ For consistent set journalizing, set the datastores order

■ Add subscribers

■ Start the journals

Set the CDC parameters
Setting up the CDC parameters is performed on a data model. This consists of
selecting or changing the journalizing mode and journalizing Knowledge Module
used for the model.

To set up the CDC parameters:

1. In the Models tree in the Designer Navigator, select the model that you want to
journalize.

2. Double-click this model to edit it.

3. In the Journalizing tab, select the journalizing mode you want to use: Consistent
Set or Simple.

4. Select the Journalizing Knowledge Module (JKM) you want to use for this model.
Only Knowledge Modules suitable for the data model's technology and
journalizing mode, and that have been previously imported into at least one of
your projects will appear in the list.

5. Set the Options for this KM. See the Connectivity and Knowledge Modules Guide for
Oracle Data Integrator for more information about this KM and its options.

6. From the File menu, select Save All.

Note: If the model is already being journalized, it is recommended
that you stop journalizing with the existing configuration before
modifying the data model journalizing parameters.

Setting up Journalizing

4-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Add or remove datastores for the CDC:
You must flag the datastores that you want to journalize within the journalized model.
A change in the datastore flag is taken into account the next time the journals are
(re)started. When flagging a model or a sub-model, all of the datastores contained in
the model or sub-model are flagged.

To add or remove datastores for the CDC:

1. Right-click the model, sub-model or datastore that you want to add to/remove
from the CDC in the Model tree in the Designer Navigator.

2. Right-click then select Changed Data Capture > Add to CDC or Changed Data
Capture > Remove from CDC to add to the CDC or remove from the CDC the
selected datastore, or all datastores in the selected model/sub-model.

The datastores added to CDC should now have a marker icon. The journal icon
represents a small clock. It should be yellow, indicating that the journal infrastructure
is not yet in place.

Set the datastores order (consistent set journalizing only):
You only need to arrange the datastores in order when using consistent set
journalizing. You should arrange the datastores in the consistent set in an order which
preserves referential integrity when using their changed data. For example, if an
ORDER table has references imported from an ORDER_LINE datastore (i.e. ORDER_
LINE has a foreign key constraint that references ORDER), and both are added to the
CDC, the ORDER datastore should come before ORDER_LINE. If the PRODUCT
datastore has references imported from both ORDER and ORDER_LINE (i.e. both
ORDER and ORDER_LINE have foreign key constraints to the PRODUCT table), its
order should be lower still.

To set the datastores order:

1. In the Models tree in the Designer Navigator, select the model journalized in
consistent set mode.

2. Double-click this model to edit it.

3. Go to the Journalized Tables tab.

4. If the datastores are not currently in any particular order, click the Reorganize
button. This feature suggests an order for the journalized datastores based on the
foreign keys defined in the model. Review the order suggested and edit the
datastores order if needed.

5. Select a datastore from the list, then use the Up and Down buttons to move it
within the list. You can also directly edit the Order value for this datastore.

6. Repeat the previous step until the datastores are ordered correctly.

7. From the File menu, select Save All.

Note: It is possible to add datastores to the CDC after the journal
creation phase. In this case, the journals should be re-started.

If a datastore with journals running is removed from the CDC in
simple mode, the journals should be stopped for this individual
datastore. If a datastore is removed from CDC in Consistent Set mode,
the journals should be restarted for the model (Journalizing
information is preserved for the other datastores).

Setting up Journalizing

Using Journalizing 4-5

Add or remove subscribers:
Each subscriber consumes in a separate thread changes that occur on individual
datastores for Simple Journalizing or on a model for Consistent Set Journalizing.
Adding or removing a subscriber registers it to the CDC infrastructure in order to trap
changes for it.

To add subscribers:

1. In the Models tree in the Designer Navigator, select the journalized data model if
using Consistent Set Journalizing or select a data model or an individual datastore
if using Simple Journalizing.

2. Right-click, then select Changed Data Capture > Subscriber > Subscribe. A
window appears which lets you select your subscribers.

3. Type a Subscriber name, then click the Add Subscriber button. Repeat the
operation for each subscriber you want to add.

4. Click OK.

5. In the Execution window, select the execution parameters:

■ Select the Context into which the subscribed must be registered.

■ Select the Logical Agent that will run the journalizing tasks.

6. Click OK.

7. The Session Started Window appears.

8. Click OK.

You can review the journalizing tasks in the Operator Navigator.

Removing a subscriber is a similar process. Select the Changed Data Capture >
Subscriber > Unsubscribe option instead.

You can also add subscribers after starting the journals. Subscribers added after
journal startup will only retrieve changes captured since they were added to the
subscribers list.

Start/Drop the journals:
Starting the journals creates the CDC infrastructure if it does not exist yet. It also
validates the addition, removal and order changes for journalized datastores.

Dropping the journals deletes the entire journalizing infrastructure.

Note: Changes to the order of datastores are taken into account the
next time the journals are (re)started.

If existing scenarios consume changes from this CDC set, you should
regenerate them to take into account the new organization of the CDC
set.

Note: Subscriber names cannot contain single quote characters.

Setting up Journalizing

4-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

To start or drop the journals:

1. In the Models tree in the Designer Navigator, select the journalized data model if
using Consistent Set Journalizing or select a data model or an individual datastore
if using Simple Journalizing.

2. Right-click, then select Changed Data Capture > Start Journal if you want to start
the journals, or Changed Data Capture > Drop Journal if you want to stop them.

3. In the Execution window, select the execution parameters:

■ Select the Context into which the journals must be started or dropped.

■ Select the Logical Agent that will run the journalizing tasks.

4. Click OK.

5. The Session Started Window appears.

6. Click OK.

A session begins to start or drops the journals. You can review the journalizing tasks in
the Operator Navigator.

Automate journalizing setup:
The journalizing infrastructure is implemented by the journalizing KM at the physical
level. Consequently, Add Subscribers and Start Journals operations should be performed
in each context where journalizing is required for the data model. It is possible to
automate these operations using Oracle Data Integrator packages. Automating these
operations is recommended to deploy a journalized infrastructure across different
contexts.

For example, a developer will manually configure CDC in the Development context.
When the development phase is complete, he provides a package that automates the
CDC infrastructure. CDC is automatically deployed in the Test context by using this
package. The same package is also used to deploy CDC in the Production context.

An overview designing such a package follows. See Chapter 7, "Creating and Using
Packages," for more information on package creation.

To automate CDC configuration:

1. Create a new package.

2. Drag and drop from the Models accordion the model or datastore you want to
journalize into the package Diagram tab. A new package step appears.

3. Double-Click the step icon in the package diagram. The properties inspector for
this steps opens.

4. In the Type list, select Journalizing Model/Datastore.

5. Check the Start box to start the journals.

6. Check the Add Subscribers box, then enter the list of subscribers into the
Subscribers group.

Note: Dropping the journals deletes all captured changes as well as
the infrastructure. For simple journalizing, starting the journal in
addition deletes the journal contents. Consistent Set JKMs support
restarting the journals without losing any data.

Setting up Journalizing

Using Journalizing 4-7

7. Enter the first subscriber in the subscriber field, and click the Add button to add it
to the Subscribers list. Repeat this operation for all your subscribers.

8. From the File menu, select Save.

When this package is executed in a context, it starts the journals according to the
model configuration and creates the specified subscribers in this context.

It is possible to split subscriber and journal management into different steps and
packages. Deleting subscribers and stopping journals can be automated in the same
manner.

4.2.2 Journalizing Infrastructure Details
When the journals are started, the journalizing infrastructure (if not installed yet) is
deployed or updated in the following locations:

■ When the journalizing Knowledge Module creates triggers, they are installed on
the tables in the Work Schema for the Oracle Data Integrator physical schema
containing the journalized tables. Journalizing trigger names are prefixed with the
prefix defined in the Journalizing Elements Prefixes for the physical schema. The
default value for this prefix is T$. For details about database-specific capture
processes see the Connectivity and Knowledge Modules Guide for Oracle Data
Integrator.

■ A CDC common infrastructure for the data server is installed in the Work Schema
for the Oracle Data Integrator physical schema that is flagged as Default for this
data server. This common infrastructure contains information about subscribers,
consistent sets, etc. for all the journalized schemas of this data server. This
common infrastructure consists of tables whose names are prefixed with SNP_
CDC_.

■ Journal tables and journalizing views are installed in the Work Schema for the
Oracle Data Integrator physical schema containing the journalized tables. The
journal table and journalizing view names are prefixed with the prefixes defined
in the Journalizing Elements Prefixes for the physical schema. The default value is
J$ for journal tables and JV$ for journalizing views

All components (except the triggers) of the journalizing infrastructure (like all Data
Integrator temporary objects, such as integration, error and loading tables) are
installed in the Work Schema for the Oracle Data Integrator physical schemas of the
data server. These work schemas should be kept separate from the schema containing
the application data (Data Schema).

4.2.3 Journalizing Status
Datastores in models or mappings have an icon marker indicating their journalizing
status in Designer's current context:

Important: The journalizing triggers are the only components for
journalizing that must be installed, when needed, in the same schema
as the journalized data. Before creating triggers on tables belonging to
a third-party software package, please check that this operation is not
a violation of the software agreement or maintenance contract. Also
ensure that installing and running triggers is technically feasible
without interfering with the general behavior of the software package.

Using Changed Data

4-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ OK - Journalizing is active for this datastore in the current context, and the
infrastructure is operational for this datastore.

■ No Infrastructure - Journalizing is marked as active in the model, but no
appropriate journalizing infrastructure was detected in the current context.
Journals should be started. This state may occur if the journalizing mode
implemented in the infrastructure does not match the one declared for the model.

■ Remnants - Journalizing is marked as inactive in the model, but remnants of the
journalizing infrastructure such as the journalizing table have been detected for
this datastore in the context. This state may occur if the journals were not stopped
and the table has been removed from CDC.

4.3 Using Changed Data
Once journalizing is started and changes are tracked for subscribers, it is possible to
use the changes captured. These can be viewed or used when the journalized datastore
is used as a source of a mapping.

4.3.1 Viewing Changed Data
To view the changed data:

1. In the Models tree in the Designer Navigator, select the journalized datastore.

2. Right-click and then select Changed Data Capture > Journal Data....

The changes captured for this datastore in the current context appear in a grid with
three additional columns describing the change details:

■ JRN_FLAG: Flag indicating the type of change. It takes the value I for an
inserted/updated record and D for a deleted record.

■ JRN_SUBSCRIBER: Name of the Subscriber.

■ JRN_DATE: Timestamp of the change.

Journalized data is mostly used within integration processes. Changed data can be
used as the source of mappings. The way it is used depends on the journalizing mode.

4.3.2 Using Changed Data: Simple Journalizing
Using changed data from simple journalizing consists of designing mappings using
journalized datastores as sources. See Chapter 8, "Creating and Using Mappings," for
detailed instructions for creating mappings.

Designing Mappings with Simple Journalizing
When a journalized datastore is inserted into a mapping diagram, a Journalized Data
Only check box appears in this datastore's property panel when viewing it in the
Physical tab of the Mapping Editor.

When this box is checked:

■ The journalizing columns (JRN_FLAG, JRN_DATE and JRN_SUBSCRIBER)
become available for the datastore.

■ A journalizing filter is also automatically generated on this datastore. This filter
will reduce the amount of source data retrieved to the journalized data only. It is
always executed on the source. You can customize this filter (for instance, to
process changes in a time range, or only a specific type of change). The filter is
displayed in the Logical diagram of the Mapping Editor. A typical filter for

Using Changed Data

Using Journalizing 4-9

retrieving all changes for a given subscriber is: JRN_SUBSCRIBER = '<subscriber_
name>'.

In simple journalizing mode all the changes taken into account by the mapping (after
the journalizing filter is applied) are automatically considered consumed at the end of
the mapping and removed from the journal. They cannot be used by a subsequent
mapping.

When processing journalized data, the SYNC_JRN_DELETE option of the integration
Knowledge Module should be set carefully. It invokes the deletion from the target
datastore of the records marked as deleted (D) in the journals and that are not
excluded by the journalizing filter. If this option is set to No, integration will only
process inserts and updates.

4.3.3 Using Changed Data: Consistent Set Journalizing
Using Changed data in Consistent journalizing is similar to simple journalizing for
mapping design. It requires extra steps before and after processing the changed data in
the mappings in order to enforce changes consistently within the set.

These operations can be performed either manually from the context menu of the
journalized model or automated with packages.

Operations Before Using the Changed Data
The following operations should be undertaken before using the changed data when
using consistent set journalizing:

■ Extend Window: The Consistency Window is a range of available changes in all
the tables of the consistency set for which the insert/update/delete are possible
without violating referential integrity. The extend window operation (re)computes
this window to take into account new changes captured since the latest Extend
Window operation. This operation is implemented using a package step with the
Journalizing Model Type. This operation can be scheduled separately from other
journalizing operations.

■ Lock Subscribers: Although the extend window is applied to the entire
consistency set, subscribers consume the changes separately. This operation
performs a subscriber(s) specific "snapshot" of the changes in the consistency
window. This snapshot includes all the changes within the consistency window
that have not been consumed yet by the subscriber(s). This operation is
implemented using a package step with the Journalizing Model Type. It should
be always performed before the first mapping using changes captured for the
subscriber(s).

Designing Mappings
The changed data in consistent set journalizing are also processed using mappings
sequenced into packages.

Designing mappings when using consistent set journalizing is similar to simple
journalizing, except for the following differences:

■ The changes taken into account by the mapping (that is filtered with JRN_FLAG,
JRN_DATE and JRN_SUBSCRIBER) are not automatically purged at the end of the
mapping. They can be reused by subsequent mappings. The unlock subscriber and

Note: Only one datastore per dataset can have the Journalized Data
Only option checked.

Using Changed Data

4-10 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

purge journal operations described below are required to commit consumption of
these changes, and remove useless entries from the journal respectively.

■ In consistent mode, the JRN_DATE column should not be used in the journalizing
filter. Using this timestamp to filter the changes consumed does not entirely ensure
consistency in these changes.

Operations after Using the Changed Data
After using the changed data, the following operations should be performed:

■ Unlock Subscribers: This operation commits the use of the changes that where
locked during the Lock Subscribers operations for the subscribers. It should be
processed only after all the changes for the subscribers have been processed. This
operation is implemented using a package step with the Journalizing Model Type.
It should be always performed after the last mapping using changes captured for
the subscribers. If the changes need to be processed again (for example, in case of
an error), this operation should not be performed.

■ Purge Journal: After all subscribers have consumed the changes they have
subscribed to, entries still remain in the journalizing tables and should be deleted.
This is performed by the Purge Journal operation. This operation is implemented
using a package step with the Journalizing Model Type. This operation can be
scheduled separately from the other journalizing operations.

Automate Consistent Set CDC Operations
To automate the consistent set CDC usage, you can use a package performing these
operations.

1. Create a new package.

2. Drag and drop from the Models tree the journalized model into the package
Diagram tab. A new package step appears.

3. Double-Click the step icon in the package diagram. The properties inspector for
this step opens.

4. In the Type list, select Journalizing Model/Datastore.

5. Check the consistent set operations you want to perform.

6. If you checked the Lock Subscriber or Unlock Subscriber operations, enter the
first subscriber in the subscriber field, and click the Add button to add it to the
Subscribers list. Repeat this operation for all the subscribers you want to lock or
unlock.

7. From the File menu, select Save All.

Note: It is possible to perform an Extend Window or Purge Journal
on a datastore. These operations process changes for tables that are in
the same consistency set at different frequencies. These options should
be used carefully, as consistency for the changes may be no longer
maintained at the consistency set level

Note: Only one datastore per dataset can have the Journalized Data
Only option checked.

Using Changed Data

Using Journalizing 4-11

4.3.4 Journalizing Tools
Oracle Data Integrator provides a set of tools that can be used in journalizing to refresh
information on the captured changes or trigger other processes:

■ OdiWaitForData waits for a number of rows in a table or a set of tables.

■ OdiWaitForLogData waits for a certain number of modifications to occur on a
journalized table or a list of journalized tables. This tool calls
OdiRefreshJournalCount to perform the count of new changes captured.

■ OdiWaitForTable waits for a table to be created and populated with a
pre-determined number of rows.

■ OdiRetrieveJournalData retrieves the journalized events for a given table list or
CDC set for a specified journalizing subscriber. Calling this tool is required if
using Database-Specific Processes to load journalizing tables. This tool needs to be
used with specific Knowledge Modules. See the Knowledge Module description
for more information.

■ OdiRefreshJournalCount refreshes the number of rows to consume for a given
table list or CDC set for a specified journalizing subscriber.

See Oracle Data Integrator Tool Reference for more information on these functions.

4.3.5 Package Templates for Using Journalizing
A number of templates may be used when designing packages to use journalized data.
Below are some typical templates. See Chapter 7, "Creating and Using Packages," for
more information on package creation.

Template 1: One Simple Package (Consistent Set)
■ Step 1: Extend Window + Lock Subscribers

■ Step 2 to n-1: Mappings using the journalized data

■ Step n: Unlock Subscribers + Purge Journal

This package is scheduled to process all changes every minutes. This template is
relevant if changes are made regularly in the journalized tables.

Template 2: One Simple Package (Simple Journalizing)
Step 1 to n: Mappings using the journalized data

This package is scheduled to process all changes every minutes. This template is
relevant if changes are made regularly in the journalized tables.

Template 3: Using OdiWaitForLogData (Consistent Set or Simple)
■ Step 1: OdiWaitForLogData. If no new log data is detected after a specified

interval, end the package.

■ Step 2: Execute a scenario equivalent to the template 1 or 2, using OdiStartScen

This package is scheduled regularly. Changed data will only be processed if new
changes have been detected. This avoids useless processing if changes occur
sporadically to the journalized tables (i.e. to avoid running mappings that would
process no data).

Using Changed Data

4-12 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Template 4: Separate Processes (Consistent Set)
This template dissociates the consistency window, the purge, and the changes
consumption (for two different subscribers) in different packages.

Package 1: Extend Window

■ Step 1: OdiWaitForLogData. If no new log data is detected after a specified
interval, end the package.

■ Step 2: Extend Window.

This package is scheduled every minute. Extend Window may be resource consuming.
It is better to have this operation triggered only when new data appears.

Package 2: Purge Journal (at the end of week)

Step 1: Purge Journal

This package is scheduled once every Friday. We will keep track of the journals for the
entire week.

Package 3: Process the Changes for Subscriber A

■ Step 1: Lock Subscriber A

■ Step 2 to n-1: Mappings using the journalized data for subscriber A

■ Step n: Unlock Subscriber A

This package is scheduled every minute. Such a package is used for instance to
generate events in a MOM.

Package 4: Process the Changes for Subscriber B

■ Step 1: Lock Subscriber B

■ Step 2 to n-1: Mappings using the journalized data for subscriber B

■ Step n: Unlock Subscriber B

This package is scheduled every day. Such a package is used for instance to load a data
warehouse during the night with the changed data.

5

Creating Data Models with Common Format Designer 5-1

5Creating Data Models with Common Format
Designer

[6] This chapter describes how to use Oracle Data Integrator's Common Format Designer
feature for creating a data model by assembling elements from other models. It also
details how to generate the DDL scripts for creating or updating a model's
implementation in your data servers, and how to automatically generate the mappings
to load data from and to a model.

This chapter includes the following sections:

■ Introduction to Common Format Designer

■ Using the Diagram

■ Generating DDL scripts

■ Generating Mapping IN/OUT

5.1 Introduction to Common Format Designer
Common Format Designer (CFD) is used to quickly design a data model in Oracle
Data Integrator. This data model may be designed as an entirely new model or
assembled using elements from other data models. CFD can automatically generate
the Data Definition Language (DDL) scripts for implementing this model into a data
server.

Users can for example use Common Format Designer to create operational datastores,
datamarts, or master data canonical format by assembling heterogeneous sources.

CFD enables a user to modify an existing model and automatically generate the DDL
scripts for synchronizing differences between a data model described in Oracle Data
Integrator and its implementation in the data server.

5.1.1 What is a Diagram?
A diagram is a graphical view of a subset of the datastores contained in a sub-model
(or data model). A data model may have several diagrams attached to it.

A diagram is built:

■ by assembling datastores from models and sub-models.

■ by creating blank datastores into which you either create new attributes or
assemble attributes from other datastores.

Using the Diagram

5-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

5.1.2 Why assemble datastores and attributes from other models?
When assembling datastores and attributes from other models or sub-models in a
diagram, Oracle Data Integrator keeps track of the origin of the datastore or attribute
that is added to the diagram. These references to the original datastores and attributes
enable Oracle Data Integrator to automatically generate the mappings to the
assembled datastores (mappings IN)

Automatic mapping generation does not work to load datastores and attributes that
are not created from other model's datastores and attributes. It is still possible to create
the mappings manually, or complete generated mapping for the attributes not
automatically mapped.

5.1.3 Graphical Synonyms
In a diagram, a datastore may appear several times as a Graphical Synonym. A
synonym is a graphical representation of a datastore. Graphical synonyms are used to
make the diagram more readable.

If you delete a datastore from a diagram, Designer prompts you to delete either the
synonym (the datastore remains), or the datastore itself (all synonyms for this
datastore are deleted).

References in the diagram are attached to a datastore's graphical synonym. It is
possible create graphical synonyms at will, and move the references graphical
representation to any graphical synonym of the datastores involved in the references.

5.2 Using the Diagram
From a diagram, you can edit all the model elements (datastore, attributes, references,
filters, etc.) visible in this diagram, using their popup menu, directly available from the
diagram. Changes performed in the diagram immediately apply to the model.

5.2.1 Creating a New Diagram
To create a new diagram:

1. In the Models tree in Designer Navigator, expand the data model or sub-model
into which you want to create the diagram, then select the Diagrams node.

2. Right-click, then select New Diagram to open the Diagram Editor.

3. On the Definition tab of the Diagram Editor enter the diagram's Name and
Description.

4. Select Save from the File main menu.

The new diagram appears under the Diagrams node of the model.

5.2.2 Create Datastores and Attributes
To insert an existing datastore in a diagram:

1. Open the Diagram Editor by double-clicking the diagram under the Diagrams
node under the model's node.

2. In the Diagram Editor, select the Diagram tab.

3. Select the datastore from the Models tree in Designer Navigator.

Using the Diagram

Creating Data Models with Common Format Designer 5-3

4. Drag this datastore into the diagram. If the datastore comes from a
model/sub-model different from the current model/sub-model, Designer will
prompt you to create a copy of this datastore in the current model. If the datastore
already exists in the diagram, Oracle Data Integrator will prompt you to either
create new graphical synonym, or create a duplicate of the datastore.

The new graphical synonym for the datastore appears in the diagram. If you have
added a datastore from another model, or chosen to create a duplicate, the new
datastore appears in model.

If references (join) existed in the original models between tables inserted to the
diagram, these references are also copied.

To create a graphical synonym of a datastore already in the diagram select Create
Graphical Synonym in the popup menu of the datastore.

To create a new datastore in a diagram:

1. In the Diagram Editor, select the Diagram tab.

2. In the Diagram Editor toolbar, click Add Datastore.

3. Click into the diagram workbench.

4. An Editor appears for this new datastore. Follow the process described in
Chapter 3, "Creating and Using Data Models and Datastores," for creating your
datastore.

To add attributes from another datastore:

1. In the Diagram Editor, select the Diagram tab.

2. Select a attribute under a datastore from the Models tree of the Designer
Navigator.

3. Drag this attribute into the datastore in the diagram to which you want to append
this attribute. The Attribute Editor appears to edit this new attribute. Edit the
attribute according to your needs.

4. Select Save from the File main menu. The new attribute is added to the datastore.

5.2.3 Creating Graphical Synonyms
To create a graphical synonym for a datastore:

1. In the Diagram tab, select the datastore.

2. Right-click, then select Create Graphical Synonym.

The new graphical synonym appears in the diagram.

This operation does not add a new datastore. It creates only a new representation for
the datastore in the diagram.

5.2.4 Creating and Editing Constraints and Filters
To add a new condition, filter, key to a datastore:

1. In the Diagram tab, select the datastore.

2. Right-click then select the appropriate option: Add Key, Add Filter, etc.

3. A new Editor appears for the new condition, filter, key, etc. Follow the process
described in Chapter 3, "Creating and Using Data Models and Datastores," for
creating this element.

Using the Diagram

5-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Conditions, filters and references are added to the diagram when you add the
datastore which references them into the diagram. It is possible to drag into the
diagram these objects if they have been added to the datastore after you have added it
to the diagram.

To edit a key on a attribute:

If a attribute is part of a key (Primary, Alternate), it is possible to edit the key from this
attribute in the diagram.

1. In the Diagram tab, select one of the attribute participating to the key.

2. Right-click then select the name of the key in the pop-up menu, then select Edit in
the sub-menu.

To create a reference between two datastores:

1. In the Diagram Editor, select the Diagram tab.

2. In the toolbar click the Add Reference button.

3. Click the first datastore of the reference, then drag the cursor to the second
datastore while keeping the mouse button pressed.

4. Release the mouse button. The Reference Editor appears.

5. Set this reference's parameters according to the process described in Chapter 3,
"Creating and Using Data Models and Datastores."

To move a reference to another graphical synonym:

1. In the Diagram Editor, select the Diagram tab.

2. In the Diagram tab, select the reference you wish to modify.

3. Right-click and select Display Options.

4. Select the synonyms to be used as the parent and child of the reference.

5. Click OK. The reference representation appears now on the selected synonyms.

This operation does not change the reference itself. It only alters its representation in
the diagram.

5.2.5 Printing a Diagram
Once you have saved your diagram you can save the diagram in PNG format, print it
or generate a complete PDF report.

To print or generate a diagram report:

1. On the Diagram tab of your diagram, select Print Options from the Diagram
menu.

2. In the Data Model Printing editor select according to your needs one of the
following options:

■ Generate the complete PDF report

■ Save the diagram in PNG

■ Print your diagram

3. Click OK.

Generating DDL scripts

Creating Data Models with Common Format Designer 5-5

5.3 Generating DDL scripts
When data structure changes have been performed in a data server, you usually
perform an incremental reverse-engineering in Oracle Data Integrator to retrieve the
new metadata from the data server.

When a diagram or data model is designed or modified in Oracle Data Integrator, it is
necessary to implement the data model or the changes in the data server containing
the model implementation. This operation is performed with DDL scripts. The DDL
scripts are generated in the form of Oracle Data Integrator procedures containing DDL
commands (create table, alter table, etc). This procedure may be executed on the data
server to apply the changes.

The DDL generation supports two types of datastores: tables and system tables.

Before generating DDL Scripts
In certain cases, constraints that are defined in the data model but not in the database,
are not displayed in the Generate DDL editor. To ensure that these conditions appear
in the Generate DDL editor, perform the following tasks:

■ For Keys: Select Defined in the Database and Active in the Control tab of the Key
editor

■ For References: Select Defined in the Database in the Definition tab of the
Reference editor

■ For Conditions: Select Defined in the Database and Active in the Control tab of the
Condition editor

Generating DDL Scripts
To generate the DDL scripts:

1. In the Models tree of Designer Navigator, select the data model for which you
want to generate the DDL scripts.

2. Right-click, then select Generate DDL. The Generate DDL for Oracle Data
Integrator Model dialog is displayed.

3. In the Generate DDL dialog, click Yes if you want to process only tables that are in
the Oracle Data Integrator model, otherwise click No and tables that are not in the
model will be also included.

Note: If you do not specify a different location, The PDF and PNG
files are saved to the default locations specified in the user
preferences. To set these values, select the Preferences... option from
the Tools menu. Expand the ODI node, and then the System node,
and select Reports. Enter (or search for) the location of your Default
PDF generation directory and Directory for saving your diagrams
(PNG).

Note: The templates for the DDL scripts are defined as Action
Groups. Check in the Topology Navigator that you have the
appropriate action group for the technology of the model before
starting DDL scripts generation. For more information on action
groups, please refer to the Knowledge Module Developer's Guide for
Oracle Data Integrator.

Generating Mapping IN/OUT

5-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Oracle Data Integrator retrieves current state of the data structure from the data
server, and compares it to the model definition. The progression is displayed in the
status bar. The Generate DDL Editor appears, with the differences detected.

4. Select the Action Group to use for the DDL script generation.

5. Click Search to select the Generation Folder into which the procedure will be
created.

6. Select the folder and click OK.

7. Filter the type of changes you want to display using the Filters check boxes.

8. Select the changes to apply by checking the Synchronization option. The
following icons indicate the type of changes:

■ - : Element existing in the data model but not in the data server.

■ + : Element existing in the data server but not in the data model.

■ = : Element existing in both the data model and the data server, but with
differences in its properties (example: a column resized) or attached elements
(example: a table including new columns).

9. Click OK to generate the DDL script.

Oracle Data Integrator generates the DDL scripts in a procedure and opens the
Procedure Editor for this procedure.

5.4 Generating Mapping IN/OUT
For a given model or datastore assembled using Common Format Designer, Oracle
Data Integrator is able to generate:

■ Mappings IN: These mappings are used to load the model's datastores assembled
from other datastores/attributes. They are the integration process merging data
from the original datastores into the composite datastores.

■ Mappings OUT: These mappings are used to extract data from the model's
datastores. They are generated using the mappings (including the mappings IN)
already loading the model's datastore. They reverse the integration process to
propagate the data from the composite datastore to the original datastores.

For example, an Active Integration Hub (AIH) assembles information coming from
several other applications. It is made up of composite datastores built from several
data models, assembled in a diagram. The AIH is loaded using the Mappings IN, and
is able to send the data it contains to the original systems using the Mappings OUT.

To generate the Mappings IN:

1. In the Models tree of Designer Navigator, select the data model or datastore for
which you want to generate the mappings.

2. Right-click, then select Generate Mappings IN. Oracle Data Integrator looks for
the original datastores and attributes used to build the current model or datastore.
The Generate Mappings IN Editor appears with a list of datastores for which
Mappings IN may be generated.

3. Select an Optimization Context for your mappings. This context will define how
the flow for the generated mappings will look like, and will condition the
automated selection of KMs.

4. Click the Search button to select the Generation Folder into which the mappings
will be generated.

Generating Mapping IN/OUT

Creating Data Models with Common Format Designer 5-7

5. In the Candidate Datastores table, check the Generate Mapping option for the
datastores to load.

6. Edit the content of the Mapping Name column to rename the integration
mappings.

7. Click OK. Mapping generation starts.

The generated mappings appear in the specified folder.

To generate the Mapping OUT:

1. In the Models tree of Designer Navigator, select the data model or datastore for
which you want to generate the mappings.

2. Right-click, then select Generate Mapping OUT. Oracle Data Integrator looks for
the existing mappings loading these the datastores. The Generate Mappings OUT
Editor appears with a list of datastores for which Mappings OUT may be
generated.

3. Select an Optimization Context for your mappings. This context will define how
the flow for the generated mappings will look like, and will condition the
automated selection of KMs.

4. Click the Search button to select the Generation Folder into which the mappings
will be generated.

5. In the Candidate Datastores, check the Generation and Generate Mapping check
boxes to select either all or some of the candidate datastore to load from the target
datastore of the existing mappings.

6. Edit the content of the Mapping Name column to rename the integration
mappings.

7. Click OK. Mapping generation starts.

The generated mappings appear in the specified folder.

Note: Mappings automatically generated are built using predefined
rules based on repository metadata. These mappings can not be
executed immediately. They must be carefully reviewed and modified
before execution

Note: If no candidate datastore is found when generating the
Mappings IN, then it is likely that the datastores you are trying to load
are not built from other datastores or attributes. Automatic mapping
generation does not work to load datastores and attributes that are not
created from other model's datastores and attributes.

Note: Mappings automatically generated are built using the
available metadata and do not always render the expected rules.
These mappings must be carefully reviewed and modified before
execution.

Generating Mapping IN/OUT

5-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Note: If no candidate datastore is found when generating the
Mappings OUT, then it is likely that no mapping loads the datastores
you have selected to generate the mappings OUT. The mappings OUT
from a datastore are generated from the mappings loading this
datastore. Without any valid mapping loading a datastore, not
propagation mapping from this datastore can be generated.

Part III
Part III Developing Integration Projects

This part describes how to develop integration projects in Oracle Data Integrator.

This part contains the following chapters:

■ Chapter 6, "Creating an Integration Project"

■ Chapter 7, "Creating and Using Packages"

■ Chapter 8, "Creating and Using Mappings"

■ Chapter 9, "Creating and Using Dimensions and Cubes"

■ Chapter 10, "Using Compatibility Mode"

■ Chapter 11, "Creating and Using Procedures, Variables, Sequences, and User
Functions"

■ Chapter 12, "Using Scenarios"

■ Chapter 13, "Using Load Plans"

■ Chapter 14, "Using Web Services"

■ Chapter 15, "Using Shortcuts"

6

Creating an Integration Project 6-1

6Creating an Integration Project

[7] This chapter describes the different components involved in an integration project, and
explains how to start a project.

This chapter includes the following sections:

■ Introduction to Integration Projects

■ Creating a New Project

■ Managing Knowledge Modules

■ Organizing the Project with Folders

6.1 Introduction to Integration Projects
An integration project may be composed of several types of components. These
components include organizational objects, such as folders, and development objects
such as mappings and variables. "Oracle Data Integrator Project Components" details
the different components involved in an integration project.

A project has also a defined life cycle which can be adapted to your practices. "Project
Life Cycle" on page 6-3 suggests a typical project life cycle.

6.1.1 Oracle Data Integrator Project Components
Components involved in a project include components contained in the project and
global components referenced by the project. In addition, a project also uses
components defined in the models and topology.

6.1.1.1 Oracle Data Integrator Project Components
The following components are stored into a project. They appear in the in the Project
accordion in the Designer Navigator, under the project's node.

Folder
Folders are components that help organizing the work into a project. Folders contain
packages, mappings, procedures, and subfolders.

Packages
A package is a workflow, made up of a sequence of steps organized into an execution
diagram. Packages assemble and reference other components from a project such as
mappings, procedure or variable. See Chapter 7, "Creating and Using Packages," for
more information on packages.

Introduction to Integration Projects

6-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Mappings
A mapping is a reusable dataflow. It is a set of declarative rules that describes the
loading of one or several target datastores from one or more source datastores. See
Chapter 8, "Creating and Using Mappings," for more information on mappings and
reusable mappings.

Procedure
A Procedure is a reusable component that groups a sequence of operations that do not
fit in the mapping concept.

Examples of procedures:

■ Wait and unzip a file

■ Send a batch of files via FTP

■ Receive emails

■ Purge a database

Variable
A variable's value is stored in Oracle Data Integrator. This value may change during
the execution.

Sequence
A sequence is a variable automatically incremented when used. Between two uses the
value is persistent.

User Functions
User functions allow you to define customized functions or "function aliases," for
which you will define technology-dependent implementations. They are usable in
mappings and procedures.

See Chapter 11, "Creating and Using Procedures, Variables, Sequences, and User
Functions," for more information about the components described above.

Knowledge Modules
Oracle Data Integrator uses Knowledge Modules at several points of a project design.
A Knowledge Module is a code template related to a given technology that provides a
specific function (loading data, reverse-engineering, journalizing).

Marker
A component of a project may be flagged in order to reflect a methodology or
organization. Flags are defined using markers. These markers are organized into
groups, and can be applied to most objects in a project. See Chapter 18, "Organizing
and Documenting Integration Projects," for more information on markers.

Scenario
When a package, mapping, procedure, or variable component has been fully
developed, it is compiled in a scenario. A scenario is the execution unit for production.
Scenarios can be scheduled for automated execution. See Chapter 12, "Using
Scenarios," for more information on scenarios.

Managing Knowledge Modules

Creating an Integration Project 6-3

6.1.1.2 Global Components
Global components are similar to project objects. The main difference is their scope.
They have a global scope and can be used in any project. Global objects include
Variables, Knowledge Modules, Sequences, Markers, Reusable Mappings, and User
Functions.

6.1.2 Project Life Cycle
The project life cycle depends on the methods and organization of your development
team. The following steps must be considered as guidelines for creating, working with
and maintaining an integration project.

1. Create a new project and import Knowledge Modules for this project.

2. Define the project organization and practices using folders, markers and
documentation.

3. Create reusable components: mappings, procedures, variables, sequences. Perform
unitary tests.

4. Assemble these components into packages. Perform integration tests.

5. Release the work in scenarios.

6. Optionally, organize scenarios into Load Plans. See Chapter 13, "Using Load
Plans."

6.2 Creating a New Project
To create a project:

1. In Designer Navigator, click New Project in the toolbar of the Projects accordion.

2. Enter the Name of the project.

3. Keep or change the automatically-generated project code. Because this code is
used to identify objects within this project, oracle recommends using a compact
string. For example, if the project is called Corporate Datawarehouse, a compact code
could be CORP_DWH.

4. From the File menu, click Save.

The new project appears in the Projects tree with one empty folder.

6.3 Managing Knowledge Modules
Knowledge Modules (KMs) are components of Oracle Data Integrator's integration
technology. KMs contain the knowledge required by ODI to perform a specific set of
tasks against a specific technology or set of technologies.

Oracle Data Integrator uses six different types of Knowledge Modules:

■ RKM (Reverse Knowledge Modules) are used to perform a customized
reverse-engineering of data models for a specific technology. These KMs are used
in data models. See Chapter 3, "Creating and Using Data Models and Datastores."

■ LKM (Loading Knowledge Modules) are used to extract data from source systems
(files, middleware, database, etc.). These KMs are used in mappings. See
Chapter 8, "Creating and Using Mappings."

■ JKM (Journalizing Knowledge Modules) are used to create a journal of data
modifications (insert, update and delete) of the source databases to keep track of

Managing Knowledge Modules

6-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

the changes. These KMs are used in data models and used for Changed Data
Capture. See Chapter 4, "Using Journalizing."

■ IKM (Integration Knowledge Modules) are used to integrate (load) data to the
target tables. These KMs are used in mappings. See Chapter 8, "Creating and
Using Mappings."

■ CKM (Check Knowledge Modules) are used to check that constraints on the
sources and targets are not violated. These KMs are used in data models' static
check and mappings' flow checks. See Chapter 3, "Creating and Using Data
Models and Datastores," and Chapter 8, "Creating and Using Mappings."

■ SKM (Service Knowledge Modules) are used to generate the code required for
creating data services. These KMs are used in data models. See "Generating and
Deploying Data Services" in Administering Oracle Data Integrator.

6.3.1 Project and Global Knowledge Modules
Knowledge Modules can be created and used as Project Knowledge Modules or Global
Knowledge Modules. Global Knowledge Modules can be used in all projects, while
Project Knowledge Modules can only be used within the project into which they have
been imported.

Global KMs are listed in Designer Navigator in the Global Objects accordion, while
Project KMs appear under the project into which they have been imported. See
"Importing Objects" on page 23-11 for more information on how to import a
Knowledge Module.

ODI also provides Built-In KMs that are always present and don't need to be imported.
All Built-In KMs are of type LKM or IKM and cover the technologies Oracle, File, and
Generic. For more information about Built-In KMs see the Connectivity and Knowledge
Modules Guide for Oracle Data Integrator.

When using global KMs, note the following:

■ Global KMs should only reference global objects. Project objects are not allowed.

■ You can only use global markers to tag a global KM.

■ It is not possible to transform a project KM into a global KM and vice versa.

■ If a global KM is modified, the changes will be seen by any ODI object using the
Knowledge Module.

■ Be careful when deleting a global KM. A missing KM causes execution errors.

■ To distinguish global from project KMs, the prefix GLOBAL is used for the name
of global KMs if they are listed with project KMs.

■ The order in which the global and project KMs are displayed changes depending
on the context:

– The KM Selector lists in the Mapping Editor displays first the project KMs,
then the global KMs. The GLOBAL or PROJECT_CODE prefix is used.

– The KM Selector lists in the Model editor displays first the global KMs, then
the project KMs. The GLOBAL or PROJECT_CODE prefix is used.

6.3.2 Knowledge Module Naming Conventions
Oracle Data Integrator's KMs are named according to a convention that facilitates the
choice of the KM. This naming convention is as follows:

Managing Knowledge Modules

Creating an Integration Project 6-5

Loading Knowledge Modules
They are named with the following convention: LKM <source technology> to <target
technology> [(loading method)].

In this convention the source and target technologies are the source and target of the
data movement this LKM can manage. When the technology is SQL, then the
technology can be any technology supporting JDBC and SQL. When the technology is
JMS, the technology can be any technology supporting JMS connectivity.

The loading method is the technical method used for moving the data. This method is
specific to the technology involved. When no method is specified, the technical
method used is a standard Java connectivity (JDBC, JMS and such) and data is loaded
via the run-time agent. Using a KM that uses a loading method specific to the source
and/or target technology usually brings better performances.

Examples of LKMs are given below:

■ LKM Oracle to Oracle (DBLink) loads data from an Oracle data server to another
Oracle data server using the Oracle DBLink.

■ LKM File to Oracle (SQLLDR) loads data from a file into an Oracle data server
using SQLLoader.

■ LKM SQL to SQL (Built-In) loads data from a data server supporting SQL into
another one. This is the most generic loading Knowledge Module, which works
for most data servers.

Integration Knowledge Modules
They are named with the following convention: IKM [<staging technology>] to <target
technology> [<integration mode>] [(<integration method>)].

In this convention, the target technology is the technology of the target into which data
will be integrated. IKMs may have a staging technology when the target is not located
on the same server as the staging area. These KMs are referred to as Multi-technology
IKMs. They are used when the target cannot be used as the staging area. For example,
with the File technology.

The integration mode is the mode used for integrating record from the data flow into the
target. Common modes are:

■ Append: Insert records from the flow into the target. It is possible to optionally
delete all records from the target before the insert. Existing records are not
updated.

■ Control Append: Same as above, but in addition the data flow is checked in the
process.

■ Incremental Update: Same as above. In addition, it is possible to update existing
records with data from the flow.

■ Slowly Changing Dimension: Integrate data into a table using Type 2 slowly
changing dimensions (SCD).

The integration method is the technical method used for integrating the data into the
target. This method is specific to the technologies involved. When no method is
specified, the technical method used is a standard Java connectivity (JDBC, JMS and
such) and SQL language. Using a KM that uses an integration method specific to a
given technology usually brings better performance.

Examples of IKMs are given below:

Managing Knowledge Modules

6-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ IKM Oracle Merge integrates data from an Oracle staging area into an Oracle target
located in the same data server using the incremental update mode. This KM uses
the Oracle Merge Table feature.

■ IKM SQL to File Append integrates data from a SQL-enabled staging area into a file.
It uses the append mode.

■ IKM SQL Incremental Update integrates data from a SQL-enabled staging area into
a target located in the same data server. This IKM is suitable for all cases when the
staging area is located on the same data server as the target, and works with most
technologies.

■ IKM SQL to SQL Append integrates data from a SQL-enabled staging area into a
target located in a different SQL-enabled data server. This IKM is suitable for cases
when the staging area is located on a different server than the target, and works
with most technologies.

Check Knowledge Modules
They are named with the following convention: CKM <staging technology>.

In this convention, the staging technology is the technology of the staging area into
which data will be checked.

Examples of CKMs are given below:

■ CKM SQL checks the quality of an integration flow when the staging area is in a
SQL-enabled data server. This is a very generic check Knowledge Module that
works with most technologies.

■ CKM Oracle checks the quality of an integration flow when the staging area is in an
Oracle data server.

Reverse-engineering Knowledge Modules
They are named with the following convention: RKM <reversed technology> [(reverse
method)].

In this convention, the reversed technology is the technology of the data model that is
reverse-engineered. The reverse method is the technical method used for performing
the reverse-engineering process.

Examples of RKMs are given below:

■ RKM Oracle reverse-engineers an Oracle data model

■ RKM Netezza reverse-engineers a Netezza data model

Journalizing Knowledge Modules
They are named with the following convention: JKM <journalized technology>
<journalizing mode> (<journalizing method>).

In this convention, the journalized technology is the technology into which changed data
capture is activated. The journalizing mode is either Consistent or Simple. For more
information about these modes, see Chapter 4, "Using Journalizing."

The journalizing method is the technical method for capturing the changes. When not
specified, the method used for performing the capture process is triggers.

Examples of JKMs are given below:

■ JKM Oracle to Oracle Consistent (OGG Online) creates the infrastructure for
consistent set journalizing on an Oracle staging server and generates the Oracle

Managing Knowledge Modules

Creating an Integration Project 6-7

GoldenGate configuration for replicating data from an Oracle source to this
staging server.

■ JKM Oracle Simple enables CDC for Oracle in simple mode using triggers.

■ JKM MSSQL Simple Creates the journalizing infrastructure for simple journalizing
on Microsoft SQL Server tables using triggers.

Service Knowledge Modules
They are named with the following convention: SKM <data server technology>.

In this convention, the data server technology is the technology into which the data to be
accessed with web services is stored.

6.3.3 Choosing the Right Knowledge Modules
Oracle Data Integrator provides a large range of Knowledge Modules out of the box.
When starting an integration project, you can start with the built-in KMs introduced in
ODI 12c, and import additional Knowledge Modules as needed for your project.

It is possible to import additional KMs after setting up the project, and it is possible to
change the KMs used afterwards. The following guidelines can be used for choosing
the right KMs when starting a new project:

■ Start with Generic KMs. The SQL KMs work with almost all technologies. If you
are not comfortable with the source/target technologies you are working with,
you can start by using the generic SQL KMs, as they use standard SQL. A simple
project can start with the following generic KMs: LKM File to SQL, LKM SQL to
SQL (Built-In), IKM SQL to SQL Append, IKM SQL Insert, CKM SQL.

■ Start with simple KMs. If you are not comfortable with the technologies you are
integrating, do not start using the KMs using complex integration methods or
modes.

■ Select KMs that match your source/target combinations to increase performance.
The more specific the KM to a technology combination, the better the performance.
For achieving the best performances, make sure to switch to KMs that match the
source/target combination you have, and that leverage the features from these
sources/targets.

■ Select KMs according to your infrastructure limitations. If it is not possible to use
the target data servers as the staging area for security reasons, make sure to have
multi-technology IKMs available in your project.

■ Select JKMs and SKMs only if you need them. Do not import JKMs or SKMs if you
do not plan to use Changed Data Capture or Data Services. You can import them
later when needed.

■ Review the KM documentation and options. KMs include a Description field that
contain useful information. Each of the KM options is also described. All KMs are
detailed in the Connectivity and Knowledge Modules Guide for Oracle Data Integrator.

6.3.4 Importing and Replacing Knowledge Modules
Two main operations allow you to manage KMs into a project:

■ When you create a new project you can use the Built-In KMs. If you want to use
new KMs, you must import either a project KM or a global KM. See "Project and
Global Knowledge Modules" on page 6-4 for more information on the knowledge
module's scope.

Managing Knowledge Modules

6-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ If you want to start using a new version of an existing global or project KM, or if
you want to replace an existing KM in use with another one, then you can replace
this KM.

This section includes the following topics:

■ Importing a Project Knowledge Module

■ Replacing a Knowledge Module

■ Importing a Global Knowledge Module

Importing a Project Knowledge Module
To import a Project Knowledge Module into a project:

1. In the Projects accordion in Designer Navigator, select the project into which you
want to import the KM.

2. Right-click and select Import > Import Knowledge Modules....

3. Specify the File Import Directory. A list of the KMs export files available in this
directory appears. KMs included in the ODI installation are located in:

<Oracle_Home>/odi/sdk/xml-reference

4. Select several KMs from the list and then click OK.

5. Oracle Data Integrator imports the selected KMs and presents an import report.

6. Click Close to close this report.

The Knowledge Modules are imported into you project. They are arranged under the
Knowledge Modules node of the project, grouped per KM type.

Replacing a Knowledge Module
When you want to replace a global KM or a KM in a project by another one and have
all mappings automatically use the new KM, you must use the Import Replace mode.
See "Import Modes" on page 23-3 for more information.

To import a Knowledge Module in replace mode:

1. In Designer Navigator, select the Knowledge Module you wish to replace.

2. Right-click and select Import Replace.

3. In the Replace Object dialog, select the export file of the KM you want to use as a
replacement. KMs included in the ODI installation are located in:

<Oracle_Home>/odi/sdk/xml-reference

4. Click OK.

The Knowledge Module is now replaced by the new one.

Note: Knowledge modules can be imported in Duplication mode
only. To replace an existing Knowledge Modules, use the import
replace method described below. When importing a KM in
Duplication mode and if the KM already exists in the project, ODI
creates a new KM with prefix copy_of.

Managing Knowledge Modules

Creating an Integration Project 6-9

Importing a Global Knowledge Module
To import a global knowledge module in Oracle Data Integrator:

1. In the Navigator, select the Global Knowledge Modules node in the Global Objects
accordion.

2. Right-click and select Import Knowledge Modules.

3. In the Import dialog:

1. Select the Import Type. See "Import Modes" on page 23-3 for more
information.

2. Specify the File Import Directory. A list of the KMs export files available in
this directory appears. KMs included in the ODI installation are located in:

<Oracle_Home>/odi/sdk/xml-reference

3. Select the file(s) to import from the list.

4. Click OK.

The global KM is now available in all your projects.

6.3.5 Encrypting and Decrypting a Knowledge Module
Encrypting a Knowledge Module (KM) or Procedure allows you to protect valuable
code. An encrypted KM or procedure cannot be read or modified if it is not decrypted.
The commands generated in the log by an Encrypted KM or procedure are also
unreadable.

Oracle Data Integrator uses a AES Encryption algorithm based on a personal
encryption key. This key can be saved in a file and can be reused to perform
encryption or decryption operations.

To Encrypt a KM or a Procedure:
1. In the Projects tree in Designer Navigator, expand the project, and select the KM

or procedure you want to encrypt.

2. Right-click and select Encrypt.

Note: When replacing a Knowledge module by another one, Oracle
Data Integrator sets the options in mappings for the new module
using the option name similarities with the old module's options.
When a KM option was set by the user in a mapping, this value is
preserved if the new KM has an option with the same name. New
options are set to the default value. It is advised to check the values of
these options in the mappings.

Replacing a KM by another one may lead to issues if the KMs have
different structure or behavior, for example when you replace a IKM
with a RKM. It is advised to check the mappings' design and
execution with the new KM.

WARNING: There is no way to decrypt an encrypted KM or
procedure without the encryption key. Oracle therefore strongly
advises keeping this key in a safe location. Oracle also recommends
using a unique key for each deployment.

Organizing the Project with Folders

6-10 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

3. In the Encryption Options window, you can either:

■ Encrypt with a personal key that already exists by giving the location of the
personal key file or by typing in the value of the personal key.

■ Get a new encryption key to have a new key generated by ODI.

4. Click OK to encrypt the KM or procedure. If you have chosen to generate a new
key, a window will appear with the new key. You can save the key in a file from
here.

To decrypt a KM or a procedure:
1. In the Projects tree in Designer Navigator, expand the project, and select the KM

or procedure you want to decrypt.

2. Right-click and select Decrypt.

3. In the KM Decryption or Procedure Decryption window, either

■ Select an existing encryption key file;

■ or type in (or paste) the string corresponding to your personal key.

4. Click OK to decrypt.

6.4 Organizing the Project with Folders
In a project, mappings, procedures, and packages are organized into folders and
sub-folders. Oracle recommends maintaining a good organization of the project by
using folders. Folders simplify finding objects developed in the project and facilitate
the maintenance tasks. Organization is detailed in Chapter 18, "Organizing and
Documenting Integration Projects.".

7

Creating and Using Packages 7-1

7Creating and Using Packages

[8] This chapter gives an introduction to Packages and Steps. It also passes through the
creating process of a Package and provides additional information about handling
steps within a Package.

This chapter includes the following sections:

■ Introduction to Packages

■ Creating a new Package

■ Working with Steps

■ Defining the Sequence of Steps

■ Running a Package

7.1 Introduction to Packages
The Package is a large unit of execution in Oracle Data Integrator. A Package is made
up of a sequence of steps organized into an execution diagram.

Each step can either succeed or fail its execution. Depending on the execution result
(success or failure), a step can branch to another step.

7.1.1 Introduction to Steps
Table 7–1 lists the different types of steps. References are made to sections that provide
additional details

Table 7–1 Step Types

Type Description See Section

Flow
(Mapping)

Executes a Mapping. "Adding a Mapping step" on page 7-4

Procedure Executes a Procedure. "Adding a Procedure step" on page 7-5

Variable Declares, sets, refreshes or
evaluates the value of a
variable.

"Variable Steps" on page 7-5

Oracle Data
Integrator
Tools

These tools, available in the
Toolbox, provide access to
all Oracle Data Integrator
API commands, or perform
operating system calls.

"Adding Oracle Data Integrator Tool Steps" on
page 7-6

Introduction to Packages

7-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Figure 7–1 Sample Package

For example, the "Load Customers and Invoice" Package example shown in Figure 7–1
performs the following actions:

1. Execute procedure "System Backup" that runs some backup operations.

2. Execute mapping "Customer Group" that loads the customer group datastore.

3. Execute mapping "Customer" that loads the customer datastore.

4. Execute mapping "Product" that loads the product datastore.

5. Refresh variable "Last Invoice ID" step to set the value of this variable for use later
in the Package.

6. Execute mapping "Invoice Headers" that load the invoice header datastore.

7. Execute mapping "Invoices" that load the invoices datastore.

8. If any of the steps above fails, then the Package runs the "OdiSendMail 2" step that
sends an email to the administrator using an Oracle Data Integrator tool.

Models,
Sub-models,
and Datastores

Performs journalizing,
static check or
reverse-engineering
operations on these objects

"Adding a Model, Sub-Model or Datastore" on
page 7-7

Table 7–1 (Cont.) Step Types

Type Description See Section

Introduction to Packages

Creating and Using Packages 7-3

7.1.2 Introduction to Creating Packages
Packages are created in the Package Diagram Editor. See "Introduction to the Package
editor" on page 7-3 for more information.

Creating a Package consists of the following main steps:

1. Creating a New Package. See "Creating a new Package" on page 7-4 for more
information.

2. Working with Steps in the Package (add, duplicate, delete, and so on). See
"Working with Steps" on page 7-4 for more information.

3. Defining Step Sequences. See "Defining the Sequence of Steps" on page 7-9 for
more information.

4. Running the Package. See "Running a Package" on page 7-11 for more information.

7.1.3 Introduction to the Package editor
The Package editor provides a single environment for designing Packages. Figure 7–2
gives an overview of the Package editor.

Figure 7–2 Package editor

Creating a new Package

7-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

7.2 Creating a new Package
To create a new Package:

1. In the Project tree in Designer Navigator, click the Packages node in the folder
where you want to create the Package.

2. Right-click and select New Package.

3. In the New Package dialog, type in the Name, and optionally a Description, of the
Package. Click OK.

4. Use the Overview tab to set properties for the package.

5. Use the Diagram tab to design your package, adding steps as described in
"Working with Steps" on page 7-4.

6. From the File menu, click Save.

7.3 Working with Steps
Packages are an organized sequence of steps. Designing a Package consists mainly in
working with the steps of this Package.

7.3.1 Adding a Step
Adding a step depends on the nature of the steps being inserted. See Table 7–1, " Step
Types" for more information on the different types of steps. The procedures for adding
the different type of steps are given below.

7.3.1.1 Adding a Mapping step
To insert a Mapping step:

1. Open the Package editor and go to the Diagram tab.

2. In the Designer Navigator, expand the project node and then expand the
Mappings node, to show your mappings for this project.

3. Drag and drop a mapping into the diagram. A Flow (Mapping) step icon appears
in the diagram.

Table 7–2 Package editor Sections

Section Location in Figure Description

Package
Diagram

Middle You drag components such as mappings,
procedures, datastores, models, sub-models or
variables from the Designer Navigator into the
Package Diagram for creating steps for these
components.

You can also define sequence of steps and
organize steps in this diagram.

Package
Toolbox

Left side of the Package
diagram

The Toolbox shows the list of Oracle Data
Integrator tools available and that can be added
to a Package. These tools are grouped by type.

Package
Toolbar

Top of the Package diagram The Package Toolbar provides tools for
organizing and sequencing the steps in the
Package.

Properties
Panel

Under the Package diagram This panel displays the properties for the object
that is selected in the Package Diagram.

Working with Steps

Creating and Using Packages 7-5

4. Click the step icon in the diagram. The properties panel shows the mapping's
properties.

5. In the properties panel, modify properties of the mapping as needed.

6. From the File menu, click Save.

7.3.1.2 Adding a Procedure step
To insert a Procedure step:

1. Open the Package editor and go to the Diagram tab.

2. In the Designer Navigator, expand the project node and then expand the
Procedures node, to show your procedures for this project.

3. Drag and drop a procedure into the diagram. A Procedure step icon appears in the
diagram.

4. Click the step icon in the diagram. The properties panel shows the procedure's
properties.

5. In the properties panel, modify properties of the procedure as needed.

6. From the File menu, click Save.

7.3.1.3 Variable Steps
There are different variable step types within Oracle Data Integrator:

■ Declare Variable: When a variable is used in a Package (or in elements of the
topology which are used in the Package), Oracle strongly recommends that you
insert a Declare Variable step in the Package. This step explicitly declares the
variable in the Package.

■ Refresh Variable: This variable step refreshes the variable by running the query
specified in the variable definition.

■ Set Variable: There are two functions for this step:

■ Assign sets the current value of a variable.

■ Increment increases or decreases a numeric value by the specified amount.

■ Evaluate Variable: This variable step type compares the value of the variable with
a given value according to an operator. If the condition is met, then the evaluation
step is true, otherwise it is false. This step allows for branching in Packages.

Adding a Variable step
To add a Variable step (of any type):

1. Open the Package editor and go to the Diagram tab.

2. In the Designer Navigator, expand the project node and then expand the Variables
node, to show your variables for this project. Alternatively, expand the Global
Objects node and expand the Variables node, to show global variables.

3. Drag and drop a variable into the diagram. A Variable step icon appears in the
diagram.

4. Click the step icon in the diagram. The properties panel shows the variable's
properties.

5. In the properties panel, modify properties of the variable as needed. On the
General tab, select the variable type from the Type list.

Working with Steps

7-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ For Set Variables, select Assign, or Increment if the variable is of Numeric
type. For Assign, type into the Value field the value to be assigned to the
variable (this value may be another variable). For Increment, type into the
Increment field a numeric constant by which to increment the variable.

■ For Evaluate Variables, select the Operator used to compare the variable
value. Type in the Value field the value to compare with your variable. This
value may be another variable.

6. From the File menu, click Save.

7.3.1.4 Adding Oracle Data Integrator Tool Steps
Oracle Data Integrator provides tools that can be used within Packages for performing
simple operations. The tools are either built-in tools or Open Tools that enable you to
enrich the data integrator toolbox.

To insert an Oracle Data Integrator Tool step:

1. Open the Package editor and go to the Diagram tab.

2. From the Package Toolbox, select the tool that you want to use. Note that Open
tools appear in the Plugins group.

3. Click in the Package diagram. A step corresponding to your tool appears.

4. Click the step icon in the diagram. The properties panel shows the tool's
properties.

5. Set the values for the parameters of the tool. The parameters descriptions appear
when you select one, and are detailed in Oracle Data Integrator Tool Reference

6. You can edit the code of this tool call in the Command tab.

7. From the File menu, click Save.

The following tools are frequently used in Oracle Data Integrator Package:

■ OdiStartScen: starts an Oracle Data Integrator scenario synchronously or
asynchronously. To create an OdiStartScen step, you can directly drag and drop
the scenario from the Designer Navigator into the diagram.

■ OdiInvokeWebService: invokes a web service and saves the response in an XML
file. OdiInvokeWebService uses the HTTP Analyzer tool to set up and test the tool
parameters. For more information, see "Using HTTP Analyzer" on page 14-3.

Notes:

■ You can specify a list of values in the Value field. When using the
IN operator, use the semicolon character (;) to separate the values
of a list.

■ An evaluate variable step can be branched based on the
evaluation result. See "Defining the Sequence of Steps" on page 7-9
for more information on branching steps.

Tip: As long as a tool is selected, left-clicking in the diagram will
continue to place steps. To stop placing steps, click the Free Choice
button in the Package Toolbar. The mouse pointer changes to an
arrow, indicating you are no longer placing tools.

Working with Steps

Creating and Using Packages 7-7

■ OS Command: calls an Operating System command. Using an operating system
command may make your Package platform-dependent.

The Oracle Data Integrator tools are listed in Oracle Data Integrator Tool Reference

7.3.1.5 Adding a Model, Sub-Model or Datastore
You can perform journalizing, static check or reverse-engineering operations on
models, sub-models, and datastores.

To insert a check, reverse engineer, or journalizing step in a Package:

1. Open the Package editor and go to the Diagram tab.

2. In Designer Navigator, select the model, sub-model or datastore to check from the
Models tree.

3. Drag and drop this model, sub-model or datastore into the diagram.

4. In the General tab of the properties panel, select the Type: Check, Reverse
Engineer, or Journalizing.

■ For Check steps, select Delete Errors from the Checked Tables if you want
this static check to remove erroneous rows from the tables checked in this
process.

■ For Journalizing steps, set the journalizing options. See Chapter 4, "Using
Journalizing," for more information on these options.

5. From the File menu, click Save.

7.3.2 Deleting a Step

To delete a step:

1. In the Package toolbar tab, select the Free Choice tool.

2. Select the step to delete in the diagram.

Note: When setting the parameters of a tool using the steps
properties panel, graphical helpers allow value selection in a
user-friendly manner. For example, if a parameter requires a project
identifier, the graphical mapping will redesign it and display a list of
project names for selection. By switching to the Command tab, you can
review the raw command and see the identifier.

Notes:

■ To perform a static check, you must define the CKM in the model.

■ To perform journalizing operations, you must define the JKM in
the model.

■ Reverse engineering options set in the model definition are used
for performing reverse-engineering processes in a package.

Caution: It is not possible to undo a delete operation in the Package
diagram.

Working with Steps

7-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

3. Right-click and then select Delete Step. Or, hit the Delete key on your keyboard.

4. Click Yes to continue.

The step disappears from the diagram.

7.3.3 Duplicating a Step
To duplicate a step:

1. In the Package toolbar tab, select the Free Choice tool.

2. Select the step to duplicate in the diagram.

3. Right-click and then select Duplicate Step.

A copy of the step appears in the diagram.

7.3.4 Running a Step
To run a step:

1. In the Package toolbar tab, select the Free Choice tool.

2. Select the step to run in the diagram.

3. Right-click and then select Execute Step.

4. In the Run dialog, select the execution parameters:

■ Select the Context into which the step must be executed.

■ Select the Logical Agent that will run the step.

■ Select a Log Level.

■ Optionally, select Simulation. This option performs a simulation of the run
operation and generates a run report, without actually affecting data.

5. Click OK.

6. The Session Started Window appears.

7. Click OK.

You can review the step execution in the Operator Navigator.

7.3.5 Editing a Step's Linked Object
The step's linked object is the mapping, procedure, variable, or other object from
which the step is created. You can edit this object from the Package diagram.

To edit a step's linked object:

1. In the Package toolbar tab, select the Free Choice tool.

2. Select the step to edit in the diagram.

3. Right-click and then select Edit Linked Object.

The Editor for the linked object opens.

7.3.6 Arranging the Steps Layout
The steps can be rearranged automatically or manually in the diagram in order to
make it more readable.

Defining the Sequence of Steps

Creating and Using Packages 7-9

You can use the Reorganize button from the toolbar to automatically reorganize all of
the steps in your package.

To manually arrange the steps in the diagram:

1. From the Package toolbar menu, select the Free Choice tool.

2. Select the steps you wish to arrange using either of the following methods:

■ Keep the CTRL key pressed and select each step.

■ Drag a box around multiple items in the diagram with the left mouse button
pressed.

3. To arrange the selected steps, you may either:

■ Drag them to arrange their position into the diagram

■ Right-click, then select a Vertical Alignment or Horizontal Alignment option
from the context menu.

7.4 Defining the Sequence of Steps
Once the steps are created, you must order them into a data processing chain. This
chain has the following rules:

■ It starts with a unique step defined as the First Step.

■ Each step has two termination states: Success or Failure.

■ A step in failure or success can be followed by another step, or by the end of the
Package.

■ In case of failure, it is possible to define a number of retries.

A Package has one entry point, the First Step, but several possible termination steps.

Failure Conditions
The table below details the conditions that lead a step to a Failure state. In other
situations, the steps ends in a Success state.

Note: By default, open transactions are not rolled back in a failure
state. You can change this behavior using the Physical Agent property
"Rollback all open transactions on step failure". Refer to the ODI
Studio Online Help for details.

Step Type Failure conditions

Flow ■ Error in a mapping command.

■ Maximum number or percentage of errors allowed reached.

Procedure Error in a procedure command.

Refresh Variable Error while running the refresh query.

Set Variable Error when setting the variable (invalid value).

Evaluate Variable The condition defined in the step is not matched.

Declare Variable This step has no failure condition and always succeeds.

Defining the Sequence of Steps

7-10 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Defining the Sequence
To define the first step of the Package:

1. In the Package toolbar tab, select the Free Choice tool.

2. Select the step to set as the first one in the diagram.

3. Right-click and then select First Step.

The first step symbol appears on the step's icon.

To define the next step upon success:

1. In the Package toolbar tab, select the Next Step on Success tool.

2. Drag a line from one step to another, using the mouse.

3. Repeat this operation to link all your steps in a success path sequence. This
sequence should start from the step defined as the First Step.

Green arrows representing the success path are shown between the steps, with an ok
labels on these arrows. In the case of an evaluate variable step, the label is true.

To define the next step upon failure:

1. In the Package toolbar tab, select the Next Step on Failure tool.

2. Drag a line from one step to another, using the mouse.

3. Repeat this operation to link steps according to your workflow logic.

Red arrows representing the failure path are shown between the steps, with a ko labels
on these arrows. In the case of an evaluate variable step, the arrow is green and the
label is false.

To define the end of the Package upon failure:

By default, a step that is linked to no other step after a success or failure condition will
terminate the Package when this success or failure condition is met. You can set this
behavior by editing the step's behavior.

1. In the Package toolbar tab, select the Free Choice tool.

2. Select the step to edit.

3. In the properties panel, select the Advanced tab.

4. Select End in Processing after failure or Processing after success. The links after
the step disappear from the diagram.

5. You can optionally set a Number of attempts and a Time between attempts for
the step to retry a number of times with an interval between the retries.

Oracle Data
Integrator Tool

Oracle Data Integrator Tool return code is different from zero. If this
tool is an OS Command, a failure case is a command return code
different from zero.

Journalize Datastore,
Model or Sub-Model

Error in a journalizing command.

Check Datastore,
Model or Sub-Model

Error in the check process.

Reverse Model Error in the reverse-engineering process.

Step Type Failure conditions

Running a Package

Creating and Using Packages 7-11

7.5 Running a Package
To run a Package:

1. Use any of the following methods:

■ In the Projects node of the Designer Navigator, expand a project and select the
Package you want to execute. Right-click and select Run, or click the Run
button in the ODI Studio toolbar, or select Run from the Run menu of the ODI
menu bar.

■ In the package editor, select the package by clicking the tab with the package
name at the top of the editor. Click the Run button in the ODI Studio toolbar,
or select Run from the Run menu of the ODI menu bar.

2. In the Run dialog, select the execution parameters:

■ Select the Context into which the package must be executed.

■ Select the Logical Agent that will run the package.

■ Select a Log Level.

■ Optionally, select Simulation. This option performs a simulation of the run
operation and generates a run report, without actually affecting data.

3. Click OK.

4. The Session Started Window appears.

5. Click OK.

You can review the Package execution in the Operator Navigator.

Running a Package

7-12 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

8

Creating and Using Mappings 8-1

8Creating and Using Mappings

[9] This chapter describes how to create and use mappings.

This chapter includes the following sections:

■ Introduction to Mappings

■ Creating a Mapping

■ Using Mapping Components

■ Creating a Mapping Using a Dataset

■ Physical Design

■ Reusable Mappings

■ Editing Mappings Using the Property Inspector and the Structure Panel

■ Flow Control and Static Control

■ Designing E-LT and ETL-Style Mappings

8.1 Introduction to Mappings
Mappings are the logical and physical organization of your data sources, targets, and
the transformations through which the data flows from source to target. You create
and manage mappings using the mapping editor, a new feature of ODI 12c.

The mapping editor opens whenever you open a mapping. Mappings are organized in
folders under individual projects, found under Projects in the Designer Navigator.

8.1.1 Parts of a Mapping
A mapping is made up of and defined by the following parts:

■ Datastores

Data from source datastores is extracted by a mapping, and can be filtered during
the loading process. Target datastores are the elements that are loaded by the
mapping. Datastores act as Projector Components.

Datastores that will be used as sources and targets of the loading process must
exist in data models before you can use them in a mapping. See Chapter 3,
"Creating and Using Data Models and Datastores" for more information.

■ Datasets

Optionally, you can use datasets within mappings as sources. A Dataset is a logical
container organizing datastores by an entity relationship declared as joins and

Introduction to Mappings

8-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

filters, rather than the flow mechanism used elsewhere in mappings. Datasets
operate similarly to ODI 11g interfaces, and if you import 11g interfaces into ODI
12c, ODI will automatically create datasets based on your interface logic. Datasets
act as Selector Components.

■ Reusable Mappings

Reusable mappings are modular, encapsulated flows of components which you
can save and re-use. You can place a reusable mapping inside another mapping, or
another reusable mapping (that is, reusable mappings may be nested). A reusable
mapping can also include datastores as sources and targets itself, like other
mapping components. Reusable mappings act as Projector Components.

■ Other Components

ODI provides additional components that are used in between sources and targets
to manipulate the data. These components are available on the component palette
in the mapping diagram.

The following are the components available by default in the component palette:

– Expression

– Aggregate

– Distinct

– Set

– Filter

– Join

– Lookup

– Pivot

– Sort

– Split

– Subquery Filter

– Table Function

– Unpivot

■ Connectors

Connectors create a flow of data between mapping components. Most components
can have both input and output connectors. Datastores with only output
connectors are considered sources; datastores with only input connectors are
considered targets. Some components can support multiple input or output
connectors; for example, the split component supports two or more output
connectors, allowing you to split data into multiple downstream flows.

– Connector points define the connections between components inside a
mapping. A connector point is a single pathway for input or output for a
component.

– Connector ports are the small circles on the left and/or right sides of
components displayed in the mapping diagram.

In the mapping diagram, two components connected by a single visible line
between their connector ports could have one or more connector points. The
diagram only shows a single line to represent all of the connections between two

Introduction to Mappings

Creating and Using Mappings 8-3

components. You can select the line to show details about the connection in the
property inspector.

■ Staging Schemas

Optionally, you can specify a staging area for a mapping or for a specific physical
mapping design of a mapping. If you want to define a different staging area than
any of the source or target datastores, you must define the correct physical and
logical schemas in the mapping's execution context before creating a mapping. See
Chapter 2, "Overview of Oracle Data Integrator Topology" for more information.

■ Knowledge Modules

Knowledge modules define how data will be transferred between data servers and
loaded into data targets. Knowledge Modules (IKMs, LKMs, EKMs, and CKMs)
that will be selected in the flow must be imported into the project or must be
available as global Knowledge Modules.

IKMs allow you to define (or specify) how the actual transformation and loading
is performed.

LKMs allow you to specify how the transfer of the data between one data server to
another data server is performed.

When used as flow control, CKMs allow you to check for errors in the data flow
during the loading of records into a target datastore. When used as static control,
CKMs can be used to check for any errors in a table. You can launch static control
at any time on a model to see if the data satisfies constraints.

You can select a strategy to perform these tasks by selecting an appropriate KM.
For example, you can decide whether to use a JDBC to transfer data between two
databases, or use an Oracle database link if the transfer is between two Oracle
databases.

See Chapter 6, "Creating an Integration Project" for more information.

■ Variables, Sequences, and User Functions

Variables, Sequences, and User Functions that will be used in expressions within
your mappings must be created in the project. See Chapter 11, "Creating and Using
Procedures, Variables, Sequences, and User Functions" for more information.

8.1.2 Navigating the Mapping Editor
The mapping editor provides a single environment for designing and editing
mappings.

Mappings are organized within folders in a project in the Designer Navigator. Each
folder has a mappings node, within which all mappings are listed.

To open the mapping editor, right-click an existing mapping and select Open, or
double-click the mapping. To create a new mapping, right-click the Mappings node
and select New Mapping. The mapping is opened as a tab on the main pane of ODI
Studio. Select the tab corresponding to a mapping to view the mapping editor.

Introduction to Mappings

8-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Figure 8–1 Mapping Editor

The mapping editor consists of the sections described in Table 8–1:

Table 8–1 Mapping Editor Sections

Section Location in Figure 8–1 Description

Mapping
Diagram

Middle The mapping diagram displays an editable
logical or physical view of a mapping. These
views are sometimes called the logical diagram
or the physical diagram.

You can drag datastores into the diagram from
the Models tree, and Reusable Mappings from
the Global Objects or Projects tree, into the
mapping diagram. You can also drag
components from the component palette to
define various data operations.

Mapping
Editor tabs

Middle, at the bottom of the
mapping diagram

The Mapping Editor tabs are ordered according
to the mapping creation process. These tabs are:

■ Overview: displays the general properties of
the mapping

■ Logical: displays the logical organization of
the mapping in the mapping diagram

■ Physical: displays the physical organization
of the mapping in the mapping diagram

Property
Inspector

Bottom Displays properties for the selected object.

If the Property Inspector does not display, select
Properties from the Window menu.

Creating a Mapping

Creating and Using Mappings 8-5

8.2 Creating a Mapping
Creating a mapping follows a standard process which can vary depending on the use
case.

Using the logical diagram of the mapping editor, you can construct your mapping by
dragging components onto the diagram, dragging connections between the
components, dragging attributes across those connections, and modifying the
properties of the components using the property inspector. When the logical diagram
is complete, you can use the physical diagram to define where and how the integration
process will run on your physical infrastructure. When the logical and physical design
of your mapping is complete, you can run it.

The following step sequence is usually performed when creating a mapping, and can
be used as a guideline to design your first mappings:

1. Creating a New Mapping

2. Adding and Removing Components

3. Connecting and Configuring Components

4. Defining a Physical Configuration

5. Running Mappings

8.2.1 Creating a New Mapping
To create a new mapping:

Component
Palette

Right Displays the mapping components you can use
for creating mappings. You can drag and drop
components into the logical mapping diagram
from the components palette.

If the Component Palette does not display, select
Components from the Window menu.

Structure
Panel

Not shown Displays a text-based hierarchical tree view of a
mapping, which is navigable using the tab and
arrow keys.

The Structure Panel does not display by default.
To open it, select Structure from the Window
menu.

Thumbnail
Panel

Not shown Displays a miniature graphic of a mapping, with
a rectangle indicating the portion currently
showing in the mapping diagram. This panel is
useful for navigating very large or complex
mappings.

The Thumbnail Panel does not display by
default. To open it, select Thumbnail from the
Window menu.

Note: You can also use the Property Inspector and the Structure
Panel to perform the steps 2 to 5. See "Editing Mappings Using the
Property Inspector and the Structure Panel" on page 8-41 for more
information.

Table 8–1 (Cont.) Mapping Editor Sections

Section Location in Figure 8–1 Description

Creating a Mapping

8-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

1. In Designer Navigator select the Mappings node in the folder under the project
where you want to create the mapping.

2. Right-click and select New Mapping. The New Mapping dialog is displayed.

3. In the New Mapping dialog, fill in the mapping Name. Optionally, enter a
Description. If you want the new mapping to contain a new empty dataset, select
Create Empty Dataset. Click OK.

Your new mapping opens in a new tab in the main pane of ODI Studio.

8.2.2 Adding and Removing Components
Add components to the logical diagram by dragging them from the Component
Palette. Drag datastores and reusable mappings from the Designer Navigator.

Delete components from a mapping by selecting them, and then either pressing the
Delete key, or using the right-click context menu to select Delete. A confirmation
dialog is shown.

Source and target datastores are the elements that will be extracted by, and loaded by,
the mapping.

Between the source and target datastores are arranged all the other components of a
mapping. When the mapping is run, data will flow from the source datastores,
through the components you define, and into the target datastores.

Preserving and Removing Downstream Expressions
Where applicable, when you delete a component, a check box in the confirmation
dialog allows you to preserve, or remove, downstream expressions; such expressions
may have been created when you connected or modified a component. By default ODI
preserves these expressions.

This feature allows you to make changes to a mapping without destroying work you
have already done. For example, when a source datastore is mapped to a target
datastore, the attributes are all mapped. You then realize that you need to filter the
source data. To add the filter, one option is to delete the connection between the two

Note: You can add and remove datasets (including this empty
dataset) after you create a mapping. Datasets are entirely optional and
all behavior of a dataset can be created using other components in the
mapping editor.

In ODI 12c, Datasets offer you the option to create data flows using the
entity relationship method familiar to users of previous versions of
ODI. In some cases creating an entity relationship diagram may be
faster than creating a flow diagram, or make it easier and faster to
introduce changes.

When a physical diagram is calculated based on a logical diagram
containing a Dataset, the entity relationships in the Dataset are
automatically converted by ODI into a flow diagram and merged with
the surrounding flow. You do not need to be concerned with how the
flow is connected.

Tip: To display the editor of a datastore, a reusable mapping, or a
dataset that is used in the Mapping tab, you can right-click the object
and select Open.

Creating a Mapping

Creating and Using Mappings 8-7

datastores, but preserve the expressions set on the target datastore, and then connect a
filter in the middle. None of the mapping expressions are lost.

8.2.3 Connecting and Configuring Components
Create connectors between components by dragging from the originating connector
port to the destination connector port. Connectors can also be implicitly created by
dragging attributes between components. When creating a connector between two
ports, an attribute matching dialog may be shown which allows you to automatically
map attributes based on name or position.

8.2.3.1 Attribute Matching
The Attribute Matching Dialog is displayed when a connector is drawn to a projector
component (see: "Projector Components" on page 8-11) in the Mapping Editor. The
Attribute Matching Dialog gives you an option to automatically create expressions to
map attributes from the source to the target component based on a matching
mechanism. It also gives the option to create new attributes on the target based on the
source, or new attributes on the source based on the target.

This feature allows you to easily define a set of attributes in a component that are
derived from another component. For example, you could drag a connection from a
new, empty Set component to a downstream target datastore. If you leave checked the
Create Attributes On Source option in the Attribute Matching dialog, the Set
component will be populated with all of the attributes of the target datastore. When
you connect the Set component to upstream components, you will already have the
target attributes ready for you to map the upstream attributes to.

8.2.3.2 Connector Points and Connector Ports
Review "Connectors" on page 8-2 for an introduction to ODI connector terminology.

You can click a connector port on one component and drag a line to another
component's connector port to define a connection. If the connection is allowed, ODI
will either use an unused existing connector point on each component, or create an
additional connector point as needed. The connection is displayed in the mapping
diagram with a line drawn between the connector ports of the two connected
components. Only a single line is shown even if two components have multiple
connections between them.

Most components can use both input and output connectors to other components,
which are visible in the mapping diagram as small circles on the sides of the
component. The component type may place limitations on how many connectors of
each type are allowed, and some components can have only input or only output
connections.

Some components allow the addition or deletion of connector points using the
property inspector.

For example, a Join component by default has two input connector points and one
output connector point. It is allowed to have more than two inputs, though. If you
drag a third connection to the input connector port of a join component, ODI creates a
third input connector point. You can also select a Join component and, in the property
inspector, in the Connector Points section, click the green plus icon to add additional
Input Connector Points.

Creating a Mapping

8-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

You can delete a connector by right-clicking the line between two connector points and
selecting Delete, or by selecting the line and pressing the Delete key.

8.2.3.3 Defining New Attributes
When you add components to a mapping, you may need to create attributes in them in
order to move data across the flow from sources, through intermediate components, to
targets. Typically you define new attributes to perform transformations of the data.

Use any of the following methods to define new attributes:

■ Attribute Matching Dialog: This dialog is displayed in certain cases when
dragging a connection from a connector port on one component to a connector
port on another, when at least one component is a projector component.

The attribute matching dialog includes an option to create attributes on the target.
If target already has attributes with matching names, ODI will automatically map
to these attributes. If you choose By Position, ODI will map the first attributes to
existing attributes in the target, and then add the rest (if there are more) below it.
For example, if there are three attributes in the target component, and the source
has 12, the first three attributes map to the existing attributes, and then the
remaining nine are copied over with their existing labels.

■ Drag and drop attributes: Drag and drop a single (or multi-selected) attribute
from a one component into another component (into a blank area of the
component graphic, not on top of an existing attribute). ODI creates a connection
(if one did not already exist), and also creates the attribute.

■ Add new attributes in the property inspector: In the property inspector, on the
Attributes tab, use the green plus icon to create a new attribute. You can select or
enter the new attribute's name, data type, and other properties in the Attributes
table. You can then map to the new attribute by dragging attributes from other
components onto the new attribute.

Note: You cannot drag a connection to or from an input port that
already has the maximum number of connections. For example, a
target datastore can only have one input connector point; if you try to
drag another connection to the input connector port, no connection is
created.

Tip: If the graphic for a component is "full", you can hover over the
attributes and a scroll bar appears on the right. Scroll to the bottom to
expose a blank line. You can then drag attributes to the blank area.

If you drag an attribute onto another attribute, ODI maps it into that
attribute, even if the names do not match. This does not create a new
attribute on the target component.

Caution: ODI will allow you to create an illegal data type
connection. Therefore, you should always set the appropriate data
type when you create a new attribute. For example, if you intend to
map an attribute with a DATE data type to a new attribute, you
should set the new attribute to have the DATE type as well.

Type-mismatch errors will be caught during execution as a SQL error.

Creating a Mapping

Creating and Using Mappings 8-9

8.2.3.4 Defining Expressions and Conditions
Expressions and conditions are used to map individual attributes from component to
component. Component types determine the default expressions and conditions that
will be converted into the underlying code of your mapping.

For example, any target component has an expression for each attribute. A filter, join,
or lookup component will use code (such as SQL) to create the expression appropriate
to the component type.

You can modify the expressions and conditions of any component by modifying the
code displayed in various property fields.

Expressions have a result type, such as VARCHAR or NUMERIC. The result type of
conditions are boolean, meaning, the result of a condition should always evaluate to
TRUE or FALSE. A condition is needed for filter, join, and lookup (selector)
components, while an expression is used in datastore, aggregate, and distinct
(projector) components, to perform some transformation or create the attribute-level
mappings.

Every projector component can have expressions on its attributes. (For most projector
components, an attribute has one expression, but the attribute of the Set component
can have multiple expressions.) If you modify the expression for an attribute, a small
"f" icon appears on the attribute in the logical diagram. This icon provides a visual cue
that a function has been placed there.

To define the mapping of a target attribute:

1. In the mapping editor, select an attribute to display the attribute's properties in the
Property Inspector.

2. In the Target tab (for expressions) or Condition tab (for conditions), modify the
Expression or Condition field(s) to create the required logic.

Note: From ODI 12.2.1 onwards, when the DB2 TIME column is
mapped to the target column, the target column displays only the time
and omits the date.

Tip: When an expression is set on the target, any source attributes
referenced by that expression are highlighted in magenta in the
upstream sources. For example, an expression emp.empno on the target
column tgt_empno, when tgt_empno is selected (by clicking on it), the
attribute empno on the source datastore emp is highlighted.

This highlighting function is useful for rapidly verifying that each
desired target attribute has an expression with valid cross references.
If an expression is manually edited incorrectly, such as if a source
attribute is misspelled, the cross reference will be invalid, and no
source attribute will be highlighted when clicking that target attribute.

Note: Oracle recommends using the expression editor instead of
manually editing expressions in most cases. Selection of a source
attribute from the expression editor will always give the expression a
valid cross reference, minimizing editing errors. For more information,
see "The Expression Editor" on page 8-12.

Creating a Mapping

8-10 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

3. Optionally, select or hover over any field in the property inspector containing an
expression, and then click the gear icon that appears to the right of the field, to
open the advanced Expression Editor.

The attributes on the left are only the ones that are in scope (have already been
connected). So if you create a component with no upstream or downstream
connection to a component with attributes, no attributes are listed.

4. Optionally, after modifying an expression or condition, consider validating your
mapping to check for errors in your SQL code. Click the green check mark icon at
the top of the logical diagram. Validation errors, if any, will be displayed in a
panel.

8.2.4 Defining a Physical Configuration
In the Physical tab of the mapping editor, you define the loading and integration
strategies for mapped data. Oracle Data Integrator automatically computes the flow
depending on the configuration in the mapping's logical diagram. It proposes default
knowledge modules (KMs) for the data flow. The Physical tab enables you to view the
data flow and select the KMs used to load and integrate data.

For more information about physical design, see "Physical Design" on page 8-33.

8.2.5 Running Mappings
Once a mapping is created, you can run it. This section briefly summarizes the process
of running a mapping. For detailed information about running your integration
processes, see: "Running Integration Processes" in Administering Oracle Data Integrator.

To run a mapping:

1. From the Projects menu of the Designer Navigator, right-click a mapping and
select Run.

Or, with the mapping open in the mapping editor, click the run icon in the toolbar.
Or, select Run from the Run menu.

2. In the Run dialog, select the execution parameters:

■ Select the Context into which the mapping must be executed. For more
information about contexts, see: "Contexts" on page 2-2.

■ Select the Physical Mapping Design you want to run. See: "Creating and
Managing Physical Mapping Designs" on page 8-39.

■ Select the Logical Agent that will run the mapping. The object can also be
executed using the agent that is built into Oracle Data Integrator Studio, by
selecting Local (No Agent). For more information about logical agents, see:
"Agents" on page 2-2.

■ Select a Log Level to control the detail of messages that will appear in the
validator when the mapping is run. For more information about logging, see:
"Managing the Log" in Administering Oracle Data Integrator.

■ Check the Simulation box if you want to preview the code without actually
running it. In this case no data will be changed on the source or target

Tip: The attributes from any component in the diagram can be
drag-and-dropped into an expression field to automatically add the
fully-qualified attribute name to the code.

Using Mapping Components

Creating and Using Mappings 8-11

datastores. For more information, see: "Simulating an Execution" in
Administering Oracle Data Integrator.

3. Click OK.

4. The Information dialog appears. If your session started successfully, you will see
"Session started."

5. Click OK.

8.3 Using Mapping Components
In the logical view of the mapping editor, you design a mapping by combining
datastores with other components. You can use the mapping diagram to arrange and
connect components such as datasets, filters, sorts, and so on. You can form
connections between datastores and components by dragging lines between the
connector ports displayed on these objects.

Mapping components can be divided into two categories which describe how they are
used in a mapping: projector components and selector components.

Projector Components
Projectors are components that influence the attributes present in the data that flows
through a mapping. Projector components define their own attributes: attributes from
preceding components are mapped through expressions to the projector's attributes. A
projector hides attributes originating from preceding components; all succeeding
components can only use the attributes from the projector.

Review the following topics to learn how to use the various projector components:

■ "Source and Target Datastores" on page 8-13

■ "Creating Multiple Targets" on page 8-14

■ "Adding a Reusable Mapping" on page 8-15

■ "Creating Aggregates" on page 8-15

■ "Creating Distincts" on page 8-16

■ "Creating Pivots" on page 8-21

■ "Creating Sets" on page 8-23

■ "Creating Subquery Filters" on page 8-25

■ "Creating Table Functions" on page 8-26

■ "Creating Unpivots" on page 8-28

■ "Creating Flatten Components" on page 8-30

Notes:

■ When you run a mapping, the Validation Results pane opens. You
can review any validation warnings or errors there.

■ You can see your session in the Operator navigator Session List.
Expand the Sessions node and then expand the mapping you ran
to see your session. The session icon indicates whether the session
is still running, completed, or stopped due to errors. For more
information about monitoring your sessions, see: "Monitoring
Integration Processes" in Administering Oracle Data Integrator.

Using Mapping Components

8-12 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ "Creating Jagged Components" on page 8-31

Selector Components
Selector components reuse attributes from preceding components. Join and Lookup
selectors combine attributes from the preceding components. For example, a Filter
component following a datastore component reuses all attributes from the datastore
component. As a consequence, selector components don't display their own attributes
in the diagram and as part of the properties; they are displayed as a round shape. (The
Expression component is an exception to this rule.)

When mapping attributes from a selector component to another component in the
mapping, you can select and then drag an attribute from the source, across a chain of
connected selector components, to a target datastore or next projector component. ODI
will automatically create the necessary queries to bring that attribute across the
intermediary selector components.

Review the following topics to learn how to use the various selector components:

■ "Creating Expressions" on page 8-17

■ "Creating Filters" on page 8-17

■ "Creating Joins and Lookups" on page 8-18

■ "Creating Sorts" on page 8-24

■ "Creating Splits" on page 8-25

■ "Creating a Dataset in a Mapping" on page 8-33

8.3.1 The Expression Editor
Most of the components you use in a mapping are actually representations of an
expression in the code that acts on the data as it flows from your source to your target
datastores. When you create or modify these components, you can edit the
expression's code directly in the Property Inspector.

To assist you with more complex expressions, you can also open an advanced editor
called the Expression Editor. (In some cases, the editor is labeled according to the type
of component; for example, from a Filter component, the editor is called the Filter
Condition Advanced Editor. However, the functionality provided is the same.)

To access the Expression Editor, select a component, and in the Property Inspector,
select or hover over with the mouse pointer any field containing code. A gear icon
appears to the right of the field. Click the gear icon to open the Expression Editor.

For example, to see the gear icon in a Filter component, select or hover over the Filter
Condition field on the Condition tab; to see the gear icon in a Datastore component,
select or hover over the Journalized Data Filter field of the Journalizing tab.

A typical example view of the Expression Editor is shown in Figure 8–2

Using Mapping Components

Creating and Using Mappings 8-13

Figure 8–2 Example Expression Editor

The Expression Editor is made up of the following panels:

■ Attributes: This panel appears on the left of the Expression Editor. When editing
an expression for a mapping, this panel contains the names of attributes which are
"in scope," meaning, attributes that are currently visible and can be referenced by
the expression of the component. For example, if a component is connected to a
source datastore, all of the attributes of that datastore are listed.

■ Expression: This panel appears in the middle of the Expression Editor. It displays
the current code of the expression. You can directly type code here, or drag and
drop elements from the other panels.

■ Technology functions: This panel appears below the expression. It lists the
language elements and functions appropriate for the given technology.

■ Variables, Sequences, User Functions and odiRef API: This panel appears to the
right of the technology functions and contains:

– Project and global Variables.

– Project and global Sequences.

– Project and global User-Defined Functions.

– OdiRef Substitution Methods.

Standard editing functions (cut/copy/paste/undo/redo) are available using the tool
bar buttons.

8.3.2 Source and Target Datastores
To insert a source or target datastore in a mapping:

Using Mapping Components

8-14 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

1. In the Designer Navigator, expand the Models tree and expand the model or
sub-model containing the datastore to be inserted as a source or target.

2. Select this datastore, then drag it into the mapping panel. The datastore appears.

3. To make the datastore a source, drag a link from the output (right) connector of the
datastore to one or more components. A datastore is not a source until it has at
least one outgoing connection.

To make the datastore a target, drag a link from a component to the input (left)
connector of the datastore. A datastore is not a target until it has an incoming
connection.

Once you have defined a datastore you may wish to view its data.

To display the data of a datastore in a mapping:

1. Right-click the title of the datastore in the mapping diagram.

2. Select Data...

The Data Editor opens.

8.3.3 Creating Multiple Targets
In Oracle Data Integrator 12c, creating multiple targets in a mapping is
straightforward. Every datastore component which has inputs but no outputs in the
logical diagram is considered a target.

ODI allows splitting a component output into multiple flows at any point of a
mapping. You can also create a single mapping with multiple independent flows,
avoiding the need for a package to coordinate multiple mappings.

The output port of many components can be connected to multiple downstream
components, which will cause all rows of the component result to be processed in each
of the downstream flows. If rows should be routed or conditionally processed in the
downstream flows, consider using a split component to define the split conditions.

8.3.3.1 Specifying Target Order
Mappings with multiple targets do not, by default, follow a defined order of loading
data to targets. You can define a partial or complete order by using the Target Load
Order property. Targets which you do not explicitly assign an order will be loaded in
an arbitrary order by ODI.

The order of processing multiple targets can be set in the Target Load Order property
of the mapping:

1. Click the background in the logical diagram to deselect objects in the mapping.
The property inspector displays the properties for the mapping.

2. In the property inspector, accept the default target load order, or enter a new target
load order, in the Target Load Order field.

See Also: "Creating Splits" on page 8-25

Note: Target load order also applies to reusable mappings. If a
reusable mapping contains a source or a target datastore, you can
include the reusable mapping component in the target load order
property of the parent mapping.

Using Mapping Components

Creating and Using Mappings 8-15

Select or hover over the Target Load Order field and click the gear icon to open
the Target Load Order Dialog. This dialog displays all available datastores (and
reusable mappings containing datastores) that can be targets, allowing you to
move one or more to the Ordered Targets field. In the Ordered Targets field, use
the icons on the right to rearrange the order of processing.

8.3.4 Adding a Reusable Mapping
Reusable mappings may be stored within folders in a project, or as global objects
within the Global Objects tree, of the Designer Navigator.

To add a reusable mapping to a mapping:

1. To add a reusable mapping stored within the current project:

In the Designer Navigator, expand the Projects tree and expand the tree for the
project you are working on. Expand the Reusable Mappings node to list all
reusable mappings stored within this project.

To add a global reusable mapping:

In the Designer Navigator, expand the Global Objects tree, and expand the
Reusable Mappings node to list all global reusable mappings.

2. Select a reusable mapping, and drag it into the mapping diagram. A reusable
mapping component is added to the diagram as an interface to the underlying
reusable mapping.

8.3.5 Creating Aggregates
The aggregate component is a projector component (see: "Projector Components" on
page 8-11) which groups and combines attributes using aggregate functions, such as
average, count, maximum, sum, and so on. ODI will automatically select attributes
without aggregation functions to be used as group-by attributes. You can override this
by using the Is Group By and Manual Group By Clause properties.

To create an aggregate component:

1. Drag and drop the aggregate component from the component palette into the
logical diagram.

2. Define the attributes of the aggregate if the attributes will be different from the
source components. To do this, select the Attributes tab in the property inspector,

Note: A default load order is automatically computed based on
primary key/foreign key relationships of the target datastores in the
mapping. You can modify this default if needed, even if the resultant
load order conflicts with the primary key/foreign key relationship. A
warning will be displayed when you validate the mapping in this
case.

Tip: Target Order is useful when a mapping has multiple targets and
there are foreign key (FK) relationships between the targets. For
example, suppose a mapping has two targets called EMP and DEPT, and
EMP.DEPTNO is a FK to DEPT.DEPTNO. If the source data contains
information about the employee and the department, the information
about the department (DEPT) must be loaded first before any rows
about the employee can be loaded (EMP). To ensure this happens, the
target load order should be set to DEPT, EMP.

Using Mapping Components

8-16 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

and click the green plus icon to add attributes. Enter new attribute names in the
Target column and assign them appropriate values.

If attributes in the aggregate component will be the same as those in a source
component, use attribute matching (see Step 4).

3. Create a connection from a source component by dragging a line from the
connector port of the source to the connector port of the aggregate component.

4. The Attribute Matching dialog will be shown. If attributes in the aggregate
component will be the same as those in a source component, check the Create
Attributes on Target box (see: "Attribute Matching" on page 8-7).

5. If necessary, map all attributes from source to target that were not mapped though
attribute matching, and create transformation expressions as necessary (see:
"Defining Expressions and Conditions" on page 8-9).

6. In the property inspector, the attributes are listed in a table on the Attributes tab.
Specify aggregation functions for each attribute as needed. By default all attributes
not mapped using aggregation functions (such as sum, count, avg, max, min, and
so on) will be used as Group By.

You can modify an aggregation expression by clicking the attribute. For example,
if you want to calculate average salary per department, you might have two
attributes: the first attribute called AVG_SAL, which you give the expression
AVG(EMP.SAL), while the second attribute called DEPTNO has no expression. If Is
Group By is set to Auto, DEPTNO will be automatically included in the GROUP BY
clause of the generated code.

You can override this default by changing the property Is Group By on a given
attribute from Auto to Yes or No, by double-clicking on the table cell and selecting
the desired option from the drop down list.

You can set a different GROUP BY clause other than the default for the entire
aggregate component. Select the General tab in the property inspector, and then
set a Manual Group by Clause. For example, set the Manual Group by Clause to
YEAR(customer.birthdate) to group by birthday year.

7. Optionally, add a HAVING clause by setting the HAVING property of the aggregate
component: for example, SUM(order.amount) > 1000.

8.3.6 Creating Distincts
A distinct is a projector component (see: "Projector Components" on page 8-11) that
projects a subset of attributes in the flow. The values of each row have to be unique;
the behavior follows the rules of the SQL DISTINCT clause.

To select distinct rows from a source datastore:

1. Drag and drop a Distinct component from the component palette into the logical
diagram.

2. Connect the preceding component to the Distinct component by dragging a line
from the preceding component to the Distinct component.

The Attribute Mapping Dialog will appear: select Create Attributes On Target to
create all of the attributes in the Distinct component. Alternatively, you can
manually map attributes as desired using the Attributes tab in the property
inspector.

3. The distinct component will now filter all rows that have all projected attributes
matching.

Using Mapping Components

Creating and Using Mappings 8-17

8.3.7 Creating Expressions
An expression is a selector component (see: "Selector Components" on page 8-12) that
inherits attributes from a preceding component in the flow and adds additional
reusable attributes. An expression can be used to define a number of reusable
expressions within a single mapping. Attributes can be renamed and transformed
from source attributes using SQL expressions. The behavior follows the rules of the
SQL SELECT clause.

The best use of an expression component is in cases where intermediate
transformations are used multiple times, such as when pre-calculating fields that are
used in multiple targets.

If a transformation is used only once, consider performing the transformation in the
target datastore or other component.

To create an expression component:

1. Drag and drop an Expression component from the component palette into the
logical diagram.

2. Connect a preceding component to the Expression component by dragging a line
from the preceding component to the Expression component.

The Attribute Mapping Dialog will appear; select Create Attributes On Target to
create all of the attributes in the Expression component.

In some cases you might want the expression component to match the attributes of
a downstream component. In this case, connect the expression component with the
downstream component first and select Create Attributes on Source to populate
the Expression component with attributes from the target.

3. Add attributes to the expression component as desired using the Attributes tab in
the property inspector. It might be useful to add attributes for pre-calculated fields
that are used in multiple expressions in downstream components.

4. Edit the expressions of individual attributes as necessary (see: "Defining
Expressions and Conditions" on page 8-9).

8.3.8 Creating Filters
A filter is a selector component (see: "Selector Components" on page 8-12) that can
select a subset of data based on a filter condition. The behavior follows the rules of the
SQL WHERE clause.

Filters can be located in a dataset or directly in a mapping as a flow component.

When used in a dataset, a filter is connected to one datastore or reusable mapping to
filter all projections of this component out of the dataset. For more information, see
Creating a Mapping Using a Dataset.

To define a filter in a mapping:

1. Drag and drop a Filter component from the component palette into the logical
diagram.

Tip: If you want to reuse expressions across multiple mappings,
consider using reusable mappings or user functions, depending on the
complexity. See: "Reusable Mappings" on page 8-40, and "Working
with User Functions" on page 11-27.

Using Mapping Components

8-18 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

2. Drag an attribute from the preceding component onto the filter component. A
connector will be drawn from the preceding component to the filter, and the
attribute will be referenced in the filter condition.

In the Condition tab of the Property Inspector, edit the Filter Condition and
complete the expression. For example, if you want to select from the CUSTOMER
table (that is the source datastore with the CUSTOMER alias) only those records
with a NAME that is not null, an expression could be CUSTOMER.NAME IS NOT
NULL.

3. Optionally, on the General tab of the Property Inspector, enter a new name in the
Name field. Using a unique name is useful if you have multiple filters in your
mapping.

4. Optionally, set an Execute on Hint, to indicate your preferred execution location:
No hint, Source, Staging, or Target. The physical diagram will locate the
execution of the filter according to your hint, if possible. For more information, see
"Configuring Execution Locations" on page 8-36.

8.3.9 Creating Joins and Lookups
This section contains the following topics:

■ About Joins

■ About Lookups

■ Creating a Join or Lookup

About Joins
A Join is a selector component (see: "Selector Components" on page 8-12) that creates a
join between multiple flows. The attributes from upstream components are combined
as attributes of the Join component.

A Join can be located in a dataset or directly in a mapping as a flow component. A join
combines data from two or more data flows, which may be datastores, datasets,
reusable mappings, or combinations of various components.

When used in a dataset, a join combines the data of the datastores using the selected
join type. For more information, see Creating a Mapping Using a Dataset.

A join used as a flow component can join two or more sources of attributes, such as
datastores or other upstream components. A join condition can be formed by dragging
attributes from two or more components successively onto a join component in the
mapping diagram; by default the join condition will be an equi-join between the two
attributes.

About Lookups
A Lookup is a selector component (see: "Selector Components" on page 8-12) that
returns data from a lookup flow being given a value from a driving flow. The
attributes of both flows are combined, similarly to a join component.

Tip: Click the gear icon to the right of the Filter Condition field to
open the Filter Condition Advanced Editor. The gear icon is only
shown when you have selected or are hovering over the Filter
Condition field with your mouse pointer. For more information about
the Filter Condition Advanced Editor, see: "The Expression Editor" on
page 8-12.

Using Mapping Components

Creating and Using Mappings 8-19

Lookups can be located in a dataset or directly in a mapping as a flow component.

When used in a dataset, a Lookup is connected to two datastores or reusable mappings
combining the data of the datastores using the selected join type. For more
information, see Creating a Mapping Using a Dataset.

Lookups used as flow components (that is, not in a dataset) can join two flows. A
lookup condition can be created by dragging an attribute from the driving flow and
then the lookup flow onto the lookup component; the lookup condition will be an
equi-join between the two attributes.

The Multiple Match Rows property defines which row from the lookup result must
be selected as the lookup result if the lookup returns multiple results. Multiple rows
are returned when the lookup condition specified matches multiple records.

You can select one of the following options to specify the action to perform when
multiple rows are returned by the lookup operation:

■ Error: multiple rows will cause a mapping failure

This option indicates that when the lookup operation returns multiple rows, the
mapping execution fails.

■ All Rows (number of result rows may differ from the number of input rows)

This option indicates that when the lookup operation returns multiple rows, all the
rows should be returned as the lookup result.

■ Select any single row

This option indicates that when the lookup operation returns multiple rows, any
one row from the returned rows must be selected as the lookup result.

■ Select first single row

This option indicates that when the lookup operation returns multiple rows, the
first row from the returned rows must be selected as the lookup result.

■ Select nth single row

This option indicates that when the lookup operation returns multiple rows, the
nth row from the result rows must be selected as the lookup result. When you
select this option, the Nth Row Number field appears, where you can specify the
value of n.

Note: In ODI 12.1.3, the Deprecated - Error: multiple rows will
cause a mapping failure option with the EXPRESSION_IN_SELECT
option value is deprecated. It is included for backward compatibility
with certain patched versions of ODI 12.1.2.

This option is replaced with the ERROR_WHEN_MULTIPLE_ROW option of
Error: multiple rows will cause a mapping failure.

Note: In ODI 12.1.3, the Deprecated - All rows (number of result
rows may differ from the number of input rows option with the
LEFT_OUTER option value is deprecated. It is included for backward
compatibility with certain patched versions of ODI 12.1.2.

This option is replaced with the ALL_ROWS option of All rows (number
of result rows may differ from the number of input rows.

Using Mapping Components

8-20 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ Select last single row

This option indicates that when the lookup operation returns multiple rows, the
last row from the returned rows must be selected as the lookup result.

Use the Lookup Attributes Default Value & Order By table to specify how the result
set that contains multiple rows should be ordered, and what the default value should
be if no matches are found for the input attribute in the lookup flow through the
lookup condition. Ensure that the attributes are listed in the same order (from top to
bottom) in which you want the result set to be ordered. For example, to implement an
ordering such as ORDER BY attr2, attr3, and then attr1, the attributes should be listed
in the same order. You can use the arrow buttons to change the position of the
attributes to specify the order.

The No-Match Rows property indicates the action to be performed when there are no
rows that satisfy the lookup condition. You can select one of the following options to
perform when no rows are returned by the lookup operation:

■ Return no row

This option does not return any row when no row in the lookup results satisfies
the lookup condition.

■ Return a row with the following default values

This option returns a row that contains default values when no row in the lookup
results satisfies the lookup condition. Use the Lookup Attributes Default Value &
Order By: table below this option to specify the default values for each lookup
attribute.

Creating a Join or Lookup
To create a join or a lookup between two upstream components:

1. Drag a join or lookup from the component palette into the logical diagram.

2. Drag the attributes participating in the join or lookup condition from the
preceding components onto the join or lookup component. For example, if
attribute ID from source datastore CUSTOMER and then CUSTID from source
datastore ORDER are dragged onto a join, then the join condition CUSTOMER.ID =
ORDER.CUSTID is created.

Note: When more than two attributes are dragged into a join or
lookup, ODI compares and combines attributes with an AND
operator. For example, if you dragged attributes from sources A and B
into a Join component in the following order:

A.FIRSTNAME
B.FIRSTNAME
A.LASTNAME
B.LASTNAME

The following join condition would be created:

A.FIRSTNAME=B.FIRSTNAME AND A.LASTNAME=B.LASTNAME

You can continue with additional pairs of attributes in the same way.

You can edit the condition after it is created, as necessary.

Using Mapping Components

Creating and Using Mappings 8-21

3. In the Condition tab of the Property Inspector, edit the Join Condition or Lookup
Condition and complete the expression.

4. Optionally, set an Execute on Hint, to indicate your preferred execution location:
No hint, Source, Staging, or Target. The physical diagram will locate the
execution of the filter according to your hint, if possible.

5. For a join:

Select the Join Type by checking the various boxes (Cross, Natural, Left Outer,
Right Outer, Full Outer (by checking both left and right boxes), or (by leaving all
boxes empty) Inner Join). The text describing which rows are retrieved by the join
is updated.

For a lookup:

Select the Multiple Match Rows by selecting an option from the drop down list.
The Technical Description field is updated with the SQL code representing the
lookup, using fully-qualified attribute names.

If applicable, use the Lookup Attributes Default Value & Order By table to
specify how a result set that contains multiple rows should be ordered.

Select a value for the No-Match Rows property to indicate the action to be
performed when there are no rows that satisfy the lookup condition.

6. Optionally, for joins, if you want to use an ordered join syntax for this join, check
the Generate ANSI Syntax box.

The Join Order box will be checked if you enable Generate ANSI Syntax, and the
join will be automatically assigned an order number.

7. For joins inside of datasets, define the join order. Check the Join Order check box,
and then in the User Defined field, enter an integer. A join component with a
smaller join order number means that particular join will be processed first among
other joins. The join order number determines how the joins are ordered in the
FROM clause. A smaller join order number means that the join will be performed
earlier than other joins. This is important when there are outer joins in the dataset.

For example: A mapping has two joins, JOIN1 and JOIN2. JOIN1 connects A and B,
and its join type is LEFT OUTER JOIN. JOIN2 connects B and C, and its join type is
RIGHT OUTER JOIN.

To generate (A LEFT OUTER JOIN B) RIGHT OUTER JOIN C, assign a join order 10
for JOIN1 and 20 for JOIN2.

To generate A LEFT OUTER JOIN (B RIGHT OUTER JOIN C), assign a join order 20
for JOIN1 and 10 for JOIN2.

8.3.10 Creating Pivots
A pivot component is a projector component (see: "Projector Components" on
page 8-11) that lets you transform data that is contained in multiple input rows into a
single output row. The pivot component lets you extract data from a source once, and

Tip: Click the gear icon to the right of the Join Condition or Lookup
Condition field to open the Expression Editor. The gear icon is only
shown when you have selected or are hovering over the condition
field with your mouse pointer. For more information about the
Expression Editor, see: "The Expression Editor" on page 8-12.

Using Mapping Components

8-22 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

produce one row from a set of source rows that are grouped by attributes in the source
data. The pivot component can be placed anywhere in the data flow of a mapping.

8.3.10.1 Example: Pivoting Sales Data
Table 8–2 shows a sample of data from the SALES relational table. The QUARTER
attribute has 4 possible character values, one for each quarter of the year. All the sales
figures are contained in one attribute, SALES.

Table 8–3 depicts data from the relational table SALES after pivoting the table. The
data that was formerly contained in the QUARTER attribute (Q1, Q2, Q3, and Q4)
corresponds to 4 separate attributes (Q1_Sales, Q2_Sales, Q3_Sales, and Q4_Sales). The
sales figures formerly contained in the SALES attribute are distributed across the 4
attributes for each quarter.

8.3.10.2 The Row Locator
When you use the pivot component, multiple input rows are transformed into a single
row based on the row locator. The row locator is an attribute that you must select from
the source to correspond with the set of output attributes that you define. It is
necessary to specify a row locator to perform the pivot operation.

In this example, the row locator is the attribute QUARTER from the SALES table and it
corresponds to the attributes Q1_Sales, Q2_Sales, Q3_Sales, and Q4_Sales attributes in
the pivoted output data.

8.3.10.3 Using the Pivot Component
To use a pivot component in a mapping:

1. Drag and drop the source datastore into the logical diagram.

2. Drag and drop a Pivot component from the component palette into the logical
diagram.

3. From the source datastore drag and drop the appropriate attributes on the pivot
component. In this example, the YEAR attribute.

Table 8–2 SALES

YEAR QUARTER SALES

2010 Q1 10.5

2010 Q2 11.4

2010 Q3 9.5

2010 Q4 8.7

2011 Q1 9.5

2011 Q2 10.5

2011 Q3 10.3

2011 Q4 7.6

Table 8–3 PIVOTED DATA

Year Q1_Sales Q2_Sales Q3_Sales Q4_Sales

2010 10.5 11.4 9.5 8.7

2011 9.5 10.5 10.3 7.6

Using Mapping Components

Creating and Using Mappings 8-23

4. Select the pivot component. The properties of the pivot component are displayed
in the Property Inspector.

5. Enter a name and description for the pivot component.

6. If required, change the Aggregate Function for the pivot component. The default is
MIN.

7. Type in the expression or use the Expression Editor to specify the row locator. In
this example, since the QUARTER attribute in the SALES table is the row locator,
the expression will be SALES.QUARTER.

8. Under Row Locator Values, click the + sign to add the row locator values. In this
example, the possible values for the row locator attribute QUARTER are Q1, Q2,
Q3, and Q4.

9. Under Attributes, add output attributes to correspond to each input row. If
required, you can add new attributes or rename the listed attributes.

In this example, add 4 new attributes, Q1_Sales, Q2_Sales, Q3_Sales, and Q4_Sales
that will correspond to 4 input rows Q1, Q2, Q3, and Q4 respectively.

10. If required, change the expression for each attribute to pick up the sales figures
from the source and select a matching row for each attribute.

In this example, set the expressions for each attribute to SALES.SALES and set the
matching rows to Q1, Q2, Q3, and Q4 respectively.

11. Drag and drop the target datastore into the logical diagram.

12. Connect the pivot component to the target datastore by dragging a link from the
output (right) connector of the pivot component to the input (left) connector of the
target datastore.

13. Drag and drop the appropriate attributes of the pivot component on to the target
datastore. In this example, YEAR, Q1_Sales, Q2_Sales, Q3_Sales, and Q4_Sales.

14. Go to the physical diagram and assign new KMs if you want to.

Save and execute the mapping to perform the pivot operation.

8.3.11 Creating Sets
A set component is a projector component (see: "Projector Components" on page 8-11)
that combines multiple input flows into one using set operation such as UNION,
INTERSECT, EXCEPT, MINUS and others. The behavior reflects the SQL operators.

Additional input flows can be added to the set component by connecting new flows to
it. The number of input flows is shown in the list of Input Connector Points in the

Note: Do not drag the row locator attribute or the attributes that
contain the data values that correspond to the output attributes. In
this example, QUARTER is the row locator attribute and SALES is the
attribute that contain the data values (sales figures) that correspond to
the Q1_Sales, Q2_Sales, Q3_Sales, and Q4_Sales output attributes.

Note: PigSetCmd does not support the EXCEPT set operation.

Using Mapping Components

8-24 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Operators tab. If an input flow is removed, the input connector point needs to be
removed as well.

To create a set from two or more sources:

1. Drag and drop a Set component from the component palette into the logical
diagram.

2. Define the attributes of the set if the attributes will be different from the source
components. To do this, select the Attributes tab in the property inspector, and
click the green plus icon to add attributes. Select the new attribute names in the
Target column and assign them appropriate values.

If Attributes will be the same as those in a source component, use attribute
matching (see step 4).

3. Create a connection from the first source by dragging a line from the connector
port of the source to the connector port of the Set component.

4. The Attribute Matching dialog will be shown. If attributes of the set should be the
same as the source component, check the Create Attributes on Target box (see:
"Attribute Matching" on page 8-7).

5. If necessary, map all attributes from source to target that were not mapped
through attribute matching, and create transformation expressions as necessary
(see: "Defining Expressions and Conditions" on page 8-9).

6. All mapped attributes will be marked by a yellow arrow in the logical diagram.
This shows that not all sources have been mapped for this attribute; a set has at
least two sources.

7. Repeat the connection and attribute mapping steps for all sources to be connected
to this set component. After completion, no yellow arrows should remain.

8. In the property inspector, select the Operators tab and select cells in the Operator
column to choose the appropriate set operators (UNION, EXCEPT, INTERSECT, and so
on). UNION is chosen by default. You can also change the order of the connected
sources to change the set behavior.

8.3.12 Creating Sorts
A Sort is a projector component (see: "Projector Components" on page 8-11) that will
apply a sort order to the rows of the processed dataset, using the SQL ORDER BY
statement.

To create a sort on a source datastore:

1. Drag and drop a Sort component from the component palette into the logical
diagram.

Note: You can set Execute On Hint on the attributes of the set
component, but there is also an Execute On Hint property for the set
component itself. The hint on the component indicates the preferred
location where the actual set operation (UNION, EXCEPT, and so on) is
performed, while the hint on an attribute indicates where the
preferred location of the expression is performed.

A common use case is that the set operation is performed on a staging
execution unit, but some of its expressions can be done on the source
execution unit. For more information about execution units, see
"Configuring Execution Locations" on page 8-36.

Using Mapping Components

Creating and Using Mappings 8-25

2. Drag the attribute to be sorted on from a preceding component onto the sort
component. If the rows should be sorted based on multiple attributes, they can be
dragged in desired order onto the sort component.

3. Select the sort component and select the Condition tab in the property inspector.
The Sorter Condition field follows the syntax of the SQL ORDER BY statement of
the underlying database; multiple fields can be listed separated by commas, and
ASC or DESC can be appended after each field to define if the sort will be ascending
or descending.

8.3.13 Creating Splits
A Split is a selector component (see: "Selector Components" on page 8-12) that divides
a flow into two or more flows based on specified conditions. Split conditions are not
necessarily mutually exclusive: a source row is evaluated against all split conditions
and may be valid for multiple output flows.

If a flow is divided unconditionally into multiple flows, no split component is
necessary: you can connect multiple downstream components to a single outgoing
connector port of any preceding component, and the data output by that preceding
component will be routed to all downstream components.

A split component is used to conditionally route rows to multiple proceeding flows
and targets.

To create a split to multiple targets in a mapping:

1. Drag and drop a Split component from the component palette into the logical
diagram.

2. Connect the split component to the preceding component by dragging a line from
the preceding component to the split component.

3. Connect the split component to each following component. If either of the
upstream or downstream components contain attributes, the Attribute Mapping
Dialog will appear. In the Connection Path section of the dialog, it will default to
the first unmapped connector point and will add connector points as needed.
Change this selection if a specific connector point should be used.

4. In the property inspector, open the Split Conditions tab. In the Output Connector
Points table, enter expressions to select rows for each target. If an expression is left
empty, all rows will be mapped to the selected target. Check the Remainder box to
map all rows that have not been selected by any of the other targets.

8.3.14 Creating Subquery Filters
A subquery filter component is a projector component (see: "Projector Components" on
page 8-11) that lets you to filter rows based on the results of a subquery. The conditions
that you can use to filter rows are EXISTS, NOT EXISTS, IN, and NOT IN.

For example, the EMP datastore contains employee data and the DEPT datastore
contains department data. You can use a subquery to fetch a set of records from the
DEPT datastore and then filter rows from the EMP datastore by using one of the
subquery conditions.

A subquery filter component has two input connector points and one output
connector point. The two input connector points are Driver Input connector point and
Subquery Filter Input connector point. The Driver Input connector point is where the
main datastore is set, which drives the whole query. The Subquery Filter Input
connector point is where the datastore that is used in the sub-query is set. In the

Using Mapping Components

8-26 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

example, EMP is the Driver Input connector point and DEPT is the Subquery Filter
Input connector point.

To filter rows using a subquery filter component:

1. Drag and drop a subquery filter component from the component palette into the
logical diagram.

2. Connect the subquery filter component with the source datastores and the target
datastore.

3. Drag and drop the input attributes from the source datastores on the subquery
filter component.

4. Drag and drop the output attributes of the subquery filter component on the target
datastore.

5. Go to the Connector Points tab and select the input datastores for the driver input
connector point and the subquery filter input connector point.

6. Click the subquery filter component. The properties of the subquery filter
component are displayed in the Property Inspector.

7. Go to the Attributes tab. The output connector point attributes are listed. Set the
expressions for the driver input connector point and the subquery filter connector
point.

8. Go to the Condition tab.

9. Type an expression in the Subquery Filter Condition field. It is necessary to specify
a subquery filter condition if the subquery filter input role is set to EXISTS or NOT
EXISTS.

10. Select a subquery filter input role from the Subquery Filter Input Role drop-down
list.

11. Select a group comparison condition from the Group Comparison Condition
drop-down list. A group comparison condition can be used only with the
following subquery input roles:

=, >, <, >=, <=, !=, <>, ^=

12. Save and then execute the mapping.

8.3.15 Creating Table Functions
A table function component is a projector component (see: "Projector Components" on
page 8-11) that represents a table function in a mapping. Table function components
enable you to manipulate a set of input rows and return another set of output rows of
the same or different cardinality. The set of output rows can be queried like a physical
table. A table function component can be placed anywhere in a mapping, as a source, a
target, or a data flow component.

A table function component can have multiple input connector points and one output
connector point. The input connector point attributes act as the input parameters for

Note: You are required to set an expression for the subquery filter
input connector point only if the subquery filter input role is set to one
of the following:

IN, NOT IN, =, >, <, >=, <=, !=, <>, ^=

Using Mapping Components

Creating and Using Mappings 8-27

the table function, while the output connector point attributes are used to store the
return values.

For each input connector, you can define the parameter type, REF_CURSOR or
SCALAR, depending on the type of attributes the input connector point will hold.

To use a table function component in a mapping:

1. Create a table function in the database if it does not exist.

2. Right-click the Mappings node and select New Mapping.

3. Drag and drop the source datastore into the logical diagram.

4. Drag and drop a table function component from the component palette into the
logical diagram. A table function component is created with no input connector
points and one default output connector point.

5. Click the table function component. The properties of the table function
component are displayed in the Property Inspector.

6. In the property inspector, go to the Attributes tab.

7. Type the name of the table function in the Name field. If the table function is in a
different schema, type the function name as SCHEMA_NAME.FUNCTION_
NAME.

8. Go to the Connector Points tab and click the + sign to add new input connector
points. Do not forget to set the appropriate parameter type for each input
connector.

9. Go to the Attributes tab and add attributes for the input connector points (created
in previous step) and the output connector point. The input connector point
attributes act as the input parameters for the table function, while the output
connector point attributes are used to store the return values.

10. Drag and drop the required attributes from the source datastore on the
appropriate attributes for the input connector points of the table function
component. A connection between the source datastore and the table function
component is created.

11. Drag and drop the target datastore into the logical diagram.

12. Drag and drop the output attributes of the table function component on the
attributes of the target datastore.

13. Go to the physical diagram of the mapping and ensure that the table function
component is in the correct execution unit. If it is not, move the table function to
the correct execution unit.

14. Assign new KMs if you want to.

15. Save and then execute the mapping.

Note: Each REF_CURSOR attribute must be held by a separate input
connector point with its parameter type set to REF_CURSOR. Multiple
SCALAR attributes can be held by a single input connector point with
its parameter type set to SCALAR.

Using Mapping Components

8-28 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

8.3.16 Creating Unpivots
An unpivot component is a projector component (see: "Projector Components" on
page 8-11) that lets you transform data that is contained across attributes into multiple
rows.

The unpivot component does the reverse of what the pivot component does. Similar to
the pivot component, an unpivot component can be placed anywhere in the flow of a
mapping.

The unpivot component is specifically useful in situations when you extract data from
non-relational data sources such as a flat file, which contains data across attributes
rather than rows.

8.3.16.1 Example: Unpivoting Sales Data
The external table, QUARTERLY_SALES_DATA, shown in Table 8–4, contains data
from a flat file. There is a row for each year and separate attributes for sales in each
quarter.

Table 8–5 shows a sample of the data after an unpivot operation is performed. The
data that was formerly contained across multiple attributes (Q1_Sales, Q2_Sales, Q3_
Sales, and Q4_Sales) is now contained in a single attribute (SALES). The unpivot
component breaks the data in a single attribute (Q1_Sales) into two attributes
(QUARTER and SALES). A single row in QUARTERLY_SALES_DATA corresponds to
4 rows (one for sales in each quarter) in the unpivoted data.

8.3.16.2 The Row Locator
The row locator is an output attribute that corresponds to the repeated set of data from
the source. The unpivot component transforms a single input attribute into multiple
rows and generates values for a row locator. The other attributes that correspond to
the data from the source are referred as value locators. In this example, the attribute
QUARTER is the row locator and the attribute SALES is the value locator.

Table 8–4 QUARTERLY_SALES_DATA

Year Q1_Sales Q2_Sales Q3_Sales Q4_Sales

2010 10.5 11.4 9.5 8.7

2011 9.5 10.5 10.3 7.6

Table 8–5 UNPIVOTED DATA

YEAR QUARTER SALES

2010 Q1 10.5

2010 Q2 11.4

2010 Q3 9.5

2010 Q4 8.7

2011 Q1 9.5

2011 Q2 10.5

2011 Q3 10.3

2011 Q4 7.6

Using Mapping Components

Creating and Using Mappings 8-29

8.3.16.3 Using the Unpivot Component
To use an unpivot component in a mapping:

1. Drag and drop the source data store into the logical diagram.

2. Drag and drop an unpivot component from the component palette into the logical
diagram.

3. From the source datastore drag and drop the appropriate attributes on the unpivot
component. In this example, the YEAR attribute.

4. Select the unpivot component. The properties of the unpivot component are
displayed in the Property Inspector.

5. Enter a name and description for the unpivot component.

6. Create the row locator and value locator attributes using the Attribute Editor. In
this example, you need to create two attributes named QUARTER and SALES.

7. In the Property Inspector, under UNPIVOT, select the row locator attribute from
the Row Locator drop-down list. In this example, QUARTER.

Now that the row locator is selected, the other attributes can act as value locators.
In this example, SALES.

8. Under UNPIVOT TRANSFORMS, click + to add transform rules for each output
attribute. Edit the default values of the transform rules and specify the appropriate
expressions to create the required logic.

In this example, you need to add 4 transform rules, one for each quarter. The
transform rules define the values that will be populated in the row locator
attribute QUARTER and the value locator attribute SALES. The QUARTER
attribute must be populated with constant values (Q1, Q2, Q3, and Q4), while the
SALES attribute must be populated with the values from source datastore
attributes (Q1_Sales, Q2_Sales, Q3_Sales, and Q4_Sales).

9. Leave the INCLUDE NULLS check box selected to generate rows with no data for
the attributes that are defined as NULL.

10. Drag and drop the target datastore into the logical diagram.

Note: To use the unpivot component, you are required to create the
row locator and the value locator attributes for the unpivot
component.

The Value Locator field in the Unpivot Transforms table can be
populated with an arbitrary expression. For example:

UNPIVOT_EMP_SALES.Q1_SALES + 100

Note: Do not drag the attributes that contain the data that
corresponds to the value locator. In this example, Q1_Sales, Q2_Sales,
Q3_Sales, and Q4_Sales.

Note: Do not forget to define the appropriate data types and
constraints (if required) for the attributes.

Using Mapping Components

8-30 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

11. Connect the unpivot component to the target datastore by dragging a link from
the output (right) connector of the unpivot component to the input (left) connector
of the target datastore.

12. Drag and drop the appropriate attributes of the unpivot component on to the
target datastore. In this example, YEAR, QUARTER, and SALES.

13. Go to the physical diagram and assign new KMs if you want to.

14. Click Save and then execute the mapping to perform the unpivot operation.

8.3.17 Creating Flatten Components
The flatten component is a Projector component (see: "Projector Components" on
page 8-11) that processes input data with complex structure and produces a flattened
representation of the same data using standard datatypes.

Flatten produces a cross product of the nested structure with the enclosing structure,
so that every row of the nested structure produces a new row in the result.

The flatten component has one input connector point and one output connector point.

Example: Flatten Complex Data
Table 8–6 shows an example of a datastore movie_ratings, which has a complex type
attribute ratings. The complex type attribute ratings is repeating and has child
attribute rating.

Table 8–7 shows the resulting records after flatten.

8.3.17.1 Using a Flatten Component in a Mapping
To use a flatten component in a mapping:

1. Drag and drop the source data store into the logical diagram.

2. Drag and drop a flatten component from the component palette into the logical
diagram.

3. Choose one attribute from the source component to be flattened and enter it into
the property Complex Type Attribute of the Flatten component. This attribute
should be a complex type in the source data.

4. Manually enter all attributes of the complex type in the Attributes properties of
the Flatten component. These attributes should have no expression.

5. Map any other source attributes into the Flatten component.

Table 8–6 movie_ratings

movie_id year title ratings

rating rating rating

1 1970 Nexus 2 5 3

Table 8–7 movie_ratings

movie_id year title rating

1 1970 Nexus 2

1 1970 Nexus 5

1 1970 Nexus 3

Using Mapping Components

Creating and Using Mappings 8-31

6. Check the property Include Nulls if the complex type attribute can be null or an
empty array.

7. Connect the Flatten component to a target datastore or any other downstream
components.

8. Go to the physical diagram and assign new KMs if you want to.

9. Click Save and then execute the mapping to perform the flatten operation.

8.3.17.2 Considerations for using Flatten component with JSON Source
When you use Flatten component and your source is JSON data, you must consider
the following points:

■ Flatten does not support multiple child objects and nested objects within a JSON
file. The source JSON data must be plain, as shown in the following example:

Example: {"POSTAL_AREA":1, "POSTAL_AREA_DETAIL":[{"STATE":"CA","POSTAL_
CODE":"200001"}]}

■ When a JSON file and a flatten component is used in a mapping with Pig as the
staging area, you must set the Storage Function option and the Schema for
Complex Fields option for LKM File to Pig.

These options must be set as shown in the following example:

Storage Function: JsonLoader

Schema for Complex Fields: POSTAL_AREA_DETAIL:{(STATE:chararray,POSTAL_
CODE:chararray)}

8.3.18 Creating Jagged Components
The jagged component is a Projector component that processes unstructured data
using meta pivoting. With the jagged component, you can transform data into
structured entities that can be loaded into database tables.

The jagged data component has one input group and multiple output groups, based
on the configuration of the component.

The input group has two mandatory attributes: one each for name and value part of
the incoming data set. A third, optional, attribute is used for row identifier sequences
to delineate row sets.

To use a jagged component in a mapping:

1. Drag and drop the source data store into the logical diagram.

2. Drag and drop an jagged component from the component palette into the logical
diagram.

3. The jagged input group requires two attribute level mappings; one for name and
one for value.

4. Map one or more of the output groups to the downstream components.

5. Go to the physical diagram and assign new KMs if you want to.

6. Click Save and then execute the mapping to perform the flatten operation.

Note: In some cases, you may not need any additional attributes
other than the default group: others.

Creating a Mapping Using a Dataset

8-32 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

8.4 Creating a Mapping Using a Dataset
A dataset component is a container component that allows you to group multiple data
sources and join them through relationship joins. A dataset can contain the following
components:

■ Datastores

■ Joins

■ Lookups

■ Filters

■ Reusable Mappings: Only reusable mappings with no input signature and one
output signature are allowed.

Create Joins and lookups by dragging an attribute from one datastore to another inside
the dataset. A dialog is shown to select if the relationship will be a join or lookup.

Create a filter by dragging a datastore or reusable mapping attribute onto the dataset
background. Joins, lookups, and filters cannot be dragged from the component palette
into the dataset.

This section contains the following topics:

■ Differences Between Flow and Dataset Modeling

■ Creating a Dataset in a Mapping

■ Converting a Dataset to Flow-Based Mapping

8.4.1 Differences Between Flow and Dataset Modeling
Datasets are container components which contain one or more source datastores,
which are related using filters and joins. To other components in a mapping, a dataset
is indistinguishable from any other projector component (like a datastore); the results
of filters and joins inside the dataset are represented on its output port.

Within a dataset, data sources are related using relationships instead of a flow. This is
displayed using an entity relationship diagram. When you switch to the physical tab
of the mapping editor, datasets disappear: ODI models the physical flow of data
exactly the same as if a flow diagram had been defined in the logical tab of the
mapping editor.

Datasets mimic the ODI 11g way of organizing data sources, as opposed to the flow
metaphor used in an ODI 12c mapping. If you import projects from ODI 11g, interfaces
converted into mappings will contain datasets containing your source datastores.

Note: A driving table will have the key to look up, while the lookup
table has additional information to add to the result.

In a dataset, drag an attribute from the driving table to the lookup
table. An arrow will point from the driving table to the lookup table in
the diagram.

By comparison, in a flow-based lookup (a lookup in a mapping that is
not inside a dataset), the driving and lookup sources are determined
by the order in which connections are created. The first connection is
called DRIVER_INPUT1, the second connection LOOKUP_INPUT1.

Physical Design

Creating and Using Mappings 8-33

When you create a new, empty mapping, you are prompted whether you would like to
include an empty dataset. You can delete this empty dataset without harm, and you
can always add an empty dataset to any mapping. The option to include an empty
dataset is purely for your convenience.

A dataset exists only within a mapping or reusable mapping, and cannot be
independently designed as a separate object.

8.4.2 Creating a Dataset in a Mapping
To create a dataset in a mapping, drag a dataset from the component palette into the
logical diagram. You can then drag datastores into the dataset from the Models section
of the Designer Navigator. Drag attributes from one datastore to another within a
dataset to define join and lookup relationships.

Drag a connection from the dataset's output connector point to the input connector
point on other components in your mapping, to integrate it into your data flow.

8.4.3 Converting a Dataset to Flow-Based Mapping
You can individually convert datasets into a flow-based mapping diagram, which is
merged with the parent mapping flow diagram.

The effect of conversion of a dataset into a flow is the permanent removal of the
dataset, together with the entity relationship design. It is replaced by an equivalent
flow-based design. The effect of the conversion is irreversible.

To convert a dataset into a flow-based mapping:

1. Select the dataset in the mapping diagram.

2. Right click on the title and select Convert to Flow from the context menu.

3. A warning and confirmation dialog is displayed. Click Yes to perform the
conversion, or click No to cancel the conversion.

The dataset is converted into flow-based mapping components.

8.5 Physical Design
The physical tab shows the distribution of execution among different execution units
that represent physical servers. ODI computes a default physical mapping design
containing execution units and groups based on the logical design, the topology of
those items and any rules you have defined.

You can also customize this design by using the physical diagram. You can use the
diagram to move components between execution units, or onto the diagram
background, which creates a separate execution unit. Multiple execution units can be
grouped into execution groups, which enable parallel execution of the contained
execution units.

A mapping can have multiple physical mapping designs; they are listed in tabs under
the diagram. By having multiple physical mapping designs you can create different
execution strategies for the same mapping.

To create new physical mapping tabs, click the Create New tab.

See Also: To create a Join or Lookup inside a Dataset, see: "Creating
a Join or Lookup" on page 8-20

Physical Design

8-34 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

To delete physical mapping designs, right-click on the physical mapping design tab
you want to delete, and select Delete from the context menu.

Physical components define how a mapping is executed at runtime; they are the
physical representation of logical components. Depending on the logical component a
physical component might have a different set of properties.

This section contains the following topics:

■ About the Physical Mapping Diagram

■ Selecting LKMs, IKMs and CKMs

■ Configuring Execution Locations

■ Adding Commands to be Executed Before and After a Mapping

■ Configuring In-Session Parallelism

■ Configuring Parallel Target Table Load

■ Configuring Temporary Indexes

■ Configuring Journalizing

■ Configuring Extraction Options

■ Creating and Managing Physical Mapping Designs

8.5.1 About the Physical Mapping Diagram
In the physical diagram, the following items appear:

■ Physical Mapping Design: The entire physical diagram represents one physical
mapping design. Click the background or select the white tab with the physical
mapping design label to display the physical mapping properties. By default, the
staging location is colocated on the target, but you can explicitly select a different
staging location to cause ODI to automatically move staging to a different host.

You can define additional physical mapping designs by clicking the small tab at
the bottom of the physical diagram, next to the current physical mapping design
tab. A new physical mapping design is created automatically from the logical
design of the mapping.

■ Execution Groups: Yellow boxes display groups of objects called execution units,
which are executed in parallel within the same execution group. These are usually
Source Groups and Target Groups:

– Source Execution Group(s): Source Datastores that are within the same
dataset or are located on the same physical data server are grouped in a single
source execution group in the physical diagram. A source execution group
represents a group of datastores that can be extracted at the same time.

– Target Execution Group(s): Target Datastores that are located on the same
physical data server are grouped in a single target execution group in the
physical diagram. A target execution group represents a group of datastores
that can be written to at the same time.

■ Execution Units: Within the yellow execution groups are blue boxes called
execution units. Execution units within a single execution group are on the same
physical data server, but may be different structures.

■ Access Points: In the target execution group, whenever the flow of data goes from
one execution unit to another there is an access point (shown with a round icon).

Physical Design

Creating and Using Mappings 8-35

Loading Knowledge Modules (LKMs) control how data is transferred from one
execution unit to another.

An access point is created on the target side of a pair of execution units, when data
moves from the source side to the target side (unless you use Execute On Hint in
the logical diagram to suggest a different execution location). You cannot move an
access point node to the source side. However, you can drag an access point node
to the empty diagram area and a new execution unit will be created, between the
original source and target execution units in the diagram.

■ Components: mapping components such as joins, filters, and so on are also shown
on the physical diagram.

You use the following knowledge modules (KMs) in the physical tab:

■ Loading Knowledge Modules (LKMs): LKMs define how data is moved. One
LKM is selected for each access point for moving data from the sources to a
staging area. An LKM can be also selected to move data from a staging area not
located within a target execution unit, to a target, when a single technology IKM is
selected for the staging area. Select an access point to define or change its LKM in
the property inspector.

■ Integration Knowledge Modules (IKMs) and Check Knowledge Modules
(CKMs): IKMs and CKMs define how data is integrated into the target. One IKM
and one CKM is typically selected on a target datastore. When the staging area is
different from the target, the selected IKM can be a multi-technology IKM that
moves and integrates data from the staging area into the target. Select a target
datastore to define or change its IKM and CKM in the property inspector.

8.5.2 Selecting LKMs, IKMs and CKMs
ODI automatically selects knowledge modules in the physical diagram as you create
your logical diagram.

You can use the physical diagram to change the KMs in use.

To change the LKM in use:
1. In the physical diagram, select an access point. The Property Inspector opens for

this object.

Notes:

■ Only built-in KMs, or KMs that have already been imported into
the project or the global KM list, can be selected in the mapping.
Make sure that you have imported the appropriate KMs in the
project before proceeding.

■ For more information on the KMs and their options, refer to the
KM description and to the Connectivity and Knowledge Modules
Guide for Oracle Data Integrator.

Note: The Integration Type property of a target datastore (which can
have the values Control Append, Incremental Update, or Slowly
Changing Dimension) is referenced by ODI when it selects a KM. This
property is also used to restrict the IKM selection shown, so you will
only see IKMs listed that are applicable.

Physical Design

8-36 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

2. Select the Loading Knowledge Module tab, and then select a different LKM from
the Loading Knowledge Module list.

3. KMs are set with default options that work in most use cases. You can optionally
modify the KM Options.

To change the IKM in use:

1. In the physical diagram, select a target datastore by clicking its title. The Property
Inspector opens for this object.

2. In the Property Inspector, select the Integration Knowledge Module tab, and then
select an IKM from the Integration Knowledge Module list.

3. KMs are set with default options that work in most use cases. You can optionally
modify the KM Options.

To change the CKM in use:
1. In the physical diagram, select a target datastore by clicking its title. The Property

Inspector opens for this object.

2. In the Property Inspector, select the Check Knowledge Module tab, and then
select a CKM from the Check Knowledge Module list.

3. KMs are set with default options that work in most use cases. You can optionally
modify the KM Options.

8.5.3 Configuring Execution Locations
In the physical tab of the mapping editor, you can change the staging area and
determine where components will be executed. When you designed the mapping
using components in the logical diagram, you optionally set preferred execution
locations using the Execute On Hint property. In the physical diagram, ODI attempts
to follow these hints where possible.

You can further manipulate execution locations in the physical tab. See the following
topics for details:

Note: If an identically-named option exists, when switching from
one KM to another KM options of the previous KM are retained.
However, options that are not duplicated in the new KM are lost.

Note: In order to use a multi-connect IKM on the target node, you
must select LKM SQL Multi-Connect, or no LKM, for the access point
of that execution unit. If another LKM is selected, only mono-connect
IKMs are selectable.

Note: If an identically-named option exists, when switching from
one KM to another KM options of the previous KM are retained.
However, options that are not duplicated in the new KM are lost.

Note: If an identically-named option exists, when switching from
one KM to another KM options of the previous KM are retained.
However, options that are not duplicated in the new KM are lost.

Physical Design

Creating and Using Mappings 8-37

■ Moving Physical Nodes

■ Moving Expressions

■ Defining New Execution Units

8.5.3.1 Moving Physical Nodes
You can move the execution location of a physical node. Select the node and drag it
from one Execution Group into another Execution Group. Or, drag it to a blank area of
the physical diagram, and ODI will automatically create a new Execution Group for
the component.

You can change the order of execution of certain components only. The following
components can be reordered on the physical diagram:

■ Expressions

■ Filters

■ Joins

■ Lookups

8.5.3.2 Moving Expressions
You can move expressions in the physical diagram. Select the Execution Unit and in
the property inspector, select the Expressions tab. The execution location of the
expression is shown in the Execute on property. Double-click the property to alter the
execution location.

8.5.3.3 Defining New Execution Units
You can define a new execution unit by dragging a component from its current
execution unit onto a blank area of the physical diagram. A new execution unit and
group is created. Select the execution unit to modify its properties using the property
inspector.

8.5.4 Adding Commands to be Executed Before and After a Mapping
ODI allows the addition of commands to be executed before and after a mapping.
These commands can be in ODI-supported languages such as SQL, Jython, Groovy,
and others. In the SQL language the Begin Mapping and End Mapping commands are
executed in the same transaction as the mapping. The physical design of a mapping
has the following properties to control this behavior:

Note: An inner input Connector Point of an outer join is an input
whose data source contributes only matched rows to the output data
set.
For example -
In ANSI SQL, 'A LEFT OUTER JOIN B' signifies that B corresponds to
the inner input.
In Oracle outer join syntax, 'WHERE A.col1 = B.col2 (+)' signifies that
B corresponds to the inner input.

A physical node can be reordered around an outer join only if it does
not cause a change in the nodes that are connected to the inner input
Connector Points of the outer join.

Physical Design

8-38 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

You can view and set these properties from the Property Inspector by selecting a
Physical Mapping Design.

8.5.5 Configuring In-Session Parallelism
ODI agent is the scheduler that runs an entire ODI mapping job on a given host. If
your have two or more loads, it will either run them one after another (serialized), or
simultaneously (parallelized, using separate processor threads).

Execution units in the same execution group are parallelized. If you move an execution
unit into its own group, it is no longer parallelized with other execution units: it is now
serialized. The system will select the order in which separate execution groups are run.

You might choose to run loads serially to reduce instantaneous system resource usage,
while you might choose to run loads in parallel to reduce the longevity of system
resource usage.

8.5.6 Configuring Parallel Target Table Load
You can enable parallel target table loading in a physical mapping design. Select the
physical mapping design (by clicking on the tab at the bottom of the physical diagram,
or clicking an empty area of the diagram) and in the property inspector, check the box
for the property Use Unique Temporary Object Names.

This option allows multiple instances of the same mapping to be executed
concurrently. To load data from source to staging area, C$ tables are created in the
staging database.

Property Description

Begin Mapping Command Command to be executed at the beginning of
the mapping.

Technology for Begin Mapping Command Technology that this command will be
executed with.

Location for Begin Mapping Command Logical Schema that this command will be
executed in.

End Mapping Command Command to be executed at the end of the
mapping.

Technology for End Mapping Command Technology that this command will be
executed with.

Location for End Mapping Command Logical Schema that this command will be
executed in.

Note: In ODI 11g, C$ table names were derived from the target table
of the interface. As a result, when multiple instances of the same
mapping were executed at the same time, data from different sessions
could load into the same C$ table and cause conflicts.

In ODI 12c, if the option Use Unique Temporary Object Names is set
to true, the system generates a globally-unique name for C$ tables for
each mapping execution. This prevents any conflict from occurring.

Physical Design

Creating and Using Mappings 8-39

8.5.7 Configuring Temporary Indexes
If you want ODI to automatically generate a temporary index to optimize the
execution of a filter, join, or datastore, select the node in the physical diagram. In the
property inspector, select the Temporary Indexes tab. You can double-click the Index
Type field to select a temporary index type.

8.5.8 Configuring Journalizing
A source datastore can be configured in the physical diagram to use journalized data
only. This is done by enabling Journalized Data Only in the General properties of a
source datastore. The check box is only available if the referenced datastore is added to
CDC in the model navigator.

Only one datastore per mapping can have journalizing enabled.

For more information about journalizing, see Chapter 4, "Using Journalizing."

8.5.9 Configuring Extraction Options
Each component in the physical diagram, excluding access points and target
datastores, has an Extraction Options tab in the property inspector. Extraction options
influence the way that SQL is generated for the given component. Most components
have an empty list of extraction options, meaning that no further configuration of the
SQL generation is supported.

Extraction options are driven by the Extract Knowledge Module (XKM) selected in the
Advanced sub-tab of the Extract Options tab. XKMs are part of ODI and cannot be
created or modified by the user.

8.5.10 Creating and Managing Physical Mapping Designs
The entire physical diagram represents one physical mapping design. Click the
background or select the white tab with the physical mapping design label to display
the physical mapping properties for the displayed physical mapping design.

You can define additional physical mapping designs by clicking the small tab at the
bottom of the physical diagram, next to the current physical mapping design tab(s). A
new physical mapping design is created automatically, generated from the logical
design of the mapping. You can modify this physical mapping design, and save it as
part of the mapping.

For example, you could use one physical mapping design for your initial load, and
another physical mapping design for incremental load using changed data capture
(CDC). The two physical mapping designs would have different journalizing and
knowledge module settings.

As another example, you could use different optimization contexts for each physical
mapping design. Each optimization context represents a slightly different users'
topology. One optimization context can represent a development environment, and
another context represents a testing environment. You could select different KMs
appropriate for these two different topologies.

Note: The creation of temporary indexes may be a time consuming
operation in the overall flow. Oracle recommends reviewing execution
statistics and comparing the execution time saved by the indexes to
the time spent creating them.

Reusable Mappings

8-40 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

8.6 Reusable Mappings
Reusable mappings allow you to encapsulate a multi-step integration (or portion of an
integration) into a single component, which you can save and use just as any other
components in your mappings. Reusable mappings are a convenient way to avoid the
labor of creating a similar or identical subroutine of data manipulation that you will
use many times in your mappings.

For example, you could load data from two tables in a join component, pass it through
a filter component, and then a distinct component, and then output to a target
datastore. You could then save this procedure as a reusable mapping, and place it into
future mappings that you create or modify.

After you place a reusable mapping component in a mapping, you can select it and
make modifications to it that only affect the current mapping.

Reusable mappings consist of the following:

■ Input Signature and Output Signature components: These components describe
the attributes that will be used to map into and out of the reusable mapping. When
the reusable mapping is used in a mapping, these are the attributes that can be
matched by other mapping components.

■ Regular mapping components: Reusable mappings can include all of the regular
mapping components, including datastores, projector components, and selector
components. You can use these exactly as in regular mappings, creating a logical
flow.

By combining regular mapping components with signature components, you can
create a reusable mapping intended to serve as a data source, as a data target, or as an
intermediate step in a mapping flow. When you work on a regular mapping, you can
use a reusable mapping as if it were a single component.

8.6.1 Creating a Reusable Mapping
You can create a reusable mapping within a project, or as a global object. To create a
reusable mapping, perform the following steps:

1. From the designer navigator:

Open a project, right-click Reusable Mappings, and select New Reusable Mapping.

Or, expand the Global Objects tree, right click Global Reusable Mappings, and
select New Reusable Mapping.

2. Enter a name and, optionally, a description for the new reusable mapping.
Optionally, select Create Default Input Signature and/or Create Default Output
Signature. These options add empty input and output signatures to your reusable
mapping; you can add or remove input and output signatures later while editing
your reusable mapping.

3. Drag components from the component palette into the reusable mapping diagram,
and drag datastores and other reusable mappings from the designer navigator, to
assemble your reusable mapping logic. Follow all of the same processes as for
creating a normal mapping.

Note: In order to make use of these signatures, you will need to
connect them to your reusable mapping flow.

Editing Mappings Using the Property Inspector and the Structure Panel

Creating and Using Mappings 8-41

4. Validate your reusable mapping by clicking the Validate the Mapping button (a
green check mark icon). Any errors will be displayed in a new error pane.

When you are finished creating your reusable mapping, click File and select Save,
or click the Save button, to save your reusable mapping. You can now use your
reusable mapping in your mapping projects.

8.7 Editing Mappings Using the Property Inspector and the Structure
Panel

You can use the Property Inspector with the Structure Panel to perform the same
actions as on the logical and physical diagrams of the mapping editor, in a
non-graphical form.

Using the Structure Panel
When creating and editing mappings without using the logical and physical diagrams,
you will need to open the Structure Panel. The Structure Panel provides an expandable
tree view of a mapping, which you can traverse using the tab keys, allowing you to
select the components of your mapping. When you select a component or attribute in
the Structure Panel, its properties are shown in the Property Inspector exactly the same
as if you had selected the component in the logical or physical diagram.

The Structure Panel is useful for accessibility requirements, such as when using a
screen reader.

To open the structure panel, select Window from the main menu and then click
Structure. You can also open the Structure Panel using the hotkey Ctrl+Shift-S.

This section contains the following topics:

■ Adding and Removing Components

■ Editing a Component

■ Customizing Tables

■ Using Keyboard Navigation for Common Tasks

8.7.1 Adding and Removing Components
With the Property Inspector, the Component Palette, and the Structure Panel, you can
add or remove components of a mapping.

8.7.1.1 Adding Components
To add a component to a mapping with the Component Palette and the Structure
Panel:

1. With the mapping open in the Mapping Editor, open the Component Palette.

2. Select the desired component using the Tab key, and hit Enter to add the selected
component to the mapping diagram and the Structure Panel.

Note: When you have a reusable mapping open for editing, the
component palette contains the Input Signature and Output Signature
components in addition to the regular mapping components.

Editing Mappings Using the Property Inspector and the Structure Panel

8-42 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

8.7.1.2 Removing Components
To remove a component with the Structure Panel:

1. In the Structure Panel, select the component you want to remove.

2. While holding down Ctrl+Shift, hit Tab to open a pop-up dialog. Keep holding
down Ctrl+Shift, and use the arrow keys to navigate to the left column and select
the mapping. You can then use the right arrow key to select the logical or physical
diagram. Release the Ctrl+Shift keys after you select the logical diagram.

Alternatively, select Windows > Documents... from the main menu bar. Select the
mapping from the list of document windows, and click Switch to Document.

3. The component you selected in the Structure Panel in step 1 is now highlighted in
the mapping diagram. Hit Delete to delete the component. A dialog box confirms
the deletion.

8.7.2 Editing a Component
To edit a component of a mapping using the Structure Panel and the Property
Inspector:

1. In the Structure Panel, select a component. The component's properties are shown
in the Property Inspector.

2. In the Property Inspector, modify properties as needed. Use the Attributes tab to
add or remove attributes. Use the Connector Points tab to add connections to other
components in your mapping.

3. Expand any component in the Structure Panel to list individual attributes. You can
then select individual attributes to show their properties in the Property Inspector.

8.7.3 Customizing Tables
There are two ways to customize the tables in the Property Inspector to affect which
columns are shown. In each case, open the Structure Panel and select a component to
display its properties in the Property Inspector. Then, select a tab containing a table
and use one of the following methods:

■ From the table toolbar, click the Select Columns... icon (on the top right corner of
the table) and then, from the drop down menu, select the columns to display in the
table. Currently displayed columns are marked with a check mark.

■ Use the Customize Table Dialog:

1. From the table toolbar, click Select Columns....

2. From the drop down menu, select Select Columns...

3. In the Customize Table Dialog, select the columns to display in the table.

4. Click OK.

8.7.4 Using Keyboard Navigation for Common Tasks
This section describes the keyboard navigation in the Property Inspector.

Table 8–8 shows the common tasks and the keyboard navigation used in the Property
Inspector.

Flow Control and Static Control

Creating and Using Mappings 8-43

8.8 Flow Control and Static Control
In a mapping, it is possible to set two points of control. Flow Control checks the data
in the incoming flow before it gets integrated into a target, and Static Control checks
constraints on the target datastore after integration.

IKMs can have options to run FLOW_CONTROL and to run STATIC_CONTROL. If you want
to enable either of these you must set the option in the IKM, which is a property set on
the target datastore. In the physical diagram, select the datastore, and select the
Integration Knowledge Module tab in the property inspector. If flow control options
are available, they are listed in the Options table. Double-click an option to change it.

This section contains the following topics:

■ Setting up Flow Control

■ Setting up Static Control

■ Defining the Update Key

Table 8–8 Keyboard Navigation for Common Tasks

Navigation Task

Arrow keys Navigate: move one cell up, down, left, or right

TAB Move to next cell

SHIFT+TAB Move to previous cell

SPACEBAR Start editing a text, display items of a list, or change value of a
checkbox

CTRL+C Copy the selection

CTRL+V Paste the selection

ESC Cancel an entry in the cell

ENTER Complete a cell entry and move to the next cell or activate a
button

DELETE Clear the content of the selection (for text fields only)

BACKSPACE Delete the content of the selection or delete the preceding
character in the active cell (for text fields only)

HOME Move to the first cell of the row

END Move to the last cell of the row

PAGE UP Move up to the first cell of the column

PAGE DOWN Move down to the last cell of the column

Notes:

■ Flow control is not supported for component KMs like IKM
Oracle Insert. For more information, see "Knowledge Modules" in
Connectivity and Knowledge Modules Guide for Oracle Data Integrator.
The description of each IKM indicates if it supports flow control.

■ In ODI 11g the CKM to be used when flow or static control is
invoked was defined on the interface. ODI 12c supports multiple
targets on different technologies within the same mapping, so the
CKM is now defined on each target datastore

Flow Control and Static Control

8-44 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

8.8.1 Setting up Flow Control
The flow control strategy defines how data is checked against the constraints defined
on a target datastore before being integrated into this datastore. It is defined by a
Check Knowledge Module (CKM). The CKM can be selected on the target datastore
physical node. The constraints that checked by a CKM are specified in the properties
of the datastore component on the logical tab.

To define the CKM used in a mapping, see: "Selecting LKMs, IKMs and CKMs" on
page 8-35.

8.8.2 Setting up Static Control
The post-integration control strategy defines how data is checked against the
constraints defined on the target datastore. This check takes place once the data is
integrated into the target datastore. It is defined by a CKM. In order to have the
post-integration control running, you must set the STATIC_CONTROL option in the IKM
to true. Post-integration control requires that a primary key is defined in the data
model for the target datastore of your mapping.

The settings Maximum Number of Errors Allowed and Integration Errors as
Percentage can be set on the target datastore component. Select the datastore in the
logical diagram, and in the property inspector, select the Target tab.

Post-integration control uses the same CKM as flow control.

8.8.3 Defining the Update Key
If you want to use update or flow control features in your mapping, it is necessary to
define an update key on the target datastore.

The update key of a target datastore component contains one or more attributes. It can
be the unique key of the datastore that it is bound to, or a group of attributes that are
marked as the key attribute. The update key identifies each record to update or check
before insertion into the target.

To define the update key from a unique key:

1. In the mapping diagram, select the header of a target datastore component. The
component's properties will be displayed in the Property Inspector.

2. In the Target properties, select an Update Key from the drop down list.

You can also define an update key from the attributes if:

■ You don't have a unique key on your datastore.

■ You want to specify the key regardless of already defined keys.

When you define an update key from the attributes, you select manually individual
attributes to be part of the update key.

Notes:

■ The Target properties are only shown for datastores which are the
target of incoming data. If you do not see the Target properties,
your datastore does not have an incoming connection defined.

■ Only unique keys defined in the model for this datastore appear
in this list.

Designing E-LT and ETL-Style Mappings

Creating and Using Mappings 8-45

To define the update key from the attributes:

1. Unselect the update key, if it is selected.

2. In the Target Datastore panel, select one of the attributes that is part of the update
key to display the Property Inspector.

3. In the Property Inspector, under Target properties, check the Key box. A key
symbol appears in front of the key attribute(s) in the datastore component
displayed in the mapping editor logical diagram.

4. Repeat the operation for each attribute that is part of the update key.

8.9 Designing E-LT and ETL-Style Mappings

In an E-LT-style integration mapping, ODI processes the data in a staging area, which
is located on the target. Staging area and target are located on the same RDBMS. The
data is loaded from the source(s) to the target. To create an E-LT-style integration
mapping, follow the standard procedure described in "Creating a Mapping" on
page 8-5.

In an ETL-style mapping, ODI processes the data in a staging area, which is different
from the target. The data is first extracted from the source(s) and then loaded to the
staging area. The data transformations take place in the staging area and the
intermediate results are stored in temporary tables in the staging area. The data
loading and transformation tasks are performed with the standard ELT KMs.

Oracle Data Integrator provides two ways for loading the data from the staging area to
the target:

■ Using a Multi-connection IKM

■ Using an LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported. See
"Designing an ETL-Style Mapping" in the Connectivity and Knowledge Modules Guide for
Oracle Data Integrator for more information.

Using a Multi-connection IKM
A multi-connection IKM allows updating a target where the staging area and sources
are on different data servers. Figure 8–3 shows the configuration of an integration
mapping using a multi-connection IKM to update the target data.

Figure 8–3 ETL-Mapping with Multi-connection IKM

See Also: E-LT and ETL are defined and described in "What is E-LT"
in Understanding Oracle Data Integrator.

Designing E-LT and ETL-Style Mappings

8-46 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

See the chapter in the Connectivity and Knowledge Modules Guide for Oracle Data
Integrator that corresponds to the technology of your staging area for more information
on when to use a multi-connection IKM.

To use a multi-connection IKM in an ETL-style mapping:

1. Create a mapping using the standard procedure as described in "Creating a
Mapping" on page 8-5. This section describes only the ETL-style specific steps.

2. In the Physical tab of the Mapping Editor, select a physical mapping design by
clicking the desired physical mapping design tab and clicking on the diagram
background. In the property inspector, the field Preset Staging Location defines
the staging location. The empty entry specifies the target schema as staging
location. Select a different schema as a staging location other than the target.

3. Select an Access Point component in the physical schema and go to the property
inspector. For more information about Access Points, see: "About the Physical
Mapping Diagram" on page 8-34.

4. Select an LKM from the LKM Selector list to load from the source(s) to the staging
area. See the chapter in the Connectivity and Knowledge Modules Guide for Oracle
Data Integrator that corresponds to the technology of your staging area to
determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Physical diagram, select a target datastore. The property inspector opens for
this target object.

In the Property Inspector, select an ETL multi-connection IKM from the IKM
Selector list to load the data from the staging area to the target. See the chapter in
the Connectivity and Knowledge Modules Guide for Oracle Data Integrator that
corresponds to the technology of your staging area to determine the IKM you can
use.

7. Optionally, modify the KM options.

Using an LKM and a mono-connection IKM
If there is no dedicated multi-connection IKM, use a standard exporting LKM in
combination with a standard mono-connection IKM. Figure 8–4 shows the
configuration of an integration mapping using an exporting LKM and a
mono-connection IKM to update the target data. The exporting LKM is used to load
the flow table from the staging area to the target. The mono-connection IKM is used to
integrate the data flow into the target table.

Figure 8–4 ETL-Mapping with an LKM and a Mono-connection IKM

Designing E-LT and ETL-Style Mappings

Creating and Using Mappings 8-47

Note that this configuration (LKM + exporting LKM + mono-connection IKM) has the
following limitations:

■ Neither simple CDC nor consistent CDC are supported when the source is on the
same data server as the staging area (explicitly chosen in the Mapping Editor)

■ Temporary Indexes are not supported

See the chapter in the Connectivity and Knowledge Modules Guide for Oracle Data
Integrator that corresponds to the technology of your staging area for more information
on when to use the combination of a standard LKM and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style mapping:

1. Create a mapping using the standard procedure as described in "Creating a
Mapping" on page 8-5. This section describes only the ETL-style specific steps.

2. In the Physical tab of the Mapping Editor, select a physical mapping design by
clicking the desired physical mapping design tab and clicking on the diagram
background. In the property inspector, the field Preset Staging Location defines
the staging location. The empty entry specifies the target schema as staging
location. Select a different schema as a staging location other than the target.

3. Select an Access Point component in the physical schema and go to the property
inspector. For more information about Access Points, see: "About the Physical
Mapping Diagram" on page 8-34.

4. In the Property Inspector, in the Loading Knowledge Module tab, select an LKM
from the Loading Knowledge Module drop-down list to load from the source(s)
to the staging area. See the chapter in the Connectivity and Knowledge Modules Guide
for Oracle Data Integrator that corresponds to the technology of your staging area to
determine the LKM you can use.

5. Optionally, modify the KM options. Double-click a cell in the Value column of the
options table to change the value.

6. Select the access point node of a target execution unit. In the Property Inspector, in
the Loading Knowledge Module tab, select an LKM from the Loading
Knowledge Module drop-down list to load from the staging area to the target. See
the chapter in the Connectivity and Knowledge Modules Guide for Oracle Data
Integrator that corresponds to the technology of your staging area to determine the
LKM you can use.

7. Optionally, modify the options.

8. Select the Target by clicking its title. The Property Inspector opens for this object.

In the Property Inspector, in the Integration Knowledge Module tab, select a
standard mono-connection IKM from the Integration Knowledge Module
drop-down list to update the target. See the chapter in the Connectivity and
Knowledge Modules Guide for Oracle Data Integrator that corresponds to the
technology of your staging area to determine the IKM you can use.

9. Optionally, modify the KM options.

Designing E-LT and ETL-Style Mappings

8-48 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

9

Creating and Using Dimensions and Cubes 9-1

9Creating and Using Dimensions and Cubes

[10] This chapter describes how to create and use dimensional objects in ODI. Dimensional
objects are logical structures to help identify and categorize data. Oracle Data
Integrator enables you to design, create, edit and load two types of dimensional
objects - dimensions and cubes.

This chapter includes the following topics in detail:

■ Overview of Dimensional Objects

■ Creating Dimensional Objects through ODI

■ Using Dimensional Components in Mappings

■ Expanding Dimensional Components

9.1 Overview of Dimensional Objects
Dimensional objects are logical construct that are used to create a model representing
the logical design of a data warehouse. The physical design and implementation of the
dimensional model will translate the logical design into database via SQL statements.
This section provides a general overview on dimension and cube objects along with
their physical implementation.

For more information on Data Warehousing, refer to
https://docs.oracle.com/database/121/DWHSG/toc.htm

9.1.1 Overview of Dimensions
A dimension is a structure that organizes data. For example, a products dimension
organizes data about products including product information, product categories and
its sub-categories. A dimension consists of a set of levels and a set of hierarchies
defined over these levels.

To create a dimension, you must define the following:

■ Levels

■ Level Attributes

■ Hierarchies

Note: The Dimensions and Cubes feature only support Oracle
Technology.

Overview of Dimensional Objects

9-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

For example, the products dimension can have levels category and subcategory. It can
have hierarchies to help drill from product to sub-category or to category.

Using dimensions improves query performance as users often analyze data by drilling
down on known hierarchies. An example of a hierarchy is the Time hierarchy of year,
quarter, month, day.

1. Level

Level represents a collection of dimension values that share similar characteristics.
For example, there can be a State level that has state name, state population and
state capital.

2. Level Attribute

Level Attribute includes one surrogate and business identifiers for levels. A level
attribute is a descriptive characteristic of a level value. For example, an ITEM level
can have an attribute called COLOR. For example, item1 has value green as
COLOR and item2 has value blue as COLOR. Attributes represent logical
groupings that enable end users to select data based on like characteristics.

Some level attributes are natural keys or surrogate identifiers.A Natural key
uniquely identifies the record from the source system. It can be composed of
composite keys.

A surrogate identifier uniquely identifies each level record across all the levels of
the dimension. It must be composed of a single attribute. Surrogate identifiers
enable you to hook facts to any dimension level as opposed to the lowest
dimension level only. You must use a surrogate key if:

■ your dimension is a Type 2 slowly changing dimension (SCD). In these cases,
you can have multiple dimension records loaded for each Natural key value,
so you need an extra unique key to track these records

■ your dimension contains more that one level and is implemented using a star
schema. Thus, any cube that references such a dimension references multiple
dimension level.

If no surrogate key is defined, then only the leaf-level dimension records are saved
in the dimension table, the parent level information is stored in extra columns in
the leaf-level records. But there is no unique way to reference the upper level in
that case.

You do not need a surrogate key for any Type 1 dimensions, implemented by star,
where only the leaf level(s) are referenced by a cube.

3. Hierarchy

A structure that uses ordered levels as a means of organizing data. A level
hierarchy defines hierarchical relationships between adjacent levels. A hierarchical
relationship is a functional dependency from one level of a hierarchy to a more
abstract level in the hierarchy.

 A hierarchy can be used to define data aggregation; for example in a time
dimension. A hierarchy might be used to aggregate data from the "Months" level
to the "Quarter" level to the "Year" level.

4. Dimension Role

A dimension can perform multiple dimension roles in a data warehouse.

Within a data warehouse, a cube can refer to the same dimension multiple times.
For each such reference, the dimension performs a different dimension role in the
cube.

Overview of Dimensional Objects

Creating and Using Dimensions and Cubes 9-3

For example, in a wholesale company, each sales record can have three time
values:

■ First time value records when the order is received

■ Second time value records when the product is shipped

■ Third time value records when the payment is received.

Different departments in the wholesales company are interested to summarize the
sales data in different ways:- by order time, by product shipment time and by
product payment time.

To model such scenario, the warehouse designer has the following choices:

■ Model and populate three time dimensions separately and let the wholesales
cube refer to each time dimension.

■ Model one time dimension. Create three roles for the time dimension. First one
is "order time". Second one is "ship time". Third one is "payment time". Let the
sales cube refer to "order time", "ship time" and "payment time".

The second choice has the advantage of storing the time data only once.

5. Overview of Slowly Changing Dimensions

During loading of a dimension, you may require to preserve existing data when
new data comes in. For example, let's say that the warehouse records initially that
a city has population 5000. Now new data comes in which indicate the city has a
new population of 6000. Instead of simply overriding the old population with the
new number, you may need to retain the old population somewhere in the
warehouse so that you can compare the two populations at some point of time.

A Slowly Changing Dimension (SCD) is a dimension that stores and manages both
current and historical data over time in a data warehouse. The strategy of how to
keep historical data is called slowly changing dimension strategy. In data
warehousing, there are three commonly recognized types of SCDs. They are: Type
1, Type 2, and Type 3.

Types of Slow Changing Dimensions

■ Type I slowly changing dimension doesn't store any history. In a Type 1
Slowly Changing Dimension (SCD), the new data overwrites the existing data.
Typically, this type is not considered an SCD and most dimensions are of this
type. Thus the historic data is lost as it is not stored else where. This is the
default type of dimension you create. You need not specify any additional
information to create a Type 1 SCD, unless there are specific business reasons,
you must assume that a Type 1 SCD is sufficient.

An attribute can play only one of these roles. For example, an attribute cannot
be a regular attribute and an effective date attribute.

■ Type II slowly changing dimension stores all versions of histories. They store
the entire history of values of every attribute and every parent level
relationship that is marked as SCD2 Trigger. In the population example, a type
two slowly changing dimension stores all population numbers that each city
can ever hold.

Define the following parameters, to define a type two SCD:

– For the level attribute that will trigger the SCD type 2, you have to select
the settings as Trigger History. You can choose one or more level
attributes so that changes in the value of chosen attributes will trigger a
version of history to be saved.

Overview of Dimensional Objects

9-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

– To use SCD Type 2, Surrogate Keys attributes should be created for all the
levels. Surrogate Key attribute should not be set as SCD2 Trigger History.

– Level that has any of attributes defined as Type 2 Trigger History must
have date/timestamp level attribute set as Type 2 Setting Start Date.

– Level that has any of attributes defined as Type 2 Trigger History must
have date/timestamp level attribute set as Type 2 Setting End Date.

– A SCD type 2 can also be triggered by the Parent Level reference member,
if it has been set to Trigger History.

To create a Type 2 SCD or a Type 3 SCD, in addition to the regular dimension
attributes, you need additional attributes that perform the following roles:

– Trigger History: These are attributes for which historical values must be
stored. For example, in the PRODUCTS dimension, the attribute
PACKAGE_TYPE of the Product level can be a triggering attribute. When
the value of the attribute changes, the old value must be stored.

– Start Date: This attribute stores the start date of the record's life span.

– End Date: This attribute stores the end date of the record's life span.

– Previous Attribute: For Type 3 SCDs only, this attribute stores the
previous value of a attribute, that has a version.

■ Type III slowly changing dimension store two versions of values for the
chosen level of attributes, that is the current value and the previous value. In
the population example, a type three slowly changing dimension will keep the
current population of each city as well as the previous population.

Define the following parameters, to define a type three SCD:

– For each level attribute, that you want to store previous value, you need to
create and assign another level attribute as Type 3 Previous Attribute.
Also, date/timestamp level attribute must be created and assigned to level
attribute as Type 3 Start Date.

– There are two restrictions on which attribute can have a previous value.
They are:

1. Previous value attribute cannot have further previous values. For example,
once you indicate an attribute as "old_email" as the previous value of "email",
they cannot choose yet another attribute "previous-previous email" to be used
as the previous value of "old_email".

2. The Surrogate Key attribute cannot have previous values.

6. Dimension Implementation

Along with defining logical structure of dimension, such as its levels, attributes
and hierarchies, you need to specify how the dimension data is physically stored.

In a star schema, the data of each dimension is stored on a single datastore.

We call this specification of data storage of dimension as dimension
implementation.

Note: ODI supports only Star schema for the current release.

Creating Dimensional Objects through ODI

Creating and Using Dimensions and Cubes 9-5

9.1.2 Overview of Cubes
A cube is a set of measures grouped together that have similar dimensionality. The
axes of the cube contain dimension values and the body of the cube contains measure
values.

For example, sales data can be organized into a cube, whose edges contain values from
the Time, Product, and Customer dimensions and whose body contains values from
the Volume Sales, and Dollar Sales measures.

Each cube must hold data related to one or more dimensions. Dimensions can be
shared across cubes. The same dimension may be reused under different dimension
roles by the same cube. Each cube must have a fact table.

9.1.2.1 Understanding Measure (Fact)
A measure is data, usually numeric and additive, that can be examined and analyzed.
Examples include Sales, Cost and Profit. Fact and measure are synonymous; Fact is
more commonly used with relational environments whereas Measure is more
commonly used with multidimensional environments.

9.1.2.2 Cube Implementation
After specifying the logical structure of a cube, such as measures and dimension
references, it is necessary for users to specify how the cube will be physically stored.
Typically a cube is stored on a single table called fact table. Each measure usually
corresponds to one column and each dimension reference corresponds to a column on
the fact table and optionally a foreign key from fact table to dimension table.

9.2 Creating Dimensional Objects through ODI
In ODI, a new type of model called Dimension and Cube Model is added to support
creation of dimension and cube objects. The dimensional objects can be used in
mapping for creating the physical data warehouse.

This section elaborates on the following:

■ Dimension and Cube Accordion

■ Using Dimensions in ODI

■ Using Cubes in ODI

■ Creating New Dimensional Models

■ Creating and Editing Dimensional Objects using the Editor

9.2.1 Dimension and Cube Accordion
Dimensional objects are added as a separate accordion in the Navigator tab. A
dimension model serves as a folder to contain dimension and cube objects as shown
below:

Creating Dimensional Objects through ODI

9-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

9.2.2 Using Dimensions in ODI
This section elaborates on the following:

Generic Properties

■ Dimension is modeled separately from the underlying datastore objects.

■ It supports type one, type two and type three slowly changing dimensions

■ It supports dimension roles

■ Supports multiple hierarchies

To define a dimension, you need to specify its levels and hierarchies.

1. Level

■ A level may determine one or more dependent attributes.

■ All columns of a level must come from the same table.

■ Levels could be shared across hierarchies.

■ Levels must be ordered within a hierarchy

■ A level can uniquely determine some attributes. These attribute columns must
come from the same table as level columns.

■ The columns of a hierarchy level may not be associated with more than one
dimension.

■ No two levels may have an identical set of columns. The columns of each
hierarchy level are not null.

■ Each level may appear in a hierarchy at most once.

2. Hierarchy

■ A dimension must have one or more hierarchies.

■ Each hierarchy must have one or more levels.

■ Levels of a dimension may be shared across hierarchies. The hierarchies of a
dimension may overlap or be disconnected from each other. The following
diagrams illustrate the kind of hierarchies ODI will be able to support.

Creating Dimensional Objects through ODI

Creating and Using Dimensions and Cubes 9-7

Figure 9–1 Hierarchies Supported by ODI

■ All hierarchies must strictly have1:n relationships. Considering two adjacent
levels in a hierarchy, one record in a parent level corresponds to multiple
records in a child level within a hierarchy. Further, a record in a child level can
correspond to only one parent record within a hierarchy.

■ Ability to skip levels within a hierarchy.

■ It supports the selection of a default hierarchy.

■ No support for inverted hierarchy.

In hierarchy one, Districts roll into regions, and in hierarchy two regions roll into
Districts.

9.2.3 Using Cubes in ODI
This section elaborates on the following:

9.2.3.1 Generic Properties
■ Each cube must have one and only one fact table. A cube contains a list of

measures.

■ The fact table contains measure columns.

■ Each cube must be defined by a set of dimensions.

■ A cube may reuse the same dimension multiple times under different aliases.

Table 9–1 Examples of Inverted Hierarchy

Hierarchy One Hierarchy Two

Total US Total US

Region District

District Region

Account Account

Creating Dimensional Objects through ODI

9-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ A cube can refer to a non-lowest level in a dimension.

■ A fact table may contain multiple measures.

■ The 1:n relationships from the fact tables to the dimension tables must be enforced.

9.2.3.2 Cube Measures
Please note:

■ Only simple measures are supported. That is, a measure is mapped to a single
column of a fact table.

■ Measures need be explicitly defined.

9.2.4 Creating New Dimensional Models
To create a new dimensional model,

■ In the Designer tab, click the New Dimensional Model icon, present beside the
Dimensions and Cubes node, as show below:

Definition tab appears, allowing you to configure the following details of the newly
created dimensional model:

1. Name - Enter the name of the newly created dimensional model

2. Code- Enter the code of the newly created dimensional model

3. Description - Enter a description for the newly created dimensional model

Click the Save icon.

A new dimensional model folder with the specified name is created with two nodes -
Dimensions and Cubes, as shown below:

Creating Dimensional Objects through ODI

Creating and Using Dimensions and Cubes 9-9

9.2.5 Creating and Editing Dimensional Objects using the Editor
To create new dimensional objects,

■ Right-click the Dimensions node and select New Dimension option, to create a
new dimension object

■ Right-click the Cubes node and select New Cube option, to create a new cube
object

New dimensional objects are created.

To edit the properties of existing dimensional objects,

■ Double click the required dimension or cube object that you wish to edit

or else right-click and select Open.

The selected dimensional object opens in the Dimension or Cube editor. The
Dimension or Cube Editor gives you full control over all the aspects of dimension or
cube definition and implementation. This provides maximum flexibility to perform
various operations related to the created dimensional objects.

9.2.5.1 Using Dimension Editor
Dimension Editor has three essential tabs for easy and effective administration of a
dimension object. They are:

■ Definition Tab

■ Levels Tab

■ Hierarchies Tab

9.2.5.1.1 Definition Tab Definition tab of the Dimension Editor allows you to define the
following properties of a newly created or existing dimension:

1. Name- It represents the name of the created dimension.

In the Name text box, enter the required name of the created dimension.

2. Description- It represents a short description of the created dimension.

In the Description text box, enter a short description for the created dimension.

3. Pattern Name - It denotes the type of pattern that has to be applied to the created
dimension.

Note: ODI has a default built-in pattern called Dimension Pattern.

Creating Dimensional Objects through ODI

9-10 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

4. Binding Datastore - It denotes the datastores to which the created dimension is
bound to.

5. Surrogate Key Sequence - represents a sequence from a project tree (where
dimension mappings are created), that is used to generate surrogate keys for the
dimension if Surrogate Keys are used.

9.2.5.1.2 Levels Tab Levels tab of the Dimension Editor allows you to define the levels
and level attributes for each level of a newly created or existing dimension. It contains
the following tables:

■ Levels table

■ Levels Attributes table

■ Parent Level References

1. Levels table

The list of levels available for a dimension are displayed in the Levels table,
present at the top of the Levels tab. You can create levels from top to bottom and
by this it becomes easier to define level relationships.

For creating or removing levels click the Add + or cross x icons present in the
header of the Levels table.

This Levels table contains the following parameters:

■ Name - It represents the name of the created level.

In the Name text box, enter the name of the newly created level.

■ Description - It represents a short description for the level creation.

In the Description text box, enter a short description for the newly created
level.

■ Binding Datastore - It represents the datastore that is used to store the
dimension data.

■ Staging Datastore - It represents the datastore that is used to stage the
incoming data for this level before loading them into the actual binding
datastore.

Please note, Binding and Staging Datastores need to already exist and they should
be present in the same data model. Along with these, the bound datastore must
also be created in the database. The staging tables are created and truncated
during the execution of mapping in which the dimensions are used. These
datastores should have all the attributes to bind to Levels attributes, Natural Key
Members attributes and Parent Level reference attributes for all levels.

2. Level Attributes Table

This table displays all the level attributes of the level that is selected in the Levels
table.

For creating or removing level attributes click the Add + or cross x icons and to
reorder the level, click the up or down arrow icons, present in the header of the
Level Attributes table.

Note: Project ODI Sequence of type Native Sequence must be
created in the same logical schema where dimension datastore is
present.

Creating Dimensional Objects through ODI

Creating and Using Dimensions and Cubes 9-11

This Levels table contains the following parameters:

■ Name - It represents the name of the created level attribute.

In the Name text box, enter the name of the created level attribute.

■ Is Surrogate Key - It represents the nature of the selected attribute i.e.whether
it can be treated as the surrogate key or not.

Click the Is Surrogate Key check box, to use the selected attribute as a
surrogate key.

■ Description - It represents a short description for the newly created level
attribute.

In the Description text box, enter a short description for the newly created
level attribute.

■ Data Type - It represents the data type of the newly created level attribute.

From the Data Type drop-down box, select the required data type for the
newly created level attribute. The values of the Data Type drop-down box are
the data types in the "Generic SQL" technology defined in ODI repository.

■ SCD2 Setting - It contains the following values:

– None - Select this option, if you do not wish to select any of the below
listed attributes.

– Start Date - This attribute stores the start date of the record's life span.

– End Date - This attribute stores the end date of the record's life span.

– Trigger History - These are attributes for which historical values must be
stored. For example, in the PRODUCTS dimension, the attribute
PACKAGE_TYPE of the Product level can be a triggering attribute. When
the value of the attribute changes, the old value must be stored. Select this
option for an attribute, if the attribute should be versioned.

From the SCD2 Setting drop-down box, select the required value.

■ SCD 3 Previous Attribute -It represents the list of level attributes for the
current level. If this parameter is set, then SCD3 enabled is for the newly
created level attribute. When the incoming data contains any change to this
attribute, its value is first moved to the SCD3 previous attribute before being
overridden by the incoming data.

■ SCD 3 Effective Date - This drop-down box lists all the level attributes of the
current level. When SCD3 is enabled for the newly created level attribute, the
timestamp with which the previous value is set will be stored in the level
attribute designated as SCD 3 effective date.

■ Attribute - You can select the datastore attribute that is used to store the data
for the newly created level attribute from the binding attribute drop-down
box. The valid values of the binding attributes constitute the attributes of the
dimension table (for star dimension implementation).

■ Staging Attribute - You can select the datastore attribute that is used to store
the data for this level attribute from the drop-down box. The valid values of
the staging attribute constitutes the attributes of the staging datastore selected
as the binding for the current level.

Creating Dimensional Objects through ODI

9-12 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ Natural Key Members - Natural Key Members table displays the key
members for the Natural key of the level that is selected in the Levels table.
The Natural key is also commonly known as "Business Key" or "Application
Key", which is usually used to store the key value(s) that can uniquely identify
a particular record in the source systems.

For creating or removing natural key members, click the Add + or cross x
icons and to reorder the level, click the up or down arrow icons, present in the
header of the Natural Key Members table. This table contains the Level
Attribute column. The level attribute constitutes the natural key of the selected
level. The valid values of this column are the list of level attributes of the
current level are listed in this column.

3. Parent Level References Table - This table defines the list of references from the
selected level in the Level table to some other parent level. This table is driven
from the Level table

For creating or removing parent level references, click the Add + or cross x icons,
present in the header of the Parent Level Attributes table.

Functionally, a parent level reference defines how to retrieve the parent level
record from the current record. One or more attributes in the current record are
used as a foreign key to match the corresponding natural key attributes in the
parent level. The Parent Level References table contains following columns:

■ Name - It represents the name of the created parent level reference.

In the Name text box, enter the name of the newly created parent level
reference.

■ Description - It represents a short description for the newly created parent
level reference.

■ In the Description text box, enter a short description for the newly created
parent level reference.

■ Parent Level - Select the required parent level that this reference is pointing to,
from the parent level drop-down box. The valid values of the parent level
column constitute the list of levels in the dimension that is higher than the
currently selected level.

■ SCD 2 Setting - This parameter has two values - None or Trigger History. If
you select trigger history as SCD 2 setting, a new row is created during
dimension loading if any one of the parent level reference key member
columns is not the same as the incoming data.

Parent Level Reference Key Members table is driven from the parent level reference
that is selected in the Parent Level References table. If the parent level has a surrogate

Note: Within the same level, only one level attribute can act as either
Surrogate Key or SCD2 Start Date or SCD2 End Date or SCD3
Previous Attribute or SCD3 Start Date. You will get an error message,
when you try to set multiple level attributes with a particular role.

Note: You can select the same parent level in multiple parent level
references. It means that there are multiple paths from the current
record to that parent level.

Creating Dimensional Objects through ODI

Creating and Using Dimensions and Cubes 9-13

key then the key member is surrogate key, if not it is a natural key. Rows in this table
are automatically populated with the key members of the parent level. This table
contains the following columns:

■ Parent Key Attribute - The level attribute that is part of the natural key of the
parent level. The Dimension component is used in a mapping to load data into
dimensions defined in ODI.

■ Foreign Key Attribute - This parameter represents the datastore column of the
current level that is used to match the corresponding natural key member of the
parent level. The valid values of the foreign key attribute drop-down box are all
the columns of the datastore of the currently selected level.

■ Foreign Key Staging Attribute - This parameter represents the datastore column
of the current level that is used to match the corresponding natural key member of
the parent level. The valid values of the foreign key staging attribute drop-down
box are all the columns of the staging datastore of the currently selected level.

9.2.5.1.3 Hierarchies Tab The Hierarchies tab displays the list of hierarchies that are
defined for the newly created dimension. Hierarchy defines how dimension data is
summarized and rolled up in BI reporting tools.

For creating or removing hierarchies click the Add + or cross x icons and to reorder the
level, click the up or down arrow icons, present in the header of the Hierarchies table.
The Hierarchies table contains the following columns:

■ Name - It represents the name of the created hierarchy.

 In the Name text box, enter the name of the newly created hierarchy.

■ Description - It represents a short description for the newly created hierarchy.

In the Description text box, enter a short description for the newly created
hierarchy.

■ Default - When a dimension has multiple hierarchy, query tools show the default
hierarchy. Only one hierarchy can be defined as default.

The Hierarchy Members table displays the list of level members in the hierarchy
selected in the Hierarchies table. For adding or removing hierarchy Members click the
Add + or cross x icons and to reorder the level, click the up or down arrow icons
present in the header of the Hierarchies table. The hierarchy members are sorted based
on the natural order of the levels in the dimension. This table contains the following
columns:

■ Level - Select the required level for the newly created hierarchy from the Level
drop-down box. The valid values listed in the drop-down box are the list of levels
in the dimension that are not a member of the currently selected hierarchy which
are of lower level than any preceding hierarchy members.

For example, if we have a dimension with three levels - Brand, Category and
Product, if the first hierarchy member is Brand, then the valid levels of the second
hierarchy members are Category and Product.

■ Parent Level Reference - The parent level reference that is used to navigate from
the selected level to the level of the immediately preceding hierarchy members.

Note: For a star dimension, you need not specify the key members of
a parent level reference, as a dimension record is stored in the same
database row, which includes all information of the parent level.

Creating Dimensional Objects through ODI

9-14 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

The column is a drop-down box and its valid values are the parent level references
between the current level and the level of the immediately preceding hierarchy
member.

Skip Level Members table displays the list of skip level members in the hierarchy
member selected in the Hierarchy Members table. This allows the data present in the
level, to have multiple paths to roll up to different parent levels, wherein some paths
may skip one or more parent levels in the same hierarchy.

For example, assume that we have a hierarchy Store in the order- City -> Region ->
State -> County in a dimension called Store of a retail company. In this company, some
stores are more important and they report directly to the regional office. As a result, a
store can have two parent levels, city and region, where City is optional. To describe
this hierarchy, we have a hierarchy member for Store level and its parent level is City.
This hierarchy member also has a skip level and its parent level reference is pointing to
Region level.

Since parent levels can skip multiple paths, click + or cross x buttons to describe these
different roll up paths. The Skip Levels table contains the following columns:

Parent Level Reference: The parent level reference that is used to skip to some
preceding level in the hierarchy. This column is a drop-down box and its valid values
are the parent level references defined for the level of the currently selected hierarchy
member, and including those parent level references that do not point to the
immediately preceding level.

9.2.5.2 Using the Cube Editor
Cube Editor has two essential tabs for easy and effective administration of a cube
object. They are:

■ Definition Tab

■ Details Tab

9.2.5.2.1 Definition Tab

Definition tab of the Cube Editor allows you to define the following properties of a
newly created or existing cube objects:

■ Name - It represents the name of the created cube object.

In the Name text box, enter the required name of the created cube object.

■ Description - It represents a short description of the created cube object.

In the Description text box, enter a short description for the created cube object.

■ Binding Datastore- The datastore that is used to store the cube data can be
selected using the wheel. It displays all the datastores present in all the models of
ODI repository. Click the Search icon, present beside the Cube Table text box, to
select the required cube table.

9.2.5.2.2 Details Tab

Details tab of the Cube Editor allows you to define the following properties of a newly
created or existing cube objects:

Note: ODI supports only single datastore to store cube information.

Using Dimensional Components in Mappings

Creating and Using Dimensions and Cubes 9-15

■ Dimensions Table - The Dimensions table displays the list of dimensions being
used by the cube. You can add or delete a dimension using the Add "+" or Cross
"X" buttons present in the header of the Dimensions Table. The Dimensions Table
has the following columns:

– Level - It denotes the level of the dimension that is referenced to the cube.
When you click the browse icon, present beside any Level parameter in the
table, it displays all the levels present in all the dimensions of ODI repository.
When you select the level, the qualified name of the level (in the form of
<dimension_name>.<level_name>) is displayed in the column.

– Role - If you plan to use the same dimension multiple times in a cube then
you have to specify an alternate name to uniquely identify the same
dimension. This can be done by using the role column.

■ Key Binding Table -The Key binding table is driven by the dimension table. It has
the following columns:

– Dimension Key - If any dimension is selected in the Dimension Table then the
Key binding datastore displays the keys present in the Dimension Key
column. If the dimension uses a surrogate key then the respective surrogate
key is displayed, if surrogate keys are not used then Natural Keys are
displayed.

– Binding Attribute - This parameter displays all the attributes present in the
cube binding datastore. If any attribute is already bound to a Dimension key
or a measure then those attributes are not listed.

■ Measure Tables - Measure Tables are used to add or delete new measures.
Measure Table comprises of the following columns:

– Name - It denotes the name of the created measure.

In the Name column, enter the name of the newly added measure.

– Description - It denotes a short description of the measure creation.

In the Description column, enter a short description of then newly created
measure.

– Data Type - You can select the data type of the level attribute from the Data
Type drop-down box. The valid values of the column are all the data types in
the "Generic SQL" technology defined in ODI repository.

– Size - It denotes the length or precision of the measure.

– Scale - It denotes the scale of this measure (for numeric data type).

– Binding Column - This column denotes the datastore that is used to store the
data for a measure. The valid values of this binding column are the columns of
the cube table. If any attribute is already bound to a dimension key or a
measure then those attributes are not listed in this column.

9.3 Using Dimensional Components in Mappings
Dimensional Objects can be used extensively in mappings.

9.3.1 Using Dimension Component in Mapping
The Dimension component is used in a mapping to load data into dimensions and
slowly changing dimensions.

Using Dimensional Components in Mappings

9-16 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

The Dimension component contains one group for each level in the dimension. The
groups use the same name as the dimension levels. The level attributes of each level
are listed under the group that represents the level.

You cannot map a data flow to the surrogate key attribute or the parent reference key
attribute of any dimension level.

To use a dimension in a Mapping, drag the dimension from the Dimensions and Cubes
Model and drop it in the Mapping Editor Canvas, as shown below:

9.3.1.1 Dimension Component Properties Editor
The Dimension component has the following properties:

9.3.1.1.1 Attributes

Attributes are fixed and provided by the base dimension. It is a data field within a
level.

9.3.1.1.2 General Properties

The general properties of the dimension component includes:

■ Name- It denotes the name of the created dimension component

■ Description - It denotes a short description provided during dimension
component creation

■ Dimension - It is a read only property which provides information on which base
dimension it is related to.

■ Datastore - It is a read only property, and this value is derived from the base
dimension and it is the name of the datastore to which the base dimension is
bound to.

■ Sequence - It refers to the sequence that is used by the base dimension.

■ Storage Type - The default value for storage type is Star.

■ Component Type - The default value for component type is Dimension.

Using Dimensional Components in Mappings

Creating and Using Dimensions and Cubes 9-17

■ Pattern - The default value for pattern is Dimension Pattern and if you create
your own pattern they get listed here, thereby enabling you to select the required
pattern.

9.3.1.1.3 Connector Points

Connector points define the connections between components inside a mapping. The
Dimension Component has only input connector points. The output connector points
are invalid. The properties of input connector points are:

9.3.1.1.4 History Properties

The History properties of the dimension component includes the following:

■ Default Effective Time of Initial Record- It represents the default value assigned
as the effective time for the initial load of a particular dimension record.

■ Default Effective Time of Open Record - It represents the default value set for the
effective time of the open records, after the initial record. This value should not be
modified.

■ Default Expiration Time of Open Record - It represents a date value that is used
as the expiration time of a newly created open record for all the levels in the
dimension.

■ Slowly Changing Type- This is a read only property and this value is set based on
the type of SCD settings.

■ Type 2 Gap - It represents the time interval between the expiration time of an old
record that is versioned and the start time of the current record that has just been
versioned.

When the value of a triggering attribute is updated, the current record is closed
and a new record is created with the updated values. Because the closing of the
old record and opening of the current record occur simultaneously, it is useful to
have a time interval between the end time of the old record and the start time of
the open record, instead of using the same value for both.

■ Type 2 Gap Unit - It represents the unit of time used to measure the gap interval
represented in the Type2 Gap property. Available options are: Seconds, Minutes,
Hours, Days, and Weeks. The default value is Seconds.

9.3.1.1.5 Target Properties

Table 9–2 Properties of Input Connector Points

Property Descriptio

Name It denotes the name of the connector point. This field can be edited.

Description It denotes the description of the connector point.

Bound Object It denotes the name of the object to which the connector point is
bound to. This field remains blank, if the component type does not
support connector point binding.

Connected From It denotes the name of the preceding components to which this
component connects from.

Note: These properties are applicable only for Type 2 SCDs.

Using Dimensional Components in Mappings

9-18 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Select the Enable Source De-duplicate check box present under target properties tab,
to make sure that no duplicate records are processed from the source.

9.3.2 Using Cube Component in Mappings
The cube component is based on a cube object and has a set of attributes according to
the base cube.

 When you drag and drop a cube object onto to a mapping editor, a cube component
gets created based on that cube.

9.3.2.1 Cube Component Properties Editor
The Cube component has the following properties:

Note: The cube component can be used only as a target and cannot
be used as a source for any other component.

Using Dimensional Components in Mappings

Creating and Using Dimensions and Cubes 9-19

9.3.2.1.1 Attributes Cube component has a set of input map attributes derived from the
base cube. They are:

■ Measure Attributes - Each measure in base cube of the cube component has a
corresponding map attribute in cube component. The map attribute is bound to
the cube measure. The measure name is used as the map attribute name.

■ Dimension Natural key Attributes - Each natural key attribute of the referenced
level has a corresponding map attribute in cube component. The map attribute is
bound to the natural key level attribute of the referenced level.

– If the dimension reference of the cube has role qualifier set, then the map
attribute name is in the form of <dimension name>_<role name>_<attribute
name>.

– If the dimension reference of the cube has no role qualifier, then the map
attribute name is in the form of <dimension name>_<attribute name>.

■ Active Date - It is a special map attribute which is created in the case that the base
cube of the cube component references at least one SCD2 dimension.

If the map attribute in cube component is represented as a natural key identifier of the
referenced dimension, it has the following properties:

■ Target

– Expression

– Execute on Hint

– Fixed Execution Location

■ General

– Name

– Description

– Data Type

– Size

– Scale

– Attribute Role - It is a read-only property, which indicates the attribute,
represented as a natural key identifier.

– Bound Object - It is a read-only property. The attribute is bound to a natural
key level attribute

If the map attribute in cube component is represented as a cube measure, it has the
following properties.

■ Target

– Expression

– Execute on Hint

– Fixed Execution Location

■ General

– Name

– Description

– Data Type

Using Dimensional Components in Mappings

9-20 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

– Size

– Scale

– Attribute Role - It is a read-only property, which indicates the attribute,
represented as a cube measure.

– Bound Object - It is a read-only property. The attribute is bound to a cube
measure.

– Source Aggregation Function - It denotes the source loading aggregation
function for the measure. This property is worked together with property
"Enable Source Aggregation" on cube component. In the user interface, a
combo box lists all the aggregate functions of the generic technology.

The active date attribute in cube component has following properties:

■ Target

– Expression

– Execute on Hint

– Fixed Execution Location

■ General

– Name

– Description

– Data Type - It denotes the default data type for Active Date attribute -
"TIMESTAMP".

– Size

– Scale

– Attribute Role - It is a read-only property, which is set to Active Date. Active
Date attribute has a default expression which is set to "FUNC_SYSDATE".
"FUNC_SYSDATE" is a global user function. This function is also used in
Dimension Component.

9.3.2.1.2 General Properties Cube component has the following general properties:

■ Name - It denotes the name of the cube component.

■ Description - It denotes a short description of the mapping.

■ Cube - It is a read-only property that provides the base cube of the cube
component.

■ Datastore - It is a read-only property and this value is derived from the base cube.
It is the bound datastore of the base cube of this component.

■ Component Type - It is a ready only property and its value is Cube, by default.

■ Pattern - At present, you can select only pattern - Cube Pattern.

9.3.2.1.3 Target Properties Cube component has following target properties:

■ Integration Type - Integration Type is of three types. They are:

– None

– Incremental Update

– Control Append

Expanding Dimensional Components

Creating and Using Dimensions and Cubes 9-21

The default value is Incremental Update. The integration type ultimately helps
to determine the default IKM and limit the set of IKM choices.

■ Enable Source Aggregation - If this property is enabled, an aggregate component
is added in the expanded map of the cube component before loading the fact table.
The source row set is grouped by the dimension reference attributes. Measure
aggregation functions are determined by the SOURCE_AGGREGATION_
FUNCTION attribute properties.

9.3.2.1.4 Connector Points The cube component can be used only as a target. Hence it
has only one input connector point and has no output connector points.

9.4 Expanding Dimensional Components
This section explains briefly about expanding the dimension and cube components.

9.4.1 Expanding Dimension Component
Dimension component is an expandable component and it can be expanded like a
reusable Mapping.

To expand a dimension component, right-click the dimension component and from the
pop-up menu select Open.

It switches to the expanded mapping of the dimension component. The expanded
mapping is determined by the selected pattern.

A typical expanded mapping of a dimension component looks like:

Expanding Dimensional Components

9-22 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

9.4.2 Expanding Cube Component
Cube component is an expandable component and it can be expanded like a reusable
Mapping.

To expand a cube component, right-click the cube component and from the pop-up
menu select Open.

It switches to the expanded mapping of the cube component. The expanded mapping
is determined by the selected pattern.

A typical expanded mapping of a cube component looks like:

10

Using Compatibility Mode 10-1

10Using Compatibility Mode

[11] This chapter describes how to use Oracle Data Integrator in compatibility mode.
Compatibility mode allows you to import and run Interfaces built in earlier versions of
ODI.

This chapter includes the following sections:

■ About Compatibility Mode

■ Creating Compatible Mappings

■ About Internal Identifiers (IDs)

■ Renumbering Repositories

10.1 About Compatibility Mode
Oracle Data Integrator 12c provides a backward-compatibility feature that allows you
to import and run Interfaces created in ODI 11g. You can create these 11g-compatible
mappings in the following two ways:

■ When upgrading to ODI 12c using the Upgrade Assistant, disable the Upgrade
interfaces to 12c mappings - losing 11g SDK compatibility option

■ Create mappings using the ODI 11g SDK

De-selecting the 11g SDK compatibility flag in the Upgrade Assistant is only required
if you want to modify your 11g-compatible mappings later, using the 11g SDK. 11g
SDK-compatible mappings are read-only when viewed in ODI Studio 12c. The 11g
SDK is the only way to modify an upgraded 11g-compatible mapping. If you do not
want to modify your 11g-compatible mappings, you do not need to enable 11g SDK
compatibility using the Upgrade Assistant.

11g-compatible mappings use a special mapping component, the "11g Compatible
Dataset," to emulate 11g Interface behavior.

You can run an 11g SDK-compatible mapping in ODI 12c in exactly the same way as
running an ODI 12c mapping.

You can convert an 11g SDK-compatible mapping to a true ODI 12c mapping, using a
context menu command.

ODI 12c mappings cannot be converted to 11g compatibility.

Maintaining 11g SDK Compatibility with Imported Interfaces
When importing an 11g-compatible mapping, you must set a user preference to
determine whether it is imported as an 11g SDK-compatible mapping, or converted to
12c mapping:

Creating Compatible Mappings

10-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

1. In ODI Studio, select ODI from the menu bar, select User Interface, and then
select Designer.

2. Enable the option Maintain 11g SDK compatibility for migrated interfaces.

When importing an 11g Interface export file, this option will determine the
imported interface's compatibility as either 11g SDK, or 12c.

10.2 Creating Compatible Mappings
You have two options for creating 11g SDK-compatible mappings:

■ Creating Mappings using Upgrade Assistant

■ Creating Mappings with the 11g SDK in ODI 12c

10.2.1 Creating Mappings using Upgrade Assistant
You can upgrade an earlier version of ODI to ODI 12c, using the Oracle Upgrade
Assistant. While upgrading ODI, 11g Interfaces are converted to 12c mappings by
default.

The Upgrade Assistant gives you the option of enabling 11g SDK Compatibility Mode,
by de-selecting an option. 11g SDK Compatibility Mode allows you to modify
upgraded 11g-compatible mappings using the ODI 11g SDK.

To convert ODI 11g Interfaces to 11g-compatible mappings, de-select the Upgrade
interfaces to 12c mappings - losing 11g SDK compatibility option in "Task 6 Selecting
the ODI Upgrade Option" of Chapter 4, "Upgrading Your Oracle Data Integrator
Environment", in Upgrading Oracle Data Integrator.

10.2.2 Creating Mappings with the 11g SDK in ODI 12c
In any upgraded or standard ODI 12c environment, you can create 11g-compatible
mappings using the ODI 11g SDK. In ODI 12c, these mappings are read-only.

If you upgraded to ODI 12c using the Oracle Upgrade Assistant, and you enabled 11g
compatibility mode, you can modify 11g-compatible mappings using the 11g SDK.

To create an 11g-compatible mapping using the 11g SDK, review the Java API Reference
for Oracle Data Integrator.

10.3 About Internal Identifiers (IDs)
To ensure object uniqueness across several work repositories, ODI 11g used a
mechanism to generate unique IDs for objects (such as technologies, data servers,
Models, Projects, Mappings, KMs, etc.). Every object in Oracle Data Integrator 11g is
identified by an internal ID. The internal ID appears on the Version tab of each object.

ODI 11g Master and Work Repositories are identified by their unique 3-digit internal
IDs. The internal ID of an 11g object is calculated by appending the value of the
RepositoryID to an automatically incremented number:
<UniqueNumber><RepositoryID>

If the Repository ID is shorter than 3 digits, the missing digits are completed with "0".
For example, if a repository has the ID 5, possible internal IDs of the objects in this
repository could be: 1005, 2005, 3005, ..., 1234567005. Note that all objects created
within the same repository have the same three last digits, in this example 005.

Renumbering Repositories

Using Compatibility Mode 10-3

This internal ID is unique for the object type within the repository and also unique
between repositories for the object type because it contains the repository unique ID.

Important Export/Import Rules and Guidelines
Due to the structure of the 11g object IDs, these guidelines should be followed:

■ ODI 11g Work repositories must always have different internal IDs. Work
repositories with the same ID are considered to contain the same objects.

■ When importing ODI 11g objects from an 11g repository, you must define an
Upgrade Key. The Upgrade Key should uniquely identify the set of repositories
that are working together.

10.4 Renumbering Repositories
Renumbering a master or work repository consists of changing the repository ID and
the internal ID of the objects stored in the repository. This operation is only available
on repositories that are in 11g Compatibility Mode. In ODI 12c, repositories have
unique global identifiers, which cannot be (and do not need to be) renumbered.

Renumbering a repository is advised when two repositories have been created with
the same ID. Renumbering one of these repositories allows object import/export
between these repositories without object conflicts.

Renumbering an 11g Compatible Repository
1. In the Topology Navigator, expand the Repositories panel.

2. Expand the Master Repositories or Work Repositories node and right-click the
repository you want to renumber.

3. Select Renumber...

4. In the Renumbering the Repository - Step 1 dialog click Yes.

5. In the Renumbering the Repository - Step 2 dialog enter a new and unique ID for
the repository and click OK.

6. The repository and all the details stored in it such as topology, security, and
version management details are renumbered.

WARNING: Renumbering a repository is an administrative
operation that requires you to perform a backup of the repository
that will be renumbered on the database.

Renumbering Repositories

10-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

11

Creating and Using Procedures, Variables, Sequences, and User Functions 11-1

11Creating and Using Procedures, Variables,
Sequences, and User Functions

[12] This chapter describes how to work with procedures, variables, sequences, and user
functions. An overview of these components and how to work with them is provided.

This chapter includes the following sections:

■ Working with Procedures

■ Working with Variables

■ Working with Sequences

■ Working with User Functions

11.1 Working with Procedures
This section provides an introduction to procedures and describes how to create and
use procedures in Oracle Data Integrator.

The following sections describe how to create and use procedures:

■ Introduction to Procedures

■ Creating Procedures

■ Using Procedures

■ Encrypting and Decrypting Procedures

11.1.1 Introduction to Procedures
A Procedure is a set of commands that can be executed by an agent. These commands
concern all technologies accessible by Oracle Data Integrator (OS, JDBC, JMS
commands, etc).

A Procedure is a reusable component that allows you to group actions that do not fit in
the mapping framework. Procedures should be considered only when what you need
to do can't be achieved in a mapping. In this case, rather than writing an external
program or script, you would include the code in Oracle Data Integrator and execute it
from your packages. Procedures require you to develop all your code manually, as
opposed to mappings.

A procedure is composed of tasks, which have properties. Each task has two
commands; On Source and On Target. The commands are scripts, possibly mixing
different languages. The tasks are executed sequentially. Some commands may be

Working with Procedures

11-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

skipped if they are controlled by an option. These options parameterize whether or not
a command should be executed, as well as the code of the commands.

The code within a procedure can be made generic by using options and the ODI
Substitution API.

Before creating a procedure, note the following:

■ Although you can perform data transformations in procedures, using them for this
purpose is not recommended; use mappings instead.

■ If you start writing a complex procedure to automate a particular recurring task
for data manipulation, you should consider converting it into a Knowledge
Module. Refer to the Developing Knowledge Modules with Oracle Data Integrator for
more information.

■ Whenever possible, try to avoid operating-system-specific commands. Using them
makes your code dependent on the operating system that runs the agent. The
same procedure executed by agents on two different operating systems (such as
UNIX and Windows) will not work properly.

11.1.2 Creating Procedures
Creating a procedure follows a standard process which can vary depending on the use
case. The following step sequence is usually performed when creating a procedure:

1. Create a New Procedure

2. Define the Procedure's Options

3. Create and Manage the Procedure's Tasks.

When creating procedures, it is important to understand the following coding
guidelines:

■ Writing Code in Procedures

■ Using the Substitution API

■ Handling RDBMS Transactions

■ Binding Source and Target Data

11.1.2.1 Create a New Procedure
To create a new procedure:

1. In Designer Navigator select the Procedures node in the folder under the project
where you want to create the procedure.

2. Right-click and select New Procedure.

3. On the Definition tab fill in the procedure Name.

4. Check Multi-Connections if you want the procedure to manage more than one
connection at a time.

Multi-Connections: It is useful to choose a multi-connection procedure if you
wish to use data that is retrieved by a command sent on a source connection in a
command sent to another (target) connection. This data will pass though the
execution agent. By enabling Multi-Connections, you can use both Target and
Source fields in the Tasks (see "Create and Manage the Procedure's Tasks" on
page 11-4).

Working with Procedures

Creating and Using Procedures, Variables, Sequences, and User Functions 11-3

If you access one connection at a time (which enables you to access different
connections, but only one at a time) leave the Multi-Connections box unchecked.
Only Target tasks will be used.

5. Select the Target Technology, and if the Multi-Connections box is checked, also
select the Source Technology. Each new Procedure line will be based on this
technology. You can also leave these fields empty and specify the technologies in
each procedure command.

6. Optionally, select Use Unique Temporary Object Names and Remove Temporary
Objects On Error:

■ Use Unique Temporary Object Names: If this procedure can be run
concurrently, enable this option to create non-conflicting temporary object
names.

■ Remove Temporary Objects On Error: Enable this option to run cleanup tasks
even when a session encounters an error.

7. Optionally, enter a Description of this procedure.

8. From the File menu, click Save.

A new procedure is created, and appears in the Procedures list in the tree under your
Project.

11.1.2.2 Define the Procedure's Options
Procedure options act like parameters for your tasks and improve the code reusability.

There are three types of options:

■ Boolean options. Their value can be used to determine whether individual
command are executed or not. They act like an "if" statement.

■ Value and Text options used to pass in short or long textual information
respectively. The values of these options can only be recovered in the code of the
procedure's commands, using the getOption() substitution method. When using
your procedure in a package, its values can be set on the step.

To create procedure's options:

1. In Designer Navigator, double-click the procedure you want to configure. The
Procedure Editor opens.

2. Select the Options tab. In the Options table, click the Add Option button to add a
row to the table. Each row represents one option.

3. Edit the following fields of an option:

■ Name: Name of the option as it appears in the graphical interface

■ Type: Type of the option.

– Boolean: The option is boolean: True = 1/False = 0. These are the only
options used for procedures and KMs to determine if such tasks should be
executed or not.

Caution: Source and target technologies are not mandatory for
saving the Procedure. However, the execution of the Procedure might
fail, if the related commands require to be associated with certain
technologies and logical schemas.

Working with Procedures

11-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

– Text: It is an alphanumerical option. Maximum size is not limited.
Accessing this type of option is slower than for value options.

– Value: It is an alphanumerical option. Maximum size is 250 characters.

■ Default Value: Value that the option will take, if no value has been specified
by the user of the procedure or the KM.

■ Direct Execution Value: Use in cases when you want to execute or test a
procedure with different option values. The default for the Direct Execution
Value is the corresponding Default Value for this option. You can overwrite a
Default Value, then a Direct Execution Value will get a new default value if it
was not changed before. Using the Reset Direct Execution Value to Default
context menu item of an option will reset it to the default value.

■ Description: Optional, short description of the option. For boolean options,
this description is displayed in the Options tab of the Property Inspector when
a row in the Tasks table is selected.

■ Help: Optional, descriptive help on the option. For procedures, this text is
displayed in the properties pane when the procedure is selected in a mapping.

4. If there are multiple Options, set their order in the table. Select a row, and use the
up and down buttons in the menu bar to change its position in the list. Options are
checked in order from top to bottom.

5. Repeat these operations for each option that is required for the procedure.

6. From the File menu, click Save.

11.1.2.3 Create and Manage the Procedure's Tasks
Most procedures only execute commands on a target. In some cases, your procedure
may require reading data and performing actions using this data. In these cases,
specify the command to read the data in the Source fields and the actions performed
with this data in the Target fields of the Tasks tab. Refer to "Binding Source and Target
Data" on page 11-8 for more information. You can leave the Source fields blank if you
are not performing commands on source datastores.

Create and manage the tasks in a procedure using the following options:

■ Creating a Procedure's Tasks

■ Duplicating Tasks

■ Deleting Tasks

■ Changing the Order of Tasks

Creating a Procedure's Tasks

1. In Designer Navigator double-click the procedure for which you want to create a
command. The Procedure Editor opens.

2. In the Procedure Editor, go to the Tasks tab. Any tasks already in the procedure are
listed in a table.

Note: Right-click an option to access the context menu. From this
menu you can Duplicate the option, or Reset Direct Execution Value
to Default.

Working with Procedures

Creating and Using Procedures, Variables, Sequences, and User Functions 11-5

3. Click Add. A new task row is created in the table. Edit the fields in the row to
configure your task.

The following fields are available:

■ Name: Enter a name for this task.

■ Cleanup: Mark a task as cleanup task if you would like it to be executed even
when the procedure results in error. For example, use cleanup tasks to remove
temporary objects.

■ Ignore Errors must be checked if you do not want the procedure to stop if this
command returns an error. If this box is checked, the procedure command will
generate a "warning" message instead of an "error," and the procedure will not
be stopped.

■ Source/Target Transaction: Transaction where the command will be executed.

The Transaction and Commit options allow you to run commands within
transactions. Refer to "Handling RDBMS Transactions" on page 11-8 for more
information.

■ Source/Target Commit: Indicates the commit mode of the command in the
transaction.

The Transaction and Commit options allow you to run commands within
transactions. Refer to "Handling RDBMS Transactions" on page 11-8 for more
information.

■ Source/Target Technology: Technology used for this command. If it is not set,
the technology specified on the Definition tab of the Procedure editor is used.

■ Source/Target Command: Text of the command to execute. You can open the
Expression Editor by clicking ... in the command field.

The command must be entered in a language appropriate for the selected
technology. Refer to "Writing Code in Procedures" on page 11-7 for more
information.

Oracle recommends using substitution methods to make the code generic and
dependent on the topology information. Refer to "Using the Substitution API"
on page 11-7.

■ Source/Target Context: Forced Context for the execution. If it is left undefined,
the execution context will be used. You can leave it undefined to ensure the
portability of the code in any context.

■ Source/Target Logical Schema: Logical schema for execution of the command.

■ Source/Target Transaction Isolation: The transaction isolation level for the
command.

Notes:

■ If you do not see a field, use the Select Columns button to show
hidden columns in the table. Alternatively, open the property
inspector and select a task row to see some of the following fields
in the property inspector. The Always Execute option is only
visible in the property inspector.

■ The transaction, commit, and transaction isolation options work
only for technologies supporting transactions.

Working with Procedures

11-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ Log Counter: Shows which counter (Insert, Update, Delete or Errors) will
record the number of rows processed by this command. Note that the Log
Counter works only for Insert, Update, Delete, and Errors rows resulting from
an Insert or Update SQL statement.

■ Log level: Logging level of the command. At execution time, the task
generated for this command will be kept in the Session log based on this value
and the log level defined in the execution parameters. Refer to "Execution
Parameters" in Administering Oracle Data Integrator for more details on the
execution parameters.

■ Log Final Command: The ODI execution logs normally write out the task
code before the final task code processing. Enable this flag if you would like to
log the final processed command in addition to the pre-processed command.

■ Options: In the Options node in the property inspector is a table with the list
of all available options. These options are only visible from the property
inspector:

– Always Execute: Enable if you want this command to be executed all the
time regardless of the other option values.

– Other options are listed in the table. The available options differ
depending on the procedure. If you did not select Always Execute, you
can select individual options which you want to be executed for the
selected task.

4. From the File menu, click Save.

You can make a copy of existing tasks in the tasks list:

Duplicating Tasks

1. Go to the Tasks tab of the Procedure.

2. Select the command to duplicate.

3. Right-click then select Duplicate. A new row is added to the list of tasks. It is a
copy of the selected command.

4. Make the necessary modifications and from the File menu, click Save.

You can delete a task from the list:

Deleting Tasks

1. Go to the Tasks tab of the Procedure.

2. Select the command line to delete.

3. From the Editor toolbar, click Delete, or right-click on the row and select Delete
from the context menu.

The command line will disappear from the list.

Tip: After executing a Procedure, you can view the counter results in
Operator Navigator. They are displayed in the Step or Task editor, on
the Definition tab, in the Record Statistics section.

Note: The options are only visible in the property inspector. Select a
task row, and then in the property inspector, select the Options tab, to
see the task options.

Working with Procedures

Creating and Using Procedures, Variables, Sequences, and User Functions 11-7

You can change the order in which tasks are executed.

Tasks are executed in the order displayed in the Tasks tab of the Procedure Editor. It
may be necessary to reorder them.

Changing the Order of Tasks

1. Go to the Tasks tab of the Procedure.

2. Click on the command line you wish to move.

3. From the tasks table toolbar, click the arrows to move the command line to the
appropriate position.

Writing Code in Procedures
You can open the expression editor to write and modify the code in a procedure.
Commands within a procedure can be written in several languages. These include:

■ SQL: or any language supported by the targeted RDBMS such as PL/SQL,
Transact SQL etc. Usually these commands can contain Data Manipulation
Language (DML) or Data Description Language (DDL) statements. Using SELECT
statements or stored procedures that return a result set is subject to some
restrictions. To write a SQL command, you need to select:

– A valid RDBMS technology that supports your SQL statement, such as
Teradata or Oracle etc.

– A logical schema that indicates where it should be executed. At runtime, this
logical schema will be converted to the physical data server location selected
to execute this statement.

– Additional information for transaction handling as described further in
section Handling RDBMS Transactions.

■ Operating System Commands: Useful when you want to run an external
program. In this case, your command should be the same as if you wanted to
execute it from the command interpreter of the operating system of the Agent in
charge of the execution. When doing so, your objects become dependent on the
platform on which the agent is running. To write an operating system command,
select "Operating System" from the list of technologies of you current step. It is
recommended to use for these kind of operations the OdiOSCommand tool as this
tool prevents you from calling and setting the OS command interpreter.

■ ODI Tools: ODI offers a broad range of built-in tools that you can use in
procedures to perform some specific tasks. These tools include functions for file
manipulation, email alerts, event handling, etc. They are described in detail in the
online documentation. To use an ODI Tool, select ODITools from the list of
technologies of your current step.

■ Scripting Language: You can write a command in any scripting language
supported by Oracle Data Integrator. By default, ODI includes support for the
following scripting languages that you can access from the technology list box of
the current step: Jython, Groovy, NetRexx, and Java BeanShell.

Using the Substitution API
Oracle recommends that you use the ODI substitution API when writing commands in
a procedure, to keep it independent of the context of execution. You can refer to the
online documentation for information about this API. Common uses of the
substitution API are given below:

Working with Procedures

11-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ Use getObjectName()to obtain the qualified name of an object in the current
logical schema regardless of the execution context, rather than hard coding it.

■ Use getInfo() to obtain general information such as driver, URL, user etc. about
the current step

■ Use getSession() to obtain information about the current session

■ Use getOption() to retrieve the value of a particular option of your procedure

■ Use getUser() to obtain information about the ODI user executing your
procedure.

When accessing an object properties through Oracle Data Integrator' substitution
methods, specify the flexfield Code and Oracle Data Integrator will substitute the
Code by the flexfield value for the object instance. See "Using Flexfields" in the
Developing Knowledge Modules with Oracle Data Integrator for more information on how
to create and use flexfields.

Handling RDBMS Transactions
Oracle Data Integrator procedures include an advanced mechanism for transaction
handling across multiple steps or even multiple procedures. Transaction handling
applies only for RDBMS steps and often depends on the transaction capabilities of the
underlying database. Within procedures, you can define for example a set of steps that
would be committed or rolled back in case of an error. You can also define up to 10
(from 0 to 9) independent sets of transactions for your steps on the same server. Using
transaction handling is of course recommended when your underlying database
supports transactions. Note that each transaction opens a connection to the database.

However, use caution when using this mechanism as it can lead to deadlocks across
sessions in a parallel environment.

Binding Source and Target Data
Data binding in Oracle Data Integrator is a mechanism in procedures that allows
performing an action for every row returned by a SQL SELECT statement.

To bind source and target data:

1. In the Task properties, open the Command Editor by hovering the mouse pointer
over the Source or Target Command field and then clicking the gear icon that
displays on the right.

2. In the Source Command editor, specify the SELECT statement.

3. In the Target Command editor, specify the action code. The action code can itself
be an INSERT, UPDATE or DELETE SQL statement or any other code such as an
ODI Tool call, Jython or Groovy. Refer to Oracle Data Integrator Tool Reference for
details about the ODI Tools syntax.

The values returned by the source result set can be referred to in the action code using
the column names returned by the SELECT statement. They should be prefixed by
colons ":" whenever used in a target INSERT, UPDATE or DELETE SQL statement and
will act as "bind variables". If the target statement is not a DML statement, then they
should be prefixed by a hash "#" sign and will act as substituted variables. Note also
that if the resultset of the Source tab is passed to the Target tab using a hash "#" sign,
the target command is executed as many times as there are values returned from the
Source tab command.

The following examples give you common uses for this mechanism. There are, of
course, many other applications for this powerful mechanism.

Working with Procedures

Creating and Using Procedures, Variables, Sequences, and User Functions 11-9

Example 11–1 Loading Data from a Remote SQL Database

Suppose you want to insert data into the Teradata PARTS table from an Oracle
PRODUCT table. Table 11–1 gives details on how to implement this in a procedure
step.

ODI will implicitly loop over every record returned by the SELECT statement and
bind its values to ":MY_PRODUCT_ID" and ":PRODUCT_NAME" bind variables. It
then triggers the INSERT statement with these values after performing the appropriate
data type translations.

When batch update and array fetch are supported by the target and source
technologies respectively, ODI prepares arrays in memory for every batch, making the
overall transaction more efficient.

Example 11–2 Sending Multiple Emails

Suppose you have a table that contains information about all the people that need to
be warned by email in case of a problem during the loading of your Data Warehouse.
You can do it using a single procedure task as described in Table 11–2.

Table 11–1 Procedure Details for Loading Data from a Remote SQL Database

Source Technology Oracle

Source Logical Schema ORACLE_INVENTORY

Source Command select PRD_ID MY_PRODUCT_ID,
 PRD_NAME PRODUCT_NAME,
from <%=odiRef.getObjectName("L","PRODUCT","D")%>

Target Technology Teradata

Target Logical Schema TERADATA_DWH

Target Command insert into PARTS
(PART_ID, PART_ORIGIN, PART_NAME)
values
(:MY_PRODUCT_ID, 'Oracle Inventory',
:PRODUCT_NAME)

Note: This mechanism is known to be far less efficient than a fast or
multi load in the target table. You should only consider it for very
small volumes of data.

The section Using the Agent in the Loading Strategies further
discusses this mechanism.

Table 11–2 Procedure Details for Sending Multiple Emails

Source Technology Oracle

Source Logical Schema ORACLE_DWH_ADMIN

Source Command Select FirstName FNAME, EMailaddress EMAIL
From <%=odiRef.getObjectName("L","Operators","D")%>
Where RequireWarning = 'Yes'

Target Technology ODITools

Target Logical Schema None

Working with Procedures

11-10 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

The "–TO" parameter will be substituted by the value coming from the "Email" column
of your source SELECT statement. The "OdiSendMail" command will therefore be
triggered for every operator registered in the "Operators" table.

11.1.3 Using Procedures
A procedure can be used in the following ways:

■ Executing the Procedure directly in Designer Navigator for testing its execution.

■ Using a Procedure in a Package along with mappings and other development
artifacts for building a data integration workflow.

■ Generating a Scenario for a Procedure for launching only this procedure in a
run-time environment.

11.1.3.1 Executing the Procedure
To run a procedure:

1. In the Project view of the Designer Navigator, select the procedure you want to
execute.

2. Right-click and select Run.

3. In the Run dialog, set the execution parameters. Refer to "Execution Parameters"
in Administering Oracle Data Integrator for more information.

4. Click OK.

5. The Session Started Window appears.

6. Click OK.

11.1.3.2 Using a Procedure in a Package
Procedures can be used as package steps. Refer to "Adding a Procedure step" on
page 7-5 for more information on how to execute a procedure in a package step. Note
that if you use a procedure in a package step, the procedure is not a copy of the
procedure you created but a link to it. If this procedure is modified outside of the
package, the package using the procedure will be changed, too.

Target Command OdiSendMail -MAILHOST=my.smtp.com
-FROM=admin@mycompany.com "-TO=#EMAIL" "-SUBJECT=Job
Failure"
Dear #FNAME,
I'm afraid you'll have to take a look at ODI Operator,
because session <%=snpRef.getSession("SESS_NO")%> has
just failed!
-Admin

Note: During this execution the Procedure uses the option values set
on the Options tab of the Procedure editor.

Note: If you don't want to use the option values set on the Options
tab of the Procedure, set the new options values directly in the
Options tab of the Procedure step.

Table 11–2 (Cont.) Procedure Details for Sending Multiple Emails

Working with Variables

Creating and Using Procedures, Variables, Sequences, and User Functions 11-11

11.1.3.3 Generating a Scenario for a Procedure
It is possible to generate a scenario to run a procedure in production environment, or
to schedule its execution without having to create a package using this procedure. The
generated scenario will be a scenario with a single step running this procedure. How
to generate a scenario for a procedure is covered in "Generating a Scenario" on
page 12-2.

11.1.4 Encrypting and Decrypting Procedures
Encrypting a Knowledge Module (KM) or a procedure allows you to protect valuable
code. An encrypted KM or procedure can neither be read nor modified if it is not
decrypted. The commands generated in the log by an Encrypted KM or procedure are
also unreadable.

Oracle Data Integrator uses a DES Encryption algorithm based on a personal
encryption key. This key can be saved in a file and reused to perform encryption or
decryption operations.

The steps for encrypting and decrypting procedures are identical to the steps for
encrypting and decrypting knowledge modules. Follow the instructions in
"Encrypting and Decrypting a Knowledge Module" on page 6-9

11.2 Working with Variables
This section provides an introduction to variables and describes how to create and use
variables in Oracle Data Integrator. This section contains the following topics:

■ Introduction to Variables

■ Creating Variables

■ Using Variables

11.2.1 Introduction to Variables
A variable is an object that stores a single value. This value can be a string, a number
or a date. The variable value is stored in Oracle Data Integrator. It can be used in
several places in your projects, and its value can be updated at run-time.

Depending on the variable type, a variable can have the following characteristics:

■ It has a default value defined at creation time.

■ Its value can be passed as a parameter when running a scenario using the variable.

■ Its value can be refreshed with the result of a statement executed on one of your
data servers. For example, it can retrieve the current date and time from a
database.

■ Its value can be set or incremented in package steps.

WARNING: There is no way to decrypt an encrypted KM or
procedure without the encryption key. It is therefore strongly
advised to keep this key in a safe location. It is also advised to use a
unique key for all the developments.

Working with Variables

11-12 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ Its value can be tracked from the initial value to the value after executing each step
of a session. See "Tracking Variables and Sequences" on page 11-21 for more
information.

■ It can be evaluated to create conditions and branches in packages.

■ It can be used in the expressions and code of mappings, procedures, steps,...

Variables can be used in any expression (SQL or others), as well as within the
metadata of the repository. A variable is resolved when the command containing it is
executed by the agent or the graphical interface.

A variable can be created as a global variable or in a project. This defines the variable
scope. Global variables can be used in all projects, while project variables can only be
used within the project in which they are defined.

The variable scope is detailed in "Using Variables" on page 11-14.

The following section describes how to create and use variables.

11.2.2 Creating Variables
To create a variable:

1. In Designer Navigator select the Variables node in a project or the Global
Variables node in the Global Objects view.

2. Right-click and select New Variable. The Variable Editor opens.

3. Specify the following variable parameters:

Properties Description

Name Name of the variable, in the form it will be used. This name should not
contain characters that could be interpreted as word separators (blanks,
etc.) by the technologies the variable will be used on. Variable names
are case-sensitive. That is, "YEAR" and "year" are considered to be two
different variables. The variable name is limited to a length of 400
characters.

Datatype Type of variable:

■ Alphanumeric (Text of max 255 char, including text representing
an integer or decimal value)

■ Date (This format is the standard ISO date and time format:
YYYY-MM-DDThh:mm:ssZ

where the capital letter T is used to separate the date and time
components. For example:

2011-12-30T13:49:02 represents 49 minutes and two seconds after
one o'clock in the afternoon of 2011-12-30.

■ Numeric (Integer, Maximum 10 digits (if variable refreshed as
decimal, decimal part will be truncated))

■ Text (Unlimited length)

Keep History This parameter shows the length of time the value of a variable is kept
for:

■ No History: The value of the variable is kept in memory for a
whole session.

■ Latest value: Oracle Data Integrator stores in its repository the
latest value held by the variable.

■ All values: Oracle Data Integrator keeps a history of all the values
held by this variable.

Working with Variables

Creating and Using Procedures, Variables, Sequences, and User Functions 11-13

4. If you want the variable's value to be set by a query:

a. Select the Refreshing tab.

b. Select the logical Schema where the command will be executed, then edit the
command text in the language of the schema's technology. You can use the
Expression Editor for editing the command text. It is recommended to use
Substitution methods such as getObjectName in the syntax of your query
expression.

c. Click Testing query on the DBMS to check the syntax of your expression.

d. Click Refresh to test the variable by executing the query immediately. If the
Keep History parameter is set to All Values or Latest Value, you can view the
returned value on the History tab of the Variable editor. See "Notes on
Refreshing a Variable Value" for more information on how the value of the
variable is calculated.

5. From the File menu, click Save.

The variable appears in the Projects or Global Objects sections in Designer Navigator.

Notes on Refreshing a Variable Value
■ A numeric session variable may be defined with no default value. If the session

variable also does not have any prior value persisted in the repository, the variable
value is considered to be undefined. When such a numeric session variable is
queried for its value, for example during a refresh, ODI returns 0 as the result.

■ A non-numeric session variable (for example: date, alphanumeric, or text) that is
defined with no default value will generate an ODI-17506: Variable has no
value: <var_name> error when such a variable is queried for its value.

■ Load Plan variables do not have a default or persisted value. At startup, Load Plans
do not take into account the default value of a variable, or the historized/latest
value of a variable in the execution context. The value of the variable is either the
one specified when starting the Load Plan, or the value set/refreshed within the
Load Plan. If a Load Plan variable is not passed as a start up value, the Load Plan

Secure Value Select Secure Value if you do not want the variable to be recorded. This
is useful when the variable contains passwords or other sensitive data.
If Secure Value is selected:

■ The variable will never be tracked: it will be displayed unresolved
in the source or target code, it will not be tracked in the repository,
and it will not be historized.

■ The Keep History parameter is automatically set to No History
and cannot be edited.

Default Value The value assigned to the variable by default.

Description Detailed description of the variable

Tip: It is advised to use the Expression Editor when you refer to
variables. By using the Expression Editor, you can avoid the most
common syntax errors. For example, when selecting a variable in the
Expression Editor, the variable name will be automatically prefixed
with the correct code depending on the variable scope. Refer to
"Variable scope" on page 11-14 for more information on how to refer to
your variables.

Properties Description

Working with Variables

11-14 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

variable's start up value is considered undefined. And if the variable is not
refreshed or overwritten in a Load Plan step, the variable's value in the step is also
undefined. A numeric Load Plan variable with an undefined value behaves the
same as a numeric session variable, for example 0 will be returned when it is
queried for its value. See "Working with Variables in Load Plans" on page 13-15 for
more information.

■ For non-numeric Load Plan variables, there is a limitation in the current ODI
repository design that they cannot be distinguished between having an undefined
value and a null value. Therefore, non-numeric Load Plan variables with
undefined value are currently treated by ODI as having a null value.

■ If a session variable or a Load Plan variable having a null value is referenced in a
command or in an expression, for example a SQL text, an empty string ("", a string
with 0 length without the double quotes) will be used as the value for the variable
reference in the text.

11.2.3 Using Variables
Using Variables is highly recommended to create reusable packages or packages with a
complex conditional logic, mappings and procedures. Variables can be used
everywhere within ODI. Their value can be stored persistently in the ODI Repository
if their Keep History parameter is set to All values or Latest value. Otherwise, if their
Keep History parameter is set to No History, their value will only be kept in the
memory of the agent during the execution of the current session.

This section provides an overview of how to use variables in Oracle Data Integrator.
Variables can be used in the following cases:

■ Using Variables in Packages

■ Using Variables in Mappings

■ Using Variables in Object Properties

■ Using Variables in Procedures

■ Using Variables within Variables

■ Using Variables in the Resource Name of a Datastore

■ Passing a Variable to a Scenario

■ Generating a Scenario for a Variable

■ Tracking Variables and Sequences

Variable scope
Use the Expression Editor to refer to your variables in Packages, mappings, and
procedures. When you use the Expression Editor the variables are retrieved directly
from the repository.

You should only manually prefix variable names with GLOBAL or the PROJECT_
CODE, when the Expression Editor is not available.

Referring to variable MY_VAR in your objects should be done as follows:

■ #MY_VAR: With this syntax, the variable must be in the same project as the object
referring to it. Its value will be substituted. To avoid ambiguity, consider using
fully qualified syntax by prefixing the variable name with the project code.

■ #MY_PROJECT_CODE.MY_VAR: Using this syntax allows you to use variables by
explicitly stating the project that contains the variable. It prevents ambiguity when

Working with Variables

Creating and Using Procedures, Variables, Sequences, and User Functions 11-15

2 variables with the same name exist for example at global and project level. The
value of the variable will be substituted at runtime.

■ #GLOBAL.MY_VAR: This syntax allows you to refer to a global variable. Its value
will be substituted in your code. Refer to section Global Objects for details.

■ Using ":" instead of "#": You can use the variable as a SQL bind variable by
prefixing it with a colon rather than a hash. However this syntax is subject to
restrictions as it only applies to SQL DML statements, not for OS commands or
ODI API calls and using the bind variable may result in performance loss. It is
advised to use ODI variables prefixed with the '#'character to ensure optimal
performance at runtime.

– When you reference an ODI Variable prefixed with the ':' character, the name
of the Variable is NOT substituted when the RDBMS engine determines the
execution plan. The variable is substituted when the RDBMS executes the
request. This mechanism is called Binding. If using the binding mechanism, it
is not necessary to enclose the variables which store strings between delimiters
(such as quotes) because the RDBMS is expecting the same type of data as
specified by the definition of the column for which the variable is used.

For example, if you use the variable TOWN_NAME = :GLOBAL.VAR_TOWN_NAME
the VARCHAR type is expected.

– When you reference an ODI variable prefixed with the "#" character, ODI
substitutes the name of the variable by the value before the code is executed
by the technology. The variable reference needs to be enclosed in single quote
characters, for example TOWN = '#GLOBAL.VAR_TOWN'. This reference mode of
the variable works for OS commands, SQL, and ODI API calls.

11.2.3.1 Using Variables in Packages
Variables can be used in packages for different purposes:

■ Declaring a variable: When a variable is used in a package (or in certain elements
of the topology that are used in the package), it is strongly recommended that you
insert a Declare Variable step in the package. This step explicitly declares the
variable in the package. How to create a Declare Variable step is covered in
"Adding a Variable step" on page 7-5. Other variables that you explicitly use in
your packages for setting, refreshing or evaluating their values do not need to be
declared.

■ Refreshing a variable from its SQL SELECT statement: A Refresh Variable step
allows you to re-execute the command or query that computes the variable value.
How to create a Refresh Variable step is covered in "Adding a Variable step" on
page 7-5.

■ Assigning the value of a variable: A Set Variable step of type Assign sets the
current value of a variable.

In Oracle Data Integrator you can assign a value to a variable in the following
ways:

– Retrieving the variable value from a SQL SELECT statement: When creating
your variable, define a SQL statement to retrieve its value. For example, you
can create a variable NB_OF_OPEN_ORDERS and set its SQL statement to:
select COUNT(*) from <%=odiRef.getObjectName("L","ORDERS","D")%>
where STATUS = 'OPEN'.

Then in your package, you will simply drag and drop your variable and select
the "Refresh Variable" option in the Properties panel. At runtime, the ODI

Working with Variables

11-16 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

agent will execute the SQL statement and assign the first returned value of the
result set to the variable.

– Explicitly setting the value in a package: You can also manually assign a
value to your variable for the scope of your package. Simply drag and drop
your variable into your package and select the "Set Variable" and "Assign"
options in the Properties panel as well as the value you want to set.

– Incrementing the value: Incrementing only applies to variables defined with a
numeric data type. Drag and drop your numeric variable into the package and
select the "Set Variable" and "Increment" options in the Properties panel as
well as the desired increment. Note that the increment value can be positive or
negative.

– Assigning the value at runtime: When you start a scenario generated from a
package containing variables, you can set the values of its variables. You can
do that in the StartScenario command by specifying the VARIABLE=VALUE
list. Refer to the API command "OdiStartLoadPlan" in Oracle Data Integrator
Tool Reference, and "Executing a Scenario from a Command Line" in
Administering Oracle Data Integrator.

How to create a Assign Variable step is covered in "Adding a Variable step" on
page 7-5.

■ Incrementing a numeric value: A Set Variable step of type Increment increases or
decreases a numeric value by the specified amount. How to create a Set Variable
step is covered in "Adding a Variable step" on page 7-5.

■ Evaluating the value for conditional branching: An Evaluate Variable step acts
like an IF-ELSE step. It tests the current value of a variable and branches in a
package depending on the result of the comparison. For example, you can choose
to execute mappings A and B of your package only if variable EXEC_A_AND_B is
set to "YES", otherwise you would execute mappings B and C. To do this, you
would simply drag and drop the variable in your package diagram, and select the
"Evaluate Variable" type in the properties panel. Evaluating variables in a package
allows great flexibility in designing reusable, complex workflows. How to create
an Evaluate Variable step is covered in "Adding a Variable step" on page 7-5.

11.2.3.2 Using Variables in Mappings
Variables can be used in mappings in two different ways:

1. As a value for a textual option of a Knowledge Module.

2. In all Oracle Data Integrator expressions, such as filter conditions and join
conditions.

To substitute the value of the variable into the text of an expression, precede its name
by the '#' character. The agent or the graphical interface will substitute the value of the
variable in the command before executing it.

The following example shows the use of a global variable named 'YEAR':

Update CLIENT set LASTDATE = sysdate where DATE_YEAR = '#GLOBAL.YEAR' /* DATE_YEAR
is CHAR type */
Update CLIENT set LASTDATE = sysdate where DATE_YEAR = #GLOBAL.YEAR /* DATE_YEAR
is NUMERIC type */

The "bind variable" mechanism of the SQL language can also be used, however, this is
less efficient, because the relational database engine does not know the value of the
variable when it constructs the execution plan for the query. To use this mechanism,

Working with Variables

Creating and Using Procedures, Variables, Sequences, and User Functions 11-17

precede the variable by the ':' character, and make sure that the datatype being
searched is compatible with that of the variable. For example:

update CLIENT set LASTDATE = sysdate where DATE_YEAR =:GLOBAL.YEAR

The "bind variable" mechanism must be used for Date type variables that are used in a
filter or join expression. The following example shows a filter:

SRC.END_DATE > :SYSDATE_VAR

where the variable SYSDATE_VAR is a "Date" type variable with the refresh query select
sysdate from dual

If the substitution method is used for a date variable, you need to convert the string
into a date format using the RDBMS specific conversion function.

You can drag-and-drop a variable into most expressions with the Expression Editor.

11.2.3.3 Using Variables in Object Properties
It is also possible to use variables as substitution variables in graphical module fields
such as resource names or schema names in the topology. You must use the fully
qualified name of the variable (Example: #GLOBAL.MYTABLENAME) directly in the Oracle
Data Integrator graphical module's field.

Using this method, you can parameterize elements for execution, such as:

■ The physical names of files and tables (Resource field in the datastore) or their
location (Physical schema's schema (data) in the topology)

■ Physical Schema

■ Data Server URL

11.2.3.4 Using Variables in Procedures
You can use variables anywhere within your procedures' code as illustrated in the
Table 11–4.

Table 11–3 Examples of how to use Variables in Mappings

Type Expression

Attribute
Expression

'#PRODUCT_PREFIX' ||
PR.PRODUCT_CODE

Concatenates the current project's product prefix
variable with the product code. As the value of the
variable is substituted, you need to enclose the
variable with single quotes because it returns a
string.

Join Condition CUS.CUST_ID =
#DEMO.UID * 1000 +
FF.CUST_NO

Multiply the value of the UID variable of the
DEMO project by 1000 and add the CUST_NO
column before joining it with the CUST_ID column.

Filter Condition ORDERS.QTY between
#MIN_QTY and #MAX_
QTY

Filter orders according to the MIN_QTY and MAX_
QTY thresholds.

Option Value TEMP_FILE_NAME:
#DEMO.FILE_NAME

Use the FILE_NAME variable as the value for the
TEMP_FILE_NAME option.

Working with Variables

11-18 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

You should consider using options rather than variables whenever possible in
procedures. Options act like input parameters. Therefore, when executing your
procedure in a package you would set your option values to the appropriate values.

In the example of Table 11–4, you would write Step 1's code as follows:

Insert into <%=snpRef.getOption("LogTableName")%>
Values (1, 'Loading Step Started', current_date)

Then, when using your procedure as a package step, you would set the value of option
LogTableName to #DWH.LOG_TABLE_NAME.

Note that when using Groovy scripting, you need to enclose the variable name in
double quotes ("), for example "#varname" and "#GLOBAL.varname", otherwise the
variables are not substituted with the ODI variable value.

11.2.3.5 Using Variables within Variables
It is sometimes useful to have variables depend on other variable values as illustrated
in Table 11–5.

In Table 11–5, you would build your package as follows:

1. Drag and drop the STORE_ID variable to declare it. This would allow you to pass
it to your scenario at runtime.

2. Drag and drop the STORE_NAME variable to refresh its value. When executing
this step, the agent will run the select query with the appropriate STORE_ID value.
It will therefore retrieve the corresponding STORE_NAME value.

3. Drag and drop the other mappings or procedures that use any of these variables.

Table 11–4 Example of how to use Variables in a Procedure

Step ID: Step Type Step Code Description

1 SQL Insert into #DWH.LOG_TABLE_NAME

Values (1, 'Loading Step
Started', current_date)

Add a row to a log table that
has a name only known at
runtime

2 Jython f = open('#DWH.LOG_FILE_NAME',
'w')

f.write('Inserted a row in table
%s' % ('#DWH.LOG_TABLE_NAME'))

f.close()

Open file defined by LOG_
FILE_NAME variable and
write the name of the log table
into which we have inserted a
row.

Table 11–5 Example of how to use a variable within another variable

Variable Name Variable Details Description

STORE_ID Alphanumeric variable. Passed as a
parameter to the scenario

Gives the ID of a store

STORE_NAME Alphanumeric variable.

SELECT statement:

Select name
From
<%=odiRef.getObjectName("L","ST
ORES","D")%>
Where id='#DWH.STORE_
ID'||'#DWH.STORE_CODE'

The name of the current store is
derived from the Stores table
filtered by the value returned by
the concatenation of the STORE_ID
and STORE_CODE variables.

Working with Variables

Creating and Using Procedures, Variables, Sequences, and User Functions 11-19

Note that the "bind variable" mechanism must be used to define the refresh query for a
"date" type variable that references another "date" type variable. For example:

VAR1 "Date" type variable has the refresh query select sysdate from dual

VAR_VAR1 "Date" type variable must have the refresh query select :VAR1 from dual

11.2.3.6 Using Variables in the Resource Name of a Datastore
You may face some situations where the names of your source or target datastores are
dynamic. A typical example of this is when you need to load flat files into your Data
Warehouse with a file name composed of a prefix and a dynamic suffix such as the
current date. For example the order file for March 26 would be named
ORD2009.03.26.dat.

Note that you can only use variables in the resource name of a datastore in a scenario
when the variable has been previously declared.

To develop your loading mappings, you would follow these steps:

1. Create the FILE_SUFFIX variable in your DWH project and set its SQL SELECT
statement to select current_date (or any appropriate date transformation to
match the actual file suffix format)

2. Define your ORDERS file datastore in your model and set its resource name to:
ORD#DWH.FILE_SUFFIX.dat.

3. Use your file datastore normally in your mappings.

4. Design a package as follows:

1. Drag and drop the FILE_SUFFIX variable to refresh it.

2. Drag and drop all mappings that use the ORDERS datastore.

At runtime, the source file name will be substituted to the appropriate value.

11.2.3.7 Using Variables in a Server URL
There are some cases where using contexts for different locations is less appropriate
than using variables in the URL definition of your data servers. For example, when the
number of sources is high (> 100), or when the topology is defined externally in a
separate table. In these cases, you can refer to a variable in the URL of a server's
definition.

Suppose you want to load your warehouse from 250 source applications - hosted in
Oracle databases - used within your stores. Of course, one way to do it would be to
define one context for every store. However, doing so would lead to a complex
topology that would be difficult to maintain. Alternatively, you could define a table
that references all the physical information to connect to your stores and use a variable
in the URL of your data server's definition. Example 11–3 illustrates how you would
implement this in Oracle Data Integrator:

Example 11–3 Referring to a Variable in the URL of a Server's Definition

1. Create a StoresLocation table as follows:

Note: The variable in the datastore resource name must be fully
qualified with its project code.

When using this mechanism, it is not possible to view the data of your
datastore from within Designer.

Working with Variables

11-20 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

2. Create three variables in your EDW project:

■ STORE_ID: takes the current store ID as an input parameter

■ STORE_URL: refreshes the current URL for the current store ID with SELECT
statement: select StoreUrl from StoresLocation where StoreId =
#EDW.STORE_ID

■ STORE_ACTIVE: refreshes the current activity indicator for the current store
ID with SELECT statement: select IsActive from StoresLocation where
StoreId = #EDW.STORE_ID

3. Define one physical data server for all your stores and set its JDBC URL to:

jdbc:oracle:thin:@#EDW.STORE_URL

4. Define your package for loading data from your store.

The input variable STORE_ID will be used to refresh the values for STORE_URL
and STORE_ACTIVE variables from the StoresLocation table. If STORE_ACTIVE
is set to "YES", then the next 3 steps will be triggered. The mappings refer to source
datastores that the agent will locate according to the value of the STORE_URL
variable.

To start such a scenario on Unix for the New York store, you would issue the
following operating system command:

startscen.sh LOAD_STORE 1 PRODUCTION "EDW.STORE_ID=3"

If you want to trigger your LOAD_STORE scenario for all your stores in parallel,
you would simply need to create a procedure with a single SELECT/action
command as follows:

The LOAD_STORE scenario will then be executed for every store with the appropriate
STORE_ID value. The corresponding URL will be set accordingly.

Refer to "Binding Source and Target Data" on page 11-8 and "Managing Agents" in
Administering Oracle Data Integrator for further details.

StoreID Store Name Store URL IsActive

1 Denver 10.21.32.198:1521:OR
A1

YES

2 San Francisco 10.21.34.119:1525:SA
NF

NO

3 New York 10.21.34.11:1521:NY YES

...

Source Technology Oracle (technology of the data server containing the StoresLocation
table).

Source Logical
Schema

Logical schema containing the StoresLocation table.

Source Command Select StoreId
From StoresLocation

Target Technology ODITools

Target Logical
Schema

None

Working with Variables

Creating and Using Procedures, Variables, Sequences, and User Functions 11-21

11.2.3.8 Using Variables in On Connect/Disconnect Commands
Variables can be used in the On connect/Disconnect SQL commands. See "Creating a
Data Server (Advanced Settings)" in Administering Oracle Data Integrator for more
information.

11.2.3.9 Passing a Variable to a Scenario
It is also possible to pass a variable to a scenario in order to customize its behavior. To
do this, pass the name of the variable and its value on the OS command line which
executes the scenario. For more information, see "Executing a Scenario from a
Command Line" in Administering Oracle Data Integrator.

11.2.3.10 Generating a Scenario for a Variable
It is possible to generate a single step scenario for refreshing a variable.

How to generate a scenario for a variable is covered in "Generating a Scenario" on
page 12-2.

11.2.3.11 Tracking Variables and Sequences
Tracking variables and sequences allows to determine the actual values of Oracle Data
Integrator user variables that were used during an executed session. With the variable
tracking feature you can also determine whether the variable was used in a
source/target operation or an internal operation such as an Evaluate step.

Variable tracking takes place and is configured at several levels:

■ When defining a variable, you can select Secure Value if you do not want the
variable to be recorded. This is useful when the variable contains passwords or
other sensitive data. If Secure Value is selected, the variable will never be tracked:
It will be displayed unresolved in the source or target code, it will not be tracked
in the repository, and it will not be historized. See "Creating Variables" on
page 11-12 for more information.

■ When executing or restarting a session, select Log Level 6 in the Execution or
Restart Session dialog to enable variable tracking. Log level 6 has the same
behavior as log level 5, but with the addition of variable tracking.

■ When reviewing the execution results in Operator Navigator, you can:

– View tracked variables and sequences in the Variables and Sequence Values
section of the Session Step or Session Task Editor.

– Review the source/target operations of an execution in the Session Task
Editor. In the Code tab of the Session Task Editor, click Show/Hide Values to
display the code with resolved variable and sequence values. Note that only
variables in substitution mode (#VARIABLE) can be displayed with resolved
variable values and that if the variable values are shown, the code becomes
read-only.

Tracking variables and sequences is useful for debugging purposes. See "Handling
Failed Sessions" in Administering Oracle Data Integrator for more information on how to
analyze errors in Operator Navigator and activate variable tracking.

Variable tracking is available in ODI Studio and ODI Console sessions.

Note the following when tracking variables in Oracle Data Integrator:

■ Each value taken by a variable in a session can be tracked.

Working with Sequences

11-22 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ The values of all tracked variables can be displayed at step and task level. This
includes when a variable is modified by a step or a task, the Step or Task Editor
displays the name and the new value of the variable.

■ The source and target code for a step or task can be viewed either with resolved
variable and sequence values or with hidden variable values that display the
variable and sequence names. Note that if the variable values are shown, the code
becomes read-only.

■ Variables that are defined as Secure Value, such passwords, are never displayed in
the resolved code or variable list. A secure variable does not persist any value in
the repository, even if it is refreshed. Note also that the refresh of a secure variable
does not work across two sessions.

■ When a session is purged, all variable values tracked for that session are purged
along with the session.

■ Bind variables (:VARIABLE_NAME) and native sequences (:<SEQUENCE_NAME>_
NEXTVAL) will not have their values resolved in the source and target code contents;
only substituted variables and sequences (#VARIABLE_NAME and #<SEQUENCE_
NAME>_NEXTVAL) will be resolved.

■ Tracked values are exported and imported as part of a session when the session is
exported or imported.

11.3 Working with Sequences
This section provides an introduction to sequences and describes how to create and
use sequences in Oracle Data Integrator. This section includes the following topics:

■ Introduction to Sequences

■ Creating Sequences

■ Using Sequences and Identity Columns

■ Sequence Enhancements

11.3.1 Introduction to Sequences
A Sequence is a variable that increments itself automatically each time it is used.
Between two uses, the value can be stored in the repository or managed within an
external RDBMS table. Sequences can be strings, lists, tuples or dictionaries.

Oracle Data Integrator sequences are intended to map native sequences from RDBMS
engines, or to simulate sequences when they do not exist in the RDBMS engine.
Non-native sequences' values can be stored in the Repository or managed within a cell
of an external RDBMS table.

A sequence can be created as a global sequence or in a project. Global sequences are
common to all projects, whereas project sequences are only available in the project
where they are defined.

Oracle Data Integrator supports three types of sequences:

■ Standard sequences, whose current values are stored in the Repository.

■ Specific sequences, whose current values are stored in an RDBMS table cell.
Oracle Data Integrator reads the value, locks the row (for concurrent updates) and
updates the row after the last increment.

■ Native sequence, that maps a RDBMS-managed sequence.

Working with Sequences

Creating and Using Procedures, Variables, Sequences, and User Functions 11-23

Note the following on standard and specific sequences:

■ Oracle Data Integrator locks the sequence when it is being used for multi-user
management, but does not handle the sequence restart points. In other words, the
SQL statement ROLLBACK does not return the sequence to its value at the
beginning of the transaction.

■ Oracle Data Integrator standard and specific sequences were developed to
compensate for their absence on some RDBMS. If native sequences exist, they
should be used. This may prove to be faster because it reduces the dialog between
the agent and the database.

■ The value of standard and specific sequences (#<SEQUENCE_NAME>_NEXTVAL) can be
tracked. A side effect that only happens to tracking native sequence is that the
native sequence value is incremented once more when it is accessed for tracking
purpose. See "Tracking Variables and Sequences" on page 11-21 for more
information.

The following sections describe how to create and use sequences.

11.3.2 Creating Sequences
The procedure for creating sequences vary depending on the sequence type. Refer to
the corresponding section:

■ Creating Standard Sequences

■ Creating Specific Sequences

■ Creating Native Sequences

11.3.2.1 Creating Standard Sequences
To create a standard sequence:

1. In Designer Navigator select the Sequences node in a project or the Global
Sequences node in the Global Objects view.

2. Right-click and select New Sequence. The Sequence Editor opens.

3. Enter the sequence Name, then select Standard Sequence.

4. Enter the Increment.

5. From the File menu, click Save.

The sequence appears in the Projects or Global Objects section in Designer Navigator.

11.3.2.2 Creating Specific Sequences
Select this option for storing the sequence value in a table in a given data schema.

To create a specific sequence:

1. In Designer Navigator select the Sequences node in a project or the Global
Sequences node in the Global Objects view.

2. Right-click and select New Sequence. The Sequence Editor opens.

3. Enter the sequence Name, then select Specific Sequence.

4. Enter the Increment value.

5. Specify the following sequence parameters:

Working with Sequences

11-24 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

6. From the File menu, click Save.

The sequence appears in the Projects or Global Objects section in Designer Navigator.

11.3.2.3 Creating Native Sequences
Select this option if your sequence is implemented in the database engine. Position and
increment are fully handled by the database engine.

To create a native sequence:

1. In Designer Navigator select the Sequences node in a project or the Global
Sequences node in the Global Objects view.

2. Right-click and select New Sequence. The Sequence Editor opens.

3. Enter the sequence Name, then select Native Sequence.

4. Select the logical Schema containing your native sequence.

5. Type in the Native Sequence Name or click the browse button to select a sequence
from the list pulled from the data server.

6. If you clicked the Browse button, in the Native Sequence Choice dialog, select a
Context to display the list of sequences in this context for your logical schema.

7. Select one of these sequences and click OK.

8. From the File menu, click Save.

The sequence appears in the Projects or Global Objects tree in Designer Navigator.

11.3.3 Using Sequences and Identity Columns
In order to increment sequences, the data needs to be processed row-by-row by the
agent. Therefore, using sequences is not recommended when dealing with large
numbers of records. In this case, you would use database-specific sequences such as
identity columns in Teradata, IBM DB2, Microsoft SQL Server or sequences in Oracle.

The sequences can be used in all Oracle Data Integrator expressions. For example:

■ The Expression property of a component attribute

Schema Logical schema containing the sequences table

Table Table containing the sequence value

Column Name of the column containing the sequence value.

Filter to retrieve a
single row

Type in a Filter which will allow Oracle Data Integrator to
locate a specific row in the table when the sequence table
contains more than one row. This filter picks up the SQL
syntax of the data server.

For example: CODE_TAB = '3'

You can use the Expression Editor to edit the filter. Click
Testing query on the DBMS to check the syntax of your
expression.

Note: When Oracle Data Integrator wants to access the specific
sequence value, the query executed on the schema will be SELECT
column FROM table WHERE filter.

Working with Sequences

Creating and Using Procedures, Variables, Sequences, and User Functions 11-25

■ The Filter Condition property of a Filter component

■ The Join Condition property of a Join component

Sequences can be used either as:

■ A substituted value, using the #<SEQUENCE_NAME>_NEXTVAL syntax

■ A bind variable in SQL statements, using the :<SEQUENCE_NAME>_NEXTVAL syntax

Using a sequence as a substituted value
A sequence can be used in all statements with the following syntax: #<SEQUENCE_
NAME>_NEXTVAL

With this syntax, the sequence value is incremented only once before the command is
run and then substituted by its valued into the text of the command. The sequence
value is the same for all records.

Using a sequence as a bind variable
Only for SQL statements on a target command of a KM or procedure, sequences can be
used with the following syntax: :<SEQUENCE_NAME>_NEXTVAL

With this syntax, the sequence value is incremented, then passed as a bind variable of
the target SQL command. The sequence value is incremented in each record processed
by the command. The behavior differs depending on the sequence type:

■ Native sequences are always incremented for each processed record.

■ Standard and specific sequences are resolved by the run-time agent and are
incremented only when records pass through the agent. The command in a KM or
procedure that uses such a sequence must use a SELECT statement on the source
command and an INSERT or UPDATE statement on the target command rather
than a single INSERT/UPDATE... SELECT in the target command.

For example:

■ In the SQL statement insert into fac select :NO_FAC_NEXTVAL, date_fac,
mnt_fac the value of a standard or specific sequence will be incremented only
once, even if the SQL statement processes 10,000 rows, because the agent does not
process each record, but just sends the command to the database engine. A native
sequence will be incremented for each row.

■ To increment the value of a standard or specific sequence for each row, the data
must pass through the agent. To do this, use a KM or procedure that performs a
SELECT on the source command and an INSERT on the target command:

SELECT date_fac, mnt_fac /* on the source connection */

INSERT into FAC (ORDER_NO, ORDER_DAT, ORDER_AMNT) values (:NO_FAC_NEXTVAL,
:date_fac, :mnt_fac) /* on the target connection */

Note: A sequence can only increment for each row if:

■ The staging area is not on the target

■ You use an LKM SQL Multi-Connect on Access Points

■ You use a multi-technology IKM on the target datastore, such as
IKM SQL to SQL Control Append

Working with Sequences

11-26 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Sequence Scope
Unlike for variables, you do not need to state the scope of sequences explicitly in code.

11.3.3.1 Tips for Using Standard and Specific Sequences
To make sure that a sequence is updated for each row inserted into a table, each row
must be processed by the Agent. To make this happen, follow the steps below:

1. Make the mapping containing the sequence be executed on the target.

2. Set the mapping to be active for inserts only. Updates are not supported for
sequences.

3. If you are using an "incremental update" IKM, you should make sure that the
update key in use does not contain a column populated with the sequence. For
example, if the sequence is used to load the primary key for a datastore, you
should use an alternate key as the update key for the mapping.

4. If using Oracle Data Integrator sequences with bind syntax (:<SEQUENCE_NAME>_
NEXTVAL), you must configure the data flow such that the IKM transfers all the data
through the agent. You can verify this by checking the generated integration step
in Operator. It should have separate INSERT and SELECT commands executed on
different connections, rather than a single SELECT...INSERT statement.

Limitations of Sequences
Sequences have the following limitations:

■ A column mapped with a sequence should not be checked for not null.

■ Similarly, static control and flow control cannot be performed on a primary or
alternate key that references the sequence.

11.3.3.2 Identity Columns
Certain databases also natively provide identity columns, which are automatically
populated with unique, self-incrementing values.

When populating an identity column, you should follow these steps:

1. The mapping loading the identity column should be blank and inactive. It should
not be activated for inserts or updates.

2. If you are using "incremental update" IKMs, make sure that the update key in use
does not contain the identity column. If the identity column is part of the primary
key, you should define an alternate key as the update key for the mapping.

Limitations of Identity Columns
Identity columns have the following limitations:

■ Not null cannot be checked for an identity column.

■ Static and flow control cannot be performed on a primary or alternate key
containing the identity column.

11.3.4 Sequence Enhancements
Sequence in Oracle Data Integrator is enhanced to support the CURRVAL operator.
The expression editor now displays the NEXTVAL and CURRVAL operators for each
sequence that is listed in the ODI objects panel as shown in Figure 11–1.

Before using current value for native sequences:

Working with User Functions

Creating and Using Procedures, Variables, Sequences, and User Functions 11-27

■ Confirm the technology supports native sequence. For example, MySQL does not
support native sequence.

■ Configure the local sequence current value mask

■ Configure the remote sequence current value mask

■ Configure the sequence current value in non-binded mode

Figure 11–1 Expression editor enhancement: SEQUENCE

11.4 Working with User Functions
This section provides an introduction to user functions and describes how to create
and use user functions in Oracle Data Integrator. This section contains the following
topics:

■ Introduction to User Functions

■ Creating User Functions

■ Using User Functions

11.4.1 Introduction to User Functions
User functions are used for defining customized functions that can be used in
mappings or procedures. It is recommended to use them in your projects when the

Working with User Functions

11-28 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

same complex transformation pattern needs to be assigned to different datastores
within different mappings. User functions improve code sharing and reusability and
facilitate the maintenance and the portability of your developments across different
target platforms.

User functions are implemented in one or more technologies and can be used
anywhere in mappings, joins, filters and conditions. Refer to "Using User Functions"
on page 11-29.

A function can be created as a global function or in a project. In the first case, it is
common to all projects, and in the second, it is attached to the project in which it is
defined.

User functions can call other user functions. A user function cannot call itself
recursively.

The following sections describe how to create and use user functions.

11.4.2 Creating User Functions
To create a user function:

1. In Designer Navigator select the User Functions node in a project or the Global
User Functions node in the Global Objects view.

2. Right-click and select New User Function. The User Function Editor opens.

3. Fill in the following fields:

■ Name: Name of the user function, for example NullValue

■ Group: Group of the user function. If you type a group name that does not
exist, a new group will be created with this group name when the function is
saved.

■ Syntax: Syntax of the user function that will appear in the Expression Editor;
The arguments of the function must be specified in this syntax, for example
NullValue($(variable), $(default))

4. From the File menu, click Save.

The function appears in the Projects or Global Objects tree in Designer Navigator.
Since it has no implementation, it is unusable.

To create an implementation:

1. In Designer Navigator double-click the User Function for which you want to
create the implementation. The User Function Editor opens.

2. In the Implementations tab of the User Function Editor, click Add
Implementation. The Implementation dialog opens.

3. In the Implementation syntax field, type the code of the implementation, for
example nvl($(variable), $(default))

4. Check the boxes for the implementation's Linked technologies

Note: Aggregate functions are not supported User Functions. The
aggregate function code will be created, but the GROUP BY
expression will not be generated.

Working with User Functions

Creating and Using Procedures, Variables, Sequences, and User Functions 11-29

5. Check Automatically include new technologies if you want the new technologies
to use this syntax.

6. Click OK.

7. From the File menu, click Save.

To change an implementation:

1. In the Implementations tab of the User Function Editor, select an implementation,
then click Edit.

2. In the Implementations tab of the user function, select an implementation, then
click Edit Implementation. The Implementation dialog opens.

3. Change the Implementation syntax and the Linked technologies of this
implementation

4. Check Automatically include new technologies if you want the new technologies
to use this syntax.

5. Click OK.

6. From the File menu, click Save.

To remove an implementation:

In the implementations tab of the user function, select an implementation, then click
Delete Implementation.

To make a user function available for a specific technology:

1. Open the Technology editor of the specific technology.

2. In the Language column, select the language of the technology.

3. Select Default.

4. Make sure that you have selected the corresponding technology from the
Technology type list on the Definition tab. The Oracle Data Integrator API does
not work with user functions.

11.4.3 Using User Functions
The user functions can be used in all Oracle Data Integrator expressions. For example:

■ The Expression property of a component attribute

■ The Filter Condition property of a Filter component

■ The Join Condition property of a Join component

A user function can be used directly by specifying its syntax, for example:
NullValue(CITY_NAME, 'No City')

User functions are implemented in one or more technologies. For example, the Oracle
nvl(VARIABLE,DEFAULT_VALUE), function - which returns the value of VARIABLE, or
DEFAULT_VALUE if VARIABLE is null - has no equivalent in all technologies and must be
replaced by the formula:

case when VARIABLE is null
then DEFAULT_VALUE
else VARIABLE
end

With user functions, it is possible to declare a function called
NullValue(VARIABLE,DEFAULT_VALUE) and to define two implementations for the

Working with User Functions

11-30 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

syntax above. When executing, depending on the technology on which the function
will be executed, the NullValue function will be replaced by one syntax or the other.

The next example illustrates how to implement a user function that would be
translated into code for different technologies:

Suppose you want to define a function that, given a date, gives you the name of the
month. You want this function to be available for your mappings when executed on
Oracle, Teradata or Microsoft SQL Server. Table 11–6 shows how to implement this as a
user function.

You can now use this function safely in your mappings for building attribute
expressions, filter conditions, and join conditions. Oracle Data Integrator will generate
the appropriate code depending on the execution location of your expression.

Another example of a user function translated into code for different technologies is
defining the following mapping:

substring(GET_MONTH_NAME(CUSTOMER.LAST_ORDER_DATE), 1, 3), Oracle Data
Integrator will generate code similar to the following, depending on your execution
technology:

Table 11–6 User Function Translated into Code for Different Technologies (Example 1)

Function Name GET_MONTH_NAME

Function Syntax GET_MONTH_NAME($(date_input))

Description Retrieves the month name from a date provided as date_input

Implementation for
Oracle

Initcap(to_char($(date_input), 'MONTH'))

Implementation for
Teradata

case
when extract(month from $(date_input)) = 1 then 'January'
when extract(month from $(date_input)) = 2 then 'February'
when extract(month from $(date_input)) = 3 then 'March'
when extract(month from $(date_input)) = 4 then 'April'
when extract(month from $(date_input)) = 5 then 'May'
when extract(month from $(date_input)) = 6 then 'June'
when extract(month from $(date_input)) = 7 then 'July'
when extract(month from $(date_input)) = 8 then 'August'
when extract(month from $(date_input)) = 9 then 'September'
when extract(month from $(date_input)) = 10 then 'October'
when extract(month from $(date_input)) = 11 then 'November'
when extract(month from $(date_input)) = 12 then 'December'
end

Implementation for
Microsoft SQL

datename(month, $(date_input))

Table 11–7 User Function Translated into Code for Different Technologies (Example 2)

Implementation for Oracle substring(Initcap(to_char(CUSTOMER.LAST_ORDER_DATE
'MONTH')) , 1, 3)

Implementation for
Teradata

substring(case when extract(month from CUSTOMER.LAST_
ORDER_DATE) = 1 then 'January'when extract(month from
CUSTOMER.LAST_ORDER_DATE) = 2 then 'February'...end, 1,
3)

Implementation for
Microsoft SQL

substring(datename(month, CUSTOMER.LAST_ORDER_DATE) ,
1, 3)

Working with User Functions

Creating and Using Procedures, Variables, Sequences, and User Functions 11-31

A function can be created as a global function or in a project. In the first case, it is
common to all projects, and in the second, it is attached to the project in which it is
defined.

User functions can call other user functions.

Working with User Functions

11-32 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

12

Using Scenarios 12-1

12Using Scenarios

[13] This chapter describes how to work with scenarios. A scenario is designed to put a
source component (mapping, package, procedure, variable) into production. A
scenario results from the generation of code (SQL, shell, etc.) for this component.

This chapter includes the following sections:

■ Introduction to Scenarios

■ Generating a Scenario

■ Regenerating a Scenario

■ Generating a Group of Scenarios

■ Controlling Concurrent Execution of Scenarios and Load Plans

■ Exporting Scenarios

■ Importing Scenarios in Production

■ Encrypting and Decrypting a Scenario

12.1 Introduction to Scenarios
When a component is finished and tested, you can generate the scenario
corresponding to its actual state. This operation takes place in the Designer Navigator.

The scenario code (the language generated) is frozen, and all subsequent modifications
of the components which contributed to creating it will not change it in any way.

It is possible to generate scenarios for packages, procedures, mappings, or variables.
Scenarios generated for procedures, mappings, or variables are single step scenarios
that execute the procedure, mapping, or refresh the variable.

Scenario variables are variables used in the scenario that should be set when starting
the scenario to parameterize its behavior.

Once generated, the scenario is stored inside the work repository. The scenario can be
exported, and then imported to another repository (remote or not) and used in
different contexts. A scenario can only be created from a development work repository,
but can be imported into both development and execution work repositories.

Scenarios appear in both the Operator and Designer Navigators, in the Load Plans and
Scenarios section. Scenarios can also appear within a project in the Projects section of
the Designer navigator.

Scenarios can also be versioned. See Chapter 19, "Using Version Control (Legacy
Mode)," for more information.

Generating a Scenario

12-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Scenarios can be launched from a command line, from the Oracle Data Integrator
Studio and can be scheduled using the built-in scheduler of the run-time agent or an
external scheduler. Scenario execution and scheduling scenarios is covered in
"Running Integration Processes" in Administering Oracle Data Integrator.

12.2 Generating a Scenario
Generating a scenario for an object compiles the code for this object for deployment
and execution in a production environment.

To generate a scenario:

1. In Designer Navigator double-click the Package, Mapping, Procedure or Variable
under the project for which you want to generate the scenario. The corresponding
Object Editor opens. Then, on the ODI menu, select Generate and then Scenario.
The New Scenario dialog appears.

Alternatively, from the Designer Navigator, right-click a Package, Mapping,
Procedure or Variable, and select Generate Scenario.... The New Scenario dialog
appears.

2. Enter the Name and the Version of the scenario. As this name can be used in an
operating system command, the name is automatically uppercased and special
characters are replaced by underscores.

Note that the Name and Version fields of the Scenario are preset with the
following values:

– Name: The same name as the latest scenario generated for the component

– Version: The version number is automatically incremented, or set to 001 if no
prior numeric version exists

If no scenario has been created yet for the component, a first version of the
scenario is automatically created.

3. Click OK.

4. If you use variables in the scenario, you can define in the Scenario Variables dialog
the variables that will be considered as parameters for the scenario.

■ Select Use All if you want all variables to be parameters

■ Select Use Selected to use the selected variables to be parameters

■ Select None to deselect all variables

5. Click OK.

The scenario appears on the Scenarios tab and under the Scenarios node of the source
object under the project.

Note: New scenarios are named after the component according to
the Scenario Naming Convention user parameter. You can set this
parameter by clicking Preferences from the Tools option on the menu
bar; expand the ODI node, and then the System node, and select the
Scenarios node.

Generating a Group of Scenarios

Using Scenarios 12-3

12.3 Regenerating a Scenario
An existing scenario can be regenerated with the same name and version number. This
lets you replace the existing scenario by a scenario generated from the source object
contents. Schedules attached to this scenario are preserved.

To regenerate a scenario:

1. Select a scenario in the Projects or Load Plans and Scenarios section of the
Designer Navigator.

2. Right-click and select Regenerate...

3. Click OK.

12.4 Generating a Group of Scenarios
When a set of packages, mappings, procedures, and variables grouped under a project
or folder is finished and tested, you can generate the scenarios. This operation takes
place in Designer Navigator.

To generate a group of scenarios:

1. Select the Project or Folder containing the group of objects.

2. Right-click and select Generate All Scenarios...

3. In the Scenario Source Objects section, select the types of objects for which you
want to generate scenarios.

4. In the Marker Filter section, you can filter the components to generate according
to a marker from a marker group.

5. Select the scenario Generation Mode:

■ Replace: Overwrites for each object the last scenario version with a new one
with the same internal ID, name and version. Sessions, scenario reports and
schedules are deleted. If no scenario exists for an object, a scenario with
version number 001 is created.

■ Re-generate: Overwrites for each object the last scenario version with a new
one with the same internal ID, name and version. It preserves the schedule,
sessions, scenario reports, variable selections, and concurrent execution
control settings. If no scenario exists for an object, no scenario is created using
this mode.

■ Creation: Creates for each object a new scenario with the same name as the
last scenario version and with an automatically incremented version number.
If no scenario exists for an object, a scenario named after the object with
version number 001 is created.

Caution: Regenerating a scenario cannot be undone. For important
scenarios, it is better to generate a scenario with a new version
number.

Controlling Concurrent Execution of Scenarios and Load Plans

12-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ Select Generate scenario as if all underlying objects are materialized to
generate the scenario as if the shortcuts were real objects.

6. Click OK.

7. If you use variables in the scenario, you can define in the Scenario Variables dialog
the variables that will be considered as parameters for the scenario. Select Use All
if you want all variables to be parameters, or Use Selected and check the
parameter variables.

12.5 Controlling Concurrent Execution of Scenarios and Load Plans
By default, nothing prevents two instances of the same scenario or load plan from
running simultaneously.

This situation could occur in several ways. For example:

■ A load plan containing a Run Scenario Step is running in two or more instances, so
the Run Scenario Step may be executed at the same time in more than one load
plan instance.

■ A scenario is run from the command line, from ODI Studio, or as scheduled on an
agent, while another instance of the same scenario is already running (on the same
or a different agent or ODI Studio session.

Concurrent executions of the same scenario or load plan apply across all remote and
internal agents.

Concurrent execution of multiple instances of a scenario or load plan may be
undesirable, particularly if the job involves writing data. You can control concurrent
execution using the Concurrent Execution Control options.

ODI identifies a specific scenario or load plan by its internal ID, and not by the name
and version. Thus, a regenerated or modified scenario or load plan having the same
internal ID is still treated as the same scenario or load plan. Conversely, deleting a
scenario and generating a new one with the same name and version number would be
creating a different scenario (because it will have a different internal ID).

While Concurrent Execution Control can be enabled or disabled for a scenario or load
plan at any time, there are implications to existing running sessions and newly
invoked sessions:

■ When switching Concurrent Execution Control from disabled to enabled, existing
running and queued jobs are counted as executing jobs and new job submissions
are processed with the Concurrent Execution Control settings at time of job
submission.

Note: If no scenario has been created yet for the component, a first
version of the scenario is automatically created.

New scenarios are named after the component according to the
Scenario Naming Convention user parameter. You can set this
parameter by clicking Preferences from the Tools option on the menu
bar; expand the ODI node, and then the System node, and select the
Scenarios node.

When selecting the Creation generation mode, the version number is
automatically incremented, or set to 001 if no prior numeric version
exists.

Exporting Scenarios

Using Scenarios 12-5

■ When switching Concurrent Execution Control from enabled to disabled for a
scenario or load plan, jobs that are already submitted and in waiting state (or those
that are restarted later) will carry the original Concurrent Execution Control
setting values to consider and wait for running and queued jobs as executing jobs.

However, if new jobs are submitted at that point with Concurrent Execution
Control disabled, they could be run ahead of already waiting jobs. As a result, a
waiting job may be delayed if, at the time of polling, the system finds executing
jobs that were started without Concurrent Execution Control enabled. And, after a
waiting job eventually starts executing, it may still be affected by uncontrolled jobs
submitted later and executing concurrently.

To limit concurrent execution of a scenario or load plan, perform the following steps:

1. Open the scenario or load plan by right-clicking it in the Designer or Operator
Navigators and selecting Open.

2. Select the Definition tab and modify the Concurrent Execution Controller options:

■ Enable the Limit Concurrent Executions check box if you do not want to
allow multiple instances of this scenario or load plan to be run at the same
time. If Limit Concurrent Executions is disabled (unchecked), no restriction is
imposed and more than one instance of this scenario or load plan can be run
simultaneously.

■ If Limit Concurrent Executions is enabled, set your desired Violation
Behavior:

– Raise Execution Error: if an instance of the scenario or load plan is already
running, attempting to run another instance will result in a session being
created but immediately ending with an execution error message
identifying the session that is currently running which caused the
Concurrent Execution Control error.

– Wait to Execute: if an instance of the scenario or load plan is already
running, additional executions will be placed in a wait status and the
system will poll for its turn to run. The session's status is updated
periodically to show the currently running session, as well as all
concurrent sessions (if any) that are waiting in line to run after the running
instance is complete.

If you select this option, the Wait Polling Interval sets how often the sys-
tem will check to see if the running instance has completed. You can only
enter a Wait Polling Interval if Wait to Execute is selected.

If you do not specify a wait polling interval, the default for the executing
agent will be used: in ODI 12.1.3, the default agent value is 30 seconds.

3. Click Save to save your changes.

12.6 Exporting Scenarios
The export (and import) procedure allows you to transfer Oracle Data Integrator
objects from one repository to another.

It is possible to export a single scenario or groups of scenarios.

Exporting one single scenario is covered in "Exporting one ODI Object" on page 23-10.

To export a group of scenarios:

1. Select the Project or Folder containing the group of scenarios.

Importing Scenarios in Production

12-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

2. Right-click and select Export All Scenarios... The Export all scenarios dialog
opens.

3. In the Export all scenarios dialog, specify the export parameters as follows:

4. Select the type of objects whose scenarios you want to export.

5. Set the encryption options. Set an Export Key if you want the exported scenario to
preserve and encrypt sensitive data such as passwords. You will need to supply
this Export Key when you later import this scenario if you want to import and
decrypt the sensitive data.

6. Set the advanced options. This set of options allow to parameterize the XML
output file format. It is recommended that you leave the default values.

7. Click OK.

The XML-formatted export files are created at the specified location.

12.7 Importing Scenarios in Production
A scenario generated from Designer can be exported and then imported into a
development or execution repository. This operation is used to deploy scenarios in a
different repository, possibly in a different environment or site.

Importing a scenario in a development repository is performed with the Designer or
Operator Navigator. With an execution repository, only the Operator Navigator is
available for this purpose.

There are two ways to import a scenario:

■ Import uses the standard object import method. During this import process, it is
possible to choose to import the schedules attached to the exported scenario.

Parameter Description

Export Directory Directory in which the export file will be created.

Note that if the Export Directory is not specified, the export file is
created in the Default Export Directory.

Child components export If this option is checked, the objects linked to the object to be
exported will be also exported. These objects are those visible
under the exported object in the tree. It is recommended to leave
this option checked. See "Exporting an Object with its Child
Components" on page 23-9 for more details.

Replace existing files
without warning

If this option is checked, the existing file will be replaced by the
ones of the export.

Parameter Description

XML Version XML Version specified in the export file. Parameter xml version in
the XML file header.

<?xml version="1.0" encoding="ISO-8859-1"?>

Character Set Encoding specified in the export file. Parameter encoding in the
XML file header.

<?xml version="1.0" encoding="ISO-8859-1"?>

Java Character Set Java character set used to generate the file.

Importing Scenarios in Production

Using Scenarios 12-7

■ Import Replace replaces an existing scenario with the content of an export file,
preserving references from other objects to this scenario. Sessions, scenario reports
and schedules from the original scenario are deleted and replaced with the
schedules from the export file.

Scenarios can also be deployed and promoted to production using versions and
solutions. See Chapter 19, "Using Version Control (Legacy Mode)," for more
information.

12.7.1 Import Scenarios
To import one or more scenarios into Oracle Data Integrator:

1. In Operator Navigator, select the Scenarios panel.

2. Right-click and select Import > Import Scenario.

3. Select the Import Type. Refer to Chapter 23, "Exporting and Importing," for more
information on the import types.

4. Specify the File Import Directory.

5. Check the Import schedules option, if you want to import the schedules exported
with the scenarios as well.

6. Select one or more scenarios to import from the Select the file(s) to import list.

7. Click OK.

The scenarios are imported into the work repository. They appear in the Scenarios tree
of the Operator Navigator. If this work repository is a development repository, these
scenario are also attached to their source Package, Mapping, Procedure, or Variable.

12.7.2 Replace a Scenario
Use the import replace mode if you want to replace a scenario with an exported one.

To import a scenario in replace mode:

1. In Designer or Operator Navigator, select the scenario you wish to replace.

2. Right-click the scenario, and select Import Replace...

3. In the Replace Object dialog, specify the scenario export file.

4. Click OK.

12.7.3 Working with a Scenario from a Different Repository
A scenario may have to be operated from a different work repository than the one
where it was generated.

Examples
Here are two examples of organizations that give rise to this type of process:

■ A company has a large number of agencies equipped with the same software
applications. In its IT headquarters, it develops packages and scenarios to
centralize data to a central data center. These scenarios are designed to be executed
identically in each agency.

■ A company has three distinct IT environments for developing, qualifying, and
operating its software applications. The company's processes demand total
separation of the environments, which cannot share the Repository.

Encrypting and Decrypting a Scenario

12-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Prerequisites
The prerequisite for this organization is to have a work repository installed on each
environment (site, agency, or environment). The topology of the master repository
attached to this work repository must be compatible in terms of its logical architecture
(the same logical schema names). The connection characteristics described in the
physical architecture can differ.

Note that in cases where some procedures or mappings explicitly specify a context
code, the target topology must have the same context codes. The topology, that is, the
physical and logical architectures, can also be exported from a development master
repository, then imported into the target repositories. Use the Topology module to
carry out this operation. In this case, the physical topology (the servers' addresses)
should be personalized before operating the scenarios. Note also that a topology
import simply references the new data servers without modifying those already
present in the target repository.

To operate a scenario from a different work repository:

1. Export the scenario from its original repository (right-click, export)

2. Forward the scenario export file to the target environment

3. Open Designer Navigator in the target environment (connection to the target
repository)

4. Import the scenario from the export file

12.8 Encrypting and Decrypting a Scenario
Encrypting a scenario allows you to protect valuable code. An encrypted scenario can
be executed but cannot be read or modified if it is not decrypted. The commands
generated in the log by an encrypted scenario are also unreadable.

Oracle Data Integrator uses a DES Encryption algorithm based on a personal
encryption key. This key can be saved in a file and can be reused to perform
encryption or decryption operations.

To encrypt a scenario:

1. In Designer or Operator Navigator, select the scenario you want to encrypt.

2. Right-click and select Encrypt.

3. In the Encryption Options dialog, you can either:

■ Encrypt with a personal key that already exists by giving the location of the
personal key file or by typing in the value of the personal key.

■ Get a new encryption key to have a new key generated.

4. Click OK to encrypt the scenario. If you have chosen to generate a new key, a
dialog will appear with the new key. Click Save to save the key in a file.

WARNING: There is no way to decrypt an encrypted scenario or
procedure without the encryption key. It is therefore strongly
advised to keep this key in a safe location.

Note: If you type in a personal key with too few characters, an
invalid key size error appears.

Encrypting and Decrypting a Scenario

Using Scenarios 12-9

To decrypt a scenario:

1. Right-click the scenario you want to decrypt.

2. Select Decrypt.

3. In the Scenario Decryption dialog, either

■ Select an existing encryption key file

■ or type in (or paste) the string corresponding to your personal key.

A message appears when decryption is finished.

Encrypting and Decrypting a Scenario

12-10 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

13

Using Load Plans 13-1

13Using Load Plans

[14] This chapter gives an introduction to Load Plans. It describes how to create a Load
Plan and provides information about how to work with Load Plans.

This chapter includes the following sections:

■ Introduction to Load Plans

■ Creating a Load Plan

■ Running Load Plans

■ Using Load Plans in Production

13.1 Introduction to Load Plans
Oracle Data Integrator is often used for populating very large data warehouses. In
these use cases, it is common to have thousands of tables being populated using
hundreds of scenarios. The execution of these scenarios has to be organized in such a
way that the data throughput from the sources to the target is the most efficient within
the batch window. Load Plans help the user organizing the execution of scenarios in a
hierarchy of sequential and parallel steps for these type of use cases.

A Load Plan is an executable object in Oracle Data Integrator that can contain a
hierarchy of steps that can be executed conditionally, in parallel or in series. The leaf
nodes of this hierarchy are Scenarios. Packages, mappings, variables, and procedures
can be added to Load Plans for executions in the form of scenarios. For more
information, see "Creating a Load Plan" on page 13-6.

Load Plans allow setting and using variables at multiple levels. See "Working with
Variables in Load Plans" on page 13-15 for more information. Load Plans also support
exception handling strategies in the event of a scenario ending in error. See "Handling
Load Plan Exceptions and Restartability" on page 13-16 for more information.

Load Plans can be started, stopped, and restarted from a command line, from Oracle
Data Integrator Studio, Oracle Data Integrator Console or a Web Service interface.
They can also be scheduled using the run-time agent's built-in scheduler or an external
scheduler. When a Load Plan is executed, a Load Plan Instance is created. Each attempt
to run this Load Plan Instance is a separate Load Plan Run. See "Running Load Plans"
on page 13-19 for more information.

A Load Plan can be modified in production environments and steps can be enabled or
disabled according to the production needs. Load Plan objects can be designed and
viewed in the Designer and Operator Navigators. Various design operations (such as
create, edit, delete, and so forth) can be performed on a Load Plan object if a user
connects to a development work repository, but some design operations will not be
available in an execution work repository. See "Editing Load Plan Steps" on page 13-12

Introduction to Load Plans

13-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

for more information.

Once created, a Load Plan is stored in the work repository. The Load Plan can be
exported then imported to another repository and executed in different contexts. Load
Plans can also be versioned. See "Exporting, Importing and Versioning Load Plans" on
page 13-20 for more information.

Load Plans appear in Designer Navigator and in Operator Navigator in the Load Plans
and Scenarios accordion. The Load Plan Runs are displayed in the Load Plan
Executions accordion in Operator Navigator.

13.1.1 Load Plan Execution Lifecycle
When running or scheduling a Load Plan you provide the variable values, the contexts
and logical agents used for this Load Plan execution.

Executing a Load Plan creates a Load Plan instance and a first Load Plan run. This Load
Plan instance is separated from the original Load Plan, and the Load Plan Run
corresponds to the first attempt to execute this instance. If a run is restarted a new Load
Plan run is created under this Load Plan instance. As a consequence, each execution
attempt of the Load Plan Instance is preserved as a different Load Plan run in the Log.

See "Running Load Plans" on page 13-19 for more information.

For a load plan instance, only one run can be running, and it must be the last load plan
instance run. However, as with Scenarios, it is possible to run multiple instances of the
same load plan (determined by the load plan's internal ID) concurrently, depending on
the Concurrent Execution Control settings for the load plan.

For more information about how ODI handles concurrent execution, and about using
the Concurrent Execution Control, see "Controlling Concurrent Execution of Scenarios
and Load Plans" on page 12-4,

13.1.2 Differences between Packages, Scenarios, and Load Plans
A Load Plan is the largest executable object in Oracle Data Integrator. It uses Scenarios
in its steps. When an executable object is used in a Load Plan, it is automatically
converted into a scenario. For example, a package is used in the form of a scenario in
Load Plans. Note that Load Plans cannot be added to a Load Plan. However, it is
possible to add a scenario in form of a Run Scenario step that starts another Load Plan
using the OdiStartLoadPlan tool.

Load plans are not substitutes for packages or scenarios, but are used to organize at a
higher level the execution of packages and scenarios.

Unlike packages, Load Plans provide native support for parallelism, restartability and
exception handling. Load plans are moved to production as is, whereas packages are
moved in the form of scenarios. Load Plans can be created in Production
environments.

The Load Plan instances and Load Plan runs are similar to Sessions. The difference is that
when a session is restarted, the existing session is overwritten by the new execution.
The new Load Plan Run does not overwrite the existing Load Plan Run, it is added
after the previous Load Plan Runs for this Load Plan Instance. Note that the Load Plan
Instance cannot be modified at run-time.

13.1.3 Load Plan Structure
A Load Plan is made up of a sequence of several types of steps. Each step can contain
several child steps. Depending on the step type, the steps can be executed

Introduction to Load Plans

Using Load Plans 13-3

conditionally, in parallel or sequentially. By default, a Load Plan contains an empty
root serial step. This root step is mandatory and the step type cannot be changed.

Table 13–1 lists the different types of Load Plan steps and the possible child steps.

Figure 13–1 shows a sample Load Plan created in Oracle Data Integrator. This sample
Load Plan loads a data warehouse:

■ Dimensions are loaded in parallel. This includes the LOAD_TIME_DIM, LOAD_
PRODUCT_DIM, LOAD_CUSTOMER_DIM scenarios, the geographical
dimension and depending on the value of the ODI_VAR_SESS1 variable, the
CUST_NORTH or CUST_SOUTH scenario.

■ The geographical dimension consists of a sequence of three scenarios (LOAD_
GEO_ZONE_DIM, LOAD_COUNTRIES_DIM, LOAD_CITIES_DIM).

■ After the dimensions are loaded, the two fact tables are loaded in parallel (LOAD_
SALES_FACT and LOAD_MARKETING_FACT scenarios).

Table 13–1 Load Plan Steps

Type Description Possible Child Steps

Serial Step Defines a serial execution of its child
steps. Child steps are ordered and a child
step is executed only when the previous
one is terminated.

The root step is a Serial step.

■ Serial step

■ Parallel step

■ Run Scenario step

■ Case step

Parallel Step Defines a parallel execution of its child
steps. Child steps are started immediately
in their order of Priority.

■ Serial step

■ Parallel step

■ Run Scenario step

■ Case step

Run Scenario Step Launches the execution of a scenario. This type of step cannot have
a child steps.

Case Step

When Step

Else Steps

The combination of these steps allows
conditional branching based on the value
of a variable.

Note: If you have several When steps
under a Case step, only the first enabled
When step that satisfies the condition is
executed. If no When step satisfies the
condition or the Case step does not
contain any When steps, the Else step is
executed.

Of a Case Step:

■ When step

■ Else step

Of a When step:

■ Serial step

■ Parallel step

■ Run Scenario step

■ Case step

Of an Else step:

■ Serial step

■ Parallel step

■ Run Scenario step

■ Case step

Exception Step Defines a group of steps that is executed
when an exception is encountered in the
associated step from the Step Hierarchy.
The same exception step can be attached
to several steps in the Steps Hierarchy.

■ Serial step

■ Parallel step

■ Run Scenario step

■ Case step

Introduction to Load Plans

13-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Figure 13–1 Sample Load Plan

13.1.4 Introduction to the Load Plan Editor
The Load Plan Editor provides a single environment for designing Load Plans.
Figure 13–2 gives an overview of the Load Plan Editor.

Introduction to Load Plans

Using Load Plans 13-5

Figure 13–2 Steps Tab of the Load Pan Editor

The Load Plan steps are added, edited and organized in the Steps tab of the Load Plan
Editor. The Steps Hierarchy table defines the organization of the steps in the Load Plan.
Each row in this table represents a step and displays its main properties.

You can drag components such as packages, integration mappings, variables,
procedures, or scenarios from the Designer Navigator into the Steps Hierarchy table
for creating Run Scenario steps for these components.

You can also use the Add Step Wizard or the Quick Step tool to add Run Scenario steps
and other types of steps into this Load Plan. See "Adding Load Plan Steps" on
page 13-8 for more information.

The Load Plan Editor toolbar, located on top of the Steps Hierarchy table, provides tools
for creating, organizing, and sequencing the steps in the Load Plan. Table 13–2 details
the different toolbar components.

Table 13–2 Load Plan Editor Toolbar

Icon Name Description

Search Searches for a step in the Steps
Hierarchy table.

Expand All Expands all tree nodes in the
Steps Hierarchy table.

Creating a Load Plan

13-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

The Properties Panel, located under the Steps Hierarchy table, displays the properties
for the object that is selected in the Steps Hierarchy table.

13.2 Creating a Load Plan
This section describes how to create a new Load Plan in ODI Studio.

1. Define a new Load Plan. See "Creating a New Load Plan" on page 13-6 for more
information.

2. Add Steps into the Load Plan and define the Load Plan Sequence. See "Defining
the Load Plan Step Sequence" on page 13-8 for more information.

3. Define how the exceptions should be handled. See "Handling Load Plan
Exceptions and Restartability" on page 13-16 for more information.

13.2.1 Creating a New Load Plan
Load Plans can be created from the Designer or Operator Navigator.

To create a new Load Plan:

1. In Designer Navigator or Operator Navigator, click New Load Plan in the toolbar
of the Load Plans and Scenarios accordion. The Load Plan Editor is displayed.

2. In the Load Plan Editor, type in the Name, Folder Name, and a Description for
this Load Plan.

3. Optionally, set the following parameters:

■ Log Sessions: Select how the session logs should be preserved for the sessions
started by the Load Plan. Possible values are:

– Always: Always keep session logs (Default)

– Never: Never keep session logs. Note that for Run Scenario steps that are
configured as Restart from Failed Step or Restart from Failed Task, the agent
will behave as if the parameter is set to Error as the whole session needs to
be preserved for restartability.

Collapse All Collapses all tree nodes in the
Steps Hierarchy table.

Add Step Opens a Add Step menu. You can
either select the Add Step Wizard
or a Quick Step tool to add a
step. See "Adding Load Plan
Steps" on page 13-8 for more
information.

Remove Step Removes the selected step and all
its child steps.

Reorder
arrows: Move
Up, Move
Down, Move
Out, Move In

Use the reorder arrows to move
the selected step to the required
position.

Table 13–2 (Cont.) Load Plan Editor Toolbar

Icon Name Description

Creating a Load Plan

Using Load Plans 13-7

– Error: Only keep the session log if the session completed in an error state.

■ Log Session Step: Select how the logs should be maintained for the session
steps of each of the session started by the Load Plan. Note that this applies
only when the session log is preserved. Possible values are:

– By Scenario Settings: Session step logs are preserved depending on the
scenario settings. Note that for scenarios created from packages, you can
specify whether to preserve or not the steps in the advanced step property
called Log Steps in the Journal. Other scenarios preserve all the steps
(Default).

– Never: Never keep session step logs. Note that for Run Scenario steps that
are configured as Restart from Failed Step or Restart from Failed Task, the
agent will behave as if the parameter is set to Error as the whole session
needs to be preserved for restartability.

– Errors: Only keep session step log if the step is in an error state.

■ Session Tasks Log Level: Select the log level for sessions. This value
corresponds to the Log Level value when starting unitary scenarios. Default is
5. Note that when Run Scenario steps are configured as Restart from Failed Step
or Restart From Failed Task, this parameter is ignored as the whole session
needs to be preserved for restartability.

■ Keywords: Enter a comma separated list of keywords that will be set on the
sessions started from this load plan. These keywords improve the organization
of ODI logs by session folders and automatic classification. Note that you can
overwrite these keywords at the level of the child steps. See "Managing the
Log" in Administering Oracle Data Integrator for more information.

4. Optionally, modify the Concurrent Execution Controller options:

■ Enable the Limit Concurrent Executions check box if you do not want to
allow multiple instances of this load plan to be run at the same time. If Limit
Concurrent Executions is disabled (unchecked), no restriction is imposed and
more than one instance of this load plan can be running simultaneously.

■ If Limit Concurrent Executions is enabled, set your desired Violation
Behavior:

– Raise Execution Error: if an instance of the load plan is already running,
attempting to run another instance will result in a session being created
but immediately ending with an execution error message identifying the
session that is currently running which caused the Concurrent Execution
Control error.

– Wait to Execute: if an instance of the load plan is already running,
additional executions will be placed in a wait status and the system will
poll for its turn to run. The session's status is updated periodically to show
the currently running session, as well as all concurrent sessions (if any)
that are waiting in line to run after the running instance is complete.

If you select this option, the Wait Polling Interval sets how often the sys-
tem will check to see if the running instance has completed. You can only
enter a Wait Polling Interval if Wait to Execute is selected.

If you do not specify a wait polling interval, the default for the executing
agent will be used: in ODI 12.1.3, the default agent value is 30 seconds.

5. Select the Steps tab and add steps as described in "Defining the Load Plan Step
Sequence" on page 13-8.

Creating a Load Plan

13-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

6. If your Load Plan requires conditional branching, or if your scenarios use
variables, select the Variables tab and declare variables as described in "Declaring
Load Plan Variables" on page 13-15.

7. To add exception steps that are used in the event of a load plan step failing, select
the Exceptions tab and define exception steps as described in "Defining Exceptions
Flows" on page 13-17.

8. From the File menu, click Save.

The Load Plan appears in the Load Plans and Scenarios accordion. You can organize
your Load Plans by grouping related Load Plans and Scenarios into a Load Plan and
Scenarios folder.

13.2.2 Defining the Load Plan Step Sequence
Load Plans are an organized hierarchy of child steps. This hierarchy allows conditional
processing of steps in parallel or in series.

The execution flow can be configured at two stages:

■ At Design-time, when defining the Steps Hierarchy:

– When you add a step to a Load Plan, you select the step type. The step type
defines the possible child steps and how these child steps are executed: in
parallel, in series, or conditionally based on the value of a variable (Case step).
See Table 13–1, " Load Plan Steps" for more information on step types.

– When you add a step to a Load Plan, you also decide where to insert the step.
You can add a child step, a sibling step after the selected step, or a sibling step
before the selected step. See "Adding Load Plan Steps" on page 13-8 for more
information.

– You can also reorganize the order of the Load Plan steps by dragging the step
to the wanted position or by using the arrows in the Step table toolbar. See
Table 13–2, " Load Plan Editor Toolbar" for more information.

■ At design-time and run-time by enabling or disabling a step. In the Steps hierarchy
table, you can enable or disable a step. Note that disabling a step also disables all
its child steps. Disabled steps and all their child steps are not executed when you
run the load plan.

This section contains the following topics:

■ Adding Load Plan Steps

■ Editing Load Plan Steps

■ Deleting a Step

■ Duplicating a Step

13.2.2.1 Adding Load Plan Steps
A Load Plan step can be added by using the Add Step Wizard or by selecting the
Quick Step tool for a specific step type. A load plan step can be also created

by dragging an object (such as a scenario, package, etc.) and dropping it onto a
container step. The step will be created as a child of the selected step. See Table 13–1,
" Load Plan Steps" for more information on the different types of Load Plan steps. To
create Run Scenario steps, you can also drag components such as packages, mappings,
variables, procedures, or scenarios from the Designer Navigator into the Steps

Creating a Load Plan

Using Load Plans 13-9

Hierarchy table. Oracle Data Integrator automatically creates a Run Scenario step for
the inserted component.

When a Load Plan step is added, it is inserted into the Steps Hierarchy with the
minimum required settings. See "Editing Load Plan Steps" on page 13-12 for more
information on how to configure Load Plan steps.

Adding a Load Plan Step with the Add Step Wizard
To insert Load Plan step with the Add Step Wizard:

1. Open the Load Plan Editor and go to the Steps tab.

2. Select a step in the Steps Hierarchy table.

3. In the Load Plan Editor toolbar, select Add Step > Add Step Wizard.

4. In the Add Step Wizard, select:

■ Step Type. Possible step types are: Serial, Parallel, Run Scenario, Case, When,
and Else. See Table 13–1, " Load Plan Steps" for more information on the
different step types.

■ Step Location. This parameter defines where the step is added.

– Add a child step to selection: The step is added under the selected step.

– Add a sibling step after selection: The step is added on the same level
after the selected step.

– Add a sibling step before selection: The step is added on the same level
before the selected step.

5. Click Next.

6. Follow the instructions in Table 13–3 for the step type you are adding.

Note: Only values that are valid for the current selection are
displayed for the Step Type and Step Location.

Table 13–3 Add Step Wizard Actions

Step Type Description and Action Required

Serial or Parallel step Enter a Step Name for the new Load Plan step.

Creating a Load Plan

13-10 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Run Scenario step 1. Click the Lookup Scenario button.

2. In the Lookup Scenario dialog, you can select the scenario
you want to add to your Load Plan and click OK.

Alternately, to create a scenario for an executable object and
use this scenario, select this object type in the Executable
Object Type selection box, then select the executable object
that you want to run with this Run Scenario step and click
OK. Enter the new scenario name and version and click OK.
A new scenario is created for this object and used in this
Run Scenario Step.

Tip: At design time, you may want to create a Run Scenario
step using a scenario that does not exist yet. In this case,
instead of selecting an existing scenario, enter directly a
Scenario Name and a Version number and click Finish.
Later on, you can select the scenario using the Modify Run
Scenario Step wizard. See "Change the Scenario of a Run
Scenario Step" on page 13-12 for more information.

Note that when you use the version number -1, the latest
version of the scenario will be used, based on the string's
lexical sorting order.

3. The Step Name is automatically populated with the name
of the scenario and the Version field with the version
number of the scenario. Optionally, change the Step Name.

4. Click Next.

5. In the Add to Load Plan column, select the scenario
variables that you want to add to the Load Plan variables. If
the scenario uses certain variables as its startup parameters,
they are automatically added to the Load Plan variables.

See "Working with Variables in Load Plans" on page 13-15
for more information.

Case 1. Select the variable you want to use for the conditional
branching. Note that you can either select one of the load
plan variables from the list or click Lookup Variable to add
a new variable to the load plan and use it for this case step.

See "Working with Variables in Load Plans" on page 13-15
for more information.

2. The Step Name is automatically populated with the step
type and name of the variable. Optionally, change the Step
Name.

See "Editing Load Plan Steps" on page 13-12 for more
information.

Table 13–3 (Cont.) Add Step Wizard Actions

Step Type Description and Action Required

Creating a Load Plan

Using Load Plans 13-11

7. Click Finish.

8. The step is added in the steps hierarchy.

Adding a Load Plan Step with the Quick Step Tool
To insert Load Plan step with the Quick Step Tool:

1. Open the Load Plan editor and go to the Steps tab.

2. In the Steps Hierarchy, select the Load Plan step under which you want to create a
child step.

3. In the Steps toolbar, select Add Step and the Quick Step option corresponding to
the Step type you want to add. Table 13–4 lists the options of the Quick Step tool.

When 1. Select the Operator to use in the WHEN clause evaluation.
Possible values are:

■ Less Than (<)

■ Less Than or Equal (<=)

■ Different (<>)

■ Equals (=)

■ Greater Than (>)

■ Greater Than or Equal (>=)

■ Is not Null

■ Is Null

2. Enter the Value to use in the WHEN clause evaluation.

3. The Step Name is automatically populated with the
operator that is used. Optionally, change the Step Name.

See "Editing Load Plan Steps" on page 13-12 for more
information.

Else The Step Name is automatically populated with the step type.
Optionally, change the Step Name.

See "Editing Load Plan Steps" on page 13-12 for more
information.

Note: You can reorganize the order of the Load Plan steps by
dragging the step to the desired position or by using the reorder
arrows in the Step table toolbar to move a step in the Steps Hierarchy.

Table 13–4 Quick Step Tool

Quick Step tool option Description and Action Required

Adds a serial step as a child of the selected step. Default values
are used. You can modify these values in the Steps Hierarchy
table or in the Property Inspector. See "Editing Load Plan Steps"
on page 13-12 for more information.

Table 13–3 (Cont.) Add Step Wizard Actions

Step Type Description and Action Required

Creating a Load Plan

13-12 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

13.2.2.2 Editing Load Plan Steps
To edit a Load Plan step:

1. Open the Load Plan editor and go to the Steps tab.

2. In the Steps Hierarchy table, select the Load Plan step you want modify. The
Property Inspector displays the step properties.

3. Edit the Load Plan step properties according to your needs.

The following operations are common tasks when editing steps:

■ Change the Scenario of a Run Scenario Step

■ Set Advanced Options for Run Scenario Steps

■ Open the Linked Object of Run Scenario Steps

■ Change the Test Variable in Case Steps

■ Define the Exception and Restart Behavior

■ Regenerate Scenarios

■ Refresh Scenarios to Latest Version

Change the Scenario of a Run Scenario Step
To change the scenario:

1. In the Steps Hierarchy table of the Steps or Exceptions tab, select the Run Scenario
step.

2. In the Step Properties section of the Properties Inspector, click Lookup Scenario.
This opens the Modify Run Scenario Step wizard.

3. In the Modify Run Scenario Step wizard, click Lookup Scenario and follow the
instructions in Table 13–3 corresponding to the Run Scenario step.

Adds a parallel step as a child of the selected step. Default
values are used. You can modify these values in the Steps
Hierarchy table or in the Property Inspector. See "Editing Load
Plan Steps" on page 13-12 for more information.

Adds a run scenario step as a child of the selected step. Follow
the instructions for Run Scenario steps in Table 13–3.

Adds a Case step as a child of the selected step. Follow the
instructions for Case steps in Table 13–3.

Adds a When step as a child of the selected step. Follow the
instructions for When steps in Table 13–3.

Adds an Else step as a child of the selected step. Follow the
instructions for Else steps in Table 13–3.

Note: Only step types that are valid for the current selection are
enabled in the Quick Step tool.

Table 13–4 (Cont.) Quick Step Tool

Quick Step tool option Description and Action Required

Creating a Load Plan

Using Load Plans 13-13

Set Advanced Options for Run Scenario Steps
You can set the following properties for Run Scenario steps in the Property Inspector:

■ Priority: Priority for this step when the scenario needs to start in parallel. The
integer value range is from 0 to 100 (100 being the highest priority). Default is 0.
The priority of a Run Scenario step is evaluated among all runnable scenarios
within a running Load Plan. The Run Scenario step with the highest priority is
executed first.

■ Context: Context that is used for the step execution. Default context is the Load
Plan context that is defined in the Start Load Plan Dialog when executing a Load
Plan. Note that if you only specify the Context and no Logical Agent value, the
step is started on the same physical agent that started the Load Plan, but in this
specified context.

■ Logical Agent: Logical agent that is used for the step execution. By default, the
logical agent, which is defined in the Start Load Plan Dialog when executing a
Load Plan, is used. Note that if you set only the Logical Agent and no context, the
step is started with the physical agent corresponding to the specified Logical
Agent resolved in the context specified when starting the Load Plan. If no Logical
Agent value is specified, the step is started on the same physical agent that started
the Load Plan (whether a context is specified for the step or not).

Open the Linked Object of Run Scenario Steps
Run Scenario steps can be created for packages, mappings, variables, procedures, or
scenarios. Once this Run Scenario step is created, you can open the Object Editor of the
original object to view and edit it.

To view and edit the linked object of Run Scenario steps:

1. In the Steps Hierarchy table of the Steps or Exceptions tab, select the Run Scenario
step.

2. Right-click and select Open the Linked Object.

The Object Editor of the linked object is displayed.

Change the Test Variable in Case Steps
To change the variable that is used for evaluating the tests defined in the WHEN
statements:

1. In the Steps Hierarchy table of the Steps tab or Exceptions tab, select the Case step.

2. In the Step Properties section of the Properties Inspector, click Lookup Variable.
This opens the Modify Case Step Dialog.

3. In the Modify Case Step Dialog, click Lookup Variable and follow the instructions
in Table 13–3, " Add Step Wizard Actions" corresponding to the Case step.

Define the Exception and Restart Behavior
Exception and Restart behavior can be set on the steps in the Steps Hierarchy table. See
"Handling Load Plan Exceptions and Restartability" on page 13-16 for more
information.

Regenerate Scenarios
To regenerate all the scenarios of a given Load Plan step, including the scenarios of its
child steps:

Creating a Load Plan

13-14 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

1. From the Steps Hierarchy table of the Steps tab or Exceptions tab, select the Load
Plan step.

2. Right-click and select Regenerate. Note that this option is not available for
scenarios with the version number -1.

3. Click OK.

Refresh Scenarios to Latest Version
To modify all the scenario steps of a given Load Plan step, including the scenarios of
its child steps, and set the scenario version to the latest version available for each
scenario:

1. From the Steps Hierarchy table of the Steps tab or Exceptions tab, select the Load
Plan step.

2. Right-click and select Refresh Scenarios to Latest Version. Note that the latest
scenario version is determined by the Scenario Creation timestamp. While during
the ODI agent execution, the latest scenario is determined by alphabetical
ascending sorting of the Scenario Version string value and picking up the last from
the list.

3. Click OK.

13.2.2.3 Deleting a Step
To delete a step:

1. Open the Load Plan Editor and go to the Steps tab.

2. In the Steps Hierarchy table, select the step to delete.

3. In the Load Plan Editor toolbar, select Remove Step.

The step and its child steps are removed from the Steps Hierarchy table.

13.2.2.4 Duplicating a Step
To duplicate a step:

1. Open the Load Plan Editor and go to the Steps tab.

2. In the Steps Hierarchy table, right-click the step to duplicate and select Duplicate
Selection.

3. A copy of this step, including its child steps, is created and added as a sibling step
after the original step to the Step Hierarchy table.

Caution: Regenerating a scenario cannot be undone. For important
scenarios, it is better to generate a scenario with a new version
number.

Note: This option is not available for scenarios with the version
number -1.

Note: It is not possible to undo a delete operation in the Steps
Hierarchy table.

Creating a Load Plan

Using Load Plans 13-15

You can now move and edit this step.

13.2.3 Working with Variables in Load Plans
Project and Global Variables used in a Load Plan are declared as Load Plan Variables
in the Load Plan editor. These variables are automatically available in all steps and
their value passed to the Load Plan steps.

The variables values are passed to the Load Plan on startup as startup parameters. At a
step level, you can overwrite the variable value (by setting it or forcing a refresh) for
this step and its child steps.

You can use variables in Run Scenario steps - the variable values are passed as startup
parameters to the scenario - or in Case/When/Else steps for conditional branching.

This section contains the following topics:

■ Declaring Load Plan Variables

■ Setting Variable Values in a Step

13.2.3.1 Declaring Load Plan Variables
To declare a Load Plan variable:

1. Open the Load Plan editor and go to the Variables tab.

2. From the Load Plan Editor toolbar, select Add Variable. The Lookup Variable
dialog is displayed.

3. In the Lookup Variable dialog, select the variable to add your Load Plan.

4. The variable appears in the Variables tab of the Load Plan Editor and in the
Property Inspector of each step.

13.2.3.2 Setting Variable Values in a Step
Variables in a step inherit their value from the value from the parent step and
ultimately from the value specified for the variables when starting the Load Plan.

For each step, except for Else and When steps, you can also overwrite the variable
value, and change the value used for this step and its child steps.

Variable values overwritten or refreshed at a given step are available to all the step's
descendants, until the value is overwritten or refreshed again for a descendant branch.

Note: Load plan variables are copies of Project and Global variables.
Thus, changes to the definition of the original project and global
variables are not automatically propagated to corresponding variables
that are already created in a load plan. You can use the Refresh
Variable Definition option on the right-click context menu to update
the definition of a load plan variable with the current value from the
corresponding Project or Global variable.

Because a load plan variable is a copy of the original project or global
variable, at startup, Load Plans do not take into account the default
value of the original project or global variable, or the historized/latest
value of the variable in the execution context. The value of the
variable is either the one specified when starting the Load Plan, or the
value set/refreshed within the Load Plan.

Creating a Load Plan

13-16 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Similarly, a variable value overwritten or refreshed at a given step does not affect the
value for sibling or parent steps.

To override variable values at step level:

1. Open the Load Plan editor and go to the Steps tab.

2. In the Steps Hierarchy table, select the step for which you want to overwrite the
variable value.

3. In the Property Inspector, go to the Variables section. The variables that are
defined for this Load Plan are listed in this Variables table. You can modify the
following variable parameters:

Select Overwrite, if you want to specify a variable value for this step and all its
children. Once you have chosen to overwrite the variable value, you can either:

– Set a new variable value in the Value field.

– Select Refresh to refresh this variable prior to executing the step. The Refresh
option can be selected only for variables with a Select Query defined for
refreshing the variable value.

13.2.4 Handling Load Plan Exceptions and Restartability
Load Plans provide two features for handling error cases in the execution flows:
Exceptions and Restartability.

Exceptions
An Exception Step contains a hierarchy of steps that is defined on the Exceptions tab of
the Load Plan editor.

You can associate a given exception step to one or more steps in the Load Plan. When a
step in the Load Plan errors out, the associated exception step is executed
automatically.

Exceptions can be optionally raised to the parent step of the failing step. Raising an
exception fails the parent step, which can consequently execute its exception step.

Restartability
When a Load Plan Run is restarted after a failure, the failed Load Plan steps are
restarted depending on the Restart Type parameter. For example, you can define
whether a parallel step should restart all its child steps or only those that have failed.

This section contains the following topics:

■ Defining Exceptions Flows

■ Using Exception Handling

■ Defining the Restart Behavior

Note: If the refresh SQL of a Global or Project variable has changed,
the variable refresh SQL of the corresponding load plan variable is not
updated automatically. You can update the load plan variable refresh
SQL by selecting the Refresh Variable Definition option from the
right-click context menu for a load plan variable on the Variables tab
of the load plan editor.

Creating a Load Plan

Using Load Plans 13-17

13.2.4.1 Defining Exceptions Flows
Exception steps are created and defined on the Exceptions tab of the Load Plan Editor.

This tab contains a list of Exception Steps. Each Exception Step consists in a hierarchy of
Load Plan steps.

The Exceptions tab is similar to the Steps tab in the Load Plan editor. The main
differences are:

■ There is no root step for the Exception Step hierarchy. Each exception step is a
separate root step.

■ The Serial, Parallel, Run Scenario, and Case steps have the same properties as on
the Steps tab but do not have an Exception Handling properties group. An
exception step that errors out cannot raise another exception step.

An Exception step can be created either by using the Add Step Wizard or with the
Quick Step tool by selecting the Add Step > Exception Step in the Load Plan Editor
toolbar. By default, the Exception step is created with the Step name: Exception. You
can modify this name in the Steps Hierarchy table or in the Property Inspector.

To create an Exception step with the Add Step Wizard:

1. Open the Load Plan Editor and go to the Exceptions tab.

2. In the Load Plan Editor toolbar, select Add Step > Add Step Wizard.

3. In the Add Step Wizard, select Exception from the Step Type list.

4. Click Next.

5. In the Step Name field, enter a name for the Exception step.

6. Click Finish.

7. The Exception step is added in the steps hierarchy.

You can now define the exception flow by adding new steps and organizing the
hierarchy under this exception step.

13.2.4.2 Using Exception Handling
Defining exception handling for a Load Plan step consists of associating an Exception
Step to this Load Plan step and defining the exception behavior. Exceptions steps can
be set for each step except for When and Else steps.

To define exception handling for a Load Plan step:

1. Open the Load Plan Editor and go to the Steps tab.

2. In the Steps Hierarchy table, select the step for which you want to define an
exception behavior. The Property Inspector displays the Step properties.

3. In the Exception Handling section of the Property Inspector, set the parameters as
follows:

■ Timeout (s): Enter the maximum time (in seconds) that this step takes before it
is aborted by the Load Plan. When a time-out is reached, the step is marked in
error and the Exception step (if defined) is executed. In this case, the exception

Note: Only values that are valid for the current selection are
displayed for the Step Type.

Creating a Load Plan

13-18 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

step never times out. If needed, a timeout can be set on a parent step to safe
guard such a potential long running situation.

If the step fails before the timeout and an exception step is executed, then the
execution time of the step plus the execution time of the exception step should
not exceed the timeout, otherwise the exception step will fail when the
timeout is reached.

Note that the default value of zero (0) indicates an infinite timeout.

■ Exception Step: From the list, select the Exception step to execute if this step
fails. Note that only Exception steps that have been created and defined on the
Exceptions tab of the Load Plan Editor appear in this list. See "Defining
Exceptions Flows" on page 13-17 for more information on how to create an
Exception step.

■ Exception Behavior: Defines how this step behaves in case an exception is
encountered. Select one of the following:

– Run Exception and Raise: Runs the Exception Step (if any) and raises the
exception to the parent step.

– Run Exception and Ignore: Runs the Exception Step (if any) and ignores
the exception. The parent step is notified of a successful run. Note that if
an exception is caused by the exception step itself, the parent step is
notified of the failure.

For Parallel steps only, the following parameters may be set:

Max Error Child Count: Displays the maximum number of child steps in error
that is accepted before this step is to be considered in error. When the number of
failed child steps exceeds this value, the parallel step is considered failed. The
currently running child steps are continued or stopped depending on the Restart
Type parameter for this parallel step:

– If the Restart type is Restart from failed children, the Load Plan waits for all
child sessions (these are the currently running sessions and the ones waiting to
be executed) to run and complete before it raises the error to the parent step.

– If the Restart Type is Restart all children, the Load Plan kills all running child
sessions and does not start any new ones before it raises the error to the
parent.

13.2.4.3 Defining the Restart Behavior
The Restart Type option defines how a step in error restarts when the Load Plan is
restarted. You can define the Restart Type parameter in the Exception Handling
section of the Properties Inspector.

Depending on the step type, the Restart Type parameter can take the values listed in
Table 13–5.

Table 13–5 Restart Type Values

Step Type Values and Description

Serial ■ Restart all children: When the Load Plan is restarted and if
this step is in error, the sequence of steps restarts from the
first one.

■ Restart from failure: When the Load Plan is restarted and if
this step is in error, the sequence of child steps starts from
the one that has failed.

Running Load Plans

Using Load Plans 13-19

13.3 Running Load Plans
You can run a Load Plan from Designer Navigator or Operator Navigator in ODI
Studio.

To run a Load Plan in Designer Navigator or Operator Navigator:

1. In the Load Plans and Scenarios accordion, select the Load Plan you want to
execute.

2. Right-click and select Execute.

3. In the Start Load Plan dialog, select the execution parameters:

■ Select the Context into which the Load Plan will be executed.

■ Select the Logical Agent that will run the Load Plan.

■ In the Variables table, enter the Startup values for the variables used in this
Load Plan.

4. Click OK.

5. The Load Plan Started dialog is displayed.

6. Click OK.

Parallel ■ Restart all children: When the Load Plan is restarted and if
this step is in error, all the child steps are restarted
regardless of their status. This is the default value.

■ Restart from failed children: When the Load Plan is
restarted and if this step is in error, only the failed child
steps are restarted in parallel.

Run Scenario ■ Restart from new session: When restarting the Load Plan
and this Run Scenario step is in error, start the scenario and
create a new session. This is the default value.

■ Restart from failed step: When restarting the Load Plan
and this Run Scenario step is in error, restart the session
from the step in error. All the tasks under this step are
restarted.

■ Restart from failed task: When restarting the Load Plan
and this Run Scenario step is in error, restart the session
from the task in error.

The same limitation as those described in "Restarting a Session"
in Administering Oracle Data Integrator apply to the sessions
restarted from a failed step or failed task.

Caution: Unless concurrent execution has been limited by using the
Concurrent Execution Controller options on the Definition tab of a
load plan, no restriction is imposed to prevent multiple instances of a
load plan from running simultaneously. It is possible for two or more
instances of a load plan to perform data read/write operations on the
same data sources and targets simultaneously. Use the Limit
Concurrent Executions option to disallow this behavior
programmatically if concurrent execution would be undesirable.

See "Creating a New Load Plan" on page 13-6 for details.

Table 13–5 (Cont.) Restart Type Values

Step Type Values and Description

Using Load Plans in Production

13-20 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

The Load Plan execution starts: a Load Plan instance is created along with the first
Load Plan run. You can review the Load Plan execution in the Operator Navigator.

For more information, see "Monitoring Integration Processes" in Administering Oracle
Data Integrator, and see also "Running Integration Processes" in Administering Oracle
Data Integrator for more information on the other run-time operations on Load Plans.

13.4 Using Load Plans in Production
Using Load Plans in production involves the following tasks:

■ Scheduling, starting, monitoring, stopping and restarting Load Plans. See
"Scheduling and Running Load Plans in Production" on page 13-20 for
information.

■ Moving Load Plans across environments. See "Exporting, Importing and
Versioning Load Plans" on page 13-20

13.4.1 Scheduling and Running Load Plans in Production
"Running Integration Processes" in Administering Oracle Data Integrator describes how
to schedule and run load plans, including executing, restarting, and stopping load
plan runs.

13.4.2 Exporting, Importing and Versioning Load Plans
A Load Plan can be exported and then imported into a development or execution
repository. This operation is used to deploy Load Plans in a different repository,
possibly in a different environment or site.

The export (and import) procedure allows you to transfer Oracle Data Integrator
objects from one repository to another.

13.4.2.1 Exporting Load Plans
It is possible to export a single Load Plan or several Load Plans at once.

Exporting one single Load Plan follows the standard procedure described in
"Exporting one ODI Object" on page 23-10.

For more information on exporting several Load Plans at once, see "Export Multiple
ODI Objects" on page 23-11.

Note that when you export a Load Plan and you select Export child objects, all its
child steps, schedules, and variables are also exported.

13.4.2.2 Importing Load Plans
Importing a Load Plan in a development repository is performed via Designer or
Operator Navigator. With an execution repository, only Operator Navigator is
available for this purpose.

The Load Plan import uses the standard object import method. See "Importing
Objects" on page 23-11 for more information.

Note: The export of a Load Plan does not include the scenarios
referenced by the Load Plan. Scenarios used in a Load Plan need to be
exported separately. How to export scenarios is described in
"Exporting Scenarios" on page 12-5.

Using Load Plans in Production

Using Load Plans 13-21

13.4.2.3 Versioning Load Plans
Load Plans can also be deployed and promoted to production using versions and
solutions. See Chapter 19, "Using Version Control (Legacy Mode)," for more
information.

Note: The export of a Load Plan does not include the scenarios
referenced by the Load Plan. Scenarios used in a Load Plan need to be
imported separately.

Using Load Plans in Production

13-22 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

14

Using Web Services 14-1

14Using Web Services

[15] This chapter describes how to work with Web services in Oracle Data Integrator.

This chapter includes the following sections:

■ Introduction to Web Services in Oracle Data Integrator

■ Oracle Data Integrator Run-Time Services and Data Services

■ Invoking Third-Party Web Services

14.1 Introduction to Web Services in Oracle Data Integrator
Oracle Data Integrator provides the following entry points into a service-oriented
architecture (SOA):

■ Data services

■ Oracle Data Integrator run-time services

■ Invoking third-party Web services

Figure 14–1 shows an overview of how the different types of Web services can interact.

Figure 14–1 Web Services in Action

Oracle Data Integrator Run-Time Services and Data Services

14-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Figure 14–1 shows a simple example with the Data Services, Run-Time Web services
(Public Web service and Agent Web service) and the OdiInvokeWebService tool.

The Data Services and Run-Time Web services components are invoked by a
third-party application, whereas the OdiInvokeWebService tool invokes a third-party
Web service:

■ The Data Services provides access to data in data stores (both source and target
data stores), as well as changes trapped by the Changed Data Capture framework.
This Web service is generated by Oracle Data Integrator and deployed in a Java EE
application server.

■ The Agent Web service commands the Oracle Data Integrator Agent to: start and
monitor a scenario; restart a session; get the ODI version; start, stop or restart a
load plan; or refresh agent configuration. Note that this Web service is built in the
Java EE or Standalone Agent.

■ The OdiInvokeWebService tool is used in a package and invokes a specific operation
on a port of the third-party Web service, for example to trigger a BPEL process.

14.2 Oracle Data Integrator Run-Time Services and Data Services
Oracle Data Integrator Run-Time Web services and Data Services are two different types of
Web services:

■ Oracle Data Integrator Run-Time Services (Agent Web service) are Web services that
enable users to leverage Oracle Data Integrator features in a service-oriented
architecture (SOA).

Oracle Data Integrator Run-Time Web services enable you to access the Oracle
Data Integrator features through Web services. These Web services are invoked by
a third-party application and manage execution of runtime artifacts developed
with Oracle Data Integrator.

"Managing Executions Using Web Services" in Administering Oracle Data Integrator
describes how to perform the different ODI execution tasks with ODI Run-Time
Services, such as executing a scenario and restarting a session. That topic also
provides examples of SOAP requests and responses.

■ Data Services are specialized Web services that provide access to data in datastores,
and to changes captured for these datastores using Changed Data Capture. Data
Services are generated by Oracle Data Integrator to give you access to your data
through Web services. These Web services are deployed to a Web services
container in an application server.

For more information on how to set up, generate and deploy Data Services refer to
"Generating and Deploying Data Services" in Administering Oracle Data
Integrator.

14.3 Invoking Third-Party Web Services
This section describes how to invoke third-party Web services in Oracle Data
Integrator.

This section includes the following topics:

■ Introduction to Web Service Invocation

■ Using HTTP Analyzer

■ Using the OdiInvokeWebService Tool

Invoking Third-Party Web Services

Using Web Services 14-3

14.3.1 Introduction to Web Service Invocation
You can invoke Web services:

■ In Oracle Data Integrator packages or procedures using the HTTP Analyzer tool.
This tool allows you to invoke any third party Web service, and save the response
in a SOAP file that can be processed with Oracle Data Integrator.

You can use the results to debug a locally or remotely deployed Web service.

■ For testing Data Services. The easiest way to test whether your generated data
services are running correctly is to use the HTTP Analyzer tool.

■ In Oracle Data Integrator packages or procedures using the OdiInvokeWebService
tool. This tool allows you to invoke any third party Web service, and save the
response in an XML file that can be processed with Oracle Data Integrator.

The three approaches are described in the sections that follow.

14.3.2 Using HTTP Analyzer
The HTTP Analyzer allows you to monitor request/response traffic between a Web
service client and the service. The HTTP Analyzer helps you to debug your Web
service in terms of the HTTP traffic sent and received.

When you run the HTTP Analyzer, there are a number of windows that provide
information for you.

The HTTP Analyzer enables you to:

■ Observe the exact content of the request and response TCP packets of your Web
service.

■ Edit a request packet, re-send the packet, and see the contents of the response
packet.

■ Test Web services that are secured using policies; encrypted messages will be
decrypted.

This section describes the following topics:

■ Using HTTP Analyzer: Main Steps

■ What Happens When You Run the HTTP Analyzer

■ How to Specify HTTP Analyzer Settings

■ How to Use the Log Window

■ How to Use the Test Window

■ How to Use the Instances Window

■ How to Use Multiple Instances

■ Using Credentials With HTTP Analyzer

■ Using SSL With HTTP Analyzer

■ How to Debug Web Pages Using the HTTP Analyzer

■ How to Use Rules to Determine Behavior

■ How to Set Rules

■ Reference: Troubleshooting the HTTP Analyzer

Invoking Third-Party Web Services

14-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

14.3.2.1 Using HTTP Analyzer: Main Steps
To examine the packets sent and received by the client to a Web service:

1. Create and run the Web service.

2. Start the HTTP Analyzer by selecting Tools > HTTP Analyzer.

You can also start it from the HTTP Analyzer button on the General tab of the
OdiInvokeWebService tool step.

It opens in its own window.

3. Click the Create New Soap Request button in the HTTP Analyzer Log window.

4. Enter the URL of a Web service, or open the WSDL for a Web service, to get
started.

5. Run the client proxy to the Web service. The request/response packet pairs are
listed in the HTTP Analyzer Test window.

The test window allows you examine the headers and parameters of a message.
You can test the service by entering a parameter that is appropriate and clicking
Send Request.

6. You can examine the contents of the HTTP headers of the request and response
packets to see the SOAP structure (for JAX-WS Web services), the HTTP content,
the Hex content or the raw message contents by choosing the appropriate tab at
the bottom of the HTTP Analyzer Test window.

7. You can test Web services that are secured using policies by performing one of the
following tasks:

■ Select an existing credential from the Credentials list.

Oracle Data Integrator delivers with a set of preconfigured credentials, HTTPS
Credential.

■ Click New to create a new credential. In the Credential dialog, define the
credentials to use in the HTTP Analyzer Test window.

14.3.2.2 What Happens When You Run the HTTP Analyzer
When you start the HTTP Analyzer and test a Web service, the Web service sends its
traffic via the HTTP Analyzer, using the proxy settings in the HTTP Analyzer
Preferences dialog.

By default, the HTTP Analyzer uses a single proxy on an analyzer instance (the default
is 8099), but you can add additional proxies of your own if you need to.

Each analyzer instance can have a set of rules to determine behavior, for example, to
redirect requests to a different host/URL, or to emulate a Web service.

Note: In order to use the HTTP Analyzer, you may need to update
the proxy settings.

Note: The WADL structure (for RESTful services) is not supported
by Oracle Data Integrator.

Invoking Third-Party Web Services

Using Web Services 14-5

14.3.2.3 How to Specify HTTP Analyzer Settings
By default, the HTTP Analyzer uses a single proxy on an analyzer instance (the default
is 8099), but you can add additional proxies of your own if you need to.

To set HTTP Analyzer preferences:

1. Open the HTTP Analyzer preferences dialog by doing one of the following:

■ Click the Start HTTP Analyzer button in the HTTP Analyzer Instances
window or Log window.

■ Choose Tools > Preferences to open the Preferences dialog, and navigating to
the HTTP Analyzer page.

For more information at any time, press F1 or click Help from the HTTP Analyzer
preferences dialog.

2. Make the changes you want to the HTTP Analyzer instance. For example, to use a
different host and port number, open the Proxy Settings dialog by clicking
Configure Proxy.

14.3.2.4 How to Use the Log Window
When you open the HTTP Analyzer from the Tools menu, the HTTP Analyzer Log
window opens, illustrated in Figure 14–2.

Figure 14–2 HTTP Analyzer Log Screen

When HTTP Analyzer runs, it outputs request/response messages to the HTTP
Analyzer log window. You can group and reorder the messages:

■ To reorder the messages, select the Sequence tab, then sort using the column
headers (click on the header to sort, double-click to secondary sort).

■ To group messages, click the Correlation tab.

■ To change the order of columns, grab the column header and drag it to its new
position.

Invoking Third-Party Web Services

14-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

14.3.2.5 How to Use the Test Window
An empty HTTP Analyzer test window appears when you click the Create New Soap
Request button in the HTTP Analyzer Log window.

Enter the URL of a Web service, or open the WSDL for a Web service, and then click
Send Request. The results of the request are displayed in the test window, as shown in
Figure 14–3.

Table 14–1 HTTP Analyzer Log Window Toolbar Icons

Icon Name Function

Analyzer
Preferences

Click to open the HTTP Analyzer Preferences dialog where you
can specify a new listener port, or change the default proxy. An
alternative way to open this dialog is to choose Tools >
Preferences, and then navigate to the HTTP Analyzer page. For
more information, see

Create New
Request

Click to open the HTTP Analyzer Test window, where you enter
payload details, and edit and resend messages.

Start HTTP
Analyzer

Click to start the HTTP Analyzer running. The monitor runs in the
background, and only stops when you click Stop or exit
JDeveloper. If you have more than one listener defined clicking
this button starts them all. To start just one listener, click the down
arrow and select the listener to start.

Stop HTTP
Analyzer

Click to stop the HTTP Analyzer running. If you have more than
one listener running, clicking this button stops them all. To stop
just one listener click the down arrow and select the listener to
stop.

Send
Request

Click to resend a request when you have changed the content of a
request. The changed request is sent and you can see any changes
in the response that is returned.

Open WS-I
log file

Click to open the Select WS-I Log File to Upload dialog, where
you can navigate to an existing WS-I log file.

Save Packet
Data

Click to save the contents of the HTTP Analyzer Log Window to a
file.

WS-I
Analyze

This tool does not apply to Oracle Data Integrator.

Select All Click to select all the entries in the HTTP Analyzer Log Window.

Deselect All Click to deselect all the entries in the HTTP Analyzer.

Clear
Selected
History
(Delete)

Click to clear the entries in the HTTP Analyzer.

Invoking Third-Party Web Services

Using Web Services 14-7

Figure 14–3 HTTP Analyzer Test Window

You can examine the contents of the HTTP headers of the request and response
packets to see the SOAP structure, the HTTP content, the Hex content or the raw
message contents by choosing the appropriate tab at the bottom of the HTTP Analyzer
Test window.

The test window allows you examine the headers and parameters of a message. You
can test the service by entering a parameter that is appropriate and clicking Send
Request.

The tabs along the bottom of the test window allow you choose how you see the
content of the message. You can choose to see the message as:

■ The SOAP structure, illustrated in Figure 14–3.

■ The HTTP code, for example:

<?xml version = '1.0' encoding = 'UTF-8'?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="http://www.example.com/wls">
 <env:Header/>
 <env:Body>
 <ns1:sayHello>
 <arg0/>
 </ns1:sayHello>
 </env:Body>

■ The hex content of the message, for example:

[000..015] 3C 65 65 20 78 6D ... <env:Envelope xm
[016..031] 6C 6E 70 3A 2F 2F ... lns:env="http://
[032..047] 73 63 6F 61 70 2E ... schemas.xmlsoap.
[048..063] 6F 72 65 6C 6F 70 ... org/soap/envelop
[064..079] 65 2F 22 20 78 6D ... e/" xmlns:ns1="h
[080..095] 74 74 70 3A 2F 2F ... ttp://www.bea.co
[096..111] 6D 2F 77 6C 73 22 ... m/wls"><env:Head
[112..127] 65 72 2F 3E 3C 65 ... er/><env:Body><n
[128..143] 73 31 3A 73 61 79 ... s1:sayHello><arg
[144..159] 30 3E 3C 2F 61 72 ... 0></arg0></ns1:s
[160..175] 61 79 48 65 6C 6C ... ayHello></env:Bo
[176..191] 64 79 3E 3C 2F 65 ... dy></env:Envelop
[192..193] 65 3E ... e>

■ The raw message, for example:

POST http://localhost:7001/MySimpleEjb/MySimpleEjbService HTTP/1.1
Content-Type: text/xml; charset=UTF-8

Invoking Third-Party Web Services

14-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

SOAPAction: ""
Host: localhost:7001
Content-Length: 194
X-HTTPAnalyzer-Rules: 3@localhost:8099

<?xml version = '1.0' encoding = 'UTF-8'?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="http://www.example.com/wls">
 <env:Header/>
 <env:Body>
 <ns1:sayHello>
 <arg0/>
 </ns1:sayHello>
 </env:Body>
</env:Envelope>

14.3.2.6 How to Use the Instances Window
When you open the HTTP Analyzer from the Tools menu, the HTTP Analyzer tab
appears by default.

Click the HTTP Analyzer Instances tab. The HTTP Analyzer Instances window
appears, as shown in Figure 14–4.

This window provides information about the instances of the HTTP Analyzer that are
currently running, or that were running and have been stopped. The instance is
identified by the host and port, and any rules are identified. You can start and stop the
instance from this window.

Figure 14–4 HTTP Analyzer Instances Window

You create a new instance in the HTTP Analyzer dialog, which opens when you click
the Create New Soap Request button.

Table 14–2 HTTP Analyzer Instances Window Toolbar Icons

Icon Name Function

Analyzer
Preferences

Click to open the HTTP Analyzer dialog where you can specify a
new listener port, or change the default proxy.

Create New
Request

Click to open a new instance of the HTTP Analyzer Test window,
where you enter payload details, and edit and resend messages.

Start HTTP
Analyzer

Click to start the HTTP Analyzer running. The monitor runs in the
background, and only stops when you click Stop or exit ODI. If
you have more than one listener defined clicking this button starts
them all. To start just one listener, click the down arrow and select
the listener to start.

Invoking Third-Party Web Services

Using Web Services 14-9

14.3.2.7 How to Use Multiple Instances
You can have more than one instance of HTTP Analyzer running. Each will use a
different host and port combination, and you can see a summary of them in the HTTP
Analyzer Instances window.

To add an additional HTTP Analyzer Instance:
1. Open the HTTP Analyzer preferences dialog by doing one of the following:

■ Click the Analyzer Preferences button in the HTTP Analyzer Instances
window or Log window.

■ Choose Tools > Preferences to open the Preferences dialog, and navigating to
the HTTP Analyzer page.

For more information at any time, press F1 or click Help from the HTTP Analyzer
preferences dialog.

2. To create a new HTTP Analyzer instance, that is a new listener, click Add. The new
listener is listed and selected by default for you to change any of the values.

14.3.2.8 Using Credentials With HTTP Analyzer
You can use the HTTP Analyzer to test Web services that are secured using policies.
You choose the credentials to use in the HTTP Analyzer Test window.

HTTP Analyzer supports the following credentials for this purpose:

■ HTTPS. The message is encrypted prior to transmission using a public key
certificate that is signed by a trusted certificate authority. The message is
decrypted on arrival.

■ Username token. This token does not apply to Oracle Data Integrator.

This is a way of carrying basic authentication information using a token based on
username/password.

■ X509. This token does not apply to Oracle Data Integrator.

This is a PKI standard for single sign-on authentication, where certificates are used
to provide identity, and to sign and encrypt messages.

■ STS. This token does not apply to Oracle Data Integrator.

Security Token Service (STS) is a Web service which issues and manages security
tokens.

14.3.2.9 Using SSL With HTTP Analyzer
You can use the HTTP Analyzer with secured services or applications, for example,
Web services secured by policies. Oracle Data Integrator includes a credential, HTTPS
Credential, for this purpose.

Once you have configured the credentials, you can choose which to use in the HTTP
Analyzer Test window.

Stop HTTP
Analyzer

Click to stop the HTTP Analyzer running. If you have more than
one listener running, clicking this button stops them all. To stop
just one listener click the down arrow and select the listener to
stop.

Table 14–2 (Cont.) HTTP Analyzer Instances Window Toolbar Icons

Icon Name Function

Invoking Third-Party Web Services

14-10 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

HTTPS encrypts an HTTP message prior to transmission and decrypts it upon arrival.
It uses a public key certificate signed by a trusted certificate authority. When the
integrated application server is first started, it generates a DemoIdentity that is unique,
and the key in it is used to set up the HTTPS channel.

For more information about keystores and keystore providers, see Understanding
Security for Oracle WebLogic Server.

When the default credential HTTPS Credential is selected, you need to specify the
keystores that the HTTP Analyzer should use when handling HTTPS traffic.

Two keystores are required to run the HTTP Analyzer:

■ The "Client Trusted Certificate Keystore," containing the certificates of all the hosts
to be trusted by the Analyzer (client trust) when it makes onward connections.
The server's certificate must be in this keystore.

The "Client Keystore" is required only when mutual authentication is required.

■ The "Server Keystore," containing a key that the Analyzer can use to authenticate
itself to calling clients.

To configure the HTTP Analyzer to use different HTTPS values:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Credentials node. For more information, press
F1 or click Help from within the dialog page.

3. Enter the new keystore and certificate details you want to use.

14.3.2.10 How to Debug Web Pages Using the HTTP Analyzer
You can use the HTTP Analyzer when you are debugging Web pages, such as HTML,
JSP, or JSF pages. This allows you to directly examine the traffic that is sent back and
forth to the browser.

To debug Web pages using the HTTP Analyzer:
1. Configure a browser to route messages through the HTTP Analyzer so that you

can see the traffic between the web browser and client.

2. Start the HTTP Analyzer running.

3. Run the class, application, or Web page that you want to analyze in the usual way.

Each request and response packet is listed in the HTTP Analyzer Log window, and
detailed in the HTTP Analyzer Test Window.

14.3.2.11 How to Use Rules to Determine Behavior
You can set rules so that the HTTP Analyzer runs using behavior determined by those
rules. You can set more than one rule in an HTTP Analyzer instance. If a service's URL
matches a rule, the rule is applied. If not, the next rule in the list is checked. If the
service does not match any of the rules the client returns an error. For this reason, you
should always use a Pass Through rule with a blank filter (which just passes the
request through) as the last rule in a list to catch any messages not caught by the
preceding rules.

The types of rule available are:

■ Pass Through Rule

■ Forward Rule

Invoking Third-Party Web Services

Using Web Services 14-11

■ URL Substitution Rule

■ Tape Rule

14.3.2.11.1 Using the Pass Through Rule The Pass Through simply passes a request on to
the service if the URL filter matches. When you first open the Rule Settings dialog, two
Pass Through Rules are defined:

■ The first has a URL filter of http://localhost:631 to ignore print service
requests.

■ The second has a blank URL filter, and it just which just passes the request to the
original service. This rule should normally be moved to end of the list if new rules
are added.

14.3.2.11.2 Using the Forward Rule The Forward rule is used to intercept all URLs
matched by the filter and it forwards the request on to a single URL.

14.3.2.11.3 Using the URL Substitution Rule The URL Substitution rule allows you to
re-host services by replacing parts of URL ranges. For example, you can replace the
machine name when moving between the integrated application server and Oracle
WebLogic Server.

14.3.2.11.4 Using the Tape Rule The tape rule allows you to run the HTTP Analyzer in
simulator mode, where a standard WS-I log file is the input to the rule. When you set
up a tape rule, there are powerful options that you can use:

■ Loop Tape, which allows you to run the tape again and again.

■ Skip to matching URL and method, which only returns if it finds a matching URL
and HTTP request method. This means that you can have a WSDL and an
endpoint request in the same tape rule.

■ Correct header date and Correct Content Size, which allow you change the header
date and content size of the message to current values so that the request does not
fail.

An example of using a tape rule would be to test a Web service client developed to run
against an external Web service.

To test a Web service client developed to run against an external Web service:
1. Create the client to the external Web service.

2. Run the client against the Web service with the HTTP Analyzer running, and save
the results as a WS-I log file.

You can edit the WS-I file to change the values returned to the client.

3. In the HTTP Analyzer page of the Preferences dialog, create a tape rule.

Ensure that it is above the blank Pass Through rule in the list of rules.

4. In the Rule Settings dialog, use the path of the WS-I file as the Tape path in the
Rule Settings dialog.

When you rerun the client, it runs against the entries in the WS-I file instead of
against the external Web service.

There are other options that allow you to:

■ Correct the time and size of the entries in the WS-I log file so the message
returned to the client is correct.

Invoking Third-Party Web Services

14-12 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ Loop the tape so that it runs more than once.

■ Skip to a matching URL and HTTP request method, so that you can have a
WSDL and an endpoint request in the same tape rule.

14.3.2.12 How to Set Rules
You can set rules so that the HTTP Analyzer runs using behavior determined by those
rules. Each analyzer instance can have a set of rules to determine behavior, for
example, to redirect requests to a different host/URL, or to emulate a Web service.

To set rules for an HTTP Analyzer instance:
1. Open the HTTP Analyzer by choosing Tools > HTTP Analyzer. The HTTP

Analyzer docked window opens.

Alternatively, the HTTP Analyzer automatically opens when you choose Test Web
Service from the context menu of a Web service container in the Applications
window.

2. Click the Analyzer Preferences button to open the HTTP Analyzer preferences
dialog, in which you can specify a new listener port, or change the default proxy.

Alternatively, choose Tools > Preferences, and then navigate to the HTTP
Analyzer page.

3. Click Configure Rules to open the Rule Settings dialog in which you define rules
to determine the actions the HTTP Analyzer should take. For more help at any
time, press F1 or click Help in the Rule Settings dialog.

4. In the Rule Settings dialog, enter the URL of the reference service you want to test
against as the Reference URL. This will help you when you start creating rules, as
you will be able to see if and how the rule will be applied.

5. Define one or more rules for the service to run the client against. To add a new
rule, click the down arrow next to Add, and choose the type of rule from the list.
The fields in the dialog depend on the type of rule that is currently selected.

6. The rules are applied in order from top to bottom. Reorder them using the up and
down reorder buttons. It is important that the last rule is a blank Pass Through
rule.

14.3.2.13 Reference: Troubleshooting the HTTP Analyzer
This section contains information to help resolve problems that you may have when
running the HTTP Analyzer.

14.3.2.13.1 Running the HTTP Analyzer While Another Application is Running If you have an
application waiting for a response, do not start or stop the HTTP Analyzer. Terminate
the application before starting or stopping the HTTP Analyzer.

The HTTP Analyzer can use one or more different sets of proxy settings. These settings
are specific to the IDE only. If enabled, Oracle Data Integrator uses these settings to
access the Internet through your organization proxy server. If you do not enable the
proxy server setting, then your Web application may not be able to access the Internet.
Proxy server settings are visible in the preferences settings for your machine's default
browser.

Note: Tape Rules will not work with SOAP messages that use
credentials or headers with expiry dates in them.

Invoking Third-Party Web Services

Using Web Services 14-13

When you run the HTTP Analyzer, it can use one or more different sets of proxy
settings. These proxy settings override the HTTP Proxy Server settings when the HTTP
Analyzer is running.

14.3.2.13.2 Changing Proxy Settings When you use the HTTP Analyzer, you may need to
change the proxy settings in Oracle Data Integrator. For example:

■ If you are testing an external service and your machine is behind a firewall, ensure
that Oracle Data Integrator is using the HTTP proxy server.

■ If you are testing a service in the integrated application server, for example when
you choose Test Web Service from the context menu of a Web service in the
Applications window, ensure that Oracle Data Integrator is not using the HTTP
proxy server.

If you run the HTTP Analyzer, and see the message

500 Server Error
The following error occurred: [code=CANT_CONNECT_LOOPBACK] Cannot connect due to
potential loopback problems

you probably need to add localhost|127.0.0.1 to the proxy exclusion list.

To set the HTTP proxy server and edit the exception list:
1. Choose Tools > Preferences, and select Web Browser/Proxy.

2. Ensure that Use HTTP Proxy Server is selected or deselected as appropriate.

3. Add any appropriate values to the Exceptions list, using | as the separator.

In order for Java to use localhost as the proxy ~localhost must be in the
Exceptions list, even if it is the only entry.

14.3.3 Using the OdiInvokeWebService Tool
The OdiInvokeWebService tool invokes a Web service using the HTTP or HTTPS
protocol and is able to write the returned response to an XML file, which can be an
XML payload or a full-formed SOAP message including a SOAP header and body.

You can configure OdiInvokeWebService tool parameters using Http Analyzer. To do
this, click the Http Analyzer button on the General tab of the OdiInvokeWebService
step in the package editor. This opens the OdiInvokeWebServiceAdvance editor, which
you can use to configure command parameters.

See "OdiInvokeWebService" in Oracle Data Integrator Tool Reference for details on the
OdiInvokeWebService tool parameters.

The OdiInvokeWebService tool invokes a specific operation on a port of a Web service
whose description file (WSDL) URL is provided. If this operation requires a SOAP
request, it is provided either in a request file or in the tool command. The response of
the Web service request is written to an XML file that can be used in Oracle Data
Integrator.

Note: When using the XML payload format, the
OdiInvokeWebService tool does not support the SOAP headers of the
request. In order to work with SOAP headers, for example for secured
Web service invocation, use a full SOAP message and manually
modify the SOAP headers.

Invoking Third-Party Web Services

14-14 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

This tool can be used as a regular Oracle Data Integrator tool in a tool step of a
package and also in procedures and knowledge modules. See "Adding Oracle Data
Integrator Tool Steps" on page 7-6 for information on how to create a tool step in a
package.

You can process the information from your responses using regular Oracle Data
Integrator interfaces sourcing for the XML technology. Refer to the Connectivity and
Modules Guide for Oracle Data Integrator for more information on XML file processing.

Oracle Data Integrator provides the OdiXMLConcat and OdiXMLSplit tools for
processing the Web service response. Refer to "XML" in Oracle Data Integrator Tool
Reference for details on how to use these tools.

Using the Binding Mechanism for Requests
It is possible to use the Binding mechanism when using a Web service call in a
Procedure. With this method, it is possible to call a Web service for each row returned
by a query, parameterizing the request based on the row's values. Refer to "Binding
Source and Target Data" on page 11-8 for more information.

Note: Each XML file is defined as a model in Oracle Data Integrator.
When using XML file processing for the request or response file, a
model will be created for each request or response file. It is
recommended to use model folders to arrange them. See "Organizing
Models with Folders" on page 18-2 for more information.

15

Using Shortcuts 15-1

15Using Shortcuts

[16] This chapter gives an introduction to shortcuts and describes how to work with
shortcuts in Oracle Data Integrator.

This chapter includes the following sections:

■ Introduction to Shortcuts

■ Introduction to the Shortcut Editor

■ Creating a Shortcut

■ Working with Shortcuts in your Projects

15.1 Introduction to Shortcuts
Oracle Data Integrator is often used for populating very large data warehouses
sourcing from various versions of source applications. To express the large
commonality that often exists between two different versions of the same source
application, such as same tables and columns, same constraints, and same
transformations, shortcuts have been introduced into Oracle Data Integrator. Shortcuts
are created for common objects in separate locations. At deployment time, for example
during an export from the design repository to the runtime repository, these shortcuts
are materialized as final objects for the given version of the source application.

15.1.1 Shortcutting Concepts
A shortcut is a link to an Oracle Data Integrator object. You can create a shortcut for
datastores, mappings, reusable mappings, packages, and procedures.

A referenced object is the object directly referenced by the shortcut. The referenced object
of a shortcut may be a shortcut itself.

The base object is the original base object. It is the real object associated with the
shortcut. Changes made to the base object are reflected in all shortcuts created for this
object.

When a shortcut is materialized, it is converted in the design repository to a real object
with the same properties as the ultimate base object. The materialized shortcut retains
its name, relationships, and object ID.

Release tags have been introduced to manage the materialization of shortcuts based on
specific tags. Release tags can be added to folders and models.

See "Working with Shortcuts in your Projects" on page 15-4 for more information.

Introduction to the Shortcut Editor

15-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

15.1.2 Shortcut Objects
You can create a shortcut for the following ODI objects: datastores, mappings,
packages, and procedures.

Shortcuts can be distinguished from the original object by the arrow that appears on
the icon. For example, the icon is a shortcut for a procedure.

Shortcut reference objects display the same nodes as the base objects in Designer
Navigator.

Guidelines for Creating Shortcuts
Shortcuts are generally used like the objects they are referring to. However, the
following rules apply when creating shortcuts for:

■ Datastores: It is possible to create an object shortcut for datastores across different
models/sub models but the source and destination models must be defined with
the same technology. Also, a model cannot contain a datastore and a shortcut to
another datastore with the same table name. Two shortcuts within a model cannot
contain the same base object.

Datastore shortcuts can be used as sources or the target of a mapping and as
datastores within a package. The mappings and packages containing datastore
shortcuts refer to the datastore shortcut and the model in addition to the base
datastore.

■ Packages, Mappings, Reusable Mappings, and Procedures: It is possible to create an
object shortcut for packages, mappings, and procedures belonging to a specific
ODI folder.

Mapping, procedure, and package shortcuts within a Project can only refer to
objects (mappings, procedures, and packages) that belong to the same object.

– Package shortcuts can be used in Load Plan steps

– Mapping shortcuts can be used within a mapping, a reusable mapping, a
package, or a Load Plan step

– Procedure shortcuts can be used in a package or a Load Plan step

When adding a shortcut to a Load Plan step, Oracle Data Integrator generates a
scenario and addis it as a Run Scenario step.

15.2 Introduction to the Shortcut Editor
The Shortcut editor provides a single environment for editing and managing shortcuts
in Oracle Data Integrator. Figure 15–1 gives an overview of the Shortcut editor.

Creating a Shortcut

Using Shortcuts 15-3

Figure 15–1 Shortcut Editor of a Package Shortcut

The Shortcut Editor has the following tabs:

■ Definition

Includes the names of the shortcut, the referenced object, and the base object

■ Execution (only for shortcuts of Packages, Mappings (other than reusable
mappings), and Procedures)

Is organized into the Direct Executions and the Scenario Execution tabs and
shows the results of previous executions

■ Scenarios (only for shortcuts of Packages, Mappings (other than reusable
mappings), and Procedures)

Displays in a table view the scenarios generated for this component

■ Version

Includes the details necessary to manage versions of the shortcut

The Shortcut Editor provides two buttons to handle its references:

■ View Referenced Object: Click to display the editor of the referenced object

■ View Base Object: Click to display the editor of the base object

15.3 Creating a Shortcut
Shortcuts can have the same name as the base object. It is possible to rename a shortcut
but note that the shortcut reference object name must be used instead of the base name
for object usages and materialization purposes.

Shortcuts can be created for one or multiple objects at a time and also for the same
object in more than one location.

Also note that two shortcut objects within a folder cannot refer to the same base object
and follow the "Guidelines for Creating Shortcuts" on page 15-2.

To create a shortcut:

1. In Designer Navigator, select the object that you want to create a shortcut to.

Note that you can select multiple objects of the same type.

Working with Shortcuts in your Projects

15-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

2. Right-click the object(s) and select Copy.

3. Go to the location where you want to insert the shortcut. This must be the parent
of another folder or model.

4. Right-click the folder or model and select Paste as Shortcut.

Note that the menu item Paste as Shortcut is only enabled if:

■ The previous operation was a Copy operation.

■ The copied object is an object for which shortcuts can be created. See "Shortcut
Objects" on page 15-2 for more information.

■ The new location is legal for the copied objects. Legal locations are:

– For datastore shortcuts: A model or sub-model node different of the source
model

– For mapping, package, and procedure shortcuts: A folder node in the same
project as the source folder but not the source folder

5. The new shortcut appears in Designer Navigator.

15.4 Working with Shortcuts in your Projects
This section describes the actions that you can perform when you work with shorts in
your Oracle Data Integrator projects. These actions include:

■ Duplicating a Selection with Shortcuts

■ Jump to the Reference Shortcut

■ Jump to the Base Object

■ Executing Shortcuts

■ Materializing Shortcuts

■ Exporting and Importing Shortcuts

■ Using Release Tags

■ Advanced Actions

15.4.1 Duplicating a Selection with Shortcuts
It is possible to create several shortcuts at once for the objects within a given model or
folder.

■ If you perform a quick massive shortcut creation on a model node, the new model
will be a copy of the source model with all datastores created as shortcuts.

■ If you perform a quick massive shortcut creation on a folder node, the new folder
will be a copy of the source folder with all mappings, packages, and procedures
created as shortcuts.

To perform a quick massive shortcut creation:

1. In Designer Navigator, select a folder or model node.

2. Right-click and select Duplicate Selection with Shortcuts.

Tip: It is possible to create several shortcuts at once. See "Duplicating
a Selection with Shortcuts" on page 15-4 for more information.

Working with Shortcuts in your Projects

Using Shortcuts 15-5

15.4.2 Jump to the Reference Shortcut
Use this action if you want to move the current selection in Designer Navigator to the
referenced object.

To jump to the referenced object:

1. In Designer Navigator, select the shortcut whose referenced object you want to
find.

2. Right-click and select Shortcut > Follow Shortcut.

The referenced object is selected in Designer Navigator.

15.4.3 Jump to the Base Object
Use this action if you want to move the current selection in Designer Navigator to the
base object.

To jump to the base object:

1. In Designer Navigator, select the shortcut whose base object you want to find.

2. Right-click and select Shortcut > Jump to Base.

The base object is selected in Designer Navigator.

15.4.4 Executing Shortcuts
Executing a shortcut executes the underlying procedure the shortcut is referring to.
Shortcuts are executed like any other object in Oracle Data Integrator. See "Running
Integration Processes" in Administering Oracle Data Integrator.

15.4.5 Materializing Shortcuts
When a shortcut is materialized, it is converted in the design repository to a real object
with the same properties as the ultimate base object. The materialized shortcut retains
its name, relationships, and object ID. All direct references to the shortcut are
automatically updated to point to the new object. This applies also to release tags. If
the materialized shortcut contained release tags, all references to the base object within
the release tag folder or model would be changed to the new object.

15.4.6 Exporting and Importing Shortcuts
Shortcuts can be exported and imported either as materialized objects or as shortcuts.

Standard and multiple export do not support materialization. When using standard or
multiple export, a shortcut is exported as a shortcut object. Any import will import the
shortcut as a shortcut.

When you perform a Smart export and your export contains shortcuts, you can choose
to materialize the shortcuts:

Note: When materializing a mapping shortcut and the mapping has
a multilogical schema environment, for example when the mapping
has a staging area on the same logical schema as the source
datastore(s), the materialized mapping might contain errors such as
changes in the flow. Review the materialized mapping to check for
errors.

Working with Shortcuts in your Projects

15-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ If you select not to materialize the shortcuts, both the shortcuts and the base
objects will be exported.

■ If you select to materialize the shortcuts, the export file will contain the converted
shortcuts as real objects with the same object ID as the shortcut. You can import
this export file into a different repository or back to the original repository.

– When this export file is imported into a different repository, the former
shortcut objects will now be real objects.

– When this export file is imported back into the original repository, the
materialized object ID will be matched with the shortcut ID. Use the Smart
import feature to manage this matching process. The Smart import feature is
able to replace the shortcut by the materialized object.

See "Smart Export and Import" on page 23-14 for more information.

15.4.7 Using Release Tags
Release tags allow you to manage the materialization of shortcuts based on specific
tags. You can also use release tags to organize your own metadata. Release tags can be
added in form of a text string to folders and model folders.

Note the following concerning release tags:

■ No two models may have the same release tag and logical schema. The release tag
is set in the model and in the folder.

■ The release tag is used only during materialization and export.

■ The release tag on a folder applies only to the package, mapping, and procedure
contents of the folder. The release tag is not inherited by any subfolder.

To add a new release tag or assign an existing release tag:

1. From the Designer Navigator toolbar menu, select Edit Release Tag...

This opens the Release Tag wizard.

2. In the Release Tag Name field, do one of the following:

■ Enter a new release tag name.

■ Select a release tag name from the list.

This release tag name will be added to a given folder.

3. The available folders are displayed on the left, in the Available list. From the
Available list, select the folder(s) to which you wish to add the release tag and use
the arrows to move the folder to the Selected list.

4. Click Next to add the release tag to a model.

You can click Finish if you do not want to add the release tag to a model.

5. The available models and model folders are displayed on the left, in the Available
list. From the Available list, select the model(s) and/or model folder(s) to which
you wish to add the release tag and use the arrows to move the model(s) and/or
model folder(s) to the Selected list.

6. Click Finish.

The release tag is added to the selected project folders and models.

Working with Shortcuts in your Projects

Using Shortcuts 15-7

15.4.8 Advanced Actions
This section describes the advanced actions you can perform with shortcuts.
Advanced actions include:

■ Data/View Data Action on a Datastore Shortcut

■ Perform a Static Check on a Model, Submodel or Datastore Shortcut

■ Review Erroneous Records of a Datastore Shortcut

■ Generate Scenarios of a Shortcut

■ Reverse-Engineer a Model that Contains Shortcuts

Data/View Data Action on a Datastore Shortcut
You can perform a Data or View Data action on a datastore shortcut to view or edit the
data of the underlying datastore the shortcut is referring to.

To view or edit the datastore's data the shortcut is referring to, follow the standard
procedure described in "Editing and Viewing a Datastore's Data" on page 3-11.

Perform a Static Check on a Model, Submodel or Datastore Shortcut
You can perform a static check on a model, submodel or datastore shortcut. This
performs a static check on the underlying object this shortcut is referring to.

To perform a static check on a model, submodel or datastore shortcut, follow the
standard procedure described in "Perform a Static Check on a Model, Sub-Model or
Datastore" on page 3-13.

Review Erroneous Records of a Datastore Shortcut
You can review erroneous records of the datastore a datastore shortcut is referring to.

To review erroneous records of the datastore shortcut, follow the standard procedure
described in "Reviewing Erroneous Records" on page 3-14.

Generate Scenarios of a Shortcut
You can generate a scenario from mapping (but not reusable mapping), package, and
procedure shortcuts. This generates a scenario of the underlying object this shortcut is
referring to. Note that the generated scenario will appear under the shortcut and not
the referenced object in Designer Navigator.

To generate a scenario of a shortcut, follow the standard procedure described in
"Generating a Scenario" on page 12-2.

Reverse-Engineer a Model that Contains Shortcuts
You can reverse-engineer a model that contains shortcuts using the RKM Oracle. This
Knowledge Module provides the option SHORTCUT_HANDLING_MODE to manage
shortcuts that have the same table name as actual tables being retrieved from the
database. This option can take three values:

■ ALWAYS_MATERIALIZE: Conflicted shortcuts are always materialized and
datastores are reversed (default).

■ ALWAYS_SKIP: Conflicted shortcuts are always skipped and not reversed.

Tip: You can use release tags when performing a Smart Export by
choosing to add all objects of a given release to the Smart Export. See
"Performing a Smart Export" on page 23-14 for more information.

Working with Shortcuts in your Projects

15-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ PROMPT: The Shortcut Conflict Detected dialog is displayed. You can define how
to handle conflicted shortcuts:

– Select Materialize, to materialize and reverse-engineer the conflicted datastore
shortcut.

– Leave Materialize unselected, to skip the conflicted shortcuts. Unselected
datastores are not reversed and the shortcut remains.

For more information on reverse-engineering, see Chapter 3, "Creating and Using Data
Models and Datastores."

Note: When you reverse-engineer a model that contains datastore
shortcuts and you choose to materialize the shortcuts, the
reverse-engineering process will be incremental for database objects
that have different attributes than the datastores shortcuts. For
example, if the datastore shortcut has an attribute that does not exist
in the database object, the attribute will not be removed from the
reversed and materialized datastore under the assumption that the
attribute is used somewhere else.

If you use any other RKM or standard reverse-engineering to
reverse-engineer a shortcut model, the conflicted shortcuts will be
materialized and the datastores reversed.

16

Using Groovy Scripting 16-1

16Using Groovy Scripting

[17] This chapter provides an introduction to the Groovy language and explains how to use
Groovy scripting in Oracle Data Integrator.

This appendix includes the following sections:

■ Introduction to Groovy

■ Introduction to the Groovy Editor

■ Using the Groovy Editor

■ Automating Development Tasks - Examples

16.1 Introduction to Groovy
Groovy is a scripting language with Java-like syntax for the Java platform. The Groovy
scripting language simplifies the authoring of code by employing dot-separated
notation, yet still supporting syntax to manipulate collections, Strings, and JavaBeans.

For more information about the Groovy language, see the following web site:

http://groovy.codehaus.org/

16.2 Introduction to the Groovy Editor
The Groovy editor provides a single environment for creating, editing, and executing
Groovy scripts within the ODI Studio context. Figure 16–1 gives an overview of the
Groovy editor.

Using the Groovy Editor

16-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Figure 16–1 Groovy Editor

The Groovy editor provides all standard features of a code editor such as syntax
highlighting and common code editor commands except for debugging. The following
commands are supported and accessed through the context menu or through the
Source main menu:

■ Show Whitespace

■ Text Edits

– Join Line

– Delete Current Line

– Trim Trailing Whitespace

– Convert Leading Tabs to Spaces

– Convert Leading Spaces to Tabs

■ Indent Block

■ Unindent Block

■ Move Up

■ Move Down

16.3 Using the Groovy Editor
You can perform the following actions with the Groovy editor:

Using the Groovy Editor

Using Groovy Scripting 16-3

■ Create a Groovy Script

■ Open and Edit an Existing Groovy Script

■ Save a Groovy Script

■ Execute a Groovy Script

■ Stop the Execution of a Groovy Script

■ Perform Advanced Actions

16.3.1 Create a Groovy Script
To create a Groovy script in ODI Studio:

1. From the Tools Main menu select Groovy > New Script.

This opens the Groovy editor.

2. Enter the Groovy code.

You can now save or execute the script.

16.3.2 Open and Edit an Existing Groovy Script
To edit a Groovy Script that has been previously created:

1. From the Tools Main menu select Groovy > Open Script or Recent Scripts.

2. Select the Groovy file and click Open.

This opens the selected file in the Groovy editor.

3. Edit the Groovy script.

You can now save or execute the script.

16.3.3 Save a Groovy Script
To save a Groovy script that is currently open in the Groovy editor:

From the Tools Main menu select Groovy > Save Script or Save Script As.

16.3.4 Execute a Groovy Script
You can execute one or several Groovy scripts at once and also execute one script
several times in parallel.

You can only execute a script that is opened in the Groovy editor. ODI Studio does not
execute a selection of the script, it executes the whole Groovy script.

 To execute a Groovy script in ODI Studio:

1. Select the script that you want to execute in the Groovy editor.

2. Click Execute in the toolbar.

3. The script is executed.

You can now follow the execution in the Log window.

Note: The Save main toolbar option is not associated with the
Groovy Editor.

Using the Groovy Editor

16-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

16.3.5 Stop the Execution of a Groovy Script
You can only stop running scripts. If no script is running, the Stop buttons are
deactivated.

The execution of Groovy scripts can be stopped using two methods:

■ Clicking Stop in the Log tab. This stops the execution of the particular script.

■ Click Stop on the toolbar. If several scripts are running, you can select the script
execution to stop from the drop down list.

16.3.6 Perform Advanced Actions
This section describes some advanced actions that you can perform with the Groovy
editor.

Use Custom Libraries
The Groovy editor is able to access external libraries for example if an external driver
is needed.

To use external libraries, do one of the following:

■ Copy the custom libraries to the userlib folder. This folder is located:

■ On Windows operating systems:

%APPDATA%/odi/oracledi/userlib

■ On UNIX operating systems:

~/.odi/oracledi/userlib

■ Add the custom libraries to the additional_path.txt file. This file is located in the
userlib folder and has the following content:

; Additional paths file
; You can add here paths to additional libraries
; Examples:
; C:\ java\libs\myjar.jar
; C:\ java\libs\myzip.zip
; C:\java\libs*.jar will add all jars contained in the C:\java\libs\
directory
; C:\java\libs***.jar will add all jars contained in the C:\java\libs\
directory and subdirectories

Notes:

■ Each script execution launches its own Log window. The Log
window is named according to the following format: Running
<script_name>

■ Groovy writes output to two different streams. If it is a class, it
writes to System.out, which is a global output stream. If it is from
a script (non-class), then it creates one stream for every execution.
This can be captured by ODI. So, only output written to a script is
shown in the Log window.

You can add System.setOut(out) in the beginning of a Groovy
script so that the messages printed by an external class can be
redirected to messages log.

Using the Groovy Editor

Using Groovy Scripting 16-5

Define Additional Groovy Execution Classpath
You can define a Groovy execution classpath in addition to all classpath entries
available to ODI Studio.

To define an additional Groovy execution classpath:

1. Before executing the Groovy script, select from the Tools Main menu
Preferences...

2. In the Preferences dialog, navigate to the Groovy Preferences page.

3. Enter the classpath and click OK.

Read Input with odiInputStream Variable
Oracle Data Integrator provides the odiInputStream variable to read input streams. This
variable is used as follows:

odiInputStream.withReader { println (it.readLine())}

When this feature is used an Input text field is displayed on the bottom of the Log tab.
Enter a string text and press ENTER to pass this value to the script. The script is exited
once the value is passed to the script.

Example 16–1 shows another example of how to use an input stream. In this example
you can provide input until you click Stop <script_name>.

Example 16–1 InputStream

odiInputStream.withReader { reader ->
 while (true) {
 println reader.readLine();
 }
}

Using Several Scripts
If you are using several scripts at once, note the following:

■ A log tab is opened for each execution.

■ If a script is referring to another script, the output of the second will not be
redirected to the log tab. This is a known Groovy limitation with no workaround.

Using the ODI Instance
Oracle Data Integrator provides the variable odiInstance. This variable is available for
any Groovy script running within ODI Studio. It represents the ODI instance, more
precisely the connection to the repository, in which the script is executed. Note that
this instance will be null if ODI Studio is not connected to a repository.

The odiInstance variable is initialized by the ODI Studio code before executing the
code. You can use bind APIs of the Groovy SDK for this purpose. Example 16–2,
"Creating a Project" shows how you can use the odiInstance variable.

Note: You do not need to restart ODI Studio after adding or
changing the classpath.

Automating Development Tasks - Examples

16-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

16.4 Automating Development Tasks - Examples
Oracle Data Integrator provides support for the use of Groovy to automate
development tasks. These tasks include for example:

■ Example 16–2, "Creating a Project"

■ Example 16–3, "External Groovy File"

■ Example 16–4, "Class from External File"

■ Example 16–5, "For Studio UI Automation"

Example 16–2 shows how to create an ODI Project with a Groovy script.

Example 16–2 Creating a Project

import oracle.odi.core.persistence.transaction.ITransactionDefinition;
import
oracle.odi.core.persistence.transaction.support.DefaultTransactionDefinition;
import oracle.odi.core.persistence.transaction.ITransactionManager;
import oracle.odi.core.persistence.transaction.ITransactionStatus;
import oracle.odi.domain.project.OdiProject;
import oracle.odi.domain.project.OdiFolder;

ITransactionDefinition txnDef = new DefaultTransactionDefinition();
ITransactionManager tm = odiInstance.getTransactionManager()
ITransactionStatus txnStatus = tm.getTransaction(txnDef)
OdiProject myProject = new OdiProject("New Project 1","NEW_PROJECT_1")
OdiFolder myFolder = new OdiFolder(myProject,"Test Folder 001")
odiInstance.getTransactionalEntityManager().persist(myProject)
tm.commit(txnStatus)

Example 16–3 shows how to import an external Groovy script.

Example 16–3 External Groovy File

//Created by ODI Studio
import gd.Test1;
println "Hello World"
Test1 t1 = new Test1()
println t1.getName()

Example 16–4 shows how to call a class from a different Groovy script.

Example 16–4 Class from External File

import gd.GroovyTestClass

GroovyTestClass tc = new GroovyTestClass()
println tc.getClassLoaderName()

Example 16–5 shows how to implement Studio UI automation.

Example 16–5 For Studio UI Automation

import javax.swing.JMenuItem;
import javax.swing.JMenu;
import oracle.ide.Ide;

((JMenuItem)Ide.getMenubar().getGUI(false).getComponent(4)).doClick();

Automating Development Tasks - Examples

Using Groovy Scripting 16-7

JMenu mnu = ((JMenu)Ide.getMenubar().getGUI(false).getComponent(4));
((JMenuItem)mnu.getMenuComponents()[0]).doClick()

Automating Development Tasks - Examples

16-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Part IV
Part IV Managing Integration Projects

This part describes how to organize and maintain your Oracle Data Integrator projects.

This part contains the following chapters:

■ Chapter 17, "Exchanging Global ODI Objects"

■ Chapter 18, "Organizing and Documenting Integration Projects"

■ Chapter 19, "Using Version Control (Legacy Mode)"

■ Chapter 20, "Integrating ODI with Version Control Systems"

■ Chapter 21, "Release Management"

■ Chapter 22, "Life Cycle Management Guidelines"

■ Chapter 23, "Exporting and Importing"

17

Exchanging Global ODI Objects 17-1

17Exchanging Global ODI Objects

[18] This chapter describes how to use the Check for Updates wizard to browse and
download global ODI objects.

17.1 Using the Check for Updates Wizard
You can browse and download the global user-functions, global KMs, and custom
mapping components using the Check for Updates wizard. The Check for Updates
wizard allows you to browse, download, and update the ODI objects that are available
for distribution by Oracle and by ODI users in separate Update Centers. Each ODI
object is packaged into an update bundle and placed in an Update Center.

To check for updates using the Check for Updates wizard:

1. Click Help> Check for Updates. The Check for Updates wizard appears.

2. On the Source panel, select the update centers that you want to search from those
listed under Search Update Centers.

If required, you can add new update centers, remove newly added update centers,
or edit the update centers.

3. Click Next.

4. On the Updates panel, select the updates that you want to install.

Select Show Upgrades Only to see updates only for those ODI objects that are
already installed.

5. Click Next.

Note: The ODI Objects that are provided through the Customers and
Partners Update Center are not supported by Oracle.

Note: An Internet connection is required to search web-based update
centers. You can click Proxy Settings to define the proxy settings for
your Internet connection.

If there are issues connecting to the Internet, the Unable to Connect
dialog is displayed. You can verify the proxy settings in this dialog
and retry.

Using the Check for Updates Wizard

17-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

6. On the Download panel, the progress of the updates being downloaded is
displayed. When the download completes, a summary of the downloaded updates
is displayed.

7. On the Summary panel, review the downloaded updates.

8. Click Finish to install the downloaded updates.

Note: After importing a Global KM or User Function, you must use
Refresh to see it in the Designer navigator. After importing a Custom
Mapping Component, you must exit and restart ODI to see it in the
mapping components palette, if a mapping has already been opened
in the current ODI session.

18

Organizing and Documenting Integration Projects 18-1

18Organizing and Documenting Integration
Projects

[19] This chapter describes how to organize and document your work in Oracle Data
Integrator.

This chapter includes the following sections:

■ Organizing Projects with Folders

■ Organizing Models with Folders

■ Using Cross-References

■ Using Markers and Memos

■ Handling Concurrent Changes

■ Creating PDF Reports

18.1 Organizing Projects with Folders
Before you begin creating an integration project with Oracle Data Integrator, it is
recommended to think about how the project will be organized.

Rearranging your project afterwards may be dangerous. You might have to redo all the
links and cross-references manually to reflect new locations.

Within a project, mappings, procedures and packages are organized into folders and
sub-folders. It is recommended to maintain your project well organized by grouping
related project components into folders and sub-folders according to criteria specific to
the project. Folders simplify finding objects developed in the project and facilitate the
maintenance tasks. Sub-folders can be created to an unlimited number of levels.

Note that you can also use markers to organize your projects. Refer to "Using Markers
and Memos" on page 18-6 for more information.

18.1.1 Creating a New Folder
To create a new folder:

1. In Designer Navigator expand the Projects accordion.

2. Select the project into which you want to add a folder.

3. Right-click and select New Folder.

4. In the Name field, enter a name for your folder.

5. Select Save from the File main menu.

Organizing Models with Folders

18-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

The empty folder appears.

To create a sub-folder:

1. Create a new folder, as described in "Creating a New Folder" on page 18-1.

2. Drag and drop the new folder into the parent folder.

18.1.2 Arranging Project Folders
To arrange your project folders in the project hierarchy, drag and drop a folder into
other folders or on the Project. Note that it is not possible to move a folder from one
Project to another Project.

18.2 Organizing Models with Folders
A model folder groups related models according to criteria specific to the project. A
model folder may also contain other model folders. Sub-folders can be created to an
unlimited number of levels.

Note that you can also use markers to organize your models. Refer to "Using Markers
and Memos" on page 18-6 for more information.

18.2.1 Creating a New Model Folder
To create a model folder:

1. In Designer Navigator expand the Models accordion.

2. Click New Model Folder in the toolbar of the Models accordion.

3. In the Name field, enter a name for your folder.

4. Select Save from the File main menu.

The empty model folder appears.

18.2.2 Arranging Model Folders
To move a model into a folder:

1. In Designer Navigator expand the Models accordion.

2. Select the model, then drag and drop it on the icon of the destination model folder.

The model moves from its current location to the selected model folder.

Note the following when arranging model folders:

■ A model can only be in one folder at a time.

■ Model folders can be also moved into other model folders.

18.2.3 Creating and Organizing Sub-Models
A sub-model is an object that allows you to organize and classify the datastores of a
model in a hierarchical structure. The root of the structure is the model. A sub-model
groups functionally homogeneous datastores within a model. The datastores of a
model can be inserted into a sub-model using drag and drop, or by automatic
distribution.

The classification is performed:

Organizing Models with Folders

Organizing and Documenting Integration Projects 18-3

■ During the reverse-engineering process, the RKM may create sub-models and
automatically distribute datastores into these sub-models. For example RKM
handling large data models from ERP systems use this method.

■ Manually, by drag and dropping existing datastores into the sub-models.

■ Automatically, using the distribution based on the datastore's name.

To create a sub-model:

1. In Designer Navigator expand the Models accordion.

2. In the Models accordion, select the model or the sub-model into which you want
to add a sub-model.

3. Right-click and select New Sub-Model.

4. On the Definition tab, enter a name for your sub-model in the Name field.

5. Click OK.

The new sub-model is created with no datastore.

Arranging Sub-Models
To manually file a datastore into a sub-model:

1. In Designer Navigator expand the Models accordion.

2. In the Models accordion, select the datastore you wan to move into the sub-folder.

3. Drag and drop it into the sub-model.

The datastore disappears from the model and appears in the sub-model.

Setting-up Automatic Distribution
Distribution allows you to define an automatic distribution of the datastores in your
sub-models.

Datastores names are compared to the automatic assignment mask. If they match this
pattern, then they are moved into this sub-model. This operation can be performed
manually or automatically depending on the Datastore Distribution Rule.

There are two methods to classify:

■ By clicking Distribution in the Distribution tab of a sub-model, the current rule is
applied to the datastores.

■ At the end of a reverse-engineering process, all sub-model rules are applied, the
order defined by the Order of mask application after a Reverse Engineer values
for all sub-models.

To set up the automatic distribution of the datastores in a sub-model:

1. In the sub-model's Distribution tab, select the Datastore distribution rule:

The Datastore Distribution rule determines which datastores will be taken into
account and compared to the automatic assignment mask:

– No automatic distribution: No datastore is taken in account. Distribution
must be made manually.

– Automatic Distribution of all Datastores not already in a Sub-Model:
Datastores located in the root model in the sub-model tree are taken in
account.

Using Cross-References

18-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

– Automatic Distribution of all Datastores: All datastores in the model (and
sub-models) are taken in account.

2. In the Automatic Assignment Mask field, enter the pattern the datastore names
must match to be classified into this sub-model.

3. In the Order of mask application after a Reverse Engineer field, enter the order in
which all rules should be applied at the end of a reverse. Consequently, a rule with
a high order on all datastores will have precedence. A rule with a high order on
non-classified datastores will apply only to datastores ignored by the other rules'
patterns. At the end of the reverse, new datastores are considered non classified.
Those already classified in a sub-model stay attached to their sub-model.

4. Click Distribution. The current rule is applied to the datastores.

18.3 Using Cross-References
Objects in Oracle Data Integrator (datastores, models, mappings, etc.) are interlinked
by relationships varying from simple usage associations (a mapping uses Knowledge
Modules) to complex ones such as code-interpretation relationships (a variable is used
in the mappings or filters of a mapping). These relationships are implemented as
cross-references. They are used to check/maintain consistency between related objects
within a work repository. Cross-references, for example, prevent you from deleting an
object if it is currently referenced elsewhere in the work repository.

Not all relationships appear as cross-references:

■ Relationships with objects from the master repository (For example, a data model
is related to a technology) are not implemented as cross-references, but as loose
references based on object codes (context code, technology code, datatype code,
etc). Modifications to these codes may cause inconsistency in the references.

■ Strong relationships in the work repository (a folder belongs to a project) are
enforced in the graphical user interface and within the repository (in the host
database as foreign keys). These relationships may not normally be broken.

18.3.1 Browsing Cross-References
When modifying an object, it is necessary to analyze the impact of these changes on
other developments. For example, if the length of a column is altered, the mappings
using this column as a source or a target may require modification. Cross-references
enable you to immediately identify the objects referenced or referencing a given object,
and in this way provide effective impact analysis.

Cross-references may be browsed in Designer Navigator as described in Table 18–1.

Table 18–1 Cross-References in Designer Navigator

Accordion Icon Description

Projects and
Other accordion

The Uses and Used by nodes appear under an
object node. The Uses node lists the objects from
which the current object is referenced. In the
case of a variable, for example, the packages
containing steps referencing this variable and
the mappings, filters, etc. will be displayed. The
Used by node lists the objects that are using the
current object.

Using Cross-References

Organizing and Documenting Integration Projects 18-5

These cross-referenced nodes can be expanded. The referencing or referenced objects
can be displayed or edited from the cross-reference node.

18.3.2 Resolving Missing References
When performing version restoration operations, it may happen that an object in the
work repository references nonexistent objects. For example, restoring an old version
of a project without restoring all the associated objects used in its procedures or
packages.

Such a situation causes Missing References errors messages in Oracle Data Integrator
when opening the objects (for example, a package) which references nonexistent
objects. An object with missing cross-references is marked in the tree with the missing
reference marker and its parent objects are flagged with a warning icon.

To display the details of the missing references for an object:

1. In Designer Navigator, double-click the object with the missing reference marker.

2. The object editor opens. In the object editor, select the Missing References tab.

3. The list of referenced objects missing for the cross-references is displayed in this
tab.

To resolve missing references:

Missing cross-reference may be resolved in two ways:

■ By importing/restoring the missing referenced object. See Chapter 19, "Using
Version Control (Legacy Mode)," and Chapter 23, "Exporting and Importing," for
more information.

■ By modifying the referencing object in order to remove the reference to the
missing object (for example, remove the Refresh Variable step referencing the
nonexistent variable from a package, and replace it with another variable).

Models
accordion

The Uses node appears under an object node
and lists the objects referencing the current
datastore, model or sub-model as a source or a
target of an mapping, or in package steps.

Models
accordion

The Used to Populate and Populated By nodes
display the datastores used to populate, or
populated by, the current datastore

Note: The mapping framework has built into its design a mechanism
for dealing with missing or invalid references. Because of this, ODI
import in 12c will not create and report the import missing references
for mappings. Instead, the mapping framework attempts to reconcile
invalid or missing references when a mapping is opened.

Table 18–1 (Cont.) Cross-References in Designer Navigator

Accordion Icon Description

Using Markers and Memos

18-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

18.4 Using Markers and Memos
Almost all project and model elements may have descriptive markers and memos
attached to them to reflect your project's methodology or help with development.

18.4.1 Markers
Flags are defined using markers. These markers are organized into groups, and can be
applied to most objects in a project or a models.

Typical marker groups are:

■ The development cycle (development, test, production)

■ Priorities (low, medium, urgent, critical)

■ Progress (10%, 20%, etc)

Global and Project Markers
Markers are defined in a project or in the Other view (Global Markers). The project
markers can be used only on objects of the project, and global markers can be used in
all models of the repository.

Flagging Objects
To flag an object with an icon marker:

1. In Designer Navigator, select an object in the Projects or Models accordion.

2. Right-click and select Add Marker, then select the marker group and the marker
you want to set.

The marker icon appears in the tree. The marked object also appears under the
marker's node. You can thus see all objects having a certain marker.

If you click in the tree an icon marker belonging to an auto-incremented marker group,
you switch the marker to the next one in the marker group, and the icon changes
accordingly.

To flag an object with string, numeric and date markers:

1. In Designer Navigator, double-click the object in the Projects or Models accordion.

2. In the object editor, select the Markers tab.

3. Click Insert a Marker.

4. In the new line, select the Group and Marker. You may also set the Value.

Note: If a block of code (such a procedure command) contains one or
more missing references, the first change applied to this code is
considered without any further check. This is because all the missing
references are removed when the code is changed and the
cross-references computed, even if some parts of the code are still
referring to an object that doesn't exist.

Note: Markers will not appear if the option Show Markers and
Memo Flags is not checked. See "Hiding Markers and Memos" on
page 18-7 for more information.

Handling Concurrent Changes

Organizing and Documenting Integration Projects 18-7

If the marker has an associated icon, it appears in the tree.

Filtering Using Markers
Markers can be used for informational purposes (for example, to have a global view of
a project progress and resources). They can also be used when automating scenario
generation by filter the packages. See "Generating a Group of Scenarios" on page 12-3
for more information.

The list of all objects using a certain marker is shown below the marker's node.

Customizing Markers
A new project is created with default markers. It is possible to customize the markers
for a specific project as well as the global markers.

To define a marker group:

1. In Designer Navigator, click the Markers node in the Project accordion, or the
Global Markers node in the Others accordion.

2. Right-click and select New Marker Group.

3. In the Group Name field, enter the name for the marker group, then define its
Display Properties and Attributes.

4. Click Insert a new Marker to create a new marker in the group.

5. Select the marker Icon. If a marker stores date or a number, the icon should be set
to <none>.

6. Select the marker Name, Type and other options.

7. Repeat operations 4 to 6 to add more markers to the group.

8. Select Save from the File main menu.

18.4.2 Memos
A memo is an unlimited amount of text attached to virtually any object, visible on its
Memo tab. When an object has a memo attached, the memo icon appears next to it.

To edit an object's memo:

1. Right-click the object.

2. Select Edit Memo.

3. The Object editor opens, and the Memo tab is selected.

Hiding Markers and Memos
You can temporarily hide all markers and memo flags from the tree views, to improve
readability.

To hide all markers and memo flags:

Deselect the Display Markers and Memo Flags option in the Designer Navigator
toolbar menu. This preference is stored on a per-machine basis.

18.5 Handling Concurrent Changes
Several users can work simultaneously in the same Oracle Data Integrator project or
model. As they may be all connected to the same repository, the changes they perform
are considered as concurrent.

Handling Concurrent Changes

18-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Oracle Data Integrator provides two methods for handling these concurrent changes:
"Concurrent Editing Check" on page 18-8 and "Object Locking" on page 18-8. This two
methods can be used simultaneously or separately.

18.5.1 Concurrent Editing Check
The user parameter, Check for concurrent editing, can be set to prevent you from
erasing the work performed by another user on the object you try to save. You can set
this parameter by clicking Preferences from the Tools option on the menu bar; expand
the ODI node, and then the System node, and select the Concurrent Development
node.

If this parameter is checked, when saving changes to any object, Oracle Data Integrator
checks whether other changes have been made to the same object by another user
since you opened it. If another user has made changes, the object cannot be saved, and
you must cancel your changes.

18.5.2 Object Locking
The object locking mechanism can be activated in Oracle Data Integrator
automatically, when closing the Oracle Data Integrator, or manually, by explicitly
locking and unlocking objects.

As long as an object is locked, only the user owning the lock can perform modifying
the object, such as editing or deleting. Other operations, such as executing, can be
performed by other users, but with a warning.

Automatic Object Locking
Automatic object locking causes objects to be locked whenever you open them for
editing. Optionally, you can configure the system to ask whether to lock an object
when it is opened in a user interface, by generating a dialog.

An object locked by you appears with a yellow lock icon. An object locked by another
user appears with a red lock icon.

When the edition window is closed, a popup window appears to ask if you want to
unlock the object.

These windows are configured by the Lock object when opening and Unlock object
when closing user parameters. You can set these parameters by clicking Preferences
from the Tools option on the menu bar; expand the ODI node, and then the System
node, and select the Concurrent Development node. You can set each option to Yes,
No, or Ask. If you set Lock object when opening to Ask, a dialog is opened. If you set it
to Yes, objects are automatically locked when opened.

Releasing locks when closing the user interface
When closing Oracle Data Integrator, by default a window appears asking to unlock or
save objects that you have locked or kept opened. This behavior is controlled by the
Unlock object when closing parameter.

You can keep objects locked even if you are not connected to Oracle Data Integrator.
This allows you to prevent other users from editing them in the meanwhile.

Managing locks manually
You can also manually manage locks on objects.

To manually lock an object:

Creating PDF Reports

Organizing and Documenting Integration Projects 18-9

1. Select the object in the tree.

2. Right-click, then select Locks > Lock.

A lock icon appears after the object in the tree.

To manually unlock an object:

1. Select the object in the tree

2. Right-click, then select Locks > Unlock.

The lock icon disappears in the tree.

To manage all locks:

1. Select Locked objects from the ODI menu.

2. The Locked Objects editor appears displaying all locked objects that you can
unlock.

18.6 Creating PDF Reports
In Oracle Data Integrator you have the possibility to print and share several types of
reports with the PDF generation feature:

■ Topology reports of the physical architecture, the logical architecture, or the
contexts

■ Reports of the version comparison results.

■ Reports of an ODI object

■ Diagram reports

18.6.1 Generating a Topology Report
Oracle Data Integrator provides the possibility to generate Topology reports in PDF
format of the physical architecture, the logical architecture or the contexts.

To generate a topology report:

1. From the Topology Navigator toolbar menu select Generate Report and then the
type of report you wish to generate:

■ Physical Architecture

■ Logical Architecture

■ Contexts

2. In the Report generation editor, enter the output PDF file location for your PDF
report. Note that if no PDF file location is specified, the report in Adobe™ PDF

Note: A user with the Supervisor privilege can remove locks for all
other users.

Note: In order to view the generated reports, you must specify the
location of Adobe Acrobat Reader in the user preferences before
launching the PDF generation. To set this value, select the
Preferences... option from the Tools menu. Expand the ODI node, and
then the System node, and select Reports. Enter (or search for) the
location of your preferred PDF Viewer.

Creating PDF Reports

18-10 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

format is generated in your default directory for PDF generation specified in the
user parameters. To set this value, select the Preferences... option from the Tools
menu. Expand the ODI node, and then the System node, and select Reports. Enter
(or search for) the location of your Default PDF generation directory.

3. If you want to view the PDF report after generation, select the Open file after the
generation? option.

4. Click Generate.

18.6.2 Generating a Report for the Version Comparison Results
You can create and print a report of your comparison results via the Version
Comparison Tool. Refer to "Generating and Printing a Report of your Comparison
Results" on page 19-6 for more information.

18.6.3 Generating a Report for an Oracle Data Integrator Object
In Designer Navigator you can generate different types of reports depending on the
type of object. Table 18–2 lists the different report types for ODI objects.

To generate a report in Designer Navigator:

1. In Designer Navigator, select the object for which you wish to generate a report.

2. Right-click and select Print >Print <object>.

3. In the Report generation editor, enter the output PDF file location for your PDF
report. Note that if no PDF file location is specified, the report in Adobe™ PDF
format is generated in your default directory for PDF generation specified in the
user parameters. To set this value, select the Preferences... option from the Tools
menu. Expand the ODI node, and then the System node, and select Reports. Enter
(or search for) the location of your Default PDF generation directory.

4. If you want to view the PDF report after generation, select the Open file after the
generation? option.

5. Click Generate.

18.6.4 Generating a Diagram Report
You can generate a complete PDF report of your diagram. Refer to "Printing a
Diagram" on page 5-4 for more information.

Table 18–2 Different report types for ODI objects

Object Reports

Project Knowledge Modules

Project Folder Folder, Packages, mappings, Procedures

Model Folder Model Folder

Model Model

Sub-model Sub-model

19

Using Version Control (Legacy Mode) 19-1

19Using Version Control (Legacy Mode)

[20] This chapter describes how to work with version management in Oracle Data
Integrator.

Oracle Data Integrator provides a comprehensive system for managing and
safeguarding changes. The version management system allows flags on developed
objects (such as projects, models, etc) to be automatically set, to indicate their status,
such as new or modified. It also allows these objects to be backed up as stable
checkpoints, and later restored from these checkpoints. These checkpoints are created
for individual objects in the form of versions, and for consistent groups of objects in
the form of labels.

This chapter includes the following sections:

■ Working with Object Flags

■ Working with Versions

■ Working with the Version Comparison Tool

■ Working with Labels

19.1 Working with Object Flags
When an object is created or modified in Designer Navigator, a flag is displayed in the
tree on the object icon to indicate its status. Table 19–1 lists these flags.

Note: This chapter is applicable only for the legacy mode of
versioning in ODI. If you want to enable VCS for Subversion, then
none of the description from this chapter is applicable and you must
refer to "Integrating ODI with Version Control Systems".

Note: Version management is supported for master repositories
installed on database engines such as Oracle, Hypersonic SQL, and
Microsoft SQL Server. For a complete list of certified database engines
supporting version management refer to the Platform Certifications
document on OTN at:
http://www.oracle.com/technology/products/oracle-data-integr
ator/index.html.

Working with Versions

19-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

When an object is inserted, updated or deleted, its parent objects are recursively
flagged as updated. For example, when a step is inserted into a package, it is flagged
as inserted, and the package, folder(s) and project containing this step are flagged as
updated.

When an object version is checked in (refer to "Working with Versions" on page 19-2
for more information), the flags on this object are reset.

19.2 Working with Versions
A version is a backup copy of an object. It is checked in at a given time and may be
restored later. Versions are saved in the master repository. They are displayed in the
Version tab of the object window.

The following objects can be checked in as versions:

■ Projects, Folders

■ Packages, Scenarios

■ Mappings (including Resuable Mappings), Procedures, Knowledge Modules

■ Sequences, User Functions, Variables

■ Models, Model Folders

■ Labels

■ Load Plans

Checking in a version
To check in a version:

1. Select the object for which you want to check in a version.

2. In the property inspector, select the Version tab. In the Versions table, click the
Create a new version button (a green plus-sign icon). Alternatively, right-click the
object and select Version, and then Create Version, from the context menu.

3. In the Versioning dialog, review Previous Versions to see the list of versions
already checked in.

4. A version number is automatically generated in the Version field. Modify this
version number if necessary.

5. Enter the details for this version in the Description field.

6. Click OK.

When a version is checked in, the flags for the object are reset.

Displaying previous versions of an object
To display previous versions of an object:

Table 19–1 Object Flags

Flag Description

Object status is inserted.

Object status is updated.

Working with Versions

Using Version Control (Legacy Mode) 19-3

When editing the object, the Version tab provides creation and update information, the
internal and global IDs for this object, and a list of versions checked in, with the check
in date and the name of the user who performed the check in operation.

Restoring a version from the Version tab

To restore a version from the Version tab:

1. Select the object for which you want to restore a version.

2. In the property inspector, select the Version tab. Alternatively, right-click the
object and select Version, and then Restore..., from the context menu.

In the Versions table, select the row corresponding to the version you want to
restore. Click the Restore a version button, or right-click the row and select
Restore from the context menu.

3. Click Yes to confirm the restore operation.

Browsing versions
To browse versions:

Oracle Data Integrator contains a tool, the Version Browser, which is used to display
the versions stored in the repository.

1. From the main menu, select ODI > Version Browser...

2. Use the Object Type and Object Name drop down lists to filter the objects for
which you want to display the list of versions.

From the Version Browser, you can compare two versions, restore a version, export a
version as an XML file or delete an existing version.

Comparing two versions with the Version Browser
To compare two versions with the Version Browser, see "Working with the Version
Comparison Tool" on page 19-4.

Deleting a version with the Version Browser
To delete a version with the Version Browser:

1. Open the Version Browser.

2. Select the version you want to delete.

Note: You can also restore a version from the Version Browser. See:
"Restoring a version with the Version Browser" on page 19-4.

WARNING: Restoring a version cannot be undone. It permanently
erases the current object and replaces it by the selected version.
Consider creating a new version of your current object before
restoring a version.

Note: The Version Browser displays the versions that existed when
you opened it. Click Refresh to view all new versions created since
then.

Working with the Version Comparison Tool

19-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

3. Click the Delete icon in the version table (a red X button), or right-click and select
Delete from the context menu.

The version is deleted.

Restoring a version with the Version Browser

To restore a version with the Version Browser:

1. Open the Version Browser.

2. Select the version you want to restore.

3. Click the Restore this version button, or right-click and select Restore from the
context menu.

4. Click OK to confirm the restore operation.

The version is restored in the repository.

Exporting a version with the Version Browser
To export a version with the Version Browser:

This operation exports the version to a file without restoring it. This exported version
can be imported into another repository.

1. Open the Version Browser.

2. Select the version you want to export.

3. Click the Export this version as an XML file button, or right-click and select
Export from the context menu.

4. Select the Export Directory and specify the Export Name. Select Replace existing
files without warning to overwrite files of the same name in the export directory
without confirmation.

5. Click OK.

The version is exported to the given location.

19.3 Working with the Version Comparison Tool
Oracle Data Integrator provides a comprehensive version comparison tool. This
graphical tool is to view and compare two different versions of an object.

The version comparison tool provides the following features:

WARNING: Restoring a version cannot be undone. It permanently
erases the current object and replaces it by the selected version.
Consider creating a new version of your current object before
restoring a version.

Note: Exporting a version exports the object contained in the version
and not the version information. This allows you to export an old
version without having to actually restore it in the repository.

Working with the Version Comparison Tool

Using Version Control (Legacy Mode) 19-5

■ Color-coded side-by-side display of comparison results: The comparison results
are displayed in two panes, side-by-side, and the differences between the two
compared versions are color coded.

■ Comparison results organized in tree: The tree of the comparison tool displays
the comparison results in a hierarchical list of node objects in which expanding
and collapsing the nodes is synchronized.

■ Report creation and printing in PDF format: The version comparison tool is able
to generate and print a PDF report listing the differences between two particular
versions of an object.

■ Supported objects: The version comparison tool supports the following objects:
Project, Folder, Package, Scenario, Mapping, Procedure, Knowledge Module,
Sequence, User Function, Variable, Model, Model folder, and Label.

■ Difference viewer functionality: This version comparison tool is a difference
viewer and is provided only for consultation purposes. Editing or merging object
versions is not supported. If you want to edit the object or merge the changes
between two versions, you have to make the changes manually directly in the
concerned objects.

19.3.1 Viewing the Differences between two Versions
To view the differences between two particular versions of an object, open the Version
Comparison tool.

There are three different way of opening the version comparison tool:

By selecting the object in the Projects tree
1. From the Projects tree in Designer Navigator, select the object whose versions you

want to compare.

2. Right-click the object.

3. Select Version > Compare with version...

4. In the Compare with version editor, select the version with which you want to
compare the current version of the object.

5. Click OK.

6. The Version Comparison tool opens.

Using the Versions tab of the object
1. In Designer Navigator, open the object editor of the object whose versions you

want to compare.

2. Go to the Version tab.

The Version tab provides the list of all versions created for this object. This list also
indicates the creation date, the name of the user who created the version, and a
description (if specified).

3. Select the two versions you want to compare by keeping the <CTRL> key pressed.

4. Right-click and select Compare...

5. The Version Comparison tool opens.

Using the Version Browser
1. Open the Version Browser.

Working with the Version Comparison Tool

19-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

2. Select two versions that you want to compare, by using control-left click to
multi-select two different rows. You must select rows that correspond to the exact
same object.

3. Click the Compare two versions for identical objects icon in the version table, or
right-click and select Compare from the context menu.

4. The Version Comparison tool opens.

5. To print a copy of the object comparison, click Print. See: "Generating and Printing
a Report of your Comparison Results" on page 19-6.

Click Close when you are done reviewing the comparison.

The Version Comparison tool shows the differences between two versions: on the left
pane the newer version and on the right pane the older version of your selected object.

The differences are color highlighted. The following color code is applied:

19.3.2 Using Comparison Filters
Once the version of an object is created, the Version Comparison tool can be used at
different points in time.

Creating or checking in a version is covered in"Working with Versions" on page 19-2.

The Version Comparison tool provides two different types of filters for customizing
the comparison results:

■ Object filters: By selecting the corresponding check boxes (New and/or Deleted
and/or Modified and/or Unchanged) you can decide whether you want only
newly added and/or deleted and/or modified and/or unchanged objects to be
displayed.

■ Field filters: By selecting the corresponding check boxes (New and/or Deleted
and/or Modified and/or Unchanged) you can decide whether you want newly
added fields and/or deleted fields and/or modified fields and/or unchanged
fields to be displayed.

19.3.3 Generating and Printing a Report of your Comparison Results
To generate a report of your comparison results in Designer Navigator:

1. In the Version Comparison tool, click Print.

Color Description

White (default) unchanged

Red deleted

Green added/new

Yellow object modified

Orange field modified (the value inside of this fields has
changed)

Note: If one object does not exist in one of the versions (for example,
when it has been deleted), it is represented as an empty object (with
empty values).

Working with Labels

Using Version Control (Legacy Mode) 19-7

2. In the Report Generation dialog, set the Filters on objects and Filters on fields
according to your needs.

3. In the PDF file location field, specify a file name to write the report to. If no path
is specified, the file will be written to the default directory for PDF files. This is a
user preference.

4. Check the box next to Open file after generation if you want to view the
generated report in a PDF viewer.

5. Click Generate.

A report in Adobe PDF format is written to the file specified in step 3.

19.4 Working with Labels
A label is a comprehensive and consistent set of interdependent versions of objects.
Like other objects, it can be checked in at a given time as a version, and may be
restored at a later date. Labels are saved into the master repository. A label assembles a
group of versions called the label's elements.

A label is automatically assembled using cross-references. By scanning
cross-references, a label automatically includes all dependent objects required for a
particular object. For example, when adding a project to a label, versions for all the
models used in this project's interfaces are automatically checked in and added to the
label. You can also manually add or remove elements into and from the label.

Labels are displayed in the Labels accordion in Designer Navigator and in Operator
Navigator.

The following objects may be added into labels:

■ Projects

■ Models, Model Folders

■ Scenarios

■ Load Plans

■ Global Variables, Knowledge Modules, User Functions and Sequences.

To create a label:

1. In Designer Navigator or Operator Navigator, from the Labels toolbar menu select
New Label.

2. In the Labels editor, enter the Name of your label and a Description.

3. From the File menu select Save.

The resulting label is an empty shell into which elements may then be added.

Note: In order to view the generated report, you must specify the
location of Adobe Acrobat Reader in the user parameters. You can also
set the default PDF generation directory. To set these values, select the
Preferences... option from the Tools menu. Expand the ODI node, and
then the System node, and select Reports. Enter (or search for) the
location of your preferred PDF Viewer, and of your Default PDF
generation directory.

Working with Labels

19-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

19.4.1 Working with Elements in a Label
This section details the different actions that can be performed when working with
elements of a label.

Adding Elements
To add an element, drag the object from the tree into the Elements list in the label
editor. Oracle Data Integrator scans the cross-references and adds any Required
Elements needed for this element to work correctly. If the objects being added have
been inserted or updated since their last checked in version, you will be prompted to
create new versions for these objects.

Removing Elements
To remove an element from a label, select the element you want to remove in the
Elements list and then click the Delete button. This element disappears from the list.
Existing checked in versions of the object are not affected.

Rolling Back Objects
To roll an object back to a version stored in the label, select the elements you want to
restore and then click the Restore button. The elements selected are all restored from
the label's versions.

19.4.2 Synchronizing Labels
Synchronizing a label automatically adds required elements that have not yet been
included in the label, creates new versions of modified elements and automatically
removes unnecessary elements. The synchronization process brings the content of the
label up to date with the elements (projects, models, etc) stored in the repository.

To synchronize a label:

1. Open the label you want to synchronize.

2. Click Synchronize in the toolbar menu of the Elements section.

3. Oracle Data Integrator scans the cross-references. If the cross-reference indicates
that the label is up to date, then a message appears. Otherwise, a list of elements to
add or remove from the label is shown. These elements are grouped into Principal
Elements (added manually), Required Elements (directly or indirectly referenced
by the principal elements) and Unused Elements (no longer referenced by the
principal elements).

4. Check the Accept boxes to version and include the required elements or delete the
unused ones.

5. Click OK to synchronize the label. Version creation windows may appear for
elements requiring a new version to be created.

You should synchronize your labels regularly to keep the label contents up-to-date.
You should also do it before checking in a label version.

19.4.3 Restoring and Checking in a Label
The procedure for checking in and restoring a label version is similar to the method
used for single elements. See "Working with Versions" on page 19-2 for more details.

You can also restore a label to import scenarios into production in Operator Navigator
or Designer Navigator.

Working with Labels

Using Version Control (Legacy Mode) 19-9

To restore a scenario from a label:

1. Double-click a label to open the Label editor.

2. Select a scenario from the Principal or Required Elements section. Note that other
elements, such as projects and mappings, cannot be restored.

3. Click Restore in the toolbar menu of the Elements section.

The scenario is now accessible in the Scenarios tab.

Note that you can also use the Version Browser to restore scenarios. See "Restoring a
version with the Version Browser" on page 19-4.

19.4.4 Importing and Exporting Labels
Labels can be exported and imported similarly to other objects in Oracle Data
Integrator. Export/Import is used to transfer labels from one master repository to
another. Refer to Chapter 23, "Exporting and Importing," for more information.

Note: When restoring a label, elements in the label are not
automatically restored. They must be restored manually from the
Label editor.

Working with Labels

19-10 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

20

Integrating ODI with Version Control Systems 20-1

20Integrating ODI with Version Control Systems

[21] This chapter describes how to integrate Oracle Data Integrator (ODI) with external
Version Control Systems (VCS). It provides information on how to set up VCS with
ODI and step-by-step instructions to use the VCS features in ODI.

This chapter includes the following sections:

■ Introduction to ODI-VCS integration

■ Selecting the VCS to use with ODI

■ Creating an SVN Connection

■ Editing an SVN Connection

■ Configuring Subversion Settings

■ Configuring Subversion Repository with ODI

■ Creating a Default Subversion Project Structure

■ Populating a New ODI Repository from a Subversion Branch/Trunk

■ Populating a Restored ODI Repository from a Subversion Branch/Trunk

■ Understanding Generic Profiles in ODI

■ Creating a Full Tag in the Subversion Repository

■ Creating a Partial Tag in the Subversion Repository

■ Creating a Branch from a Tag

■ Unlocking the ODI Repository

■ Adding Non-versioned ODI Objects to the Subversion Repository

■ Adding a Single Non-versioned ODI Object to the Subversion Repository

■ Creating versions of a version controlled ODI Object

■ Restoring a Version Controlled ODI Object from its Previous Version

■ Restoring a Version Controlled ODI Object Deleted in ODI Repository

■ Viewing the Version History of a Version Controlled ODI Object

■ Comparing Versions of an ODI Object from the Version History Dialog

■ Viewing Version Tree of a Version Controlled ODI Object

■ Comparing Versions of an ODI Object from the Version Tree Editor

■ Performing a Merge

Introduction to ODI-VCS integration

20-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

20.1 Introduction to ODI-VCS integration
ODI integrates with external Version Control Systems (VCS) to enable version control
of ODI objects. You can store versioned copies of the ODI objects into an external VCS
repository. Since, VCS relies on file-based storage, ODI objects are stored as XML files
in the VCS repository.

To version control ODI objects using VCS, you need to configure a connection between
the ODI repository and the VCS repository. Once the connection is configured, you can
add unversioned ODI objects to VCS, retrieve older versions of ODI objects from VCS,
and view the differences between two versions of ODI objects from within ODI.

You can add first class objects, for example, packages, mappings, variables, security
objects, and topology objects, and container objects, for example, projects, folders, and
model folders to VCS. When you add container objects to VCS, all its descendents are
re-versioned if they are newer than the version in the VCS.

Following are some of the important advanced ODI VCS integration features:

■ Create full or partial tags for the consistent set of ODI objects in VCS, which can be
used later for branching and deploying.

■ Populate a new or a restored ODI repository from a branch/trunk in the VCS.

■ Auto-version version controlled ODI objects as they are saved.

■ Encrypt (or decrypt) confidential information when exporting or importing ODI
objects from or to the VCS repository.

■ AES Encryption support for cipher content in the ODI objects to be stored in the
VCS repository.

20.2 Selecting the VCS to use with ODI
Perform the following steps to select the VCS that you want ODI to use as the team
versioning application.

To select a VCS to use with ODI:

1. Click Team >Select Versioning Application.

2. On the Select Version Control Management System dialog, select Subversion and
then click OK.

3. On the Confirmation dialog, click Yes. The Disconnect confirmation dialog
appears.

4. On the Disconnect confirmation dialog, click Disconnect to disable the Legacy
Version Control System and to disconnect from the ODI repository.

5. Reconnect to the ODI repository. ODI will now use Subversion as the team
versioning application.

Note: Currently ODI supports only Apache™ Subversion®.

Note: Currently ODI supports only Apache™ Subversion®.

Creating an SVN Connection

Integrating ODI with Version Control Systems 20-3

20.3 Creating an SVN Connection
You need to connect to the Subversion repository from ODI Studio. ODI provides the
following types of authentication options when connecting to the Subversion
repository:

To create an Subversion connection from the ODI Studio:

1. Click Team> Subversion> Edit Connection.

2. From the Authentication Type drop-down menu, select one of the following
authentication types:

■ HTTP Basic Authentication

■ Subversion Basic Authentication

■ SSH Authentication

■ SSL Authentication

■ File Based Authentication

Based on the selected authentication type, different options are displayed in the
SVN Connection dialog.

3. Set the required options and click OK.

For more information, see the following sections:

"HTTP Basic Authentication Options"

"Subversion Basic Authentication Options"

"SSH Authentication Options"

"SSL Authentication Options"

"File Based Authentication Options"

See "Guidelines for Choosing the Authentication Type".

20.3.1 HTTP Basic Authentication Options
The following tables describes the options specific to HTTP Basic Authentication.

Table 20–1 HTTP Basic Authentication Options

Option Description

SVN URL Subversion repository URL.

User User name for authentication.

Password Password to connect to the Subversion repository.

Use Proxy Server Select to use an HTTP or HTTPS proxy server.
Note: If this check box is selected, the Host and Port properties
are enabled.

Host Proxy server to connect to the Subversion repository.

Port Proxy server port.

Proxy Server Requires
Authentication

Select to authenticate the proxy server.
Note: If this check box is selected, the User and Password
properties are enabled.

User User name to connect to the proxy server.

Creating an SVN Connection

20-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

20.3.2 Subversion Basic Authentication Options
The following table describes the options specific to Subversion Basic Authentication.

20.3.3 SSH Authentication Options
The following table describes the options specific to SSH Authentication.

20.3.4 SSL Authentication Options
The following table describes the options specific to SSL Authentication.

20.3.5 File Based Authentication Options
The following table describes the options specific to File Based Authentication.

Password Password to connect to the proxy server.

Table 20–2 Subversion Basic Authentication

Option Description

SVN URL Subversion repository URL.

User User name for authentication.

Password Password to connect to the Subversion repository.

Table 20–3 SSH Authentication Options

Options Descriptions

Subversion URL Subversion repository URL.

User User name for authentication.

Password Password to connect to the Subversion repository.

Private Key File Select to establish an SSH connection using SSH keys.
Note: If this check box is selected, the Key File and Passphrase
properties are enabled.

Key File Path of the Private Key File.

Passphrase Passphrase for the selected Private Key File.

Table 20–4 SSL Authentication Options

Options Description

SVN URL Subversion repository URL.

User User name for authentication.

Password Password to connect to the Subversion repository.

Enable Client
Authentication

Select to enable client authentication.
Note: If this check box is selected, the Certificate File and
Passphrase properties are enabled.

Certificate File Path of the Certificate File.

Passphrase Passphrase for the selected Certificate File.

Table 20–1 (Cont.) HTTP Basic Authentication Options

Option Description

Configuring Subversion Settings

Integrating ODI with Version Control Systems 20-5

20.4 Editing an SVN Connection
Perform the following steps to edit an existing Subversion connection.

To edit an Subversion connection:

1. Click Team> Subversion> Edit Connection.

2. Edit the options as required.

For more information, see the following sections:

"HTTP Basic Authentication Options"

"Subversion Basic Authentication Options"

"SSH Authentication Options"

"SSL Authentication Options"

"File Based Authentication Options"

3. Click OK.

See "Guidelines for Choosing the Authentication Type".

20.5 Configuring Subversion Settings
You need to configure the Subversion specific settings in ODI. These settings include
the working folder path and the merge working folder.

To configure the Subversion settings:

1. Click Tools> Preferences> ODI> User Interface> Versioning> Subversion.

2. Specify the Subversion Settings.

For more information, see "Subversion Settings".

3. Click OK.

20.5.1 Subversion Settings
The following table describes the options that you need to set on the Subversion
Settings dialog.

Table 20–5 File Based Authentication

Options Description

SVN URL Subversion repository URL.

Table 20–6 Subversion Settings Options

Options Description

Working Folder Path The working folder contains artifacts exported from the
Subversion repository to execute various version management
operations like export, commit, restore, and so on. ODI replicates
the same folder structure present in the Subversion repository
while storing these artifacts in the working folder.

Merge Working Folder This folder contains the ODI artifacts exported from the
Subversion repository during the Merge operation.

Note: ODI deletes the artifacts present in the merge working
folder once the merge operation is complete.

Configuring Subversion Repository with ODI

20-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

20.6 Configuring Subversion Repository with ODI
Perform the following steps to configure the Subversion repository with ODI.

To configure Subversion repository with ODI:

1. Click Team> Subversion> Configure.

2. Set the configuration options.

Fore more information, see "Options to Configure Subversion Repository with
ODI".

3. Click OK.

20.6.1 Options to Configure Subversion Repository with ODI
The following table describes the options that are required to configure the Subversion
Repository with ODI.

20.7 Creating a Default Subversion Project Structure
You need to create a default project structure in the Subversion repository. This
structure helps to identify the trunk, branch, and tag folders present in the Subversion
project created in the Subversion repository.

To create a default Subversion project structure:

1. Click Team> Subversion> Configure.

2. Click Create Default Project Structure button.

3. Enter a name for the Subversion Project in the SVN Project Name field.

4. Enter a description in the Comments field.

Note: After configuring the Subversion repository with ODI, you
must disconnect from the ODI repository and connect again.

Table 20–7 Options to configure Subversion repository with ODI

Options Description

SVN Repository Name Name of the existing Subversion repository.

SVN Project Name List of the Subversion projects available in the Subversion
repository.

Create Default Project
Structure

Click to create a default project structure in the Subversion
repository.

For more information, see Section 20.7, "Creating a Default
Subversion Project Structure".

Select Trunk or Branch Select a trunk or an available branch.

New Branch Click to create a new branch from a tag.

Auto Version Select to enable auto versioning at the ODI repository level.
Note: If Auto Version is enabled, a new version is created for an
already versioned object whenever changes are made to the
object and the changes are saved.

VCS Key Select to create a VCS Key. The VCS key can be a minimum of 8
characters and a maximum of 100 characters long.

Enter VCS Key Click to enter the VCS Key.

Understanding Generic Profiles in ODI

Integrating ODI with Version Control Systems 20-7

5. Click OK.

20.8 Populating a New ODI Repository from a Subversion Branch/Trunk
You can populate a new ODI Repository with the ODI objects from a trunk/branch
that exists in the Subversion repository.

To populate a new ODI repository from a Subversion trunk/branch:

1. Click Team> Subversion> Populate Repository from Branch/Trunk.

2. Click Yes on the Confirmation dialog.

3. View the Import Report and close the report.

4. Verify that the version controlled ODI objects are populated in the ODI Studio.

20.9 Populating a Restored ODI Repository from a Subversion
Branch/Trunk

You can restore a new ODI Repository from the database backup and then populate
the restored ODI Repository from a trunk/branch that exists in the Subversion
Repository.

To populate a restored ODI repository from a Subversion branch/trunk:

1. Create a new ODI repository using ODI Studio or Repository Creation Utility
(RCU).

2. Restore the new ODI repository from the database backup.

3. Configure the restored ODI Repository with the last configured Subversion
trunk/branch.

For more information, see "Configuring Subversion Repository with ODI".

4. Click Team> Subversion> Populate Restored Repository from Branch/Trunk.

5. Click Yes on the Confirmation dialog.

6. View the Import Report and click Close.

7. Verify that the version controlled ODI objects are populated in the ODI Studio.

20.10 Understanding Generic Profiles in ODI
ODI provides out-of-the-box generic profiles. These profiles contain a set of privileges
to work with version management and version administration operations.

ODI includes the following generic profiles:

■ Designer

Contains a set of privileges to work with version management operations such as
add a non version controlled ODI Object to the VCS, create a new version of a
version controlled ODI Object, restore a version controlled ODI Object from one of
its previous versions, etc. on all the design objects provided by ODI.

Note: Only ODI VCS Administrators can populate a restored ODI
Repository from a Subversion trunk/branch.

Creating a Full Tag in the Subversion Repository

20-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ Security Admin

Contains a set of privileges to work with version management operations such as
add a non version controlled ODI Object to the VCS, create a new version of a
version controlled ODI Object, restore a version controlled ODI Object from one of
its previous versions, etc. on all the security objects provided by ODI.

■ Topology Admin

Contains a set of privileges to work with version management operations such as
add a non version controlled ODI Object to the VCS, create a new version of a
version controlled ODI Object, restore a version controlled ODI Object from one of
its previous versions, etc. on all the topology objects provided by ODI.

■ VCS Version Admin

Contains a set of privileges to work with version administration operations such
as select the version control system to be integrated with ODI, configure ODI
Repository with the Version Control System, create a label, merge development
branch with trunk, etc. along with a set of privileges given to DESGINER,
SECURITY ADMIN, and TOPOLOGY ADMIN profile.

20.11 Creating a Full Tag in the Subversion Repository
A tag is identification text that you can assign to identify a set of consistent objects
versions, or the entire repository in Subversion.

You can create a full tag from all the objects present in the branch or the trunk in the
ODI repository.

This will enable you to create a consistent set of ODI artifacts in the Subversion
Repository, which can be shared with other users who can create a new repository
from a full tag.

To create a full tag in the Subversion repository:

1. Click Team> Subversion> Create Full Tag.

2. Specify the options on the Create Full Tag dialog.

3. In the Tag field, enter a name for the tag.

4. Verify the name of the Subversion branch or trunk.

Note: This is a read-only field.

5. In the Comments field, enter a description for the tag.

6. Click OK to create the tag.

See "General Tagging Guidelines".

20.12 Creating a Partial Tag in the Subversion Repository
You can create a partial tag from the subset of ODI artifacts present in the trunk or
branch of the Subversion repository.

This will enable you to create a consistent set of ODI artifacts in the Subversion
Repository, which can be shared with other users who can create a new repository
from a partial tag.

To create a partial tag in the Subversion repository:

1. Click Team> Subversion> Create Partial Tag.

Creating a Branch from a Tag

Integrating ODI with Version Control Systems 20-9

2. Specify the options on the Create Partial Tag dialog.

For more information, see "Create Partial Tag Options".

3. Click OK to create the tag.

See "General Tagging Guidelines".

20.12.1 Create Partial Tag Options
The following table describes the options that you need to specify on the Create Partial
Tag dialog.

20.13 Creating a Branch from a Tag
You can create a new Subversion branch from a tag that exists in the Subversion
repository.

To create a branch from a tag:

1. Click Team> Subversion> Create Branch from Tag.

2. Specify the options on the Create Branch from Tag dialog.

For more information, see "Create Branch from Tag Options".

3. Click OK. A success Information dialog appears.

4. Click OK.

See "General Branching Guidelines".

See "Branching Guidelines for Single Development Team".

See "Branching Guidelines for Parallel Development Teams".

See "Guidelines for Release Branches for Parallel Development Teams".

20.13.1 Create Branch from Tag Options
You need to specify the following options on the Create Branch from Tag dialog box.

Table 20–8 Create Partial Tag Options

Options Description

Tag Name of the tag.

Branch/Trunk Name of the branch or trunk to which ODI is configured.

Include all security objects Select to include all security objects.

Comments Log message, which describes the changes you are committing.

Selected Objects Objects to be added. To add objects, drag-and-drop the
supported objects from the navigator tree or search for an object
using the Search option in the toolbar and add it.

Dependent Objects Objects dependent on the selected object.

Table 20–9 Create Branch from Tag Options

Option Description

Branch Name Name of the branch.

Tag List of tags for the ETL project configured in the ODI repository.

Unlocking the ODI Repository

20-10 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

20.14 Unlocking the ODI Repository
The ODI Repository may get locked during the VCS Tag creation. You cannot make
any changes to the ODI Repository in a locked state. Sometimes due to unexpected
errors while Tag creation, the ODI Repository may remain in the locked state.

In such situations, you can run the OdiUnlockOdiRepository tool to unlock the ODI
Repository. For more information about running a tool from a command line, see
section Using a Tool From a Command Line.

For more information about the OdiUnlockOdiRepository tool, see section
OdiUnlockODIRepository.

20.15 Adding Non-versioned ODI Objects to the Subversion Repository
You can add all or multiple non-versioned ODI objects to the Subversion repository.

To add non-versioned ODI objects to the Subversion repository:

1. Click Team> Subversion> Add Non-versioned Objects.

A list of all the non-versioned ODI objects is displayed.

2. Select the ODI Objects that you want to add to the Subversion repository.

Select multiple ODI objects or all ODI objects listed on the Add Non-Versioned
Objects dialog.

3. In the Comments field, enter a description for the ODI objects that you are adding
to the Subversion repository.

4. Click OK. A success Information dialog appears.

5. Click OK.

See "Guidelines for Versioning During Development".

20.16 Adding a Single Non-versioned ODI Object to the Subversion
Repository

You can add a single non-versioned ODI object to the Subversion repository.

To add a single non-versioned ODI object to the Subversion repository:

1. Right-click the ODI object (example, folder, model, datastore, packages, etc.) that
you want to add to the Subversion repository.

2. Select Version> Subversion> Add to VCS. The Add ODI Objects to Subversion
dialog appears.

Note: The Add ODI Objects to Subversion dialog lists the parent ODI objects that
need to be added along with the selected ODI object.

Comments Log message, which describes the changes you are committing.

Note: You must have VCS Administrator privileges to run the
OdiUnlockOdiRepository command.

Table 20–9 (Cont.) Create Branch from Tag Options

Option Description

Restoring a Version Controlled ODI Object from its Previous Version

Integrating ODI with Version Control Systems 20-11

3. In the Comments field, enter a description for the ODI objects that you are adding
to the Subversion repository.

4. Click OK. A success Information dialog appears.

5. Click OK.

See "Guidelines for Versioning During Development".

20.17 Creating versions of a version controlled ODI Object
Whenever you modify a version controlled ODI object, you can create a new version of
it. You can create versions of both, the first class objects and the parent container
objects. When you create version of a parent container object, all the child objects are
also versioned.

To create versions of a version controlled ODI object:

1. Right-click the ODI object of which you want to create a version.

2. Select Version> Subversion> Create VCS Version.

3. Verify the information on the Create Version dialog.

When creating a version of a version controlled parent container object,
information regarding the child objects are also displayed in the dialog. This
information includes the Name, Type, Path, and if the child object was added,
modified, or deleted.

4. In the Comments field, enter a description of the version that you are creating.

5. Click OK. A success Information dialog appears.

6. Click OK.

See "Guidelines for Versioning During Development".

20.18 Restoring a Version Controlled ODI Object from its Previous
Version

You can restore a version controlled ODI object from its previous version or revision in
the Subversion repository.

To restore a version controlled ODI object from its previous version:

1. Right-click the ODI object that you want to restore from the Subversion repository.

2. Select Version> Subversion> Restore from VCS.

3. Specify the options on the Restore Object from Subversion Repository dialog.

For more information, see "Restore Object from Subversion Options".

4. Click OK.

5. If you choose to restore with merge, you need to perform additional steps that are
mentioned in "Performing a Merge".

20.18.1 Restore Object from Subversion Options
The following table describes the options that you need to specify on the Restore
Object from Subversion dialog.

Restoring a Version Controlled ODI Object Deleted in ODI Repository

20-12 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

20.19 Restoring a Version Controlled ODI Object Deleted in ODI
Repository

If you accidently delete a version controlled object in the ODI repository, you can
restore it from the Subversion repository.

To restore a version controlled ODI object deleted in the ODI repository:

1. Click Team> Subversion> Restore Deleted Object.

The Restore Deleted ODI Object dialog appears.

2. Under Version Search Criteria, specify the criteria to search versions of the object
in the Subversion repository.

For more information, see "Version Search Criteria".

3. Click Apply. All the versions of the object that are available in the Subversion
repository are listed under Versions.

4. Review the details of each of the versions of the ODI object that are listed.

5. Select the version that you want to restore and click the Restore Object icon ().

6. See the Import Report to confirm if the object has been imported successfully and
close the report.

7. Click Close on the Restore Deleted ODI Object dialog.

20.20 Viewing the Version History of a Version Controlled ODI Object
You can view the version history of a version controlled ODI object across trunk,
multiple branches, and tags of the Subversion project in the Subversion repository.

To view the version history of an ODI object:

1. Right-click the ODI object whose version history you want to view.

2. Select Version> Subversion> Version History.

Table 20–10 Restore Object from Subversion Options

Option Description

Name Name of the ODI object.
This is a read-only field.

Type Type of ODI object to be restored from the Subversion
repository.
This is a read-only field.

Path Path of the ODI object present in the ODI repository.
This is a read-only field.

Select Version Click to access the Version Selection dialog and select a
particular version of the ODI object present in the Subversion
repository.

Restore with Merge Select to restore an object using the Merge option.

For more details about performing a merge, see "Performing a
Merge".

Restore child objects with
Merge

Select to restore an object along with its child objects using the
Merge option.

Comparing Versions of an ODI Object from the Version History Dialog

Integrating ODI with Version Control Systems 20-13

3. Under Version Search Criteria, specify the criteria to search the versions of the
selected ODI object.

For more information, see "Version Search Criteria".

4. Click Apply.

5. Under Versions, all the versions of the selected ODI object that exist in the
Subversion repository are listed.

6. Review the version history details for each of the versions of the ODI object.

7. Click Close.

You can compare versions of the ODI object using the steps mentioned in "Comparing
Versions of an ODI Object from the Version History Dialog".

20.20.1 Version Search Criteria
The following table describes the options that you need to specify on the Version
Search Criteria dialog.

20.21 Comparing Versions of an ODI Object from the Version History
Dialog

You can compare versions of an ODI object from the Version History dialog to see the
difference between them. You can either compare two versions of an object in the
Subversion repository, or compare one version of the object in the Subversion
repository with the current object in the ODI repository.

To compare versions of an ODI object:

1. Right-click the ODI object whose versions you want to compare.

2. Select Version> Subversion> Version History.

Table 20–11 Version Search Criteria Options

Option Description

Branch/Tag/Trunk Select Branch, Tag, or Trunk depending on what the ODI
repository is mapped to.

Branch/Tag Select the appropriate Branch or Tag from the list.
Note: This list is populated only if the Branch or Tag check box is
selected.

Date Range Select to enter the range of dates within which the version was
created.

Version Range Enter the first and last version to view all the versions within
this range.
Note: If the Version Range fields are left empty, all versions of
the object are displayed. If the lower limit of the version range is
not specified, all the versions that are lesser than the specified
upper limit are displayed. Similarly, if the upper limit of the
version range is not specified, all the versions that are greater
than the specified lower limit are displayed.

Path Path of the ODI object in the ODI repository.
Note: You can use * as a wildcard character.

Comments Enter the log message, which describes the changes that were
committed in the selected version of the object.
Note: You can use * as a wildcard character.

Comparing Versions of an ODI Object from the Version History Dialog

20-14 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

3. Under Version Search Criteria, specify the criteria to search the versions of the
selected ODI object.

For more information, see "Version Search Criteria".

4. Click Apply. All the versions of the selected ODI object that exist in the
Subversion repository are listed under Versions.

5. Do one of the following:

■ To compare two versions of the object in the Subversion repository:

Select the two versions that you want to compare, click the Compare icon
(), and then select Compare Selected Versions.

■ To compare a version of the object in the Subversion repository with the
current object in the ODI repository:

Select the version that you want to compare with the current object in the ODI
repository, click the Compare icon (), and then select Compare With
Repository Object.

6. On the Version Compare Results dialog, view the differences between the two
versions.

The Version Compare Results dialog provides icons to navigate through the
differences, filter the compare results, change the display options (color coding),
generate report, expand or collapse the nodes in the tree, and perform merge.

For more information, see "Icons on the Version Compare Results dialog".

7. (Optional) Perform a merge using the steps mentioned in "Performing a Merge".

8. Click Close.

20.21.1 Icons on the Version Compare Results dialog
The following table describes the icons that are available on the Version Compare
Results dialog.

Table 20–12 Icons on the Version Compare Results dialog

Icon Name Description

Refresh Refreshes the results.

Go to First Difference Jumps to the first difference.

Go to Previous Difference Jumps to the previous difference.

Go to Next Difference Jumps to the next difference.

Go to Last Difference Jumps to the last difference.

Coloring and Filtering Displays the Display Options dialog, where colors can be
assigned to fields and objects.

Reset all Filters Resets all filters to the default.

Generate Report Generates the report.

Comparing Versions of an ODI Object from the Version Tree Editor

Integrating ODI with Version Control Systems 20-15

20.22 Viewing Version Tree of a Version Controlled ODI Object
You can view the version history of a version controlled ODI objects across multiple
branches, tags, or trunk present in the Subversion repository in the form a version tree
graph.

Each revision node in the version tree graph represents a revision in the Subversion
repository. The nodes are distinguished by different colors. Added items are in yellow
color, deleted items in red color, modified items in white color, merged items in orange
color, and restored items in green color.

To view version tree of a version controlled ODI object:

1. Right-click the ODI object and select Version> Subversion> Version Tree.

The Version Tree Editor appears showing different versions, tags, and branches for
the object in the Subversion repository.

2. Scroll horizontally to view the entire version tree.

Note: Version nodes are displayed as ovals enclosed in rectangles and the action
nodes are displayed as ovals.

3. Click the version nodes to view the version attributes under Version Properties.

4. Close the Version Tree Editor.

You can compare versions of the ODI object using the steps mentioned in "Comparing
Versions of an ODI Object from the Version Tree Editor".

20.23 Comparing Versions of an ODI Object from the Version Tree Editor
You can compare versions of an ODI object from the Version Tree Editor to see the
difference between them. You can either compare two versions of an object in the
Subversion repository, or compare one version of the object in the Subversion
repository with the current object in the ODI repository.

To compare versions of an ODI object:

1. Right-click the ODI object whose versions you want to compare.

2. Select Version> Subversion> Version Tree.

3. Do one of the following:

■ To compare two versions of the object in the Subversion repository:

Select two version nodes that you want to compare, click the Compare icon
(), and then select Compare Selected Versions.

Expand All Expands all the nodes in the tree.

Collapse All Collapses all the nodes in the tree.

Perform Merge Merges the changes.

For more information, see "Performing a Merge" and
"Performing a Branch Merge".

Table 20–12 (Cont.) Icons on the Version Compare Results dialog

Icon Name Description

Performing a Merge

20-16 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ To compare a version of the object in the Subversion repository with the
current object in the ODI repository:

Select the version node that you want to compare with the current object in the
ODI repository, click the Compare icon (), and then select Compare With
Repository Object.

4. On the Version Compare Results dialog, view the differences between the two
versions.

The Version Compare Results dialog provides icons to navigate through the
differences, filter the compare results, change the display options (color coding),
generate report, expand or collapse the nodes in the tree, and perform merge.

For more information, see "Icons on the Version Compare Results dialog".

5. (Optional) Perform a merge using the steps mentioned in "Performing a Merge".

6. Click Close.

20.24 Performing a Merge
When you compare two versions of an ODI object, the differences between them are
shown on the Version Compare Results dialog. You can use the Perform Merge icon
() on the Version Compare Results dialog to perform a merge.

To perform a merge:

1. Compare versions of an ODI object.

For more information, see "Comparing Versions of an ODI Object from the Version
History Dialog" or "Comparing Versions of an ODI Object from the Version Tree
Editor".

2. On the Version Compare Results dialog, click the Perform Merge icon ().

The Merge Results dialog appears with a list of Merge Objects.

3. On the Merge Object Selection tab, select the filters as appropriate. For example,
you may filter the results to see only the conflicting objects.

4. Perform the following steps to resolve any conflicts:

a. On the Merge Object Selection tab, select the conflicting object and click the
Fix Merge Conflict icon ().

The Merge Conflict Resolution tab appears showing the differences between
the two versions of the object.

b. Inspect the differences and click the Edit Repository Object icon ()

The ODI object opens in an editor.

c. Modify the ODI object to resolve the conflict and save the changes.

d. Click the Conflict Resolved icon () to mark the object as resolved.

e. Perform steps a. to d. to resolve all the conflicting objects.

5. Close the Merge Results dialog.

20.25 Performing a Branch Merge
You can perform a branch merge to merge the changes done in the branch to the
current ODI repository.

Performing a Branch Merge

Integrating ODI with Version Control Systems 20-17

To perform a branch merge:

1. Click Team> Subversion> Merge.

2. Select Branch as the Merge Type as Branch.

3. Select a source from the Source drop-down list.

4. Specify a name for the merge in the Merge Name field.

You can choose to go ahead with the default merge name.

5. Click OK. The merge is performed and the Merge Summary is displayed.

6. Inspect the conflicts in the objects that are modified in the branch.

7. Close the Merge Summary. The Merge Results dialog appears with the Merge
Objects list.

You may filter the Merge Objects list to show only the conflicting objects.

8. Perform the following steps to resolve the conflicts:

a. On the Merge Object Selection tab, select the conflicting object and click the
Fix Merge Conflict icon ().

The Merge Conflict Resolution tab appears showing the differences between
the two versions of the object.

b. Inspect the differences and click the Edit Repository Object icon ()

The ODI object opens in an editor.

c. Modify the ODI object to resolve the conflict and save the changes.

d. Click the Conflict Resolved icon () to mark the object as resolved.

e. Perform steps a. to d. to resolve all the conflicting objects.

9. Close the Merge Results tab.

20.25.1 Viewing Merge Summary
You can see the Merge Summary report for the previous merges that you have
performed.

To view the merge summary:

1. Click Team> Subversion> Merge Summary.

2. Select a merge status to view merge summary for all, completed, or in progress
merges.

3. Select a merge name to display the associated merge summary.

4. Click OK.

Tip: The Merge Summary report can also be accessed from the
Merge Results dialog, which is displayed when you perform a merge.

Performing a Branch Merge

20-18 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

21

Release Management 21-1

21Release Management

[22] This chapter describes the features added to ODI to support release management.

This chapter includes the following sections:

■ Managing ODI Releases

■ Types of Deployment Archives

■ Creating a Deployment Archive from a VCS Label

■ Creating an Initial Deployment Archive from the ODI Repository

■ Creating a Patch Deployment Archive from the ODI Repository

■ Viewing Available Deployment Archives

■ Initializing an ODI Repository Using an Initial Deployment Archive

■ Updating an ODI Repository Using a Patch Deployment Archive

■ Viewing Deployment Archives Applied in an ODI Repository

■ Rolling Back a Patch Deployment Archive

21.1 Managing ODI Releases
You can manage ODI releases using deployment archives. A deployment archive is an
archived file (zip file) that contains a set of ODI objects in the form of XML files and
metadata. You can create deployment archives that can be used to either initialize an
ODI repository or to update a deployed ODI repository.

If ODI is integrated with a VCS, deployment archives can be created from the VCS
labels. If ODI is not integrated with a VCS, deployment archives can be created from
the current ODI repository.

See also, "Types of Deployment Archives".

21.2 Types of Deployment Archives
You can create the following types of deployment archives in ODI:

■ Initial Deployment Archives

Initial deployment archives contain all the ODI objects that are necessary to
initialize an ODI repository. You can create an initial deployment archive and use
it to deploy an ODI repository in an environment where the ODI objects are not
modified, for example, in a testing or a production environment.

■ Patch Deployment Archives

Creating a Deployment Archive from a VCS Label

21-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Patch deployment archives contain only the ODI objects that need to be updated
in an ODI repository. You can create a patch deployment archive and use it to
update an ODI repository that is already deployed. For example, when you
update any ODI objects in a development environment, the updates can be
applied in a testing or a production environment using a patch deployment
archive.

See also:

"Creating a Deployment Archive from a VCS Label".

"Creating an Initial Deployment Archive from the ODI Repository".

"Creating a Patch Deployment Archive from the ODI Repository".

21.3 Creating a Deployment Archive from a VCS Label
In an ODI environment that is integrated with VCS, you can create a deployment
archive from a VCS label. The deployment archive will be created with the ODI objects
that are included in the VCS label.

To create a deployment archive from a VCS label:

1. Click Team> Deployment Archives> Create From VCS Label.

2. Select the type of deployment archive that you want to create. You can choose one
of the following types:

■ Initial Deployment Archive

Contains all the objects that are necessary to initialize an ODI repository.

■ Patch Deployment Archive

Contains only the ODI objects that need to be updated in an ODI repository.

For more information, see "Types of Deployment Archives".

3. In the Deployment Archive Name field, enter a name for the deployment archive.

4. In the Deployment Archive Folder Path field, specify a folder path where you
want to store the deployment archive.

5. From the Select VCS Label drop down list, select the VCS label that you want to
use to create the deployment archive.

6. In the Description field, enter a description for the deployment archive.

7. In the Export Key field, set a export key.

8. In the Confirm Export Key field, re-enter the export key for confirmation.

9. Click OK.

A success Information dialog appears.

10. Click OK.

See "Guidelines for Initial Deployment and Patching".

21.4 Creating an Initial Deployment Archive from the ODI Repository
In an ODI environment that is not integrated with VCS, you can create an initial
deployment archive from the current state of the ODI repository.

Creating a Patch Deployment Archive from the ODI Repository

Release Management 21-3

This section describes how to create an initial deployment archive, which will include
all the ODI objects that are required to initialize an ODI repository.

For more information, see "Types of Deployment Archives".

To create an initial deployment archive from the ODI repository:

1. Click Team> Deployment Archives> Create From Repository> Full Repository.

2. In the Deployment Archive Name field, enter a name for the deployment archive.

3. In the Deployment Archive Folder Path field, specify a folder path where you
want to store the deployment archive.

4. In the Description field, enter a description for the deployment archive.

5. In the Export Key field, set a export key.

6. In the Confirm Export Key field, re-enter the export key for confirmation.

7. Click OK.

A success Information dialog appears.

8. Click OK.

See "Guidelines for Initial Deployment and Patching".

21.5 Creating a Patch Deployment Archive from the ODI Repository
In an ODI environment that is not integrated with VCS, you can create a patch
deployment archive with selected ODI objects from the current ODI repository.

This section describes how to create a patch deployment archive, which will include
only the ODI objects that need to be updated in an ODI repository.

For more information, see "Types of Deployment Archives".

To create a patch deployment archive from the ODI repository:

1. Click Team> Deployment Archives> Create From Repository> Selected Objects.

2. Select Patch Deployment Archive option.

Note: It is necessary to select the Patch Deployment Archive option.

3. In the Deployment Archive Name field, enter a name for the deployment archive.

4. In the Deployment Archive Folder Path field, specify a folder path where you
want to store the deployment archive.

5. In the Description field, enter a description for the deployment archive.

6. Select Include all security objects option if you want to include all the security
objects in the deployment archive.

7. In the Export Key field, set a export key.

Note: When you create a patch deployment archive from the ODI
Repository, an execution deployment archive is also created. The
execution deployment archive includes only the Scenarios and Load
Plans corresponding to the ODI objects that are included in the patch
deployment archive.

The execution deployment archive names are prefixed with EXEC_.

Viewing Available Deployment Archives

21-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

8. In the Confirm Export Key field, re-enter the export key for confirmation.

9. Drag and drop the required ODI objects from the Designer Navigator into the
Selected Objects field under Objects to be added to Deployment Archive.

The dependent objects that will be included in the deployment archive are listed
under Dependent Objects.

10. Click OK.

A success Information dialog appears.

11. Click OK.

See "Guidelines for Initial Deployment and Patching".

21.6 Viewing Available Deployment Archives
You can view a list of deployment archives that are available in a folder path along
with their details. Double-clicking any of the deployment archives lists the contents of
the deployment archive.

To view available deployment archives:

1. Click Team> Deployment Archives> View Details.

2. In the Deployment Archive Folder Path field, browse to the folder path where the
deployment archives were created. All the deployment archives in the specified
folder path are listed under List of Deployment Archives.

Note: You cannot type the folder path, you must use the Browse button to specify
the folder path.

3. Double-click any of the deployment archives to see its contents. A list of ODI
objects contained in the deployment archive is displayed.

4. Click Close.

See also, "Initializing an ODI Repository Using an Initial Deployment Archive"

21.7 Initializing an ODI Repository Using an Initial Deployment Archive
You can initialize an ODI repository that is not connected to VCS with the contents of
an initial deployment archive. If VCS connectivity is configured then it is assumed to
be a development repository and thus the options to apply deployment archive are
disabled.

Before you initialize an ODI repository, ensure that the Work repository is empty.

To initialize an ODI repository using an initial deployment archive:

1. Click Team> Deployment Archives> Initialize Deployment Archive.

Note: In situations where the ODI repository is initialized with
deployment archives from multiple Work repositories, the Master
repository will not be empty. In such situations, when you load the
deployment archive from the second Work repository, the contents of
the Master repository are overwritten.

Updating an ODI Repository Using a Patch Deployment Archive

Release Management 21-5

2. In the Deployment Archive Folder Path field, browse to the folder path where the
deployment archive was created. All the deployment archives in the specified
folder path are listed under List of Deployment Archives.

Note: You cannot type the folder path, you must use the Browse button to specify
the folder path.

3. Select the initial deployment archive that you want to use to initialize the ODI
repository.

4. Click OK.

If the selected deployment archive contains cipher data, you are prompted to enter
the export key.

5. Do one of the following:

■ Select Enter Export Key option and enter the export key that was used when
creating the deployment archive.

■ Select Import file without cipher data option if you want to import the file
without the cipher data.

6. Click OK.

A success Information dialog appears.

7. Click OK.

See also, "Updating an ODI Repository Using a Patch Deployment Archive".

See also, "Guidelines for Deployment in Testing and Production Environments".

21.8 Updating an ODI Repository Using a Patch Deployment Archive
You can update an ODI repository that is not connected to VCS with the updated ODI
objects in a patch deployment archive. If VCS connectivity is configured then it is
assumed to be a development repository and thus the options to apply deployment
archive are disabled.

To update an ODI repository using a patch deployment archive:

1. Click Team> Deployment Archives> Patch Deployment Archive.

2. In the Deployment Archive Folder Path field, browse to the folder path where the
deployment archive was created. All the deployment archives in the specified
folder path are listed under List of Deployment Archives.

Note: You cannot type the folder path, you must use the Browse button to specify
the folder path.

3. Select the patch deployment archive that you want to use to update the ODI
repository.

4. Select Create Rollback Deployment Archive option if you want to create a
rollback deployment archive.

Note: It is recommended to create a rollback deployment archive. If required, you
can revert the changes applied by the patch deployment archive using this
rollback deployment archive.

5. In the Rollback Deployment Archive Path field, browse to a folder path where
you want to create the rollback deployment archive.

Viewing Deployment Archives Applied in an ODI Repository

21-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Note: The Rollback Deployment Archive Path field is enabled only if the Create
Rollback Deployment Archive option is selected.

6. Click OK.

If the selected deployment archive contains cipher data, you are prompted to enter
the export key.

7. Do one of the following:

■ Select Enter Export Key option and enter the export key that was used when
creating the deployment archive.

■ Select Import file without cipher data option to import the file without the
cipher data.

8. Click OK.

A success Information dialog appears.

9. Click OK.

See also, "Viewing Deployment Archives Applied in an ODI Repository".

See also, "Guidelines for Deployment in Testing and Production Environments".

21.9 Viewing Deployment Archives Applied in an ODI Repository
You can view the list of deployment archives applied in an ODI repository.

To view deployment archives applied in an ODI repository:

1. Click Team> Deployment Archives> Inventory.

The Inventory dialog appears with the list of deployment archives applied in the
ODI repository.

2. View the details of the deployment archives listed on the Inventory dialog.

3. Click Close.

See also, "Updating an ODI Repository Using a Patch Deployment Archive".

21.10 Rolling Back a Patch Deployment Archive
If you want to revert the changes applied to an ODI repository using a patch
deployment archive, you can rollback the patch deployment archive.

Multiple patch deployment archives can be rolled back, provided the rollback order is
maintained. For example, if you had applied patch1 and then patch 2, you must first
rollback patch 2 and then patch 1.

To rollback a patch deployment archive:

1. Click Team> Deployment Archives> Rollback.

2. In the Deployment Archive Folder Path field, browse to the folder path where the
rollback archive was created.

Note: You cannot type the folder path, you must use the Browse button to specify
the folder path.

3. From the List of Deployment Archives, select the appropriate rollback
deployment archive.

4. Click OK.

Rolling Back a Patch Deployment Archive

Release Management 21-7

If the selected deployment archive contains cipher data, you are prompted to enter
the export key.

5. Do one of the following:

■ Select Enter Export Key option and enter the export key that was used when
creating the deployment archive.

■ Select Import file without cipher data option to import the file without the
cipher data.

6. Click OK.

A success Information dialog appears.

7. Click OK.

See also, "Updating an ODI Repository Using a Patch Deployment Archive".

Rolling Back a Patch Deployment Archive

21-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

22

Life Cycle Management Guidelines 22-1

22Life Cycle Management Guidelines

[23] This chapter provides the guidelines to be followed for using the Life Cycle
Management features.

This chapter includes the following sections:

■ Guidelines for Choosing the Authentication Type

■ General Branching Guidelines

■ General Tagging Guidelines

■ Branching Guidelines for Single Development Team

■ Branching Guidelines for Parallel Development Teams

■ Guidelines for Release Branches for Parallel Development Teams

■ Guidelines for Versioning During Development

■ Guidelines for Deployment in Testing and Production Environments

■ Guidelines for Initial Deployment and Patching

22.1 Guidelines for Choosing the Authentication Type
Please consider the following points before you choose the authentication type.

■ File Based Authentication:

It provides direct access to repository through file system.

It should be avoided as it removes any layer of protection between users and the
repository. Users may accidently or intentionally corrupt the repository database.

■ HTTP Basic Authentication:

Provides basic authentication through user name and password. Not secured.

Passwords are sent over the network in plain text. It should be avoided where
security is concern.

■ SSL Authentication:

Same as HTTP Authentication while allowing to secure all network
communication through secured socket layer (SSL).

It should be used when VCS operations are performed over the Internet.

■ SVN Basic Authentication:

Basic user name and password based authentication over custom SVN protocol
supported by snvserve server.

General Branching Guidelines

22-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Not secured. Passwords are sent over network in plain text. It should be avoided
where security is concern.

■ SSH Authentication:

Same as SVN authentication while sending all network communication over SSH.

Useful if you have an existing infrastructure that is heavily based on SSH
accounts, and users already have system accounts on your server machine.

22.2 General Branching Guidelines
The following are the general branching guidelines that you must follow.

■ Use Trunk for the main code line where the future development takes place.

■ Use Branches for releasing code, for example, allowing stabilization, bug fixes, etc.

■ Use Branches for parallel development, for example, when you have
geographically separated teams or functionally separated teams.

■ To minimize merges, keep branches to minimum and do not create personal
branches.

■ Always merge between the Trunk and the development branches, or between the
release main branch and the release development branches.

■ Remember the VCS KEY configured for your repository with Trunk. The same
VCS Key must be configured for all development branches so that encrypted
content can be populated and merged effectively.

22.3 General Tagging Guidelines
The following are the general tagging guidelines that you must follow.

■ When development of a project feature is completed, create a partial tag with all
relevant artifacts.

■ Create a tag for objects being released to QA or production through deployment
archive. It will be useful for referring back to the released objects while bug fixing
and debugging.

■ Create Full tags on your development trunk or branch periodically (weekly,
fortnightly, or monthly). If something goes wrong with your current code you can
revert back to the last available full tag.

■ If parallel development team is suppose to work on a subset of repository objects,
then create a partial tag with only the relevant objects so that the development
branch can be created only with the subset of objects.

■ Create a full tag on the Trunk or branch where changes are being merged so that
pre-merge state can be restored if something goes wrong during merge.

■ Avoid merging branch artifacts directly. Rather perform branch merges through
tags. Create a tag with the objects that are ready to be merged and then merge the
changes to other branch or trunk using that tag.

Note: Never merge between development branches directly. This
will create unmanageable code tracking.

Branching Guidelines for Single Development Team

Life Cycle Management Guidelines 22-3

■ Create a tag before detaching or erasing any existing work repository. The VCS
copy of the work repository objects will be deleted as part of these operations. So
creating the tag will allow you to resurrect the objects if needed.

22.4 Branching Guidelines for Single Development Team

The following are the branching guidelines for single development teams.

■ Use Trunk for development until close to the release.

Create Tags at various logical points.

■ Create dev branch for release when you are close to the release.

– Use release branch for stabilizing code and bug fixing.

– Use Trunk for developing next release items.

– Merge changes from release branch to Trunk at various logical points.

■ At General Availability (GA).

– Create Release Tag on the release branch.

– Create Deployment Archives from the GA tag.

– Merge changes from GA tag to the Trunk.

Branching Guidelines for Parallel Development Teams

22-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

22.5 Branching Guidelines for Parallel Development Teams

The following are the branching guidelines for parallel development teams.

■ Create separate development branch from Trunk for each parallel team.

■ At various logical points:

– Create Tags on the team specific dev branch.

– Merge code to Trunk.

– Notify other team to merge the changes from Trunk.

22.6 Guidelines for Release Branches for Parallel Development Teams

Guidelines for Versioning During Development

Life Cycle Management Guidelines 22-5

The following are the guidelines for working with release branches for parallel
development teams.

■ When close to the Release.

– Create main development branch for the release from the Trunk.

– Create a development branch for each team from the release's main branch.

■ At various logical points.

– Create tags on the team specific release branch.

– Merge code from teams release branch to release main.

– Notify other team to merge changes from the Release main.

■ At General Availability (GA).

– Create GA tag on Main Release branch.

– Create Deployment Archive from GA tag.

– Merge stabilized release code from GA tag into Trunk.

22.7 Guidelines for Versioning During Development

The following are the versioning guidelines that you must following during
development.

■ Individual object version

– Create version at stable check point. Discourage auto versioning since it gives
you more control.

– Periodically check stale versioned or non-versioned objects for the folder one
is working on and create versions.

■ Folder Version

– Create folder to have a snapshot of entire folder for:

* Folder comparison

* Sync deleted, moved or renamed objects state with VCS

Guidelines for Deployment in Testing and Production Environments

22-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

* Restore folder with children later

■ Create Versions of ODI objects at various logical points.

■ Ensure to create versions of all relevant objects to maintain consistency of ODI
objects the VCS.

■ Have tags created at various logical points during development.

22.8 Guidelines for Deployment in Testing and Production Environments

The following are the guidelines for deployment in testing and production
environments.

■ Create Tag when objects are ready for testing.

■ Create Deployment Archive (DA) from the Tag.

■ Apply DA in the Testing environment.

– File bugs.

– Dev team to fix bugs and create new DA.

– Continue testing with the new DA.

■ DA is ready for Production environment when all the bugs are resolved.

Note: Individual object versioning is independent of folder
versioning.

Guidelines for Initial Deployment and Patching

Life Cycle Management Guidelines 22-7

22.9 Guidelines for Initial Deployment and Patching

The following are the guidelines that you must follow for initial deployment and
patching.

Initial Deployment Archive

■ Use for applying released artifacts.

■ Must contain all released objects.

■ Deploy initially on an empty repository.

Patch Deployment Archive

■ Use for deploying bug fixes and enhancements.

■ Must contain only the objects that are relevant to the fix or the enhancement.

■ Create a Rollback Deployment Archive while applying a Patch Deployment
Archive, so that the patch can be rolled back if something goes wrong.

Guidelines for Initial Deployment and Patching

22-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

23

Exporting and Importing 23-1

23Exporting and Importing

[24] This chapter describes how to manage export and import operations in Oracle Data
Integrator. An introduction to the import and export concepts is provided.

This chapter includes the following sections:

■ Import and Export Concepts

■ Exporting and Importing Objects

■ Repository-Level Export/Import

■ Exporting the Technical Environment

■ Exporting and Importing the Log

23.1 Import and Export Concepts
This section introduces you to the fundamental concepts of export and import
operations in Oracle Data Integrator. All export and import operations require a clear
understanding of the concepts introduced in this section:

■ Global Identifiers (GUIDs)

■ Export Keys

■ Relationships between Objects

■ Import Modes

■ Tips for Import/Export

23.1.1 Global Identifiers (GUIDs)
Oracle Data Integrator 12c introduces the use of globally-unique object identifiers.
Unlike previous versions of ODI, in ODI 12c, object uniqueness across multiple work
repositories is guaranteed by assigning GUIDs to all objects. In order to provide
backward compatibility, Internal Identifiers are still available; however, they are only
maintained across repositories when using ODI in 11g compatibility mode.

For more information about 11g compatibility mode, see: Chapter 10, "Using
Compatibility Mode."

When creating an ODI entity, a GUID is automatically assigned to the object using the
Java random UUID implementation. The only exception is when importing export files
from releases previous to 12c. In order to ensure that ODI 11g objects when imported
have reproducible, universally unique IDs, a Global Upgrade Key is required during
the repository upgrade process. The upgrade key allows ODI to consistently calculate
the same GUID for an 11g object. This key identifies uniquely the set of repositories

Import and Export Concepts

23-2 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

that were working together before an upgrade. An "Import Upgrade Key" must be
specified when importing a pre-12c export file. This import upgrade key may be the
same as the Global Upgrade Key (it usually should be), but is not required to be the
same.

For more information, see: "Selecting the ODI Upgrade Key" in Upgrading Oracle Data
Integrator.

23.1.2 Export Keys
Oracle Data Integrator 12c (12.1.3) introduces the use of an Export Key whenever
exporting ODI objects which could contain sensitive data which should not be stored
in plaintext. All ODI export dialogues will prompt you to enter an Export Key, which
is used to encrypt sensitive (cipher) data using AES symmetric block two-way
encryption. If you choose not to supply an Export Key, sensitive data will be stripped
from the export file as it is saved.

The AES KEY for any sensitive data encryption needed during the export must be at
least 8 characters and no more than 100 characters long. It should have at least one
special character (@#$%+/=) or digit, and at least one alphabetic lower or upper case
character.

Dialogues which prompt for an Export Key also provide an option to "Save export
key." If you select this prompt, ODI will remember (but never display) the Export Key
you have just used, by saving it (obfuscated) in the current repository. This may be
convenient when you want to use the same key for many subsequent export
operations. As soon as you start typing new content into the Export Key field,
however, this option is automatically deselected and any previously-remembered
Export Key is lost, unless you cancel the export.

When importing objects, ODI presents a dialogue prompting you to either enter an
Export Key, or import the file without cipher data. You must provide the identical
Export Key that was used when the object was exported, or, you can opt to import the
file without any sensitive data that is encrypted in the file.

When performing an import of multiple files, you will be prompted as needed for
Export Keys for each file if they were exported with different Export Keys.

By default, ODI uses AES-128 encryption. You can select AES-128 or AES-256 (where
available) during master repository creation/import, and you can specify the version
used by ODI Studio in the odi.conf file.

23.1.3 Relationships between Objects
Oracle Data Integrator stores all objects in a relational database schema (the
Repository) with dependencies between objects. Repository tables that store these
objects maintain these dependencies as references using the Internal IDs and GUIDs.
When you drag and drop a target datastore into a mapping, the reference to the GUID
of this datastore is stored in the mapping object, along with the Internal ID and the
fully-qualified name of the referenced object.

If you want to export this mapping, and import it in Synonym mode into another work
repository, a datastore with the same GUID must already exist in this other work
repository; otherwise, the mapping will have an unresolved reference. The unresolved
references can be resolved either by fixing the imported object directly or by importing
the missing object.

Therefore, the Model or Sub-model holding this datastore needs to be exported and
imported in Synonym mode prior to importing the mapping.

Import and Export Concepts

Exporting and Importing 23-3

You can use the Smart export and import feature or solutions to export and import sets of
dependent objects.

■ Use solutions in combination with versioning to maintain the dependencies when
doing export/import. See Chapter 19, "Using Version Control (Legacy Mode)."

■ It is recommended to use the Smart export and import feature because the
dependencies are determined automatically.

There are also dependencies between work repository objects and master repository
objects. Most references from work repository objects to master repository objects are
made using Codes or Names. This means that only the Code of the objects (for
example ORACLE is the code of the Oracle technology in the master) of the master
repository objects are referenced in the work repository. There are some exceptions in
the Mapping framework, such as in SnpMapRef, that also use Internal ID and GUID.

Dependencies within a work repository are ID-based.

It is important to import objects in the appropriate order. You can also use the Smart
export and import feature to preserve these dependencies. Table 23–1 lists the
dependencies of a mapping to other objects when importing the mapping in synonym
mode. Note that a Smart export automatically includes these dependent objects when
exporting a mapping.

23.1.4 Import Modes
Oracle Data Integrator can import objects, the topology or repositories using several
modes.

Read carefully this section in order to determine the import type you need.

Table 23–1 Dependencies of a mapping in the work and Master Repository

Dependencies on other objects of Work
Repository when importing in Synonym Mode

Dependencies on objects of the
Master Repository

■ (Parent/Child) Folder: Folder holding this
mapping needs to be imported first.

■ (Reference) Model/Sub-Model: all
Models/Sub-Models holding Datastore
definitions referenced by the mapping need to
be imported first. Datastore definitions including
Attributes, Data Types, Primary Keys, Foreign
Keys (references), Conditions must be exactly
the same as the ones used by the exported
mapping

■ (Reference) Global Variables, Sequences and
Functions used within the mapping need to
imported first

■ (Reference) Local Variables, Sequences and
Function used within the mapping need to
imported first

■ (Reference) Knowledge Modules referenced
within the mapping need to be imported first

■ (Reference) Any mapping used as source in the
current mapping needs to be imported first

■ Technology Codes

■ Context Codes

■ Logical Schema Names

■ Data Type Codes

■ Physical Server Names of the
Optimization Contexts of
Mappings

Import and Export Concepts

23-4 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Table 23–2 Import Types

Import Type Description

Duplication This mode creates a new object (with a new GUID and internal ID) in the target
Repository, and inserts all the elements of the export file.

In Repositories in legacy compatible mode, the ID of this new object will be
based on the ID of the Repository in which it is to be created (the target
Repository). This does not apply to normal 12c Repositories.

Dependencies between objects which are included into the export such as
parent/child relationships are recalculated to match the new parent IDs.
References to objects which are not included into the export are not
recalculated.

Note that this mode is designed to insert only 'new' elements.

The Duplication mode is used to duplicate an object into the target repository.
To transfer objects from one repository to another, with the possibility to ship
new versions of these objects, or to make updates, it is better to use the three
Synonym modes.

This import type is not available for importing master repositories. Creating a
new master repository using the export of an existing one is performed using
the master repository Import wizard.

Synonym
Mode INSERT

Tries to insert the same object (with the same GUID) into the target repository.
The original object GUID is preserved.

If an object of the same type with the same internal ID already exists then
nothing is inserted.

Dependencies between objects which are included into the export such as
parent/child relationships are preserved. References to objects which are not
included into the export are not recalculated.

If any of the incoming attributes violates any referential constraints, the import
operation is aborted and an error message is thrown.

Note that sessions can only be imported in this mode.

Synonym
Mode
UPDATE

Tries to modify the same object (with the same GUID) in the repository.

This import type updates the objects already existing in the target Repository
with the content of the export file.

If the object does not exist, the object is not imported. This applies to child
objects also. So if new child objects are added in the source, and the parent
object is exported and imported into the target using Synonym Mode
UPDATE, then the new child objects will not be added in the target.

Note that this import type does NOT delete child objects that exist in the
repository but are not in the export file. For example, if the target repository
contains a project with some variables and you want to replace it with one that
contains no variables, this mode will update for example the project name but
will not delete the variables under this project. The Synonym Mode INSERT_
UPDATE should be used for this purpose.

Import and Export Concepts

Exporting and Importing 23-5

Example 1: (Scenario for a package)

The same scenario exists in the source and target repositories.

Source Repository:

SCENARIO_1 (096bb382-5413-442f-97c5-aedbc3aa8caf)

- ODIBEEP_SCEN_STEP_1 (579c3271-ab52-45e8-bad2-826d9ba3c056)

- ODIBEEP_SCEN_TASK_1 (4a0e1924-dfbc-49e6-a91b-e7fe8698de42)

Target Repository:

SCENARIO_1 (096bb382-5413-442f-97c5-aedbc3aa8caf)

- ODIBEEP_SCEN_STEP_1 (579c3271-ab52-45e8-bad2-826d9ba3c056)

- ODIBEEP_SCEN_TASK_1 (4a0e1924-dfbc-49e6-a91b-e7fe8698de42)

In the source repository, another step is added to the package and the scenario
is regenerated.

Source Repository:

SCENARIO_1 (096bb382-5413-442f-97c5-aedbc3aa8caf)

- ODIBEEP_SCEN_STEP_1 (26da9aa1-f213-4c38-964e-5ea0d5c3d744)

 Note: A new GUID is assigned by regeneration.

- ODIBEEP_SCEN_TASK_1 (a3621fa7-ebb5-46ed-928d-3f4bafcf47a3)

 Note: A new GUID is assigned by regeneration.

- ODIDELETESCEN_SCEN_STEP_2 (5c356613-ea73-4b39-8269-890af79c944c)

- ODIDELETESCEN_SCEN_TASK_2 (6d2fbb37-4498-40aa-80f6-829a86c8d70a)

Result if source exported and imported into target using Synonym Mode
UPDATE.

SCENARIO_1 (096bb382-5413-442f-97c5-aedbc3aa8caf)

- ODIBEEP_SCEN_STEP_1 (579c3271-ab52-45e8-bad2-826d9ba3c056)

- ODIBEEP_SCEN_TASK_1 (4a0e1924-dfbc-49e6-a91b-e7fe8698de42)

The existing step and task are not updated since they were assigned a new
global id during scenario regeneration. The new steps and tasks are not added
since new objects are not inserted when using Synonym Mode UPDATE. So we
can see that when adding steps / tasks and regenerating a scenario, that using
Synonym Mode UPDATE to import into the target will not give desirable
results. Due to the nature of Scenarios, Synonym Mode INSERT_UPDATE
should be used to move Scenarios between repositories.

Table 23–2 (Cont.) Import Types

Import Type Description

Import and Export Concepts

23-6 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Example 2:

Source Repository:

TABLE_1 (863b3cc1-3a3c-4011-b3bc-0ce236e41f22)

 - COL_1_RENAMED (210a73ef-4919-4eab-9e39-a3153300f8b0)

 - COL_NEW (0cca9009-cb11-4e4d-892e-01014b0a1592)

Target Repository:

TABLE_1 (863b3cc1-3a3c-4011-b3bc-0ce236e41f22)

 - COL_1 (210a73ef-4919-4eab-9e39-a3153300f8b0)

 - COL_DEL (0cca9009-cb11-4e4d-892e-01014b0a1592)

Result if source is exported and imported into the target using Synonym
Mode UPDATE:

TABLE_1 (863b3cc1-3a3c-4011-b3bc-0ce236e41f22)

 - COL_1_RENAMED (210a73ef-4919-4eab-9e39-a3153300f8b0)

 - COL_DEL (0cca9009-cb11-4e4d-892e-01014b0a1592)

Note the following:

■ COL_1 is updated to COL_1_RENAMED.

■ COL_DEL remains as it was before the import as objects are not deleted
when using Synonym Mode Update.

■ COL_NEW is not added as new objects are not inserted when using
Synonym Mode Update.

Synonym
Mode
INSERT_
UPDATE

If no ODI object exists in the target Repository with an identical GUID, this
import type will create a new object with the content of the export file. Already
existing objects (with an identical GUID) will be updated; the new ones,
inserted.

Existing child objects will be updated, non-existing child objects will be
inserted, and child objects existing in the repository but not in the export file
will be deleted.

Dependencies between objects which are included into the export such as
parent/child relationships are preserved. References to objects which are not
included into the export are not recalculated.

This import type is not recommended when the export was done without the
child components. This will delete all sub-components of the existing object.

Table 23–2 (Cont.) Import Types

Import Type Description

Import and Export Concepts

Exporting and Importing 23-7

23.1.5 Tips for Import/Export
This section provides tips for the import and export operations.

Repository IDs
When importing ODI 11g objects, use an Upgrade Key to compute a GUID that is
based on the legacy Internal ID. When importing from ODI Studio, an Upgrade Key is
prompted for when the import is started and it is determined that the import file is
from before 12c. When import is not interactive (that is, run from a command line),
then an error is thrown if the import needs an Upgrade Key and one has not been
specified. For more information, see Chapter 10, "Using Compatibility Mode."

When importing, objects are matched by GUID. If a match is found, then that object
will use the Internal ID of the matching object from the target repository. If a match is
not found, then the behavior is as follows:

■ If the target repository is not legacy ID compatible, then a new ID is assigned.

■ If the target repository is legacy ID compatible, then the ID of the source object
from the import file is used.

■ If the import is in DUPLICATION mode, then a new Internal ID is always assigned.

Export/Import Reports
A report is displayed after every export or import operation. It is advised to read it
carefully in order to determine eventual errors of the import process.

Depending on the export or import operation performed, this report gives you details
on, for example, the:

■ Import type

■ Imported Objects. For every imported object the object type, the original object
name, the object name used for the import, the original ID, and the new,
recalculated ID/GUID after the import is given.

■ Deleted Objects. For every deleted object the object type, the object name, and the
original ID/GUID is given.

Import
Replace

This import type replaces an already existing object in the target repository by
one object of the same object type specified in the import file.

This import type is only supported for scenarios, Knowledge Modules, actions,
and action groups and replaces all children objects with the children objects
from the imported object.

Note the following when using the Import Replace mode:

If your object was currently used by another ODI component like for example a
KM used by a mapping, this relationship will not be impacted by the import,
the mappings will automatically use this new KM in the project.

Warnings:

■ When replacing a Knowledge module by another one, Oracle Data
Integrator sets the options in the new module using option name matching
with the old module's options. New options are set to the default value. It
is advised to check the values of these options in the mappings.

■ Replacing a KM by another one may lead to issues if the KMs are radically
different. It is advised to check the mapping's design and execution with
the new KM.

Table 23–2 (Cont.) Import Types

Import Type Description

Exporting and Importing Objects

23-8 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

■ Created Missing References lists the missing references detected after the import.

■ Fixed Missing References lists the missing references fixed during the import.

The reports displayed after a smart export or smart import operation contain
additional details to describe what happened to the objects during the export or
import, for example which objects have been ignored, merged, overwritten and so
forth.

You can save the import report as an.xml or .html file. Click Save... to save the import
report.

Missing References
In order to avoid missing references, use either the Smart Export and Import feature or
solutions to manage dependencies. For more information, see "Smart Export and
Import" on page 23-14 and "Working with Labels" on page 19-7.

Import Type
Choose the import type carefully. See "Import Modes" on page 23-3 for more
information.

23.2 Exporting and Importing Objects
Exporting and importing Oracle Data Integrator objects means transferring objects
between different repositories.

When exporting an Oracle Data Integrator object, an XML export file is created. ODI
objects have dependencies, as described in "Relationships between Objects" on
page 23-2. These dependencies will be exported in the XML export file.

The content of this XML file will depend on the export method you will use:

■ Exporting an Object with its Child Components

■ Exporting an Object without its Child Components

The choice will depend on your goal, if you need to do a partial export then the Export
Without Child Components is the one to use.

The Export Multiple ODI Objects feature is useful when you need to regularly export
the same set of Objects.

Once the export has been performed, it is very important to choose the import strategy
to suite your requirements.

The Smart Export and Import feature is a lightweight and consistent export and
import mechanism. It supports the export and import of one or multiple ODI objects.
It is recommended to use this feature to avoid most of the common issues that are
encountered during an export or import.

This section contains the following topics:

■ Exporting an Object with its Child Components

■ Exporting an Object without its Child Components

■ Partial Export/Import

■ Exporting one ODI Object

■ Export Multiple ODI Objects

■ Importing Objects

Exporting and Importing Objects

Exporting and Importing 23-9

■ Smart Export and Import

23.2.1 Exporting an Object with its Child Components
This option is the most common when you want to export an object. It allows you to
export all subcomponents of the current object along with the object itself.

When an Object is exported with its child components, all container-dependent
Objects – those which possess a direct parent/child relationship - are also exported.
Referenced Objects are not exported.

For example, when you choose to export a Project with its child components, the
export will contain the Project definition as well as all objects included in the Project,
such as Folders, Mappings, Procedures, Packages, Knowledge Modules, Variables,
Sequences, Functions, etc. However, this export will not contain dependent objects
referenced which are outside of the Project itself, such as Datastores and Attributes, as
defined previously in "Relationships between Objects" on page 23-2. The numeric
Internal ID references of these Objects will be exported. Additionally, the GUID of the
referenced object is also exported, using a special SnpFKXRef object in the export file.

23.2.2 Exporting an Object without its Child Components
This option can be useful in some particular situations where you would want to take
control of the import process. It allows you to export only the top-level definition of an
object without any of its sub-objects.

For example, if you choose to export a Model without its children, it will only contain
the Model definition but not the underlying Sub-models and Datastores when you
import this model to a new repository.

23.2.3 Partial Export/Import
If you have a very large project that contains thousands of mappings and you only
want to export a subset of these to another work repository, you can either export the
entire Project and then import it, or choose to do a partial manual export/import as
follows:

1. Export all Models referenced by the sub-items of your project and import them in
Synonym mode in the new repository to preserve their GUIDs

2. Export the Project without its children and import it in Synonym mode. This will
simply create the empty Project in the new repository (with the same GUIDs as in
the source).

3. Export every first level Folder you want, without its children, and import them in
Synonym mode. The empty Folders will be created in the new repository.

4. Export and Import all Markers, Knowledge Modules, Variables, Sequences, and so
forth that are referenced by every object you plan to export, and import them in
Synonym mode. See "Import Modes" on page 23-3 for more information on the
Synonym or Duplication mode and the impact on Object GUIDs and Internal IDs
for special caution regarding the import of Knowledge Modules in Synonym mode.

5. Finally, export the mappings you are interested in and import them in Synonym
mode in the new repository.

Exporting and Importing Objects

23-10 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

23.2.4 Exporting one ODI Object
Exporting one Oracle Data Integrator Object means export one single ODI object in
order to transfer it from one repository to another.

To export an object from Oracle Data Integrator:

1. Select the object to be exported in the appropriate Oracle Data Integrator
Navigator.

2. Right-click the object, and select Export...

If this menu item does not appear, then this type of object does not have the export
feature.

3. In the Export dialog, set the Export parameters as indicated in Table 23–3.

You must at least specify the Export Name.

4. Click OK.

Table 23–3 Object Export Parameters

Properties Description

Export Directory Directory in which the export file will be created.

Export Name Name given to the export

Child Components Export If this option is checked, the objects linked to the object to be
exported will be also exported. These objects are those visible
under the exported object in the tree. It is recommended to leave
this option checked. Refer to "Exporting an Object with its Child
Components" on page 23-9 for more details.

Note that when you are exporting a Load Plan, scenarios will
not be exported even if you check this option.

Replace exiting files without
warning

If this option is checked, the existing file will be replaced by the
ones of the export. If a file with the same name as the export file
already exists, it will be overwritten by the export file.

Encryption These fields allow you to provide an Export Key, used to encrypt
any sensitive data that is contained in the exported object. See:
"Export Keys" on page 23-2 for details.

Export Key Specifies the AES KEY for any sensitive data encryption needed
during the export.

The export key string is minimum 8 characters long and
maximum 100 characters long. It should have at least one special
character (@#$%+/=) or digit, and at least one alphabetic lower
or upper case character.

Confirm Export Key Enter your Export Key again.

Save Export Key If checked, your Export Key is saved for all future exports.

Advanced options This set of options allow to parameterize the XML output file
format. It is recommended that you leave the default values.

XML Version XML Version specified in the export file. Parameter .xml version
in the XML file header.

<?xml version="1.0" encoding="ISO-8859-1"?>

Character Set Encoding specified in the export file. Parameter encoding in the
XML file header.

<?xml version="1.0" encoding="ISO-8859-1"?>

Java Character Set Java character set used to generate the file

Exporting and Importing Objects

Exporting and Importing 23-11

The object is exported as an XML file in the specified location.

23.2.5 Export Multiple ODI Objects
You can export one or more objects at once, using the Export Multiple Objects action.
This lets yo export ODI objects to a zip file or a directory, and lets you re-use an
existing list of objects to export.

More powerful mechanisms for doing this are Solutions and also the Smart Export and
Import. For more information, see "Working with Labels" on page 19-7 or "Smart
Export and Import" on page 23-14.

To export multiple objects at once:

1. Select Export... from the Designer, Topology, Security or Operator Navigator
toolbar menu.

2. In the Export Selection dialog, select Export Multiple Objects.

3. Click OK.

4. In the Export Multiple Objects dialog, specify the export parameters as indicated
in Table 23–3.

The objects are either exported as .xml files directly into the directory, or as a zip
file containing .xml files. If you want to generate a zip file, you need to select
Export as zip file and enter the name of the zip file in the Zip file name field.

5. Specify the list of objects to export:

1. Drag and drop the objects from the Oracle Data Integrator Navigators into the
Export list. Note that you can export objects from different Navigators at once.

2. Click Load a list of objects... to load a previously saved list of objects. This is
useful if you regularly export the same list of objects.

3. To save the current list of objects, click Save Export List and specify a file
name. If the file already exists, it will be overwritten without any warning.

6. Click OK to start the export.

To import multiple objects at once, you must use a Label or the Smart Import. See
"Working with Labels" on page 19-7 and "Smart Export and Import" on page 23-14 for
more information.

23.2.6 Importing Objects
Importing and exporting allows you to transfer objects (Mappings, Knowledge
Modules, Models, and so on) from one repository to another.

When importing Knowledge Modules choose carefully your import strategy which
may depend on the knowledge module's scope. See "Project and Global Knowledge
Modules" on page 6-4 for more information.

This section includes the following topics:

■ Importing an ODI object

■ Importing 11g Objects into a 12c Environment

■ Importing a Project KM

■ Importing a KM in Replace Mode

■ Importing a Global Knowledge Module

Exporting and Importing Objects

23-12 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Importing an ODI object
To import an object in Oracle Data Integrator:

1. In the Navigator, select the object or object node under which you want to import
the object.

2. Right-click the object, and select Import, then the type of the object you wish to
import.

3. In the Import dialog:

1. Select the Import Type. See "Import Modes" on page 23-3 for more
information.

2. Enter the File Import Directory.

3. Select the file(s) to import from the list.

4. Click OK.

The XML-formatted files are imported into the work repository, and the imported
objects appear in the Oracle Data Integrator Navigators.

Note that the parent or node under which objects are imported is dependent on the
import type used. When using DUPLICATION mode, the objects will be imported into
where the Import option was selected. For Synonym imports, the objects will be
imported under the parent specified by the objects parent ID in the import file.

Importing 11g Objects into a 12c Environment
Any versionable 11gobject can be imported into a 12c ODI environment.

The following objects can be checked in as versions and can be imported:

■ Project, Folder

■ Package, Scenario

■ Interface, Procedure, Knowledge Module

■ Sequence, User Function, Variable

■ Model, Model Folder

■ Label

■ Load Plan

When importing objects, you must define an Upgrade Key. ODI uses this key to
generate a unique GUID for the objects.

Importing a Project KM
To import a Knowledge Module into an Oracle Data Integrator project:

Note: 11g interfaces can only be imported into a 12c repository in
either SYNONYM INSERT mode or DUPLICATION mode. That is
because of the complex transformation taking place when interfaces
are converted into mappings.

See Also: For more information about upgrading repositories and
the Upgrade Key, see "Selecting the ODI Upgrade Key" in Upgrading
Oracle Data Integrator.

Exporting and Importing Objects

Exporting and Importing 23-13

1. In Designer Navigator, select the project into which you want to import the KM.

2. Right-click the project, and select Import > Import Knowledge Modules....

3. In the Import dialog:

1. The Import Type is set to Duplication. Refer to "Import Modes" on page 23-3
for more information.

2. Enter the File Import Directory.

3. Select the Knowledge Module file(s) to import from the list.

4. Click OK.

The Knowledge Modules are imported into the work repository and appear in your
project under the Knowledge Modules node.

Importing a KM in Replace Mode
Knowledge modules are usually imported into new projects in Duplication mode. See
"Import Modes" on page 23-3 for more information.

When you want to replace a global KM or a KM in a project by another one and have
all mappings automatically use the new KM, you must use the Import Replace mode.
See "Import Modes" on page 23-3 for more information.

To import a Knowledge Module in Replace mode:

1. Select the Knowledge Module you wish to replace.

2. Right-click the Knowledge Module and select Import Replace...

3. In the Replace Object dialog, specify the Knowledge Module export file.

4. Click OK.

The Knowledge Module is now replaced by the new one.

Importing a Global Knowledge Module
To import a global knowledge module in Oracle Data Integrator:

1. In the Navigator, select the Global Knowledge Modules node in the Global Objects
accordion.

2. Right-click and select Import Knowledge Modules.

3. In the Import dialog:

1. Select the Import Type. See "Import Modes" on page 23-3 for more
information.

2. Enter the File Import Directory.

WARNING: Replacing a Knowledge module by another one in
Oracle Data Integrator sets the options in the new module using the
option name similarities with the old module's options. New
options are set to the default value.

It is advised to check the values of these options in the mappings as
well as the mappings' design and execution with the new KM.

Refer to the Import Replace mode description in "Import Modes" on
page 23-3 for more information.

Exporting and Importing Objects

23-14 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

3. Select the file(s) to import from the list.

4. Click OK.

5. If prompted, enter the Export Key used when this object was exported. If you do
not enter an Export Key, any encrypted sensitive (cipher) data will be stripped
from the imported object. For more information about the Export Key, see: "Export
Keys" on page 23-2.

The global KM is now available in all your projects.

23.2.7 Smart Export and Import
It is recommended to use the Smart Export and Import feature to avoid most of the
common issues that are encountered during an export or import such as broken links
or ID conflicts. The Smart Export and Import feature is a lightweight and consistent
export and import mechanism providing several smart features.

The Smart Export automatically exports an object with all its object dependencies. It is
particularly useful when you want to move a consistent lightweight set of objects from
one repository to another and when you want to include only a set of modified objects,
for example in a patching use case, because Oracle Data Integrator manages all object
dependencies automatically while creating a consistent sub-set of the repository.

The Smart Import provides:

■ Automatic and customizable object matching rules between the objects to import
and the objects already present in the repository

■ A set of actions that can be applied to the object to import when a matching object
has been found in the repository

■ Proactive issue detection and resolution that suggests a default working label for
every broken link or conflict detected during the Smart Import

23.2.7.1 Performing a Smart Export
To perform a Smart Export:

1. Select Export... from the Designer, Topology, Security or Operator Navigator
toolbar menu.

2. In the Export Selection dialog, select Smart Export.

3. Click OK.

4. In the Smart Export dialog, specify the export parameters as follows:

■ In the Export Name field, enter the name given to the export (mandatory).
Default is SmartExport.xml.

■ The objects are either exported into a single .xml file directly in the directory,
or as a zip file containing a single .xml file. If you want to generate a zip file,
you need to select Export as zip file and enter the name of the zip file in the
Zip file name field.

■ Optionally, enter an Export key used to encrypt sensitive data. For more
information about the Export Key, see: "Export Keys" on page 23-2.

Note: This option is only available if you are connected to a Work
repository.

Exporting and Importing Objects

Exporting and Importing 23-15

■ Optionally, customize the XML output file format in the Encoding Options
section. It is recommended that you leave the default values.

■ In the Dependencies section, drag and drop the objects you want to add to the
Smart Export from the Oracle Data Integrator Navigators into the Selected
Objects list on the left. Note that you can export objects from different
Navigators at once.

The object to export appears in a tree with all its related parent and child
objects that are required to support.

Repeat this step according to your needs.

■ Optionally, modify the list of objects to export. You can perform the following
actions: Remove one object, remove all objects, add objects by release tag, and
add shortcuts. See "Change the List of Objects to Export" on page 23-16 for
more information.

■ If there are any cross reference objects, including shortcuts, they are displayed
in the Dependencies list on the right. Parent objects will not be shown under
the Uses node and child objects will not be shown under Used By node.

5. Click Export to start the export process.

The Smart export generates a single file containing all the objects of the Selected
Objects list. You can use this export file as the input file for the Smart Import. See
"Performing a Smart Import" on page 23-17 for more information.

You can review the results of the Smart Export in the Smart Export report.

Properties Description

XML Character Set Encoding specified in the export file. Parameter encoding in the XML
file header.

<?xml version="1.0" encoding="ISO-8859-1"?>

Java Character Set Java character set used to generate the file

Notes:

■ If your export contains shortcuts, you will be asked if you want to
materialize the shortcuts. If you select No, both the shortcuts and
the base objects will be exported.

■ A bold object name indicates that this object has been specifically
added to the Smart Export. Only objects that appear in bold can
be removed. Removing an object also removes its child objects
and the dependent objects of the removed object. Note that child
objects of a specifically added object also appear in bold and can
be removed. To remove an object from the export tree, right-click
the object and select Remove Object. If the removed object is
dependent of another object, it will remain in the tree but will be
shown in normal (non-bold) typeface.

■ A grayed out object name indicates that this object is an
dependent object that will not be exported, as for example a
technology.

Exporting and Importing Objects

23-16 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

The Smart Export Toolbar
The Smart Export toolbar provides tools for managing the objects to export and for
viewing dependencies. Table 23–4 details the different toolbar components.

Change the List of Objects to Export
You can perform the following actions to change the list of objects to export:

■ Remove one object from the list

Only objects that have been explicitly added to the Smart Export (objects in bold)
can be removed from the Selected Objects list.

To remove one object:

1. In the Selected Objects list, select the object you wish to remove.

2. Right-click and select Remove Object.

The object and its dependencies are removed from the Selected Objects list and
will not be included in the Smart Export.

■ Remove all objects from the list

To delete all objects from the Selected Objects list, select Clear All in the Smart
Export Toolbar.

■ Add objects by release tag

To add a folder or model folder of a certain release:

Table 23–4 Smart Export Toolbar

Icon Name Description

Search Searches for a object in the
Selected Objects or Dependencies
list.

Expand All Expands all tree nodes in the
Selected Objects or Dependencies
list.

Collapse All Collapses all tree nodes in the
Selected Objects or Dependencies
list.

Clear All Deletes all objects from the list.
Warning: This also deletes
Release Tags and Materialization
selections.

Add Objects
by Release
Tag

Adds all objects that have the
same release tag as the object
already in the Selected Objects
list.

Note: If the object you wish to remove is a dependent object of
another object to export, it remains in the list but becomes un-bold.

Caution: This also deletes Release Tags and Materialization
selections.

Exporting and Importing Objects

Exporting and Importing 23-17

1. Select Add Objects by Release Tag in the Smart Export Toolbar.

This opens the Release Tag Selection dialog.

2. In the Release Tag Selection dialog, select a release tag from the Release Tag
list. All objects of this release tag will be added to the Smart Export. You don't
need to add them individually to the Smart Export.

The Release Tag Selection dialog displays the list of release tags that have been
already added to the Smart Export.

3. Click OK to add the objects of the selected release tag to the Smart Export.

The release tag name is displayed in the Selected object list after the object name.

■ Add shortcuts

If you add shortcuts to the Smart Export, you can choose to materialize the
shortcut. If you choose not to materialize a shortcut added to the Smart Export,
then the shortcut is exported with all its dependent objects, including the base
object. If you choose to materialize the shortcut, the shortcut is materialized and
the base object referenced through the shortcut is not included.

23.2.7.2 Performing a Smart Import

To perform a Smart Import:

1. Select Import... from the Designer, Topology, Security or Operator Navigator
toolbar menu.

2. In the Import Selection dialog, select Smart Import.

3. Click OK.

The Smart Import wizard opens.

4. On the first screen, Step 1 - File Selection, specify the import settings as follows:

a. In the File Selection field, enter the location of the Smart Export file to import.

b. Optionally, select a response file to replay a previous Smart Import wizard
execution by presetting all fields from the Response File field.

Note: When you add a folder or model folder to the Selected
Objects list that has a release tag, you can choose to automatically add
all objects of the given release to the Smart Export by clicking OK in
the Confirmation dialog.

Note: When performing a Smart Import of ODI 11g objects, you must
specify an Upgrade Key to be used to generate a new GUID for the
object. ODI Studio will prompt you for this Upgrade Key if it detects
that you are importing a pre-12c export file. For more information, see:
Chapter 10, "Using Compatibility Mode."

Note: Actions from the Response File are used only when Oracle
Data Integrator detects a conflict during the import. If there is no
conflict, the default action is used.

Exporting and Importing Objects

23-18 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

c. Click Next to move to the next step of the Smart Import Wizard.

If an exported file has sensitive (cipher) data and was exported with an Export
Key, then after clicking Next, the Enter Export Key dialog is shown. Provide
an Export Key in order to include the encrypted cipher data in your import.
Alternatively, enable Import File without cipher data and leave the field for
the Export Key empty, to import only non-cipher data. For more information
about the Export Key, see: "Export Keys" on page 23-2.

Oracle Data Integrator launches a matching process that verifies whether the
repository contains matching objects for each of the potential objects to import.

5. On the second screen, Step 2 - Import Actions, verify the result of the matching
process and fix eventual issues. The number of detected issues is displayed in the
first line of this screen.

Note that the Smart Import wizard suggests default values for every field.

a. In the Object Match Details section, expand the nodes in the Import Object
column to navigate to the objects available to import during this Smart Import.

b. In the Action column, select the action to perform on the object during the
import operation. Possible values are listed in Table 23–5.

c. In the Repository Object column, select the required repository object. This is
the repository object that matches the best the import object.

d. If an issue, such as a broken link or a code conflict, has been detected during
the matching process, a warning icon is displayed in the Issues column. View
the Issue Details section for more details on the issue.

e. The table in the Issue Details section lists the issues that have been detected
during the matching process. To fix an issue, select the action to perform in the
Action column. Table 23–6 describes the possible actions.

Table 23–5 Actions during Import

Action Description

Merge For containers, this means overwrite the target container with the source
container, and then loop over the children for merging. Each child may
have a different action. Child FCOs that are not in the import file will not
be deleted. The Merge action may also be used for Datastores, which will
be merged at the SCO level.

Overwrite Overwrite target object with source object. Any child objects remaining
after import come from the source object. Note that this applies to all the
child objects (If a project overwrites another, all the folders in this project
will be replaced and any extra folders will be removed).

Create Copy Create source object including renaming or modifying any fields needed to
avoid conflict with existing objects of same name/id/code. This action
preserves the consistency and relations from and to the imported objects.

Reuse Do not import the object, yet preserve the ability import all objects related
to it and link them to the target object. Basically, this corresponds to
overwriting the source object with the matched target object.

Ignore Do not process the source object.

Note: The Next button is disabled until all critical issues are fixed.

Repository-Level Export/Import

Exporting and Importing 23-19

f. In the Fix column, specify the fix. For example, for broken links, click Search
and select the target object in the Broken Link Target Object Selection dialog.

g. Click Next to move to the next step of the Smart Import Wizard.

6. On the third screen, Step 3 - Summary, review the import file name and eventual
issues.

a. In the File Selection field, verify the import file name.

b. If the Smart Import still contains unresolved warnings, they are displayed on
this screen. Note that critical issues are not displayed here. To fix them, click
Back.

c. Optionally, select Save Response File to create a response file that you can
reuse in another import to replay this Smart Import wizard execution by
presetting all fields.

d. Click Finish to launch the Smart Import and to finalize of the Smart Import
Wizard.

You can review the results of the Smart Import in the Smart Import report.

23.3 Repository-Level Export/Import
At repository level you can export and import the master repository and the work
repositories.

23.3.1 Exporting and Importing the Master Repository
The master repository export/import procedure allows you to transfer the whole
repository (Topology and Security domains included) from one repository to another.

It can be performed in Topology Navigator, to import the exported objects in an
existing repository, or while creating a new master repository.

Table 23–6 Possible actions to fix an issue

Action Description

Ignore Not possible on critical issues

Change If a name or code collision is detected, specify the new value in
the Fix field.

Note: If ODI displays a Different Context is already set as the
default context message, set the Fix value to 0.

Do not change For value changed issues, the value in the matching target object
will be kept.

Fix Link For broken links, click Search in the Fix field.

Note: Oracle Data Integrator provides a default working label for
every issue. However, missing references may still result during the
actual import process depending on the choices you made for the
import actions.

Note:

Repository-Level Export/Import

23-20 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Exporting the Master Repository in Topology Navigator
The objects that are exported when exporting the master repository are objects,
methods, profiles, users, languages, versions (if option selected), solutions (if option
selected), open tools, password policies, entities, links, fields, lookups, technologies,
datatypes, datatypes conversions, logical agents, contexts and the child objects.

To export a master repository:

1. Select Export... from the Designer, Topology, Security or Operator Navigator
toolbar menu.

2. In the Export Selection dialog, select Export the Master Repository.

3. Click OK.

4. In the Export Master Repository dialog, set the Export parameters as indicated in
Table 23–3, " Object Export Parameters".

The master repository and its topology and security settings are either exported as
.xml files directly into the directory, or as a zip file containing .xml files. If you
want to generate a zip file, you need to select Export to zip file and enter the name
of the zip file in the Zip File Name field.

5. Select Export versions, if you want to export all stored versions of objects that are
stored in the repository. You may wish to unselect this option in order to reduce
the size of the exported repository, and to avoid transferring irrelevant project
work.

6. Select Export solutions, if you want to export all stored solutions that are stored in
the repository. You may wish to unselect this option for similar reasons.

7. Click OK.

The export files are created in the specified export directory.

Importing the Master Repository
To import the exported master repository objects into an existing master repository:

1. Select Import... from the Designer, Topology, Security or Operator Navigator
toolbar menu.

2. In the Import Selection dialog, select Import the Master Repository.

3. Click OK.

4. In the Import dialog:

a. Select the Import Mode. Refer to "Import Modes" on page 23-3 for more
information.

b. Select whether you want to import the files From a Folder or From a ZIP file.

c. Enter the file import folder or zip file.

5. Click OK.

6. If prompted, enter the Export Key used when this object was exported. If you do
not enter an Export Key, any encrypted sensitive (cipher) data will be stripped
from the imported object. For more information about the Export Key, see: "Export
Keys" on page 23-2.

The master repository contains now the objects you have imported.

Repository-Level Export/Import

Exporting and Importing 23-21

Creating a new Master Repository using a previous Master export
To create a new master repository using an export of another master repository:

1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, select ODI.

3. Select from the Items list the Master Repository Import Wizard.

4. Click OK.

The Master Repository Import Wizard appears.

5. Specify the Database Connection parameters as follows:

■ Login: User ID/login of the owner of the tables you have created for the
master repository

■ JDBC Driver: The driver used to access the technology, which will host the
repository.

■ JDBC URL: The complete path for the data server to host the repository.

Note that the parameters JDBC Driver and URL are synchronized and the
default values are technology dependent.

■ User: The user id/login of the owner of the tables.

■ Password: This user's password.

■ DBA User: The database administrator's username

■ DBA Password: This user's password

6. Specify the Repository Configuration parameters as follows:

■ Id (Importing legacy ID-compatible repositories only): When importing an
ODI 11g repository, you must specify the ID of the repository. You do not need
to specify an ID when importing repositories that are not legacy
ID-compatible.

■ Use a Zip File: If using a compressed export file, check the Use a Zip File box
and select in the Export Zip File field the file containing your master
repository export.

■ Export Path: If using an uncompressed export, select the directory containing
the export in the Export Path field.

■ Technology: From the list, select the technology your repository will be based
on.

7. Click Test Connection to test the connection to your master repository.

Note: The import is not allowed if the source and target repositories
have the same Internal ID and have different repository timestamps.
This can only happen with 11g-compatible repositories, because 12c
repositories have a unique Global ID.

If the target 11g-compatible repository has the same Internal ID as the
source repository, you can renumber the repository. This operation
should be performed with caution. See "About Internal Identifiers
(IDs)" on page 10-2 for more information on the risks, and how to
renumber a repository is described in "Renumbering Repositories" on
page 10-3.

Repository-Level Export/Import

23-22 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

The Information dialog opens and informs you whether the connection has been
established.

8. Click Next.

9. Specify the password storage details:

■ Select Use Password Storage Configuration specified in Export if you want
to use the configuration defined in the export.

■ Select Use New Password Storage Configuration if you do not want to use
the configuration defined in the export and select

– Internal Password Storage if you want to store passwords in the Oracle
Data Integrator repository

– External Password Storage if you want use JPS Credential Store
Framework (CSF) to store the data server and context passwords. Indicate
the MBean Server Parameters to access the credential store as described in
"MBean Server Parameters" in Administering Oracle Data Integrator.

Refer to "Setting Up External Password Storage" in Administering Oracle Data
Integrator for more information on password storage details.

10. In the Master Repository Import Wizard click Finish to validate your entries.

If an exported file for the Master Repository has sensitive (cipher) data and was
exported with an Export Key, then after clicking Next, the Enter Export Key dialog
is shown. Provide an Export Key in order to include the encrypted cipher data in
your import.

If a file for the Master Repository import was exported without cipher data, or if
you enable Import File without cipher data and leave the field for the Export Key
empty, another dialog for creating a new password for the ODI SUPERVISOR user
will be displayed. You will need to create a new password.

For more information about the Export Key, see: "Export Keys" on page 23-2.

A new repository is created and the exported components are imported in this master
repository.

23.3.2 Export/Import Topology and Security Settings
Exporting and then importing the topology or security settings allows you to transfer
a domain from one master repository to another.

Exporting the Topology and Security Settings
The domains that can be exported are given below:

■ Topology: the full topology (logical and physical architectures including the local
repository, data servers, hosts, agents, generic actions, technologies, datatypes,
logical schemas, and contexts).

■ Logical Topology: technologies (connection, datatype or language information),
logical agents, logical schemas, actions and action groups.

■ Security: objects, methods, users, profiles, privileges, password policies and hosts.

■ Execution Environment: technologies, data servers, contexts, generic actions, load
balanced agents, physical schemas and agents.

To export the topology/security:

Repository-Level Export/Import

Exporting and Importing 23-23

1. Select Export... from the Designer, Topology, Security or Operator Navigator
toolbar menu.

2. In the Export Selection dialog, select one of the following:

■ Export the Topology

■ Export the Logical Topology

■ Export the Security Settings

■ Export the Execution Environment

3. Click OK.

4. In the Export dialog, specify the export parameters as indicated in Table 23–3,
" Object Export Parameters".

The topology and security settings are either exported as .xml files directly into
the directory, or as a zip file containing .xml files. If you want to generate a zip file,
you need to select Export to zip file and enter the name of the zip file in the Zip
File Name field.

5. Click OK.

The export files are created in the specified export directory.

Importing the Topology and Security Settings
To import a topology export:

1. Select Import... from the Designer, Topology, Security or Operator Navigator
toolbar menu.

2. In the Import Selection dialog, select one of the following:

■ Import the Topology

■ Import the Logical Topology

■ Import Security Settings

■ Import the Execution Environment

3. Click OK.

4. In the Import dialog:

1. Select the Import Mode. Refer to "Import Modes" on page 23-3 for more
information.

2. Select whether to import the topology export from a Folder or a Zip File.

3. Enter the file import directory.

5. Click OK.

6. If prompted, enter the Export Key used when this object was exported. If you do
not enter an Export Key, any encrypted sensitive (cipher) data will be stripped
from the imported object. For more information about the Export Key, see: "Export
Keys" on page 23-2.

The specified files are imported into the master repository.

23.3.3 Exporting and Importing a Work Repository
Importing or exporting a work repository allows you to transfer all work repository
objects from one repository to another.

Exporting the Technical Environment

23-24 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Exporting a Work Repository
To export a work repository:

1. Select Export... from the Designer, Topology, Security or Operator Navigator
toolbar menu.

2. In the Export Selection dialog, select Export the Work Repository.

3. Click OK.

4. In the Export dialog, set the Export parameters as indicated inTable 23–3, " Object
Export Parameters".

The work repository with its models and projects are either exported as .xml files
directly into the directory, or as a zip file containing .xml files. If you want to
generate a zip file, you need to select Export to zip file and enter the name of the
zip file in the Zip File Name field

5. Click OK.

The export files are created in the specified export directory.

Importing a Work Repository
To import a work repository:

1. Select Import... from the Designer, Topology, Security or Operator Navigator
toolbar menu.

2. In the Import Selection dialog, select Import the Work Repository.

3. Click OK.

4. In the Import dialog:

1. Select the Import mode. Refer to "Import Modes" on page 23-3 for more
information.

2. Select whether to import the work repository from a Folder or a Zip File.

3. Enter the file import directory.

5. Click OK.

6. If prompted, enter the Export Key used when this object was exported. If you do
not enter an Export Key, any encrypted sensitive (cipher) data will be stripped
from the imported object. For more information about the Export Key, see: "Export
Keys" on page 23-2.

The specified files are imported into the work repository.

23.4 Exporting the Technical Environment
This feature produces a comma separated (.csv) file in the directory of your choice,
containing the details of the technical environment. The export includes a description
of your work environment. It contains info about the ODI version being used, master
and work repositories, and information about agents and technologies. This export
may be required for troubleshooting or support issues.

You can customize the format of this file.

To produce the technical environment file:

1. Select Export... from the Designer, Topology, Security or Operator Navigator
toolbar menu.

Exporting and Importing the Log

Exporting and Importing 23-25

2. In the Export Selection dialog, select Export the Technical Environment.

3. Click OK.

4. In the Technical environment dialog, specify the export parameters as indicated in
Table 23–7:

5. Click OK.

23.5 Exporting and Importing the Log
You can export and import log data for archiving purposes. See "Exporting and
Importing Log Data" in Administering Oracle Data Integrator for more information.

Table 23–7 Technical Environment Export Parameters

Properties Description

Export Directory Directory in which the export file will be created.

File Name Name of the .cvs export file

Advanced options This set of options allow to parameterize the XML output file
format. It is recommended that you leave the default values.

Character Set Encoding specified in the export file. Parameter encoding in the
XML file header.

<?xml version="1.0" encoding="ISO-8859-1"?>

Field codes The first field of each record produced contains a code
identifying the kind of information present on the row. You can
customize these codes as necessary.

■ Oracle Data Integrator Information Record Code: Code
used to identify rows that describe the current version of
Oracle Data Integrator and the current user. This code is
used in the first field of the record.

■ Master, Work, Agent, and Technology Record Code: Code
for rows containing information about the master
repository, the work repositories, the running agents, or the
the data servers, their version, etc.

Record Separator and Field
Separator

These separators define the characters used to separate records
(lines) in the file, and fields within one record.

Exporting and Importing the Log

23-26 Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New In Oracle Data Integrator?
	Part I Introduction to Developing with Oracle Data Integrator
	1 Overview of an Integration Project
	1.1 Oracle Data Integrator Project Quick Start List

	2 Overview of Oracle Data Integrator Topology
	2.1 Introduction to the Oracle Data Integrator Topology
	2.1.1 Physical Architecture
	2.1.2 Contexts
	2.1.3 Logical Architecture
	2.1.4 Agents
	2.1.5 Languages
	2.1.6 Repositories

	Part II Managing and Reverse-Engineering Metadata
	3 Creating and Using Data Models and Datastores
	3.1 Introduction to Models
	3.1.1 Datastores
	3.1.2 Data Integrity
	3.1.3 Reverse-engineering
	3.1.4 Changed Data Capture

	3.2 Creating and Reverse-Engineering a Model
	3.2.1 Creating a Model
	3.2.2 Creating a Model and Topology Objects
	3.2.3 Reverse-engineering a Model

	3.3 Creating and Reverse-Engineering a Datastore
	3.3.1 Creating a Datastore
	3.3.2 Reverse-Engineering File Datastores
	3.3.2.1 Reverse-Engineering Fixed Files
	3.3.2.2 Reverse-Engineering Delimited Files
	3.3.2.3 Reverse-Engineering COBOL Files

	3.3.3 Adding and Deleting Datastore Attributes
	3.3.4 Adding and Deleting Constraints and Filters
	3.3.4.1 Keys
	3.3.4.2 References
	3.3.4.3 Conditions
	3.3.4.4 Mandatory Attributes
	3.3.4.5 Filter

	3.4 Editing and Viewing a Datastore's Data
	3.5 Using Partitioning
	3.5.1 Manually Defining Partitions and Sub-Partitions of Model Datastores

	3.6 Checking Data Quality in a Model
	3.6.1 Introduction to Data Integrity
	3.6.2 Checking a Constraint
	3.6.3 Perform a Static Check on a Model, Sub-Model or Datastore
	3.6.4 Reviewing Erroneous Records

	4 Using Journalizing
	4.1 Introduction to Changed Data Capture
	4.1.1 The Journalizing Components
	4.1.2 Simple vs. Consistent Set Journalizing

	4.2 Setting up Journalizing
	4.2.1 Setting up and Starting Journalizing
	4.2.2 Journalizing Infrastructure Details
	4.2.3 Journalizing Status

	4.3 Using Changed Data
	4.3.1 Viewing Changed Data
	4.3.2 Using Changed Data: Simple Journalizing
	4.3.3 Using Changed Data: Consistent Set Journalizing
	4.3.4 Journalizing Tools
	4.3.5 Package Templates for Using Journalizing

	5 Creating Data Models with Common Format Designer
	5.1 Introduction to Common Format Designer
	5.1.1 What is a Diagram?
	5.1.2 Why assemble datastores and attributes from other models?
	5.1.3 Graphical Synonyms

	5.2 Using the Diagram
	5.2.1 Creating a New Diagram
	5.2.2 Create Datastores and Attributes
	5.2.3 Creating Graphical Synonyms
	5.2.4 Creating and Editing Constraints and Filters
	5.2.5 Printing a Diagram

	5.3 Generating DDL scripts
	5.4 Generating Mapping IN/OUT

	Part III Developing Integration Projects
	6 Creating an Integration Project
	6.1 Introduction to Integration Projects
	6.1.1 Oracle Data Integrator Project Components
	6.1.1.1 Oracle Data Integrator Project Components
	6.1.1.2 Global Components

	6.1.2 Project Life Cycle

	6.2 Creating a New Project
	6.3 Managing Knowledge Modules
	6.3.1 Project and Global Knowledge Modules
	6.3.2 Knowledge Module Naming Conventions
	6.3.3 Choosing the Right Knowledge Modules
	6.3.4 Importing and Replacing Knowledge Modules
	6.3.5 Encrypting and Decrypting a Knowledge Module

	6.4 Organizing the Project with Folders

	7 Creating and Using Packages
	7.1 Introduction to Packages
	7.1.1 Introduction to Steps
	7.1.2 Introduction to Creating Packages
	7.1.3 Introduction to the Package editor

	7.2 Creating a new Package
	7.3 Working with Steps
	7.3.1 Adding a Step
	7.3.1.1 Adding a Mapping step
	7.3.1.2 Adding a Procedure step
	7.3.1.3 Variable Steps
	7.3.1.4 Adding Oracle Data Integrator Tool Steps
	7.3.1.5 Adding a Model, Sub-Model or Datastore

	7.3.2 Deleting a Step
	7.3.3 Duplicating a Step
	7.3.4 Running a Step
	7.3.5 Editing a Step's Linked Object
	7.3.6 Arranging the Steps Layout

	7.4 Defining the Sequence of Steps
	7.5 Running a Package

	8 Creating and Using Mappings
	8.1 Introduction to Mappings
	8.1.1 Parts of a Mapping
	8.1.2 Navigating the Mapping Editor

	8.2 Creating a Mapping
	8.2.1 Creating a New Mapping
	8.2.2 Adding and Removing Components
	8.2.3 Connecting and Configuring Components
	8.2.3.1 Attribute Matching
	8.2.3.2 Connector Points and Connector Ports
	8.2.3.3 Defining New Attributes
	8.2.3.4 Defining Expressions and Conditions

	8.2.4 Defining a Physical Configuration
	8.2.5 Running Mappings

	8.3 Using Mapping Components
	8.3.1 The Expression Editor
	8.3.2 Source and Target Datastores
	8.3.3 Creating Multiple Targets
	8.3.3.1 Specifying Target Order

	8.3.4 Adding a Reusable Mapping
	8.3.5 Creating Aggregates
	8.3.6 Creating Distincts
	8.3.7 Creating Expressions
	8.3.8 Creating Filters
	8.3.9 Creating Joins and Lookups
	8.3.10 Creating Pivots
	8.3.10.1 Example: Pivoting Sales Data
	8.3.10.2 The Row Locator
	8.3.10.3 Using the Pivot Component

	8.3.11 Creating Sets
	8.3.12 Creating Sorts
	8.3.13 Creating Splits
	8.3.14 Creating Subquery Filters
	8.3.15 Creating Table Functions
	8.3.16 Creating Unpivots
	8.3.16.1 Example: Unpivoting Sales Data
	8.3.16.2 The Row Locator
	8.3.16.3 Using the Unpivot Component

	8.3.17 Creating Flatten Components
	8.3.17.1 Using a Flatten Component in a Mapping
	8.3.17.2 Considerations for using Flatten component with JSON Source

	8.3.18 Creating Jagged Components

	8.4 Creating a Mapping Using a Dataset
	8.4.1 Differences Between Flow and Dataset Modeling
	8.4.2 Creating a Dataset in a Mapping
	8.4.3 Converting a Dataset to Flow-Based Mapping

	8.5 Physical Design
	8.5.1 About the Physical Mapping Diagram
	8.5.2 Selecting LKMs, IKMs and CKMs
	8.5.3 Configuring Execution Locations
	8.5.3.1 Moving Physical Nodes
	8.5.3.2 Moving Expressions
	8.5.3.3 Defining New Execution Units

	8.5.4 Adding Commands to be Executed Before and After a Mapping
	8.5.5 Configuring In-Session Parallelism
	8.5.6 Configuring Parallel Target Table Load
	8.5.7 Configuring Temporary Indexes
	8.5.8 Configuring Journalizing
	8.5.9 Configuring Extraction Options
	8.5.10 Creating and Managing Physical Mapping Designs

	8.6 Reusable Mappings
	8.6.1 Creating a Reusable Mapping

	8.7 Editing Mappings Using the Property Inspector and the Structure Panel
	8.7.1 Adding and Removing Components
	8.7.1.1 Adding Components
	8.7.1.2 Removing Components

	8.7.2 Editing a Component
	8.7.3 Customizing Tables
	8.7.4 Using Keyboard Navigation for Common Tasks

	8.8 Flow Control and Static Control
	8.8.1 Setting up Flow Control
	8.8.2 Setting up Static Control
	8.8.3 Defining the Update Key

	8.9 Designing E-LT and ETL-Style Mappings

	9 Creating and Using Dimensions and Cubes
	9.1 Overview of Dimensional Objects
	9.1.1 Overview of Dimensions
	9.1.2 Overview of Cubes
	9.1.2.1 Understanding Measure (Fact)
	9.1.2.2 Cube Implementation

	9.2 Creating Dimensional Objects through ODI
	9.2.1 Dimension and Cube Accordion
	9.2.2 Using Dimensions in ODI
	9.2.3 Using Cubes in ODI
	9.2.3.1 Generic Properties
	9.2.3.2 Cube Measures

	9.2.4 Creating New Dimensional Models
	9.2.5 Creating and Editing Dimensional Objects using the Editor
	9.2.5.1 Using Dimension Editor
	9.2.5.1.1 Definition Tab
	9.2.5.1.2 Levels Tab
	9.2.5.1.3 Hierarchies Tab

	9.2.5.2 Using the Cube Editor
	9.2.5.2.1 Definition Tab
	9.2.5.2.2 Details Tab

	9.3 Using Dimensional Components in Mappings
	9.3.1 Using Dimension Component in Mapping
	9.3.1.1 Dimension Component Properties Editor
	9.3.1.1.1 Attributes
	9.3.1.1.2 General Properties
	9.3.1.1.3 Connector Points
	9.3.1.1.4 History Properties
	9.3.1.1.5 Target Properties

	9.3.2 Using Cube Component in Mappings
	9.3.2.1 Cube Component Properties Editor
	9.3.2.1.1 Attributes
	9.3.2.1.2 General Properties
	9.3.2.1.3 Target Properties
	9.3.2.1.4 Connector Points

	9.4 Expanding Dimensional Components
	9.4.1 Expanding Dimension Component
	9.4.2 Expanding Cube Component

	10 Using Compatibility Mode
	10.1 About Compatibility Mode
	10.2 Creating Compatible Mappings
	10.2.1 Creating Mappings using Upgrade Assistant
	10.2.2 Creating Mappings with the 11g SDK in ODI 12c

	10.3 About Internal Identifiers (IDs)
	10.4 Renumbering Repositories

	11 Creating and Using Procedures, Variables, Sequences, and User Functions
	11.1 Working with Procedures
	11.1.1 Introduction to Procedures
	11.1.2 Creating Procedures
	11.1.2.1 Create a New Procedure
	11.1.2.2 Define the Procedure's Options
	11.1.2.3 Create and Manage the Procedure's Tasks

	11.1.3 Using Procedures
	11.1.3.1 Executing the Procedure
	11.1.3.2 Using a Procedure in a Package
	11.1.3.3 Generating a Scenario for a Procedure

	11.1.4 Encrypting and Decrypting Procedures

	11.2 Working with Variables
	11.2.1 Introduction to Variables
	11.2.2 Creating Variables
	11.2.3 Using Variables
	11.2.3.1 Using Variables in Packages
	11.2.3.2 Using Variables in Mappings
	11.2.3.3 Using Variables in Object Properties
	11.2.3.4 Using Variables in Procedures
	11.2.3.5 Using Variables within Variables
	11.2.3.6 Using Variables in the Resource Name of a Datastore
	11.2.3.7 Using Variables in a Server URL
	11.2.3.8 Using Variables in On Connect/Disconnect Commands
	11.2.3.9 Passing a Variable to a Scenario
	11.2.3.10 Generating a Scenario for a Variable
	11.2.3.11 Tracking Variables and Sequences

	11.3 Working with Sequences
	11.3.1 Introduction to Sequences
	11.3.2 Creating Sequences
	11.3.2.1 Creating Standard Sequences
	11.3.2.2 Creating Specific Sequences
	11.3.2.3 Creating Native Sequences

	11.3.3 Using Sequences and Identity Columns
	11.3.3.1 Tips for Using Standard and Specific Sequences
	11.3.3.2 Identity Columns

	11.3.4 Sequence Enhancements

	11.4 Working with User Functions
	11.4.1 Introduction to User Functions
	11.4.2 Creating User Functions
	11.4.3 Using User Functions

	12 Using Scenarios
	12.1 Introduction to Scenarios
	12.2 Generating a Scenario
	12.3 Regenerating a Scenario
	12.4 Generating a Group of Scenarios
	12.5 Controlling Concurrent Execution of Scenarios and Load Plans
	12.6 Exporting Scenarios
	12.7 Importing Scenarios in Production
	12.7.1 Import Scenarios
	12.7.2 Replace a Scenario
	12.7.3 Working with a Scenario from a Different Repository

	12.8 Encrypting and Decrypting a Scenario

	13 Using Load Plans
	13.1 Introduction to Load Plans
	13.1.1 Load Plan Execution Lifecycle
	13.1.2 Differences between Packages, Scenarios, and Load Plans
	13.1.3 Load Plan Structure
	13.1.4 Introduction to the Load Plan Editor

	13.2 Creating a Load Plan
	13.2.1 Creating a New Load Plan
	13.2.2 Defining the Load Plan Step Sequence
	13.2.2.1 Adding Load Plan Steps
	13.2.2.2 Editing Load Plan Steps
	13.2.2.3 Deleting a Step
	13.2.2.4 Duplicating a Step

	13.2.3 Working with Variables in Load Plans
	13.2.3.1 Declaring Load Plan Variables
	13.2.3.2 Setting Variable Values in a Step

	13.2.4 Handling Load Plan Exceptions and Restartability
	13.2.4.1 Defining Exceptions Flows
	13.2.4.2 Using Exception Handling
	13.2.4.3 Defining the Restart Behavior

	13.3 Running Load Plans
	13.4 Using Load Plans in Production
	13.4.1 Scheduling and Running Load Plans in Production
	13.4.2 Exporting, Importing and Versioning Load Plans
	13.4.2.1 Exporting Load Plans
	13.4.2.2 Importing Load Plans
	13.4.2.3 Versioning Load Plans

	14 Using Web Services
	14.1 Introduction to Web Services in Oracle Data Integrator
	14.2 Oracle Data Integrator Run-Time Services and Data Services
	14.3 Invoking Third-Party Web Services
	14.3.1 Introduction to Web Service Invocation
	14.3.2 Using HTTP Analyzer
	14.3.2.1 Using HTTP Analyzer: Main Steps
	14.3.2.2 What Happens When You Run the HTTP Analyzer
	14.3.2.3 How to Specify HTTP Analyzer Settings
	14.3.2.4 How to Use the Log Window
	14.3.2.5 How to Use the Test Window
	14.3.2.6 How to Use the Instances Window
	14.3.2.7 How to Use Multiple Instances
	14.3.2.8 Using Credentials With HTTP Analyzer
	14.3.2.9 Using SSL With HTTP Analyzer
	14.3.2.10 How to Debug Web Pages Using the HTTP Analyzer
	14.3.2.11 How to Use Rules to Determine Behavior
	14.3.2.11.1 Using the Pass Through Rule
	14.3.2.11.2 Using the Forward Rule
	14.3.2.11.3 Using the URL Substitution Rule
	14.3.2.11.4 Using the Tape Rule

	14.3.2.12 How to Set Rules
	14.3.2.13 Reference: Troubleshooting the HTTP Analyzer
	14.3.2.13.1 Running the HTTP Analyzer While Another Application is Running
	14.3.2.13.2 Changing Proxy Settings

	14.3.3 Using the OdiInvokeWebService Tool

	15 Using Shortcuts
	15.1 Introduction to Shortcuts
	15.1.1 Shortcutting Concepts
	15.1.2 Shortcut Objects

	15.2 Introduction to the Shortcut Editor
	15.3 Creating a Shortcut
	15.4 Working with Shortcuts in your Projects
	15.4.1 Duplicating a Selection with Shortcuts
	15.4.2 Jump to the Reference Shortcut
	15.4.3 Jump to the Base Object
	15.4.4 Executing Shortcuts
	15.4.5 Materializing Shortcuts
	15.4.6 Exporting and Importing Shortcuts
	15.4.7 Using Release Tags
	15.4.8 Advanced Actions

	16 Using Groovy Scripting
	16.1 Introduction to Groovy
	16.2 Introduction to the Groovy Editor
	16.3 Using the Groovy Editor
	16.3.1 Create a Groovy Script
	16.3.2 Open and Edit an Existing Groovy Script
	16.3.3 Save a Groovy Script
	16.3.4 Execute a Groovy Script
	16.3.5 Stop the Execution of a Groovy Script
	16.3.6 Perform Advanced Actions

	16.4 Automating Development Tasks - Examples

	Part IV Managing Integration Projects
	17 Exchanging Global ODI Objects
	17.1 Using the Check for Updates Wizard

	18 Organizing and Documenting Integration Projects
	18.1 Organizing Projects with Folders
	18.1.1 Creating a New Folder
	18.1.2 Arranging Project Folders

	18.2 Organizing Models with Folders
	18.2.1 Creating a New Model Folder
	18.2.2 Arranging Model Folders
	18.2.3 Creating and Organizing Sub-Models

	18.3 Using Cross-References
	18.3.1 Browsing Cross-References
	18.3.2 Resolving Missing References

	18.4 Using Markers and Memos
	18.4.1 Markers
	18.4.2 Memos

	18.5 Handling Concurrent Changes
	18.5.1 Concurrent Editing Check
	18.5.2 Object Locking

	18.6 Creating PDF Reports
	18.6.1 Generating a Topology Report
	18.6.2 Generating a Report for the Version Comparison Results
	18.6.3 Generating a Report for an Oracle Data Integrator Object
	18.6.4 Generating a Diagram Report

	19 Using Version Control (Legacy Mode)
	19.1 Working with Object Flags
	19.2 Working with Versions
	19.3 Working with the Version Comparison Tool
	19.3.1 Viewing the Differences between two Versions
	19.3.2 Using Comparison Filters
	19.3.3 Generating and Printing a Report of your Comparison Results

	19.4 Working with Labels
	19.4.1 Working with Elements in a Label
	19.4.2 Synchronizing Labels
	19.4.3 Restoring and Checking in a Label
	19.4.4 Importing and Exporting Labels

	20 Integrating ODI with Version Control Systems
	20.1 Introduction to ODI-VCS integration
	20.2 Selecting the VCS to use with ODI
	20.3 Creating an SVN Connection
	20.3.1 HTTP Basic Authentication Options
	20.3.2 Subversion Basic Authentication Options
	20.3.3 SSH Authentication Options
	20.3.4 SSL Authentication Options
	20.3.5 File Based Authentication Options

	20.4 Editing an SVN Connection
	20.5 Configuring Subversion Settings
	20.5.1 Subversion Settings

	20.6 Configuring Subversion Repository with ODI
	20.6.1 Options to Configure Subversion Repository with ODI

	20.7 Creating a Default Subversion Project Structure
	20.8 Populating a New ODI Repository from a Subversion Branch/Trunk
	20.9 Populating a Restored ODI Repository from a Subversion Branch/Trunk
	20.10 Understanding Generic Profiles in ODI
	20.11 Creating a Full Tag in the Subversion Repository
	20.12 Creating a Partial Tag in the Subversion Repository
	20.12.1 Create Partial Tag Options

	20.13 Creating a Branch from a Tag
	20.13.1 Create Branch from Tag Options

	20.14 Unlocking the ODI Repository
	20.15 Adding Non-versioned ODI Objects to the Subversion Repository
	20.16 Adding a Single Non-versioned ODI Object to the Subversion Repository
	20.17 Creating versions of a version controlled ODI Object
	20.18 Restoring a Version Controlled ODI Object from its Previous Version
	20.18.1 Restore Object from Subversion Options

	20.19 Restoring a Version Controlled ODI Object Deleted in ODI Repository
	20.20 Viewing the Version History of a Version Controlled ODI Object
	20.20.1 Version Search Criteria

	20.21 Comparing Versions of an ODI Object from the Version History Dialog
	20.21.1 Icons on the Version Compare Results dialog

	20.22 Viewing Version Tree of a Version Controlled ODI Object
	20.23 Comparing Versions of an ODI Object from the Version Tree Editor
	20.24 Performing a Merge
	20.25 Performing a Branch Merge
	20.25.1 Viewing Merge Summary

	21 Release Management
	21.1 Managing ODI Releases
	21.2 Types of Deployment Archives
	21.3 Creating a Deployment Archive from a VCS Label
	21.4 Creating an Initial Deployment Archive from the ODI Repository
	21.5 Creating a Patch Deployment Archive from the ODI Repository
	21.6 Viewing Available Deployment Archives
	21.7 Initializing an ODI Repository Using an Initial Deployment Archive
	21.8 Updating an ODI Repository Using a Patch Deployment Archive
	21.9 Viewing Deployment Archives Applied in an ODI Repository
	21.10 Rolling Back a Patch Deployment Archive

	22 Life Cycle Management Guidelines
	22.1 Guidelines for Choosing the Authentication Type
	22.2 General Branching Guidelines
	22.3 General Tagging Guidelines
	22.4 Branching Guidelines for Single Development Team
	22.5 Branching Guidelines for Parallel Development Teams
	22.6 Guidelines for Release Branches for Parallel Development Teams
	22.7 Guidelines for Versioning During Development
	22.8 Guidelines for Deployment in Testing and Production Environments
	22.9 Guidelines for Initial Deployment and Patching

	23 Exporting and Importing
	23.1 Import and Export Concepts
	23.1.1 Global Identifiers (GUIDs)
	23.1.2 Export Keys
	23.1.3 Relationships between Objects
	23.1.4 Import Modes
	23.1.5 Tips for Import/Export

	23.2 Exporting and Importing Objects
	23.2.1 Exporting an Object with its Child Components
	23.2.2 Exporting an Object without its Child Components
	23.2.3 Partial Export/Import
	23.2.4 Exporting one ODI Object
	23.2.5 Export Multiple ODI Objects
	23.2.6 Importing Objects
	23.2.7 Smart Export and Import
	23.2.7.1 Performing a Smart Export
	23.2.7.2 Performing a Smart Import

	23.3 Repository-Level Export/Import
	23.3.1 Exporting and Importing the Master Repository
	23.3.2 Export/Import Topology and Security Settings
	23.3.3 Exporting and Importing a Work Repository

	23.4 Exporting the Technical Environment
	23.5 Exporting and Importing the Log

