
Oracle® Fusion Middleware
Developing SOA Applications with Oracle SOA Suite

12c (12.2.1.1.0)

E68155-03

April 2017

Documentation for developers that describes how to design,
secure, test, and deploy Oracle Service-Oriented Architecture
(SOA) composite applications consisting of service and
reference binding components and Oracle BPEL process,
human task, business rule, Oracle Mediator, and spring service
components. Includes additional information on designing
transformations and business events and acting upon human
tasks during runtime in Oracle BPM Worklist.

Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite, 12c (12.2.1.1.0)

E68155-03

Copyright © 2005, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

Contributors: Oracle SOA Suite development, product management, and quality assurance teams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. xlvii

Audience ... xlvii

Related Documents.. xlvii

Conventions.. xlviii

What's New in This Guide ... xlix

New and Changed Features for 12c (12.2.1.x) .. xlix

Part I Getting Started with Oracle SOA Suite

1 Introduction to Building Applications with Oracle SOA Suite

1.1 Introduction to Oracle SOA Suite... 1-1

1.1.1 Service-Oriented Architecture... 1-1

1.1.2 Services ... 1-1

1.1.3 Oracle SOA Suite ... 1-2

1.1.4 Standards Used by Oracle SOA Suite to Enable SOA.. 1-2

1.1.5 Service Component Architecture within SOA Composite Applications 1-4

1.1.6 Runtime Behavior of a SOA Composite Application... 1-7

1.1.7 Approaches for Designing SOA Composite Applications .. 1-10

1.2 Getting Started with Oracle SOA Suite ... 1-10

1.3 Setting Accessibility Options .. 1-11

1.3.1 Setting Accessibility Options in Oracle JDeveloper ... 1-11

1.3.2 Setting Accessibility Options in Oracle SOA Composer and Oracle BPM Worklist . 1-11

2 Getting Started with Developing SOA Composite Applications

2.1 Creating a SOA Application.. 2-1

2.1.1 How to Create a SOA Application and Project... 2-1

2.1.2 What Happens When You Create a SOA Application and Project................................ 2-4

2.2 Adding Service Components .. 2-8

2.2.1 How to Add a Service Component... 2-8

2.2.2 What You May Need to Know About Adding and Deleting a Service Component. 2-10

iii

2.2.3 How to Edit a Service Component ... 2-10

2.3 Adding Service Binding Components ... 2-11

2.3.1 How to Add a Service Binding Component.. 2-11

2.3.2 How to Define the Interface (WSDL) for a Web Service.. 2-13

2.3.3 How to View Schemas.. 2-16

2.3.4 How to Edit a Service Binding Component .. 2-17

2.3.5 What You May Need to Know About Adding and Deleting Services 2-18

2.3.6 What You May Need to Know About Using the Same Namespace in Different

WSDL Files in the Same Composite... 2-18

2.3.7 What You May Need to Know About WSDL Browsing in the Resources Window

When the SOA Infrastructure Uses Both Internal and External Oracle HTTP Servers.. 2-18

2.4 Adding Reference Binding Components .. 2-19

2.4.1 How to Add a Reference Binding Component ... 2-19

2.4.2 What You May Need to Know About Adding and Deleting References 2-21

2.4.3 What You May Need to Know About WSDL References ... 2-21

2.4.4 What You May Need to Know About Mixed Message Types in a WSDL File 2-22

2.4.5 What You May Need to Know About Invoking the Default Revision of a

Composite .. 2-22

2.5 Adding Wires .. 2-23

2.5.1 How to Wire a Service and a Service Component.. 2-24

2.5.2 How to Wire a Service Component and a Reference ... 2-24

2.5.3 What You May Need to Know About Adding and Deleting Wires 2-26

2.6 Adding Descriptions to SOA Composite Applications... 2-27

2.6.1 How to Add Descriptions to SOA Composite Applications .. 2-28

2.7 Renaming, Deleting, and Moving Components and Artifacts... 2-28

2.7.1 How to Rename and Delete Components in the SOA Composite Editor................... 2-29

2.7.2 How to Rename, Move, and Delete Artifacts in the Applications Window............... 2-29

2.8 Viewing Component Details in the Property Inspector.. 2-30

2.9 Adding Security Policies.. 2-31

2.10 Deploying a SOA Composite Application .. 2-31

2.10.1 How to Invoke Deployed SOA Composite Applications.. 2-31

2.11 Managing and Testing a SOA Composite Application... 2-32

2.11.1 How to Manage Deployed SOA Composite Applications in Oracle JDeveloper.... 2-32

2.11.2 How to Test and Debug a Deployed SOA Composite Application........................... 2-36

3 Managing Shared Data with the Design-Time MDS Repository

3.1 Introduction to SOA Design-Time MDS Repository Management... 3-1

3.1.1 Introduction to the Default SOA Design-Time MDS Repository Connection 3-2

3.2 Changing the Default SOA-MDS Location ... 3-2

3.2.1 How to Change the Default SOA-MDS Location ... 3-3

3.3 Sharing Data with the SOA Design-Time MDS Repository ... 3-5

3.3.1 How to Share Data with the SOA Design-Time MDS Repository 3-5

3.4 Creating and Deleting Subfolders Under the /apps Folder... 3-9

iv

3.4.1 How to Create and Delete Subfolders Under the /apps Folder..................................... 3-9

3.5 Exporting the Selected Contents of the /apps Folder to a JAR File .. 3-9

3.5.1 How to Export the Selected Contents of the /apps Folder to a JAR File 3-10

3.6 Importing the Contents of the JAR File into the /apps Folder .. 3-11

3.6.1 How to Import the Contents of the JAR File into the /apps Folder 3-11

3.7 Transferring the Selected Contents of the /apps Folder to Another MDS Repository 3-13

3.7.1 How to Transfer the Selected Contents of the /apps Folder to Another MDS

Repository .. 3-13

3.8 Exporting an Existing Release 11g MDS Repository to a JAR File .. 3-15

3.8.1 How to Export an Existing Release 11g MDS Repository to a JAR File 3-15

3.9 Browsing for Files in the SOA Design-Time MDS Repository... 3-16

Part II Using the BPEL Process Service Component

4 Getting Started with Oracle BPEL Process Manager

4.1 Introduction to the BPEL Process Service Component ... 4-1

4.1.1 How to Add a BPEL Process Service Component.. 4-1

4.1.2 How to Validate a BPEL Process Service Component ... 4-11

4.2 Introduction to Activities... 4-12

4.2.1 How to Edit BPEL Activities in the Property Inspector .. 4-14

4.2.2 How to Copy and Paste Activities in BPEL Projects ... 4-16

4.2.3 How to Add a Description of Actions to BPEL Process Activities............................... 4-17

4.3 Introduction to Partner Links ... 4-18

4.4 Creating a Partner Link ... 4-20

4.4.1 How to Create a Partner Link.. 4-20

4.5 Introduction to Adapters ... 4-23

4.6 Introduction to BPEL Process Monitors .. 4-25

5 Introduction to Interaction Patterns in a BPEL Process

5.1 Introduction to One-Way Messages... 5-1

5.1.1 BPEL Process Service Component as the Client ... 5-2

5.1.2 BPEL Process Service Component as the Service ... 5-2

5.2 Introduction to Synchronous Interactions .. 5-2

5.2.1 BPEL Process Service Component as the Client ... 5-3

5.2.2 BPEL Process Service Component as the Service ... 5-3

5.2.3 Synchronous BPEL Process Invoking an Asynchronous Process 5-3

5.3 Introduction to Asynchronous Interactions.. 5-3

5.3.1 BPEL Process Service Component as the Client .. 5-4

5.3.2 BPEL Process Service Component as the Service ... 5-4

5.4 Introduction to Asynchronous Interactions with a Timeout.. 5-4

5.4.1 BPEL Process Service Component as the Client ... 5-5

5.4.2 BPEL Process Service Component as the Service ... 5-5

5.5 Introduction to Asynchronous Interactions with a Notification Timer.................................... 5-5

v

5.5.1 BPEL Process Service Component as the Client ... 5-6

5.5.2 BPEL Process Service Component as the Service ... 5-6

5.6 Introduction to One Request, Multiple Responses .. 5-6

5.6.1 BPEL Process Service Component as the Client ... 5-7

5.6.2 BPEL Process Service Component as the Service ... 5-7

5.7 Introduction to One Request, One of Two Possible Responses ... 5-7

5.7.1 BPEL Process Service Component as the Client ... 5-8

5.7.2 BPEL Process Service Component as the Service ... 5-8

5.8 Introduction to One Request, a Mandatory Response, and an Optional Response................ 5-8

5.8.1 BPEL Process Service Component as the Client ... 5-9

5.8.2 BPEL Process Service Component as the Service ... 5-9

5.9 Introduction to Partial Processing.. 5-9

5.9.1 BPEL Process Service Component as the Client ... 5-10

5.9.2 BPEL Process Service Component as the Service ... 5-10

5.10 Introduction to Multiple Application Interactions .. 5-10

6 Manipulating XML Data in a BPEL Process

6.1 Introduction to Manipulating XML Data in BPEL Processes... 6-2

6.1.1 XML Data in BPEL Processes .. 6-2

6.1.2 Data Manipulation and XPath Standards in Assign Activities 6-2

6.2 Delegating XML Data Operations to Data Provider Services .. 6-5

6.2.1 How to Create an Entity Variable ... 6-6

6.3 Translating Between Native Data and XML... 6-11

6.3.1 How to Translate Native Data to XML Data ... 6-12

6.3.2 How to Translate XML Data to Native Data ... 6-18

6.3.3 How to Translate Inbound Native Data to XML Stored as an Attachment................ 6-20

6.4 Using Standalone SDO-based Variables ... 6-23

6.4.1 How to Declare SDO-based Variables.. 6-23

6.4.2 How to Convert from XML to SDO.. 6-24

6.5 Initializing a Variable with Expression Constants or Literal XML.. 6-26

6.5.1 How To Assign a Literal XML Element ... 6-26

6.6 Copying Between Variables .. 6-26

6.6.1 How to Copy Between Variables .. 6-27

6.6.2 How to Initialize Variables with an Inline from-spec in BPEL 2.0............................... 6-28

6.7 Moving and Copying Variables in the Structure Window... 6-28

6.7.1 To Move Variables in the Structure Window:... 6-29

6.7.2 To Copy Variables in the Structure Window: ... 6-29

6.8 Accessing Fields in Element and Message Type Variables .. 6-30

6.8.1 How to Access Fields Within Element-Based and Message Type-Based Variables.. 6-30

6.9 Assigning Numeric Values.. 6-31

6.9.1 How to Assign Numeric Values.. 6-31

6.10 Using Mathematical Calculations with XPath Standards... 6-31

6.10.1 How To Use Mathematical Calculations with XPath Standards................................ 6-32

vi

6.11 Assigning String Literals ... 6-32

6.11.1 How to Assign String Literals ... 6-32

6.12 Concatenating Strings .. 6-33

6.12.1 How to Concatenate Strings .. 6-33

6.13 Assigning Boolean Values ... 6-33

6.13.1 How to Assign Boolean Values ... 6-33

6.14 Assigning a Date or Time .. 6-34

6.14.1 How to Assign a Date or Time .. 6-34

6.15 Manipulating Attributes .. 6-35

6.15.1 How to Manipulate Attributes .. 6-35

6.16 Manipulating XML Data with bpelx Extensions.. 6-36

6.16.1 How to Use bpelx:append.. 6-37

6.16.2 How to Use bpelx:insertBefore.. 6-38

6.16.3 How to Use bpelx:insertAfter ... 6-40

6.16.4 How to Use bpelx:remove.. 6-41

6.16.5 How to Use bpelx:rename and XSD Type Casting... 6-43

6.16.6 How to Use bpelx:copyList .. 6-45

6.16.7 How to Use Assign Extension Attributes .. 6-47

6.17 Validating XML Data ... 6-48

6.17.1 How to Validate XML Data in BPEL 2.0 .. 6-48

6.17.2 How to Validate XML Data in BPEL 1.1 .. 6-49

6.18 Using Element Variables in Message Exchange Activities in BPEL 2.0................................ 6-50

6.19 Mapping WSDL Message Parts in BPEL 2.0... 6-51

6.19.1 How to Map WSDL Message Parts... 6-51

6.20 Importing Process Definitions in BPEL 2.0 ... 6-52

6.21 Manipulating XML Data Sequences That Resemble Arrays .. 6-53

6.21.1 How to Statically Index into an XML Data Sequence That Uses Arrays 6-53

6.21.2 How to Use SOAP-Encoded Arrays ... 6-54

6.21.3 How to Determine Sequence Size ... 6-56

6.21.4 How to Dynamically Index by Applying a Trailing XPath to an Expression 6-57

6.21.5 What You May Need to Know About Using the Array Identifier............................. 6-59

6.22 Converting from a String to an XML Element.. 6-60

6.22.1 How To Convert from a String to an XML Element .. 6-60

6.23 Understanding Document-Style and RPC-Style WSDL Differences 6-60

6.23.1 How To Use RPC-Style Files.. 6-60

6.24 Manipulating SOAP Headers in BPEL .. 6-61

6.24.1 How to Receive SOAP Headers in BPEL ... 6-61

6.24.2 How to Send SOAP Headers in BPEL.. 6-62

6.25 Declaring Extension Namespaces in BPEL 2.0 ... 6-63

6.25.1 How to Declare Extension Namespaces .. 6-63

6.25.2 What Happens When You Create an Extension ... 6-64

vii

7 Invoking a Synchronous Web Service from a BPEL Process

7.1 Introduction to Invoking a Synchronous Web Service ... 7-1

7.2 Invoking a Synchronous Web Service ... 7-2

7.2.1 How to Invoke a Synchronous Web Service ... 7-2

7.2.2 What Happens When You Invoke a Synchronous Web Service 7-3

7.3 Specifying Transaction Timeout Values in Durable Synchronous Processes 7-5

7.3.1 How To Specify Transaction Timeout Values... 7-6

7.3.2 What You May Need to Know About SyncMaxWaitTime and Durable

Synchronous Requests Not Timing Out.. 7-6

7.4 Calling a One-Way Mediator with a Synchronous BPEL Process... 7-7

8 Invoking an Asynchronous Web Service from a BPEL Process

8.1 Introduction to Invoking an Asynchronous Web Service .. 8-1

8.2 Invoking an Asynchronous Web Service .. 8-2

8.2.1 How to Invoke an Asynchronous Web Service .. 8-2

8.2.2 What Happens When You Invoke an Asynchronous Web Service 8-6

8.2.3 What You May Need to Know About Midprocess Receive Activities Consuming

Messages After Timing Out .. 8-9

8.2.4 What You May Need to Know About Multiple Client Components Invoking a

Composite .. 8-9

8.2.5 What You May Need to Know About Limitations on BPEL 2.0 IMA Support 8-10

8.2.6 What Happens When You Specify a Conversation ID .. 8-10

8.3 Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick

Activities Use the Same Partner Link... 8-11

8.3.1 How to Route Callback Messages to the Correct Endpoint when Multiple Receive

and Pick Activities Use the Same Partner Link .. 8-11

8.4 Managing Idempotence at the Partner Link Operation Level ... 8-13

8.4.1 How to Manage Idempotence at the Partner Link Operation Level 8-14

8.5 Creating a Dynamic Partner Link at Design Time for Use at Runtime 8-14

8.5.1 How To Create a Dynamic Partner Link at Design Time for Use at Runtime 8-15

8.6 Overriding Security Certificates when Invoking Dynamic Partner Links 8-17

8.7 Overriding WSDL Files of Dynamic Partner Links ... 8-20

8.8 Using WS-Addressing in an Asynchronous Service ... 8-22

8.8.1 How to Use WS-Addressing in an Asynchronous Service ... 8-23

9 Using Correlation Sets and Message Aggregation

9.1 Introduction to Correlation Sets in an Asynchronous Service... 9-1

9.1.1 Scenarios for Using Correlation Sets .. 9-1

9.1.2 Understanding Correlation Set Contents and Concepts ... 9-2

9.1.3 Overview of Correlation Set Creation.. 9-3

9.2 Creating Correlation Sets in Oracle JDeveloper... 9-4

9.2.1 How to Create a Correlation Set with the Correlation Wizard 9-4

viii

9.2.2 How to Manually Create Correlation Sets From the Correlations Tab 9-13

9.2.3 What You May Need to Know About Conversion IDs and Different Composite

Revisions .. 9-25

9.2.4 What You May Need to Know About Setting Correlations for an IMA Using a

fromParts Element With Multiple Parts .. 9-26

9.3 Routing Messages to the Same Instance.. 9-27

9.3.1 How to Configure BPEL Process Instance Creation... 9-27

9.3.2 How to Use the Same Operation in Entry and Midprocess Receive Activities 9-29

9.3.3 How to Route a Message to a New or Existing Instance when Using Correlation

Sets .. 9-30

10 Using Parallel Flow in a BPEL Process

10.1 Introduction to Parallel Flows in BPEL Processes ... 10-1

10.1.1 What You May Need to Know About the Execution of Parallel Flow Branches in a

Single Thread... 10-2

10.2 Creating a Parallel Flow... 10-2

10.2.1 How to Create a Parallel Flow... 10-3

10.2.2 What Happens When You Create a Parallel Flow ... 10-4

10.2.3 Synchronizing the Execution of Activities in a Flow Activity 10-5

10.2.4 How to Create Synchronization Between Activities Within a Flow Activity 10-7

10.2.5 What Happens When You Create Synchronization Between Activities Within a

Flow Activity ... 10-9

10.2.6 What You May Need to Know About Join Conditions in Target Activities 10-11

10.3 Customizing the Number of Parallel Branches .. 10-11

10.3.1 Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0 10-12

10.3.2 Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1 10-18

11 Using Conditional Branching in a BPEL Process

11.1 Introduction to Conditional Branching ... 11-1

11.2 Defining Conditional Branching with the If or Switch Activity .. 11-2

11.2.1 Defining Conditional Branching with the If Activity in BPEL 2.0 11-2

11.2.2 Defining Conditional Branching with the Switch Activity in BPEL 1.1 11-5

11.3 Defining Conditional Branching with the While Activity.. 11-8

11.3.1 How To Create a While Activity ... 11-9

11.3.2 What Happens When You Create a While Activity ... 11-10

11.4 Defining Conditional Branching with the repeatUntil Activity .. 11-11

11.4.1 How to Create a repeatUntil Activity... 11-11

11.4.2 What Happens When You Create a repeatUntil Activity ... 11-12

11.5 Specifying XPath Expressions to Bypass Activity Execution... 11-13

11.5.1 How to Specify XPath Expressions to Bypass Activity Execution........................... 11-13

11.5.2 What Happens When You Specify XPath Expressions to Bypass Activity

Execution.. 11-13

ix

12 Using Fault Handling in a BPEL Process

12.1 Introduction to a Fault Handler.. 12-1

12.2 Introduction to BPEL Standard Faults... 12-3

12.2.1 BPEL 1.1 Standard Faults ... 12-3

12.2.2 BPEL 2.0 Standard Faults ... 12-4

12.3 Introduction to the Business and Runtime Fault Categories of BPEL Faults 12-5

12.3.1 Business Faults... 12-5

12.3.2 Runtime Faults... 12-6

12.3.3 How to Add and Propagate Fault Handling in a Synchronous BPEL Process 12-7

12.4 Handling Faults with the Fault Management Framework... 12-12

12.4.1 Understanding How the Fault Policy Binding Resolution Works........................... 12-13

12.4.2 How to Design a Fault Policy for Automated Fault Recovery with the Fault Policy

Wizard .. 12-14

12.4.3 How to Manually Design a Fault Policy for Automated Fault Recovery 12-23

12.4.4 How to Execute a Fault Policy... 12-32

12.4.5 How to Use a Java Action Fault Policy .. 12-32

12.4.6 How to Design Fault Policies for Oracle BPM Suite .. 12-36

12.4.7 What You May Need to Know About Designing a Fault Policy in a Synchronous

BPEL Process ... 12-37

12.4.8 What You May Need to Know About Fault Management Behavior When the

Number of Instance Retries is Exceeded ... 12-37

12.4.9 What You May Need to Know About Binding Level Retry Execution Within Fault

Policy Retries ... 12-38

12.5 Catching BPEL Runtime Faults ... 12-39

12.5.1 How to Catch BPEL Runtime Faults .. 12-39

12.6 Getting Fault Details with the getFaultAsString XPath Extension Function 12-39

12.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function .. 12-39

12.7 Throwing Internal Faults with the Throw Activity ... 12-39

12.7.1 How to Create a Throw Activity... 12-40

12.7.2 What Happens When You Create a Throw Activity.. 12-40

12.8 Rethrowing Faults with the Rethrow Activity ... 12-41

12.8.1 How to Create a Rethrow Activity ... 12-41

12.8.2 What Happens When You Rethrow Faults ... 12-42

12.9 Returning External Faults.. 12-42

12.9.1 How to Return a Fault in a Synchronous Interaction .. 12-42

12.9.2 How to Return a Fault in an Asynchronous Interaction ... 12-43

12.10 Managing a Group of Activities with a Scope Activity .. 12-43

12.10.1 How to Create a Scope Activity .. 12-44

12.10.2 How to Add Descriptive Notes and Images to a Scope Activity 12-45

12.10.3 What Happens After You Create a Scope Activity .. 12-45

12.10.4 What You May Need to Know About Scopes... 12-47

12.10.5 How to Use a Fault Handler Within a Scope .. 12-47

x

12.10.6 What You May Need to Know About the idempotent Property and Fault

Handling .. 12-48

12.10.7 How to Create a Catch Activity in a Scope.. 12-49

12.10.8 What Happens When You Create a Catch Activity in a Scope 12-51

12.10.9 How to Insert No-Op Instructions into a Business Process with an Empty

Activity ... 12-52

12.10.10 What Happens When You Create an Empty Activity ... 12-52

12.11 Re-executing Activities in a Scope Activity with the Replay Activity.............................. 12-52

12.11.1 How to Create a Replay Activity .. 12-53

12.11.2 What Happens When You Create a Replay Activity ... 12-54

12.12 Using Compensation After Undoing a Series of Operations ... 12-55

12.12.1 Using a Compensate Activity .. 12-55

12.12.2 How to Create a Compensate Activity... 12-56

12.12.3 What Happens When You Create a Compensate Activity 12-56

12.12.4 Using a compensateScope Activity in BPEL 2.0 ... 12-57

12.12.5 How to Create a compensateScope Activity ... 12-57

12.12.6 What Happens When You Create a compensateScope Activity 12-57

12.13 Stopping a Business Process Instance with a Terminate or Exit Activity......................... 12-58

12.13.1 Immediately Ending a Business Process Instance with the Exit Activity in BPEL

2.0 .. 12-58

12.13.2 Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1 . 12-60

12.14 Throwing Faults with Assertion Conditions .. 12-60

12.14.1 How to Create Assertion Conditions ... 12-61

12.14.2 How to Disable Assertions... 12-64

12.14.3 What Happens When You Create Assertion Conditions .. 12-64

12.14.4 What You May Need to Know About Assertion Conditions 12-65

12.14.5 What You May Need to Know About Postassertion and Preassertion Condition

Schemas and Syntax ... 12-68

12.15 Classifying SOAP Faults as Retriable .. 12-70

13 Transaction and Fault Propagation Semantics in BPEL Processes

13.1 Introduction to Transaction Semantics.. 13-1

13.1.1 Oracle BPEL Process Manager Transaction Semantics.. 13-1

13.2 Introduction to Execution of One-way Invocations .. 13-4

13.3 Executing a Business Process Without a Transaction.. 13-6

13.3.1 When Should I Use a BPEL Process Without a Transaction? 13-6

13.3.2 Guidelines for Executing Without a Transaction ... 13-7

13.3.3 How to Create a Synchronous BPEL Process Without a Transaction 13-8

13.3.4 How to Create an Asynchronous BPEL Process Without a Transaction 13-8

13.4 Using In-Memory SOA to Improve System Performance .. 13-9

13.4.1 Persistence Settings for In-Memory Flow Instances... 13-10

13.4.2 Steps to Enable In-Memory SOA .. 13-12

xi

14 Incorporating Java and Java EE Code in a BPEL Process

14.1 Introduction to Java and Java EE Code in BPEL Processes .. 14-1

14.2 Incorporating Java and Java EE Code in BPEL Processes... 14-1

14.2.1 How to Wrap Java Code as a SOAP Service ... 14-2

14.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service..... 14-2

14.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag. 14-2

14.2.4 How to Embed Java Code Snippets in a BPEL 2.0 Process ... 14-3

14.2.5 How to Use an XML Facade to Simplify DOM Manipulation 14-4

14.2.6 How to Use bpelx:exec Built-in Methods .. 14-4

14.2.7 How to Use Java Code Wrapped in a Service Interface .. 14-5

14.3 Adding Custom Classes and JAR Files.. 14-6

14.3.1 How to Add Custom Classes and JAR Files.. 14-7

14.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper .. 14-7

14.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper 14-8

14.4.2 What You May Need to Know About Using thread.sleep() in a Java Embedding

Activity ... 14-9

14.5 Embedding Service Data Objects with bpelx:exec ... 14-9

14.6 Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager......... 14-10

14.6.1 How to Configure the BPEL Connection Manager Class to Take Precedence....... 14-10

15 Using Events and Timeouts in BPEL Processes

15.1 Introduction to Event and Timeout Concepts .. 15-1

15.2 Selecting Between Continuing or Waiting on a Process with a Pick Activity 15-2

15.2.1 How To Create a Pick Activity .. 15-3

15.2.2 What Happens When You Create a Pick Activity.. 15-5

15.2.3 What You May Need to Know About Simultaneous onMessage Branches in BPEL

2.0 .. 15-6

15.3 Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities 15-7

15.3.1 How to Set Timeouts in Receive Activities.. 15-8

15.3.2 What Happens When You Set Timeouts in Receive Activities 15-9

15.3.3 What You May Need to Know About Setting Timeouts for Request-Reply and In-

Only Operations.. 15-10

15.4 Setting an Expiration Time with a Wait Activity .. 15-13

15.4.1 How To Specify the Minimum Wait Time... 15-13

15.4.2 How to Create a Wait Activity .. 15-14

15.4.3 What Happens When You Create a Wait Activity ... 15-14

15.5 Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0.... 15-15

15.5.1 How to Create an onEvent Branch in a Scope Activity ... 15-15

15.5.2 What Happens When You Create an OnEvent Branch ... 15-16

15.6 Setting Timeouts for Durable Synchronous Processes.. 15-17

15.7 Invoking an Oracle Enterprise Scheduler Job in a BPEL Process .. 15-17

15.7.1 How to Create Oracle Database and SOA-MDS Connections.................................. 15-17

xii

15.7.2 How to Create a Schedule Job Activity.. 15-18

15.7.3 How to Attach Security Policies to the Service and Reference Binding

Components... 15-24

16 Coordinating Master and Detail Processes

16.1 Introduction to Master and Detail Process Coordinations ... 16-1

16.1.1 BPEL File Definition for the Master Process.. 16-3

16.1.2 BPEL File Definition for Detail Processes .. 16-6

16.2 Defining Master and Detail Process Coordination in Oracle JDeveloper 16-7

16.2.1 How to Create a Master Process ... 16-7

16.2.2 How to Create a Detail Process ... 16-9

16.2.3 How to Create an Invoke Activity .. 16-11

17 Using the Notification Service

17.1 Introduction to the Notification Service .. 17-1

17.2 Introduction to Notification Channel Setup ... 17-3

17.3 Selecting Notification Channels During BPEL Process Design ... 17-3

17.3.1 How To Configure the Email Notification Channel .. 17-4

17.3.2 How to Configure the IM Notification Channel... 17-9

17.3.3 How to Configure the SMS Notification Channel .. 17-10

17.3.4 How to Configure the Voice Notification Channel .. 17-12

17.3.5 How to Select Email Addresses and Telephone Numbers Dynamically................ 17-13

17.3.6 How to Select Notification Recipients by Browsing the User Directory................. 17-14

17.4 Allowing the End User to Select Notification Channels ... 17-14

17.4.1 How to Allow the End User to Select Notification Channels 17-15

18 Using Oracle BPEL Process Manager Sensors and Analytics

18.1 Introduction to Oracle BPEL Process Manager Sensors.. 18-1

18.1.1 Composite Sensors .. 18-3

18.2 Configuring Sensors and Sensor Actions in Oracle JDeveloper .. 18-3

18.2.1 How to Access Sensors and Sensor Actions .. 18-3

18.2.2 How to Configure Activity, Variable, and Fault Sensors .. 18-4

18.2.3 How to Configure Sensor Actions .. 18-8

18.2.4 How to Publish to Remote Topics and Queues .. 18-11

18.2.5 How to Create a Custom Data Publisher... 18-12

18.2.6 How to Register the Sensors and Sensor Actions in the composite.xml File 18-14

18.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion

Middleware Control ... 18-15

18.4 Configuring BPEL Process Analytics... 18-15

18.4.1 Introduction to Business Indicators.. 18-16

18.4.2 Introduction to Standard Sampling Points.. 18-16

18.4.3 Introduction to User-Defined Sampling Points .. 18-16

18.4.4 How to Access Analytics View.. 18-17

xiii

18.4.5 How to Edit Business Indicators in the Business Indicator Overview Editor........ 18-32

18.4.6 Deploying BPEL Analytics... 18-33

18.4.7 Viewing BPEL Analytics at Runtime.. 18-34

Part III Using the Oracle Mediator Service Component

19 Getting Started with Oracle Mediator

19.1 Introduction to Oracle Mediator... 19-1

19.2 Mediator Functionality .. 19-2

19.2.1 Content-Based and Header-Based Routing... 19-2

19.2.2 Synchronous and Asynchronous Interactions .. 19-2

19.2.3 Sequential and Parallel Routing of Messages ... 19-2

19.2.4 Message Resequencing ... 19-2

19.2.5 Data Transformation... 19-3

19.2.6 Payload Validation.. 19-3

19.2.7 Java Callouts... 19-3

19.2.8 Event Handling.. 19-3

19.2.9 Dynamic Routing .. 19-3

19.2.10 Error Handling... 19-3

19.2.11 Sending Messages Back to the Caller (Echo) ... 19-4

19.2.12 Multiple Part Messages .. 19-4

19.3 Creating a Mediator.. 19-4

19.3.1 How to Create a Mediator.. 19-4

19.4 Introduction to the Mediator Editor Environment .. 19-8

19.5 Configuring the Mediator Interface Definition .. 19-10

19.5.1 How to Configure the Mediator Interface Definition .. 19-11

19.5.2 What Happens When You Create a Mediator ... 19-16

19.6 Defining an Interface for a Mediator ... 19-19

19.6.1 How to Define an Interface for a Mediator ... 19-19

19.7 Generating a WSDL File .. 19-21

19.7.1 How to Generate a WSDL File .. 19-22

19.8 Specifying Validation and Priority Properties ... 19-27

19.9 Modifying a Mediator Service Component .. 19-27

19.9.1 How To Modify Mediator Operations ... 19-27

19.9.2 How To Modify Mediator Event Subscriptions.. 19-28

20 Creating Oracle Mediator Routing Rules

20.1 Introduction to Routing Rules .. 20-1

20.1.1 Static Routing Rules .. 20-2

20.1.2 Dynamic Routing Rules.. 20-3

20.1.3 Sequential and Parallel Execution... 20-4

20.2 Resequencing Rules.. 20-5

20.3 Defining Routing Rules.. 20-6

xiv

20.3.1 How To Access the Routing Rules Section .. 20-6

20.3.2 How to Create Static Routing Rules ... 20-7

20.3.3 How to Create Dynamic Routing Rules... 20-54

20.3.4 What You May Need to Know About Using Dynamic Routing Rules 20-62

20.3.5 How to Define Default Routing Rules ... 20-62

20.4 Mediator Routing Use Cases... 20-65

21 Working with Multiple Part Messages in Oracle Mediator

21.1 Introduction to Mediator Multipart Message Support ... 21-1

21.2 Working with Multipart Request Messages ... 21-2

21.2.1 How to Specify Filter Expressions for Multipart Request Messages......................... 21-2

21.2.2 How to Add Validations for Multipart Request Messages ... 21-3

21.2.3 How to Create Transformations for Multipart Request Messages 21-3

21.2.4 How to Assign Values for Multipart Request Messages ... 21-4

21.2.5 How to Work with Multipart Reply, Fault, and Callback Source Messages............ 21-4

21.2.6 How to Work with Multipart Target Messages.. 21-4

22 Using Oracle Mediator Error Handling

22.1 Introduction to Mediator Error Handling... 22-1

22.1.1 Fault Policies .. 22-1

22.1.2 Fault Bindings .. 22-8

22.1.3 Error Groups in Mediator .. 22-9

22.2 Using Error Handling with Mediator .. 22-10

22.2.1 How to Use Error Handling for a Mediator Service Component 22-11

22.2.2 What Happens at Runtime... 22-11

22.3 Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control 22-11

22.4 Error Handling XML Schema Definition Files ... 22-12

22.4.1 Schema Definition File for fault-policies.xml ... 22-12

22.4.2 Schema Definition File for fault-bindings.xml ... 22-16

23 Resequencing in Oracle Mediator

23.1 Introduction to the Resequencer... 23-1

23.1.1 Groups and Sequence IDs .. 23-1

23.1.2 Identification of Groups and Sequence IDs... 23-2

23.2 Resequencing Order ... 23-2

23.2.1 Standard Resequencer .. 23-2

23.2.2 FIFO Resequencer.. 23-3

23.2.3 Best Effort Resequencer .. 23-4

23.3 Configuring the Resequencer.. 23-7

23.3.1 How to Specify the Resequencing Level.. 23-8

23.3.2 How to Configure the Resequencing Strategy.. 23-8

xv

24 Understanding Message Exchange Patterns of an Oracle Mediator

24.1 One-way Message Exchange Patterns ... 24-1

24.1.1 The one.way.returns.fault Property.. 24-2

24.2 Request-Reply Message Exchange Patterns.. 24-4

24.3 Request-Reply-Fault Message Exchange Patterns ... 24-5

24.4 Request-Callback Message Exchange Patterns... 24-6

24.5 Request-Reply-Callback Message Exchange Patterns... 24-7

24.6 Request-Reply-Fault-Callback Message Exchange Patterns .. 24-8

Part IV Using the Business Rules Service Component

25 Getting Started with Oracle Business Rules

25.1 Introduction to the Business Rule Service Component... 25-1

25.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks............................... 25-2

25.2 Overview of Rules Designer Editor Environment ... 25-2

25.2.1 Applications Window... 25-3

25.2.2 Rules Designer Window... 25-3

25.2.3 Structure Window ... 25-4

25.2.4 Business Rule Validation Log Window ... 25-5

25.3 Introduction to Creating and Editing Business Rules ... 25-5

25.3.1 How to Create Business Rules Components ... 25-5

25.3.2 Working with Business Rules in Rules Designer.. 25-7

25.4 Adding Business Rules to a BPEL Process.. 25-7

25.4.1 How to Add Inputs for Business Rule ... 25-10

25.4.2 How to Add Outputs for Business Rule .. 25-12

25.4.3 How to Set Options and Create Decision Service and Business Rule Dictionary.. 25-13

25.4.4 What Happens When You Add Business Rules to a BPEL Process......................... 25-13

25.4.5 What Happens When You Create a Business Rules Dictionary............................... 25-14

25.4.6 What You May Need to Know About Invoking Business Rules in a BPEL Process 25-15

25.4.7 What You May Need to Know About Decision Component Stateful Operation .. 25-15

25.5 Adding Business Rules to a SOA Composite Application ... 25-15

25.5.1 How to Add Business Rules to a SOA Composite Application 25-16

25.5.2 How to Select and Modify a Decision Function in a Business Rule Component .. 25-21

25.6 Running Business Rules in a Composite Application... 25-22

25.6.1 What You May Need to Know About Testing a Standalone Decision Service

Component ... 25-23

25.7 Using Business Rules with Oracle ADF Business Components Fact Types 25-24

26 Using Declarative Components and Task Flows

26.1 Introduction to Declarative Components and Task Flows... 26-1

26.2 Introduction to the Oracle Business Rules Editor Declarative Component......................... 26-2

26.2.1 Using the Oracle Business Rules Editor Component... 26-2

xvi

26.2.2 How to Create and Run a Sample Application by Using the Rules Editor

Component .. 26-5

26.2.3 How to Deploy a Rules Editor Application to a Standalone WLS........................... 26-16

26.2.4 What You May Need to Know About the Custom Permissions for the Rules

Editor Component .. 26-17

26.2.5 What You May Need to Know About the Supported Tags of the Rules Editor

Component .. 26-19

26.3 Introduction to the Oracle Business Rules Dictionary Editor Declarative Component ... 26-25

26.3.1 Using the Oracle Business Rules Dictionary Component ... 26-26

26.3.2 How to Create and Run a Sample Application by Using the Rules Dictionary

Editor Component .. 26-32

26.3.3 How to Deploy a Rules Dictionary Application to a Standalone Oracle WebLogic

Server .. 26-44

26.3.4 What You May Need to Know About the Supported Attributes of the Rules

Dictionary Editor Component .. 26-45

26.4 Introduction to the Oracle Business Rules Dictionary Editor Task Flow........................... 26-50

26.4.1 Using the Oracle Business Rules Dictionary Task Flow.. 26-51

26.4.2 How to Create and Run a Sample Application By Using the Rules Dictionary

Editor Task Flow... 26-51

26.4.3 How to Deploy a Rules Dictionary Editor Task Flow Application to a Standalone

Oracle WebLogic Server .. 26-64

26.5 Localizing the ADF-Based Web Application.. 26-64

26.6 Working with Translations.. 26-65

26.6.1 Enabling Translations for Consumer of Reusable Rules UI ADF Task Flow

Component .. 26-65

26.6.2 Enabling Translations for Consumer of Rules Web UI Application........................ 26-68

Part V Using the Human Workflow Service Component

27 Getting Started with Human Workflow

27.1 Introduction to Human Workflow... 27-1

27.2 Introduction to Human Workflow Concepts ... 27-3

27.2.1 Introduction to Design and Runtime Concepts .. 27-3

27.2.2 Introduction to the Stages of Human Workflow Design... 27-11

27.3 Introduction to Human Workflow Use Cases .. 27-12

27.3.1 Task Assignment to a User or Role... 27-12

27.3.2 Use of the Various Participant Types ... 27-12

27.3.3 Escalation, Expiration, and Delegation .. 27-13

27.3.4 Automatic Assignment and Delegation... 27-13

27.3.5 Dynamic Assignment of Users Based on Task Content .. 27-14

27.4 Introduction to Human Workflow Architecture.. 27-14

27.4.1 Human Workflow Services.. 27-14

27.4.2 Use of Human Task... 27-17

xvii

27.4.3 Service Engines .. 27-18

27.5 Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle

BPM Suite ... 27-18

28 Creating Human Tasks

28.1 Introduction to Human Tasks... 28-1

28.1.1 Introduction to Creating a Human Task Definition... 28-2

28.1.2 Introduction to Associating the Human Task Definition with a BPEL Process....... 28-2

28.1.3 Introduction to Generating the Task Form.. 28-3

28.2 Creating Human Tasks .. 28-3

28.2.1 How to Create a Human Task Using the SOA Composite Editor 28-4

28.2.2 How to Create a Human Task Using Oracle BPEL Designer 28-5

28.2.3 What Happens When You Create a Human Task.. 28-5

28.3 Configuring Human Tasks.. 28-6

28.4 Exiting the Human Task Editor and Saving Your Changes ... 28-6

28.5 Associating Human Tasks with BPEL Processes ... 28-7

28.5.1 How to Associate a Human Task with a BPEL Process... 28-7

28.5.2 What You May Need to Know About Deleting a Wire Between a Human Task

and a BPEL Process... 28-8

28.5.3 How to Define the Human Task Activity Title, Initiator, Priority, and Parameter

Variables... 28-9

28.5.4 How to Define the Human Task Activity Advanced Features 28-12

28.5.5 How to View the Generated Human Task Activity ... 28-15

28.5.6 What You May Need to Know About Changing the Generated Human Task

Activity ... 28-17

28.5.7 What You May Need to Know About Deleting a Partner Link Generated by a

Human Task .. 28-18

28.5.8 How to Define Outcome-Based Modeling... 28-18

28.5.9 What You May Need to Know About Encoding an Attachment............................. 28-19

29 Configuring Human Tasks

29.1 Accessing the Sections of the Human Task Editor .. 29-1

29.2 Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application

Context.. 29-3

29.2.1 How to Specify a Task Title ... 29-4

29.2.2 How to Specify a Task Description... 29-4

29.2.3 How to Specify a Task Outcome ... 29-5

29.2.4 How to Specify a Task Priority.. 29-7

29.2.5 How to Specify a Task Category ... 29-7

29.2.6 How to Specify a Task Owner ... 29-7

29.2.7 How To Specify an Application Context ... 29-13

29.3 Specifying the Task Payload Data Structure... 29-14

29.3.1 How to Specify the Task Payload Data Structure... 29-14

xviii

29.4 Assigning Task Participants.. 29-16

29.4.1 How to Specify a Stage Name and Add Parallel and Sequential Blocks 29-17

29.4.2 How to Assign Task Participants.. 29-19

29.4.3 How to Configure the Single Participant Type... 29-20

29.4.4 How to Configure the Parallel Participant Type .. 29-33

29.4.5 How to Configure the Serial Participant Type.. 29-37

29.4.6 How to Configure the FYI Participant Type ... 29-41

29.5 Selecting a Routing Policy ... 29-42

29.5.1 How to Customize Tasks Routing .. 29-44

29.5.2 How to Specify Advanced Task Routing Using Business Rules 29-48

29.5.3 How to Use External Routing.. 29-53

29.5.4 How to Configure the Error Assignee and Reviewers .. 29-54

29.6 Specifying Multilingual Settings and Style Sheets... 29-57

29.6.1 How to Specify WordML and Other Style Sheets for Attachments......................... 29-57

29.6.2 How to Specify Multilingual Settings .. 29-58

29.7 Specify What to Show in Task Details in the Worklist... 29-59

29.8 Escalating, Renewing, or Ending the Task.. 29-59

29.8.1 Introduction to Escalation and Expiration Policy... 29-60

29.8.2 How to Specify a Policy to Never Expire... 29-61

29.8.3 How to Specify a Policy to Expire... 29-61

29.8.4 How to Extend an Expiration Policy Period ... 29-62

29.8.5 How to Escalate a Task Policy ... 29-62

29.8.6 How to Specify Escalation Rules... 29-63

29.8.7 How to Specify a Due Date.. 29-64

29.9 Specifying Participant Notification Preferences... 29-64

29.9.1 How to Notify Recipients of Changes to Task Status .. 29-66

29.9.2 How to Edit the Notification Message ... 29-68

29.9.3 How to Set Up Reminders ... 29-69

29.9.4 How to Change the Character Set Encoding... 29-69

29.9.5 How to Secure Notifications to Exclude Details ... 29-70

29.9.6 How to Display the Oracle BPM Worklist URL in Notifications 29-70

29.9.7 How to Make Email Messages Actionable .. 29-70

29.9.8 How to Send Task Attachments with Email Notifications 29-70

29.9.9 How to Send Email Notifications to Groups and Application Roles 29-71

29.9.10 How to Customize Notification Headers .. 29-71

29.10 Specifying Access Policies and Task Actions on Task Content ... 29-72

29.10.1 Introduction to Access Rules ... 29-72

29.10.2 Specifying User Privileges for Acting on Task Content .. 29-73

29.10.3 Specifying Actions for Acting Upon Tasks ... 29-75

29.10.4 How to Specify a Workflow Digital Signature Policy.. 29-76

29.11 Specifying Restrictions on Task Assignments .. 29-77

29.11.1 How to Specify Restrictions on Task Assignments .. 29-78

29.12 Specifying Java or Business Event Callbacks.. 29-78

xix

29.12.1 Specifying Java Callbacks... 29-80

29.12.2 Specifying Business Event Callbacks.. 29-80

29.12.3 How to Specify Task and Routing Customizations in BPEL Callbacks 29-82

29.12.4 How to Disable BPEL Callbacks ... 29-83

30 Designing Task Forms for Human Tasks

30.1 Introduction to the Task Form .. 30-1

30.1.1 What You May Need to Know About Task Forms: Time Zone Conversion............ 30-2

30.2 Associating the Task Flow with the Task Service .. 30-2

30.3 Creating an ADF Task Flow Based on a Human Task.. 30-3

30.3.1 How To Create an ADF Task Flow from the Human Task Editor............................. 30-3

30.3.2 How To Create an ADF Task Flow Based on a Human Task..................................... 30-6

30.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task..... 30-6

30.3.4 What You May Need to Know About Having Multiple ADF Task Flows That

Contain the Same Element with Different Meta-attributes .. 30-7

30.4 Creating a Task Form ... 30-8

30.4.1 How To Create an Autogenerated Task Form .. 30-9

30.4.2 How to Register the Library JAR File for Custom Page Templates......................... 30-10

30.4.3 How To Create a Task Form Using the Custom Task Form Wizard....................... 30-11

30.4.4 How To Create a Task Form Using the Complete Task with Payload Drop

Handler... 30-18

30.4.5 How To Create Task Form Regions Using Individual Drop Handlers................... 30-26

30.4.6 How To Add the Payload to the Task Form.. 30-27

30.4.7 What Happens When You Create a Task Form.. 30-29

30.5 Refreshing Data Controls When the Task XSD Changes.. 30-29

30.6 Securing the Task Flow Application .. 30-30

30.7 Creating an Email Notification .. 30-31

30.7.1 How To Create an Email Notification .. 30-31

30.7.2 What Happens When You Create an Email Notification Page 30-37

30.8 Deploying a Composite Application with a Task Flow.. 30-37

30.8.1 How To Deploy a Composite Application with a Task Flow................................... 30-37

30.8.2 How To Redeploy the Task Form ... 30-38

30.8.3 How To Deploy a Task Flow as a Separate Application ... 30-38

30.8.4 How To Deploy a Task Form to a non-SOA Oracle WebLogic Server.................... 30-38

30.8.5 What Happens When You Deploy the Task Form... 30-46

30.8.6 What You May Need to Know About Undeploying a Task Flow 30-46

30.9 Displaying a Task Form in the Worklist.. 30-47

30.10 Displaying a Task in an Email Notification .. 30-47

30.10.1 Changing the Text for the Worklist Application in Task Notifications 30-48

30.10.2 Changing the URL of the Worklist Application in Task Notifications.................. 30-49

30.11 Reusing the Task Flow Application with Multiple Human Tasks 30-49

30.11.1 How To Reuse the Task Flow Application with Multiple Human Tasks............. 30-49

30.11.2 How to Reuse the Task Flow Application with Different Actions 30-50

xx

31 Human Workflow Tutorial

31.1 Introduction to the Human Workflow Tutorial ... 31-1

31.2 Prerequisites .. 31-2

31.3 Creating an Application and a Project with a BPEL Process.. 31-3

31.4 Creating the Human Task Service Component.. 31-5

31.5 Designing the Human Task... 31-6

31.6 Associating the Human Task and BPEL Process Service Components 31-9

31.7 Creating a Task Form Project .. 31-12

31.8 Deploying the Task Form .. 31-13

31.9 Creating an Application Server Connection... 31-13

31.10 Deploying the SOA Composite Application .. 31-14

31.11 Initiating the Process Instance .. 31-14

31.12 Acting on the Task in Oracle BPM Worklist ... 31-14

31.13 Additional Tutorials ... 31-15

32 Using Oracle BPM Worklist

32.1 Introduction to Oracle BPM Worklist .. 32-1

32.2 Logging In to Oracle BPM Worklist .. 32-3

32.2.1 How To Log In to the Worklist.. 32-3

32.2.2 What Happens When You Log In to the Worklist ... 32-4

32.2.3 What Happens When You Change a User's Privileges While They are Logged in

to Oracle BPM Worklist ... 32-8

32.3 Customizing the Task List Page .. 32-8

32.3.1 How To Filter Tasks .. 32-9

32.3.2 How To Create, Delete, and Customize Worklist Views .. 32-17

32.3.3 How To Customize the Task Status Chart... 32-21

32.3.4 How To Create a ToDo Task.. 32-22

32.3.5 How to Create Subtasks in Worklist Application... 32-23

32.4 Exporting Tasks to Microsoft Excel.. 32-24

32.4.1 How to Export Tasks to Excel.. 32-25

32.5 Acting on Tasks: The Task Details Page.. 32-25

32.5.1 System Actions... 32-28

32.5.2 Task History ... 32-30

32.5.3 How To Act on Tasks.. 32-32

32.5.4 How To Act on Tasks That Require a Digital Signature.. 32-38

32.6 Approving Tasks... 32-41

32.7 Setting a Vacation Period... 32-43

32.8 Setting Rules .. 32-44

32.8.1 How To Create User Rules... 32-45

32.8.2 How To Create Group Rules ... 32-46

32.8.3 Assignment Rules for Tasks with Multiple Assignees .. 32-48

32.8.4 How to Avoid Circular Logic in Reassigned Vacation Rules 32-49

xxi

32.9 Using the Worklist Administration Functions ... 32-50

32.9.1 How To Manage Other Users' or Groups' Rules (as an Administrator) 32-51

32.9.2 How to Specify the Login Page Realm Label .. 32-51

32.9.3 How to Specify the Resource Bundle ... 32-52

32.9.4 How to Specify the Language Locale Information... 32-53

32.9.5 How to Specify User Name Format.. 32-53

32.9.6 How to Specify a Branding Logo .. 32-54

32.9.7 How to Specify the Branding Title.. 32-55

32.9.8 How to Choose a Skin... 32-55

32.9.9 How to Enable Customized Applications and Links... 32-57

32.9.10 How to Specify an Image for a Task Action .. 32-59

32.10 Specifying Notification Settings ... 32-59

32.10.1 Messaging Filter Rules.. 32-59

32.10.2 Rule Actions ... 32-61

32.10.3 Managing Messaging Channels .. 32-61

32.10.4 Managing Messaging Filters.. 32-62

32.11 Using Mapped Attributes (Flex Fields) ... 32-65

32.11.1 How To Map Attributes ... 32-66

32.11.2 Custom Mapped Attributes ... 32-71

32.12 Creating Worklist Reports... 32-71

32.12.1 How To Create Reports .. 32-72

32.12.2 What Happens When You Create Reports .. 32-73

32.13 Accessing Oracle BPM Worklist in Local Languages and Time Zones 32-77

32.13.1 Strings in Oracle BPM Worklist .. 32-77

32.13.2 How to Change the Preferred Language, Display Names of Users, and Time

Zone Settings if the Identity Store is LDAP-Based .. 32-78

32.13.3 How to Change the Language in Which Tasks Are Displayed.............................. 32-79

32.13.4 How To Change the Language Preferences from a JAZN XML File..................... 32-80

32.13.5 What You May Need to Know Setting Display Languages in Worklist 32-81

32.13.6 How To Change the Time Zone Used in the Worklist... 32-81

32.14 Creating Reusable Worklist Regions ... 32-81

32.14.1 How to Create an Application With an Embedded Reusable Worklist Region .. 32-82

32.14.2 How to Set Up the Deployment Profile ... 32-85

32.14.3 How to Prepare Federated Mode Task Flows For Deployment............................. 32-85

32.14.4 What You May Need to Know About Task List Task Flow.................................... 32-86

32.14.5 What You May Need to Know About Certificates Task Flow................................ 32-89

32.14.6 What You May Need to Know About the Reports Task Flow 32-90

32.14.7 What You May Need to Know About Application Preferences Task Flow 32-92

32.14.8 What You May Need to Know About Mapped Attributes Task Flow.................. 32-93

32.14.9 What You May Need to Know About Rules Task Flow.. 32-94

32.14.10 What You May Need to Know About Approval Groups Task Flow 32-95

32.14.11 What You May Need to Know About Task Configuration Task Flow 32-96

32.15 Java Code for Enabling Customized Applications in Worklist Application 32-96

xxii

33 Building a Custom Worklist Client

33.1 Introduction to Building Clients for Workflow Services .. 33-1

33.2 Packages and Classes for Building Clients ... 33-2

33.3 Workflow Service Clients .. 33-3

33.3.1 The IWorkflowServiceClient Interface ... 33-5

33.4 Class Paths for Clients Using SOAP .. 33-6

33.5 Class Paths for Clients Using Remote EJBs... 33-7

33.6 Initiating a Task... 33-7

33.6.1 Creating a Task .. 33-8

33.6.2 Creating a Payload Element in a Task.. 33-8

33.6.3 Initiating a Task Programmatically .. 33-9

33.7 Changing Workflow Standard View Definitions... 33-10

33.8 Writing a Worklist Application Using the HelpDeskUI Sample... 33-10

34 Introduction to Human Workflow Services

34.1 Introduction to Human Workflow Services ... 34-1

34.1.1 SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow Services

... 34-2

34.1.2 Security Model for Services ... 34-5

34.1.3 Task Service.. 34-6

34.1.4 Task Query Service.. 34-10

34.1.5 Identity Service .. 34-13

34.1.6 Task Metadata Service .. 34-15

34.1.7 User Metadata Service .. 34-16

34.1.8 Task Report Service... 34-18

34.1.9 Runtime Config Service.. 34-19

34.1.10 Evidence Store Service and Digital Signatures ... 34-22

34.1.11 Task Instance Attributes... 34-27

34.2 Notifications from Human Workflow ... 34-32

34.2.1 Contents of Notification ... 34-33

34.2.2 Error Message Support ... 34-34

34.2.3 Reliability Support .. 34-34

34.2.4 Management of Oracle Human Workflow Notification Service 34-35

34.2.5 How to Configure the Notification Channel Preferences.. 34-35

34.2.6 How to Configure Notification Messages in Different Languages.......................... 34-36

34.2.7 How to Send Actionable Messages... 34-37

34.2.8 How to Send Inbound and Outbound Attachments.. 34-39

34.2.9 How to Send Inbound Comments .. 34-39

34.2.10 How to Send Secure Notifications .. 34-39

34.2.11 How to Set Channels Used for Notifications .. 34-40

34.2.12 How to Send Reminders... 34-40

34.2.13 How to Set Automatic Replies to Unprocessed Messages 34-40

xxiii

34.2.14 How to Create Custom Notification Headers ... 34-41

34.3 Assignment Service Configuration .. 34-41

34.3.1 Dynamic Assignment and Task Escalation Patterns.. 34-42

34.3.2 Dynamically Assigning Task Participants with the Assignment Service 34-46

34.3.3 Custom Escalation Function .. 34-50

34.4 Class Loading for Callbacks and Resource Bundles.. 34-50

34.5 Resource Bundles in Workflow Services... 34-50

34.5.1 Task Resource Bundles ... 34-51

34.5.2 Global Resource Bundle – WorkflowLabels.properties... 34-51

34.5.3 Worklist Client Resource Bundles .. 34-53

34.5.4 Task Detail ADF Task Flow Resource Bundles... 34-53

34.5.5 Specifying Stage and Participant Names in Resource Bundles 34-54

34.5.6 Case Sensitivity in Group and Application Role Names .. 34-54

34.6 Introduction to Human Workflow Client Integration with Oracle WebLogic Server

Services ... 34-55

34.6.1 Human Workflow Services Clients .. 34-55

34.6.2 Identity Propagation ... 34-62

34.6.3 Client JAR Files .. 34-65

34.7 Task States in a Human Task .. 34-65

34.8 Database Views for Oracle Workflow ... 34-66

34.8.1 Unattended Tasks Report View .. 34-66

34.8.2 Task Cycle Time Report View ... 34-67

34.8.3 Task Productivity Report View... 34-67

34.8.4 Task Priority Report View.. 34-68

Part VI Using Binding Components

35 Getting Started with Binding Components

35.1 Introduction to Binding Components.. 35-1

35.1.1 SOAP Web Services... 35-2

35.1.2 HTTP Binding Service .. 35-5

35.1.3 JCA Adapters ... 35-10

35.1.4 Oracle E-Business Suite Adapter... 35-12

35.1.5 Oracle BAM 11g Adapter ... 35-13

35.1.6 Oracle B2B .. 35-13

35.1.7 Oracle Healthcare Adapter .. 35-13

35.1.8 Oracle MFT .. 35-13

35.1.9 ADF-BC Services ... 35-14

35.1.10 EJB Adapter .. 35-14

35.1.11 Direct Binding Adapter .. 35-15

35.1.12 REST Binding ... 35-15

35.1.13 Cloud Adapters ... 35-15

35.2 Introduction to Integrating a Binding Component in a SOA Composite Application..... 35-15

xxiv

35.2.1 How to Integrate a Binding Component in a SOA Composite Application 35-15

35.2.2 How to Use ADF Binding to Invoke a Composite Application from a JSP/Java

Class.. 35-16

35.3 Creating Tokens for Use in the Binding URLs of External References............................... 35-17

35.3.1 How to Create Tokens for Use in the Binding URLs of External References 35-17

36 Integrating REST Operations in SOA Composite Applications

36.1 Introduction to REST Support .. 36-1

36.2 Creating REST Support in Service and Reference Binding Components............................. 36-3

36.2.1 How to Configure the REST Binding Component in a SOA Composite

Application .. 36-3

36.2.2 Example: REST Enable an Existing Service Component ... 36-9

36.2.3 Example: Adding Resources and Operations from a WADL Service to a REST

Reference .. 36-12

36.2.4 How to Configure the REST Adapter Through Shortcuts .. 36-15

36.2.5 How to Generate Schemas Manually ... 36-17

36.2.6 How to Generate Schemas from Samples.. 36-18

36.2.7 How to Use Global Token Variables .. 36-18

36.2.8 How to Set REST Header Properties .. 36-19

36.2.9 What You May Need to Know About REST Fault Binding 36-21

36.2.10 What You May Need to Know About Converting a JSON Interchange Format to

a REST Schema.. 36-21

36.2.11 What You May Need to Know About REST References Calling REST Services in

the Same Node .. 36-22

36.3 Using JavaScript and JSON in BPEL Components .. 36-23

36.4 Testing the REST Adapter with the HTTP Analyzer... 36-29

36.5 Testing and Configuring REST Reference Binding Components in Oracle Enterprise

Manager Fusion Middleware Control ... 36-31

37 Integrating Enterprise JavaBeans with Composite Applications

37.1 Introduction to Enterprise JavaBeans Binding Integration with SOA Composite

Applications ... 37-1

37.1.1 Integration Through Java Interfaces ... 37-2

37.1.2 Integration Through SDO-Based EJBs.. 37-2

37.2 Designing an SDO-Based Enterprise JavaBeans Application .. 37-3

37.2.1 How to Create SDO Objects Using the SDO Compiler ... 37-3

37.2.2 How to Create a Session Bean and Import the SDO Objects 37-4

37.2.3 How to Create a Profile and an EAR File .. 37-4

37.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean.......................... 37-4

37.2.5 How to Use Web Service Annotations ... 37-6

37.2.6 How to Deploy the Enterprise JavaBeans EAR File ... 37-8

37.3 Creating an Enterprise JavaBeans Service in Oracle JDeveloper... 37-8

xxv

37.3.1 How to Integrate Java Interface-based Enterprise JavaBeans with SOA Composite

Applications... 37-8

37.3.2 How to Integrate SDO-based Enterprise JavaBeans with SOA Composite

Applications... 37-10

37.4 Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite 37-13

37.4.1 How to Create a Java Interface-Based Client to Invoke Oracle SOA Suite............. 37-13

37.4.2 How to Invoke an SDO-Enterprise JavaBeans Service .. 37-14

37.5 Specifying Enterprise JavaBeans Roles.. 37-15

37.6 Configuring Enterprise JavaBeans Binding Support in the Credential Store Framework 37-15

37.6.1 How to Configure Enterprise JavaBeans Binding Support in the Credential Store

Framework .. 37-15

38 Using Direct Binding to Invoke Composite Services

38.1 Introduction to Direct Binding.. 38-1

38.1.1 Direct Service Binding Component .. 38-2

38.1.2 Direct Reference Binding Component.. 38-2

38.2 Introduction to the Direct Binding Invocation API ... 38-4

38.2.1 Synchronous Direct Binding Invocation.. 38-5

38.2.2 Asynchronous Direct Binding Invocation ... 38-5

38.2.3 Required JAR Files for Compiling and Running the Direct Binding Java Client

Code.. 38-6

38.2.4 SOA Direct Address Syntax... 38-6

38.2.5 SOA Transaction Propagation... 38-6

38.3 Exception Handling with SOA Direct Transport... 38-6

38.4 Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API . 38-8

38.4.1 How to Create an Inbound Direct Binding Service.. 38-8

38.4.2 How to Create an Outbound Direct Binding Reference .. 38-10

38.4.3 How to Set an Identity for J2SE Clients Invoking Direct Binding........................... 38-12

38.4.4 What You May Need to Know About Invoking SOA Composites on Hosts with

the Same Server and Domain Names .. 38-13

38.5 Samples Using the Direct Binding Invocation API.. 38-14

Part VII Sharing Functionality Across Service Components

39 Oracle SOA Suite Templates and Reusable Subprocesses

39.1 Introduction to Oracle SOA Suite Templates ... 39-1

39.2 Introduction to Standalone and Inline BPEL Subprocess Invocations 39-2

39.2.1 Introduction to a Standalone Subprocess .. 39-3

39.2.2 Introduction to an Inline Subprocess.. 39-5

39.3 Differences Between Oracle SOA Suite Templates and Reusable Subprocesses................. 39-7

39.4 Creating Oracle SOA Suite Templates... 39-7

39.4.1 Creating and Using a SOA Project Template .. 39-7

39.4.2 Creating and Using a Service Component Template... 39-11

xxvi

39.4.3 Creating and Using a BPEL Scope Activity Template ... 39-15

39.4.4 Managing Templates .. 39-20

39.5 Creating Standalone and Inline BPEL Subprocesses in a BPEL Process 39-22

39.5.1 How to Create a Standalone BPEL Subprocess... 39-22

39.5.2 How to Create an Inline Subprocess .. 39-25

39.5.3 How to Create a Standalone Subprocess that Takes a Partner Link as a Parameter 39-29

39.5.4 What You May Need to Know About Renaming a Subprocess 39-35

40 Creating Transformations with the XSLT Map Editor

40.1 Introduction to the XSLT Map Editor .. 40-1

40.1.1 Using the Map View ... 40-2

40.1.2 Using the XSLT View.. 40-3

40.1.3 Using the Components Window... 40-3

40.1.4 Using the Properties Window ... 40-4

40.2 Creating an XSLT Map... 40-5

40.2.1 How to Create an XSLT Map... 40-5

40.2.2 How to Create an XSL Map File in Oracle BPEL Process Manager........................... 40-6

40.2.3 How to Create an XSL Map File from Imported Source and Target Schema Files in

Oracle BPEL Process Manager.. 40-8

40.2.4 How to Create an XSL Map File in Oracle Mediator ... 40-10

40.2.5 What You May Need to Know About Creating an XSL Map File 40-13

40.2.6 What Happens at Runtime If You Pass a Payload Through Oracle Mediator

Without Creating an XSL Map File .. 40-14

40.2.7 What Happens If You Receive an Empty Namespace Tag in an Output Message 40-14

40.3 Editing an XSLT Map in Map View ... 40-14

40.3.1 How to Perform a Value Copy by Linking Nodes ... 40-14

40.3.2 How to Create an Empty Node in the Output Document .. 40-15

40.3.3 How to Set a Literal Text Value for a Target Node .. 40-15

40.3.4 How to Add an XSLT Statement... 40-15

40.3.5 How to Duplicate an Element ... 40-29

40.3.6 How to Delete an Element or Attribute ... 40-31

40.3.7 How to Remove Mappings from an Element or Attribute 40-32

40.4 Editing an XSLT Map in XSLT View.. 40-32

40.4.1 How to Add a Target Element or Attribute Before Mapping................................... 40-33

40.4.2 How to Perform a Value Copy by Linking Nodes ... 40-36

40.4.3 How to Insert an xsl:valueof Statement ... 40-37

40.4.4 How to Set a Literal Text Value for an XSLT Node.. 40-38

40.4.5 How to Set a Literal Text Value Using an xsl:text Instruction.................................. 40-38

40.4.6 How to Add XSLT Statements... 40-38

40.4.7 How to Set the Value of an XSLT Expression Attribute .. 40-41

40.4.8 How to Duplicate an Element ... 40-41

40.4.9 How to Delete an Element or Attribute ... 40-41

40.4.10 How to Move an Element .. 40-42

xxvii

40.4.11 How to Remove Mappings from an Element or Attribute 40-43

40.5 Using XPath Expressions... 40-43

40.5.1 How to Modify an Existing Source to Target Mapping .. 40-43

40.5.2 How to Modify an Existing Function XPath Expression in the Canvas Pane 40-46

40.5.3 How to Create a New Function in the Canvas Pane.. 40-50

40.5.4 How to Chain Functions Together.. 40-52

40.5.5 How to Remove an XPath Expression.. 40-53

40.5.6 How to Import User-Defined Functions .. 40-53

40.6 Using Auto Map to Map Complex Nodes .. 40-55

40.6.1 How to Set Auto Map Preferences.. 40-56

40.6.2 How to Execute an Auto Map ... 40-57

40.7 Checking the Completion Status of the Map.. 40-57

40.8 Testing the Map .. 40-58

40.8.1 How to Test the Transformation Mapping Logic... 40-59

40.8.2 How to Generate Reports... 40-65

40.8.3 How to Customize Sample XML Generation.. 40-65

40.9 Importing an External XSLT Map .. 40-66

40.10 Using Variables and Parameters .. 40-66

40.10.1 How to Add Global Variables ... 40-66

40.10.2 How to Add Local Variables in Map View ... 40-67

40.10.3 How to Add Local Variables in XSLT View.. 40-68

40.10.4 How to Add Global Parameters.. 40-68

40.11 Substituting Elements and Types... 40-70

40.12 Using Named Templates ... 40-76

40.12.1 How to Create a Named Template ... 40-76

40.12.2 How to Edit a Named Template ... 40-77

40.12.3 How to Add Parameters to an Existing Named Template...................................... 40-77

40.12.4 How to Invoke a Named Template .. 40-78

40.13 Using Template Rules .. 40-78

40.13.1 How to Create a Template Rule .. 40-78

40.13.2 How to Refactor an Existing Map to Create a Template Rule 40-85

40.14 Using the Execution View ... 40-88

40.14.1 How to Use Execution View to Prevent or Troubleshoot Runtime Errors 40-89

40.15 Debugging the XSLT Map ... 40-90

40.15.1 Setting Breakpoints in the XSLT Map Editor .. 40-90

40.15.2 Running the Debugger on the XSLT Map ... 40-91

40.15.3 Viewing Breakpoints... 40-93

40.15.4 Setting Conditions for XSLT Breakpoints .. 40-94

40.16 Troubleshooting Memory Issues .. 40-95

40.17 Setting XSL Map Preferences .. 40-95

40.17.1 How to Set XSLT Map Preferences ... 40-95

40.17.2 How to Set the XSL Editor Preferences .. 40-96

xxviii

40.17.3 How to Import a Customization File to Specify Display Preferences in the XSLT

Map Editor ... 40-97

41 Creating Transformations with the XQuery Mapper

41.1 Introduction to the XQuery Mapper.. 41-1

41.1.1 About the Source and Target Trees .. 41-2

41.1.2 Using the XQuery Mapper Toolbar .. 41-3

41.1.3 Using the Properties Window ... 41-4

41.1.4 Using the Components Window... 41-5

41.1.5 Source Editor.. 41-6

41.2 Creating an XQuery Map File ... 41-7

41.2.1 How to Create an XQuery Main/Library Module ... 41-7

41.3 Using the XQuery Mapper .. 41-11

41.3.1 How to Use Value Mapping to Copy a Leaf Element Value to a Target Leaf

Element... 41-12

41.3.2 How to Use Overwrite Mapping to Copy an Element Subtree to the Target Tree 41-12

41.3.3 How to Use Append Mapping to Copy an Element Subtree to the Target Tree ... 41-12

41.3.4 How to Perform Multiple Value Mappings with One Drag and Drop Action 41-13

41.4 Using XQuery Functions ... 41-13

41.4.1 How to Add an XQuery Function in the XQuery Mapper.. 41-13

41.5 Using Library Modules .. 41-15

41.5.1 How to Import a Library Module ... 41-15

41.6 Working with Zones and FLWOR Constructs ... 41-15

41.6.1 How to Edit a FLWOR Construct ... 41-16

41.7 Using Type Annotations to Improve XQuery Performance... 41-16

41.8 Testing Your XQuery Map .. 41-17

41.8.1 How to Test an XQuery Map... 41-17

42 Using Business Events and the Event Delivery Network

42.1 Introduction to Business Events ... 42-1

42.1.1 EDN Integration with Oracle SOA Suite ... 42-3

42.1.2 Business Event API Support for Remote Clients .. 42-5

42.1.3 Local and Remote Event Connections.. 42-6

42.2 Creating Business Events in Oracle JDeveloper... 42-7

42.2.1 How to Create a Business Event ... 42-7

42.3 Subscribing to or Publishing a Business Event from an Oracle Mediator Service

Component... 42-9

42.3.1 How to Subscribe to a Business Event ... 42-9

42.3.2 How to Publish a Business Event.. 42-11

42.3.3 What Happens When You Create and Subscribe to a Business Event.................... 42-12

42.3.4 What Happens When You Publish a Business Event .. 42-12

42.3.5 What You May Need to Know About Subscribing to a Business Event 42-13

xxix

42.3.6 What You May Need to Know About Publishing Events Across Domains Using

SAF.. 42-13

42.3.7 How to Configure a Foreign JNDI Provider to Enable Administration Server

Applications to Publish Events to the SOA Server .. 42-14

42.3.8 How to Configure the Connection Factory When the Oracle WebLogic Server JMS

Runs in the Same Local JVM as the JMS Adapter.. 42-15

42.4 Subscribing to or Publishing a Business Event from a BPEL Process Service Component 42-15

42.4.1 How to Subscribe to a Business Event ... 42-16

42.4.2 How to Publish a Business Event.. 42-19

42.4.3 What Happens When You Subscribe to and Publish a Business Event 42-19

42.5 How to Integrate Oracle ADF Business Component Business Events with Oracle

Mediator ... 42-21

43 Working with Cross References

43.1 Introduction to Cross References ... 43-1

43.2 Introduction to Cross Reference Tables... 43-2

43.3 Oracle Data Integrator Support for Cross Referencing... 43-5

43.4 Creating and Modifying Cross Reference Tables... 43-5

43.4.1 How to Create Cross Reference Metadata... 43-5

43.4.2 What Happens When You Create a Cross Reference .. 43-7

43.4.3 How to Create Custom Database Tables ... 43-8

43.4.4 How to Add an End System to a Cross Reference Table... 43-10

43.5 Populating Cross Reference Tables .. 43-11

43.5.1 About the xref:populateXRefRow Function.. 43-12

43.5.2 About the xref:populateLookupXRefRow Function .. 43-15

43.5.3 About the xref:populateXRefRow1M Function .. 43-16

43.5.4 How to Populate a Column of a Cross Reference Table.. 43-18

43.6 Looking Up Cross Reference Tables .. 43-20

43.6.1 About the xref:lookupXRef Function ... 43-20

43.6.2 About the xref:lookupXRef1M Function.. 43-21

43.6.3 About the xref:lookupPopulatedColumns Function.. 43-22

43.6.4 How to Look Up a Cross Reference Table for a Value .. 43-22

43.7 Deleting a Cross Reference Table Value.. 43-24

43.7.1 How to Delete a Cross Reference Table Value.. 43-25

43.8 Creating and Running the Cross Reference Use Case... 43-26

43.8.1 How to Create the Use Case .. 43-27

43.8.2 How to Run and Monitor the XrefCustApp Application.. 43-59

43.9 Creating and Running Cross Reference for 1M Functions ... 43-60

43.9.1 How to Create the Use Case .. 43-60

44 Working with Domain Value Maps

44.1 Introduction to Domain Value Maps... 44-1

44.1.1 Domain Value Map Features ... 44-2

xxx

44.2 Creating Domain Value Maps .. 44-4

44.2.1 How to Create Domain Value Maps .. 44-4

44.2.2 What Happens When You Create a Domain Value Map.. 44-5

44.3 Editing a Domain Value Map ... 44-7

44.3.1 How to Add Domains to a Domain Value Map ... 44-7

44.3.2 How to Edit a Domain.. 44-8

44.3.3 How to Add Domain Values to a Domain Value Map.. 44-9

44.3.4 How to Edit Domain Values ... 44-9

44.4 Using Domain Value Map Functions .. 44-10

44.4.1 Understanding Domain Value Map Functions... 44-10

44.4.2 How to Use Domain Value Map Functions in Transformations.............................. 44-11

44.4.3 How to Use Domain Value Map Functions in XPath Expressions 44-14

44.4.4 What Happens at Runtime... 44-15

44.5 Creating a Domain Value Map Use Case for a Hierarchical Lookup 44-15

44.5.1 How to Create the HierarchicalValue Use Case ... 44-16

44.5.2 How to Run and Monitor the HierarchicalValue Application 44-25

44.6 Creating a Domain Value Map Use Case For Multiple Values.. 44-25

44.6.1 How to Create the Multivalue Use Case.. 44-26

44.6.2 How to Run and Monitor the Multivalue Application.. 44-34

44.7 Preloading DVM Cache for Faster First-Use .. 44-34

44.7.1 How to Preload DVM Cache at Server Startup .. 44-35

45 Using Oracle SOA Composer with Domain Value Maps

45.1 Introduction to Oracle SOA Composer ... 45-1

45.1.1 How to Log in to Oracle SOA Composer .. 45-2

45.2 Viewing Domain Value Maps at Runtime .. 45-3

45.2.1 How To View Domain Value Maps at Runtime... 45-3

45.3 Editing Domain Value Maps at Runtime .. 45-4

45.3.1 How to Edit Domain Value Maps at Runtime .. 45-5

45.4 Publishing Changes at Runtime ... 45-6

45.4.1 How to Publish Changes at Runtime ... 45-6

45.4.2 How to Discard Changes at Runtime... 45-6

45.5 Detecting Conflicts ... 45-6

Part VIII Completing Your Application

46 Enabling Security with Policies and Message Encryption

46.1 Introduction to Policies .. 46-1

46.2 Attaching Policies to Binding Components and Service Components................................. 46-2

46.2.1 How to Attach Policies to Binding Components and Service Components............. 46-2

46.2.2 How to Override Policy Configuration Property Values.. 46-7

46.3 Encrypting and Decrypting Specific Fields of Messages .. 46-9

46.3.1 How to Encrypt and Decrypt Specific Fields of Messages.. 46-10

xxxi

47 Deploying SOA Composite Applications

47.1 Introduction to Deployment ... 47-1

47.2 Deployment Prerequisites ... 47-2

47.2.1 Creating the Oracle SOA Suite Schema.. 47-2

47.2.2 Creating a SOA Domain... 47-2

47.2.3 Configuring a SOA Cluster.. 47-2

47.3 Understanding the Packaging Impact ... 47-3

47.4 Anatomy of a Composite... 47-3

47.5 Preparing the Target Environment .. 47-4

47.5.1 How to Create Data Sources and Queues.. 47-4

47.5.2 How to Create Connection Factories and Connection Pooling 47-6

47.5.3 How to Enable Security .. 47-7

47.5.4 How to Set the Business Flow Instance Name or Composite Instance Name at

Design Time... 47-7

47.5.5 How to Deploy Trading Partner Agreements and Task Flows 47-8

47.5.6 How to Create an Application Server Connection ... 47-8

47.5.7 How to Create a SOA-MDS Connection .. 47-8

47.6 Customizing Your Application for the Target Environment Before Deployment.............. 47-9

47.6.1 How to Use Configuration Plans to Customize SOA Composite Applications for

the Target Environment... 47-9

47.7 Deploying SOA Composite Applications in Oracle JDeveloper ... 47-17

47.7.1 How to Deploy a Single SOA Composite in Oracle JDeveloper 47-17

47.7.2 How to Deploy Multiple SOA Composite Applications in Oracle JDeveloper 47-32

47.7.3 How to Deploy and Use Shared Data Across Multiple SOA Composite

Applications in Oracle JDeveloper .. 47-34

47.7.4 How to Deploy an Existing SOA Archive in Oracle JDeveloper.............................. 47-43

47.8 Deploying and Managing SOA Composite Applications with the WLST Utility 47-45

47.9 Deploying and Managing SOA Composite Applications with ant Scripts........................ 47-45

47.9.1 How to Use ant to Automate the Testing of a SOA Composite Application 47-47

47.9.2 How to Use ant to Compile a SOA Composite Application..................................... 47-48

47.9.3 How to Use ant to Package a SOA Composite Application into a Composite SAR

File... 47-49

47.9.4 How to Use ant to Deploy a SOA Composite Application 47-50

47.9.5 How to Use ant to Undeploy a SOA Composite Application 47-51

47.9.6 How to Use ant to Export a Composite into a SAR File .. 47-52

47.9.7 How to Use ant to Export Postdeployment Changes of a Composite into a JAR

File... 47-54

47.9.8 How to Use ant to Import Postdeployment Changes of a Composite 47-55

47.9.9 How to Use ant to Export Shared Data of a Given Pattern into a JAR File 47-55

47.9.10 How to Use ant to Remove a Top-level Shared Data Folder 47-56

47.9.11 How to Use ant to Start a SOA Composite Application.. 47-57

47.9.12 How to Use ant to Stop a SOA Composite Application .. 47-58

xxxii

47.9.13 How to Use ant to Activate a SOA Composite Application 47-58

47.9.14 How to Use ant to Retire a SOA Composite Application.. 47-59

47.9.15 How to Use ant to Assign the Default Version to a SOA Composite Application 47-60

47.9.16 How to Use ant to List the Deployed SOA Composite Applications 47-61

47.9.17 How to Use ant to List All Available Partitions in the SOA Infrastructure.......... 47-61

47.9.18 How to Use ant to List All Composites in a Partition.. 47-62

47.9.19 How to Use ant to Create a Partition in the SOA Infrastructure............................ 47-62

47.9.20 How to Use ant to Delete a Partition in the SOA Infrastructure 47-63

47.9.21 How to Use ant to Start All Composites in the Partition... 47-63

47.9.22 How to Use ant to Stop All Composites in the Partition... 47-64

47.9.23 How to Use ant to Activate All Composites in the Partition 47-65

47.9.24 How to Use ant to Retire All Composites in the Partition 47-65

47.9.25 How to Use ant to Manage SOA Composite Applications 47-66

47.10 Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion

Middleware Control ... 47-67

47.11 Deploying SOA Composite Applications to a Cluster .. 47-67

47.12 Deploying SOA Composite Applications with No Servers Running 47-67

47.12.1 Offline Deployment Configuration Files ... 47-68

47.12.2 How to Deploy SOA Composite Applications and Shared Data with No Server

Running.. 47-71

47.12.3 What You May Need to Know About Offline Composite Deployment in a

Cluster Environment .. 47-71

47.12.4 What You May Need to Know About Deploying SOA Composite Applications

that Reference Shared Data That is Not in the MDS Repository 47-72

47.13 Postdeployment Configuration .. 47-72

47.13.1 Security ... 47-72

47.13.2 Updating Connections.. 47-72

47.13.3 Updating Data Sources and Queues... 47-72

47.13.4 Attaching Policies.. 47-72

47.14 Testing and Troubleshooting .. 47-72

47.14.1 Verifying Deployment .. 47-73

47.14.2 Initiating an Instance of a Deployed Composite .. 47-73

47.14.3 Automating the Testing of Deployed Composites ... 47-73

47.14.4 Recompiling a Project After Receiving a Deployment Error 47-73

47.14.5 Reducing Java Code Size to Resolve Java Compilation Errors............................... 47-74

47.14.6 Troubleshooting Common Deployment Errors.. 47-75

47.15 Patching Running Instances of a SOA Composite... 47-79

47.15.1 Using the SOA Patch Developer Mode in JDeveloper... 47-80

47.15.2 Verifying and Deploying the Patch Using WLST... 47-84

47.15.3 Deleting the Patch File .. 47-85

48 Using the Oracle SOA Suite Development Maven Plug-In

48.1 Introduction to the Oracle SOA Suite Maven Plug-in... 48-1

xxxiii

48.1.1 POM Files and Archetypes .. 48-1

48.1.2 Maven Plug-in Goals .. 48-4

48.1.3 Using Maven Online Help ... 48-6

48.2 Installing the Oracle SOA Suite Maven Plug-in... 48-7

48.2.1 How to Configure the Oracle SOA Suite Maven Plug-In.. 48-7

48.3 Using the Oracle SOA Suite Maven Archetype.. 48-8

49 Debugging and Auditing SOA Composite Applications

49.1 Introduction to the SOA Debugger .. 49-1

49.2 Debugging a SOA Composite Application... 49-2

49.2.1 How to Start the SOA Debugger .. 49-3

49.2.2 How to Set Breakpoints and Initiate Debugging.. 49-6

49.2.3 How to Step Through a Debugging Session ... 49-10

49.2.4 How to End or Detach from a Debugging Session... 49-14

49.2.5 How to Remove Breakpoints... 49-15

49.2.6 How to View Adapter Properties ... 49-16

49.2.7 How to View Threads... 49-17

49.3 Testing SOA Composite Applications with the HTTP Analyzer .. 49-18

49.4 Auditing SOA Composite Applications at the BPEL Activity Level 49-20

49.4.1 How to Audit SOA Composite Applications at the BPEL Activity Level 49-23

50 Automating Testing of SOA Composite Applications

50.1 Introduction to the Composite Test Framework.. 50-1

50.1.1 Test Cases Overview... 50-1

50.1.2 Overview of Test Suites.. 50-2

50.1.3 Overview of Emulations... 50-2

50.1.4 Overview of Assertions .. 50-2

50.2 Introduction to the Components of a Test Suite .. 50-3

50.2.1 Process Initiation ... 50-3

50.2.2 Emulations.. 50-3

50.2.3 Assertions ... 50-4

50.2.4 Message Files.. 50-5

50.3 Creating Test Suites and Test Cases with the Create Composite Test Wizard.................... 50-5

50.4 Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor.............. 50-12

50.4.1 How to Initiate Inbound Messages... 50-12

50.4.2 How to Emulate Outbound Messages ... 50-15

50.4.3 How to Emulate Callback Messages .. 50-18

50.4.4 How to Emulate Fault Messages... 50-20

50.4.5 How to Create Assertions .. 50-21

50.4.6 What You May Need to Know About Assertions .. 50-27

50.5 Testing BPEL Process Service Components.. 50-27

50.5.1 Overview of Assertions on BPEL Process Activities ... 50-28

50.5.2 Overview of a Fast Forward Action on a Wait Activity ... 50-29

xxxiv

50.5.3 Overview of Assert Activity Execution.. 50-29

50.5.4 How to Create BPEL Process Service Component Tests ... 50-29

50.5.5 How to Create Assertions .. 50-31

50.5.6 How to Bypass a Wait Activity ... 50-33

50.5.7 How to Specify the Number of Times to Execute an Activity.................................. 50-34

50.6 Deploying and Running a Test Suite ... 50-36

50.6.1 How to Deploy and Run a Test Suite from Oracle JDeveloper 50-36

50.6.2 How to Deploy and Run a Test Suite from Oracle Enterprise Manager Fusion

Middleware Control ... 50-41

50.6.3 How to Deploy and Run a Test Suite with a WLST Command 50-41

50.6.4 How to Deploy and Run a Test Suite with an ant Script... 50-42

Part IX Advanced Topics

51 Managing Large Documents and Large Numbers of Instances

51.1 Best Practices for Handling Large Documents... 51-1

51.1.1 Use Cases for Handling Large Documents.. 51-1

51.1.2 Limitations on Concurrent Processing of Large Documents 51-15

51.1.3 JVM Memory Sizing Recommendations for SOA Composite Applications 51-15

51.1.4 General Tuning Recommendations .. 51-15

51.2 Best Practices for Handling Large Metadata .. 51-23

51.2.1 Boundary on the Processing of Large Numbers of Activities in a BPEL Process .. 51-23

51.2.2 Using Large Numbers of Activities in BPEL Processes (Without FlowN) 51-23

51.2.3 Using Large Numbers of Activities in BPEL Processes (With FlowN) 51-23

51.2.4 Using a Flow With Multiple Sequences ... 51-23

51.2.5 Using a Flow with One Sequence ... 51-24

51.2.6 Using a Flow with No Sequence ... 51-24

51.2.7 Large Numbers of Oracle Mediators in a Composite .. 51-24

51.2.8 Importing Large Data Sets in Oracle B2B .. 51-24

51.3 Best Practices for Handling Large Numbers of Instances .. 51-24

51.3.1 Instance and Rejected Message Deletion with the Purge Script or Oracle

Enterprise Manager Fusion Middleware Control.. 51-25

52 Customizing SOA Composite Applications

52.1 Introduction to Customizing SOA Composite Applications ... 52-1

52.2 Creating the Customizable Composite.. 52-2

52.2.1 How to Create Customization Classes... 52-2

52.2.2 How to Create the Customizable Composite.. 52-3

52.2.3 How to Add an XSD or WSDL File... 52-4

52.2.4 How to Search for Customized Activities in a BPEL Process 52-5

52.2.5 What You May Need to Know About Resolving Validation Errors in Oracle

JDeveloper.. 52-5

52.2.6 What You May Need to Know About Resolving a Sequence Conflict...................... 52-6

xxxv

52.2.7 What You May Need to Know About Compiling and Deploying a Customized

Application .. 52-7

52.3 Customizing the Vertical Application ... 52-7

52.3.1 How to Customize the Vertical Application ... 52-7

52.4 Customizing the Customer Version... 52-10

52.4.1 How to Customize the Customer Version... 52-10

52.5 Upgrading the Composite ... 52-11

52.5.1 How to Upgrade the Core Application Team Composite... 52-11

52.5.2 How to Upgrade the Vertical Applications Team Composite.................................. 52-11

52.5.3 How to Upgrade the Customer Composite... 52-12

53 Defining Composite Sensors

53.1 Introduction to Composite Sensors.. 53-1

53.1.1 Restrictions on Use of Composite Sensors... 53-2

53.2 Adding Composite Sensors... 53-3

53.2.1 How to Add Composite Sensors... 53-3

53.2.2 What You May Need to Know About Duplicate Composite Sensor Names 53-10

53.3 Monitoring Composite Sensor Data During Runtime... 53-12

53.4 Creating and Managing Composite Sensors During Runtime from Oracle SOA

Composer ... 53-12

53.4.1 What You May Need to Know About Viewing Composite Sensor Changes in

Oracle SOA Composer ... 53-17

54 Creating Dynamic Business Processes

54.1 Introduction to Two-Layer Business Process Management ... 54-1

54.2 Creating a Phase Activity .. 54-2

54.2.1 How to Create a Phase Activity .. 54-3

54.2.2 What Happens When You Create a Phase Activity ... 54-3

54.2.3 What Happens at Runtime When You Create a Phase Activity................................. 54-4

54.2.4 What You May Need to Know About Creating a Phase Activity.............................. 54-5

54.3 Creating the Dynamic Routing Decision Table .. 54-5

54.3.1 How to Create the Dynamic Routing Decision Table .. 54-5

54.3.2 What Happens When You Create the Dynamic Routing Decision Table................. 54-6

55 Integrating the Spring Framework in SOA Composite Applications

55.1 Introduction to the Spring Service Component ... 55-1

55.2 Integration of Java and WSDL-Based Components in the Same SOA Composite

Application... 55-2

55.2.1 Java and WSDL-Based Integration Example... 55-2

55.2.2 Using Callbacks with the Spring Framework ... 55-4

55.3 Creating a Spring Service Component in Oracle JDeveloper... 55-5

55.3.1 How to Create a Spring Service Component in Oracle JDeveloper........................... 55-5

xxxvi

55.3.2 What You May Need to Know About Java Class Errors During Java-to-WSDL

Conversions ... 55-16

55.4 Defining Custom Spring Beans Through a Global Spring Context..................................... 55-16

55.4.1 How to Define Custom Spring Beans Through a Global Spring Context............... 55-16

55.5 Using the Predefined Spring Beans.. 55-16

55.5.1 IHeaderHelperBean.java Interface for headerHelperBean 55-17

55.5.2 IInstanceHelperBean.java Interface for instancerHelperBean 55-17

55.5.3 ILoggerBean.java Interface for loggerBean.. 55-18

55.5.4 How to Reference Predefined Spring Beans in the Spring Context File 55-19

55.6 JAXB and OXM Support .. 55-20

55.6.1 Extended Mapping Files... 55-20

55.7 Configuring Groovy and Aspectj Classes with the Spring Service Component............... 55-22

55.8 Troubleshooting Spring Errors ... 55-23

55.8.1 Spring Bean Interface to Invoke Cannot Be Found .. 55-23

55.8.2 Unable to Add a Spring Service Component in the SOA Composite Editor 55-23

Part X Appendices

A BPEL Process Activities and Services

A.1 Introduction to Activities and Components .. A-1

A.2 Introduction to BPEL 1.1 and 2.0 Activities ... A-2

A.2.1 Tabs Common to Many Activities.. A-5

A.2.2 Using the Native Format Builder Wizard Outside of Adapter Configuration.................... A-7

A.2.3 Assign Activity.. A-8

A.2.4 Assert Activity... A-11

A.2.5 Bind Entity Activity.. A-11

A.2.6 Call Activity... A-12

A.2.7 Compensate Activity ... A-13

A.2.8 CompensateScope Activity ... A-13

A.2.9 Create Entity Activity... A-14

A.2.10 Dehydrate Activity ... A-15

A.2.11 Dynamic Partner Link Activity .. A-16

A.2.12 Email Activity.. A-17

A.2.13 Empty Activity .. A-17

A.2.14 Exit Activity... A-18

A.2.15 Flow Activity ... A-19

A.2.16 FlowN Activity.. A-20

A.2.17 forEach Activity .. A-21

A.2.18 If Activity ... A-22

A.2.19 IM Activity... A-23

A.2.20 Invoke Activity.. A-23

A.2.21 Java Embedding Activity... A-24

A.2.22 Partner Link Activity.. A-25

xxxvii

A.2.23 Phase Activity.. A-26

A.2.24 Pick Activity .. A-27

A.2.25 Receive Activity .. A-30

A.2.26 Receive Signal Activity .. A-31

A.2.27 Remove Entity Activity.. A-31

A.2.28 RepeatUntil Activity... A-32

A.2.29 Replay Activity.. A-33

A.2.30 Reply Activity.. A-34

A.2.31 Rethrow Activity... A-34

A.2.32 Schedule Job .. A-35

A.2.33 Scope Activity.. A-36

A.2.34 Sequence Activity ... A-37

A.2.35 Signal Activity... A-38

A.2.36 SMS Activity.. A-38

A.2.37 Switch Activity.. A-39

A.2.38 Terminate Activity.. A-40

A.2.39 Throw Activity .. A-41

A.2.40 Translate Activity ... A-41

A.2.41 User Notification Activity ... A-42

A.2.42 Validate Activity ... A-43

A.2.43 Voice Activity .. A-44

A.2.44 Wait Activity ... A-44

A.2.45 While Activity ... A-45

A.2.46 XQuery Transform Activity .. A-46

A.2.47 XSLT Transform Activity... A-47

A.3 Introduction to BPEL Services.. A-48

B XPath Extension Functions

B.1 Advanced Functions... B-1

B.1.1 batchProcessActive ... B-2

B.1.2 batchProcessCompleted ... B-2

B.1.3 copyList... B-2

B.1.4 create-nodeset-from-delimited-string .. B-3

B.1.5 createDelimitedString ... B-3

B.1.6 createEssParameter ... B-4

B.1.7 doStreamingTranslate... B-4

B.1.8 doTranslateFromNative ... B-5

B.1.9 doTranslateToNative .. B-5

B.1.10 format .. B-6

B.1.11 genEmptyElem .. B-7

B.1.12 generate-guid ... B-7

B.1.13 get-content-from-file-function... B-7

B.1.14 getApplicationName... B-8

xxxviii

B.1.15 getAttachmentContent ... B-8

B.1.16 getAttachmentProperty.. B-9

B.1.17 getChildElement.. B-9

B.1.18 getComponentInstanceID .. B-9

B.1.19 getComponentName... B-10

B.1.20 getCompositeInstanceID .. B-10

B.1.21 getCompositeName .. B-10

B.1.22 getCompositeURL... B-10

B.1.23 getECID... B-11

B.1.24 getFaultAsString.. B-11

B.1.25 getFaultAsXML.. B-11

B.1.26 getFaultName... B-12

B.1.27 getMilestoneName .. B-12

B.1.28 getOwnerDocument.. B-12

B.1.29 getParentComponentInstanceID... B-12

B.1.30 getRevision ... B-13

B.1.31 getTaskReminderDuration .. B-13

B.1.32 instanceOf... B-13

B.1.33 lookup-xml ... B-14

B.1.34 parseEscapedXML... B-14

B.1.35 parseXML ... B-15

B.1.36 processScalableDocumentToNative ... B-15

B.1.37 processXSLTAttachmentFromNativeToNative .. B-15

B.1.38 processXSLTAttachmentFromNativeToStream ... B-16

B.1.39 processXSLTAttachmentToNativeStream... B-16

B.1.40 processXSLTAttachmentToStream... B-16

B.1.41 processXSLTForScalableDocument .. B-16

B.1.42 setCompositeInstanceTitle ... B-16

B.2 BPEL Extension Functions... B-17

B.2.1 BPEL Extension Functions in BPEL 1.1 and BPEL 2.0.. B-17

B.3 BPEL XPath Extension Functions ... B-19

B.3.1 addQuotes .. B-20

B.3.2 authenticate .. B-20

B.3.3 countNodes .. B-21

B.3.4 doXSLTransform ... B-22

B.3.5 doXSLTransformForDoc .. B-22

B.3.6 doc ... B-23

B.3.7 formatDate.. B-23

B.3.8 generateGUID .. B-24

B.3.9 getConfigProperty... B-24

B.3.10 getContentAsString... B-24

B.3.11 getConversationId... B-24

B.3.12 getCreator ... B-25

xxxix

B.3.13 getCurrentDate .. B-25

B.3.14 getCurrentDateTime ... B-25

B.3.15 getCurrentTime ... B-26

B.3.16 getElement.. B-26

B.3.17 getInstanceId.. B-26

B.3.18 getNodeValue .. B-27

B.3.19 getNodes... B-27

B.3.20 getPreference.. B-27

B.3.21 getProcessId ... B-28

B.3.22 getProcessOwnerId ... B-28

B.3.23 getProcessURL... B-28

B.3.24 getProcessVersion ... B-28

B.3.25 integer ... B-29

B.3.26 listUsers... B-29

B.3.27 lookupUser ... B-30

B.3.28 parseEscapedXML... B-30

B.3.29 processXQuery... B-31

B.3.30 processXQuery10... B-31

B.3.31 processXQuery2004... B-31

B.3.32 processXSLT... B-31

B.3.33 readBinaryFromFile .. B-34

B.3.34 readBinaryFromFileWithMimeHeaders .. B-35

B.3.35 readFile ... B-35

B.3.36 search... B-36

B.3.37 toCDATA.. B-37

B.3.38 tryToCastToBoolean ... B-37

B.3.39 writeBinaryToFile.. B-37

B.3.40 getGroupIdsFromGroupAlias ... B-37

B.3.41 getUserIdsFromGroupAlias .. B-38

B.4 Conversion Functions .. B-38

B.4.1 boolean.. B-38

B.4.2 number.. B-38

B.4.3 string.. B-39

B.5 DVM Functions ... B-39

B.5.1 lookupValue... B-39

B.5.2 lookupValue1M ... B-40

B.6 Database Functions... B-40

B.6.1 lookup-table ... B-40

B.6.2 query-database... B-41

B.6.3 sequence-next-val .. B-42

B.7 Date Functions... B-42

B.7.1 add-dayTimeDuration-to-dateTime... B-42

B.7.2 current-date .. B-43

xl

B.7.3 current-dateTime... B-43

B.7.4 current-time.. B-44

B.7.5 day-from-dateTime ... B-44

B.7.6 format-dateTime.. B-45

B.7.7 hours-from-dateTime.. B-45

B.7.8 minutes-from-dateTime ... B-45

B.7.9 month-from-dateTime .. B-46

B.7.10 seconds-from-dateTime.. B-46

B.7.11 subtract-dayTimeDuration-from-dateTime .. B-46

B.7.12 timezone-from-dateTime ... B-47

B.7.13 year-from-dateTime .. B-47

B.8 Identity Service Functions ... B-47

B.8.1 getDefaultRealmName ... B-47

B.8.2 getGroupProperty ... B-48

B.8.3 getManager... B-48

B.8.4 getManagerFromManagementChain ... B-48

B.8.5 getReportees... B-49

B.8.6 getSupportedRealmNames.. B-49

B.8.7 getUserProperty... B-49

B.8.8 getUserRoles .. B-50

B.8.9 getUsersInAppRole... B-50

B.8.10 getUsersInGroup ... B-51

B.8.11 isUserInAppRole ... B-51

B.8.12 isUserInRole ... B-51

B.8.13 lookupGroup.. B-52

B.8.14 lookupUser ... B-52

B.9 Logical Functions.. B-52

B.9.1 and ... B-52

B.9.2 equals .. B-53

B.9.3 false.. B-53

B.9.4 greater ... B-53

B.9.5 greater equals ... B-53

B.9.6 less ... B-53

B.9.7 less equals ... B-54

B.9.8 not .. B-54

B.9.9 not equals.. B-54

B.9.10 or .. B-54

B.9.11 true... B-55

B.10 Mathematical Functions... B-55

B.10.1 abs .. B-55

B.10.2 add... B-55

B.10.3 ceiling .. B-55

B.10.4 count.. B-56

xli

B.10.5 divide .. B-56

B.10.6 floor ... B-56

B.10.7 max-value-among-nodeset .. B-56

B.10.8 min-value-among-nodeset ... B-56

B.10.9 mod.. B-57

B.10.10 multiply .. B-57

B.10.11 round... B-57

B.10.12 square-root ... B-57

B.10.13 subtract.. B-57

B.10.14 sum .. B-58

B.10.15 unary ... B-58

B.11 Node Set Functions... B-58

B.11.1 last.. B-58

B.11.2 local-name .. B-58

B.11.3 name .. B-58

B.11.4 namespace-uri.. B-59

B.11.5 position ... B-59

B.11.6 union ... B-59

B.12 String Functions .. B-59

B.12.1 compare .. B-59

B.12.2 compare-ignore-case ... B-60

B.12.3 concat .. B-60

B.12.4 contains ... B-60

B.12.5 create-delimited-string ... B-61

B.12.6 ends-with .. B-61

B.12.7 format-string .. B-61

B.12.8 get-content-as-string ... B-62

B.12.9 get-localized-string.. B-62

B.12.10 index-within-string ... B-63

B.12.11 last-index-within-string.. B-63

B.12.12 left-trim ... B-64

B.12.13 lower-case ... B-64

B.12.14 matches ... B-65

B.12.15 normalize-space... B-65

B.12.16 right-trim .. B-65

B.12.17 starts-with... B-66

B.12.18 string-length ... B-66

B.12.19 substring ... B-66

B.12.20 substring-after.. B-67

B.12.21 substring-before... B-67

B.12.22 translate... B-67

B.12.23 upper-case .. B-68

B.13 Workflow Service Functions ... B-68

xlii

B.13.1 clearTaskAssignees ... B-68

B.13.2 createWordMLDocument .. B-68

B.13.3 dynamicTaskAssign.. B-69

B.13.4 getNotificationProperty.. B-70

B.13.5 getNumberOfTaskApprovals.. B-70

B.13.6 getPreviousTaskApprover ... B-70

B.13.7 getTaskAttachmentByIndex .. B-71

B.13.8 getTaskAttachmentByName.. B-71

B.13.9 getTaskAttachmentContents ... B-71

B.13.10 getTaskAttachmentsCount .. B-72

B.13.11 getTaskResourceBundleString .. B-72

B.14 XREF Functions... B-72

B.14.1 lookupPopulatedColumns... B-72

B.14.2 lookupXRef... B-73

B.14.3 lookupXRef1M... B-73

B.14.4 markForDelete ... B-74

B.14.5 populateLookupXRefRow ... B-74

B.14.6 populateXRefRow ... B-75

B.14.7 populateXRefRow1M.. B-75

B.15 Building XPath Expressions in the Expression Builder in Oracle JDeveloper............................. B-76

B.15.1 How to Use the Expression Builder.. B-76

B.15.2 Introduction to the XPath Building Assistant ... B-77

B.15.3 How to Use the XPath Building Assistant... B-78

B.15.4 Using the XPath Building Assistant in the XSLT Mapper... B-79

B.15.5 Function Parameter Tool Tips ... B-80

B.15.6 Syntactic and Semantic Validation ... B-81

B.15.7 Creating Expressions with Free Form Text and XPath Expressions.................................. B-81

B.15.8 Using Double Slashes for Directory Paths in XPath Functions on Windows Can Cause

Errors... B-82

B.16 Creating User-Defined XPath Extension Functions... B-83

B.16.1 How to Implement User-Defined XPath Extension Functions... B-85

B.16.2 How to Configure User-Defined XPath Extension Functions .. B-86

B.16.3 How to Deploy User-Defined Functions to Runtime .. B-89

C Deployment Descriptor Properties

C.1 Introduction to Deployment Descriptor Properties .. C-1

C.1.1 How to Define Deployment Descriptor Properties in the Property Inspector C-4

C.1.2 How to Get the Value of a Preference within a BPEL Process ... C-6

D Understanding Sensor Public Views and the Sensor Actions XSD

D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File... D-1

D.2 Sensor Public Views... D-1

D.2.1 Schema.. D-1

xliii

D.3 Sensor Actions XSD File .. D-6

E Propagating Normalized Message Properties Through Message Headers

E.1 Introduction to Normalized Messages .. E-1

E.1.1 Oracle Web Services Addressing Properties ... E-1

E.1.2 How to Set Normalized Message Properties in Message Headers.. E-3

E.2 Manipulating Normalized Message Properties with bpelx Extensions ... E-4

E.2.1 BPEL 2.0 bpelx Extensions Syntax .. E-4

E.2.2 BPEL 1.1 bpelx Extensions Syntax .. E-5

F Interfaces Implemented By Rules Dictionary Editor Task Flow

F.1 The MetadataDetails Interface .. F-1

F.1.1 The getDocument Method .. F-1

F.1.2 The getRelatedDocument Method .. F-2

F.1.3 The setDocument Method.. F-3

F.2 The NLSPreferences Interface ... F-3

G Oracle SOA Suite Configuration Properties Road Map

G.1 Oracle BPEL Process Manager Deployment Descriptor Properties .. G-1

G.2 Normalized Message Header Properties... G-1

G.2.1 Oracle JCA Adapter Message Header Properties ... G-2

G.2.2 Oracle BPEL Process Manager and Oracle Web Services Addressing Message Header

Properties... G-2

G.2.3 Oracle B2B Message Header Properties ... G-2

G.3 SOA Composite Application Properties .. G-2

G.4 Fault Policy and Adapter Rejected Message Properties.. G-4

G.5 Oracle B2B System Properties ... G-4

G.6 Oracle Healthcare Properties... G-4

G.7 Oracle Business Activity Monitoring Properties .. G-4

G.8 Oracle Enterprise Manager Fusion Middleware Control Property Pages...................................... G-5

G.8.1 SOA Infrastructure Properties ... G-5

G.8.2 Oracle BPEL Process Manager Properties.. G-6

G.8.3 Human Workflow Notification and Task Service Properties ... G-6

G.8.4 Oracle Mediator Properties .. G-6

G.8.5 Cross Reference Properties... G-7

G.8.6 Oracle B2B Properties.. G-7

G.8.7 Service and Reference Binding Component Properties ... G-7

G.8.8 Global Token Variables and Automatic Database Purging Properties G-7

G.9 System MBean Browser Advanced Properties ... G-8

G.9.1 SOA Infrastructure Advanced Properties.. G-8

G.9.2 Oracle BPEL Process Manager Advanced Properties .. G-9

G.9.3 Oracle Mediator Advanced Properties... G-9

G.9.4 Human Workflow Notification and Task Service Advanced Properties G-9

xliv

G.9.5 Oracle B2B Advanced Properties .. G-10

H Working with Large Schemas in the XSLT Editor

H.1 Sparse Mappings.. H-1

H.1.1 Quick Start for XSLT View.. H-6

H.2 Non-Sparse Mappings... H-8

H.3 Reducing Textual Clutter... H-11

H.4 Searching Trees ... H-13

H.5 Copying and Modifying a Large Input Document.. H-13

H.6 Generating Test Files with Element and Type Substitutions ... H-16

Index

xlv

xlvi

Preface

This manual describes how to use Oracle SOA Suite.

This preface contains the following topics:

• Audience

• Related Documents

• Conventions

Audience
This manual is intended for anyone who is interested in developing applications with
Oracle SOA Suite.

Related Documents
For more information, see the following Oracle resources:

• User's Guide for Oracle B2B

• Healthcare Integration User's Guide for Oracle SOA Suite

• Monitoring Business Activity with Oracle BAM

• Understanding Technology Adapters

• Designing Business Rules with Oracle Business Process Management

• Rules Language Reference for Oracle Business Process Management

• Administering Oracle SOA Suite and Oracle Business Process Management Suite

• Tuning Performance

• Enterprise Deployment Guide for Oracle SOA Suite

• High Availability Guide

• WLST Command Reference for WebLogic Server

• Using Oracle RightNow Cloud Adapter

• Using Oracle Sales Cloud Adapter

• Using Salesforce Adapter

xlvii

• Using the NetSuite Adapter

• Using Oracle ERP Cloud Adapter

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xlviii

What's New in This Guide

This preface introduces the new and changed features of Oracle SOA Suite and other
significant changes that are described in this guide, and provides pointers to
additional information. This document is the new edition of the formerly titled Oracle
Fusion Middleware Developer's Guide for Oracle SOA Suite.

For a list of known issues (release notes), see http://www.oracle.com/
technetwork/middleware/docs/soa-aiafp-
knownissuesindex-364630.html.

New and Changed Features for 12c (12.2.1.x)
For Oracle SOA Suite 12c (12.2.1), this guide has been updated to include the following
new and changed development features:

Note:

Screens shown in this guide may differ slightly from your implementation.
Any differences are cosmetic.

• Support for patching running composite instances. See Patching Running
Instances of a SOA Composite

• Support for In-Memory SOA. See Using In-Memory SOA to Improve System
Performance

• support for debugging XSLT maps and support for conditional debugging. See
Debugging the XSLT Map

• Support for End-to-End JSON and JavaScript. See Integrating REST Operations in
SOA Composite Applications

• Support for Cloud Adapters. See the following 12.2.1.2.0 guides for more
information:

– Using Oracle RightNow Cloud Adapter

– Using Oracle Sales Cloud Adapter

– Using Salesforce Adapter

– Using the NetSuite Adapter

– Using Oracle ERP Cloud Adapter

xlix

http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html
http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html
http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html

– Using Oracle Eloqua Cloud Adapter

l

Part I
Getting Started with Oracle SOA Suite

This part provides an introduction to Oracle SOA Suite and developing SOA
composite applications.

This part contains the following chapters:

• Introduction to Building Applications with Oracle SOA Suite

• Getting Started with Developing SOA Composite Applications

• Managing Shared Data with the Design-Time

1
Introduction to Building Applications with

Oracle SOA Suite

This chapter describes service-oriented architecture (SOA) and Oracle SOA Suite,
standards used by Oracle SOA Suite to enable SOA, SOA composite application
architecture and runtime behavior, approaches to designing SOA composite
applications, and where to go to learn more about Oracle SOA Suite.

This chapter includes the following sections:

• Introduction Oracle SOA Suite

• Getting Started with Oracle SOA Suite

• Setting Accessibility Options

1.1 Introduction to Oracle SOA Suite
This section provides an overview of service-oriented architecture and standards,
Oracle SOA Suite capabilities, service component architecture, runtime behavior, and
design-time approaches.

1.1.1 Service-Oriented Architecture
Changing markets, increasing competitive pressures, and evolving customer needs are
placing greater pressure on IT to deliver greater flexibility and speed. Today, every
organization is faced with predicting change in a global business environment, to
rapidly respond to competitors, and to best exploit organizational assets for growth. In
response to these challenges, leading companies are adopting service-oriented
architecture (SOA) to deliver on these requirements by overcoming the complexity of
their application and IT environments.

SOA provides an enterprise architecture that supports building connected enterprise
applications to provide solutions to business problems. SOA facilitates the
development of enterprise applications as modular business web services that can be
easily integrated and reused, creating a truly flexible, adaptable IT infrastructure.

1.1.2 Services
SOA separates business functions into distinct units, or services. A SOA application
reuses services to automate a business process.

A standard interface and message structure define services. The most widely used
mechanism are web services standards. These standards include the Web Service
Description Language (WSDL) file for service interface definition and XML Schema
Documents (XSD) for message structure definition. These XML standards are easily
exchanged using standard protocols. Because standards for web services use a
standard document structure, they enable existing systems to interoperate regardless

Introduction to Building Applications with Oracle SOA Suite 1-1

of the choice of operating system and computer language used for service
implementation.

When designing a SOA approach, you create a service portfolio plan to identify
common functionality to use as a service within the business process. By creating and
maintaining a plan, you ensure that existing services and applications are reused or
repurposed whenever possible. This plan also reduces the time spent in creating
needed functionality for the application.

1.1.3 Oracle SOA Suite
Oracle SOA Suite provides a complete set of service infrastructure components for
designing, deploying, and managing composite applications. Oracle SOA Suite
enables services to be created, managed, and orchestrated into composite applications
and business processes. Composites enable you to easily assemble multiple technology
components into one SOA composite application. Oracle SOA Suite plugs into
heterogeneous IT infrastructures and enables enterprises to incrementally adopt SOA.

The components of Oracle SOA Suite benefit from common capabilities, including a
single deployment, management, and tooling model, end-to-end security, and unified
metadata management. Oracle SOA Suite is unique in that it provides the following
set of integrated capabilities:

• Messaging

• Service discovery

• Orchestration

• Web services management and security

• Business rules

• Human interaction

• Events framework

• Business activity monitoring

1.1.4 Standards Used by Oracle SOA Suite to Enable SOA
Oracle SOA Suite puts a strong emphasis on standards and interoperability. Among
the standards it leverages are:

• Service Component Architecture (SCA) assembly model

Provides the service details and their interdependencies to form composite
applications. SCA enables you to represent business logic as reusable service
components that can be easily integrated into any SCA-compliant application. The
resulting application is known as a SOA composite application. The specification
for the SCA standard is maintained by the Organization for the Advancement of
Structured Information Standards (OASIS) through the Open Composite Services
Architecture (CSA) Member Section:

http://www.oasis-opencsa.org

• Service Data Objects (SDO)

Specifies a standard data method and can modify business data regardless of how
it is physically accessed. Knowledge is not required about how to access a

Introduction to Oracle SOA Suite

1-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

http://www.oasis-opencsa.org

particular back-end data source to use SDO in a SOA composite application.
Consequently, you can use static or dynamic programming styles and obtain
connected and disconnected access.

• Business Process Execution Language (BPEL)

Provides enterprises with an industry standard for business-process orchestration
and execution. Using BPEL, you design a business process that integrates a series
of discrete services into an end-to-end process flow. This integration reduces
process cost and complexity. BPEL versions 1.1 and 2.0 are supported.

• XSL Transformations (XSLT)

Processes XML documents and transforms document data from one XML schema
to another.

• XQuery Transformations (XQuery)

Queries and transforms collections of structured and unstructured data, typically
in the form of XML.

• Java Connector Architecture (JCA)

Provides a Java technology solution to the problem of connectivity between the
many application servers in Enterprise Information Systems (EIS).

• Java Messaging Service (JMS)

Provides a messaging standard that allows application components based on the
Java 2 Platform, Enterprise Edition (Java EE) to access business logic distributed
among heterogeneous systems.

• Web Service Definition Language (WSDL) file

Provides the entry points into a SOA composite application. The WSDL file
provides a standard contract language and is central for understanding the
capabilities of a service.

• Simple Object Access Protocol (SOAP)

Provides the default network protocol for message delivery.

• Representational State Transfer (REST)

Provides an architecture for designing network applications. RESTful applications
use HTTP requests to post data (create and update), get data (for example, make
queries), and delete data. REST provides an alternative to using web services.

• JavaScript Object Notation (JSON)

Provides a language for representing simple data structures and associative arrays
called objects. JSON is a standard designed for human-readable data interchange.
JSON is derived from the JavaScript scripting language.

• Web Application Description Language (WADL)

Provides a readable XML description of HTTP-based web applications (typically
REST web services). WADL simplifies the reuse of web services based on the
existing HTTP architecture of the web.

Introduction to Oracle SOA Suite

Introduction to Building Applications with Oracle SOA Suite 1-3

1.1.5 Service Component Architecture within SOA Composite Applications
Oracle SOA Suite uses the SCA standard as a way to assemble service components
into a SOA composite application. SCA provides a programming model for the
following:

• Creating service components written with a wide range of technologies, including
programming languages such as Java, C++, and declarative languages such as
XSLT. The use of specific programming languages and technologies (including
web services) is not required with SCA.

• Assembling the service components into a SOA composite application. In the SCA
environment, service components are the building blocks of applications.

SCA provides a model for assembling distributed groups of service components into
an application, enabling you to describe the details of a service and how services and
service components interact. Composites are used to group service components and
wires are used to connect service components. SCA helps to remove middleware
concerns from the programming code by applying infrastructure declaratively to
composites, including security and transactions.

The key benefits of SCA include the following:

• Loose coupling

Service components integrate with other service components without needing to
know how other service components are implemented.

• Flexibility

Service components can easily be replaced by other service components.

• Services invocation

Services can be invoked either synchronously or asynchronously.

• Productivity

Service components are easily integrated to create a SOA composite application.

• Easy maintenance and debugging

Service components can be easily maintained and debugged when an issue is
encountered.

A SOA composite is an assembly of services, service components, and references
designed and deployed in a single application. Wiring between the services, service
components, and references enables message communication. The details for a
composite are stored in the composite.xml file.

Figure 1-1 provides an example of a composite that includes an inbound service
binding component, a BPEL process service component (named Account), a business
rules service component (named AccountRule), and two outbound reference binding
components.

Introduction to Oracle SOA Suite

1-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 1-1 Simple SOA Composite Architecture

1.1.5.1 Service Components

Service components are the building blocks that you use to construct a SOA composite
application.

The following service components are available. There is a corresponding service
engine of the same name for each service component. All service engines can interact
in a single composite.

• BPEL processes provide process orchestration and storage of a synchronous or an
asynchronous process. You design a business process that integrates a series of
business activities and services into an end-to-end process flow.

• Business rules enable you to design a business decision based on rules.

• Human tasks provide workflow modeling that describes the tasks for users or
groups to perform as part of an end-to-end business process flow.

• Mediators route events (messages) between different components.

• Spring enables you to integrate Java interfaces into SOA composite applications.

For more information about service components, see Adding Service Components.

1.1.5.2 Binding Components

Binding components establish a connection between a SOA composite and the external
world. There are two types of binding components:

• Services

Services provide the outside world with an entry point to the SOA composite
application. The WSDL file of the service advertises its capabilities to external
applications. These capabilities are used for contacting the SOA composite

Introduction to Oracle SOA Suite

Introduction to Building Applications with Oracle SOA Suite 1-5

application components. The binding connectivity of the service describes the
protocols that can communicate with the service, for example, SOAP/HTTP or a
JCA adapter.

• References

References enable messages to be sent from the SOA composite application to
external services in the outside world.

Table 1-1 lists and describes the binding components provided by Oracle SOA Suite.

Table 1-1 Binding Components Provided by Oracle SOA Suite

Binding Components Description

Web service (SOAP over
HTTP)

Use for connecting to standards-based services using SOAP
over HTTP.

JCA adapters Use for integrating services and references with technologies
(for example, databases, file systems, FTP servers,
messaging, JMS, IBM WebSphere MQ, Oracle User
Messaging Service, LDAP servers, Oracle Coherence cache,
and so on) and applications (Oracle E-Business Suite,
PeopleSoft, and so on).

This includes the AQ adapter, database adapter, file adapter,
FTP adapter, JMS adapter, MQ adapter, socket adapter,
Oracle User Messaging Service adapter, LDAP adapter,
Oracle Coherence adapter, and third-party adapter.

Oracle B2B Use for browsing B2B metadata in the Oracle Metadata
Services Repository (MDS Repository) and selecting
document definitions.

Oracle Healthcare Use for sending and receiving messages to and from a
healthcare system.

ADF-BC service Use for connecting Oracle Application Development
Framework (ADF) applications using SDO with the SOA
platform.

Oracle E-Business Suite Use for integrating the Oracle E-Business Suite adapter with
Oracle applications.

BAM 11g adapter Use for integrating Java EE applications with Oracle BAM
11g server to send data, and also use as a reference binding
component in a SOA composite application.

Note: This adapter can only connect to an Oracle BAM 11g
server.

EJB service Use for integrating SDO parameters or Java interfaces with
Enterprise JavaBeans.

Direct binding service Use to invoke a SOA composite application and exchange
messages over a remote method invocation (RMI) in the
inbound direction and to invoke an Oracle Service Bus (OSB)
flow or another SOA composite application in the outbound
direction.

HTTP binding Use to integrate SOA composite applications with HTTP
binding.

Introduction to Oracle SOA Suite

1-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 1-1 (Cont.) Binding Components Provided by Oracle SOA Suite

Binding Components Description

REST service Use to integrate REST services with SOA composite
applications and REST-enable SOA composite applications.

Oracle Managed File Transfer
(MFT)

Use to transfer files to and from many endpoint types, such
as remote and embedded FTP or sFTP servers; directories;
and SOAP web service, Oracle SOA Suite, Oracle Service
Bus, Oracle B2B, Oracle Healthcare, and Oracle Data
Integrator endpoints.

Cloud adapters The cloud adapters enable you to send and receive messages
from a cloud server.

Oracle SOA Suite 12c (12.2.1.1.0) supports the following
cloud adapters:

• Oracle RightNow Cloud Adapter
• Oracle Sales Cloud Adapter
• Salesforce Adapter
• NetSuite Adapter
• Oracle ERP Cloud Adapter

For more information about binding components, see Adding Service Binding
Components and Adding Reference Binding Components.

1.1.5.3 Wires

Wires enable you to graphically connect the following components in a single SOA
composite application for message communication:

• Services to service components

• Service components to other service components

• Service components to references

For more information about wires, see Adding Wires.

1.1.6 Runtime Behavior of a SOA Composite Application
Figure 1-2 shows the operability of a SOA composite application using SCA
technology. In this example, an external application (a .NET payment calculator)
initiates contact with the SOA composite application.

For more information about descriptions of the tasks that services, references, service
components, and wires perform in an application, see Service Component
Architecture within SOA Composite Applications.

Introduction to Oracle SOA Suite

Introduction to Building Applications with Oracle SOA Suite 1-7

Figure 1-2 Runtime Behavior of SOA Composite Application

The .NET payment calculator is an external application that sends a SOAP message to
the SOA application to initiate contact. The Service Infrastructure picks up the SOAP
message from the binding component and determines the intended component target.
The BPEL process service engine receives the message from the Service Infrastructure
for processing by the BPEL Loan Process application and posts the message back to
the Service Infrastructure after completing the processing.

Table 1-2 describes the operability of the SOA composite application shown in
Figure 1-2.

Table 1-2 Introduction to a SOA Composite Application Using SCA Technologies

Part Description Example of Use in Figure 1-2 See Section

Binding
components

Establishes the connectivity
between a SOA composite
and the external world.
There are two types:

• Service binding
components provide an
entry point to the SOA
composite application.

• Reference binding
components enable
messages to be sent
from the SOA
composite application
to external services.

The SOAP binding component service:

• Advertises its capabilities in the WSDL
file.

• Receives the SOAP message from
the .NET application.

• Sends the message through the policy
infrastructure for security checking.

• Translates the message to a normalized
message (an internal representation of
the service's WSDL contract in XML
format).

• Posts the message to the Service
Infrastructure.

An example of a reference binding component
in Figure 1-2 is the Loan Process application.

Service
Components

Introduction to Oracle SOA Suite

1-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 1-2 (Cont.) Introduction to a SOA Composite Application Using SCA Technologies

Part Description Example of Use in Figure 1-2 See Section

Service
Infrastructure

Provides internal message
transport

The Service Infrastructure:

• Receives the message from the SOAP
service binding component.

• Posts the message for processing to the
BPEL process service engine first and
the human task service engine second.

Service
Infrastructure

Service engines
(containers
hosting service
components)

Host the business logic or
processing rules of the
service components. Each
service component has its
own service engine.

The BPEL process service engine:

• Receives the message from the Service
Infrastructure for processing by the
BPEL Loan Process application.

• Posts the message to the Service
Infrastructure after completing the
processing.

Service Engines

Universal
Description,
Discovery, and
Integration
(UDDI) and
MDS

The MDS Repository stores
descriptions of available
services. The UDDI
advertises these services,
and enables discovery and
dynamic binding at
runtime.

The SOAP service used in this composite
application is stored in the MDS repository
and can also be published to UDDI.

Managing
Shared Data
with the
Design-Time

SOA archive
composite

(deployment
unit)

The deployment unit that
describes the composite
application.

The SOA archive (SAR) of the composite
application is deployed to the Service
Infrastructure.

Deployed
Service
Archives

1.1.6.1 Service Infrastructure

The Service Infrastructure provides the following internal message routing
infrastructure capabilities for connecting components and enabling data flow:

• Receives messages from the service providers or external partners through SOAP
services or adapters

• Sends the message to the appropriate service engine

• Receives the message back from the service engine and sends it to any additional
service engines in the composite or to a reference binding component based on the
wiring

1.1.6.2 Service Engines

Service engines are containers that host the business logic or processing rules of the
service components. Service engines process the message information received from
the Service Infrastructure.

There is a corresponding service engine of the same name for each service component.
All service engines can interact in a single composite.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Introduction to Oracle SOA Suite

Introduction to Building Applications with Oracle SOA Suite 1-9

1.1.6.3 Deployed Service Archives

The SAR is a SOA archive deployment unit. A SAR file is a special JAR file that
requires a prefix of sca_. (for example,
sca_OrderBookingComposite_rev1.0.jar). The SAR file is deployed to the
Service Infrastructure. The SAR packages service components, such as BPEL processes,
business rules, human tasks, and Oracle Mediator routing services, into a single
application. The SAR file is analogous to the BPEL suitcase archive of previous
releases, but at the higher composite level and with any additional service components
that your application includes (for example, human tasks, business rules, and Oracle
Mediator routing services).

For more information, see Deploying SOA Composite Applications .

1.1.7 Approaches for Designing SOA Composite Applications
When creating a SOA composite application, you have a choice of approaches for
building it:

• Top-Down: You analyze your business processes and identify activities in support
of your process. When creating a composite, you define all the SOA components
through the . You create all the services first, and then build the BPEL process,
referencing the created services.

• Bottom-Up: You analyze existing applications and assets to identify those that can
be used as services. As you create a BPEL process, you build the services on an as-
needed basis. This approach works well when IT must react to a change.

1.2 Getting Started with Oracle SOA Suite
This developer's guide consists of the sections described in Table 1-3. These sections
enable you to get started with developing a SOA composite application.

Table 1-3 Getting Started with Oracle SOA Suite

To Get Started with... See...

The basic steps of composite,
service and reference binding
component, and service component
creation in Oracle JDeveloper

Getting Started with Developing SOA Composite
Applications

Using shared data with the SOA
Design-Time Oracle Metadata
Services Repository (MDS
Repository)

Managing Shared Data with the Design-Time

Designing BPEL process service
components in a composite

Using the BPEL Process Service Component

Designing Oracle Mediator service
components in a composite

Using the Oracle Mediator Service Component

Designing business rule service
components in a composite

Using the Business Rules Service Component

Designing human workflow service
components in a composite

Using the Human Workflow Service Component

Getting Started with Oracle SOA Suite

1-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 1-3 (Cont.) Getting Started with Oracle SOA Suite

To Get Started with... See...

Designing service and reference
binding components in a composite

Using Binding Components

Functionality that can be shared
across components, such as
templates, XSLT and XQuery
transformations, business events,
cross references, and domain value
maps

Sharing Functionality Across Service Components

Composite completion tasks such
as security policy attachments,
deployment, debugging, and
automating composite testing

Completing Your Application

Advanced topics such as
management of large documents
and large numbers of instances,
composite customizations,
composite sensors, and the spring
framework

Advanced Topics

In addition to this developer's guide, other resources are provided:

• Oracle SOA Suite samples provide access to various use case samples for Oracle
SOA Suite and its components.

• Understanding Oracle SOA Suite describes the business challenges faced by a
company and how the components of Oracle SOA Suite address these challenges
from design time through runtime.

1.3 Setting Accessibility Options
Oracle SOA Suite uses both Oracle JDeveloper and Oracle SOA Composer for
application development. This section describes accessibility options for both
environments.

1.3.1 Setting Accessibility Options in Oracle JDeveloper
Oracle JDeveloper provides accessibility options, such as support for screen readers,
screen magnifiers, and standard shortcut keys for keyboard navigation. You can also
customize Oracle JDeveloper for better readability, including the size and color of
fonts and the color and shape of objects. For information and instructions on
configuring accessibility in Oracle JDeveloper, see "Oracle JDeveloper Accessibility
Information" in Developing Applications with Oracle JDeveloper.

1.3.2 Setting Accessibility Options in Oracle SOA Composer and Oracle BPM Worklist
Accessibility settings help you read all components of the application. You can set
accessibility options in either Oracle SOA Composer or Oracle BPM Worklist for the
current instance or for all instances.

Setting Accessibility Options

Introduction to Building Applications with Oracle SOA Suite 1-11

1.3.2.1 How to Set Accessibility Features Before Logging In

Oracle SOA Composer or Oracle BPM Worklist presents the Accessibility menu on the
login page, so you can configure accessibility before you log in. These settings can be
persisted for only the current session or for all sessions.

To set accessibility options before logging in:

1. Launch Oracle SOA Composer or Oracle BPM Worklist.

2. On the login page, click Accessibility in the top right corner.

The Edit Accessibility Settings page appears, as shown in Figure 1-3.

Figure 1-3 Edit Accessibility Settings Page

3. Select any of the following options:

• Use screen reader.

• Use high contrast colors.

• Use large fonts.

4. To save the new settings only for this session, click Use for this session. To save
the settings for all sessions, click Save as preference and use.

1.3.2.2 How to Set Accessibility Options After Logging In

Once you log in to Oracle SOA Composer or Oracle BPM Worklist, you can configure
accessibility options from any page. This changes the user preferences, which are
retained through all sessions until you change them again.

To set accessibility options after logging in:

1. Launch Oracle SOA Composer or Oracle BPM Worklist and log in.

2. From any page, select Preferences in the top right corner.

The Preferences dialog appears.

3. In the Preferences column, click Accessibility.

The Accessibility Preferences appear, as shown in Figure 1-4.

Setting Accessibility Options

1-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 1-4 Preferences Dialog

4. In the Mode Settings field, select Enable screen reader mode if you use a screen
reader. Select Disable screen reader mode if you do not use a screen reader.

5. In the Contrast Settings field, select Use high contrast to increase the contrast
between objects on the console; otherwise, select Use normal contrast.

6. In the Font Settings field, select Use large fonts to increase the font size; otherwise,
select Use normal fonts.

7. Click OK.

Setting Accessibility Options

Introduction to Building Applications with Oracle SOA Suite 1-13

Setting Accessibility Options

1-14 Developing SOA Applications with Oracle SOA Suite

2
Getting Started with Developing SOA

Composite Applications

This chapter describes how to use Oracle JDeveloper to create a SOA composite
application. It guides you through the basic steps of composite, service and reference
binding component, and service component creation, security, deployment, and
testing, along with describing key issues to be aware of when designing a SOA
composite application.

This chapter includes the following sections:

• Creating a SOA Application

• Adding Service Components

• Adding Service Binding Components

• Adding Reference Binding Components

• Adding Wires

• Adding Descriptions to SOA Composite Applications

• Renaming_ Deleting_ and Moving Components and Artifacts

• Viewing Component Details in the Property Inspector

• Adding Security Policies

• Deploying a SOA Composite Application

• Managing and Testing a SOA Composite Application

2.1 Creating a SOA Application
The first steps in building a new application are to assign it a name and to specify the
directory in which to save source files. When you install the Oracle SOA Suite Quick
Start, the Oracle SOA Suite extensions are automatically installed in Oracle
JDeveloper. This differs from previous releases in which you manually imported the
Oracle SOA Suite extensions into Oracle JDeveloper. For information about the Oracle
SOA Suite Quick Start installation, see Installing SOA Suite and Business Process
Management Suite Quick Start for Developers.

2.1.1 How to Create a SOA Application and Project
You first create an application for the SOA project.

Getting Started with Developing SOA Composite Applications 2-1

To create a SOA application and project:

1. Start Oracle JDeveloper Studio Edition.

2. If Oracle JDeveloper is running for the first time, specify the location for the Java
JDK and the user role in which to run Oracle JDeveloper. The JDK version must
be later than or equal to 1.7.0_15.

3. Create a new SOA composite application, as described in Table 2-1.

Table 2-1 SOA Composite Application Creation

If Oracle JDeveloper... Then...

Has no applications

For example, you are
opening Oracle
JDeveloper for the first
time.

In the Applications window in the upper left, click New
Application.

Has existing applications. From the File main menu:

a. Select New > Application.

The New Gallery opens, where you can select different
application components to create.

b. In the Categories tree, select General > Applications.

c. In the Items pane, select SOA Application, and click
OK.

From the Application main menu:

a. Select New.

The New Gallery opens, where you can select different
application components to create.

b. In the Categories tree, select General > Applications.

c. In the Items pane, select SOA Application, and click
OK.

From the Application menu in the Applications window.

a. In the Applications window in the upper left, select
New Application from the Applications dropdown
list.

The Create SOA Application wizard is displayed.

4. In the Name your application page, you can optionally change the name and
location for your application. If this is your first application, from Application
Template, select SOA Application. Accept the defaults for the package prefix,
and click Next.

Creating a SOA Application

2-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

Note the following application naming conventions:

• Do not create an application name with spaces.

• Do not create applications and projects in directory paths that have spaces
(for example, c:\Program Files).

• On a UNIX operating system, it is highly recommended that you enable
Unicode support by setting the LANG and LC_All environment variables
to a locale with the UTF-8 character set. This action enables the operating
system to process any character in Unicode. SOA technologies are based
on Unicode. If the operating system is configured to use non-UTF-8
encoding, SOA components may function in an unexpected way. For
example, a non-ASCII file name can make the file inaccessible and cause
an error. Oracle does not support problems caused by operating system
constraints.

In a design-time environment, if you are using Oracle JDeveloper, select
Tools > Preferences > Environment > Encoding > UTF-8 to enable
Unicode support. This setting is also applicable for runtime environments.

5. In the Name your project page, you can optionally change the name and location
for your SOA project. By default, Oracle JDeveloper adds the SOA project
technology, the composite.xml file that describes the SOA composite
application, and the necessary libraries to your model project.

6. Click Next.

Note:

Composite and component names cannot exceed 500 characters.

A project deployed to the same infrastructure must have a unique name across
SOA composite applications. The uniqueness of a composite is determined by its
project name. For example, do not perform the actions described in Table 2-2.
During deployment, the second deployed project (composite) overwrites the first
deployed project (composite).

Table 2-2 Restrictions on Naming a SOA Project

Create an Application Named... With a SOA Project Named...

Application1 Project1

Application2 Project1

The Project SOA Settings page of the Create SOA Application wizard appears.

7. In the Configure SOA Settings page, click Empty Composite for this example, and
click Finish. Table 2-3 describes all of the options on this page.

Creating a SOA Application

Getting Started with Developing SOA Composite Applications 2-3

Table 2-3 Configure SOA Settings Page

Element Description

Empty Composite Creates an empty SOA composite application. This type is
selected by default.

Composite With BPEL
Process

Automatically opens the Create BPEL Process dialog to
guide you through creation of an initial BPEL process. A
BPEL process enables you to design a business process that
integrates a series of business activities and services into an
end-to-end process flow.

Composite With Mediator Automatically opens the Create Mediator dialog to guide
you through creation of an initial Oracle Mediator service
component. Oracle Mediator enables you to route events
(messages) between different components.

Composite With Human
Task

Automatically opens the Create Human Task dialog to
guide you through creation of an initial human task service
component. A human task component enables you to model
a workflow that describes the tasks for users or groups to
perform as part of an end-to-end business process flow. The
tasks are accessed through Oracle BPM Worklist during
process runtime.

Composite With
Subprocess

Automatically creates a SOA composite application with a
subprocess. A subprocess is a fragment of BPEL code that
can be reused within a particular processor by separate
processes.

Composite With Business
Rule

Automatically opens the Create Business Rules dialog to
guide you through creation of an initial business rule
service component. A business rule enables you to design a
business decision based on rules.

Composite With Spring Automatically opens the Create Spring dialog to guide you
through creation of a spring context service component. A
spring context service component enables you to integrate
components that use Java interfaces instead of WSDL files
into SOA composite applications. You can also integrate
components that use Java interfaces with components that
use WSDL files in the same SOA composite application.

8. From the File main menu, select Save All.

2.1.2 What Happens When You Create a SOA Application and Project
When you create a SOA application, Oracle JDeveloper creates a project that contains
all the source files related to your application. You can then use Oracle JDeveloper to
create additional projects needed for your application.

Figure 2-1 shows the SOA Composite Editor for a project named
OrderBookingComposite.

Creating a SOA Application

2-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 2-1 New Workspace for a SOA Composite Application

Table 2-4 describes the SOA Composite Editor.

Creating a SOA Application

Getting Started with Developing SOA Composite Applications 2-5

Table 2-4 SOA Composite Editor

Element Description

Applications Window
(Upper left)

Displays the key directories and files for the specific service
components included in the SOA project. You can change the
structure as necessary for your environment. The only limitation
is that all files must be located under the SOA directory.

• Service_component_directory

Displays a directory for the artifacts of each service
component you add:

A BPEL directory is created for BPEL processes.

A Mediators directory is created for Oracle Mediators.

A HumanTasks directory is created for human tasks.

An oracle/rules directory is created for business rules.
• Events

Displays the business event files (.edn).
• Schemas

Displays the BPEL process schema files (.xsd).
• testsuites

Displays the test suite files.
• Transformations

Displays the transformation XSLT (.xsl) and XQuery (.xqy)
mapper files.

• WSDLs

Displays all WSDL files (.wsdl).
• composite_name

A composite_name file is automatically created when you
create a SOA project. This file describes the entire composite
assembly of services, service components, references, and
wires.

Structure Window
(Lower left)

The Structure window provides a structural view of the data in
the document currently selected in the active window.

Designer (middle) You drag service components, services, and references from the
Components window into the composite in the designer. When
you drag and drop a service component into the designer, a
corresponding property editor is invoked for performing
configuration tasks related to that service component. For
example, when you drag and drop the Oracle Mediator service
component into the designer, the Mediator Editor is displayed for
configuring the Oracle Mediator service component.

For all subsequent editing sessions, you double-click these service
components to re-open their editors.

Project Name (Above the
designer)

Displays the project name of the SOA composite application.

Left Swimlane (Exposed
Services)

The left swimlane is for services (such as web services, REST
adapters, or JCA adapters) that provide an entry point to the SOA
composite application.

Creating a SOA Application

2-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 2-4 (Cont.) SOA Composite Editor

Element Description

Right Swimlane
(External References)

The right swimlane is for references that send messages to
external services in the outside world, such as web services or
JCA adapters.

Components Window
(Upper right -
Components tab)

The Components window provides the various resources that
you can use in a SOA composite. It contains the following service
components and adapters:

• Components

Displays the BPEL process, business rule, human task, Oracle
Mediator, and spring components that can be dragged and
dropped into the designer.

• Technology

Displays the JCA adapters (such as AQ, file, FTP, database,
JMS, MQ, Oracle User Messaging Service, socket, LDAP
server, and Coherence cache), third-party adapter, cloud
adapter, Oracle BAM 11g binding component, Oracle
Healthcare binding component, Oracle B2B binding
component, EJB binding component, ADF-BC binding
component, application adapters (Oracle E-Business Suite,
JDE World, and SAP), direct binding component, HTTP
binding component, Oracle Managed File Transfer (MFT)
adapter, Representational State Transfer (REST) adapter, and
web service binding component that can be dragged into the
left or right swimlane.

Resources window
(Upper right - Resources
tab)

The Resources window provides a single dialog from which you
can browse both local and remote resources. For example, you
can access the following resources:

• Shared data such as schemas and WSDLs from the MDS
Repository.

• WSIL browser functionality that uses remote resources that
can be accessed through an HTTP connection, file URL, or
application server connection.

• Remote resources that are registered in a Universal
Description, Discover, and Integration (UDDI) registry.

You select these resources for the SOA composite application
through the WSDL Chooser dialog. This dialog is accessible
through a variety of methods. For example, when you select the
WSDL file to use with a service binding component or an Oracle
Mediator service component or select the schema file to use in a
BPEL process, the SOA Resource Browser dialog appears. Click
Resources at the top of this dialog to access available resources.

Log Window (Lower
middle)

The Log window displays messages about application
compilation, validation, and deployment.

Property Inspector
(Lower right)

The Property Inspector displays properties for the selected service
component, service, or reference.

You can also edit BPEL activity properties and define deployment
descriptor properties for a BPEL process service component.

For more information, see How to Edit BPEL Activities in the
Property Inspector. and How to Define Deployment Descriptor
Properties in the Property Inspector.

Creating a SOA Application

Getting Started with Developing SOA Composite Applications 2-7

Table 2-4 (Cont.) SOA Composite Editor

Element Description

Application View The Application View shows the artifacts for the SOA composite
application.

The composite_name file (also known as the composite.xml file) displays as a tab in
the designer and as a file in the Applications window. This file is automatically
created when you create a new SOA project. This file describes the entire composite
assembly of services, service components, and references. There is one composite.xml
file for each SOA project.

When you work with the composite.xml file, you mostly use the designer, the
Structure window, and the Property Inspector, as shown in Figure 2-1. The designer
enables you to view many of your files in a WYSIWYG environment, or you can view
a file in an overview editor where you can declaratively make changes, or you can
view the source code for the file. The Structure window shows the structure of the
currently selected file. You can select objects in this window, and then edit the
properties for the selection in the Property Inspector.

2.2 Adding Service Components
Once you create your application, the next step is typically to add service components
that implement the business logic or processing rules of your application. You can use
the Components window in the SOA Composite Editor to drag and drop service
components into the composite.

2.2.1 How to Add a Service Component

To add a service component:

1. At the top of the Components window, click Components.

2. From the SOA section, drag a component into the designer.

Figure 2-2 shows a BPEL process being added to the designer.

Figure 2-2 Adding a BPEL Process to the SOA Composite Application

A specific dialog for the selected service component is displayed. Table 2-5
describes the available editors.

Adding Service Components

2-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 2-5 Starting Service Component Editors

Dragging This Service
Component...

Invokes The...

BPEL Process Create BPEL Process dialog to create a BPEL process that
integrates a series of business activities and services into an
end-to-end process flow.

Business Rule Create Business Rules dialog to create a business decision
based on rules.

Human Task Create Human Task dialog to create a workflow that describes
the tasks for users or groups to perform as part of an end-to-
end business process flow.

Mediator Create Mediator dialog to define services that perform
message and event routing, filtering, and transformations.

Spring Component Create Spring dialog to create a spring context file for
integrating Java interfaces into SOA composite applications.

3. Configure the settings for the service component, and click OK. For help with a
service component dialog, click Help or press F1.

Figure 2-3 shows the BPEL Process dialog with data entered to create the
OrderProcessor BPEL process. The process is selected to be asynchronous. The
Expose as a SOAP Service check box directs Oracle JDeveloper to automatically
create this service component connected to an inbound SOAP web service.

Figure 2-3 Create BPEL Process Dialog

4. Click OK.

Adding Service Components

Getting Started with Developing SOA Composite Applications 2-9

Figure 2-4 shows the OrderProcessor BPEL process service component in the
designer. A SOAP service binding component called orderprocessor_client_ep in
the left swimlane provides the outside world with an entry point into the SOA
composite application. If the Expose as a SOAP Service option was not selected in
the Create BPEL Process dialog, the orderprocessor_client_ep service does not
appear. You can add a service later by following the steps in How to Add a Service
Binding Component.

Figure 2-4 BPEL Process in Composite

You can more fully define the content of the service component now or at a later
time. For this top-down example, the content is defined now.

5. From the File main menu, select Save All.

2.2.2 What You May Need to Know About Adding and Deleting a Service Component
Note the following details about adding service components:

• Create a service component from either the SOA Composite Editor or the designer
of another component. For example, you can create a human task component
from the SOA Composite Editor or the Oracle BPEL Designer.

• Use the Resources window to browse for service components defined in the , and
those deployed.

Note the following details about deleting service components:

• You can delete a service component by right-clicking it and selecting Delete from
the context menu.

• When a service component is deleted, all references pointing to it are invalidated
and all wires are removed. The service component is also removed from the
Applications window.

• A service component created from within another service component can be
deleted. For example, a human task created within the BPEL process service
component of Oracle JDeveloper can be deleted from the . In addition, the partner
link to the task can be deleted. Deleting the partner link removes the reference
interface and removes the wire to the task.

2.2.3 How to Edit a Service Component
You edit a service component to define specific details about the service component.

Adding Service Components

2-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To edit a service component:

1. Double-click the service component in the designer to display the appropriate
editor or designer, as described in Table 2-6.

Table 2-6 Starting SOA Service Component Wizards and Dialogs

Double-Clicking This
Service Component...

Displays The...

BPEL Process Oracle BPEL Designer for further designing.

Business Rule Business Rules Designer for further designing.

Human Task Human Task Editor for further designing.

Mediator Oracle Mediator Editor for further designing.

Spring Component Spring Editor for further designing.

2. Modify the settings for the selected service component. For help with a service
component editor or designer, click Help or press F1. These editors are described in
later chapters.

3. From the File main menu, select Save All.

4. In the Applications window, double-click composite_name or single-click
composite_name above the designer.

This action returns you to the .

2.3 Adding Service Binding Components
You add a service binding component to act as the entry point to the SOA composite
application from the outside world.

2.3.1 How to Add a Service Binding Component

Note:

This section describes how to manually create a service binding component.
You can also automatically create a service binding component by selecting
Expose as a SOAP Service when you create a service component. This
selection creates an inbound web service binding component that is
automatically connected to your BPEL process, human task service, or Oracle
Mediator service component.

You can use the Components window in the SOA Composite Editor to drag and drop
service binding components to the composite.

To add a service binding component:

1. In the Components window, drag a SOAP web service to the left Exposed Services
swimlane to define the service interface.

Figure 2-5 shows a SOAP web service being added to the designer.

Adding Service Binding Components

Getting Started with Developing SOA Composite Applications 2-11

Figure 2-5 Adding a SOAP Web Service to a Composite

A specific dialog for the selected service is displayed. Table 2-7 describes the
available editors.

Table 2-7 Service Editors

Dragging This
Service...

Invokes The...

SOAP Create Web Service dialog to create a web invocation service.

Adapters Adapter Configuration Wizard to guide you through
integration of the service with database tables, database queues,
file systems, FTP servers, Java Message Services (JMS), IBM
WebSphere MQ, Oracle User Messaging Service, Oracle BAM
11g servers, LDAP server, Coherence cache, sockets, cloud
adapters, or Oracle E-Business Suite, JDE World, or SAP
applications.

ADF-BC Create ADF-BC Service dialog to create a service data object
(SDO) invocation service.

B2B B2B Configuration Wizard to guide you through selection of a
document definition.

Healthcare Healthcare Configuration Wizard to guide you through
integration with a healthcare system.

EJB Create EJB Service to create an Enterprise JavaBeans service for
using SDO parameters or Java interfaces with Enterprise
JavaBeans.

HTTP Create HTTP Binding Wizard to create HTTP binding. This
wizard enables you to invoke SOA composite applications
through HTTP POST and GET operations.

Direct Create Direct Binding Service dialog to invoke a SOA composite
application and exchange messages over a remote method
invocation (RMI) in the inbound direction.

REST Create REST Binding dialog to integrate REST operations as
service or reference binding components.

MFT MFT Configuration Wizard to create an MFT source or target.

Adding Service Binding Components

2-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

2. Configure the settings for the service. For help with a service editor, click Help or
press F1. When you add a web service, you must select the WSDL file to use. For
information, see How to Define the Interface (WSDL) for a Web Service.

3. Click Finish.

Figure 2-6 shows the Web Service dialog with data entered to create the
orderprocessor_client_ep service for the OrderProcessor BPEL process.

Figure 2-6 Create Web Service Dialog

4. Click OK.

The service binding component displays in the left swimlane. Figure 2-7 shows the
orderprocessor_client_ep service binding component added to the
composite_name file (for this example, named OrderBookingComposite).

Figure 2-7 Web Service in Composite

5. Select Save All from the File main menu.

2.3.2 How to Define the Interface (WSDL) for a Web Service
As described in How to Add a Service Binding Component, a web service is a type of
binding component that you can add to a SOA composite application. You must
define the interface (WSDL) file for the web service.

Adding Service Binding Components

Getting Started with Developing SOA Composite Applications 2-13

To define the interface (WSDL) for a web service:

1. From the Technology section, drag a SOAP web service to the left Exposed
Services swimlane.

This invokes the Create Web Service dialog shown in Figure 2-6.

2. Enter the details shown in Table 2-8:

Table 2-8 Create Web Service Dialog Fields and Values

Field Value

Name Enter a name for the service.

Type Select the type (message direction) for the web service. Since
you dragged the web service to the left swimlane, the Service
type is the correct selection, and displays by default:

• Service (default)

Creates a web service to provide an entry point to the
SOA composite application

• Reference

Creates a web service to provide access to an external
service in the outside world

Since this example describes how to create an entry point to
the SOA composite application, Service is selected.

3. Select the WSDL file for the service. There are three methods for selection:

• Defining a New WSDL Using a Schema

• Selecting an Existing WSDL

• Automatically Defining a Service Interface WSDL from a Component

4. Click the Add icon above the Input table to display the Add Message Part dialog to
add a new WSDL message part. If the WSDL file contains multiple messages, you
can add a message part for each one. You can select XML schema simple types,
project schema files, and project WSDL files for a message part.

For more information, click Help.

5. Click OK to return to the Create Web Service dialog.

6. Note the additional fields described in Table 2-9:

Table 2-9 Create Web Service Dialog Fields and Values

Field Value

Port Type Displays the port type.

Callback Port Type Disabled, since this WSDL file is for a synchronous service.
This field is enabled for asynchronous services.

7. Click OK.

8. From the File main menu, select Save All.

Adding Service Binding Components

2-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

• Do not manually update the WSDL location in the WSDL file in Source
View. This action is not supported. Only updates made in Design View
are supported.

• WSDL namespaces must be unique. Do not just copy and rename a
WSDL. Ensure that you also change the namespaces.

2.3.2.1 Defining a New WSDL Using a Schema

Define a new WSDL using an existing schema or define a new schema.

1. To the right of the WSDL URL field, click the Find existing WSDLs (first) icon.

2. At the top, click File System.

3. Select an existing WSDL file from the local file system (for this example,
OrderProcessor.wsdl is selected). Figure 2-8 provides details.

Figure 2-8 WSDL File Selection

2.3.2.2 Selecting an Existing WSDL

Select a WSDL created when defining a component interface. The WSDL can be
selected from the project/application browser.

1. To the right of the WSDL URL field, click the Find existing WSDLs (first) icon.

2. At the top, click SOA-MDS. This action enables you to use existing WSDL files
from other applications.

Adding Service Binding Components

Getting Started with Developing SOA Composite Applications 2-15

2.3.2.3 Automatically Defining a Service Interface WSDL from a Component

Automatically define a service interface WSDL from a component.

1. To the right of the WSDL URL field, click the Generate WSDL from schemas
(second) icon to automatically generate a WSDL file from a schema.

Figure 2-9 shows the Create WSDL dialog. Default values for the WSDL file name,
directory location, namespace, port type, operation name, and interface type are
displayed. If the specified directory is not the subdirectory of the current project, a
warning message is displayed. If the specified directory does not exist, it is
automatically created.

You can modify the default values.

Figure 2-9 Automatic Generation of WSDL File

2.3.3 How to View Schemas
You can view all schemas used by the interface's WSDL file and, if you want, choose a
new message schema for a selected message part in the Update Interface dialog.

To view schemas:

1. Double-click the small arrow handle that appears on the specific binding
component or service component. Figure 2-10 provides details.

Adding Service Binding Components

2-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 2-10 Selection of Inbound Interface Handle

The Update Interface dialog shown in Figure 2-11 displays all schemas currently
used by the WSDL file.

Figure 2-11 Update Interface Dialog

2. If you want to select a new message schema, click Help or press F1 for instructions.

2.3.4 How to Edit a Service Binding Component
After initially creating a service, you can edit its contents at a later time. Double-click
the component icon to display its appropriate editor or wizard. Table 2-10 provides an
overview.

Table 2-10 Starting Service Wizards and Dialogs

Double-Click This Service... To...

SOAP Display the Update Service dialog.

Adapters Re-enter the Adapter Configuration Wizard.

ADF-BC Display the Update Service dialog.

B2B Re-enter the B2B Configuration Wizard.

Healthcare Re-enter the Healthcare Configuration Wizard.

EJB Service Display the Update Service dialog.

HTTP Re-enter the HTTP Binding Wizard.

Direct Re-enter the Update Service dialog.

Adding Service Binding Components

Getting Started with Developing SOA Composite Applications 2-17

Table 2-10 (Cont.) Starting Service Wizards and Dialogs

Double-Click This Service... To...

REST Re-enter the REST Binding dialog.

MFT Re-enter the MFT Configuration Wizard.

2.3.5 What You May Need to Know About Adding and Deleting Services
Note the following detail about adding services:

• When a new service is added for a service component, the service component is
notified so that it can make appropriate metadata changes. For example, when a
new service is added to a BPEL service component, the BPEL service component
is notified to create a partner link that can be connected to a receive or an on-
message activity.

Note the following detail about deleting services:

• When a service provided by a service component is deleted, all references to that
service component are invalidated and the wires are removed.

2.3.6 What You May Need to Know About Using the Same Namespace in Different
WSDL Files in the Same Composite

Having two different WSDL files with the same fully-qualified namespace in the same
SOA composite application is ambiguous and not supported. This causes the
application to fail during compilation with duplicate definition errors. Ensure that you
use unique namespaces for every WSDL file.

2.3.7 What You May Need to Know About WSDL Browsing in the Resources Window
When the SOA Infrastructure Uses Both Internal and External Oracle HTTP Servers

When the SOA Infrastructure is configured in the Server URL field of the SOA
Infrastructure Common Properties page in Oracle Enterprise Manager Fusion
Middleware Control to use both internal and external Oracle HTTP servers, you
cannot browse for WSDL URLs using the Resources window. However, you can paste
the correct WSDL URL in the WSDL URL field of the Update Service dialog for the
web service binding component. Figure 2-12 provides details.

Figure 2-12 WSDL URL Field

Adding Service Binding Components

2-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

2.4 Adding Reference Binding Components
You add reference binding components that enable the SOA composite application to
send messages to external services in the outside world.

2.4.1 How to Add a Reference Binding Component
You can use the Components window from the SOA Composite Editor to drag and
drop reference binding components into the composite.

To add a reference binding component:

1. From the Components window, select SOA.

2. From the Technology list, drag a service to the right External References swimlane.

Figure 2-13 shows a web service being added to the designer.

Figure 2-13 Adding a SOAP Web Service to the Composite

A specific dialog or wizard for the selected reference displays. Table 2-11 describes
the available editors.

Table 2-11 Reference Editors

Dragging This Service... Invokes The...

SOAP Create Web Service dialog to create a web invocation service.

Adapters Adapter Configuration Wizard to guide you through
integration of the service with database tables, database
queues, file systems, FTP servers, Java Message Services
(JMS), IBM WebSphere MQ, Oracle User Messaging Service,
Oracle BAM 11g servers, LDAP server, Coherence cache,
sockets, cloud adapters, or Oracle E-Business Suite, JDE
World, or SAP applications.

ADF-BC Create ADF-BC Service dialog to create a service data object
(SDO) invocation service.

B2B B2B Wizard to guide you through selection of a document
definition.

Adding Reference Binding Components

Getting Started with Developing SOA Composite Applications 2-19

Table 2-11 (Cont.) Reference Editors

Dragging This Service... Invokes The...

Healthcare Healthcare Configuration Wizard to guide you through
integration with a healthcare system.

EJB Create EJB Service dialog to create an Enterprise JavaBeans
service for using SDO parameters with Enterprise JavaBeans.

HTTP Create HTTP Binding Wizard to create HTTP binding. This
wizard enables you to invoke SOA composite applications
through HTTP POST and GET operations, and invoke HTTP
endpoints through HTTP POST and GET operations.

Direct Create Direct Binding Service Dialog to invoke an Oracle
Service Bus flow or another SOA composite application.

REST Create REST Binding dialog to integrate REST operations as
service or reference binding components.

MFT MFT Configuration Wizard to create an MFT source or
target.

3. Configure the settings for the reference binding component. For help with a
reference editor, click Help or press F1.

4. Click Finish.

Figure 2-14 shows the Create Web Service dialog with data entered to create a
reference.

Figure 2-14 Create Web Service Dialog

5. Click OK.

Adding Reference Binding Components

2-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 2-15 shows the StoreFrontService reference binding component added in
the right swimlane of the SOA composite application.

Figure 2-15 SOAP Web Service in the Composite

6. From the File main menu, select Save All.

2.4.2 What You May Need to Know About Adding and Deleting References
Note the following detail about adding references:

• The only way to add a new reference in the is by wiring the service component to
the necessary target service component. When a new reference is added, the
service component is notified and makes appropriate changes. For example, when
a reference is added to a BPEL service component, the BPEL service component is
notified to add a partner link that can then be used in an invoke activity.

Note the following details about deleting references:

• When a reference for a service component is deleted, the associated wire is also
deleted and the service component is notified so that it can update its metadata.
For example, when a reference is deleted from a BPEL service component, the
service component is notified to delete the partner link in its BPEL metadata.

• Deleting a reference connected to a wire clears the reference and the wire.

2.4.3 What You May Need to Know About WSDL References
A WSDL file is added to the SOA composite application whenever you create a new
component that has a WSDL (for example, a service binding component, service
component (for example, Oracle Mediator, BPEL process, and so on), or reference
binding component). When you delete a component, any WSDL imports used by that
component are removed only if not used by another component. The WSDL import is
always removed when the last component that uses it is deleted.

When a service or reference binding component is updated to use a new WSDL, it is
handled as if the interface was deleted and a new one was added. Therefore, the old
WSDL import is only removed if it is not used by another component.

If a service or reference binding component is updated to use the same WSDL
(porttype qname), but from a new location, the WSDL import and any other WSDL
reference (for example, the BPEL process WSDL that imports an external reference
WSDL) are automatically updated to reference the new location.

Adding Reference Binding Components

Getting Started with Developing SOA Composite Applications 2-21

Simply changing the WSDL location in the source view of the composite_name
(composite.xml) file's import is not sufficient. Other WSDL references in the metadata
are required by the user interface (see the ui:wsdlLocation attribute in the
composite services and references). There can also be other WSDL references required
by runtime (for example, a WSDL that imports another WSDL, such as the BPEL
process WSDL). Ensure that you change the following places in this file where a
WSDL URL is referenced:

• User interface location - used only in Oracle JDeveloper.

• Import: Used during deployment.

• WSDL location in the reference definition: Used at runtime.

Always modify the WSDL location though the dialogs of the SOA Composite Editor in
which a WSDL location is specified (for example, a web service, BPEL partner link,
and so on). Changing the URL's host address is the exact case in which the SOA
Composite Editor automatically updates all WSDL references.

2.4.4 What You May Need to Know About Mixed Message Types in a WSDL File
If a BPEL process has multiple WSDL messages declared in its WSDL file and one or
more messages have their parts defined to be of some type, whereas other messages
have their parts defined to be of some element, runtime behavior can become
unpredictable. This is because these WSDLs are considered to have mixed type
messages. For example, assume there are multiple copy actions within an assign
activity. These copy actions attempt to populate an output variable that has multiple
parts:

• Part 1 is declared as an xsd:string type.

• Part 2 is declared as an xsd:int type.

• Part 3 is declared as an element of a custom-designed complex type.

This behavior is not supported.

2.4.5 What You May Need to Know About Invoking the Default Revision of a Composite
A WSDL URL that does not contain a revision number is processed by the default
composite application. This action enables you to always call the default revision of
the called service without having to make other changes in the calling composite.

Select the default WSDL to use in the WSDL Chooser dialog in Oracle JDeveloper.

To invoke the default revision of a composite:

1. In the Create Web Service dialog, click the icon to the right of the WSDL URL field
to invoke the WSDL Chooser dialog.

2. At the top, select Application Server or WSIL.

3. Expand the nodes to list all deployed composites and revisions. The default
revision is identified by the word Default in the title (for example, FaultFlow
[Default 1.0]).

Adding Reference Binding Components

2-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 2-16 WSDL Chooser Dialog

4. Select the appropriate default endpoint and click OK.

2.5 Adding Wires
You wire (connect) services, service components, and references. For this example, you
wire the web service and service component. Note the following:

• Since a web service is an inbound service, a reference handle displays on the right
side. Web services that are outbound references do not have a reference handle on
the right side.

• You can drag a defined interface to an undefined interface in either direction
(reference to service or service to reference). The undefined interface then inherits
the defined interface. There are several exceptions to this rule:

– A component has the right to reject a new interface. For example, an Oracle
Mediator can only have one inbound service. Therefore, it rejects attempts to
create a second service.

– You cannot drag an outbound service (external reference) to a business rule,
because business rules do not support references. When dragging a wire, the
user interface highlights the interfaces that are valid targets.

• The port type and the namespace are used to uniquely identify an interface.

• You cannot wire services and composites that have different interfaces. For
example, you cannot connect a web service configured with a synchronous WSDL
file to an asynchronous BPEL process. Figure 2-17 provides details.

Figure 2-17 Limitations on Wiring Services and Composites with Different
Interfaces

Adding Wires

Getting Started with Developing SOA Composite Applications 2-23

The service and reference must match, meaning the interface and the callback
must be the same. If you have two services that have different interfaces, you can
place an Oracle Mediator between the two services and perform a transformation
between the interfaces.

2.5.1 How to Wire a Service and a Service Component
You can wire a service binding component to a service component from the SOA
Composite Editor.

To wire a service and a service component:

1. From a service reference handle, drag a wire to the service component interface, as
shown in Figure 2-18.

Figure 2-18 Wire Connection

2. If the service component is a BPEL process, double-click the BPEL process to open
Oracle BPEL Designer. Note that the service displays as a partner link in the left
swimlane, as shown in Figure 2-19.

Figure 2-19 Display of the Service as a Partner Link in the BPEL Process

3. Select Save All from the File main menu.

2.5.2 How to Wire a Service Component and a Reference
You can wire a service component to a reference binding component from the SOA
Composite Editor.

Adding Wires

2-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To wire a service component and a reference:

1. In the Applications window, double-click composite_name or single-click
composite_name above the designer.

2. From the service component, drag a wire to the reference, as shown in Figure 2-20.

Figure 2-20 Wiring of a Service Component and Reference

3. If the service component is a BPEL process, double-click the BPEL process to open
Oracle BPEL Designer. Note that the reference displays as a partner link in the right
swimlane, as shown in Figure 2-21.

Figure 2-21 Display of the Reference as a Partner Link in the BPEL Process

4. Select Save All from the File main menu.

5. In the Applications window, select the composite_name file.

6. Click the Source tab to review what you have created.

The orderprocessor_client_ep service binding component provides the
entry point to the composite.

<service name="orderprocessor_client_ep"
 ui:wsdlLocation="oramds:/apps/FusionOrderDemoShared
/services/orderbooking/OrderBookingProcessor.wsdl">
 <interface.wsdl interface= "http://www.globalcompany.example.com/ns
/OrderBookingService#wsdl.interface(OrderProcessor)"
 <binding.adf serviceName="OrderProcessorService" registryName=""/>
 <callback>

Adding Wires

Getting Started with Developing SOA Composite Applications 2-25

 <binding.ws port="http://www.globalcompany.example.com/ns
/OrderBookingService#wsdl.endpoint(orderprocessor_clientep/OrderProcessorCallback_
pt)"/>
 </callback>
 </service>

The OrderProcessor BPEL process service component appears.

<component name="OrderProcessor">
 <implementation.bpel src="OrderProcessor.bpel"/>
</component>

A reference binding component named StoreFrontService appears. The
reference provides access to the external service in the outside world.

<reference name="StoreFrontService"
 ui:wsdlLocation="oramds:/apps/FusionOrderDemoShared
/services/oracle/fodemo/storefront/store/service/common/serviceinterface/StoreFron
tService.wsdl">
 <interface.wsdl
 interface="www.globalcompany.example.com#wsdl.interface(StoreFrontService)"/>
 <binding.ws
port="www.globalcompany.example.com#wsdl.endpoint(StoreFrontService/StoreFrontServ
iceSoapHttpPort)"
location="oramds:/apps/FusionOrderDemoShared/services/oracle/fodemo/storefront/sto
re/service/common/serviceinterface/StoreFrontService.wsdl"/>
</reference>

The communication (or wiring) between service components is as follows:

• The source orderprocessor_client_ep service binding component is
wired to the target OrderProcessor BPEL process service component.
Wiring enables web service message communication with this specific BPEL
process.

• The source OrderProcessor BPEL process is wired to the target
StoreFrontService reference binding component. This is the reference to
the external service in the outside world.

 <wire>
 <source.uri>orderprocessor_client_ep</source.uri>
 <target.uri>OrderProcessor/orderprocessor_client_ep</target.uri>
 </wire>

 <wire>
 <source.uri>OrderProcessor/StoreFrontService</source.uri>
 <target.uri>StoreFrontService</target.uri>
 </wire>

2.5.3 What You May Need to Know About Adding and Deleting Wires
Note the following details about adding wires:

• A service component can be wired to another service component if its reference
matches the service of the target service component. Note that the match implies
the same interface and callback interface.

• Adding the following wiring between two Oracle Mediator service components
causes an infinite loop:

– Create a business event.

Adding Wires

2-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

– Create an Oracle Mediator service component and subscribe to the event.

– Create a second Oracle Mediator service component to publish the same
event.

– Wire the first Oracle Mediator to the second Oracle Mediator component
service.

If you remove the wire between the two Oracle Mediators, then for every
message, the second Oracle Mediator can publish the event and the first Oracle
Mediator can subscribe to it.

Note the following details about deleting wires:

• When a wire is deleted, the component's outbound reference is automatically
deleted and the component is notified so that it can clean up (delete the partner
link, clear routing rules, and so on). However, the component's service interface is
never deleted. All Oracle SOA Suite services are defined by their WSDL interface.
When a component's interface is defined, there is no automatic deletion of the
service interface in the .

If you want to change the service WSDL interface, there are several workarounds:

– In most cases, you just want to change the schema instead of the inbound
service definition. In the , click any interface icon that uses the WSDL. For
example, you can click the web service interface icon or the Oracle Mediator
service icon. This invokes the Update Interface dialog, which enables you to
change the schema for any WSDL message.

– If you are using an Oracle Mediator service component, the Refresh
operations from WSDL icon of the Oracle Mediator Editor enables you to
refresh (after adding new operations) or replace the Oracle Mediator WSDL.
However, you are warned if the current operations are to be deleted. If you
change the WSDL to the new inbound service WSDL using this icon, the wire
typically breaks because the interface has changed. You can then wire Oracle
Mediator to the new service.

– In many cases, a new service requires a completely new Oracle Mediator.
Delete the old Oracle Mediator, create a new one, and wire it to the new
service.

– If you are using a BPEL process service component, select a new WSDL
through the Edit Partner Link dialog.

See How to View Schemas for details about the Update Interface dialog.

2.6 Adding Descriptions to SOA Composite Applications
You can add a description of the SOA composite application that is displayed when
you place your cursor over the TODO Tasks icon above the composite. The
description can describe the actions of the services, references, and service components
in the SOA composite application.

Adding Descriptions to SOA Composite Applications

Getting Started with Developing SOA Composite Applications 2-27

2.6.1 How to Add Descriptions to SOA Composite Applications

To add descriptions to SOA composite applications:

1. Above the SOA Composite Editor, click the TODO Tasks icon. Figure 2-22
provides details.

Figure 2-22 To Do Tasks Icon

2. Double-click in the table row, and add the description.

3. When complete, click outside the table row, then click Close.

4. Place the cursor over the TODO Tasks icon above the SOA composite application
to display the description. Figure 2-23 provides details.

Figure 2-23 Description of SOA Composite Application

2.7 Renaming, Deleting, and Moving Components and Artifacts
You can rename, delete, and move some components (also known as refactoring) and
artifacts in the following sections of Oracle JDeveloper.

• SOA Composite Editor

Enables you to rename and delete components. These actions impact Oracle SOA
Suite metadata (and not necessarily specific artifacts).

• Applications window

Enables you to rename, delete, and move artifacts such as WSDLs, schemas, and
so on. These actions impact Oracle JDeveloper artifacts.

Note:

Do not perform refactoring tasks with Oracle BPEL Designer, Human Task
Editor, and other editors open. If you do, ensure that you then close and
reopen the editors after refactoring. For example, assume you have a BPEL
process open, then rename the BPEL process WSDL file in the Applications
window. This changes the underlying BPEL file, but Oracle BPEL Designer
does not reflect this change and becomes unsynchronized unless you
completely exit it. Close and then reopen Oracle BPEL Designer. The changes
are then synchronized.

Renaming, Deleting, and Moving Components and Artifacts

2-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

2.7.1 How to Rename and Delete Components in the SOA Composite Editor
Table 2-12 describes the refactoring tasks that you can perform in the SOA Composite
Editor, along with known limitations. Carefully review these restrictions before using
this feature.

Table 2-12 Refactoring Components

Action SOA Composite Editor Steps

Rename a service
component or
binding
component

1. Right-click a component and select Rename. Once renamed, all references to the
component in the composite are updated.

Note the following restrictions:

• You cannot rename human workflow, subprocess, or business rule components.

Delete a service
component,
binding
component, or
BPEL subprocess

1. Right-click a component or subprocess and select Delete.

Move a service
component or
binding
component to
another folder

You cannot perform this task from the SOA Composite Editor.

2.7.2 How to Rename, Move, and Delete Artifacts in the Applications Window
Table 2-13 describes the refactoring tasks that you can perform in the Applications
window, along with known limitations. Carefully review these restrictions before
using this feature.

Table 2-13 Refactoring Component Artifacts

Action Applications Window Steps

Rename a service
component or
binding
component
artifact

1. Right-click a component file, and select Refactor > Rename.

Note the following restrictions:

• Component implementation files (.bpel, .mplan, and so on) are not renamed when the
component is renamed in the SOA Composite Editor. This does not cause issues. If you
want to rename the implementation files to the same name, use the Applications
window.

• You cannot rename human workflow, subprocess, or business rule components.
• Renaming or moving of business rule and human task artifacts is not supported. For

example, you can rename a human task schema file (for example,
HumanTaskPayload.xsd), but references to this XSD in the .task file are not updated.

• You cannot rename port types, operations, and elements in the WSDL and XSD editors.
• Do not rename a directory or artifact with blank spaces. Spaces in names lead to invalid

references.
• You can rename SOA projects and composites.

Renaming, Deleting, and Moving Components and Artifacts

Getting Started with Developing SOA Composite Applications 2-29

Table 2-13 (Cont.) Refactoring Component Artifacts

Action Applications Window Steps

Delete a service
component,
binding
component, or
BPEL subprocess
artifact

1. Right-click a component file, and select Refactor > Delete.

Note the following restrictions:

• When you delete an artifact in the Applications window, you are prompted with a
message that includes a Show Usages option. When Show Usages is selected, any
usages or references to the artifact from within files are displayed. When the Delete
option is executed, only the subprocess file is deleted and no references are removed.
Ensure that you first select Show Usages and manually remove references to the file to
delete.

Move a service
component or
binding
component to
another folder

1. Right-click a component file, and select Refactor > Move.

Note the following restrictions:

• Moving a database adapter artifact causes problems because the database adapter has
many artifacts that are implicitly referenced by name and must be in the same
directory.

• You cannot move component implementation files
(.mplan, .bpel, .sbpel, .task, .rules, .spring, and so on) in the Applications window.
However, these files can be renamed.

• Do not move a directory or artifact name with blank spaces. Spaces in names lead to
invalid references.

• If you move an XSLT file, you lose capabilities such as the current expansion/scrolled
state and which item was last selected in the XSLT Map Editor. This is because a
NonDeployedFiles directory is created in the same folder as the XSLT file. This folder
is the default place for test files, dictionary files, report files, DVM/XREF test support
files, and so on. This directory is not moved if an XSLT file is moved because the folder
contains files used for multiple XSLT files and there is no direct connection between the
XSLT file and the file names that may be in the folder.

2.8 Viewing Component Details in the Property Inspector
The Property Inspector displays details about the selected service component or
binding component in the SOA Composite Editor.

To view properties in the Property Inspector:

1. Select a service, service component, or reference. For this example, a BPEL process
service component is selected.

The Property Inspector is refreshed to display general component details, a section
for adding deployment descriptor properties, and attached security policies.
Figure 2-24 provides details.

Viewing Component Details in the Property Inspector

2-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 2-24 Property Inspector

You can also use the Property Inspector to edit BPEL activities in Oracle BPEL
Designer. For more information, see How to Edit BPEL Activities in the Property
Inspector. and How to Define Deployment Descriptor Properties in the Property
Inspector.

2.9 Adding Security Policies
As you create your SOA composite application, you can secure web services by
attaching policies to service binding components, service components, and reference
binding components. For more information about implementing policies, see Enabling
Security with Policies and Message Encryption .

2.10 Deploying a SOA Composite Application
Deploying a SOA composite application involves creating a connection to an Oracle
WebLogic Server and deploying an archive of the SOA composite application to an
Oracle WebLogic Server managed server. For more information about deploying SOA
composite applications, see Deploying SOA Composite Applications .

2.10.1 How to Invoke Deployed SOA Composite Applications
You can invoke deployed SOA composite applications from your SOA composite
application.

To invoke deployed SOA composite applications:

1. Create a web service or partner link through one of the following methods.

a. In the SOA Composite Editor, drag a SOAP icon from the Components
window to the External References swimlane.

b. In Oracle BPEL Designer, drag a Partner Link from the BPEL Constructs
section of the Components window to the right swimlane.

2. Access the SOA Resource Browser dialog based on the type of service you created.

a. From the Create Web Service dialog, click the Find existing WSDLs icon. The
Application Server section of the WSDL Chooser dialog is displayed.

Adding Security Policies

Getting Started with Developing SOA Composite Applications 2-31

b. From the Edit Partner Link dialog, click the SOA Resource Browser icon. The
Application Server section of the WSDL Chooser dialog is displayed.

3. Select Application Server if it is not selected.

4. Expand the tree to display the application server connection to the server on
which the SOA composite application is deployed.

5. Expand the application server connection.

6. Expand the SOA folder and partition. Figure 2-25 provides details.

Figure 2-25 Browse for a SOA Composite Application

7. Select the composite service.

8. Click OK.

For information about creating an application server connection, see Creating an
Application Server Connection.

2.11 Managing and Testing a SOA Composite Application
As you build and deploy a SOA composite application, you manage and test it using a
combination of Oracle JDeveloper and Oracle Enterprise Manager Fusion Middleware
Control.

2.11.1 How to Manage Deployed SOA Composite Applications in Oracle JDeveloper
You can manage deployed SOA composite applications from the Application Server
Navigator in Oracle JDeveloper. Management tasks consist of undeploying, activating,
retiring, turning on, and turning off SOA composite application revisions.

Managing and Testing a SOA Composite Application

2-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

These instructions assume you have created an application server connection
to an Oracle WebLogic Administration Server on which the SOA
Infrastructure is deployed. Creating a connection to an Oracle WebLogic
Administration Server enables you to browse for managed Oracle WebLogic
Servers or clustered Oracle WebLogic Servers in the same domain. From the
File main menu, select New > Application > Connections > Application
Server Connection to create a connection.

1. From the Window main menu, select Application Servers.

2. Expand your connection name (for this example, named MyConnection).

The SOA folder appears, as shown in Figure 2-26. The SOA folder displays all
deployed SOA composite application revisions and services. You can browse all
applications deployed on all Oracle WebLogic Administration Servers, managed
Oracle WebLogic Servers, and clustered Oracle WebLogic Servers in the same
domain. Figure 2-26 provides details.

Figure 2-26 Application Server Navigator

3. Expand the SOA folder.

4. Expand the partition in which the composite application is deployed.

Deployed SOA composite applications and services appear, as shown in
Figure 2-27.

Figure 2-27 Deployed SOA Composite Applications

Managing and Testing a SOA Composite Application

Getting Started with Developing SOA Composite Applications 2-33

5. Right-click a deployed SOA composite application.

6. Select an option to perform. The options that display for selection are based upon
the current state of the application. Table 2-14 provides details.

Table 2-14 SOA Composite Application Options

Option Description

Stop Shuts down a running SOA composite application revision. Any request
(initiating or a callback) to the composite is rejected if the composite is shut
down.

Note: The behavior differs based on which binding component is used. For
example, if it is a web service request, it is rejected back to the caller. A JCA
adapter binding component may do something else in this case (for example,
put the request in a rejected table).

This option displays when the composite application has been started.

Start Restarts a composite application revision that was shut down. This action
enables new requests to be processed (and not be rejected). No recovery of
messages occurs.

This option displays when the composite application has been stopped.

Retire Retires the selected composite revision. If the process life cycle is retired, you
cannot create a new instance. Existing instances are allowed to complete
normally.

An initiating request to the composite application is rejected back to the
client. The behavior of different binding components during rejection is the
same as with the shut down option.

A callback to an initiated composite application instance is delivered
properly.

This option displays when the composite application is active.

Activate Activates the retired composite application revision. Note the following
behavior with this option:

• All composite applications are automatically active when deployed.
• Other revisions of a newly deployed composite application remain

active (that is, they are not automatically retired). If you want, you must
explicitly retire them.

This option displays when the application is retired.

Undeploy Undeploys the selected composite application revision. The consequences of
this action are as follows:

• You can no longer configure and monitor this revision of the composite
application.

• You can no longer process instances of this revision of the composite
application.

• You cannot view previously completed processes.
• The state of currently running instances is changed to aborted and no

new messages sent to this composite are processed.
• If you undeploy the default revision of the composite application (for

example, 2.0), the next available revision of the composite application
becomes the default (for example, 1.0).

Set
Default
Revision

Sets the selected composite application revision to be the default.

Managing and Testing a SOA Composite Application

2-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

7. If you want to deploy a prebuilt SOA composite application archive that includes a
deployment profile, right-click the SOA folder and select Deploy SOA Archive.
The archive consists of a JAR file of a single application or a SOA bundle ZIP file
containing multiple applications.

You are prompted to select the following:

• The target SOA servers to which you want to deploy the SOA composite
application archive.

• The archive to deploy.

• The configuration plan to attach to the application. As you move projects from
one environment to another (for example, from testing to production), you
typically must modify several environment-specific values, such as JDBC
connection strings, hostnames of various servers, and so on. Configuration
plans enable you to modify these values using a single text (XML) file called a
configuration plan. The configuration plan is created in either Oracle
JDeveloper or from the command line. During process deployment, the
configuration plan is used to search the SOA project for values that must be
replaced to adapt the project to the next target environment. This is an optional
selection.

• Whether you want to overwrite an existing composite of the same revision ID.
This action enables you to redeploy an application revision.

Figure 2-28 provides details.

Figure 2-28 Deploy SOA Archive Dialog

For more information, see the following documentation:

• Deploying SOA Composite Applications for details about creating a deployment
profile and a configuration plan and deploying an existing SOA archive

• Administering Oracle SOA Suite and Oracle Business Process Management Suite for
details about managing deployed SOA composite applications from Oracle
Enterprise Manager Fusion Middleware Control.

Managing and Testing a SOA Composite Application

Getting Started with Developing SOA Composite Applications 2-35

2.11.2 How to Test and Debug a Deployed SOA Composite Application
After you deploy a SOA composite application, you can initiate a test instance of it
from the Test Web Service page in Oracle Enterprise Manager Fusion Middleware
Control to verify the XML payload data. For more information about initiating a test
instance, see the Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

In addition to creating a test instance, you can also perform the following testing and
debugging tasks in Oracle JDeveloper:

• Simulate the interaction between a SOA composite application and its web service
partners before deployment in a production environment. This helps to ensure
that a process interacts with web service partners as expected by the time it is
ready for deployment to a production environment. For more information about
creating a unit test, see Automating Testing of SOA Composite Applications.

• Test and debug SOA composite applications with the SOA debugger in Oracle
JDeveloper. The SOA debugger reduces the development cycle for a SOA
composite application by providing a troubleshooting environment within Oracle
JDeveloper. This eliminates the lengthy process of building a SOA composite
application in Oracle JDeveloper, deploying it to the SOA Infrastructure, starting
Oracle Enterprise Manager Fusion Middleware Control to test or view audit trails
and flow traces, and then returning to Oracle JDeveloper to repeat the exercise.
For more information, see Debugging and Auditing SOA Composite
Applications .

Managing and Testing a SOA Composite Application

2-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3
Managing Shared Data with the Design-

Time MDS Repository

This chapter describes how to manage shared data with the SOA Design-Time Oracle
Metadata Services Repository (MDS Repository), including how to create and delete
folders, export and import the contents of the /apps folder to and from a JAR file,
transfer the /apps folder contents to another SOA Design-Time MDS Repository,
export a Release 11g MDS Repository to a JAR file, and use the SOA-MDS Transfer
wizard to share data with the SOA Design-Time MDS Repository.

This chapter includes the following sections:

• Introduction to SOA Design-Time MDS Repository Management

• Changing the Default SOA-MDS Location

• Sharing Data with the SOA Design-Time

• Creating and Deleting Subfolders Under the /apps Folder

• Exporting the Selected Contents of the /apps Folder to a JAR File

• Importing the Contents of the JAR File into the /apps Folder

• Transferring the Selected Contents of the /apps Folder to Another MDS
Repository

• Exporting an Existing Release 11g to a JAR File

• Browsing for Files in the SOA Design-Time MDS Repository

3.1 Introduction to SOA Design-Time MDS Repository Management
A file-based, SOA Design-Time MDS Repository is automatically created when you
create a SOA composite application. You cannot modify the MDS Repository name,
but you can modify it to point to an existing, file-based repository. You typically point
it to the version control system (MDS) location. Sharing operations are done against
the design-time repository. You cannot perform these operations against a database-
backed MDS Repository.

You can perform the following operations against the SOA Design-Time MDS
Repository in Oracle JDeveloper:

• Browse the following folder recognized by Oracle SOA Suite in the SOA Design-
Time MDS Repository:

– /apps: Contains shared data, including Oracle Service Bus artifacts.

• Create folders directly under the /apps folder or a subfolder of /apps.

Managing Shared Data with the Design-Time MDS Repository 3-1

• Delete files and subfolders under the /apps folder. The /apps folder itself cannot
be deleted.

• Export selected contents of the /apps folder to a JAR file. The /apps folder itself
is not included in the JAR file.

• Import the contents of a JAR file under the /apps folder. If the JAR file includes /
apps as the root folder, it is created below the /apps folder of the design-time
MDS Repository, which gives you a top-level directory structure of /apps/apps.

• Transfer the contents of the /apps folder of one MDS Repository to another MDS
Repository.

• Export an existing MDS Repository (for example, a Release 11g database-based
MDS Repository) to a JAR file. This JAR file can then be imported into the Release
12c design-time MDS Repository.

3.1.1 Introduction to the Default SOA Design-Time MDS Repository Connection
A file-based, SOA Design-Time MDS Repository connection named
SOA_DesignTimeRepository is automatically included when you create a SOA
composite application. The default directory location is $JDEV_USER_DIR/soamds.

This connection provides the following capabilities:

• A file-based MDS Repository for use during design time. A database-based
design-time MDS Repository is not supported.

• Any MDS Repository can be browsed.

• The default repository location can be modified to point to another folder or
version control location.

• All SOA-MDS operations use this SOA Design-Time MDS Repository.

• A wizard enables you to share design-time artifacts from your SOA project with
this MDS Repository, such as WSDL and schema files.

Note:

• If you add shared data into the SOA Design-Time MDS Repository, and
the repository is backed by a version control system, Oracle SOA Suite
does not provide any operations to add this data to the version control
system. You must add this shared data to the version control system.

• If you have a Release 11g SOA composite application with a
preconfigured SOA-MDS repository (/apps namespace) in the adf-
config.xml file, all sharing and consumption operations are performed
against the existing repository defined in adf-config.xml.

3.2 Changing the Default SOA-MDS Location
When you create a SOA composite application, the default SOA-MDS connection
named SOA_DesignTimeRepository is automatically included. The /apps folder in
the SOA design-time MDS Repository is automatically created.

Changing the Default SOA-MDS Location

3-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

When files from an Oracle JDeveloper project are shared using the
SOA_DesignTimeRepository, the original files are moved from the SOA
project to the default SOA-MDS repository.

3.2.1 How to Change the Default SOA-MDS Location

To change the default SOA-MDS location:

1. Create a SOA composite application.

2. From the Window main menu, select Resources.

3. In the Components window, click Resources.

4. Expand SOA-MDS. The artifacts shown in Figure 3-1 are displayed.

• The SOA-MDS connection named SOA_DesignTimeRepository that was
automatically created during SOA composite application.

• The /apps folder in the MDS Repository. This folder is initially empty.

Figure 3-1 Resources Window in Oracle JDeveloper

5. Right-click the SOA_DesignTimeRepository connection and select Properties to
point it to your version control location.

The Edit MDS-SOA Connection dialog is displayed.

6. In the MDS Root Folder field, click Browse.

7. Select the version control location for the /apps folder, and click Select. The SOA-
MDS browser only displays the /apps and /soa folders. Therefore, if /apps is not
present in the selected version control location, then it is not rendered by the
browser.

The specified location is displayed in the Edit MDS-SOA Connection dialog, as
shown in Figure 3-2.

Changing the Default SOA-MDS Location

Managing Shared Data with the Design-Time MDS Repository 3-3

Figure 3-2 Edit SOA-MDS Connection Dialog

8. Click OK, and expand the SOA_DesignTimeRepository connection.

The /apps folder is populated with the location specified in Step 7, as shown in
Figure 3-3.

Figure 3-3 Populated /apps folder

Changing the Default SOA-MDS Location

3-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3.3 Sharing Data with the SOA Design-Time MDS Repository
The SOA-MDS Transfer wizard enables you to share WSDL, XSD, WADL, and
XQuery files with the SOA design-time MDS Repository. These files can then be
shared with other SOA composite applications.

The wizard first attempts to share files with any existing design-time MDS Repository
defined in the current application's adf-config.xml file. If no MDS Repository is
defined in the adf-config.xml file, then artifacts are shared using
SOA_DesignTimeRepository.

Note:

• You can only share XSD, WSDL, WADL, and XQuery files. In addition,
only these file types can be transferred from a design-time MDS
Repository to a runtime MDS Repository.

• If you right-click an XSD file in the Applications window that was created
with the Native Format Builder wizard, the Share using SOA Design-
Time MDS Repository option is not available.

3.3.1 How to Share Data with the SOA Design-Time MDS Repository

To share data with the SOA design-time MDS Repository:

1. In the Applications window, right-click the file to share (for this example, an XSD
file) and select Share using SOA Design-Time MDS Repository. Figure 3-4
provides details.

Figure 3-4 Data Sharing with the SOA Design-Time MDS Repository

The SOA-MDS Transfer wizard - Welcome page is displayed and indicates that the
file you selected is to be transferred to the SOA design-time MDS Repository.

Sharing Data with the SOA Design-Time MDS Repository

Managing Shared Data with the Design-Time MDS Repository 3-5

2. Click Next.

The Choose Target dialog is displayed.

3. Browse the design-time MDS Repository and select the target folder in which to
share the selected artifact, and click Next. You can also create a subfolder in which
to share the file or search for an existing folder. Figure 3-5 provides details.

Figure 3-5 SOA-MDS Transfer Wizard - Choose Target Page

The Dependencies dialog is displayed.

4. Review the files to transfer to the target oramds URL location in the design-time
MDS Repository, as shown in Figure 3-6.

Additional dependent files can also be displayed. For example, assume you select a
WSDL file. Because the WSDL file can have dependencies on schema files
(potentially more than one file), those XSD files are also displayed.

Sharing Data with the SOA Design-Time MDS Repository

3-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 3-6 SOA-MDS Transfer Wizard - Dependencies Page

The green checkmark indicates that the file path is correct and resolvable.

Note:

• If the URL is not accessible, an error icon is displayed. For example,
assume you are transferring a WSDL file that has dependencies on
schemas that traverse several parent levels (for example, ../../../). If such
references are present in the WSDL and you do not select the correct
target folder, the URL may go beyond the /apps folder, which is not
accessible to the SOA Infrastructure. The error icon indicates the target
URL is not accessible, and you cannot proceed with the transfer. You
must cancel or click Back to select a different target folder. In summary,
the destination for all URLs must begin with the /apps folder.

• File transfers are in relation to the /apps folder in the target SOA design-
time MDS Repository. Dependent files are typically at the same parallel
level. For example, the WSDL file selected for transfer is located in the
WSDLs folder and the dependent XSD file is located in the Schemas
folder. Both folders are at the same parallel level under the SOA folder of
the SOA composite application in the Applications window. However, if
the dependent files are at different levels (higher levels than the file that is
being shared), you must determine the relative hierarchy of the files. For
example, If foo.wsdl refers to an XSD file in the location ../../../.xsd, you
must manually create three subfolders under apps in the target design-
time MDS Repository and share foo.wsdl to the lowest folder level so that
the XSD can be shared at the apps level.

Sharing Data with the SOA Design-Time MDS Repository

Managing Shared Data with the Design-Time MDS Repository 3-7

5. If you want to overwrite files, select Overwrite if document exists in the target
MDS repository, then click Next. If you do not select this check box, and the files
already exist in the target location, no files are transferred and an error message is
displayed. You cannot selectively transfer specific files.

The References dialog is displayed.

6. View the files to be modified after the transfer with the appropriate oramds URL,
and click Finish, as shown in Figure 3-7. This list includes files that are dependent
on the files being moved. All dependent files are modified to reflect the oramds
URL of the file being moved.

Figure 3-7 SOA-MDS Transfer Wizard - References Page

7. Click OK when prompted with a message that the transfer completed successfully.

When complete, the following updates are made:

• The selected artifacts are displayed beneath the SOA-MDS connection in the
Resources window.

• The adf-config.xml file in the Applications window is modified with the /
apps namespace:

<namespace path="/apps" metadata-store-usage="mstore-usage_2"/>

The variable that internally points to the SOA design-time MDS Repository
home is set:

value="${soamds.apps.home}

• A reference in the artifact (for example, a WSDL file) is updated to point to the
oramds URL location.

Sharing Data with the SOA Design-Time MDS Repository

3-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3.4 Creating and Deleting Subfolders Under the /apps Folder
You can create and delete subfolders under the /apps folder in the SOA Design-Time
MDS Repository. You cannot delete the /apps folder.

3.4.1 How to Create and Delete Subfolders Under the /apps Folder

To create and delete subfolders under the /apps folder:

1. Right-click the /apps folder or a subfolder of /apps, and select Create Folder to
point it to your version control location.

The Create Folder dialog is displayed.

2. Enter a name (for this example, Foo is entered) for the folder, and click OK.

The folder is created under the /apps folder, as shown in Figure 3-8.

Figure 3-8 New Subfolder Under /apps Folder

3. Right-click the folder to delete (for this example, Foo), and select Delete.

The folder is deleted, as shown in Figure 3-9.

Figure 3-9 Subfolder Deleted Under /apps Folder

3.5 Exporting the Selected Contents of the /apps Folder to a JAR File
You can export the selected contents of the /apps folder in the SOA design-time MDS
Repository to a JAR file. The /apps folder itself is not exported to the JAR.

Creating and Deleting Subfolders Under the /apps Folder

Managing Shared Data with the Design-Time MDS Repository 3-9

3.5.1 How to Export the Selected Contents of the /apps Folder to a JAR File

To export the selected contents of the /apps folder to a JAR file:

1. Right-click the SOA-MDS connection that includes the contents to export (for
example, the default SOA_DesignTimeRepository connection or another
connection), and select Export to Jar, as shown in Figure 3-10.

Figure 3-10 Export to Jar Command

The Export to jar dialog is displayed.

2. Provide values appropriate to your environment, and click OK, as described in
Table 3-1.

Table 3-1 Export to jar Dialog

Field Description

Select documents to export Enter a file or folder name and click Search or manually
expand the /apps folder to identify and select folders and
files to export to a JAR file.

Preview Documents Selected Select to preview the contents to export.

JAR Name Click Browse to select the JAR file to which to export the
selected folders and files.

The Export to jar dialog looks as shown in Figure 3-11.

Exporting the Selected Contents of the /apps Folder to a JAR File

3-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 3-11 Export to jar Dialog

3. Click OK when prompted with a message indicating that the export was
successful.

3.6 Importing the Contents of the JAR File into the /apps Folder
You can import the contents of a JAR file to the /apps folder of a SOA design-time or
database-backed MDS Repository. If you import a JAR file that includes /apps as the
root folder, it is created below the /apps folder of the design-time MDS Repository,
which gives you a top-level directory structure of /apps/apps.

3.6.1 How to Import the Contents of the JAR File into the /apps Folder

To import the contents of the JAR file into the /apps folder:

1. Right-click the SOA-MDS connection in which to import the JAR file (for example,
the default SOA_DesignTimeRepository connection or another connection), and
select Import From JAR.

2. Click Browse to select the JAR to import.

The Import from jar dialog is displayed, as shown in Figure 3-12.

Importing the Contents of the JAR File into the /apps Folder

Managing Shared Data with the Design-Time MDS Repository 3-11

Figure 3-12 Import from jar Dialog

A green checkmark indicates that the contents do not exist in the target repository.
If the content exists in the target repository, a warning icon is displayed. You can
select to overwrite the content by clicking Import or cancel the entire import
operation by clicking Cancel. You cannot selectively import specific files.

3. Click Import. Any artifacts with a warning icon are overwritten.

The contents of the imported JAR file are displayed under the /apps folder, as
shown in Figure 3-13.

Figure 3-13 Contents of Imported JAR File in Resources Window

Importing the Contents of the JAR File into the /apps Folder

3-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3.7 Transferring the Selected Contents of the /apps Folder to Another
MDS Repository

You can transfer the selected contents of the /apps folder of one MDS Repository to
the /apps folder of another MDS Repository. There are no limitations on the type of
MDS Repository to which to transfer. For example, you can transfer the selected
contents of a file-based repository to a database-based MDS Repository, and vice
versa.

Note:

Do not transfer the contents of the /apps folder to another MDS Repository
with the Oracle BPEL Designer, Human Task Editor, or other editors open. If
you do, ensure that you then close and reopen the editors after the transfer
completes. An open editor does not reflect the transfer changes and becomes
unsynchronized unless you completely exit it.

3.7.1 How to Transfer the Selected Contents of the /apps Folder to Another MDS
Repository

To transfer the selected contents of the /apps folder to another MDS Repository:

1. Right-click the SOA-MDS connection that includes the contents to transfer (for
example, the default SOA_DesignTimeRepository connection or another
connection), and select Transfer. Figure 3-14 provides details.

Figure 3-14 Transfer Menu Option

The Transfer to SOA-MDS dialog is displayed.

Transferring the Selected Contents of the /apps Folder to Another MDS Repository

Managing Shared Data with the Design-Time MDS Repository 3-13

2. Provide values appropriate to your environment, and click OK, as described in
Table 3-2.

Table 3-2 Transfer to SOA-MDS Dialog

Field Description

Select Documents to
Transfer

Select the contents to transfer.

Preview Documents
Selected

Select to preview the contents to transfer.

Target Connection Select the SOA-MDS connection of the MDS Repository to
which to transfer contents.

The Transfer to SOA-MDS dialog looks as shown in Figure 3-15.

Figure 3-15 Transfer to SOA-MDS Dialog

3. Click OK when prompted with a message indicating that the transfer was
successful.

The contents are displayed under the /apps folder of the SOA-MDS target
connection you selected in the Target Connection field in Step 2. Figure 3-16
provides details.

Transferring the Selected Contents of the /apps Folder to Another MDS Repository

3-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 3-16 Contents Display Under /apps Folder of Selected SOA-MDS
Connection

3.8 Exporting an Existing Release 11g MDS Repository to a JAR File
You can export a Release 11g MDS Repository to a JAR file that can then be imported
into a Release 12c design-time MDS Repository. The adf-config.xml file is updated
with /apps and store information. Release 12c repositories can also be exported if you
have an adf-config.xml file with /apps defined (meaning you have an existing
shared repository).

3.8.1 How to Export an Existing Release 11g MDS Repository to a JAR File

To export an existing Release 11g MDS Repository to a JAR file:

1. In the Applications window, right-click adf-config.xml of the project to export, and
select Export SOA-MDS Contents. Figure 3-17 provides details.

Figure 3-17 Export of an 11g MDS Repository from the Applications Window

The Export to jar dialog is displayed.

2. Select the Release 11g MDS Repository to export to a JAR file.

3. To import the JAR file into a Release 12c design-time MDS Repository, see section
Importing the Contents of the JAR File into the /apps Folder.

Exporting an Existing Release 11g MDS Repository to a JAR File

Managing Shared Data with the Design-Time MDS Repository 3-15

3.9 Browsing for Files in the SOA Design-Time MDS Repository
You can browse for and select files in the SOA Design-Time MDS Repository. For
example, the WSDL Chooser dialog that you access from the Create Web Service
dialog includes a selection for the SOA Design-Time MDS Repository, as shown in
Figure 3-18.

Figure 3-18 SOA-MDS Selection in the WSDL Chooser Dialog

The Type Chooser dialog includes a Recent Files folder in which information is kept
for the duration of the Oracle JDeveloper session. For example, if you create a new
BPEL process and want to define the input variable from a schema in the SOA Design-
Time MDS Repository, you go there once. When you want to define the output
variable from the same schema, the schema remains visible in the Recent Files folder.
Figure 3-19 shows the Recent Files folder.

Browsing for Files in the SOA Design-Time MDS Repository

3-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 3-19 Type Chooser

Browsing for Files in the SOA Design-Time MDS Repository

Managing Shared Data with the Design-Time MDS Repository 3-17

Browsing for Files in the SOA Design-Time MDS Repository

3-18 Developing SOA Applications with Oracle SOA Suite

Part II
Using the BPEL Process Service

Component

This part describes the BPEL process service component.

This part contains the following chapters:

• Getting Started with Oracle BPEL Process Manager

• Introduction to Interaction Patterns in a BPEL Process

• Manipulating XML Data in a BPEL Process

• Invoking a Synchronous Web Service from a BPEL Process

• Invoking an Asynchronous Web Service from a BPEL Process

• Using Correlation Sets and Message Aggregation

• Using Parallel Flow in a BPEL Process

• Using Conditional Branching in a BPEL Process

• Using Fault Handling in a BPEL Process

• Transaction and Fault Propagation Semantics in BPEL Processes

• Incorporating Java and Java EE Code in a BPEL Process

• Using Events and Timeouts in BPEL Processes

• Coordinating Master and Detail Processes

• Using the Notification Service

• Using Sensors and Analytics

4
Getting Started with Oracle BPEL Process

Manager

This chapter describes how to get started with Oracle BPEL Process Manager. BPEL
process creation and validation are described, along with key BPEL design features
such as activities, partner links, adapters, and monitors.

This chapter includes the following sections:

• Introduction to the BPEL Process Service Component

• Introduction to Activities

• Introduction to Partner Links

• Creating a Partner Link

• Introduction to Adapters

• Introduction to BPEL Process Monitors

4.1 Introduction to the BPEL Process Service Component
This section provides an introduction to the BPEL process service component in the
design environment.

4.1.1 How to Add a BPEL Process Service Component
You add BPEL process service components to SOA composite applications in the .

To add a BPEL process service component:

1. Follow the instructions in Table 4-1 to start Oracle JDeveloper.

Table 4-1 Starting Oracle JDeveloper

To Start... On Windows... On UNIX...

Oracle JDeveloper
a. Click JDev_Oracle_Home

\jdeveloper\JDev\bin

\jdev.exe or create a shortcut.

a. Go to $ORACLE_HOME/jdeveloper/jdev/
bin/.

b. Execute the following command:

./jdev

2. Add a BPEL process service component through one of the following methods:

As a service component in an existing SOA composite application:

Getting Started with Oracle BPEL Process Manager 4-1

From the Components section of the Components window, drag a BPEL Process
service component into the . This invokes the Create BPEL Process dialog shown
in Figure 4-1.

In a new application:

a. From the Applications window, select File > New > Application.

b. Under General in the Categories list, select Applications.

c. In the Items list, select SOA Application, and click OK.

This starts the Create SOA Application wizard.

d. In the Application Name dialog, enter an application name in the Application
Name field.

e. In the Directory field, accept the default location or enter a new directory
path in which to create the SOA composite application.

f. Click Next.

g. In the Project Name dialog, enter a name in the Project Name field.

h. In the Directory field, accept the default location or enter a new directory
path in which to create the project.

i. Click Next.

j. In the Start from section, ensure that Standard Composite is selected. The
other selection, SOA Template, enables you to create a reusable part of a SOA
project to bootstrap new projects. For more information, see Oracle SOA Suite
Templates and Reusable Subprocesses .

k. In the Project SOA Settings dialog, select Composite With BPEL Process.

l. Click Finish.

This invokes the Create BPEL Process dialog shown in Figure 4-1.

Introduction to the BPEL Process Service Component

4-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 4-1 Create BPEL Process Dialog

3. Provide the required details, as described in Table 4-2.

Note:

You cannot use BPEL 1.1 and BPEL 2.0 syntax in the same .bpel file.
However, you can include BPEL 1.1 and BPEL 2.0 projects in the same SOA
composite application.

Table 4-2 Create BPEL Process Dialog

Field Description

BPEL
Specification

Select the type of BPEL process to create.

• BPEL 2.0 Specification

Creates a BPEL project that supports the BPEL 2.0 specification.
This is the default selection.

• BPEL 1.1 Specification

Creates a BPEL project that supports the BPEL 1.1 specification.

Introduction to the BPEL Process Service Component

Getting Started with Oracle BPEL Process Manager 4-3

Table 4-2 (Cont.) Create BPEL Process Dialog

Field Description

Name Enter a name for the BPEL process or accept the default name. The
name you enter becomes the file name for the BPEL process and
Web Services Description Language (WSDL) files in the
Applications window.

Always use completely unique names when creating BPEL
processes. Do not create the following:

• A process name that begins with a number (for example,
1SayHello)

• A process name that includes a dash (for example, Say-Hello)
• Two processes with the same name, but with different

capitalization (for example, SayHello and sayhello).

This is particularly important for business intelligence (BI) data
object names, which are generated on the Oracle BAM server in
all upper case format. For example, if you create a BPEL
process named BPELProcess1, a BI name of
BI_DEFAULT_PROJECT1_BPELPROCESS1 is generated for the
Oracle BAM BI data object after deployment. If you create two
BPEL processes, BPELProcess1 and BPELPRocess1, the
same BI data object name is generated.

• A process name that exceeds 500 characters.
• A non-ASCII process name. The BPEL process name is used in

directory and file names of the SOA project, which can cause
problems.

Namespace Use the default namespace path or enter a custom path.

Directory Specify a directory in which to place BPEL process service
component artifacts or accept the default directory of
project_root_directory/SOA/BPEL.

You can change the directory path, but ensure that the directory is
beneath the SOA folder (that is, project_root_directory/SOA).
If you specify a directory outside of SOA, an error message is
displayed and the BPEL process is not created.

Introduction to the BPEL Process Service Component

4-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 4-2 (Cont.) Create BPEL Process Dialog

Field Description

Template Select a template based on the type of BPEL process service
component you want to design. A template provides a basic set of
default files in the Applications window (process_name.wsdl
and process_name.bpel) with which to begin designing your
BPEL process service component.

• Asynchronous BPEL Process: Creates an asynchronous process
with a default receive activity to initiate the BPEL process
service component flow and an invoke activity to
asynchronously call back the client. This type is selected by
default. For more information, see Invoking an Asynchronous
Web Service from a BPEL Process.

• Synchronous BPEL Process: Creates a synchronous process
with a default receive activity to initiate the BPEL process
service component flow and a reply activity to return the
results. For more information, see Invoking a Synchronous
Web Service from a BPEL Process.

• One Way BPEL Process: Creates a process with a one-way call
interface definition.

• Define Service Later: Select to create an empty BPEL process
service component with no activities.

• Base on a WSDL: Creates a BPEL process with an interface
defined by an existing WSDL file. You must specify the WSDL
Uniform Resource Locator (URL), port type, and callback port
type to use.

• Subscribe to Events: Creates a BPEL process in which you can
subscribe to a business event. After selecting this option, the
dialog refreshes to display an event table. Click the Add icon to
select an event to which to subscribe. Your selection is then
displayed in the event table. You can then select the consistency
level and whether to publish this event. You can also click the
Filter icon to create a filter expression for the selected event.
This selection launches the Expression Builder dialog. For more
information, see Using Business Events and the Event Delivery
Network.

Service Name Accept the default value or enter the name of the service this process
is exposing. When you open an invoke, receive, OnMessage, or
reply activity, the service name appears by default in the Partner
Link field. This name is the same name as the partner link.

Expose as a
SOAP Service

Select this check box to create a BPEL process service component
that is automatically connected (wired) to an inbound simple object
access protocol (SOAP) web service binding component. If you do
not select this check box, the BPEL process service component is
created as a standalone component in the SOA Composite Editor.
You can explicitly associate the BPEL process service component
with a service at a later time. This check box is selected by default.

Introduction to the BPEL Process Service Component

Getting Started with Oracle BPEL Process Manager 4-5

Table 4-2 (Cont.) Create BPEL Process Dialog

Field Description

Delivery

Note: This field is
displayed if you
selected one of
these templates in
the Template list:

• Asynchrono
us BPEL
Process

• One Way
BPEL
Process

• Subscribe to
Events

Set the persistence policy of the process in the delivery layer. This
list enables you to specify a value for the oneWayDeliveryPolicy
deployment descriptor property. The possible values are:

• async.persist: Messages are persisted in the database. With this
setting, reliability is obtained with some performance impact
on the database. In some cases, overall system performance can
be impacted. This is the default value.

• async.cache: Incoming delivery messages are kept only in the
in-memory cache. If performance is preferred over reliability,
consider this setting. When set to async.cache, if the rate at
which one-way messages arrive is much higher than the rate at
which they are delivered, or if the server fails, messages can be
lost. In addition, the system can become overloaded (messages
become backlogged in the scheduled queue) and you can
receive out-of-memory errors. Consult your own use case
scenarios to determine if this setting is appropriate.

When you set oneWayDeliveryPolicy to async.cache in
high availability environments, invoke and callback messages
in the middle of execution at the time of a server crash may be
lost or duplicated. Server failover is not supported for
async.cache. For more information, see High Availability
Guide.

• sync: Direct invocation occurs on the same thread. The
scheduling of messages in the invoke queue is bypassed, and
the BPEL instance is invoked synchronously. In some cases this
setting can improve database performance.

For information about transaction and fault propagation semantics
for this property, see Transaction and Fault Propagation Semantics
in BPEL Processes.

For information about changing the value of this property in the
Property Inspector, see How to Define Deployment Descriptor
Properties in the Property Inspector.

Introduction to the BPEL Process Service Component

4-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 4-2 (Cont.) Create BPEL Process Dialog

Field Description

Transaction

Note: This field is
displayed if you
selected
Synchronous
BPEL Process in
the Template list.

Set the transaction behavior of the BPEL instance for initiating calls.
This list enables you to specify a value for the transaction
deployment descriptor property. The possible values are:

• required: In request/response (initiating) environments, this
setting joins a caller's transaction (if there is one) or creates a
new transaction (if there is no transaction). In one-way,
initiating environments in which the Delivery list value
(oneWayDeliveryPolicy property) is set to sync, the invoke
message is processed using the same thread in the same
transaction. This is the default value.

• requiresNew: A new transaction is created for the execution,
and the existing transaction (if there is one) is suspended. This
behavior is true for both request/response (initiating)
environments and one-way, initiating environments in which
the Delivery list value (oneWayDeliveryPolicy property) is
set to sync.

• notSupported: Enables activities of business processes to be
executed without a transaction.

Note: This property does not apply for midprocess receive activities.
In those cases, another thread in another transaction is used to
process the message. This is because a correlation is needed and it is
always done asynchronously.

For information about transaction and fault propagation semantics
for this property, see Transaction and Fault Propagation Semantics
in BPEL Processes.

For information about changing the value of this property in the
Property Inspector, see How to Define Deployment Descriptor
Properties in the Property Inspector.

Input Accept the default input XSD schema or click the Search icon to
select a different XSD. If you click the Search icon, the Type Chooser
dialog appears. Browse the imported schemas and select the input
element (for example, a purchase order). You can also import an
existing schema or WSDL in the Type Chooser dialog.

The Type Chooser dialog displays information based on the context
of its use. For example, if selecting a simple, message, or element
type for a variable, the dialog displays XML schema simple types,
WSDL file message types, or XML schema elements, respectively. If
selecting a message part type, the dialog displays project schema
files, XML schema simple types, and project WSDL files.

Output Accept the default output XSD schema or click the Search icon to
select a different XSD. If you click the Search icon, the Type Chooser
dialog appears. Browse the imported schemas and select the output
element (for example, a purchase order).

4. Click OK.

Oracle BPEL Designer displays the sections shown in Figure 4-2.

Introduction to the BPEL Process Service Component

Getting Started with Oracle BPEL Process Manager 4-7

Figure 4-2 Oracle BPEL Designer Sections

Each section of this view enables you to perform specific design and deployment
tasks. Table 4-3 identifies the sections listed in Figure 4-2.

Introduction to the BPEL Process Service Component

4-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 4-3 Oracle JDeveloper Sections

Element Description

Applications window
(Upper left)

Displays the directories and files of a SOA project. Key
directories and files beneath the SOA folder include the
following:

• BPEL

Displays the BPEL process service component file (.bpel).
• Events

Displays the business event files (.edn).
• Schemas

Displays the BPEL process schema files.
• testsuites

Displays the test suite files. For more information, see
Automating Testing of SOA Composite Applications.

• Transformations

Displays the transformation XSLT (.xsl) and XQuery
(.xqy) mapper files.

• WSDLs

Displays the BPEL process WSDL files.
• composite_name

Describes the entire SOA composite application
(sometimes referred to as the composite.xml file). For
more information about this file, see What Happens
When You Create a SOA Application and Project.

Oracle BPEL Designer
(Design tab)

Provides a graphical view of the BPEL process service
component that you design. This view displays when you
perform one of the following actions:

• Double-click the .bpel file name in the Applications
window.

• Click the Design tab at the bottom of the designer with
the .bpel file selected.

• Double-click the BPEL process component in the SOA
Composite Editor.

As you design the BPEL process service component by
dragging activities, creating partner links, and so on, the
Design window changes.

Introduction to the BPEL Process Service Component

Getting Started with Oracle BPEL Process Manager 4-9

Table 4-3 (Cont.) Oracle JDeveloper Sections

Element Description

Components window
(Upper right)

Displays the available activities to add to the BPEL process
service component. Activities are the building blocks. The
BPEL Constructs, Subprocesses (initially empty), and Oracle
Extensions selections of the Components window display a
set of activities and subprocesses that you drag into the
designer of the BPEL process service component. The
Components window displays only those pages relevant to
the state of the designer. BPEL Constructs, Subprocesses, and
Oracle Extensions are nearly always visible. However, if you
are designing a transformation in a transform activity, the
Components window only displays selections relevant to that
activity, such as String Functions, Mathematical Functions,
and Node-set Functions.

Structure window
(Lower left)

Provides a structural view of the data in the BPEL process
service component currently selected in the designer. You can
perform a variety of tasks from this section, including:

• Importing schemas.
• Defining message types.
• Managing (creating, editing, and deleting) elements such

as variables, aliases, correlation sets, and partner links.
• Editing activities in the BPEL process flow sequence that

displays in the designer.

Log window (Lower
middle)

Displays messages about the status of validation and
compilation. To ensure that a BPEL process service component
validates correctly, you must ensure that the following
information is correct:

• The BPEL process service component must have an input
variable.

• A partner link must be selected.
• A partner role must be selected.
• The operation must not be empty.
• The input variable type must match the partner link

operation type.
If deployment is unsuccessful, messages appear that describe
the type and location of the error.

Source tab View the syntax inside the BPEL process service component
files. As you drag activities and partner links, and perform
other tasks, the syntax in these source files is immediately
updated to reflect these changes.

History tab Displays the revision history of a file and read-only and
editable versions of a file side-by-side.

Property Inspector Displays details about an activity. Single-click an activity in
the Design window to open it for editing. For more
information, see How to Edit BPEL Activities in the Property
Inspector.

Introduction to the BPEL Process Service Component

4-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

To learn more about these sections, you can also place the cursor in the
appropriate section and press F1 to display online Help.

5. Select Information from the Property Structure list above the Oracle BPEL
Designer to view the BPEL project version (either 1.1 or 2.0). Figure 4-3 provides
details.

Figure 4-3 BPEL Project Version

The Information dialog is displayed.

4.1.2 How to Validate a BPEL Process Service Component
You can syntactically and semantically (for example, the partner links or variables are
not defined in an invoke activity) validate a BPEL process. If validation fails,
information is displayed in the Log window.

To validate a BPEL process service component:

1. In Oracle BPEL Designer, click the green checkmark icon above the BPEL process.
Figure 4-4 provides details.

Introduction to the BPEL Process Service Component

Getting Started with Oracle BPEL Process Manager 4-11

Figure 4-4 Validation Icon in Oracle BPEL Designer

2. View the validation results in the Log window, as shown in Figure 4-5.

Figure 4-5 BPEL Process Validation Results in Log Window

If validation errors occur, messages are displayed in the Log window, as shown in
Figure 4-6.

Figure 4-6 Log Window Validation Results

4.2 Introduction to Activities
Activities are the building blocks of a BPEL process service component. Oracle BPEL
Designer includes a set of activities that you drag into a BPEL process service
component. You then double-click an activity to define its attributes (property values).
Activities enable you to perform specific tasks within a BPEL process service
component. For example, here are several key activities:

Introduction to Activities

4-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• An assign activity enables you to manipulate data, such as copying the contents of
one variable to another. Figure 4-7 shows an assign activity.

Figure 4-7 Assign Activity

• An invoke activity enables you to invoke a service (identified by its partner link)
and specify an operation for this service to perform. Figure 4-8 shows an invoke
activity.

Figure 4-8 Invoke Activity

• A receive activity waits for an asynchronous callback response message from a
service. Figure 4-9 shows a receive activity. A receive activity is also used when a
process is started asynchronously through a partner link.

Figure 4-9 Receive Activity

Figure 4-10 shows an example of a property window (for this example, an invoke
activity).

Introduction to Activities

Getting Started with Oracle BPEL Process Manager 4-13

Figure 4-10 Invoke Activity Example

The invoke activity enables you to specify an operation you want to invoke for the
service (identified by its partner link). The operation can be one-way or request-
response on a port provided by the service. You can also automatically create variables
in an invoke activity. An invoke activity invokes a synchronous service or initiates an
asynchronous web service.

The invoke activity opens a port in the process to send and receive data. It uses this
port to submit required data and receive a response. For synchronous callbacks, only
one port is needed for both the send and the receive functions.

For more information about activities, see BPEL Process Activities and Services.

For information about copying and pasting activities in the same project or between
projects, see How to Copy and Paste Activities in BPEL Projects .

For information about editing activities in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

4.2.1 How to Edit BPEL Activities in the Property Inspector
You can edit the property fields of activities in BPEL 1.1 and 2.0 processes in the
Property Inspector of Oracle BPEL Designer in Oracle JDeveloper. This action is the
same as double-clicking an activity or right-clicking an activity and selecting Edit,
making changes, and clicking Apply or OK.

Introduction to Activities

4-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To edit BPEL activities in the Property Inspector:

1. In Oracle BPEL Designer, single-click an activity. For this example, an XSLT
transform activity is selected in Figure 4-11.

2. The property fields of the activity are displayed for editing in the Property
Inspector below Oracle BPEL Designer.

Figure 4-11 Activity is Displayed for Editing in the Property Inspector

3. Make changes and press the Apply key, or navigate away from the activity by
clicking another activity.

4. Return to the activity you edited and note that the changes have been applied.

You can also edit the actions within a scope activity, such as catch activities,
variable, and so on.

5. Expand a scope activity.

6. In the Property Inspector, click Variables.

The Property Inspector is refreshed to display the property fields for a variable,
including the Add, Edit, and Delete icons. Figure 4-12 provides details.

Introduction to Activities

Getting Started with Oracle BPEL Process Manager 4-15

Figure 4-12 Variable Section of a Scope Activity is Displayed for Editing in the Property Inspector

4.2.2 How to Copy and Paste Activities in BPEL Projects
You can copy and paste activities in the same BPEL project or between BPEL projects.
This prevents you from having to create similar activities from start to finish multiple
times. You can design an activity once and use it in multiple places, editing it as
necessary.

Note:

You can copy an individual OnAlarm activity from one scope activity and
paste it into another scope activity. You can also copy an individual OnAlarm
activity from one pick activity and paste it into another pick activity.

Note the following restrictions:

• You cannot copy activities from a BPEL 1.1 project to a BPEL 2.0 project or from a
BPEL 2.0 project to a BPEL 1.1 project.

• In BPEL 2.0 projects, you cannot copy an individual OnAlarm activity from a pick
activity into a scope activity, or vice versa. However, this type of copying and
pasting is supported in BPEL 1.1 projects.

• When you copy and paste a scope activity, the variables referenced in the first
scope activity are not copied.

To copy and paste activities:

1. Right-click the activity to copy.

2. Select Copy.

3. Go to the project in which to paste the activity.

Introduction to Activities

4-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

4. Perform one of the following tasks:

a. Right-click the activity closest to where you want to paste the activity.

b. Choose to either paste the activity before or after the selected activity.

or

a. Highlight the BPEL process, as shown in Figure 4-13.

Figure 4-13 Selected BPEL Process

b. Right-click and select Paste > Paste Into.

The activity is pasted at the top of the BPEL process.

4.2.3 How to Add a Description of Actions to BPEL Process Activities
You can add a description of actions to a BPEL process activity. This creates a TODO
Tasks icon on the activity. When you place your cursor over this icon, it displays the
description of actions. The description can describe the actions performed by the
activity in the BPEL process service component.

How to add a description of actions to BPEL process activities:

1. Right-click an activity, and select Add TODO Task.

The Add TODO Task dialog is displayed.

2. Add a description of the actions performed by the activity, then click OK.

3. Place the cursor over the TODO Tasks icon to the right of the BPEL activity to
display the description. Figure 4-14 provides details.

Figure 4-14 Description of BPEL Activity

Introduction to Activities

Getting Started with Oracle BPEL Process Manager 4-17

4.3 Introduction to Partner Links
A partner link enables you to define the external services with which the BPEL process
service component is to interact. You can define partner links as services or references
(for example, through a JCA adapter) in the (the recommended method) or within a
BPEL process service component in Oracle BPEL Designer. Figure 4-15 shows the
partner link icon (for this example, named PartnerSupplierMediator).

Figure 4-15 Partner Link Icon

A partner link type characterizes the conversational relationship between two services
by defining the roles played by each service in the conversation and specifying the
port type provided by each service to receive messages within the conversation.

Figure 4-16 shows an example of the attributes of a partner link for a service.

Figure 4-16 Partner Link Dialog

Table 4-4 describes the fields of this dialog.

Table 4-4 Create Partner Link Dialog Fields

Field Description

Name A unique and recognizable name you provide for the partner link.

Process Displays the BPEL process service component name.

Introduction to Partner Links

4-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 4-4 (Cont.) Create Partner Link Dialog Fields

Field Description

WSDL URL The name and location of the WSDL file or Java interface that you
select for the partner link. Click the SOA Service Explorer icon
(second icon from the left above the WSDL URL field) to access a
window for selecting the WSDL file or Java interface to use.

Java interfaces display for selection under the References folder with
a name of javaEJB. If the component with which you are wiring this
partner link uses WSDL files and you select a Java interface and click
OK, a message displays indicating that this component requires a
WSDL interface. If you click Yes, a compatible WSDL file is created
based on the Java interface.

For more information about integrating components that use Java
interfaces into SOA composite applications, see Integrating the Spring
Framework in SOA Composite Applications.

Partner Link Type The partner link defined in the WSDL file.

Partner Role The role performed by the partner link.

My Role The role performed by the BPEL process service component. If this is
a synchronous process case, the BPEL process service component does
not have a role.

Note:

The Partner Link Type, Partner Role, and My Role fields in the Create
Partner Link dialog are defined and required by the BPEL standard.

Best Practice:

As a best practice, always create and wire Oracle Mediator and BPEL process
service components in the SOA Composite Editor, instead of in Oracle BPEL
Designer.

If you add an Oracle Mediator or BPEL process partner link to your BPEL
process in Oracle BPEL Designer and connect either partner link to your BPEL
process through an invoke activity, the wiring is not automatically reflected
above in the SOA Composite Editor. You must explicitly wire the Oracle
Mediator or BPEL process service component to your BPEL process again in
the SOA Composite Editor.

This is not an issue with human task or business rule partner links in Oracle
BPEL Designer; both are also automatically wired in the SOA Composite
Editor.

For information about editing partner links in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

Introduction to Partner Links

Getting Started with Oracle BPEL Process Manager 4-19

4.4 Creating a Partner Link
The method by which you create partner links within the BPEL process in Oracle
BPEL Designer impacts how the partner link displays in the . This section describes
this impact. The WSDL file can be on the local operating system or hosted remotely (in
which case you need a URL for the WSDL).

Likewise, creating and wiring a service or reference binding component to a BPEL
process service component in the SOA Composite Editor causes a partner link to
display in Oracle BPEL Designer.

4.4.1 How to Create a Partner Link

To create a partner link:

1. In the SOA Composite Editor, double-click the BPEL process service component.

Oracle BPEL Designer is displayed.

2. In the Components window, expand BPEL Constructs.

3. Drag a Partner Link into the appropriate Partner Links swimlane, as shown in
Figure 4-17.

Figure 4-17 Partner Link Creation in Oracle BPEL Designer

The Create Partner Link dialog appears.

4. Complete the fields for this dialog, as described in Table 4-4.

The following sections describe the impact of partner link creation on the SOA
Composite Editor.

4.4.1.1 Partner Links for an Outbound Adapter

Table 4-5 describes the impact on the .

Creating a Partner Link

4-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 4-5 Impact of Partner Link Creation on the

Creating the Following for a BPEL
Process in Oracle BPEL Designer...

Displays the Following in the ...

A partner link for an outbound adapter • A reference handle for the BPEL process
service component

• A reference representing the outbound
adapter in the composite

• A wire connecting the BPEL process service
component to the adapter reference

Figure 4-18 shows how this method of creation appears in the .

Figure 4-18 Impact

4.4.1.2 Partner Links for an Inbound Adapter

Table 4-6 describes the impact on the .

Table 4-6 Impact of Partner Link Creation on the

Creating the Following for a BPEL
Process in Oracle BPEL Designer...

Displays the Following in the ...

A partner link for an inbound adapter • A service for the BPEL process service
component

• A service representing the inbound adapter
in the composite

• A wire connecting the inbound adapter
service to the BPEL process service
component

Figure 4-19 shows how this method of creation appears in the .

Figure 4-19 Impact

4.4.1.3 Partner Links from an Abstract WSDL to Call a Service

Table 4-7 describes the impact on the .

Creating a Partner Link

Getting Started with Oracle BPEL Process Manager 4-21

Table 4-7 Impact of Partner Link Creation on the

Creating the Following for a BPEL
Process in Oracle BPEL Designer...

Displays the Following in the ...

A partner link from an abstract WSDL to
call a service

A reference handle with an interface and
callback interface defined for the BPEL process
service component

4.4.1.4 Partner Links from an Abstract WSDL to Implement a Service

Table 4-8 describes the impact on the .

Table 4-8 Impact of Partner Link Creation on the

Creating the Following for a BPEL
Process in Oracle BPEL Designer...

Displays the Following in the ...

A partner link is created from an abstract
WSDL to implement a service

A service with an interface and callback
interface for the BPEL process service
component is created.

Note: If an external SOAP reference with the
specified interface and callback interface exists
in the , you can either create a new external
SOAP reference and wire to it or wire to the
existing external SOAP reference.

Figure 4-20 shows how this method of creation appears in the .

Figure 4-20 Impact

4.4.1.5 Partner Links and Human Tasks or Business Rules

Table 4-9 describes the impact on the .

Table 4-9 Impact of Partner Link Creation on the

Creating the Following for a BPEL
Process in Oracle BPEL Designer...

Displays the Following in the ...

A human task or business rule is created • A human task or business rule in the
composite

• A reference for the BPEL process service
component

• A wire connecting the BPEL process service
component to the new human task or
business rule

Figure 4-21 shows how this method of creation appears in the .

Creating a Partner Link

4-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 4-21 Impact

4.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle
Mediator

Table 4-10 describes the impact on the .

Table 4-10 Impact of Partner Link Creation on the

Creating the Following for a BPEL
Process in Oracle BPEL Designer...

Displays the Following in the ...

A partner link by dragging an existing
human task, business rule, or mediator
service component into the BPEL process

• A reference for the BPEL process service
component

• A wire connecting the BPEL process service
component to the existing human task,
business rule, or mediator

Figure 4-22 shows how this method of creation appears in the .

Figure 4-22 Impact

4.5 Introduction to Adapters
The Partner Link dialog shown in Figure 4-16 also enables you to take advantage of
another key feature that and Oracle JDeveloper provide. Click the Service Wizard icon
shown in Figure 4-23 to access the Adapter Configuration wizard.

Figure 4-23 Defining an Adapter

Adapters enable you to integrate the BPEL process service component (and, therefore,
the SOA composite application as a whole) with access to file systems, FTP servers,
database tables, database queues, sockets, Java Message Services (JMS), Oracle User
Messaging Service, and more. You can also integrate with services such as HTTP
binding, direct binding, EJB, and others. This wizard enables you to configure the
types of services and adapters shown in Figure 4-24 for use with the BPEL process
service component:

Introduction to Adapters

Getting Started with Oracle BPEL Process Manager 4-23

Figure 4-24 Service and Adapter Types

For information about the service and adapter types, see Getting Started with Binding
Components.

When you select an adapter type (for this example, File was selected in Figure 4-24),
the dialog shown in Figure 4-25 prompts you to enter a name. When the wizard
completes, a WSDL file by this name appears in the Applications window under the
WSDLs folder. The service name must be unique within the project. This file includes
the adapter configuration settings you specify with this wizard. Other configuration
files (such as header files and files specific to the adapter) are also created and display
in the Applications window.

Figure 4-25 Adapter Service Name

The Adapter Configuration wizard dialogs that appear after the this dialog are based
on the adapter type you selected.

You can also add adapters to your SOA composite application as services or references
in the .

Introduction to Adapters

4-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For more information about technology adapters, see Understanding Technology
Adapters.

4.6 Introduction to BPEL Process Monitors
You can configure BPEL process monitors in Oracle BPEL Designer by selecting
Change to Monitor view at the top of Oracle BPEL Designer. Figure 4-26 provides
details. BPEL process monitors can send data to Oracle BAM for analysis and
graphical display through the Oracle BAM adapter.

Figure 4-26 BPEL Process Monitors

For information about business indicators, intervals, and counters, see the Oracle SOA
Suite 11g documentation:

http://docs.oracle.com/cd/E28280_01/dev.1111/e10224/bam_adapter.htm#BABIJBCC

Introduction to BPEL Process Monitors

Getting Started with Oracle BPEL Process Manager 4-25

http://docs.oracle.com/cd/E28280_01/dev.1111/e10224/bam_adapter.htm#BABIJBCC

Introduction to BPEL Process Monitors

4-26 Developing SOA Applications with Oracle SOA Suite

5
Introduction to Interaction Patterns in a

BPEL Process

This chapter describes common interaction patterns between a BPEL process service
component and an external service, including one-way messages, synchronous and
asynchronous interactions, one request - multiple and single responses, one request -
mandatory and optional responses, partial processing, and multiple application
interactions. It also describes the best use practices for each.

This chapter includes the following sections:

• Introduction to One-Way Messages

• Introduction to Synchronous Interactions

• Introduction to Asynchronous Interactions

• Introduction to Asynchronous Interactions with a Timeout

• Introduction to Asynchronous Interactions with a Notification Timer

• Introduction to One Request_ Multiple Responses

• Introduction to One Request_ One of Two Possible Responses

• Introduction to One Request_ a Mandatory Response_ and an Optional Response

• Introduction to Partial Processing

• Introduction to Multiple Application Interactions

5.1 Introduction to One-Way Messages
In a one-way message, or fire and forget, the client sends a message to the service (d1
in Figure 5-1), and the service is not required to reply. The client sending the message
does not wait for a response, but continues executing immediately. The following
example shows the portType and operation part of the BPEL process WSDL file
for this environment.

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage" />
 </wsdl:operation>
</wsdl:portType>
. . .

Figure 5-1 provides an overview.

Introduction to Interaction Patterns in a BPEL Process 5-1

Figure 5-1 One-Way Message

5.1.1 BPEL Process Service Component as the Client
As the client, the BPEL process service component needs a valid partner link and an
invoke activity with the target service and the message. As with all partner activities,
the Web Services Description Language (WSDL) file defines the interaction.

5.1.2 BPEL Process Service Component as the Service
To accept a message from the client, the BPEL process service component needs a
receive activity.

5.2 Introduction to Synchronous Interactions
In a synchronous interaction, a client sends a request to a service (d1 in Figure 5-2),
and receives an immediate reply (d2 in Figure 5-2). A BPEL process service component
can be at either end of this interaction, and must be coded based on its role as either
the client or the service. For example, a user requests a subscription to an online
newspaper and immediately receives email confirmation that their request has been
accepted. The following example shows the portType and operation part of the
BPEL process WSDL file for this environment.

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage" />
 <wsdl:output message="client:BPELProcess1ResponseMessage"/>
 </wsdl:operation>
</wsdl:portType>

Figure 5-2 provides an overview.

Figure 5-2 Synchronous Interaction

Introduction to Synchronous Interactions

5-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

5.2.1 BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of a synchronous
transaction, it needs an invoke activity. The port on the client side both sends the
request and receives the reply. As with all partner activities, the WSDL file defines the
interaction.

5.2.2 BPEL Process Service Component as the Service
When the BPEL process service component is on the service side of a synchronous
transaction, it needs a receive activity to accept the incoming request, and a reply
activity to return either the requested information or an error message (a fault; f1 in
Figure 5-2) defined in the WSDL.

For more information about synchronous interactions, see Invoking a Synchronous
Web Service from a BPEL Process.

5.2.3 Synchronous BPEL Process Invoking an Asynchronous Process
If a synchronous BPEL process invokes an asynchronous process, the callback
response message is not acknowledged by the BPEL process and the process times out
waiting for a response. This type of interaction pattern is not supported.

5.3 Introduction to Asynchronous Interactions
In an asynchronous interaction, a client sends a request to a service and waits until the
service replies. The following example shows the portType and operation part of
the BPEL process WSDL file for this environment.

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage"/>
 </wsdl:operation>
</wsdl:portType>

. . .
<wsdl:portType name="BPELProcess1Callback">
 <wsdl:operation name="processResponse">
 <wsdl:input message="client:BPELProcess1ResponseMessage"/>
 </wsdl:operation>
</wsdl:portType>

Figure 5-3 provides an overview.

Introduction to Asynchronous Interactions

Introduction to Interaction Patterns in a BPEL Process 5-3

Figure 5-3 Asynchronous Interaction

5.3.1 BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of an asynchronous
transaction, it needs an invoke activity to send the request and a receive activity to
receive the reply. As with all partner activities, the WSDL file defines the interaction.

5.3.2 BPEL Process Service Component as the Service
As with a synchronous transaction, when the BPEL process service component is on
the service side of an asynchronous transaction, it needs a receive activity to accept the
incoming request and an invoke activity to return either the requested information or
a fault. Note the difference between this and responding from a synchronous BPEL
process: a synchronous BPEL process uses a reply activity to respond to the client and
an asynchronous service uses an invoke activity.

For more information about asynchronous interactions, see Invoking an
Asynchronous Web Service from a BPEL Process.

5.4 Introduction to Asynchronous Interactions with a Timeout
In an asynchronous interaction with a timeout (which you perform in BPEL with a
pick activity), a client sends a request to a service and waits until it receives a reply, or
until a certain time limit is reached, whichever comes first. For example, a client
requests a loan offer. If the client does not receive a loan offer reply within a specified
amount of time, the request is canceled. Figure 5-4 provides an overview.

Introduction to Asynchronous Interactions with a Timeout

5-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 5-4 Asynchronous Interaction with Timeout

5.4.1 BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of an asynchronous
transaction with a timeout, it needs an invoke activity to send the request and a pick
activity with two branches: an onMessage branch and an onAlarm branch. If the reply
comes after the time limit has expired, the message goes to the dead letter queue. As
with all partner activities, the WSDL file defines the interaction.

For more information about asynchronous interactions with a timeout, see Selecting
Between Continuing or Waiting on a Process with a Pick Activity.

5.4.2 BPEL Process Service Component as the Service
The behavior of the BPEL process service component as a service matches the behavior
with the asynchronous interaction with the BPEL process service component as the
service.

5.5 Introduction to Asynchronous Interactions with a Notification Timer
In an asynchronous interaction with a notification time, a client sends a request to a
service and waits for a reply, although a notification is sent after a timer expires. The
client continues to wait for the reply from the service even after the timer has expired.
Figure 5-5 provides an overview.

Introduction to Asynchronous Interactions with a Notification Timer

Introduction to Interaction Patterns in a BPEL Process 5-5

Figure 5-5 Asynchronous Interaction with a Notification Time

5.5.1 BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it
needs a scope activity containing an invoke activity to send the request, and a receive
activity to accept the reply. The onAlarm handler of the scope activity has a time limit
and instructions on what to do when the timer expires. For example, wait 30 minutes,
then send a warning indicating that the process is taking longer than expected. As
with all partner activities, the WSDL file defines the interaction.

5.5.2 BPEL Process Service Component as the Service
The behavior for the BPEL process service component as the service matches the
behavior with the asynchronous interaction with the BPEL process service component
as the service.

5.6 Introduction to One Request, Multiple Responses
In this interaction type, the client sends a single request to a service and receives
multiple responses in return. For example, the request can be to order a product
online, and the first response can be the estimated delivery time, the second response a
payment confirmation, and the third response a notification that the product has
shipped. In this example, the number and types of responses are expected. Figure 5-6
provides an overview.

Introduction to One Request, Multiple Responses

5-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 5-6 One Request, Multiple Responses

5.6.1 BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it
needs an invoke activity to send the request, and a sequence activity with three receive
activities, one for each reply. As with all partner activities, the WSDL file defines the
interaction.

5.6.2 BPEL Process Service Component as the Service
The BPEL service needs a receive activity to accept the message from the client, and a
sequence attribute with three invoke activities, one for each reply.

5.7 Introduction to One Request, One of Two Possible Responses
In an interaction using one request and one of two possible responses, the client sends
a single request to a service and receives one of two possible responses. For example,
the request can be to order a product online, and the first response can be either an in-
stock message or an out-of-stock message. Figure 5-7 provides an overview.

Introduction to One Request, One of Two Possible Responses

Introduction to Interaction Patterns in a BPEL Process 5-7

Figure 5-7 One Request, One of Two Possible Responses

5.7.1 BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it
needs the following:

• An invoke activity to send the request

• A pick activity with two branches: one onMessage for the in-stock response and
instructions on what to do if an in-stock message is received

• A second onMessage for the out-of-stock response and instructions on what to do
if an out-of-stock message is received

As with all partner activities, the WSDL file defines the interaction.

For more information about interactions using one request and one of two possible
responses, see Selecting Between Continuing or Waiting on a Process with a Pick
Activity.

5.7.2 BPEL Process Service Component as the Service
The BPEL service needs a receive activity to accept the message from the client, and a
switch activity (in BPEL 1.1) or an if activity (in BPEL 2.0) with two branches, one with
an invoke activity sending the in-stock message if the item is available, and a second
branch with an invoke activity sending the out-of-stock message if the item is not
available.

5.8 Introduction to One Request, a Mandatory Response, and an Optional
Response

In this type of interaction, the client sends a single request to a service and receives
one or two responses. Here, the request is to order a product online. If the product is
delayed, the service sends a message letting the customer know. In any case, the

Introduction to One Request, a Mandatory Response, and an Optional Response

5-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

service always sends a notification when the item ships. Figure 5-8 provides an
overview.

Figure 5-8 One Request, a Mandatory Response, and an Optional Response

5.8.1 BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it
needs a scope activity containing the invoke activity to send the request, and a receive
activity to accept the mandatory reply. The onMessage handler of the scope activity is
set to accept the optional message and instructions on what to do if the optional
message is received (for example, notify you that the product has been delayed). The
client BPEL process service component waits to receive the mandatory reply. If the
mandatory reply is received first, the BPEL process service component continues
without waiting for the optional reply. As with all partner activities, the WSDL file
defines the interaction.

5.8.2 BPEL Process Service Component as the Service
The BPEL service needs a scope activity containing the receive activity and an invoke
activity to send the mandatory shipping message, and the scope's onAlarm handler to
send the optional delayed message if a timer expires (for example, send the delayed
message if the item is not shipped in 24 hours).

5.9 Introduction to Partial Processing
In partial processing, the client sends a request to a service and receives an immediate
response, but processing continues on the service side. For example, the client sends a
request to purchase a vacation package, and the service sends an immediate reply
confirming the purchase, then continues on to book the hotel, the flight, the rental car,
and so on. This pattern can also include multiple shot callbacks, followed by longer-
term processing. Figure 5-9 provides an overview.

Introduction to Partial Processing

Introduction to Interaction Patterns in a BPEL Process 5-9

Figure 5-9 Partial Processing

5.9.1 BPEL Process Service Component as the Client
In this case, the BPEL client is simple; it needs an invoke activity for each request and a
receive activity for each reply for asynchronous transactions, or just an invoke activity
for each synchronous transaction. Once those transactions are complete, the remaining
work is handled by the service. As with all partner activities, the WSDL file defines the
interaction.

5.9.2 BPEL Process Service Component as the Service
The BPEL service needs a receive activity for each request from the client, and an
invoke activity for each response. Once the responses are finished, the BPEL process
service component as the service can continue with its processing, using the
information gathered in the interaction to perform the necessary tasks without any
further input from the client.

5.10 Introduction to Multiple Application Interactions
In some cases, there are more than two applications involved in a transaction, for
example, a buyer, seller, and shipper. In this case, the buyer sends a request to the
seller, the seller sends a request to the shipper, and the shipper sends a notification to
the buyer. This A-to-B-to-C-to-A transaction pattern can handle many transactions at
the same time. Therefore, a mechanism is required for keeping track of which message
goes where. Figure 5-10 provides an overview.

As with all partner activities, the WSDL file defines the interaction.

Introduction to Multiple Application Interactions

5-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 5-10 Multiple Party Interactions

This kind of coordination can be managed using WS-Addressing or correlation sets.
For more information about both, see Invoking an Asynchronous Web Service from a
BPEL Process.

Introduction to Multiple Application Interactions

Introduction to Interaction Patterns in a BPEL Process 5-11

Introduction to Multiple Application Interactions

5-12 Developing SOA Applications with Oracle SOA Suite

6
Manipulating XML Data in a BPEL Process

This chapter describes how to manipulate XML data in a BPEL process service
component. This chapter provides a variety of examples. Topics include how to work
with variables, sequences, and arrays; use XPath expressions; and perform tasks such
as mathematical calculations. Supported specifications are also referenced.

This chapter includes the following sections:

• Introduction to Manipulating XML Data in BPEL Processes

• Delegating XML Data Operations to Data Provider Services

• Translating Between Native Data and XML

• Using Standalone SDO-based Variables

• Initializing a Variable with Expression Constants or Literal XML

• Copying Between Variables

• Moving and Copying Variables in the Structure Window

• Accessing Fields in Element and Message Type Variables

• Assigning Numeric Values

• Using Mathematical Calculations with XPath Standards

• Assigning String Literals

• Concatenating Strings

• Assigning Boolean Values

• Assigning a Date or Time

• Manipulating Attributes

• Manipulating XML Data with bpelx Extensions

• Validating XML Data

• Using Element Variables in Message Exchange Activities in BPEL 2.0

• Mapping WSDL Message Parts in BPEL 2.0

• Importing Process Definitions in BPEL 2.0

• Manipulating XML Data Sequences That Resemble Arrays

• Converting from a String to an XML Element

Manipulating XML Data in a BPEL Process 6-1

• Understanding Document-Style and RPC-Style WSDL Differences

• Manipulating SOAP Headers in BPEL

• Declaring Extension Namespaces in BPEL 2.0

Note:

Most of the examples in this chapter assume that the WSDL file defining the
associated message types is document-literal style rather than the remote
procedure call (RPC) style. There is a difference in how XPath query strings
are formed for RPC-style WSDL definitions. If you are working with a type
defined in an RPC WSDL file, see Understanding Document-Style and RPC-
Style WSDL Differences.

6.1 Introduction to Manipulating XML Data in BPEL Processes
This section provides an introduction to using XML data in BPEL processes.

6.1.1 XML Data in BPEL Processes
In a BPEL process service component, most pieces of data are in XML format. This
includes the messages passed to and from the BPEL process service component, the
messages exchanged with external services, and the local variables used by the
process. You define the types for these messages and variables with the XML schema,
usually in one of the following:

• Web Services Description Language (WSDL) file for the flow

• WSDL files for the services it invokes

• XSD file referenced by those WSDL files

Therefore, most variables in BPEL are XML data, and any BPEL process service
component uses much of its code to manipulate these XML variables. This typically
includes performing data transformation between representations required for
different services, and local manipulation of data (for example, to combine the results
from several service invocations).

BPEL also supports service data object (SDO) variables, which are not in an XML
format, but rather in a memory structure format.

6.1.2 Data Manipulation and XPath Standards in Assign Activities
The starting point for data manipulation in BPEL is the assign activity, which builds
on the XPath standard. XPath queries, expressions, and functions play a large part in
this type of manipulation.

In addition, more advanced methods are available that involve using XQuery, XSLT,
or Java, usually to do more complex data transformation or manipulation.

This section provides a general overview of how to manipulate XML data in BPEL. It
summarizes the key building blocks used in various combinations and provides
examples. The remaining sections in this chapter discuss and illustrate how to apply
these building blocks to perform specific tasks.

You use the assign activity to copy data from one XML variable to another, or to
calculate the value of an expression and store it in a variable. A copy element within

Introduction to Manipulating XML Data in BPEL Processes

6-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

the activity specifies the source and target of the assignment (what to copy from and
to), which must be of compatible types.

The following example shows the formal syntax for BPEL version 1.1, as described in
the :

<assign standard-attributes>
 standard-elements
 <copy>
 from-spec
 to-spec
 </copy>
</assign>

The next example shows the formal syntax for BPEL version 2.0, as described in the .
The keepSrcElementName attribute specifies whether the element name of the
destination (as selected by the to-spec) is replaced by the element name of the
source (as selected by the from-spec) during the copy operation. When
keepSrcElementName is set to no (the default value), the name (that is, the
namespace name and local name properties) of the original destination element is
used as the name of the resulting element. When keepSrcElementName is set to
yes, the source element name is used as the name of the resulting destination element.

<assign validate="yes|no"? standard-attributes>
 standard-elements
 (
 <copy keepSrcElementName="yes|no"? ignoreMissingFromData="yes|no"?>
 from-spec
 to-spec
 </copy>
 . . .
 . . .
</assign>

This syntax is described in detail in both specifications. The from-spec and to-spec
typically specify a variable or variable part, as shown in the following example:

<assign>
 <copy>
 <from variable="c1" part="address"/>
 <to variable="c3"/>
 </copy>
</assign>

When you use Oracle JDeveloper, you supply assign activity details in a Copy Rules
dialog that includes a From section and a To section. This reflects the preceding BPEL
source code syntax.

XPath standards play a key role in the assign activity. Brief examples are shown here
as an introduction. Examples with more context and explanation are provided in the
sections that follow.

• XPath queries

An XPath query selects a field within a source or target variable part. The from or
to clause can include a query attribute whose value is an XPath query string. The
following code provides an example:

<from variable="input" part="payload"
 query="/p:CreditFlowRequest/p:ssn"/>

Introduction to Manipulating XML Data in BPEL Processes

Manipulating XML Data in a BPEL Process 6-3

The value of the query attribute must be a location path that selects exactly one
node. You can find further details about the query attribute and XPath standards
syntax in the (section 14.3) or (section 8.4), and the , respectively.

• XPath expressions

You use an XPath expression (specified in an expression attribute in the from
clause) to indicate a value to be stored in a variable. For example:

<from expression="100"/>

The expression can be any general expression (that is, an XPath expression that
evaluates to any XPath value type). Similarly, the value of an expression attribute
must return exactly one node or one object only when it is used in the from clause
within a copy operation. For more information about XPath expressions, see
section 9.1.4 of the .

Within XPath expressions, you can call the following types of functions:

• Core XPath functions

XPath supports a large number of built-in functions, including functions for string
manipulation (such as concat), numeric functions (such as sum), and others.

<from expression="concat('string one', 'string two')"/>

For a complete list of the functions built into XPath standards, see section 4 of the .

• BPEL XPath extension functions

BPEL adds several extension functions to the core XPath core functions, enabling
XPath expressions to access information from a process.

– For BPEL 1.1, the extensions are defined in the standard BPEL namespace
http://schemas.xmlsoap.org/ws/2003/03/business-process/
and indicated by the prefix bpws:

<from expression= "bpws:getVariableData('input', 'payload', '/p:value') +
1"/>

For more information, see sections 9.1 and 14.1 of the . For more information
about getVariableData, see getVariableData.

– For BPEL 2.0, the extensions are also defined in the standard BPEL namespace
http://schemas.xmlsoap.org/ws/2003/03/business-process/.
However, the prefix is bpel:

<from>bpel:getVariableProperty('input', 'propertyName')</from>

For more information, see section 8.3 of the . For more information about
getVariableProperty, see getVariableProperty (For BPEL 2.0).

• Oracle BPEL XPath extension functions

Oracle provides some additional XPath functions that use the capabilities built
into BPEL and XPath standards for adding new functions.

These functions are defined in the namespace http://schemas.oracle.com/
xpath/extension and indicated by the prefix ora:.

• Custom functions

Introduction to Manipulating XML Data in BPEL Processes

6-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

http://schemas.xmlsoap.org/ws/2003/03/business-process/
http://schemas.xmlsoap.org/ws/2003/03/business-process/

Oracle BPEL Process Manager functions are defined in the bpel-xpath-
functions-config.xml file and placed inside the orabpel.jar file. For more
information, see Creating User-Defined XPath Extension Functions.

Sophisticated data manipulation can be difficult to perform with the BPEL assign
activity and the core XPath functions. However, you can perform complex data
manipulation and transformation by using XSLT, Java, or a bpelx operation under an
assign activity (See Manipulating XML Data with bpelx Extensions) or as a web
service. For XSLT, includes XPath functions that execute these transformations.

For more information about XPath and XQuery transformation code examples, see
Creating Transformations with the XSLT Map Editor and Creating Transformations
with the XQuery Mapper.

For more information about the assign activity, see Assign Activity.

Note:

Passing large schemas through an assign activity can cause Oracle JDeveloper
to freeze up and run low on memory if you right-click the target or source
payload node in the Edit Assign dialog and select Expand All Child Nodes.
As a workaround, manually expand the payload elements.

6.2 Delegating XML Data Operations to Data Provider Services
You can specify BPEL data operations to be performed by an underlying data provider
service through use of the entity variable. The data provider service performs the data
operations in a data store behind the scenes and without use of other data store-
related features provided by Oracle SOA Suite (for example, the database adapter).
This action enhances Oracle SOA Suite runtime performance and incorporates native
features of the underlying data provider service during compilation and runtime.

The entity variable can be used with an Oracle Application Development Framework
(ADF) Business Component data provider service using SDO-based data.

Before Release 11g, variables and messages exchanged within a BPEL business process
were a disconnected payload (a snapshot of data returned by a web service) placed
into an XML structure. In some cases, the user required this type of fit. In other cases,
this fit presented challenges.

The entity variable addresses the following challenges of pre-11g releases:

• Extensive data conversion

If the underlying data was not in XML form, data conversion (for example,
translating delimited text to XML) was required. If the underlying size of the data
was large, the processing potentially impacted performance.

• Stale snapshot data

Variables (including WSDL messages) in BPEL processes were disconnected
payload. In some cases, this was required. In other cases, you wanted a variable to
represent the most recent data being modified by other applications outside
Oracle BPEL Process Manager. This meant the disconnected data model provided
a stale data set that did not fit all needs. The snapshot also duplicated data, which
impacted performance when the data size was large.

• Loss of native data behavior

Delegating XML Data Operations to Data Provider Services

Manipulating XML Data in a BPEL Process 6-5

Some data conversion implementation required data structure enforcement or
business data logic beyond the XML schema. For example, the start date needed
to be smaller than the end date. When the variable was a disconnected payload,
validation occurred only during related web service invocation. Optionally
performing the extra business data logic after certain operations, but before web
service invocation, was sometimes preferred.

To address these challenges starting with Release 11g and continuing with Release 12c,
you create an entity variable during variable declaration. An entity variable acts as a
data handle to access and plug in different data provider service technologies behind
the scenes. During compilation and runtime, Oracle BPEL Process Manager delegates
data operations to the underlying data provider service.

Table 6-1 provides an example of how data conversion was performed in previous
releases (using the database adapter as an example) and in releases 11g and 12c with
the entity variable.

Table 6-1 Data Manipulation Capabilities in Previous and Current Releases

10.1.x Releases 11g and 12c Releases When Using the
Entity Variable

Data operations such as explicitly loading
and saving data were performed by the
database adapter in Oracle BPEL Process
Manager. All data (for example, of a purchase
order) was saved in the database dehydration
store.

Data operations such as loading and saving
data are performed automatically by the data
provider service (the Oracle ADF Business
Component application), without asking you
to code any service invocation.

Oracle BPEL Process Manager stores a key
(for example, a purchase order ID (POID))
that points to this data. Oracle BPEL Process
Manager fetches the key when access to data
is requested (the bind entity activity does
this). You must explicitly request the data to
be bound using the key. Any data changes
are persisted by the data provider service in a
database that can be different from the
dehydration store database. This prevents
data duplication.

Data in variables was in document object
model (DOM) form

Data in variables is in SDO form, which
provides for a simpler conversion process
than DOM, especially when the data provider
service understands SDO forms.

Note:

Only BPEL process service components currently allow the use of SDO-
formed variables. If your composite application has an Oracle Mediator
service component wired with an SDO-based Java binding component
reference, the data form of the variable defaults to DOM. In addition, the
features described for 10.1.x releases in Table 6-1 are still supported in
Releases 11g and 12c.

6.2.1 How to Create an Entity Variable
This section describes how to create an entity variable and a binding key in Oracle
JDeveloper.

Delegating XML Data Operations to Data Provider Services

6-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

In Release 10.1.x of Oracle BPEL Process Manager, all variable data was in DOM
format. Starting with Release 11g and continuing with Release 12c, variable data in
SDO format is also supported. DOM and SDO variables in BPEL process service
components are implicitly converted to the required forms. For example, an Oracle
BPEL process service component using DOM-based variables can automatically
convert these variables as required to SDO-based variables in an assign activity, and
vice versa. Both form types are defined in the XSD schema file. No user intervention is
required.

Entity variables also support SDO-formed data. However, unlike the DOM and SDO
variables, the entity variable with SDO-based data enables you to bind a unique key
value to data (for example, a purchase order). Only the key is stored in the
dehydration store; the data requiring conversion is stored with the service of the
Oracle ADF Business Component application. The key points to the data stored in the
service. When the data is required, it is fetched from the data provider service and
placed into memory. The process occurs in two places: the bind entity activity and the
dehydration store. For example, when Oracle BPEL Process Manager rehydrates, it
stores only the key for the entity variable; when it wakes up, it does an implicit bind to
get the current data.

6.2.1.1 Understanding How SDO Works in the Inbound Direction

The SDO binding component service provides the outside world with an entry point
to the composite application, as shown in Figure 6-1.

Figure 6-1 Inbound Direction

You use the and Oracle BPEL Designer to perform the following tasks:

• Define an SDO binding component service and a BPEL process service component
in the composite application.

• Connect (wire) the SDO service and BPEL process service component.

• Define the details of the BPEL process service component.

For more information about using the , see Getting Started with Developing SOA
Composite Applications.

6.2.1.2 Understanding How SDO Works in the Outbound Direction

The SDO binding component reference enables messages to be sent from the
composite application to Oracle ADF Business Component application external
partners in the outside world, as shown in Figure 6-2.

Delegating XML Data Operations to Data Provider Services

Manipulating XML Data in a BPEL Process 6-7

Figure 6-2 Outbound Direction

When the Oracle ADF Business Component application is the external partner link to
the outside world, there is no SDO binding component reference in the that you drag
into the composite application to create outbound communication. Instead,
communication between the composite application and the Oracle ADF Business
Component application occurs as follows:

• The Oracle ADF Business Component application is deployed and automatically
registered as an SDO service in the Service Infrastructure

• Oracle JDeveloper is used to browse for and discover this application as an ADF-
BC service and create a partner link connection.

• The composite.xml file is automatically updated with reference details (the
binding.adf property) when the Oracle ADF Business Component application
service is discovered.

6.2.1.3 Creating an Entity Variable and Choosing a Partner Link

You now create an entity variable and select a partner link for the Oracle ADF
Business Component application. The following example describes how the
OrderProcessor BPEL process service component receives an ID for an order by using
a bind entity activity to point to order data in an Oracle ADF Business Component
data provider service.

Note:

Entity variables are supported on BPEL projects that use version 1.1 or 2.0 of
the BPEL specification.

To create an entity variable and choose a partner link:

1. Go to the Structure window of the BPEL process service component in Oracle
JDeveloper.

2. Right-click the Variables folder and select Expand All Child Nodes.

3. In the second Variables folder, right-click and select Create Variable.

The Create Variable dialog appears.

Delegating XML Data Operations to Data Provider Services

6-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

4. In the Name field, enter a name.

5. Click the Entity Variable check box and select the Search icon to the right of the
Partner Link field.

The Partner Link Chooser dialog appears with a list of available services, including
the SDO service called ADF-BC.

6. Browse for and select the service for the Oracle ADF Business Component
application.

7. Click OK to close the Partner Link Chooser and Create Variable dialogs.

The dialog looks as shown in Figure 6-3.

Figure 6-3 Create Variable Dialog

6.2.1.4 Creating a Binding Key

You now create a key to point to the order data in the Oracle ADF Business
Component data provider service.

To create a binding key:

1. In the Components window, expand Oracle Extensions.

2. Scroll down to the SDO section.

3. Drag a Bind Entity activity into your BPEL process service component. Figure 6-4
provides details.

Delegating XML Data Operations to Data Provider Services

Manipulating XML Data in a BPEL Process 6-9

Figure 6-4 Bind Entity Activity in the Components Window

The Bind Entity dialog appears.

4. In the Name field, enter a name.

5. To the right of the Entity Variable field, click the Search icon.

The Variable Chooser dialog appears.

6. Select the entity variable created in Creating an Entity Variable and Choosing a
Partner Link and click OK.

7. In the Unique Keys section, click the Add icon.

The Specify Key dialog appears. You use this dialog to create a key for retrieving
the order ID from the Oracle ADF Business Component data provider service.

8. Enter the details described in Table 6-2 to define the binding key:

Table 6-2 Specify Key Dialog Fields and Values

Field Value

Key Local Part Enter the local part of the key.

Key Namespace URI Enter the namespace URI for the key.

Key Value Enter the key value expression. This expression must match
the type of a key. The following examples show expression
value keys for a POID key:

• $inputMsg.payload/tns:poid

• bpws:getVariableData('inputmsg','payload'
,'tns:poid')

The POID key for an entity variable typically comes from
another message. If the type of POID key is an integer and
the expression result is a string of ABC, the string-to-integer
fails and the bind entity activity also fails at runtime.

Figure 6-5 shows the Specify Key dialog after completion.

Delegating XML Data Operations to Data Provider Services

6-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 6-5 Specify Key Dialog

9. Click OK to close the Specify Key dialog.

A name-pair value appears in the Unique Keys table, as shown in Figure 6-6.
Design is now complete.

Figure 6-6 Bind Entity Dialog

10. Click OK to close the Bind Entity dialog.

After the Bind Entity activity is executed at runtime, the entity variable is ready to
be used.

For more information about using SDOs, see Developing Fusion Web Applications with
Oracle Application Development Framework. This guide describes how to expose
application modules as web services and publish rows of view data objects as SDOs.
The application module is the ADF framework component that encapsulates business
logic as a set of related business functions.

6.3 Translating Between Native Data and XML
The BPEL process translate activity enables you to translate messages between native
XSD format and XML format. The following types of translation are supported:

• Inbound translation:

– Native format to XML

Translating Between Native Data and XML

Manipulating XML Data in a BPEL Process 6-11

– Opaque to XML

– Native to an attachment in a directory

• Outbound translation:

– XML to native format

– XML to an attachment in a directory

• Supported in both BPEL 1.1. and 2.0 projects.

Inbound message translation automatically uses the doTranslateFromNative
function. Outbound message translation automatically uses the
doTranslateToNative function). You do not need to create an assign activity and
invoke the Expression Builder dialog to configure these functions. The translate
activity automatically generates the assign activity.

6.3.1 How to Translate Native Data to XML Data
This section describes how to configure the translate activity in a BPEL process to
receive an inbound message in native XSD format (for this example, string data) and
translate it to XML format. The Native Format Builder wizard is used to create a new
schema file.

To translate native data to XML data:

1. Right-click a BPEL process in the SOA Composite Editor, and select Edit.

Oracle BPEL Designer is displayed.

2. Expand the Oracle Extensions section of the Components window and drag a
Translate activity into the BPEL process. Figure 6-7 provides details.

Figure 6-7 Translate Activity in a BPEL Process

3. Right-click the translate activity and select Edit.

The Translate dialog is displayed for editing.

4. Select Native to XML to receive inbound native data (for this example, in a single
string).

Translating Between Native Data and XML

6-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

5. To the right of the Input field, click the Browse icon.

The Variable XPath Builder dialog is displayed.

6. Select the native string that is part of the inbound payload to translate into XML
format, and click OK. Figure 6-8 provides details.

Figure 6-8 Variable XPath Builder

7. To the right of the NXSD Schema field, select the schema to use:

• If the schema already exists, select the Search (first) icon to invoke the Type
Chooser dialog.

• If the schema does not exist, select the second icon to invoke the Native
Format Builder wizard to create the schema.

The following example describes how to use the Native Format Builder wizard to
create a new schema from a text file that uses a comma-separated delimiter.

a. In the File Name field of the File Name and Directory dialog, enter a name,
and click Next.

b. In the Choose Type dialog, select Delimited (Contains records whose fields
are delimited by a special character), and click Next.

c. In the File Description dialog, click Browse to select the text file that uses the
comma-separated delimiter.

The Select sample file dialog is displayed.

d. Select the file to use, and click OK.

The file contents are displayed at the bottom of the File Description dialog.
Figure 6-9 provides details.

Translating Between Native Data and XML

Manipulating XML Data in a BPEL Process 6-13

Figure 6-9 Sample File Contents

e. Click Next.

f. In the Record Organization dialog, click Next.

g. In the Specify Elements dialog, enter a name for the element to represent the
record (for this example, addr is entered), and click Next.

h. In the Specify Delimiters dialog, accept the default value of a comma as the
special character that delimits the fields in the text file, and click Next.

i. In the Name column of the Field Properties dialog, enter the appropriate
values in place of C1, C2, C3, C4, C5, and C6, and click Next. Figure 6-10
provides details.

Figure 6-10 Name Column Default Values Replaced with Specific Values

The new schema is displayed in the Generated Native Format Schema dialog.

Translating Between Native Data and XML

6-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

j. Click Test to test the schema.

k. In the Result XML section, click the green arrow.

The native schema and resulting XML are displayed. Figure 6-11 provides
details.

Figure 6-11 Output From Testing the Native Schema

l. Click OK to return to the Generated Native Format Schema dialog.

m. Click Next, then Finish.

The addr_schema1.xsd file is created and displayed in the NXSD Schema
field of the Translate dialog.

8. From the Output Type list, select DOM. Both DOM and SDOM supported if you
select DOM.

9. To the right of the Output field, select the variable for the schema.

a. If you have an output variable that adheres to the schema specified in Step 7,
click the Search (first) icon to select the existing variable.

b. If you do not have an existing variable, click the Add (second) icon to invoke
the Create Variable dialog. Accept the default values or rename the variable
to create an output variable, and click OK. The variable automatically points
to the schema created in Step 7.

When complete, the Translate dialog looks as shown in Figure 6-12.

Translating Between Native Data and XML

Manipulating XML Data in a BPEL Process 6-15

10. Figure 6-12 Translate Dialog Configured for Native to XML Translation

The output for the synchronous request must now be changed to point to the new
schema.

11. In the Applications window, select the BPEL process WSDL file (for this example,
named BPELProcess1.wsdl).

12. At the bottom of Oracle BPEL Designer, click Source.

13. Scroll to the <wsdl:message> section of the WSDL file.

14. Click the response element (for this example, named processResponse) for the
message BPELProcess1ResponseMessage to invoke the Property Inspector in the
lower right corner. Figure 6-13 provides details.

Figure 6-13 Root Element Selection in the WSDL File

15. In the Property Inspector, select the new root element (for this example, ns1:addr).
Figure 6-14 provides details.

Translating Between Native Data and XML

6-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 6-14 Root Element Selected in Property Inspector

The ns1:addr root element is added to the WSDL file. Figure 6-15 provides details.

Figure 6-15 New Root Element Appears in WSDL File

16. Drag an Assign activity into the BPEL process beneath the translate activity.

You now assign the translation output variable to the BPEL output variable.

17. In the Copy Rules tab of the assign activity, map the variables, and click OK.
Figure 6-16 provides details.

Figure 6-16 Edit Assign Dialog

Design is now complete.

Translating Between Native Data and XML

Manipulating XML Data in a BPEL Process 6-17

6.3.2 How to Translate XML Data to Native Data
This section describes how to translate an incoming XML message to native data
format (such as a comma delimited string). This example uses the schema file created
in How to Translate Native Data to XML Data as the outbound XML format to
translate to native XSD format.

To translate XML format to native data:

1. Create a synchronous BPEL process.

2. In the Input field of the Create BPEL Process dialog, accept the default input XSD
schema or click the Search icon to select a different XSD. For this example, the
schema created with the Native Format Builder in How to Translate Native Data to
XML Data is selected. Figure 6-17 provides details.

Figure 6-17 Input Schema Selection

3. Right-click the BPEL process in the SOA Composite Editor, and select Edit.

Oracle BPEL Designer is displayed.

4. Expand the Oracle Extensions section of the Components window and drag a
Translate activity into the BPEL process.

5. Right-click the translate activity, and select Edit.

The Translate dialog is displayed for editing.

6. Select XML to Native to translate outbound XML data into native XSD format.

7. To the right of the Input field, click the Browse (first) icon.

8. Select the input variable. Figure 6-18 provides details.

Translating Between Native Data and XML

6-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 6-18 Input Variable Selection

9. To the right of the NXSD Schema field, select the Search (first) icon to invoke the
Type Chooser dialog.

10. Select the schema file, and click OK. This example uses the same schema file as
How to Translate Native Data to XML Data. Figure 6-19 provides details.

Figure 6-19 Schema File Selection

11. From the Output Type list, select STRING.

If you instead select ATTACHMENT, the dialog is refreshed to display the
Location field for specifying the directory location for the attachment. Selecting
ATTACHMENT is useful for scenarios in which XML data is very large.

12. To the right of the Output field, click the Search (first) icon or click the Create
Variable icon to automatically create a new output variable of type string.

13. Select the output variable, and click OK. Figure 6-20 provides details.

Translating Between Native Data and XML

Manipulating XML Data in a BPEL Process 6-19

Figure 6-20 Output Variable Selection

The Translate dialog looks as shown in Figure 6-21.

Figure 6-21 Translate Dialog Configured for Outbound Translations

Design is now complete.

6.3.3 How to Translate Inbound Native Data to XML Stored as an Attachment
This section describes how to translate an inbound message in native data format to an
attachment. Attachments are useful for scenarios in which incoming data is very large.

To translate inbound native XSD format to an attachment:

1. Create a BPEL process (for this example, a one-way BPEL process is created).

2. Right-click the BPEL process in the SOA Composite Editor, and select Edit.

Oracle BPEL Designer is displayed.

Translating Between Native Data and XML

6-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. Expand the Oracle Extensions section of the Components window and drag a
Translate activity into the BPEL process.

4. Right-click the translate activity, and select Edit.

The Translate dialog is displayed for editing.

5. Select Native to XML to translate inbound native data into an attachment.

6. To the right of the Input field, click the Browse (first) icon.

7. Select the input variable (for this example, a very large string). Figure 6-22 provides
details.

Figure 6-22 Input Variable Selection

8. To the right of the NXSD Schema field, select the Search (first) icon to invoke the
Type Chooser dialog.

9. Select the schema file, and click OK. This example uses the same schema file as
How to Translate Native Data to XML Data. Figure 6-23 provides details.

Translating Between Native Data and XML

Manipulating XML Data in a BPEL Process 6-21

Figure 6-23 Schema File Selection

10. From the Output Type list, select ATTACHMENT.

The dialog is refreshed to display the Location field.

11. In the Location field, enter the directory path to the attachment. If this field is left
blank, the attachment is stored in the database.

12. To the right of the Output field, click the Add (second) icon to invoke the Create
Variable dialog.

13. Click OK to create the output variable. The output variable is of type attachment.

The Translate dialog looks as shown in Figure 6-24.

Figure 6-24 Translate Dialog for an Attachment

14. Click OK.

Translating Between Native Data and XML

6-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

15. In the Applications window, select the BPEL process file.

16. Click Source.

17. Note that the location you specified for the attachment is copied to an href
attribute. The href attribute is part of the variable of type attachment that was
created in Step 12.

. . .
<copy>
 <from> '/scratch/sbandyop/tmp/out/dhqa_addr_att.xml'</from>
 <to> $Translate1_OutputVar_1/@href</to>
</copy>
. . .

18. In the Applications window, select the BPEL process WSDL file.

19. Click Source.

20. Note the attachment code added to the WSDL definitions section of the file and
the href attribute that is pointed to by the variable created in Step 12.

. . .
xmlns:attach="http://xmlns.oracle.com/DHQATranslateApp/DHQATranslateToAttach/
BPELProcess1/attachment"
. . .
. . .
. . .
 <element name="attachmentElement">
 <complexType>
 <attribute name="href" type="string"/>
 </complexType>
 </element>
. . .
. . .

Design is now complete.

6.4 Using Standalone SDO-based Variables
Standalone SDO-based variables are similar to ordinary BPEL XML-DOM-based
variables. The major difference is that the underlying data form is SDO-based, instead
of DOM-based. Therefore, SDO-based variables can use some SDO features such as
Java API access, an easier-to-use update API, and the change summary. However,
SDO usage is also subject to some restrictions that do not exist with XML-DOM-based
variables. The most noticeable restriction is that SDO only supports a small subset of
XPath expressions.

6.4.1 How to Declare SDO-based Variables
The syntax for declaring an SDO-based variable is similar to that for declaring BPEL
variables. The following example provides details.

<variable name="deptVar_s" element="hrtypes:dept" />
<variable name="deptVar_v" element="hrtypes:dept" bpelx:sdoCapable="false" />

If you want to override the automatic detection, use the
bpelx:sdoCapable="true|false" switch. For example, variable deptVar_v

Using Standalone SDO-based Variables

Manipulating XML Data in a BPEL Process 6-23

described in the preceding sample is a regular DOM-based variable. The following
example shows an XSD sample:

<xsd:element name="dept" type="Dept"/>
 <xsd:complexType name="Dept"
 sdoJava:instanceClass="sdo.sample.service.types.Dept">
 <xsd:annotation>
 <xsd:appinfo source="Key"
 xmlns="http://xmlns.oracle.com/bc4j/service/metadata/">
 <key>
 <attribute>Deptno</attribute>
 </key>
 <fetchMode>minimal</fetchMode>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Deptno" type="xsd:integer" minOccurs="0"/>
 <xsd:element name="Dname" type="xsd:string" minOccurs="0"
 nillable="true"/>
 <xsd:element name="Loc" type="xsd:string" minOccurs="0" nillable="true"/>
 <xsd:element name="Emp" type="Emp" minOccurs="0" maxOccurs="unbounded"
 nillable="true"/>
 </xsd:sequence>
 </xsd:complexType>

6.4.2 How to Convert from XML to SDO
Oracle BPEL Process Manager supports dual data forms: DOM and SDO. You can
interchange the usage of DOM-based and SDO-based variables within the same
business process, even within the same expression. The Oracle BPEL Process Manager
data framework automatically converts back and forth between DOM and SDO forms.

By using the entity variable XPath rewrite capabilities, Oracle BPEL Process Manager
enables some XPath features (for example, variable reference and function calls) that
the basic SDO specification does not support. However, there are other limitations on
the XPath used with SDO-based variables (for example, there is no support for and,
or, and not).

The following example shows XML-to-SDO conversion:

<assign>
 <copy>
 <from>
 <ns0:dept xmlns:ns0="http://sdo.sample.service/types/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ns0:Deptno>10</ns0:Deptno>
 <ns0:Dname>ACCOUNTING</ns0:Dname>
 <ns0:Loc>NEW YORK</ns0:Loc>
 <ns0:Emp>
 <ns0:Empno>7782</ns0:Empno>
 <ns0:Ename>CLARK</ns0:Ename>
 <ns0:Job>MANAGER</ns0:Job>
 <ns0:Mgr>7839</ns0:Mgr>
 <ns0:Hiredate>1981-06-09</ns0:Hiredate>
 <ns0:Sal>2450</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 <ns0:Emp>
 <ns0:Empno>7839</ns0:Empno>
 <ns0:Ename>KING</ns0:Ename>
 <ns0:Job>PRESIDENT</ns0:Job>

Using Standalone SDO-based Variables

6-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <ns0:Hiredate>1981-11-17</ns0:Hiredate>
 <ns0:Sal>5000</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 <ns0:Emp>
 <ns0:Empno>7934</ns0:Empno>
 <ns0:Ename>MILLER</ns0:Ename>
 <ns0:Job>CLERK</ns0:Job>
 <ns0:Mgr>7782</ns0:Mgr>
 <ns0:Hiredate>1982-01-23</ns0:Hiredate>
 <ns0:Sal>1300</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 </ns0:dept>
 </from>
 <to variable="deptVar_s" />
 </copy>
</assign>

The following example illustrates copying from an XPath expression of an SDO
variable to a DOM variable:

<assign>
 <!-- copy from an XPath expression of an SDO variable to DOM variable -->
 <copy>
 <from expression="$deptVar_s/hrtypes:Emp[2]" />
 <to variable="empVar_v" />
 </copy>
 <!-- copy from an XPath expression of an DOM variable to SDO variable -->
 <copy>
 <from expression="$deptVar_v/hrtypes:Emp[2]" />
 <to variable="empVar_s" />
 </copy>
 <!-- insert a DOM based data into an SDO variable -->
 <bpelx:insertAfter>
 <bpelx:from variable="empVar_v" />
 <bpelx:to variable="deptVar_s" query="hrtypes:Emp" />
 </bpelx:insertAfter>
 <!-- insert a SDO based data into an SDO variable at particular location,
 no XML conversion is needed -->
 <bpelx:insertBefore>
 <bpelx:from expression="$deptVar_s/hrtypes:Emp[hrtypes:Sal = 1300]" />
 <bpelx:to variable="deptVar_s" query="hrtypes:Emp[6]" />
 </bpelx:insertBefore>
</assign>

The following example shows SDO Data Removal:

<assign>
 <bpelx:remove>
 <bpelx:target variable="deptVar_s" query="hrtypes:Emp[2]" />
 </bpelx:remove>
</assign>

Using Standalone SDO-based Variables

Manipulating XML Data in a BPEL Process 6-25

Note:

The bpelx:append operation is not supported for SDO-based variables for
the following reasons:

• The <copy> operation on an SDO-based variable has smart update
capabilities (for example, you do not have to perform a
<bpelx:append> operation before the <copy> operation).

• The SDO data object is metadata driven and does not generally support
adding a new property arbitrarily.

6.5 Initializing a Variable with Expression Constants or Literal XML
It is often useful to assign literal XML to a variable in BPEL (for example, to initialize a
variable before copying dynamic data into a specific field within the XML data content
for the variable). This is also useful for testing purposes when you want to hard code
XML data values into the process. You assign literal XML by dragging a literal icon to
a target node on the Copy Rules tab of the assign activity.

For more information about assigning literal XML in an assign activity, see Assign
Activity.

6.5.1 How To Assign a Literal XML Element
The following example assigns a literal result element to the payload part of the
output variable:

<assign>
 <!-- copy from literal xml to the variable -->
 <copy>
 <from>
 <result xmlns="http://samples.otn.com">
 <name/>
 <symbol/>
 <price>12.3</price>
 <quantity>0</quantity>
 <approved/>
 <message/>
 </result>
 </from>
 <to variable="output" part="payload"/>
 </copy>
</assign>

6.6 Copying Between Variables
When you copy between variables, you copy directly from one variable (or part) to
another variable of a compatible type, without needing to specify a particular field
within either variable. In other words, you do not need to specify an XPath query.

You perform variable copying in the Copy Rules tab of the Edit Assign dialog, as
shown in Figure 6-25.

Initializing a Variable with Expression Constants or Literal XML

6-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 6-25 Copy Rules Tab for Variable Assignment

For more information about the Copy Rules tab, see Manipulating XML Data with
bpelx Extensions and Assign Activity.

6.6.1 How to Copy Between Variables
The following example shows two assignments being performed, first copying
between two variables of the same type and then copying a variable part to another
variable with the same type as that part.

<assign>
 <copy>
 <from variable="c1"/>
 <to variable="c2"/>
 </copy>
 <copy>
 <from variable="c1" part = "address"/>
 <to variable="c3"/>
 </copy>
</assign>

The BPEL file defines the variables, as shown in the following example:

<variable name="c1" messageType="x:person"/>
<variable name="c2" messageType="x:person"/>
<variable name="c3" element="y:address"/>

The WSDL file defines the person message type, as shown in the following example:

<message name="person" xmlns:x="http://tempuri.org/bpws/example">
 <part name="full-name" type="xsd:string"/>
 <part name="address" element="x:address"/>
</message>

Copying Between Variables

Manipulating XML Data in a BPEL Process 6-27

For more information about this code example, see Section 9.3.2 of the . For BPEL 2.0,
see Section 8.4.4 of for a similar example.

For more information, see Assign Activity.

6.6.2 How to Initialize Variables with an Inline from-spec in BPEL 2.0
A variable can optionally be initialized by using an inline from-spec. Click the
Initialize tab in the Create Variable dialog in a BPEL 2.0 project to create this type of
variable. Figure 6-26 provides details.

Figure 6-26 Initialize Tab of Create Variable Dialog

Inline variable initializations are conceptually designed as a virtual sequence activity
that includes a series of virtual assign activities, one for each variable being initialized,
in the order in which they appear in the variable declarations. Each virtual assign
activity contains a single virtual copy operation whose from-spec is as given in the
variable initialization. The to-spec points to the variable being created. The
following example provides details.

<variables>
 <variable name="tmp" element="tns:output">
 <from>
 <literal>
 <output xmlns="http://samples.otn.com/bpel2.0/ch8.1">
 <value>1000</value>
 </output>
 </literal>
 </from>
 </variable>
</variables>

For more information, see section 8.1 of .

6.7 Moving and Copying Variables in the Structure Window
You can move and copy variables to and from scope activities in the Structure
Window of Oracle JDeveloper.

Moving and Copying Variables in the Structure Window

6-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

6.7.1 To Move Variables in the Structure Window:

1. In the Structure window, select the variable to move to a scope activity.
Figure 6-27 provides details.

Figure 6-27 Variable to Move in the Structure Window

2. Drag the variable to the Variables folder of the scope activity.

The variable is displayed in the Variables folder of the scope activity, as shown in
Figure 6-28.

Figure 6-28 Variable Moved to the Scope Activity in the Structure Window

3. In the BPEL process, click the Variables icon of the scope activity.

The variable you moved is displayed, as shown in Figure 6-29.

Figure 6-29 Moved Variable in Variables Dialog of the Scope Activity

6.7.2 To Copy Variables in the Structure Window:

1. In the Structure window, select the variable to move to the scope activity.

2. Hold down the Ctrl key.

3. Drag the variable to the Variables folder of the scope activity.

Moving and Copying Variables in the Structure Window

Manipulating XML Data in a BPEL Process 6-29

The variable is displayed in both Variables folders, as shown in Figure 6-30.

Figure 6-30 Variable Copied to the Scope Activity in the Structure Window

6.8 Accessing Fields in Element and Message Type Variables
Given the types of definitions present in most WSDL and XSD files, you must go
down to the level of copying from or to a field within part of a variable based on the
element and message type. This in turn uses XML schema complex types. To perform
this action, you specify an XPath query in the from or to clause of the Copy Rules tab
of the assign activity.

For more information about the Copy Rules tab, see Manipulating XML Data with
bpelx Extensions and Assign Activity.

6.8.1 How to Access Fields Within Element-Based and Message Type-Based Variables
In the following example, the ssn field is copied from the CreditFlow process's
input message into the ssn field of the credit rating service's input message.

<assign>
 <copy>
 <from variable="input" part="payload"
 query="/tns:CreditFlowRequest/tns:ssn"/>
 <to variable="crInput" part="payload" query="/tns:ssn"/>
 </copy>
</assign>

The following example shows how the BPEL file defines message type-based variables
involved in this assignment:

<variable name="input" messageType="tns:CreditFlowRequestMessage"/>
<variable name="crInput"
 messageType="services:CreditRatingServiceRequestMessage"/>

The crInput variable is used as an input message to a credit rating service. Its
message type, CreditFlowRequestMessage, is defined in the
CreditFlowService.wsdl file, as shown in the following example:

<message name="CreditFlowRequestMessage">
<part name="payload" element="tns:CreditFlowRequest"/>
</message>

CreditFlowRequest is defined with a field named ssn. The message type
CreditRatingServiceRequestMessage is defined in the
CreditRatingService.wsdl file, as shown in the following example:

<message name="CreditRatingServiceRequestMessage">
 <part name="payload" element="tns:ssn"/>
</message>

Accessing Fields in Element and Message Type Variables

6-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The following example shows the BPEL 2.0 syntax for how the BPEL file defines
message type-based variables involved in the assignment in the first assignment
example. Note that /tns:CreditFlowRequest is not required.

<copy>
 <from>$input.payload/tns:ssn</from>
 <to>$crInput.payload</to>
</copy>

A BPEL process can also use element-based variables. The following example shows
how to use element-based variables in BPEL 1.1. The autoloan field is copied from
the loan application process's input message into the customer field of a web
service's input message.

 <assign>
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:
 application/autoloan:customer"/>
 <to variable="customer"/>
 </copy>
</assign>

The following example shows how to use element-based variables in BPEL 2.0.

<assign>
 <copy>
 <from>$input.payload/autoloan:application/autoloan:customer</from>
 <to>$customer</to>
 </copy>
</assign>

The following example shows how the BPEL file defines element-based variables
involved in an assignment:

 <variable name="customer" element="tns:customerProfile"/>

6.9 Assigning Numeric Values
You can assign numeric values in XPath expressions.

6.9.1 How to Assign Numeric Values
The following example shows how to assign an XPath expression with the integer
value of 100.

<assign>
 <!-- copy from integer expression to the variable -->
 <copy>
 <from expression="100"/>
 <to variable="output" part="payload" query="/p:result/p:quantity"/>
 </copy>
</assign>

6.10 Using Mathematical Calculations with XPath Standards
You can use simple mathematical expressions, such as the one in the following section,
which increment a numeric value.

Assigning Numeric Values

Manipulating XML Data in a BPEL Process 6-31

6.10.1 How To Use Mathematical Calculations with XPath Standards
In the following example, the BPEL XPath function getVariableData retrieves the
value being incremented. The arguments to getVariableData are equivalent to the
variable, part, and query attributes of the from clause (including the last two
arguments, which are optional).

<assign>
 <copy>
 <from expression="bpws:getVariableData('input', 'payload',
 '/p:value') + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

You can also use $variable syntax in BPEL 1.1, as shown in the following example:

<assign>
 <copy>
 <from expression="$input.payload + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

The following example shows how to use $variable syntax in BPEL 2.0.

<assign>
 <copy>
 <from>$input.payload + 1</from>
 <to>$output.payload</to>
 </copy>
</assign>

6.11 Assigning String Literals
You can assign string literals to a variable in the Copy Rules tab of the assign activity.

For more information about the assign activity, see Manipulating XML Data with
bpelx Extensions and Assign Activity.

6.11.1 How to Assign String Literals
The code in the following example copies a BPEL 1.1 expression evaluating from the
string literal 'GE' to the symbol field within the indicated variable part. (Note the use
of the double and single quotes.)

<assign>
 <!-- copy from string expression to the variable -->
 <copy>
 <from expression="'GE'"/>
 <to variable="output" part="payload" query="/p:result/p:symbol"/>
 </copy>
</assign>

The following example shows how to perform this expression in BPEL 2.0.

<assign>
 <copy>
 <from>'GE'</from>
 <to>$output.payload/p:symbol</from>

Assigning String Literals

6-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 </copy>
</assign>

For more information, see Assign Activity.

6.12 Concatenating Strings
Rather than copying the value of one string variable (or variable part or field) to
another, you can first perform string manipulation, such as concatenating several
strings.

6.12.1 How to Concatenate Strings
The concatenation is accomplished with the core XPath function named concat. In
addition, the variable value involved in the concatenation is retrieved with the BPEL
XPath function getVariableData. In the following example, getVariableData
fetches the value of the name field from the input variable's payload part. The string
literal 'Hello ' is then concatenated to the beginning of this value.

<assign>
 <!-- copy from XPath expression to the variable -->
 <copy>
 <from expression="concat('Hello ',
 bpws:getVariableData('input', 'payload', '/p:name'))"/>
 <to variable="output" part="payload" query="/p:result/p:message"/>
 </copy>
</assign>

Other string manipulation functions available in XPath are listed in section 4.2 of the .

6.13 Assigning Boolean Values
You can assign boolean values with the XPath boolean function.

6.13.1 How to Assign Boolean Values
The following example provides an example of assigning boolean values in BPEL 1.1.
The XPath expression in the from clause is a call to XPath's boolean function true,
and the specified approved field is set to true. The function false is also available.

<assign>
 <!-- copy from boolean expression function to the variable -->
 <copy>
 <from expression="true()"/>
 <to variable="output" part="payload" query="/result/approved"/>
 </copy>
</assign>

The following example provides an example of assigning boolean values in BPEL 2.0.

<assign>
 <copy>
 <from>true()</from>
 <to>$output.payload/approved</to>
 </copy>
</assign>

The XPath specification recommends that you use the "true()" and "false()"
functions as a method for returning boolean constant values.

Concatenating Strings

Manipulating XML Data in a BPEL Process 6-33

If you instead use "boolean(true)" or "boolean(false)", the true or false
inside the boolean function is interpreted as a relative element step, and not as any
true or false constant. It attempts to select a child node named true under the
current XPath context node. In most cases, the true node does not exist. Therefore, an
empty result node set is returned and the boolean() function in XPath 1.0 converts
an empty node set into a false result. This result can be potentially confusing.

6.14 Assigning a Date or Time
You can assign the current value of a date or time field by using the Oracle BPEL
XPath function getCurrentDate, getCurrentTime, or getCurrentDateTime,
respectively. In addition, if you have a date-time value in the standard XSD format,
you can convert it to characters more suitable for output by calling the Oracle BPEL
XPath function formatDate.

For related information, see section 9.1.2 of the and section 8.3.2 of the .

For information about XPath functions and the Expression Builder, see XPath
Extension Functions.

6.14.1 How to Assign a Date or Time
The following example shows an example that uses the function getCurrentDate in
BPEL 1.1.

<!-- execute the XPath extension function getCurrentDate() -->
<assign>
 <copy>
 <from expression="xpath20:getCurrentDate()"/>
 <to variable="output" part="payload"
 query="ns1:invoice/invoiceDate"/>
 </copy>
</assign>

The following example shows an example that uses the function getCurrentDate in
BPEL 2.0.

<assign>
 <copy>
 <from>xpath20:getCurrentDate()</from>
 <to>$output.payload/invoiceDate</to>
 </copy>
</assign>

In the following example, the formatDate function converts the date-time value
provided in XSD format to the string 'Jun 10, 2005' (and assigns it to the string
field formattedDate).

<!-- execute the XPath extension function formatDate() -->
<assign>
 <copy>
 <from expression="ora:formatDate('2005-06-10T15:56:00',
 'MMM dd, yyyy')"/>
 <to variable="output" part="payload"
 query="ns1:invoice/formattedDate"/>
 </copy>
</assign>

The following example shows how the formatDate function works in BPEL 2.0.

Assigning a Date or Time

6-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<assign>
 <copy>
 <from>ora:formatDate('2005-06-10T15:56:00','MMM dd, yyyy')</from>
 <to>$output.payload/formattedDate</to>
 </copy>
</assign>

6.15 Manipulating Attributes
You can copy to or from something defined as an XML attribute. An at sign (@) in
XPath query syntax refers to an attribute instead of a child element.

6.15.1 How to Manipulate Attributes
The code in the following example fetches and copies the custId attribute from this
XML data:

 <invalidLoanApplication xmlns="http://samples.otn.com">
 <application xmlns = "http://samples.otn.com/XPath/autoloan">
 <customer custId = "111" >
 <name>
 Mike Olive
 </name>
 ...
 </customer>
 ...
 </application>
 </invalidLoanApplication>

The BPEL 1.1 code in the following example selects the custId attribute of the
customer field and assigns it to the variable custId:

<assign>
 <!-- get the custId attribute and assign to variable custId -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/@custId"/>
 <to variable="custId"/>
 </copy>
</assign>

The following example shows the equivalent syntax in BPEL 2.0 for selecting the
custId attribute of the customer field and assigning it to the variable custId:

<assign>
<copy>
<from>$input.payload/autoloan:application/autoloan:customer/@custId</from>
<to>$custId</to>
</copy>
</assign>

The namespace prefixes in this example are not integral to the example.The WSDL file
defines a customer to have a type in which custId is defined as an attribute, as
shown in the following example:

<complexType name="CustomerProfileType">
 <sequence>
 <element name="name" type="string"/>
 ...
 </sequence>

Manipulating Attributes

Manipulating XML Data in a BPEL Process 6-35

 <attribute name="custId" type="string"/>
</complexType>

6.16 Manipulating XML Data with bpelx Extensions
You can perform various operations on XML data in assign activities. The bpelx
extension types described in this section provide this functionality. In Oracle BPEL
Designer, you can add bpelx extension types at the bottom of the Copy Rules tab of
an assign dialog. After creating a copy rule, you select it and then choose a bpelx
extension type from the dropdown list in BPEL 1.1 or the context menu in BPEL 2.0.
This changes the copy rule to the selected extension type.

In BPEL 1.1, you select an extension type from the dropdown list, as shown in
Figure 6-31.

Figure 6-31 Copy Rule Converted to bpelx Extension in BPEL 1.1

In BPEL 2.0, you select an extension type by right-clicking the copy rule, selecting
Change rule type, and then selecting the extension type, as shown in Figure 6-32.

Manipulating XML Data with bpelx Extensions

6-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 6-32 Copy Rule Converted to bpelx Extension in BPEL 2.0

For more information, see the online Help for this dialog and Assign Activity.

6.16.1 How to Use bpelx:append
The bpelx:append extension in an assign activity enables a BPEL process service
component to append the contents of one variable, expression, or XML fragment to
another variable's contents. To use this extension, perform one of the following steps
at the bottom of the Copy Rules tab:

• For BPEL 1.1, select a copy rule, then select Append from the dropdown list, as
shown in Figure 6-31.

• For BPEL 2.0, right-click a copy rule, select Change rule type, and then select
Append, as shown in Figure 6-32.

Note:

The bpelx:append extension is not supported with SDO variables and
causes an error.

6.16.1.1 bpelx:append in BPEL 1.1

The following provides an example of bpelx:append in a BPEL project that supports
BPEL version 1.1.

<bpel:assign>
 <bpelx:append>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:append>
</bpel:assign>

The from-spec query within bpelx:append yields zero or more nodes. The node
list is appended as child nodes to the target node specified by the to-spec query.

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 6-37

The to-spec query must yield one single L-Value element node. Otherwise, a
bpel:selectionFailure fault is generated. The to-spec query cannot refer to a
partner link.

The following example consolidates multiple bills of material into one single bill of
material (BOM) by appending multiple b:parts for one BOM to b:parts of the
consolidated BOM.

<bpel:assign>
 <bpelx:append>
 <bpelx:from variable="billOfMaterialVar"
 query="/b:bom/b:parts/b:part" />
 <bpelx:to variable="consolidatedBillOfMaterialVar"
 query="/b:bom/b:parts" />
 </bpelx:append>
</bpel:assign>

6.16.1.2 bpelx:append in BPEL 2.0

The following provides an example of bpelx:append syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
bpelx:append in BPEL 1.1, but the syntax is slightly different.

<bpel:assign>
 <bpelx:append>
 <bpelx:from>$billOfMaterialVar/b:parts/b:part</bpelx:from>
 <bpelx:to>$consolidatedBillOfMaterialVar/b:parts</bpelx:from>
 </bpelx:append>
</bpel:assign>

6.16.2 How to Use bpelx:insertBefore

Note:

The bpelx:insertBefore extension works with SDO variables, but the
target must be the variable attribute into which the copied data must go.

The bpelx:insertBefore extension in an assign activity enables a BPEL process
service component to insert the contents of one variable, expression, or XML fragment
before another variable's contents. To use this extension, perform one of the following
steps at the bottom of the Copy Rules tab:

• For BPEL 1.1, select a copy rule, then select InsertBefore from the dropdown list,
as shown in Figure 6-31.

• For BPEL 2.0, right-click a copy rule, select Change rule type, and then select
InsertBefore, as shown in Figure 6-32.

6.16.2.1 bpelx:insertBefore in BPEL 1.1

The following provides an example of bpelx:insertBefore in a BPEL project that
supports BPEL version 1.1.

<bpel:assign>
 <bpelx:insertBefore>
 <bpelx:from ... />
 <bpelx:to ... />

Manipulating XML Data with bpelx Extensions

6-38 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 </bpelx:insertBefore>
</bpel:assign>

The from-spec query within bpelx:insertBefore yields zero or more nodes. The
node list is appended as child nodes to the target node specified by the to-spec
query.

The to-spec query of the insertBefore operation points to one or more single L-
Value nodes. If multiple nodes are returned, the first node is used as the reference
node. The reference node must be an element node. The parent of the reference node
must also be an element node. Otherwise, a bpel:selectionFailure fault is
generated. The node list generated by the from-spec query selection is inserted
before the reference node. The to-spec query cannot refer to a partner link.

The following example shows the syntax before the execution of <insertBefore>.
The value of addrVar is:

<a:usAddress>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

The following example shows the syntax after the execution:

<bpel:assign>
 <bpelx:insertBefore>
 <bpelx:from>
 <a:city>Redwood Shore></a:city>
 </bpelx:from>
 <bpelx:to "addrVar" query="/a:usAddress/a:state" />
 </bpelx:insertBefore>
</bpel:assign>

The following example shows the value of addrVar:

<a:usAddress>
 <a:city>Redwood Shore</a:city>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

6.16.2.2 bpelx:insertBefore in BPEL 2.0

The following provides an example of bpelx:insertBefore syntax in a BPEL
project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as
described in bpelx:insertBefore in BPEL 1.1, but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:insertBefore
extension.

<assign>
 <extensionAssignOperation>
 <bpelx:insertBefore>
 <bpelx:from>
 <bpelx:literal>
 <a:city>Redwood Shore></a:city>
 </bpelx:literal>
 </bpelx:from>
 <bpelx:to>$addrVar/a:state</bpelx:to>
 </bpelx:insertBefore>
 </extensionAssignOperation>
</assign>

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 6-39

6.16.3 How to Use bpelx:insertAfter

Note:

The bpelx:insertAfter extension works with SDO variables, but the
target must be the variable attribute into which the copied data must go.

The bpelx:insertAfter extension in an assign activity enables a BPEL process
service component to insert the contents of one variable, expression, or XML fragment
after another variable's contents. To use this extension, perform one of the following
steps at the bottom of the Copy Rules tab:

• For BPEL 1.1, select a copy rule, then select InsertAfter from the dropdown list, as
shown in Figure 6-31.

• For BPEL 2.0, right-click a copy rule, select Change rule type, and then select
InsertAfter, as shown in Figure 6-32.

6.16.3.1 bpelx:insertAfter in BPEL 1.1

The following provides an example of bpelx:insertAfter in a BPEL project that
supports BPEL version 1.1.

<bpel:assign>
 <bpelx:insertAfter>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:insertAfter>
</bpel:assign>

This operation is similar to the functionality described for How to Use
bpelx:insertBefore, except for the following:

• If multiple L-Value nodes are returned by the to-spec query, the last node is
used as the reference node.

• Instead of inserting nodes before the reference node, the source nodes are inserted
after the reference node.

This operation can also be considered a macro of conditional-switch + (append
or insertBefore).

The following example shows the syntax before the execution of <insertAfter>.
The value of addrVar is:

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

The following example shows the syntax after the execution:

<bpel:assign>
 <bpelx:insertAfter>
 <bpelx:from>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 </bpelx:from>

Manipulating XML Data with bpelx Extensions

6-40 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <bpelx:to "addrVar" query="/a:usAddress/a:addressLine[1]" />
 </bpelx:insertAfter>
</bpel:assign>

The following example shows the value of addrVar:

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

The from-spec query within bpelx:insertAfter yields zero or more nodes. The
node list is appended as child nodes to the target node specified by the to-spec
query.

6.16.3.2 bpelx:insertAfter in BPEL 2.0

The following provides an example of bpelx:insertAfter syntax in a BPEL project
that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described
in bpelx:insertAfter in BPEL 1.1, but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:insertAfter extension.

<assign>
 <extensionAssignOperation>
 <bpelx:insertAfter>
 <bpelx:from>
 <bpelx:literal>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 </bpelx:literal>
 </bpelx:from>
<bpelx:to>$addrVar/a:addressLine[1]</bpelx:to>
 </bpelx:insertAfter>
 </extensionAssignOperation>
</assign>

6.16.4 How to Use bpelx:remove
The bpelx:remove extension in an assign activity enables a BPEL process service
component to remove a variable. In Oracle BPEL Designer, you add the
bpelx:remove extension by dragging the remove icon in the upper right corner of
the Copy Rules tab to the target variable you want to remove, and releasing the
cursor. You can also drag this icon to the center canvas to invoke a dialog, specify the
rule, save and close the dialog, and then drag the icon to the target node. Figure 6-33
provides details.

Figure 6-33 Remove Icon in Copy Rules Tab of an Assign Activity

After releasing the cursor, the bpelx:remove extension is applied to the target
variable. Figure 6-34 provides details.

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 6-41

Figure 6-34 bpelx:remove Extension Applied to a Target Variable

6.16.4.1 bpelx:remove in BPEL 1.1

The following provides an example of bpelx:remove in a BPEL project that supports
BPEL version 1.1.

<bpel:assign>
 <bpelx:remove>
 <bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
 </bpelx:remove>
</bpel:assign>

Node removal specified by the XPath expression is supported. Nodes specified by the
XPath expression can be multiple, but must be L-Values. Nodes being removed from
this parent can be text nodes, attribute nodes, and element nodes.

The XPath expression can return one or more nodes. If the XPath expression returns
zero nodes, then a bpel:selectionFailure fault is generated.

The syntax of bpelx:target is similar to and a subset of to-spec for the copy
operation.

The following example shows addrVar with the following value:

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

After executing the syntax shown in the BPEL process service component file, the
second address line of Mailstop is removed:

<bpel:assign>
 <bpelx:remove>
 <target variable="addrVar"
 query="/a:usAddress/a:addressLine[2]" />
 </bpelx:remove>
</bpel:assign>

After executing the syntax shown in the BPEL process service component file, both
address lines are removed:

<bpel:assign>
 <bpelx:remove>
 <target variable="addrVar"
 query="/a:usAddress/a:addressLine" />
 </bpelx:remove>
</bpel:assign>

Manipulating XML Data with bpelx Extensions

6-42 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

6.16.4.2 bpelx:remove in BPEL 2.0

The following provides an example of bpelx:remove syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
bpelx:remove in BPEL 1.1, but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:remove.

<assign>
 <extensionAssignOperation>
 <bpelx:remove>
 <bpelx:target>$ncname.ncname/xpath_str</bpelx:target>
 </bpelx:remove>
 </extensionAssignOperation>
</assign>

6.16.5 How to Use bpelx:rename and XSD Type Casting
The bpelx:rename extension in an assign activity enables a BPEL process service
component to rename an element through use of XSD type casting. In Oracle BPEL
Designer, you add the bpelx:rename extension by dragging the rename icon in the
upper right corner of the Copy Rules tab to the target variable you want to rename,
and releasing the cursor. The rename icon displays to the right of the remove icon
shown in Figure 6-33. After releasing the cursor, the Rename dialog is displayed for
renaming the target variable. You can also drag this icon to the center canvas to invoke
this dialog, specify the name, save and close the dialog, and then drag the icon to the
target node.

6.16.5.1 bpelx:rename in BPEL 1.1

The following provides an example of bpelx:rename in a BPEL project that supports
BPEL version 1.1.

<bpel:assign>
 <bpelx:rename elementTo="QName1"? typeCastTo="QName2"?>
 <bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
 </bpelx:rename>
</bpel:assign>

The syntax of bpelx:target is similar to and a subset of to-spec for the copy
operation. The target must return a list of element nodes. Otherwise, a
bpel:selectionFailure fault is generated. The element nodes specified in the
from-spec are renamed to the QName specified by the elementTo attribute. The
xsi:type attribute is added to those element nodes to cast those elements to the
QName type specified by the typeCastTo attribute.

Assume you have the employee list shown in the following example:

<e:empList>
 <e:emp>
 <e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
 <e:approvalLimit>3000</e:approvalLimit>
 <e:managing />
 <e:emp>
 <e:emp>
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 6-43

 <e:emp>
 <e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
</e:empList>

Promotion changes are now applied to Peter Smith in the employee list, as in the
following example:

<bpel:assign>
 <bpelx:rename typeCastTo="e:ManagerType">
 <bpelx:target variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:rename>
</bpel:assign>

After executing the above casting (renaming), the data looks as shown in the following
example with xsi:type info added to Peter Smith:

<e:empList>
 <e:emp>
 <e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
 <e:approvalLimit>3000</e:approvalLimit>
 <e:managing />
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
 <e:emp>
 <e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
</e:empList>

The employee data of Peter Smith is now invalid, because <approvalLimit> and
<managing> are missing. Therefore, <append> is used to add that information. The
following provides an example.

<bpel:assign>
 <bpelx:rename typeCastTo="e:ManagerType">
 <bpelx:target variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:rename>
 <bpelx:append>
 <bpelx:from>
 <e:approvalLimit>2500</e:approvalLimit>
 <e:managing />
 </bpelx:from>
 <bpelx:to variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:append>
</bpel:assign>

With the execution of both rename and append, the corresponding data looks as
shown in the following example:

<e:emp xsi:type="e:ManagerType">
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>

Manipulating XML Data with bpelx Extensions

6-44 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <e:approvalLimit>2500</e:approvalLimit>
 <e:managing />
<e:emp>

6.16.5.2 bpelx:rename in BPEL 2.0

The following provides an example of bpelx:rename syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
bpelx:rename in BPEL 1.1, but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:rename operation.

 <bpel:assign>
 <extensionAssignOperation>
 <bpelx:rename elementTo="QName1"? typeCastTo="QName2"?>
 <bpelx:target>$ncname[.ncname][/xpath_str]</bpelx:target>
 </bpelx:rename>
 </extensionAssignOperation>
</bpel:assign>

6.16.6 How to Use bpelx:copyList
The bpelx:copyList extension in an assign activity enables a BPEL process service
component to perform a copyList operation of the contents of one variable,
expression, or XML fragment to another variable. To use this extension, perform one
of the following steps at the bottom of the Copy Rules tab:

• For BPEL 1.1, select a copy rule, then select CopyList from the dropdown list, as
shown in Figure 6-31.

• For BPEL 2.0, right-click a copy rule, select Change rule type, and then select
CopyList, as shown in Figure 6-32.

6.16.6.1 bpelx:copyList in BPEL 1.1

The following provides an example of bpelx:copyList in a BPEL project that
supports BPEL version 1.1.

<bpel:assign>
 <bpelx:copyList>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:copyList>
</bpel:assign>

The from-spec query can yield a list of either all attribute nodes or all element nodes.
The to-spec query can yield a list of L-value nodes: either all attribute nodes or all
element nodes.

All the element nodes returned by the to-spec query must have the same parent
element. If the to-spec query returns a list of element nodes, all element nodes must
be contiguous.

If the from-spec query returns attribute nodes, then the to-spec query must return
attribute nodes. Likewise, if the from-spec query returns element nodes, then the
to-spec query must return element nodes. Otherwise, a
bpws:mismatchedAssignmentFailure fault is thrown.

The from-spec query can return zero nodes, while the to-spec query must return
at least one node. If the from-spec query returns zero nodes, the effect of the
copyList operation is similar to the remove operation.

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 6-45

The copyList operation provides the following features:

• Removes all the nodes pointed to by the to-spec query.

• If the to-spec query returns a list of element nodes and there are leftover child
nodes after removal of those nodes, the nodes returned by the from-spec query
are inserted before the next sibling of the last element specified by the to-spec
query. If there are no leftover child nodes, an append operation is performed.

• If the to-spec query returns a list of attribute nodes, those attributes are
removed from the parent element. The attributes returned by the from-spec
query are then appended to the parent element.

For example, assume a schema is defined as shown below:

<schema attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/Event_jws/Event/EventTest"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="process">
 <complexType>
 <sequence>
 <element name="payload" type="string"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="processResponse">
 <complexType>
 <sequence>
 <element name="payload" type="string"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
</schema>

The from variable contains the content shown in the following example:

<ns1:process xmlns:ns1="http://xmlns.oracle.com/Event_jws/Event/EventTest">
 <ns1: payload >a</ns1: payload >
 <ns1: payload >b</ns1: payload >
</ns1:process>

The to variable contains the content shown in the following example:

<ns1:processResponse xmlns:ns1="http://xmlns.oracle.com/Event_
 jws/Event/EventTest">
 <ns1: payload >c</ns1: payload >
</ns1:process>

The bpelx:copyList operation looks as shown in the following example:

<assign>
 <bpelx:copyList>
 <bpelx:from variable="inputVariable" part="payload"
 query="/client:process/client:payload"/>
 <bpelx:to variable="outputVariable" part="payload"
 query="/client:processResponse/client:payload"/>
 </bpelx:copyList>
</assign>

Manipulating XML Data with bpelx Extensions

6-46 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

This defines the to variable as shown in the following example:

<ns1:processResponse xmlns:ns1="http://xmlns.oracle.com/Event_
 jws/Event/EventTest">
 <ns1: payload >a</ns1: payload >
 <ns1: payload >b</ns1: payload >
</ns1:process>

6.16.6.2 bpelx:copyList in BPEL 2.0

The following provides an example of bpelx:copyList syntax in a BPEL project
that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described
in bpelx:copyList in BPEL 1.1, but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:copyList extension.

<assign>
 <extensionAssignOperation>
 <bpelx:copyList>
 <bpelx:from>$inputVariable.payload/client:payload</bpelx:from>
 <bpelx:to>$outputVariable.payload/client:payload</bpelx:to>
 </bpelx:copyList>
 </extensionAssignOperation>
</assign>

6.16.7 How to Use Assign Extension Attributes
You can assign the following attributes to copy rules in an assign activity.

• ignoreMissingFromData

• insertMissingToData

• keepSrcElementName

At the bottom of the Copy Rules tab of an assign activity, you right-click a selected
copy rule to display a menu for choosing the appropriate attribute. Figure 6-35
provides details.

Figure 6-35 Assign Extension Attributes

6.16.7.1 ignoreMissingFromData Attribute

The ignoreMissingFromData attribute suppresses any
bpel:selectionFailure standard faults. Table 6-3 describes the syntax differences
between BPEL versions 1.1 and 2.0.

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 6-47

Table 6-3 ignoreMissingFromData Attribute Syntax

BPEL 1.1 BPEL 2.0

<copy bpelx:ignoreMissingFromData="yes|
no"/>

<copy ignoreMissingFromData="yes|no"/>

6.16.7.2 insertMissingToData Attribute

The insertMissingToData attribute instructs runtime to complete the (XPath) L-
value specified by the to-spec, if no items were selected. Table 6-4 describes the
syntax differences between BPEL versions 1.1 and 2.0.

Table 6-4 insertMissingToData Attribute Syntax

BPEL 1.1 BPEL 2.0

<copy bpelx:insertMissingToData="yes|
no"/>

<copy bpelx:insertMissingToData="yes|no"/>

6.16.7.3 keepSrcElementName Attribute

The keepSrcElementName attribute enables you to replace the element name of the
destination (as selected by the to-spec) with the element name of the source. This
attribute was not implemented in BPEL 1.1. Table 6-5 describes the syntax supported
in BPEL version 2.0.

Table 6-5 keepSrcElementName Attribute Syntax

BPEL 1.1 BPEL 2.0

Not implemented
<copy keepSrcElementName="yes|no"/>

6.17 Validating XML Data
You can verify code and identify invalid XML data in a BPEL project.

6.17.1 How to Validate XML Data in BPEL 2.0
This section discusses validating XML data in BPEL 2.0.

6.17.1.1 Validate XML in an Assign Activity

In an assign activity in Oracle BPEL Designer:

1. From the BPEL Constructs section of the Components window, drag an Assign
activity into the designer.

2. Double-click the Assign activity.

3. In the General tab, enter a name for the activity and select the Validate check box.

4. Click Apply, then OK.

Validating XML Data

6-48 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

5. Click the Source tab to view the syntax. The syntax for validating XML data with
the assign activity is slightly different between BPEL versions 1.1 and 2.0.

<assign name="Assign1" validate="yes">
 . . .
</assign>

6.17.1.2 Validate XML in a Standalone, Extended Validate Activity

In a standalone, extended validate activity in Oracle BPEL Designer that can be used
without an assign activity:

1. From the BPEL Constructs section of the Components window, drag a Validate
activity into the designer.

2. Double-click the Validate icon.

3. Enter a name for the activity.

4. Click the Add icon to select the variable to validate.

5. Select the variable, then click OK.

6. Click Apply, then OK.

7. Click the Source tab to view the syntax. The syntax for validating XML data with
the validate activity is slightly different between BPEL versions 1.1 and 2.0.

<validate name="Validate1" variables="inputVariable"/>

6.17.2 How to Validate XML Data in BPEL 1.1
This section describes validating xml data in BPEL 1.1.

6.17.2.1 Validate XML in an Assign Activity

In an assign activity in Oracle BPEL Designer:

1. From the BPEL Constructs section of the Components window, drag an Assign
activity into the designer.

2. Double-click the Assign activity.

3. In the General tab, enter a name for the activity and select the Validate check box.

4. Click Apply, then OK.

5. Click the Source tab to view the syntax.

<assign name=Assign1" bpelx:validate="yes"
 . . .
</assign>

6.17.2.2 Validate XML in a Standalone, Extended Validate Activity

In a standalone, extended validate activity in Oracle BPEL Designer that can be used
without an assign activity:

1. From the Oracle Extensions section of the Components window, drag a Validate
activity into the designer.

2. Double-click the Validate icon.

Validating XML Data

Manipulating XML Data in a BPEL Process 6-49

3. Enter a name for the activity.

4. Click the Add icon to select the variable to validate.

5. Select the variable, then click OK.

6. Click Apply, then OK.

7. Click the Source tab to view the syntax.

<bpelx:validate name=Validate1" variables="inputVariable"/>

6.18 Using Element Variables in Message Exchange Activities in BPEL 2.0
You can specify variables in the following message exchange activities:

• The Input field (for an inputVariable attribute) and Output field (for an
outputVariable attribute) of an invoke dialog

• The Input field (for a variable attribute) of a receive activity

• The Output field (for a variable attribute) of a reply activity

The variables referenced by these fields typically must be message type variables in
which the QName matches the QName of the input and output message types used in
the operation, respectively.

The one exception is if the WSDL operation in the activity uses a message containing
exactly one part that is defined using an element. In this case, a variable of the same
element type used to define the part can be referenced by the inputVariable and
outputVariable attributes, respectively, in the invoke activity or the variable
attribute of the receive or reply activity.

Using a variable in this situation must be the same as declaring an anonymous,
temporary WSDL message variable based on the associated WSDL message type.

Copying element data between the anonymous, temporary WSDL message variable
and the element variable acts as a single virtual assign activity with one copy
operation whose keepSrcElementName attribute is set to yes. The virtual assign
must follow the same rules and use the same faults as a real assign activity. Table 6-6
provides details.

Table 6-6 Mapping WSDL Message Parts

For The... The...

inputVariable attribute Value of the variable referenced by the attribute sets the value
of the part in the anonymous temporary WSDL message
variable.

outputVariable
attribute

Value of the received part in the temporary WSDL message
variable sets the value of the variable referenced by the
attribute.

Receive activity Incoming part's value sets the value of the variable referenced
by the variable attribute.

Reply activity Value of the variable referenced by the variable attribute sets
the value of the part in the anonymous, temporary WSDL
message variable that is sent out. For a reply activity sending a
fault, the same scenario applies.

Using Element Variables in Message Exchange Activities in BPEL 2.0

6-50 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For more information about the keepSrcElementName attribute, see
keepSrcElementName Attribute.

6.19 Mapping WSDL Message Parts in BPEL 2.0
The Arguments Mapping section in invoke and reply activities provides an
alternative to explicitly creating multipart WSDL messages from the contents of BPEL
variables.

When you use the Arguments Mapping section, an anonymous, temporary WSDL
variable is defined based on the type specified by the input message of the appropriate
WSDL operation.

For more information about mapping WSDL message parts, see the located at the
following URL:

http://www.oasis-open.org

6.19.1 How to Map WSDL Message Parts
The Arguments Mapping table contains the parts for the selected operation. You can
set the value of each message part by editing the Value column of the table. Select the
variable in which to retrieve the value and store the message part.

To map WSDL message parts in BPEL 2.0:

1. Note that the receive activity in Figure 6-36 includes a standard inputVariable
variable from the client.

Figure 6-36 Receive Activity

2. Note the Arguments Mapping button at the bottom of the reply activity in
Figure 6-37. You can set the value for each message part by clicking an entry in the
table.

Mapping WSDL Message Parts in BPEL 2.0

Manipulating XML Data in a BPEL Process 6-51

http://www.oasis-open.org

Figure 6-37 Arguments Mapping Section Defined at Bottom of a Reply Activity

6.20 Importing Process Definitions in BPEL 2.0
You can use the import element to specify the definitions on which your BPEL
process is dependent. When you create a version 2.0 BPEL process, an import
element is added to the .bpel file, as shown in the following example:

<process name="Loan Flow"
 . . .
 . . .
 <import namespace="http://xmlns.oracle.com/SOAApplication/SOAProject/LoanFlow"
 location="LoanFlow.wsdl" importType="http://schemas.xmlsoap.org/wsdl/"/>

You can also use the import element to import a schema without a namespace, as
shown in the following example:

<process name="Loan Flow"
 . . .
 . . .
<import location="xsd/NoNamespaceSchema.xsd"
 importType="http://www.w3.org/2001/XMLSchema"/>

You can also use the import element to import a schema with a namespace, as shown
in the following example:

<process name="Loan Flow"
 . . .
 . . .
<import namespace="http://www.example.org" location="xsd/TestSchema.xsd"
 importType="http://www.w3.org/2001/XMLSchema"/>

The import element is provided to declare a dependency on external XML schema or
WSDL definitions. Any number of import elements can appear as children of the
process element. Each import element can contain the following attributes.

• namespace: Identifies an absolute URI that specifies the imported definitions.
This is an optional attribute. If a namespace is specified, then the imported
definitions must be in that namespace. If a namespace is not specified, this
indicates that external definitions are in use that are not namespace-qualified. The
imported definitions must not contain a targetNamespace specification.

• location: Identifies a URI that specifies the location of a document containing
important definitions. This is an optional attribute. This can be a relative URI. If
no location attribute is specified, the process uses external definitions.
However, there is no statement provided indicating where to locate these
definitions.

• importType: Identifies the document type to import. This must be an absolute
URI that specifies the encoding language used in the document. This is a required
attribute.

Importing Process Definitions in BPEL 2.0

6-52 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

– If importing XML schema 1.0 documents, this attribute's value must be set to
"http://www.w3.org/2001/XMLSchema".

– If importing WSDL 1.1 documents, the value must be set to "http://
schemas.xmlsoap.org/wsdl/". You can also specify other values for this
attribute.

For more information, see section 5.4 of the .

6.21 Manipulating XML Data Sequences That Resemble Arrays
Data sequences are one of the most basic data models used in XML. However,
manipulating them can be nontrivial. One of the most common data sequence patterns
used in BPEL process service components are arrays. Based on the XML schema, the
way you can identify a data sequence definition is by its attribute maxOccurs being
set to a value greater than one or marked as unbounded. See the XML Schema
Specification at http://www.w3.org/TR for more information.

The examples in this section illustrate several basic ways of manipulating data
sequences in BPEL. However, there are other associated requirements, such as
performing looping or dynamic referencing of endpoints. The following sections
describe a particular requirement for data sequence manipulation.

6.21.1 How to Statically Index into an XML Data Sequence That Uses Arrays
The following two examples illustrate how to use XPath functionality to select a data
sequence element when the index of the element you want is known at design time. In
these cases, it is the first element.

In the following example, addresses[1] selects the first element of the addresses
data sequence:

<assign>
 <!-- get the first address and assign to variable address -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/autoloan:addresses[1]"/>
 <to variable="address"/>
 </copy>
</assign>

In this query, addresses[1] is equivalent to addresses[position()=1], where
position is one of the core XPath functions (see sections 2.4 and 4.1 of the). The
query in the following example calls the position function explicitly to select the
first element of the address's data sequence. It then selects that address's street
element (which the activity assigns to the variable street1).

<assign>
 <!-- get the first address's street and assign to street1 -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/autoloan:addresses[position()=1]
 /autoloan:street"/>
 <to variable="street1"/>
 </copy>
</assign>

Manipulating XML Data Sequences That Resemble Arrays

Manipulating XML Data in a BPEL Process 6-53

If you review the definition of the input variable and its payload part in the WSDL file,
you go several levels down before coming to the definition of the addresses field.
There you see the maxOccurs="unbounded" attribute. The two XPath indexing
methods are functionally identical; you can use whichever method you prefer.

6.21.2 How to Use SOAP-Encoded Arrays
Oracle SOA Suite provides support for SOAP RPC-encoded arrays. This support
enables Oracle BPEL Process Manager to operate as a client calling a SOAP web
service (RPC-encoded) that uses a SOAP 1.1 array.

The following example provides an example of a SOAP array payload named
myFavoriteNumbers.

<myFavoriteNumbers SOAP-ENC:arrayType="xsd:int2">
<number>3</number>
<number>4</number>
</myFavoriteNumbers>

In addition, ensure that the schema element attributes attributeFormDefault and
elementFormDefault are set to "unqualified" in your schema. The following
example provides details:

attributeFormDefault="unqualified" elementFormDefault="unqualified"
targetNamespace="java:services" xmlns:s0="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

The following features are not supported:

• A service published by BPEL that uses a SOAP array

• Partially-transmitted arrays

• Sparse arrays

• Multidimensional arrays

To use a SOAP-encoded array:

The following example shows how to prepare SOAP arrays with the bpelx:append
tag in a BPEL project.

1. Create a BPEL process in Oracle JDeveloper.

2. Prepare the payload for the invocation. Note that bpelx:append is used to add
items into the SOAP array.

<bpws:assign>
 <bpws:copy>
 <bpws:from variable="input" part="payload" query="/tns:value"/>
 <bpws:to variable="request" part="strArray"
 query="/strArray/JavaLangstring"/>
 </bpws:copy>
</bpws:assign>
<bpws:assign>
 <bpelx:append>
 <bpelx:from variable="request" part="strArray"
 query="/strArray/JavaLangstring1"/>
 <bpelx:to variable="request" part="strArray" query="/strArray"/>
 </bpelx:append>
</bpws:assign>

Manipulating XML Data Sequences That Resemble Arrays

6-54 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. Import the following namespace in your WSDL file. Oracle JDeveloper does not
understand the SOAP-ENC tag if the import statement is missing in the WSDL
schema element.

<xs:import namespace="http://schemas.xmlsoap.org/soap/encoding/" />

6.21.2.1 SOAP-Encoded Arrays in BPEL 2.0

SOAP-encoded arrays are supported in BPEL projects that use version 2.0 of the BPEL
specification. The following example shows a sample assign activity with a SOAP-
encoded array in a BPEL 2.0 project.

<assign name="Assign_1">
 <copy>
 <from>$inputVariable.payload</from>
 <to>$Invoke_1_echoArray_InputVariable.strArray/JavaLangstring[1]</to>
 </copy>
 <extensionAssignOperation>
 <bpelx:append>
 <bpelx:from variable="Invoke_1_echoArray_InputVariable"
 part="strArray">
 <bpelx:query>
 JavaLangstring[1]
 </bpelx:query>
 </bpelx:from>
 <bpelx:to variable="Invoke_1_echoArray_InputVariable"
 part="strArray">
 </bpelx:to>
 </bpelx:append>
 </extensionAssignOperation>
 </assign>

The following example shows a sample invoke activity with a SOAP-encoded array in
a BPEL 2.0 project.

<invoke name="Invoke1" partnerLink="FileOut"
 portType="ns3:Write_ptt" operation="Write"
 bpelx:invokeAsDetail="no">
 <toParts>
 <toPart part="body" fromVariable="ArrayVariable"/>
 </toParts>
</invoke>

6.21.2.2 Declaring a SOAP Array Using a wsdl:arrayType Attribute Inside a Schema

A SOAP-encoded array WSDL can declare a SOAP array using a wsdl:arrayType
attribute inside a schema. The following example provides details.

<xsd:complexType name="UserObject">
 <xsd:sequence>
 <xsd:element name="userInformation" nillable="true"
 type="n5:ArrayOfKeyValuePair"/>
 <xsd:element name="username" nillable="true" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ArrayOfKeyValuePair">
 <xsd:complexContent>
 <xsd:restriction base="soapenc:Array">
 <xsd:attribute ref="soapenc:arrayType"
 wsdl:arrayType="n5:KeyValuePair[]"/>
 </xsd:restriction>

Manipulating XML Data Sequences That Resemble Arrays

Manipulating XML Data in a BPEL Process 6-55

 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="KeyValuePair">
 <xsd:sequence>
 <xsd:element name="key" nillable="true" type="xsd:string"/>
 <xsd:element name="value" nillable="true" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

The following example shows how to create and access a SOAP-encoded array in
BPEL 1.1.

<bpws:copy>
 <bpws:from>
 <ns1:userInformation soapenc:arrayType="com1:KeyValuePair[1]"
 xmlns:ns1="http://www.schematargetnamespace.com/wsdl/Impl/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"/>
 <ns1:KeyValuePair
 xmlns:ns1="http://www.schematargetnamespace.com/wsdl/Impl/">
 <key>testkey</key>
 <value>testval1</value>
 </ns1:KeyValuePair>
 </ns1:userInformation>
 </bpws:from>
 <bpws:to variable="Inputvar" part="userObject"
 query="/userObject/userInformation"/>

</bpws:copy>
<!--Update elements with SOAPENC Array-->
<bpws:copy>
 <bpws:from variable="KeyValueVar" part="KeyValuePair"
 query="/KeyValuePair/ns2:key"/>
 <bpws:to variable="Inputvar" part="userObject'
 query="//*[local-name()='KeyValuePair'][1]/*[local-name()='key']"/>
</bpws:copy>

<bpws:copy>
 <bpws:from variable="KeyValueVar" part="KeyValuePair"
 query="/KeyValuePair/client:value"/>
 <bpws:to variable="Inputvar" part="userObject"
 query="//*[local-name()='KeyValuePair'][1]/*[local-name()='value']"/>

</bpws:copy>
<!-- Append elements within SOAPENC Array -->
<bpelx:append>
 <bpelx:from variable="Inputvar" part="userObject"
 query="//*[local-name()='KeyValuePair'][1]"/>
 <bpelx:to variable="Inputvar" part="userObject"
 query="/userObject/userInformation"/>
</bpelx:append>

6.21.3 How to Determine Sequence Size
If you must know the runtime size of a data sequence (that is, the number of nodes or
data items in the sequence), you can get it by using the combination of the XPath built-
in count() function and the BPEL built-in getVariableData() function.

The code in the following example calculates the number of elements in the item
sequence and assigns it to the integer variable lineItemSize.

Manipulating XML Data Sequences That Resemble Arrays

6-56 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<assign>
 <copy>
 <from expression="count(bpws:getVariableData('outpoint', 'payload',
 '/p:invoice/p:lineItems/p:item')"/>
 <to variable="lineItemSize"/>
 </copy>
</assign>

6.21.4 How to Dynamically Index by Applying a Trailing XPath to an Expression
Often a dynamic value is needed to index into a data sequence; that is, you must get
the nth node out of a sequence, where the value of n is defined at runtime. This
section covers the methods for dynamically indexing by applying a trailing XPath into
expressions.

6.21.4.1 Applying a Trailing XPath to the Result of getVariableData

The dynamic indexing method shown in the following example applies a trailing
XPath to the result of bwps:getVariableData(), instead of using an XPath as the
last argument of bpws:getVariableData(). The trailing XPath makes reference to
an integer-based index variable within the position predicate (that is, [...]).

<variable name="idx" type="xsd:integer"/>
...
<assign>
 <copy>
 <from expression="bpws:getVariableData('input','payload'
)/p:line-item[bpws:getVariableData('idx')]/p:line-total" />
 <to variable="lineTotalVar" />
 </copy>
</assign>

Assume at runtime that the idx integer variable holds 2 as its value. The expression in
the preceding example within the from is equivalent to that shown in the following
example.

<from expression="bpws:getVariableData('input','payload'
)/p:line-item[2]/p:line-total" />

There are some subtle XPath usage differences, when an XPath used trailing behind
the bwps:getVariableData() function is compared with the one used inside the
function.Using the same example (where payload is the message part of element
"p:invoice"), if the XPath is used within the getVariableData() function, the
root element name ("/p:invoice") must be specified at the beginning of the XPath.

The following example provides details.

bpws:getVariableData('input', 'payload','/p:invoice/p:line-item[2]/p:line-total')

If the XPath is used trailing behind the bwps:getVariableData()function, the root
element name does not need to be specified in the XPath.

For example:

bpws:getVariableData('input', 'payload')/p:line-item[2]/p:line-total

This is because the node returned by the getVariableData() function is the root
element. Specifying the root element name again in the XPath is redundant and is
incorrect according to standard XPath semantics.

Manipulating XML Data Sequences That Resemble Arrays

Manipulating XML Data in a BPEL Process 6-57

6.21.4.2 Using the bpelx:append Extension to Append New Items to a Sequence

The bpelx:append extension in an assign activity enables BPEL process service
components to append new elements to an existing parent element. The following
provides an example.

 <assign name="assign-3">
 <copy>
 <from expression="bpws:getVariableData('idx')+1" />
 <to variable="idx"/>
 </copy>
 <bpelx:append>
 <bpelx:from variable="partInfoResultVar" part="payload" />
 <bpelx:to variable="output" part="payload" />
 </bpelx:append>
 ...
 </assign>

The bpelx:append logic in this example appends the payload element of the
partInfoResultVar variable as a child to the payload element of the output
variable. In other words, the payload element of the output variable is used as the
parent element.

6.21.4.3 Merging Data Sequences

You can merge two sequences into a single data sequence. This pattern is common
when the data sequences are in an array (that is, the sequence of data items of
compatible types).The two append operations shown below under assign
demonstrate how to merge data sequences:

<assign>
 <!-- initialize "mergedLineItems" variable
 to an empty element -->
 <copy>
 <from> <p:lineItems /> </from>
 <to variable="mergedLineItems" />
 </copy>
 <bpelx:append>
 <bpelx:from variable="input" part="payload"
 query="/p:invoice/p:lineItems/p:lineitem" />
 <bpelx:to variable="mergedLineItems" />
 </bpelx:append>
 <bpelx:append>
 <bpelx:from variable="literalLineItems"
 query="/p:lineItems/p:lineitem" />
 <bpelx:to variable="mergedLineItems" />
 </bpelx:append>
</assign>

6.21.4.4 Generating Functionality Equivalent to an Array of an Empty Element

The genEmptyElem function generates functionality equivalent to an array of an
empty element to an XML structure. This function takes the following arguments:

genEmptyElem('ElemQName',int?, 'TypeQName'?, boolean?)

Note the following issues:

• The first argument specifies the QName of the empty elements.

Manipulating XML Data Sequences That Resemble Arrays

6-58 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• The optional second integer argument specifies the number of empty elements. If
missing, the default size is 1.

• The third optional argument specifies the QName, which is the xsi:type of the
generated empty name. This xsi:type pattern matches the SOAPENC:Array. If
it is missing or is an empty string, the xsi:type attribute is not generated.

• The fourth optional boolean argument specifies whether the generated empty
elements are XSI - nil, provided the element is XSD-nillable. The default value
is false. If missing or false, xsi:nil is not generated.

The following example shows an append statement initializing a purchase order (PO)
document with 10 empty <lineItem> elements under po:

<bpelx:assign>
 <bpelx:append>
 <bpelx:from expression="ora:genEmptyElem('p:lineItem',10)" />
 <bpelx:to variable="poVar" query="/p:po" />
 </bpelx:append>
</bpelx:assign>

The genEmptyElem function in the previous example can be replaced with an
embedded XQuery expression, as shown in the following example:

ora:genEmptyElem('p:lineItem',10)
== for $i in (1 to 10) return <p:lineItem />

The empty elements generated by this function are typically invalid XML data. You
perform further data initialization after the empty elements are created. Using the
same example above, you can perform the following:

• Add attribute and child elements to those empty lineItem elements.

• Perform copy operations to replace the empty elements. For example, copy from
a web service result to an individual entry in this equivalent array under a flowN
activity.

6.21.5 What You May Need to Know About Using the Array Identifier
For processing in Native Format Builder array identifier environments, information is
required about the parent node of a node. Because the reportSAXEvents API is
used, this information is typically not available for outbound message scenarios.
Setting nxsd:useArrayIdentifiers to true in the native schema enables DOM-
parsing to be used for outbound message scenarios. Use this setting cautiously, as it
can lead to slower performance for very large payloads. The following example
provides details.

<?xml version="1.0" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified" nxsd:encoding="US-ASCII"
nxsd:stream="chars" nxsd:version="NXSD" nxsd:useArrayIdentifiers="true">
 <xsd:element name="Root-Element">

 </xsd:element>
</xsd:schema>

Manipulating XML Data Sequences That Resemble Arrays

Manipulating XML Data in a BPEL Process 6-59

6.22 Converting from a String to an XML Element
Sometimes a service is defined to return a string, but the content of the string is
actually XML data. The problem is that, although BPEL provides support for
manipulating XML data (using XPath queries, expressions, and so on), this
functionality is not available if the variable or field is a string type. With Java, you use
DOM functions to convert the string to a structured XML object type. You can use the
BPEL XPath function parseEscapedXML to do the same thing.

For information about parseEscapedXML, see parseEscapedXML.

6.22.1 How To Convert from a String to an XML Element
The parseEscapedXML function takes XML data, parses it through DOM, and
returns structured XML data that can be assigned to a typed BPEL variable. The
following provides an example:

<!-- execute the XPath extension function
parseEscapedXML('<item>') and assign to a variable
-->
<assign>
 <copy>
 <from expression="oratext:parseEscapedXML(
 '<item xmlns="http://samples.otn.com"
 sku="006">
 <description>sun ultra sparc VI server
 </description>
 <price>1000
 </price>
 <quantity>2
 </quantity>
 <lineTotal>2000
 </lineTotal>
 </item>')"/>
 <to variable="escapedLineItem"/>
 </copy>
</assign>

6.23 Understanding Document-Style and RPC-Style WSDL Differences
The examples provided in previous sections of this chapter have been for document-
style WSDL files in which a message is defined with an XML schema element, as
shown in he following example:

<message name="LoanFlowRequestMessage">
<part name="payload" element="s1:loanApplication"/>
</message>

This is in contrast to RPC-style WSDL files, in which the message is defined with an
XML schema type, as shown in the following example:

<message name="LoanFlowRequestMessage">
<part name="payload" type="s1:LoanApplicationType"/>
</message>

6.23.1 How To Use RPC-Style Files
This differs from the previous information in this chapter because there is a difference
in how XPath queries are constructed for the two WSDL message styles. For an RPC-

Converting from a String to an XML Element

6-60 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

style message, the top-level element (and therefore the first node in an XPath query
string) is the part name (payload in the previous example). In document-style
messages, the top-level node is the element name (for example, loanApplication).

The following examples (WSDL file and BPEL file) show what an XPath query string
looks like if an application named LoanServices were in RPC style.

<message name="LoanServiceResultMessage">
 <part name="payload" type="s1:LoanOfferType"/>
</message>

<complexType name="LoanOfferType">
 <sequence>
 <element name="providerName" type="string"/>
 <element name="selected" type="boolean"/>
 <element name="approved" type="boolean"/>
 <element name="APR" type="double"/>
 </sequence>
</complexType>

<variable name="output"
 messageType="tns:LoanServiceResultMessage"/>
...
<assign>
 <copy>
 <from expression="9.9"/>
 <to variable="output" part="payload" query="/payload/APR"/>
 </copy>
</assign>

6.24 Manipulating SOAP Headers in BPEL
BPEL's communication activities (invoke, receive, reply, and onMessage) receive and
send messages through specified message variables. These default activities permit
one variable to operate in each direction. For example, the invoke activity has
inputVariable and outputVariable attributes. You can specify one variable for
each of the two attributes. This is enough if the particular operation involved uses only
one payload message in each direction.

However, WSDL supports multiple messages in an operation. In the case of SOAP,
multiple messages can be sent along the main payload message as SOAP headers.
However, BPEL's default communication activities cannot accommodate the
additional header messages.

Oracle BPEL Process Manager solves this problem by extending the default BPEL
communication activities with the bpelx:headerVariable extension. The
extension syntax is as shown in the following example:

<invoke bpelx:inputHeaderVariable="inHeader1 inHeader2 ..."
 bpelx:outputHeaderVariable="outHeader1 outHeader2 ..."
 .../>

<receive bpelx:headerVariable="inHeader1 inHeader2 ..." .../>
<onMessage bpelx:headerVariable="inHeader1 inHeader2 ..." .../>
<reply bpelx:headerVariable="inHeader1 inHeader2 ..." .../>

6.24.1 How to Receive SOAP Headers in BPEL
This section provides an example of how to create BPEL and WSDL files to receive
SOAP headers.

Manipulating SOAP Headers in BPEL

Manipulating XML Data in a BPEL Process 6-61

To receive SOAP headers in BPEL:

1. Create a WSDL file that declares header messages and the SOAP binding that binds
them to the SOAP request. The following provides an example:

 <!-- custom header -->
 <message name="CustomHeaderMessage">
 <part name="header1" element="tns:header1"/>
 <part name="header2" element="tns:header2"/>
 </message>

 <binding name="HeaderServiceBinding" type="tns:HeaderService">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="initiate">
 <soap:operation style="document" soapAction="initiate"/>
 <input>
 <soap:header message="tns:CustomHeaderMessage"
 part="header1" use="literal"/>
 <soap:header message="tns:CustomHeaderMessage"
 part="header2" use="literal"/>
 <soap:body use="literal"/>
 </input>
 </operation>
 </binding>

2. Create a BPEL source file that declares the header message variables and uses
bpelx:headerVariable to receive the headers, as shown in the following
example:

<variables> <variable name="input"
 messageType="tns:HeaderServiceRequestMessage"/>
 <variable name="event"
 messageType="tns:HeaderServiceEventMessage"/>
 <variable name="output"
 messageType="tns:HeaderServiceResultMessage"/>
 <variable name="customHeader"
 messageType="tns:CustomHeaderMessage"/>
</variables>

<sequence>
 <!-- receive input from requester -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:HeaderService" operation="initiate"
 variable="input"
 bpelx:headerVariable="customHeader"
 createInstance="yes"/>

6.24.2 How to Send SOAP Headers in BPEL
This section provides an example of how to send SOAP headers.

To send SOAP headers in BPEL:

1. Define a reference in the composite.xml file to refer to the HeaderService.

2. Define the custom header variable, manipulate it, and send it using
bpelx:inputHeaderVariable, as shown in the following example:

<variables>
 <variable name="input" messageType="tns:HeaderTestRequestMessage"/>

Manipulating SOAP Headers in BPEL

6-62 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <variable name="output" messageType="tns:HeaderTestResultMessage"/>
 <variable name="request" messageType="services:HeaderServiceRequestMessage"/>
 <variable name="response" messageType="services:HeaderServiceResultMessage"/>
 <variable name="customHeader"messageType="services:CustomHeaderMessage"/>
 </variables>
...
<!-- initiate the remote process -->
 <invoke name="invokeAsyncService"
 partnerLink="HeaderService"
 portType="services:HeaderService"
 bpelx:inputHeaderVariable="customHeader"
 operation="initiate"
 inputVariable="request"/>

6.25 Declaring Extension Namespaces in BPEL 2.0
You can extend a BPEL version 2.0 process to add custom extension namespace
declarations. With the mustUnderstand attribute, you can indicate whether the
custom namespaces carry semantics that must be understood by the BPEL process.

If a BPEL process does not support one or more of the extensions with
mustUnderstand set to yes, the process definition is rejected.

Extensions are defined in the extensions element. The following example provides
details.

<process ...>
 ...
 <extensions>?
 <extension namespace="myURI" mustUnderstand="yes|no" />+
 </extensions>
...
</process>

The contents of an extension element must be a single element qualified with a
namespace different from the standard BPEL namespace.

For more information about extension declarations, see the located at the following
URL:

http://www.oasis-open.org

6.25.1 How to Declare Extension Namespaces

To declare extension namespaces:

1. In a BPEL 2.0 process, click the Extensions icon above Oracle BPEL Designer.

The Extensions dialog is displayed.

2. Select the Extensions folder, then click the Add icon.

The Extension dialog is displayed.

3. In the Namespace field, enter the extension namespace to declare. This namespace
must be different from the standard BPEL namespace.

4. If you want the extensions to be recognized by the BPEL process, select the Must
Understand check box.

Declaring Extension Namespaces in BPEL 2.0

Manipulating XML Data in a BPEL Process 6-63

http://www.oasis-open.org

5. Click OK.

6. Click Close.

6.25.2 What Happens When You Create an Extension
After you complete your design, the .bpel process looks as shown in the following
example:

<extensions>
 <extension namespace="http://xmlns.mycompany.com/myNamespace"
 mustUnderstand="yes"/>
</extensions>

Declaring Extension Namespaces in BPEL 2.0

6-64 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

7
Invoking a Synchronous Web Service from

a BPEL Process

This chapter describes how to invoke a synchronous web service from a BPEL process.
It demonstrates how to set up the components necessary to perform a synchronous
invocation and how these components are coded. It also describes how to specify a
timeout value and call a one-way Oracle Mediator with a synchronous BPEL process.

This chapter includes the following sections:

• Introduction to Invoking a Synchronous Web Service

• Invoking a Synchronous Web Service

• Specifying Transaction Timeout Values in Durable Synchronous Processes

• Calling a One-Way Mediator with a Synchronous BPEL Process

7.1 Introduction to Invoking a Synchronous Web Service
Synchronous web services provide an immediate response to an invocation. BPEL can
connect to synchronous web services through a partner link, send data, and receive
the reply in the same synchronous invocation.

A synchronous invocation requires the following components:

• Partner link

Defines the location and the role of the web services with which the BPEL process
service component connects to perform tasks, and the variables used to carry
information between the web service and the BPEL process service component. A
partner link is required for each web service that the BPEL process service
component calls. You can create partner links in several ways, including the
following:

– In the SOA Composite Editor, when you drag a SOAP service from the
Technology section of the Components window into the Exposed Services or
External References swimlane. For more information, see Adding Service
Binding Components or Adding Reference Binding Components.

– In Oracle BPEL Designer, when you drag a Partner Link icon from the BPEL
Constructs section of the Components window into the Partner Links
swimlane. This second method is described in this chapter.

• Invoke activity

Opens a port in the BPEL process service component to send and receive data. For
example, this port is used to retrieve information verifying that a customer has

Invoking a Synchronous Web Service from a BPEL Process 7-1

acceptable credit using a credit card authorization service. For synchronous
callbacks, only one port is needed for both the send and receive functions.

7.2 Invoking a Synchronous Web Service
This section examines a synchronous invocation operation using a file named
OrderProcessor.bpel.

7.2.1 How to Invoke a Synchronous Web Service

To invoke a synchronous web service:

1. In the Components window in Oracle BPEL Designer, expand BPEL Constructs.

2. Drag the necessary partner link, invoke activity, scope activity, and assign activity
into the designer.

3. Edit their dialogs.

Figure 7-1 shows the diagram for a scope activity named
Scope_AuthorizeCreditCard of a BPEL process named OrderProcessor, which
defines a simple set of actions.

Figure 7-1 Diagram of OrderProcessor.bpel

7.2.1.1 How Does the BPEL Process Work

The following actions take place:

1. The Assign_CreditCardCheckInput assign activity packages the data from the
client. The assign activity provides a method for copying the contents of one
variable to another. In this case, it takes the credit card type, credit card number,
and purchase amount and assigns them to the input variable for the
CreditCardAuthorizationService service.

2. The InvokeCheckCreditCard invoke activity calls the
CreditCardAuthorizationService service. Figure 7-2 shows the
CreditCardAuthorizationService web service, which is defined as a partner link.

Invoking a Synchronous Web Service

7-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 7-2 CreditCardAuthorizationService Partner Link

Figure 7-3 shows the InvokeCheckCreditCard invoke activity.

Figure 7-3 InvokeCheckCreditCard Invoke Activity

3. An if activity (for BPEL 2.0) or a switch activity (for BPEL 1.1) checks the results of
the credit card validation. For information about if and switch activities, see
Defining Conditional Branching with the If or Switch Activity.

Note:

The BPEL 2.0 if activity replaces the BPEL 1.1 switch activity.

7.2.2 What Happens When You Invoke a Synchronous Web Service
When you create a partner link and invoke activity, the necessary BPEL code for
invoking a synchronous web service is added to the appropriate BPEL and Web
Services Description Language (WSDL) files.

7.2.2.1 Partner Link in the BPEL Code

In the OrderProcessor.bpel code, the partner link defines the link name and type,
and the role of the BPEL process service component in interacting with the partner
service.

Invoking a Synchronous Web Service

Invoking a Synchronous Web Service from a BPEL Process 7-3

From the BPEL source code, the CreditCardAuthorizationService partner link
definition is shown below:

<partnerLink name="CreditCardAuthorizationService"
 partnerRole="CreditAuthorizationPort"
 partnerLinkType="ns2:CreditCardAuthorizationService"/>

Variable definitions that are accessible locally in the Scope_AuthorizeCreditCard
scope are shown in the following example. The types for these variables are defined in
the WSDL for the process itself.

<variable name="lCreditCardInput"
 messageType="ns2:CreditAuthorizationRequestMessage"/>
<variable name="lCreditCardOutput"
 messageType="ns2:CreditAuthorizationResponseMessage"/>

The WSDL file defines the interface to your BPEL process service component:

• The messages that it accepts and returns

• The operations that are supported

• Other parameters

7.2.2.2 Partner Link Type and Port Type in the BPEL Code

The web service's CreditCardAuthorizationService.wsdl file contains two
sections that enable the web service to work with BPEL process service components:

• partnerLinkType:

Defines the following characteristics of the conversion between a BPEL process
service component and the credit card authorization web service:

– The role (operation) played by each

– The portType provided by each for receiving messages within the
conversation

• portType:

A collection of related operations implemented by a participant in a conversation.
A port type defines which information is passed back and forth, the form of that
information, and so on. A synchronous invocation requires only one port type
that both initiates the synchronous process and calls back the client with the
response. An asynchronous callback (one in which the reply is not immediate)
requires two port types:

– One to send the request

– Another to receive the reply when it arrives

In this example, the portType CreditAuthorizationPort receives the credit
card type, credit card number, and purchase amount, and returns the status
results.

The following provides an example of partnerLinkType and portType.

<plnk:partnerLinkType name="CreditCardAuthorizationService">
 <plnk:role name="CreditAuthorizationPort">
 <plnk:portType name="tns:CreditAuthorizationPort"/>

Invoking a Synchronous Web Service

7-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 </plnk:role>
</plnk:partnerLinkType>

7.2.2.3 Invoke Activity for Performing a Request

The invoke activity includes the lCreditCardInput local input variable. The credit
card authorization web service uses the lCreditCardInput input variable. This
variable contains the customer's credit card type, credit card number, and purchase
amount. The lCreditCardOutput variable returns status results from the
CreditCardAuthorizationService service. The following example provides
details.

<invoke name="InvokeCheckCreditCard"
 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>

7.2.2.4 Synchronous Invocation in BPEL Code

The BPEL code shown in the following example performs the synchronous invocation.

<assign name="Assign_CreditCheckInput">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:OrderTotal"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:CardTypeCode"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCType"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:AccountNumber"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCNumber"/>
 </copy>
</assign>
<invoke name="InvokeCheckCreditCard"
 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>

7.3 Specifying Transaction Timeout Values in Durable Synchronous
Processes

You can specify transaction timeout values with the property SyncMaxWaitTime in
the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control.
The SyncMaxWaitTime property applies to durable synchronous processes that are
called in an asynchronous manner. If the BPEL process service component does not
receive a reply within the specified time, then the activity fails. For more information,

Specifying Transaction Timeout Values in Durable Synchronous Processes

Invoking a Synchronous Web Service from a BPEL Process 7-5

see What You May Need to Know About SyncMaxWaitTime and Durable
Synchronous Requests Not Timing Out.

7.3.1 How To Specify Transaction Timeout Values

To specify transaction timeout values:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. From the SOA Infrastructure menu, select SOA Administration > BPEL
Properties.

3. At the bottom of the BPEL Service Engine Properties page, click More BPEL
Configuration Properties.

4. Click SyncMaxWaitTime.

5. In the Value field, specify a value in seconds.

6. Click Apply.

7. Click Return.

7.3.2 What You May Need to Know About SyncMaxWaitTime and Durable Synchronous
Requests Not Timing Out

The SyncMaxWaitTime property applies to durable synchronous processes that are
called in an asynchronous manner.

Assume you have a BPEL process with the definition shown in the following example.
The process is not durable because there are no breakpoint activities.

<receive name="receiveInput" partnerLink="client" variable="input"
createInstance="yes" />
<assign>
...
</assign>
<reply name="replyOutput" partnerLink="client" variable="output" />

If a Java client or another BPEL process calls this process, the assign activity is
performed and the reply activity sets the output message into a HashMap for the
client (actually the delivery service) to retrieve. Since the reply is the last activity, the
thread returns to the client side and tries to pick up the reply message. Since the reply
message was previously inserted, the client does not wait and returns with the reply.

Assume you have a BPEL process with a breakpoint activity, as shown in the
following example:

<receive name="receiveInput" partnerLink="client" variable="input"
createInstance="yes" />
<assign>
...
</assign>
<wait name="Wait1">
 <for>'PT10S'</for>
</wait>
<reply name="replyOutput" partnerLink="client" variable="output" />

While it is not recommended to have asynchronous activities inside a synchronous
process, BPEL does not prevent this type of design.

Specifying Transaction Timeout Values in Durable Synchronous Processes

7-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

When the client (or another BPEL process) calls the process, the wait (breakpoint)
activity is executed. However, since the wait is processed after some time by an
asynchronous thread in the background, the executing thread returns to the client
side. The client (actually the delivery service) tries to pick up the reply message, but it
is not there since the reply activity in the process has not yet executed. Therefore, the
client thread waits for the SyncMaxWaitTime seconds value. If this time is exceeded,
then the client thread returns to the caller with a timeout exception.If the wait is less
than the SyncMaxWaitTime value, the asynchronous background thread then
resumes at the wait and executes the reply. The reply is placed in the HashMap and
the waiter (the client thread) is notified. The client thread picks up the reply message
and returns.

Therefore, SyncMaxWaitTime only applies to synchronous process invocations when
the process has a breakpoint in the middle. If there is no breakpoint, the entire process
is executed by the client thread and returns the reply message.

7.4 Calling a One-Way Mediator with a Synchronous BPEL Process
You can expose a synchronous interface in the front end while using an asynchronous
callback in the back end to simulate a synchronous reply. This is the default behavior
in BPEL processes with the automatic setting of the bpel.config.transaction
property to requiresNew in the composite.xml file. The following example
provides details.

<component name="BPELProcess1">
 <implementation.bpel src="BPELProcess1.bpel"/>
 <property name="bpel.config.transaction" type="xs:string"
 many="false">requiresNew</property>
 </component>

The requiresNew value is recommended. If you want to participate in the client's
transaction, you must set the bpel.config.transaction property to required.

Calling a One-Way Mediator with a Synchronous BPEL Process

Invoking a Synchronous Web Service from a BPEL Process 7-7

Calling a One-Way Mediator with a Synchronous BPEL Process

7-8 Developing SOA Applications with Oracle SOA Suite

8
Invoking an Asynchronous Web Service

from a BPEL Process

This chapter describes how to configure and invoke an asynchronous web service
from a BPEL process. It also describes how to route callback messages to the correct
endpoint when multiple receive or pick activities use the same partner link, manage
idempotence at the partner link operation level, create a dynamic partner link at
runtime, override security certificates and WSDL files in dynamic partner link
environments, and use WS-Addressing.

This chapter includes the following sections:

• Introduction to Invoking an Asynchronous Web Service

• Invoking an Asynchronous Web Service

• Routing Callback Messages to the Correct Endpoint when Multiple Receive or
Pick Activities Use the Same Partner Link

• Managing Idempotence at the Partner Link Operation Level

• Creating a Dynamic Partner Link at Design Time for Use at Runtime

• Overriding Security Certificates when Invoking Dynamic Partner Links

• Overriding WSDL Files of Dynamic Partner Links

• Using WS-Addressing in an Asynchronous Service

8.1 Introduction to Invoking an Asynchronous Web Service
Asynchronous messaging styles are useful for environments in which a service, such
as a loan processor, can take a long time to process a client request. Asynchronous
services also provide a more reliable fault-tolerant and scalable architecture than
synchronous services.

This section introduces asynchronous web service invocation with a company called
United Loan. United Loan publishes an asynchronous web service that processes a
client's loan application request and then returns a loan offer. This use case discusses
how to integrate a BPEL process service component with this asynchronous loan
application approver web service.

This use case illustrates the key design concepts for requesting information from an
asynchronous service, and then receiving the response. The asynchronous United
Loan service in this example is another BPEL process service component. However,
the same BPEL call can interact with any properly designed web service. The target
web service WSDL file contains the information necessary to request and receive the
necessary information.

Invoking an Asynchronous Web Service from a BPEL Process 8-1

For the asynchronous web service, the following actions take place (in order of
priority):

1. An assign activity prepares the loan application.

2. An invoke activity initiates the loan request. The contents of this request are put
into a request variable. This request variable is sent to the asynchronous loan
processor web service.

When the loan request is initiated, a correlation ID unique to the client and
partner link initiating the request is also sent to the loan processor web service.
The correlation ID ensures that the correct loan offer response is returned to the
corresponding loan application requester.

3. The loan processor web service then sends the correct response to the receive
activity, which has been tracked by the correlation ID.

4. An assign activity reads the loan application offer.

Subsequent sections in this chapter provide specific details about the asynchronous
functionality.

8.2 Invoking an Asynchronous Web Service
This section provides an overview of the tasks for adding asynchronous functionality
to a BPEL process service component.

8.2.1 How to Invoke an Asynchronous Web Service
You perform the following steps to asynchronously invoke a web service:

• Add a partner link

• Add an invoke activity

• Add a receive activity

• Create assign activities

8.2.1.1 Adding a Partner Link for an Asynchronous Service

These instructions describe how to create a partner link in a BPEL process (for this
example, named LoanService) for the loan application approver web service.

To add a partner link for an asynchronous service:

1. In the SOA Composite Editor, drag a BPEL process from the Components section
of the Components window into the designer.

The Create BPEL Process dialog appears.

2. Follow the instructions in the dialog to create an asynchronous BPEL process
service component.

3. Click OK when complete.

4. In the SOA composite application in the SOA Composite Editor, double-click the
BPEL process service component (for this example, the component is named
LoanBroker).

Invoking an Asynchronous Web Service

8-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Oracle BPEL Designer appears.

5. In the Components window, expand BPEL Constructs.

6. Drag a Partner Link icon into the right Partner Links swimlane.

The Create Partner Link dialog appears.

7. Enter the following details to create a partner link and select the loan application
approver web service:

• Name

Enter a name for the partner link (for this example, LoanService is entered).

• Process

Displays the BPEL process service component name (for this example,
LoanBroker appears).

• WSDL URL

Enter the name of the Web Services Description Language (WSDL) file to use.
Click the SOA Resource Browser icon above this field to locate the correct
WSDL.

• Partner Link Type

Refers to the external service with which the BPEL process service component
is to interface. Select from the list (for this example, LoanService is selected).

• Partner Role

Refers to the role of the external source, for example, provider. Select from the
list (for this example, LoanServiceProvider is selected).

• My Role

Refers to the role of the BPEL process service component in this interaction.
Select from the list (for this example, LoanServiceRequester is selected).

8. Click OK.

A new partner link for the loan application approver web service (United Loan)
appears in the swimlane of the designer.

8.2.1.2 Adding an Invoke Activity

Follow these instructions to create an invoke activity and a global input variable
named request. This activity initiates the asynchronous BPEL process service
component activity with the loan application approver web service (United Loan). The
loan application approver web service uses the request input variable to receive the
loan request from the client.

To add an invoke activity:

1. In the Components window, expand BPEL Constructs.

2. Drag an Invoke activity to beneath the Receive activity.

Invoking an Asynchronous Web Service

Invoking an Asynchronous Web Service from a BPEL Process 8-3

3. Go to the Structure window. While this example describes variable creation from
the Structure window, you can also create variables by clicking the Add icons to
the right of the Input and Output fields of the Invoke dialog.

4. Right-click Variables and select Expand All Child Nodes.

5. In the second Variables folder in the tree, right-click and select Create Variable.

The Create Variable dialog appears.

6. Enter the variable name and select Message Type from the options provided:

• Type

This option lets you select an XML schema simple type (for example, string,
boolean, and so on).

• Message Type

This option enables you to select a WSDL message file definition of a partner
link or of the project WSDL file of the current BPEL process service component
(for example, a response message or a request message). You can specify
variables associated with message types as input or output variables for
invoke, receive, or reply activities.

To display the message type, select the Message Type option, and then select
its Browse icon to display the Type Chooser dialog. From here, expand the
Message Types tree to make your selection. For this example,
LoanServiceRequestMessage is selected.

• Element

This option lets you select an XML schema element of the project schema file or
project WSDL file of the current BPEL process service component, or of a
partner link.

7. Click OK.

8. Click the invoke activity to display its property fields in the Property Inspector or
double-click the invoke activity to display the Invoke dialog.

For information about editing activities in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

9. In the Invoke dialog, select the partner link from the Partner Link list (for this
example, LoanService is selected) and initiate from the Operation list.

10. To the right of the Input field, click the second icon and select the input variable
you created in Step 6.

The Variable Chooser dialog appears, where you can select the variable.

There is no output variable specified because the output variable is returned in the
receive operation. The invoke activity is created.

For more information about the invoke activity, see Invoke and Receive Activities.

11. Click OK.

Invoking an Asynchronous Web Service

8-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

8.2.1.3 Adding a Receive Activity

Follow these steps to create a receive activity and a global output variable named
response. This activity waits for the loan application approver web service's callback
operation. The loan application approver web service uses this output variable to send
the loan offer result to the client.

To add a receive activity:

1. From the Components window, drag a Receive activity to the location right after
the Invoke activity you created in Adding an Invoke Activity.

2. Create a variable to hold the receive information by invoking the Create Variable
dialog, as you did in Step 3 through Step 7 of Adding an Invoke Activity.

Note:

In BPEL projects that support version 2.0 of the BPEL specification, the Create
Variable dialog includes an Initialize tab that enables you to initialize the
variable type inline (for example, as a variable, expression, literal, partner link,
or property). BPEL 2.0 is the default version when you create a BPEL process.
For more information, see How to Initialize Variables with an Inline from-spec
in BPEL 2.0.

3. Double-click the Receive activity and change its name to receive_invoke.

4. From the Partner Link list, select the partner link (for this example, LoanService is
selected).

5. From the Operation list, select onResult. Do not select the Create Instance check
box.

6. Select the variable you created in Step 3 through Step 7 of Adding an Invoke
Activity.

7. Click OK.

The receive activity and the output variable are created. Because the initial receive
activity in the BPEL file (for this example, LoanBroker.bpel) created the initial
BPEL process service component instance, a second instance does not need to be
created.

8.2.1.4 Performing Additional Activities

In addition to the asynchronous-specific tasks, you must perform the following tasks.

• Create an initial assign activity for data manipulation in front of the invoke
activity that copies the client's input variable loan application request document
payload into the loan application approver web service's request variable
payload.

• Create a second assign activity for data manipulation after the receive activity that
copies the loan application approver web service's response variable loan
application results payload into the output variable for the client to receive.

Invoking an Asynchronous Web Service

Invoking an Asynchronous Web Service from a BPEL Process 8-5

8.2.2 What Happens When You Invoke an Asynchronous Web Service
This section describes what happens when you invoke an asynchronous web service.

8.2.2.1 portType Section of the WSDL File

The portType section of the WSDL file (in this example, for LoanService) defines
the ports to be used for the asynchronous service.

Asynchronous services have two port types. Each port type performs a one-way
operation. In this example:

• One port type responds to the asynchronous process

• The other calls back the client with the asynchronous response

In the example shown below, the portType LoanServiceCallback receives the
client's loan application request and the portType LoanService asynchronously
calls back the client with the loan offer response.

<!-- portType implemented by the LoanService BPEL process -->
 <portType name="LoanService">
 <operation name="initiate">
 <input message="tns:LoanServiceRequestMessage"/>
 </operation>
 </portType>
<!-- portType implemented by the requester of LoanService BPEL process
for asynchronous callback purposes
-->
 <portType name="LoanServiceCallback">
 <operation name="onResult">
 <input message="tns:LoanServiceResultMessage"/>
 </operation>
 </portType>

8.2.2.2 partnerLinkType Section of the WSDL File

The partnerLinkType section of the WSDL file (in this example, for LoanService)
defines the following characteristics of the BPEL process service component:

• The role (operation) played

• The portType provided for receiving messages within the conversation

Partner link types in asynchronous services have two roles: one for the web service
provider and one for the client requester.

In the conversation shown in the following example, the LoanServiceProvider
role and LoanService portType are used for client request messages and the
LoanServiceRequester role and LoanServiceCallback portType are used for
asynchronously returning (calling back) response messages to the client.

<plnk:partnerLinkType name="LoanService">
 <plnk:role name="LoanServiceProvider">
 <plnk:portType name="client:LoanService"/>
 </plnk:role>
 <plnk:role name="LoanServiceRequester">
 <plnk:portType name="client:LoanServiceCallback"/>
 </plnk:role>
 </plnk:partnerLinkType>

Invoking an Asynchronous Web Service

8-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Two port types are combined into this single asynchronous BPEL process service
component: portType="services:LoanService" of the invoke activity and
portType="services:LoanServiceCallback" of the receive activity. Port
types are essentially a collection of operations to be performed. For this BPEL process
service component, there are two operations to perform: initiate in the invoke
activity and onResult in the receive activity.

8.2.2.3 Partner Links Section in the BPEL File

To call the service from BPEL, you use the BPEL file to define how the process
interfaces with the web service. View the partnerLinks section. The services with
which a process interacts are designed as partner links. Each partner link is
characterized by a partnerLinkType.

Each partner link is named. This name is used for all service interactions through that
partner link. This is critical in correlating responses to different partner links for
simultaneous requests of the same type.

Asynchronous processes use a second partner link for the callback to the client. In this
example, the second partner link, LoanService, is used by the loan application
approver web service. The following provides an example.

 <!-- This process invokes the asynchronous LoanService. -->

 <partnerLink name="LoanService"
 partnerLinkType="services:LoanService"
 myRole="LoanServiceRequester"
 partnerRole="LoanServiceProvider"/>
 </partnerLinks>

The attribute myRole indicates the role of the client. The attribute partnerRole role
indicates the role of the partner in this conversation. Each partnerLinkType has
myRole and partnerRole attributes in asynchronous processes.

8.2.2.4 Composite Application File

In the composite.xml file, the loan application approver web service appears, as
shown below.

<component name="LoanBroker">
 <implementation.bpel process="LoanBroker.bpel"/>
</component>

For more information, see Adding a Partner Link for an Asynchronous Service for
instructions on creating a partner link.

8.2.2.5 Invoke and Receive Activities

View the variables and sequence sections. Two areas of particular interest
concern the invoke and receive activities:

• An invoke activity invokes a synchronous web service (as discussed in Invoking a
Synchronous Web Service from a BPEL Process) or initiates an asynchronous
service.

The invoke activity includes the request global input variable defined in the
variables section. The request global input variable is used by the loan
application approver web service. This variable contains the contents of the initial
loan application request document.

Invoking an Asynchronous Web Service

Invoking an Asynchronous Web Service from a BPEL Process 8-7

• A receive activity that waits for the asynchronous callback from the loan
application approver web service. The receive activity includes the response
global output variable defined in the variables section. This variable contains
the loan offer response. The receive activity asynchronously waits for a callback
message from a service. While the BPEL process service component is waiting, it
is dehydrated, or compressed and stored, until the callback message arrives.

The following provides an example.

 <variables>
 <variable name="request"
 messageType="services:LoanServiceRequestMessage"/>
 <variable name="response"
 messageType="services:LoanServiceResultMessage"/>
 </variables>
<sequence>
 <!-- initialize the input of LoanService -->
 <assign>
 . . .
 . . .
 </assign>
 <!-- initiate the remote process -->
 <invoke name="invoke" partnerLink="LoanService"
 portType="services:LoanService"
 operation="initiate" inputVariable="request"/>
 <!-- receive the result of the remote process -->
 <receive name="receive_invoke" partnerLink="LoanService"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="response"/>

When an asynchronous service is initiated with the invoke activity, a correlation ID
unique to the client request is also sent, using Web Services Addressing (WS-
Addressing) (described in Using WS-Addressing in an Asynchronous Service).
Because multiple processes may be waiting for service callbacks, the server must know
which BPEL process service component instance is waiting for a callback message
from the loan application approver web service. The correlation ID enables the server
to correlate the response with the appropriate requesting instance.

8.2.2.6 createInstance Attribute for Starting a New Instance

You may notice a createInstance attribute in the initial receive activity. In this
initial receive activity, the createInstance element is set to yes. This starts a
new instance of the BPEL process service component. At least one instance startup is
required for a conversation. For this reason, you set the createInstance variable to
no in the second receive activity.

The following example shows the source code for the createInstance attribute:

 <!-- receive input from requester -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:LoanBroker"
 operation="initiate" variable="input"
 createInstance="yes"/>

8.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous Processes

To automatically maintain long-running asynchronous processes and their current
state information in a database while they wait for asynchronous callbacks, you use a
database as a dehydration store. Storing the process in a database preserves the
process and prevents any loss of state or reliability if a system shuts down or a

Invoking an Asynchronous Web Service

8-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

network problem occurs. This feature increases both BPEL process service component
reliability and scalability. You can also use it to support clustering and failover.

You insert this point between the invoke activity and receive activity. You can also
explicitly specify a dehydration point with a dehydrate activity. For more information,
see Dehydrate Activity.

8.2.2.8 Multiple Runtime Endpoint Locations

Oracle SOA Suite provides support for specifying multiple partner link endpoint
locations. This capability is useful for failover purposes if the first endpoint is down.
To provide an alternate partner link endpoint location, add the location attribute to
the composite.xml file. The following provides an example.

<reference name="HeaderService ...>
<binding.ws port="http://services.otn.com/HelloWorldApp#wsdl.endpoint(client/
 HelloWorldService_pt)"
location="http://server:port/soa-infra/services/default/
 HelloWorldService!1.0/client?WSDL">
<property name="endpointURI">http://jsmith.us.example.com:80/a.jsp
@http://myhost.us.example.com:8888/soa-infra/services/HelloWorldApp/HelloWorld!
1.0*2007-10-22_14-33-04_195/client
 </property>
</binding.ws>
</reference>

8.2.3 What You May Need to Know About Midprocess Receive Activities Consuming
Messages After Timing Out

A BPEL process can consume midprocess receive activity messages even after the
expiration of a configured timeout on the receive activity, if the exception resulting
from the timeout goes unhandled. In these scenarios, the callback message is
consumed when it is delivered. This is the expected behavior.

For example, assume you perform the following tasks:

• Create a SOA composite application with a client BPEL process and service BPEL
process to exchange a message using asynchronous invoke and receive activities.

• Configure a timeout of 30 seconds in the Timeout tab of the receive activity of the
client BPEL process.

• Configure a wait activity to wait for five minutes in the service BPEL process.

You may expect that after the timeout occurs, the client BPEL process is marked as
completed in the faulted state instead of remaining in the running state, and the
callback message from the service BPEL process is ignored. However, when the
timeout fault is thrown on the client BPEL process, it remains in the running state.
When the service BPEL process responds five minutes after the completion of the wait
activity, the response is sent back to the client BPEL process and the response is
consumed by the client BPEL process and reconciled with the running process
instance.

8.2.4 What You May Need to Know About Multiple Client Components Invoking a
Composite

If multiple client components invoke a SOA composite application by using its remote
WSDL file, the callback response can only be retrieved by the original client calling the
remote composite if it has a receive activity. When the original client does not have a

Invoking an Asynchronous Web Service

Invoking an Asynchronous Web Service from a BPEL Process 8-9

receive activity and any of the subsequent clients calling the composite has a receive
activity, the response message is lost. It goes into the recovery state of the original
client process.

This is the expected behavior. This is because the composite being invoked cannot tell
which client has a receive activity or if the client is indeed a BPEL process service
component.

8.2.5 What You May Need to Know About Limitations on BPEL 2.0 IMA Support
Receive activities are a type of inbound message activity (IMA). Other examples of
IMAs are as follows:

• onMessage branches of a scope activity (in BPEL 1.1) or a pick activity

• onEvent branches of a scope activity in BPEL 2.0

The BPEL 2.0 specification allows multiple IMAs to work with each other or with
other IMAs derived from extension activities. To provide for consistent runtime
behavior, the BPEL 2.0 specification allows for correlation sets with the initiate
attribute set to join.However, Oracle BPEL Process Manager's implementation of the
BPEL 2.0 specification does not support this behavior. The only way to support
multiple IMAs is by coding them as onMessage branches for a pick activity (that is,
setting createInstance to yes).Oracle BPEL Process Manager also does not
support other forms of multiple IMAs, such as a flow activity with two branches, each
with a receive activity and with createInstance set to yes and correlation sets
with initiate set to join.

As a workaround, you must design two different BPEL processes with the two receive
activities in alternating order, as follows:

• Process1 with receive1 followed by receive2, and only receive1 having
createInstance set to yes.

• Process2 with receive2 followed by receive1, and only receive2 having
createInstance set to yes.

The same also applies for any other combination of IMAs, such as a receive activity
and pick activity, or two pick activities.

8.2.6 What Happens When You Specify a Conversation ID
You can also enter an optional conversation ID value in the Conversation ID field of
an invoke activity (and other activities such as a receive activity and the onMessage
branch of a pick or scope activity).

The conversation ID identifies a process instance during an asynchronous
conversation. By default, the BPEL process service engine generates a unique ID for
each conversation (which can span multiple invoke and receive activities), as specified
by WSA addressing. If you want, you can specify your own value for the service
engine to use. Conversation IDs are implemented with the bpelx:conversationId
extension.

8.2.6.1 bpelx:conversationId in BPEL 1.1

The following provides an example of the bpelx:conversationId extension in a
BPEL project that supports BPEL version 1.1. The bpelx:conversationId
extension takes an XPath expression.

Invoking an Asynchronous Web Service

8-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<invoke ... bpelx:conversationId="$convId2">
</invoke>

<receive ... bpelx:conversationId="$convId2">
</receive>

<onMessage... bpelx:conversationId="$convId2">
</onMessage>

8.2.6.2 bpelx:conversationId in BPEL 2.0

The following provides an example of the bpelx:conversationId extension in a
BPEL project that supports BPEL version 2.0. The bpelx:conversationId
extension takes a BPEL 2.0 XPath expression.

<invoke ...>
 <bpelx:conversationId>$convId1</bpelx:conversationId>
</invoke>

<receive ...>
 <bpelx:conversationId>$convId1</bpelx:conversationId>
</receive>

<onMessage ...>
 <bpelx:conversationId>$convId2</bpelx:conversationId>
</onMessage>

8.3 Routing Callback Messages to the Correct Endpoint when Multiple
Receive or Pick Activities Use the Same Partner Link

The replyToAddress normalized message property is required for resolving the
routing of callback messages to the correct endpoint address when multiple receive or
pick activities are associated with the same partner link.

This is because the BPEL process service engine only stores the replyToAddress
property once when receiving a request from a partner link at the initiating receive or
pick activity. The replyToAddress property routes the callback message and is not
reset if a midprocess receive or pick activity is used. The replyToAddress property
uses the bpelx:inputProperty extension.

8.3.1 How to Route Callback Messages to the Correct Endpoint when Multiple Receive
and Pick Activities Use the Same Partner Link

Set this property to the client's replyToAddress on the invoke activity (for the
callback) following the midprocess receive activity. This means that even if the client
sends WS-Addressing replyTo information for a midprocess receive activity, it is not
set on the partner link unless you use an assign activity to set it dynamically.

For example, assume your BPEL process is as shown below:

Caller Callee

<receive> <receive> Initiate CS1
<invoke>initiate CS1 --------> <receive> Use CS1
 <wait>
<receive>use CS1 <-------- <invoke>
<invoke>

Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick Activities Use the Same Partner Link

Invoking an Asynchronous Web Service from a BPEL Process 8-11

To route callback messages to the correct endpoint when multiple receive and
pick activities use the same partner link:

1. Obtain the client's replyToAddress value from the midprocess receive activity.

<receive name="receiveMsgFromAccessor" partnerLink="midprocess_client"
 portType="client:mySingletonBPEL" operation="process"
 variable="ReceiveMidProcess" createInstance="no">
<bpelx:fromProperties>
 <bpelx:fromProperty name="replyToAddress" variable="var_replyToAddress"/>
</bpelx:fromProperties>
 <correlations>
 <correlation set="<YourCorrset>" initiate="no"/>
 </correlations>
</receive>

2. On the invoke activity (for the callback), click the Properties tab.

3. Click the Add icon to select the property and its content (either a variable or an
XPath expression).

Note:

In BPEL 1.1 processes, the properties are automatically displayed in the
Properties column. Select the property in the Name column and double-click
the Value and Type columns to enter appropriate values.

4. In the Name column, scroll down and select the replyToAddress property. Do not
select wsa.replyToAddress or bpel.replyToAddress.

5. In the Value column, specify the variable name as the value (for this example,
var_replyToAddress from Step 1 is entered), and click OK.

The Edit Invoke dialog appears as shown in Figure 8-1.

Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick Activities Use the Same Partner Link

8-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 8-1 Properties Tab of Invoke Activity

6. Click Apply, then OK.

7. In Oracle BPEL Designer, click Source.

The invoke activity in the BPEL process file looks as follows:

<invoke name="callbackAccessor" partnerLink="midprocess_client"
 portType="client:mySingletonBPELCallback"
 operation="processResponse"
inputVariable="CallbackAccessorVar"
 bpelx:invokeAsDetail="no">
 <bpelx:inputProperty name="replyToAddress"
variable="var_replyToAddtess"/>

8.4 Managing Idempotence at the Partner Link Operation Level
An idempotent activity is an activity that can be safely retried. Idempotent activities
are applicable to both durable and transient processes. You can manage idempotence
at the operation level of a partner link. For example, some partner links can expose
multiple operations (for example, getEmployee, depositPayCheck, and so on).
You can define some operations as idempotent (for example, getEmployee). This
enables these operations to be called multiple times. Other operations may not need to
be idempotent (for example, depositPayCheck), and do not require this setting.
Dehydration does occur after a nonidempotent operation.

By default, all partner link operations are idempotent. If you want, you can set an
operation to be nonidempotent. This setting provides the same functionality as the
idempotent deployment descriptor property, but at the more granular, operational
level.

Managing Idempotence at the Partner Link Operation Level

Invoking an Asynchronous Web Service from a BPEL Process 8-13

For more information about the idempotent deployment descriptor property, see
What You May Need to Know About the idempotent Property and Fault Handling
and Introduction to Deployment Descriptor Properties.

8.4.1 How to Manage Idempotence at the Partner Link Operation Level

To manage idempotence at the partner link operation level:

1. In Oracle BPEL Designer, double-click the partner link that includes the operations
for which to manage idempotence.

2. Click the Idempotence tab of the partner link.

By default, all operations are selected to be idempotent in the Idempotent column.

3. If you want to define an operation to be nonidempotent, deselect the Idempotent
check box for that operation. Figure 8-2 provides details.

Figure 8-2 Idempotence Tab of Partner Link Activity

4. Click Apply.

5. Click OK.

For more information about idempotence and the idempotent property, see
Introduction to Deployment Descriptor Properties.

8.5 Creating a Dynamic Partner Link at Design Time for Use at Runtime
When you design a SOA composite application, you can face the following challenges:

• Service endpoints (addresses) may not be known at design time.

• Endpoint references may need to change while the application is running.

The dynamic partner link feature enables you to dynamically assign an endpoint
reference to a partner link for use at runtime in BPEL versions 1.1 and 2.0. The
dynamic partner link provides conditions, similar to a switch activity, that are
evaluated at runtime.

Creating a Dynamic Partner Link at Design Time for Use at Runtime

8-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

8.5.1 How To Create a Dynamic Partner Link at Design Time for Use at Runtime

To create a dynamic partner link at design time for use at runtime:

1. Create a WSDL file that contains multiple services that use the same portType.

<service name="AmericanLoan">
 <port name="LoanServicePort" binding="tns:LoanServiceBinding">
 <soap:address location="host:port/soa-infra/services/domain_
name/AmericanLoan/client"/>
 </port>
</service>

<service name="AlliedLoan">
 <port name="LoanServicePort" binding="tns:LoanServiceBinding">
 <soap:address location="host:port/soa-infra/services/domain_
name/AlliedLoan/client"/>
 </port>
</service>

<service name="AcmeLoan">
 <port name="LoanServicePort" binding="tns:LoanServiceBinding">
 <soap:address location="host:port/soa-infra/services/domain_
name/AcmeLoan/client"/>
 </port>
</service>

2. Drag a SOAP binding component into the External References swim lane of the
SOA Composite Editor.

The Create Web Service dialog appears.

3. Define the web service, and click OK.

When complete, the reference binding component entry in the composite.xml
file that uses the WSDL looks as follows:

<reference name="loanService">
 <interface.wsdl interface="http://services.otn.com#wsdl.interface(LoanService)"
callbackInterface="http://services.otn.com#wsdl.interface(LoanServiceCallback)"
/>
 <binding.ws port=
 "http://services.otn.com#wsdl.endpoint(AmericanLoan/LoanService_pt)"/>
 </reference>

Note:

• Adding the binding.ws port setting is optional. This is because the
port is overridden at runtime by properties passed from Oracle BPEL
Process Manager.

• If there is no port setting, and there is no composite import of the
concrete WSDL associated with this reference, you must specify the
location of the concrete WSDL with a location attribute.

4. Double-click the BPEL process to enter Oracle BPEL Designer.

Creating a Dynamic Partner Link at Design Time for Use at Runtime

Invoking an Asynchronous Web Service from a BPEL Process 8-15

5. Drag an Assign activity into the designer.

6. Above the target partner link, select the XML Fragment icon, as shown in
Figure 8-3. If you are using BPEL 2.0, drag the Literal icon.

Figure 8-3 XML Fragment Icon

7. Drag the icon to the target partner link.

The XML Fragment dialog for BPEL 1.1 appears. If you are using BPEL 2.0, the
Literal dialog appears.

8. Assign an XML fragment containing the endpoint reference to the partner link, and
click OK. Figure 8-4 provides details.

Figure 8-4 XML Fragment Dialog in BPEL 1.1

When complete, the BPEL file contains one of the services defined in the WSDL.

The following provides a BPEL 1.1 sample:

<EndpointReference xmlns="http://schemas.xmlsoap.org/ws/2003/03/addressing">
 <Address>http://host:port/soa-infra/services/domain_name
 /AlliedLoan/client</Address>
<ServiceName xmlns:ns1="http://services.otn.com"
 PortName="LoanServicePort">ns1:AlliedLoan</ServiceName>
</EndpointReference>

The following provides a BPEL 2.0 sample:

<assign>
 <copy>
 <from>
 <literal>

Creating a Dynamic Partner Link at Design Time for Use at Runtime

8-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <sref:service-ref>
 <services:EndpointReference>
 <services:Address>http://host:port/soa-infra/services/domain_
 name/AlliedLoan/client</services:Address>
 <services:ServiceName
 xmlns:ns1="http://services.otn.com">ns1:AlliedLoan</services:
 ServiceName>
 </services:EndpointReference>
 </sref:service-ref>
 </literal>
 </from>
 <to partnerLink="LoanService"/>
 </copy>
</assign>

8.6 Overriding Security Certificates when Invoking Dynamic Partner Links
You can interact with multiple web services using dynamic partner links. This
interaction may involve using message protection policies that require different
security certificates for encrypting the message. These certificates may be different for
each web service. You can specify a keystore recipient alias value to override the
security certificate in the WSDL file of the web service.

To override security certificates when invoking partner links:

1. Define a variable of type string (for example, KEYSTORE_RECIPIENT_ALIAS).
Figure 8-5 provides details.

Figure 8-5 Variable Definition of KEYSTORE_RECIPIENT_ALIAS

2. In the Copy Rules tab of an assign activity, assign orakey to the variable
KEYSTORE_RECIPIENT_ALIAS. Figure 8-6 provides details.

Overriding Security Certificates when Invoking Dynamic Partner Links

Invoking an Asynchronous Web Service from a BPEL Process 8-17

Figure 8-6 Assignment of orakey to KEYSTORE_RECIPIENT_ALIAS

3. In the invoke activity that invokes the partner link for the web service, click the
Properties tab.

4. Click the keystore.recipient.alias property.

Note:

In BPEL 2.0 processes, the properties are not automatically displayed in the
Properties column. You must click the Add icon to select the property and its
content (either a variable or an XPath expression).

5. Double-click the Value column to display the Browse (...) icon.

6. Click the Browse (...) icon to display the Adapter Property Value dialog.

7. Click the Browse icon to display the Variable XPath Builder dialog.

8. Select keystore_recipient_alias as the value, and click OK. Figure 8-7 provides
details. This property overrides the security certificates set in the WSDL file while
invoking a web service in a BPEL process.

Note:

In BPEL 2.0, there are only Name and Value columns in the Properties table.
The Type column is not included.

Overriding Security Certificates when Invoking Dynamic Partner Links

8-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 8-7 keystore.recipient.alias Normalized Message Property of Invoke
Activity

9. Click Apply, then OK.

When complete, the BPEL file is defined as follows:

. . .

. . .
<variables>
 <variable name="WsaAddress" element="ns6:EndpointReference"/>
 <variable name="KEYSTORE_RECIPIENT_ALIAS" type="xsd:string"/>
</variables>

<assign name="AssignAddress">
 <copy>
 <from
expression="'http://localhost:8001/soa-infra/services/default/ServiceWithNewCer
tificate!1.0*soa_c94537fb-97a4-4b0f-900f-fefffc34f7fe/service_ep'"/>
 <to variable="WsaAddress"
 query="/ns6:EndpointReference/ns6:Address"/>
 </copy>
 <copy>
 <from variable="WsaAddress"/>
 <to partnerLink="Service"/>
 </copy>
</assign>

<assign name="AssignAlias">
 <copy>
 <from expression='"orakey"'/>
 <to variable="KEYSTORE_RECIPIENT_ALIAS"/>
 </copy>
</assign>

<invoke name="Invoke"
 inputVariable="Invoke_InputVariable"

Overriding Security Certificates when Invoking Dynamic Partner Links

Invoking an Asynchronous Web Service from a BPEL Process 8-19

 partnerLink="Service"
 portType="ns1:ServiceBPELProcess"
 operation="process"
 bpelx:invokeAsDetail="no">

 <bpelx:inputProperty name="endpointURI"
 variable="inputVariable"
 part="payload"
 query="/client:process/client:input"/>

 <bpelx:inputProperty name="keystore.recipient.alias"
 variable="KEYSTORE_RECIPIENT_ALIAS"/>
</invoke>

For more information about normalized message properties, see Propagating
Normalized Message Properties Through Message Headers.

8.7 Overriding WSDL Files of Dynamic Partner Links
You may need to override the default WSDL file used by dynamic partner links for the
following reasons:

• You must integrate with services that use message protection security policies.

• The WSDL may contain important information such as the certificate used for
message encryption.

The normalized message property endpointWSDL enables you to specify the WSDL
file of the dynamic partner link. You must specify the entire WSDL dynamically
instead of just the endpoint. This enables it to be passed to Oracle Web Services
Manager (OWSM), which can then retrieve the correct service certificate from the
specified WSDL.

The certificate in the WSDL file is ignored in the following cases:

• The recipient.key.alias property name described in Overriding Security
Certificates when Invoking Dynamic Partner Links is present.

• The endpointWSDL property is not present.

Otherwise, the certificate is retrieved from the WSDL file.

To override WSDL files of dynamic partner links:

1. Define a variable of type string (for this example, the_wsdl_var is defined).

2. In the Copy Rules tab of an assign activity, assign the WSDL to the_wsdl_var.

3. In the invoke activity that invokes the partner link, click the Properties tab.

4. Click the endpointWSDL property.

Note:

In BPEL 2.0 processes, the properties are not automatically displayed in the
Properties column. You must click the Add icon to select the property and its
content (either a variable or an XPath expression).

Overriding WSDL Files of Dynamic Partner Links

8-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

5. Double-click the Value column to display the Browse (...) icon.

6. Click the Browse (...) icon to display the Adapter Property Value dialog.

7. Click the Browse icon to display the Variable XPath Builder dialog.

8. Select the_wsdl_var as the variable, and click OK. This value specifies the WSDL of
the dynamic partner link.

Note:

In BPEL 2.0, there are only Name and Value columns in the Properties table.
The Type column is not included.

Figure 8-8 endpointWSDL Normalized Message Property of Invoke Activity

When complete, the BPEL file is defined as follows:

<variables>
 <variable name="the_wsdl_var" type="xsd:string"/>
</variables>

<assign name="myAssignWsdl">
 <copy>
 <from
expression='"http://localhost:8001/soa-infra/services/default/ServiceWithNewCer
tificate!1.0/service_ep?WSDL"'/>
 <to variable="the_wsdl_var"/>
 </copy>
</assign>

<invoke name="Invoke"
 inputVariable="Invoke_InputVariable"
 partnerLink="Service"
 portType="ns1:ServiceBPELProcess"

Overriding WSDL Files of Dynamic Partner Links

Invoking an Asynchronous Web Service from a BPEL Process 8-21

 operation="process"
 bpelx:invokeAsDetail="no">

 <bpelx:inputProperty name="endpointWSDL"
 variable="the_wsdl_var"/>

</invoke>

For more information about normalized message properties, see Propagating
Normalized Message Properties Through Message Headers.

8.8 Using WS-Addressing in an Asynchronous Service
Because there can be many active instances at any time, the server must be able to
direct web service responses to the correct BPEL process service component instance.
You can use WS-Addressing to identify asynchronous messages to ensure that
asynchronous callbacks locate the appropriate client.

Figure 8-9 provides an overview of WS-Addressing. WS-Addressing uses Simple
Object Access Protocol (SOAP) headers for asynchronous message correlation.
Messages are independent of the transport or application used.

Figure 8-9 Callback with WS-Addressing Headers

Figure 8-9 shows how messages are passed along with WS headers so that the
response can be sent to the correct destination.

The example in this chapter uses WS-Addressing for correlation. To view the
messages, you can use TCP tunneling, which is described in Using TCP Tunneling to
View Messages Exchanged Between Programs.

Using WS-Addressing in an Asynchronous Service

8-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

WS-Addressing defines the following information typically provided by transport
protocols and messaging systems. This information is processed independently of the
transport or application:

• Endpoint location (reply-to address)

The reply-to address specifies the location at which a BPEL client is listening for a
callback message.

• Conversation ID

Use TCP tunneling to view SOAP messages exchanged between the BPEL process
service component flow and the web service (including those containing the
correlation ID). You can see the exact SOAP messages that are sent to, or received
from, services with which a BPEL process service component flow communicates.

You insert a software listener between your BPEL process service component flow
and the web service. Your BPEL process service component flow communicates
with the listener (called a TCP tunnel). The listener forwards your messages to the
web service, and also displays them. Responses from the web service are returned
to the tunnel, which displays and forwards them back to the BPEL process service
component.

8.8.1 How to Use WS-Addressing in an Asynchronous Service
WS-Addressing is a public specification and is the default correlation method
supported by . You do not need to edit the .bpel and .wsdl files to use WS-
Addressing.

8.8.1.1 Using TCP Tunneling to View Messages Exchanged Between Programs

The messages that are exchanged between programs and services can be seen through
TCP tunneling. This is particularly useful when you want to see the exact SOAP
messages exchanged between the BPEL process service component flow and web
services.

To monitor the SOAP messages, insert a software listener between your flow and the
service. Your flow communicates with the listener (called a TCP tunnel) and the
listener forwards your messages to the service, and displays them. Likewise, responses
from the service are returned to the tunnel, which displays them and then forwards
them back to the flow.

To view all the messages exchanged between the server and a web service, you need
only a single TCP tunnel for synchronous services because all the pertinent messages
are communicated in a single request and reply interaction with the service. For
asynchronous services, you must set up two tunnels, one for the invocation of the
service and another for the callback port of the flow.

8.8.1.1.1 Setting Up a TCP Listener for Synchronous Services

Follow these steps to set up a TCP listener for synchronous services initiated by an
process:

1. Visit the following URL for instructions on how to download and install Axis TCP
Monitor (tcpmon)

http://ws.apache.org/commons/tcpmon/

2. Visit the following URL for instructions on how to use tcpmon:

http://ws.apache.org/axis/java/user-guide.html

Using WS-Addressing in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 8-23

http://ws.apache.org/commons/tcpmon/
http://ws.apache.org/axis/java/user-guide.html

3. Place axis.jar in your class path.

4. Start tcpmon:

C:\...\> java org.apache.axis.utils.tcpmon localport remoteHost
port_on_which_remote_server_is_running

5. In the composite.xml file, add the endpointURI property under binding.ws
for your flow to override the endpoint of the service.

6. From the operating system command prompt, compile and deploy the process with
ant.

The same technique can see SOAP messages passed to invoke a BPEL process
service component as a web service from another tool kit such as Axis or .NET.

8.8.1.1.2 Setting Up a TCP Listener for Asynchronous Services

Follow these steps to set up a TCP listener to display the SOAP messages for callbacks
from asynchronous services:

1. Start a TCP listener to listen on a port and send the Oracle BPEL Process Manager
port.

a. Open Oracle Enterprise Manager Fusion Middleware Control.

b. From the SOA Infrastructure menu, select SOA Administration > Common
Properties.

c. Specify the value for Callback Server URL. This URL is sent by the server as
part of the asynchronous callback address to the invoker.

2. From the SOA Infrastructure menu, select Administration > System MBean
Browser.

3. Expand Application Defined MBeans > oracle.soa.config > Server : soa_server >
SCAComposite.

where soa_server is the specific server instance name (for example,
AdminServer).

All the SOA composite applications deployed on the server appear.

4. Follow these steps to set this property on a composite application. This action
enables it to apply to all bindings in the composite application.

a. Click your composite.

b. Ensure the Attributes tab is selected.

c. In the Name column, click Properties.

d. Click the Add icon.

e. Expand the newly added Element_number (appears at the end of the list).

where number is the next sequential number beyond the last property. For
example, if the property list contains twelve elements, adding a new property
causes Element_13 to be displayed.

f. In the name field, enter oracle.webservices.local.optimization.

Using WS-Addressing in an Asynchronous Service

8-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

g. In the value field, enter false.

h. In the many field, enter false.

i. Click Apply, and then click Return.

j. In the Name column on the Operations tab, click save.

k. Click Invoke to execute the operation.

l. Click Return or click a node in the System MBean Browser pane.

Note:

After adding, deleting, or updating a property, you can click the Refresh
cached tree data icon in the upper right corner of the System MBean Browser
page to see the new data.

5. Follow these steps to set this property on a specific binding.

a. Expand your composite application. and navigate to the specific
SCAComposite.SCAReference.SCABinding folder.

b. Click WSBinding.

c. Perform steps 44.b through 44.l.

6. Initiate any flow that invokes asynchronous web services. You can combine this
with the synchronous TCP tunneling configuration to send a service initiation
request through your first TCP tunnel.

The callbacks from the asynchronous services are shown in the TCP listener.

If you are an Oracle JDeveloper user, you can also use the built-in Packet Monitor to
see SOAP messages for both synchronous and asynchronous services.

For information about using correlation sets for message correlation, see Using
Correlation Sets and Message Aggregation .

Using WS-Addressing in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 8-25

Using WS-Addressing in an Asynchronous Service

8-26 Developing SOA Applications with Oracle SOA Suite

9
Using Correlation Sets and Message

Aggregation

This chapter describes how to use correlation sets to ensure that asynchronous
callbacks locate the appropriate client. It also describes how to use aggregation
patterns to route messages to the same instance.

This chapter includes the following sections:

• Introduction to Correlation Sets in an Asynchronous Service

• Creating Correlation Sets in Oracle JDeveloper

• Routing Messages to the Same Instance

9.1 Introduction to Correlation Sets in an Asynchronous Service
Correlation sets provide a method for directing web service responses to the correct
BPEL process service component instance. You can use correlation sets to identify
asynchronous messages to ensure that asynchronous callbacks locate the appropriate
client. You define correlation sets when interactions are not simple invoke-receive
activities.

Correlation sets are a BPEL mechanism that provides for the correlation of
asynchronous messages based on message body contents. To use this method, define
the correlation sets in your BPEL process. This method is designed for services that do
not support WS-Addressing or for certain sophisticated conversation patterns, for
example, when the conversation is in the form A > B > C > A instead of A > B >
A.

9.1.1 Scenarios for Using Correlation Sets
Correlations enable you to associate asynchronous messages based on message body
contents. Note that not all business scenarios require correlations:

• Synchronous calls do not require correlations because the conversation context is
maintained in the stack or across a TCP connection.

• Consenting BPEL processes typically correlate messages using WS-Addressing
headers to pass tokens that act like session cookies in a web application. For more
information, see Using WS-Addressing in an Asynchronous Service.

Correlation is required in the following scenarios. In these cases, a BPEL process must
be configured to view some content of the message to select the correct process
instance to receive the message.

• When using an asynchronous service that does not support WS-Addressing.

• When receiving unsolicited messages from another system.

Using Correlation Sets and Message Aggregation 9-1

• When the message travels through several services and the response is solicited
by the initial service from the last service directly.

• When communicating through files.

9.1.2 Understanding Correlation Set Contents and Concepts
This section provides an overview of key correlation set concepts.

The correct BPEL instance using correlation sets is obtained as follows:

• A BPEL process provides a construct called a correlation set to allow for custom
correlation.

• A correlation set is a collection of properties used by the BPEL process service
engine to identify the correct process to receive a message.

• Each property in the correlation set can be mapped to an element in one or more
message types through property aliases. Figure 9-1 provides an overview.

Figure 9-1 Correlation Sets

Note the following key correlation guidelines:

• Only the process receiving the message is concerned about correlation. As long as
the sending service includes sufficient information in the message to correlate it
with previous activities, the sender does not need to be aware that correlation is
occurring.

• Correlation properties must be unique for the duration of the life of the BPEL
process that sets them.

• Ensure that no two processes are working with the same correlation tokens. For
example, using social security numbers to correlate an expense claims process is
not recommended if you start two separate instances of the process.

• Properties can be made up values or actual business identifiers such as purchase
orders or numbers. They do not need to be strings; they can be any reasonable
XML type.

Key correlation concept attributes are as follows. You set these attributes in Oracle
JDeveloper when designing a correlation set with the Correlation wizard:

• An initiate attribute is set as follows:

– yes: The correlation set is initiated with the values of the properties available
in the message being transferred.

Introduction to Correlation Sets in an Asynchronous Service

9-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

– no: The correlation set validates the value of the property available in the
message.

• A pattern attribute is set as follows:

– in (for BPEL 1.1) or response (for BPEL 2.0): The correlation property is set
and validated on the incoming message.

– out (for BPEL 1.1) or request (for BPEL 2.0): The correlation property is set
and validated on the outgoing BPEL message.

– out-in (for BPEL 1.1) or request-response (for BPEL 2.0): The correlation
property is set and validated on both incoming and outgoing messages.

• Property aliases map a global property to a field in a specific message part. This
action enables the property name to become an alias for the message part and
location. The alias can be used in XPath expressions.

9.1.3 Overview of Correlation Set Creation
Table 9-1 provides an overview of the steps for creating a correlation set. References to
the pages of the Correlation wizard on which you perform these steps and examples of
values to set are provided.

Table 9-1 Correlation Set Creation Overview

Step Correlation Wizard Page Example

Create a correlation set with
property names and types to
correlate the exchange.

Set this information on the
Correlation wizard - Define
Correlation Set page. See Figure 9-2.

Create a phonenumber correlation set
with property names and types:

• username of type string
• userordernumber of type int
• IsGift of type boolean

Add the correlation to the
invoke or receive activity
that begins the conversation
and set Initiate to yes.

Select the activity and set the Initiate
attribute on the Correlation wizard -
Initiate Settings page. See Figure 9-3.

Select the internalReceive receive activity
and set Initiate to yes.

Create property alias
mappings to appropriate
elements in each message.
They must have the same
value in both messages of
the conversation. The
elements can be different
names and in different
structures in the two
messages, but they must
contain the same value for
correlation to work.

Set this information on the
Correlation wizard - Property
Aliases page. See Figure 9-7. Two
editors available on this page enable
you to create the property alias
mappings:

• Alias Editor (Figure 9-4)
• Alias Drag and Drop Editor

(Figure 9-5)

Define the property aliases to populate the
correlation set property values at runtime:

• Map alias username to the name
message element

• Map alias userordernumber to the
poNumber message element

• Map alias IsGift to the gift message
element.

Introduction to Correlation Sets in an Asynchronous Service

Using Correlation Sets and Message Aggregation 9-3

Table 9-1 (Cont.) Correlation Set Creation Overview

Step Correlation Wizard Page Example

Add the same correlation set
with its property to
additional activities. Do not
set them to initiate. The
BPEL process uses this to
select the correct process
instance. Set the pattern
accordingly.

Set on the Activity Correlation
Editor - Initiate Tab. See Figure 9-10.

Select the internalCallback invoke
activity:

• Set Initiate to no
• Set Pattern to request

9.2 Creating Correlation Sets in Oracle JDeveloper
You can create correlation sets on the following activities and branches.

• Receive activity

• Reply activity

• Invoke activity

• onMessage branch

• onEvent branch

There are two methods for creating correlations sets in Oracle JDeveloper:

• Automatically through the Correlation wizard in an activity

• Manually through the Correlations tab in an activity

9.2.1 How to Create a Correlation Set with the Correlation Wizard

To create a correlation set with the Correlation wizard:

1. Right-click an applicable activity (such as a receive activity), and select Setup
Correlation.

The Correlation wizard - Define Correlation Set page is displayed.

2. Provide responses appropriate to your environment, then click Next. Table 9-2
provides details.

Table 9-2 Correlation Wizard - Define Correlation Set Page

Field Description

Create Correlation Set Select to create a new correlation set.

Choose Existing
Correlation Set

Select an existing correlation set in which to include the
selected activity.

Name Enter the name of the correlation set you want to create.

Creating Correlation Sets in Oracle JDeveloper

9-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 9-2 (Cont.) Correlation Wizard - Define Correlation Set Page

Field Description

Scope Displays the scope or process in which to create the new
correlation set.

Properties
a. Click Add to create a new property in the Name column

of the Properties table or click Browse to select an existing
property.

b. Click the Type column, then click the ellipses to invoke
the Type Chooser dialog for selecting the property type
(for example, integer, boolean, or some other type).

When complete, the Correlation wizard - Define Correlation Set page looks as
shown in Figure 9-2.

Figure 9-2 Correlation Wizard - Define Correlation Set Page

The Correlation wizard - Initiate Settings page is displayed.

3. Provide responses appropriate to your environment, then click Next. Table 9-3
provides details.

Table 9-3 Correlation Wizard - Initiate Settings Page

Field Description

Activity Displays the activity on which the correlation is set.

Creating Correlation Sets in Oracle JDeveloper

Using Correlation Sets and Message Aggregation 9-5

Table 9-3 (Cont.) Correlation Wizard - Initiate Settings Page

Field Description

initiate Select whether this activity is the initiator in the correlation set.

When set to yes, the correlation set is initiated with the values of
the properties occurring in the message being sent or received.

When complete, the Correlation wizard - Initiate Settings page looks as shown in
Figure 9-3.

Figure 9-3 Correlation Wizard - Initiate Settings Page

The Correlation wizard - Property Aliases page is displayed for mapping
properties to values. The properties defined previously in the Define Correlation
Set page of the wizard are displayed in the Property Aliases table.

Property aliases enable you to map a property to a field in a specific message part
of a variable. This action enables the property to become an alias for the message
part and location.

4. Click a property in the table and select a method for mapping the message part of
the variable to the property. Table 9-4 provides details.

Table 9-4 Methods for Mapping the Variable Message Part to a Property

To Use The... Go to Step...

Alias Editor 5

Alias Drag and Drop Editor 6

Creating Correlation Sets in Oracle JDeveloper

9-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

5. Click the Edit (first) icon to invoke the Alias Editor dialog.

a. Expand the variable.

b. Select the message part to represent the property, and click OK. Figure 9-4
provides details.

Figure 9-4 Alias Editor

6. Click the Alias Drag and Drop Editor (second) icon to invoke the Alias Drag and
Drop Editor dialog.

a. Expand the variable.

b. Select the message part to represent the property.

c. Drag and drop the message part onto the property row in the Correlation
wizard - Property Aliases page. Figure 9-5 provides details.

Figure 9-5 Alias Drag and Drop Editor

Existing property aliases are listed in the lower part of the Correlation wizard
- Property Aliases page, as shown in Figure 9-6. For this example, there are no
existing property aliases.

Creating Correlation Sets in Oracle JDeveloper

Using Correlation Sets and Message Aggregation 9-7

Figure 9-6 Correlation Wizard - Property Aliases Page - Lower Part

d. When complete, click Next.

7. Select additional properties to map to specific message parts of variables.

When complete, the Correlation wizard - Property Aliases page looks as shown in
Figure 9-7. The properties created in Figure 9-2 are displayed in the Property
column. The message elements to which the properties were mapped with either
the Alias Editor (Figure 9-4) or Alias Drag and Drop Editor (Figure 9-5) are
displayed in the Query column.

Figure 9-7 Correlation Wizard - Property Aliases Page

8. Click Next.

The Correlation wizard - Correlated Activities page is displayed. Figure 9-8
provides details.

Creating Correlation Sets in Oracle JDeveloper

9-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 9-8 Correlation Wizard - Property Aliases Page (Without Activity)

9. Click the Add icon to add more activities to this correlation set (multiple activities
can correlate on the correlation set).

The Activity Browser dialog is displayed.

10. Select the activity to add, and click OK. Figure 9-9 provides details.

Figure 9-9 Activity Browser for Selecting an Activity

The activity is added to the Correlation Activities field of the Correlation wizard -
Correlated Activities page.

Creating Correlation Sets in Oracle JDeveloper

Using Correlation Sets and Message Aggregation 9-9

11. In the Correlation Activities field, select the activity and click Edit to invoke the
Initiate tab of the Activity Correlation Editor dialog. Figure 9-10 provides details.

Figure 9-10 Activity Correlation Editor - Initiate Tab

12. Select appropriate values in the Initiate and Pattern lists. For this example:

• Select no from the Initiate list (because the correlation set validates the value
of the property available in the message).

• Select request from the Pattern list (because the correlation property is set
and validated on the outgoing BPEL message).

For BPEL 2.0, you can select response if the correlation applies to an inbound
message, request if the correlation applies to an outbound message, or request-
response if the correlation applies to both outbound and inbound messages.

For BPEL 1.1, you can select in if the correlation applies to an inbound message
(response), out if the correlation applies to an outbound message (request), or out-
in if the correlation applies to both inbound and outbound messages. (response
and request).

13. Click the Aliases tab.

14. Repeat Step 4 through Step 7 to select a property and map the message part of the
variable to the property.

When complete, the Alias dialog looks similar to that shown in Figure 9-11.

Creating Correlation Sets in Oracle JDeveloper

9-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 9-11 Activity Correlation Editor - Alias Tab

15. Click OK to return to the Correlation wizard - Correlated Activities page, which
looks as shown in Figure 9-12.

Figure 9-12 Correlation Wizard - Correlated Activities Page (With Selected
Activity)

16. Click Next to review the correlation set details in the Activities, Correlation Set,
and Alias tabs.

• Activities: Displays the activities involved in the correlation and their roles
(for example, the receive activity is the initiator and the invoke activity is the
responder).

Creating Correlation Sets in Oracle JDeveloper

Using Correlation Sets and Message Aggregation 9-11

• Correlation Set: Displays the name of the correlation set.

• Aliases: Displays the property aliases defined for the activities in the
correlation set.

Figure 9-13 provides details.

Figure 9-13 Correlation Wizard - Summary Page

17. Click Finish.

The correlation set is created.

18. In the Structure window, view the correlation set, properties, and property aliases
you defined in the Correlation wizard.

19. In Oracle BPEL Designer, click the Correlations tab of one of the participating
activities to view the details you defined (for example, the receive activity).
Figure 9-14 provides details.

Creating Correlation Sets in Oracle JDeveloper

9-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 9-14 Correlation Tab of Receive Activity

20. If you want to find out which activities are used in a correlation set, perform the
following steps.

a. Click the Search icon above Oracle BPEL Designer, and select Correlation
Search.

The Correlation Set Chooser dialog is displayed.

b. Select the correlation set, and click OK.

c. In the Correlation Search dialog, click OK.

The activities using the correlation sets are displayed in the Log window.

21. If you want to add additional activities to an existing correlation set, right-click
the activity, and select Setup Correlation.

The Correlation wizard - Define Correlation Set page is displayed.

22. Select Choose Existing Correlation Set.

23. From the Correlation Sets list, select the correlation set, and click OK.

24. Define the activity by following the pages in the Correlation wizard.

9.2.2 How to Manually Create Correlation Sets From the Correlations Tab
This section describes the steps to manually create correlation sets in an asynchronous
service. This example illustrates how to use correlation sets for a process having three
receive activities with no associated invoke activities.

Creating Correlation Sets in Oracle JDeveloper

Using Correlation Sets and Message Aggregation 9-13

9.2.2.1 Step 1: Creating a Project

To create a project:

1. Start Oracle JDeveloper.

2. From the File main menu, select New > Applications.

3. Select SOA Application, and click OK.

The Create SOA Application Wizard appears.

4. In the Application Name field, enter a name (for this example,
MyCorrelationSetApp is entered).

5. Accept the default values for all remaining settings, and click Next.

6. In the Project Name field, enter a name (for this example,
MyCorrelationSetComposite is entered).

7. Accept the default values for all remaining settings, and click Next.

8. In the Composite Template section, select Composite With BPEL Process, and
click Finish.

The Create BPEL Process dialog appears.

9. Enter the values shown in Table 9-5.

Table 9-5 Create BPEL Process Dialog Fields and Values

Field Value

Name Enter a name (for this example, MyCorrelationSet is
entered).

Template Select Asynchronous BPEL Process.

Expose as a SOAP Service Select the check box. After process creation, note the SOAP
service that appears in the Exposed Services swimlane. This
service provides the entry point to the composite application
from the outside world.

10. Accept the default values for all remaining settings, and click OK.

9.2.2.2 Step 2: Configuring Partner Links and File Adapter Services

You now create three partner links that use the SOAP service.

This section contains these topics:

• You create an initial partner link with an adapter service for reading a loan
application.

• You create a second partner link with an adapter service for reading an
application response.

• You create a third partner link with an adapter service for reading a customer
response.

Creating Correlation Sets in Oracle JDeveloper

9-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

9.2.2.2.1 Creating an Initial Partner Link and File Adapter Service

To create an initial partner link and file adapter service:

1. Double-click the MyCorrelationSet BPEL process.

2. In the Components window, expand BPEL Constructs.

3. Drag an initial Partner Link activity into the right swimlane of the designer.

4. Click the third icon at the top (the Service Wizard icon). This starts the Adapter
Configuration Wizard, as shown in Figure 9-15.

Figure 9-15 Adapter Configuration Wizard Startup

5. In the Configure Service or Adapter dialog, select File and click OK.

6. In the Name field of the File Adapter Reference dialog, enter a name (for this
example, FirstReceive is entered) and click Next.

7. In the Adapter Interface dialog, accept the default settings and click Next.

8. In the Operation dialog, select Read File as the Operation Type and click Next. The
Operation Name field is automatically filled in with Read.

9. Above the Directory for Incoming Files (physical path) field, click Browse.

10. Select a directory from which to read files (for this example, C:\files
\receiveprocess\FirstInputDir is selected).

11. Click Select.

12. Click Next.

13. In the File Filtering dialog, enter appropriate file filtering parameters.

14. Click Next.

15. In the File Polling dialog, enter appropriate file polling parameters.

16. Click Next.

17. In the Messages dialog, click Browse next to the URL field to display the Type
Chooser dialog.

18. Select an appropriate XSD schema file. For this example, Book1_4.xsd is the
schema and LoanAppl is the schema element selected.

19. Click OK.

The URL field (Book1_4.xsd for this example) and the Schema Element field
(LoanAppl for this example) are filled in.

20. Click Next.

Creating Correlation Sets in Oracle JDeveloper

Using Correlation Sets and Message Aggregation 9-15

21. Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically
completed. The dialog looks as shown in Table 9-6:

Table 9-6 Partner Link Dialog Fields and Values

Field Value

Name FirstReceive

WSDL URL directory_path/FirstReceive.wsdl

Partner Link Type Read_plt

Partner Role Leave unspecified.

My Role Read_role

22. Click OK.

9.2.2.2.2 Creating a Second Partner Link and File Adapter Service

To create a second partner link and file adapter service:

1. Drag a second Partner Link activity beneath the FirstReceive partner link activity.

2. At the top, click the third icon (the Service Wizard icon).

3. In the Configure Service or Adapter dialog, select File and click OK.

4. In the Name field of the File Adapter Reference dialog, enter a name (for this
example, SecondFileRead is entered) and click Next. This name must be unique
from the one you entered in Step 6 of Creating an Initial Partner Link and File
Adapter Service.

5. In the Adapter Interface dialog, accept the default settings and click Next.

6. In the Operation dialog, select Read File as the Operation Type.

7. In the Operation Name field, change the name (for this example, Read1 is
entered).

8. Click Next.

9. Select Directory Names are Specified as Physical Path.

10. Above the Directory for Incoming Files (physical path) field, click Browse.

11. Select a directory from which to read files (for this example, C:\files
\receiveprocess\SecondInputDir is entered).

12. Click Select.

13. Click Next.

14. Enter appropriate file filtering parameters in the File Filtering dialog.

15. Click Next.

Creating Correlation Sets in Oracle JDeveloper

9-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

16. Enter appropriate file polling parameters in the File Polling dialog.

17. Click Next.

18. Next to the URL field in the Messages dialog, click Browse to display the Type
Chooser dialog.

19. Select an appropriate XSD schema file. For this example, Book1_5.xsd is the
schema and LoanAppResponse is the schema element selected.

20. Click OK.

The URL field (Book1_5.xsd for this example) and the Schema Element field
(LoanAppResponse for this example) are filled in.

21. Click Next.

22. Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically
completed. The dialog looks as shown in Table 9-7:

Table 9-7 Partner Link Dialog Fields and Values

Field Value

Name SecondReceive

WSDL URL directory_path/SecondFileRead.wsdl

Partner Link Type Read1_plt

Partner Role Leave unspecified.

My Role Read1_role

23. Click OK.

9.2.2.2.2.1 Creating a Third Partner Link and File Adapter Service

To create a third partner link and file adapter service:

1. Drag a third Partner Link activity beneath the SecondReceive partner link
activity.

2. At the top, click the third icon (the Service Wizard icon).

3. In the Configure Service or Adapter dialog, select File and click OK.

4. In the Name field of the File Adapter Reference dialog, enter a name (for this
example, ThirdFileRead is entered) and click Next. This name must be unique
from the one you entered in Step 6 of Creating an Initial Partner Link and File
Adapter Service and Step 4 of Creating a Second Partner Link and File Adapter
Service.

5. In the Adapter Interface dialog, accept the default settings and click Next.

6. In the Operation dialog, select Read File as the Operation Type.

Creating Correlation Sets in Oracle JDeveloper

Using Correlation Sets and Message Aggregation 9-17

7. In the Operation Name field, change the name (for this example, Read2 is
entered). This name must be unique.

8. Click Next.

9. Select Directory Names are Specified as Physical Path.

10. Above the Directory for Incoming Files (physical path) field, click Browse.

11. Select a directory from which to read files (for this example, C:\files
\receiveprocess\ThirdInputDir is entered).

12. Click Select.

13. Click Next.

14. Enter appropriate file filtering parameters in the File Filtering dialog.

15. Click Next.

16. Enter appropriate file polling parameters in the File Polling dialog.

17. Click Next.

18. Next to the URL field in the Messages dialog, click Browse to display the Type
Chooser dialog.

19. Select an appropriate XSD schema file. For this example, Book1_6.xsd is the
schema and CustResponse is the schema element selected.

20. Click OK.

The URL field (Book1_6.xsd for this example) and the Schema Element field
(CustResponse for this example) are filled in.

21. Click Next.

22. Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically
completed. The dialog looks as shown in Table 9-8:

Table 9-8 Partner Link Dialog Fields and Values

Field Value

Name ThirdReceive

WSDL URL directory_path/ThirdFileRead.wsdl

Partner Link Type Read2_plt

Partner Role Leave unspecified.

My Role Read2_role

23. Click OK.

Creating Correlation Sets in Oracle JDeveloper

9-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

9.2.2.3 Step 3: Creating Three Receive Activities

You now create three receive activities; one for each partner link. The receive activities
specify the partner link from which to receive information.

9.2.2.3.1 Creating an Initial Receive Activity

To create an initial receive activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Receive activity beneath the receiveInput receive activity in the designer.

3. Click the receive activity to display its property fields in the Property Inspector or
double-click the receive icon to display the Receive dialog.

For information about editing activities in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

4. Enter the details described in Table 9-9 to associate the first partner link
(FirstReceive) with the first receive activity:

Table 9-9 Receive Dialog Fields and Values

Field Value

Name receiveFirst

Partner Link FirstReceive

Create Instance Select this check box.

The Operation (Read) field is automatically filled in.

5. To the right of the Variable field, click the first icon. This is the automatic variable
creation icon.

6. In the Create Variable dialog, click OK.

A variable named receiveFirst_Read_InputVariable is automatically created in the
Variable field.

7. Ensure that you selected the Create Instance check box, as described in Step 4.

8. Click OK.

9.2.2.3.2 Creating a Second Receive Activity

To create a second receive activity:

1. From the Components window, drag a second Receive activity beneath the
receiveFirst receive activity.

2. Double-click the receive icon to display the Receive dialog.

3. Enter the details described in Table 9-10 to associate the second partner link
(SecondReceive) with the second receive activity:

Creating Correlation Sets in Oracle JDeveloper

Using Correlation Sets and Message Aggregation 9-19

Table 9-10 Receive Dialog Fields and Values

Field Value

Name receiveSecond

Partner Link SecondFileRead

Create Instance Do not select this check box.

The Operation (Read1) field is automatically filled in.

4. To the right of the Variable field, click the first icon.

5. In the Create Variable dialog, click OK.

A variable named receiveSecond_Read1_InputVariable is automatically created in
the Variable field.

6. Click OK.

9.2.2.3.2.1 Creating a Third Receive Activity

To create a third receive activity:

1. From the Components window, drag a third Receive activity beneath the
receiveSecond receive activity.

2. Double-click the receive icon to display the Receive dialog.

3. Enter the details described in Table 9-11 to associate the third partner link
(ThirdReceive) with the third receive activity:

Table 9-11 Receive Dialog Fields and Values

Field Value

Name receiveThird

Partner Link ThirdFileRead

Create Instance Do not select this check box.

The Operation (Read2) field is automatically filled in.

4. To the right of the Variable field, click the first icon.

5. In the Create Variable dialog, click OK.

A variable named receiveThird_Read2_InputVariable is automatically created in
the Variable field.

6. Click OK.

Each receive activity is now associated with a specific partner link.

9.2.2.4 Step 4: Creating Correlation Sets

You now create correlation sets. A set of correlation tokens is a set of properties shared
by all messages in the correlated group.

Creating Correlation Sets in Oracle JDeveloper

9-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

9.2.2.4.1 Creating an Initial Correlation Set

To create an initial correlation set:

1. In the Structure window of Oracle JDeveloper, right-click Correlation Sets and
select Expand All Child Nodes.

2. In the second Correlation Sets folder, right-click and select Create Correlation Set.

3. In the Name field of the Create Correlation Set dialog, enter CorrelationSet1.

4. In the Properties section, click the Add icon to display the Property Chooser
dialog.

5. Select Properties, then click the Add icon (first icon at the top) to display the Create
Property dialog.

6. In the Name field, enter NameCorr.

7. To the right of the Type field, click the Browse icon.

8. In the Type Chooser dialog, select string and click OK.

9. Click OK in each dialog to close the Create Property dialog, the Property Chooser
dialog, and the Create Correlation Set dialog.

9.2.2.4.2 Creating a Second Correlation Set

To create a second correlation set:

1. Return to the Correlation Sets section in the Structure window of Oracle
JDeveloper.

2. Right-click the Correlation Sets folder and select Create Correlation Set.

3. In the Name field of the Create Correlation Set dialog, enter CorrelationSet2.

4. In the Properties section, click the Add icon to display the Property Chooser
dialog.

5. Select Properties, then click the Add icon to display the Create Property dialog.

6. In the Name field, enter IDCorr.

7. To the right of the Type field, click the Browse icon.

8. In the Type Chooser dialog, select double and click OK.

9. Click OK in each dialog to close the Create Property dialog, the Property Chooser
dialog, and the Create Correlation Set dialog.

9.2.2.5 Step 5: Associating Correlation Sets with Receive Activities

You now associate the correlation sets with the receive activities. You perform the
following correlation set tasks:

• For the first correlated group, the first and second receive activities are correlated
with the CorrelationSet1 correlation set.

Creating Correlation Sets in Oracle JDeveloper

Using Correlation Sets and Message Aggregation 9-21

• For the second correlated group, the second and third receive activities are
correlated with the CorrelationSet2 correlation set.

9.2.2.5.1 Associating the First Correlation Set with a Receive Activity

To associate the first correlation set with a receive activity:

1. Double-click the receiveFirst receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. Click the Add icon to display the correlation set dropdown list.

4. Select CorrelationSet1.

5. Click the Initiate column to display a dropdown list, and select yes. When set to
yes, the set is initiated with the values of the properties occurring in the message
being exchanged.

6. Click OK.

9.2.2.5.2 Associating the Second Correlation Set with a Receive Activity

To associate the second correlation set with a receive activity:

1. Double-click the receiveSecond receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. Click the Add icon to display the correlation set dropdown list.

4. Select CorrelationSet2, then click OK.

5. Click the Initiate column to display a dropdown list, and select yes.

6. Click Add again and select CorrelationSet1.

7. Click OK.

8. Click the Initiate column to display a dropdown list, and select no for
CorrelationSet1.

9. Click OK.

This groups the first and second receive activities into a correlated group.

9.2.2.5.3 Associating the Third Correlation Set with a Receive Activity

To associate the third correlation set with a receive activity:

1. Double-click the receiveThird receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. Click the Add icon.

4. Select CorrelationSet2.

Creating Correlation Sets in Oracle JDeveloper

9-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

5. Set the Initiate column to no for CorrelationSet2.

6. Click OK.

This groups the second and third receive activities into a second correlated group.

9.2.2.6 Step 6: Creating Property Aliases

Property aliases enable you to map a global property to a field in a specific message
part. This action enables the property name to become an alias for the message part
and location. The alias can be used in XPath expressions.

9.2.2.6.1 Creating Property Aliases for NameCorr

You create the following two property aliases for the NameCorr correlation set:

• Map NameCorr to the LoanAppl message type part of the receiveFirst receive
activity. This receive activity is associated with the FirstReceive partner link
(defined by the FirstReceive.wsdl file).

• Map NameCorr to the incoming LoanAppResponse message type part of the
receiveSecond receive activity. This receive activity is associated with the
SecondReceive partner link (defined by the SecondFileRead.wsdl file).

To create property aliases for NameCorr:

1. In the Structure window of Oracle JDeveloper, right-click Property Aliases.

2. Select Create Property Alias.

3. From the Property list, select NameCorr.

4. Expand and select Message Types > Partner Link > FirstReceive >
FirstReceive.wsdl > Message Types > LoanAppl_msg > Part - LoanAppl.

5. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns2:LoanAppl/ns2:Name

6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for NameCorr.

8. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl
> Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

9. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns4:LoanAppResponse/ns4:APR

10. Click OK.

9.2.2.6.2 Creating Property Aliases for IDCorr

You create the following two property aliases for the IDCorr correlation set:

• Map IDCorr to the LoanAppResponse message type part of the receiveSecond
receive activity. This receive activity is associated with the SecondReceive partner
link (defined by the SecondFileRead.wsdl file).

Creating Correlation Sets in Oracle JDeveloper

Using Correlation Sets and Message Aggregation 9-23

• Map IDCorr to the CustResponse message type part of the receiveThird receive
activity. This receive activity is associated with the ThirdReceive partner link
(defined by the ThirdFileRead.wsdl file).

To create property aliases for IDCorr:

1. In the Structure window, right-click Property Aliases.

2. Select Create Property Alias.

3. In the Property list, select IDCorr.

4. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl
> Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

5. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns4:LoanAppResponse/ns4:APR

6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for IDCorr.

8. Expand and select Message Types > Project WSDL Files > ThirdFileRead.wsdl >
Message Types > CustResponse_msg > Part - CustResponse.

9. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns6:CustResponse/ns6:APR

Design is now complete.

10. Click OK.

9.2.2.7 Step 7: Reviewing WSDL File Content

To review WSDL file content:

1. Refresh the Applications window.

The NameCorr and IDCorr correlation set properties are defined in the
MyCorrelationSet_Properties.wsdl file in the Applications window.

<definitions
 name="properties"
 targetNamespace="http://xmlns.oracle.com/MyCorrelationSet/correlationset"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <bpws:property name="NameCorr" type="xsd:string"/>
 <bpws:property name="IDCorr" type="xsd:double"/>
</definitions>

The property aliases are defined in the MyCorrelationSet.wsdl file.

<bpws:propertyAlias propertyName="ns1:NameCorr"
 messageType="ns3:LoanAppl_msg"
 part="LoanAppl" query="/ns2:LoanAppl/ns2:Name"/>

<bpws:propertyAlias propertyName="ns1:NameCorr"

Creating Correlation Sets in Oracle JDeveloper

9-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 messageType="ns5:LoanAppResponse_msg"
 part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="ns1:IDCorr"
 messageType="ns5:LoanAppResponse_msg"
 part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="ns1:IDCorr"
 messageType="ns7:CustResponse_msg"
 part="CustResponse" query="/ns6:CustResponse/ns6:APR"/>

Because the BPEL process service component is not created as a web services
provider in this example, the MyCorrelationSet.wsdl file is not referenced in
the BPEL process service component. Therefore, you must import the
MyCorrelationSet.wsdl file inside the FirstReceive.wsdl file to reference
the correlation sets defined in the former WSDL.

<import namespace="http://xmlns.oracle.com/MyCorrelationSet"
 location="MyCorrelationSet.wsdl"/>

9.2.3 What You May Need to Know About Conversion IDs and Different Composite
Revisions

Do not use the same conversion ID for different revisions of a SOA composite
application. When correlation sets are used in a BPEL process, you have explicit
control over the conversation ID value. Oracle SOA Suite does not interfere or add
restrictions on conversation ID value generation. This situation means that even
though it appears that Oracle SOA Suite is generating the same conversation ID for
different revisions, you actually control this behavior. Oracle SOA Suite does not
restrict you from using the same conversation ID for different instances of different
revisions.

If you do not use correlation sets, the conversation ID generated is unique and this is
not a problem because Oracle SOA Suite decides which conversation ID to generate,
and not you.

Oracle SOA Suite does not execute a revision check for callback routing. Routing of
callback messages is only based on the following:

• Conversation ID: This is calculated based on the input value and correlation set. If
you use the same correlation set for two revisions of processes and enter the same
input when creating an instance, both revisions subscribe using the same
conversation ID. This causes confusion when a callback for one revision is
delivered to another revision.

• Operation name (is the same for both revisions).

• BPEL service component name (is also the same for both revisions).

The concept of a revision number is applicable to Oracle SOA composite applications,
and is not part of the BPEL specification. This is why it is not used as part of the
routing decision.

There is another complication in which adding a revision as part of callback routing
causes problems. When sending a callback, you also specify the endpoint URL. If the
endpoint URL does not contain the composite revision (which is extremely likely), the
message is assumed to be routed to the default revision. If Oracle SOA Suite runtime
adds a revision check as part of callback routing, the callback for the nondefault
revision instance is never possible.

Creating Correlation Sets in Oracle JDeveloper

Using Correlation Sets and Message Aggregation 9-25

For example, assume you have the following BPEL process:

• An entry receive activity named receive_1 (on which a correlation set is used)

• An invoke activity, which invokes a web service

• A receive activity named receive_2

Assume you perform the following steps:

1. Deploy revision 1.0 of composite_A, which includes a BPEL component.

2. Create an instance of revision 1.0, which is using a correlation set, and input a
value of 123, which generates conv_id = "123".

This process now invokes a web service through a one-way invoke activity and
then waits on the receive_2 activity for a callback to arrive.

3. Deploy revision 2.0 of composite_A, which now becomes the default revision.

A web service sends a callback for the instance for revision 1.0. However, as a part
of its URL, it does not specify the revision number. You typically create a callback
so that the URL does not use the revision number. This is because web services are
external and you cannot change web service settings to continue using a revision
tag because it is internal to Oracle SOA Suite and is a concept that the external
world does not understand.

Since a revision number is not specified, the SOA server assumes that the revision
number must be 2.0 and, if the routing of the callback takes the revision number
into account, it cannot forward this callback intended for 1.0 to the correct revision
1.0. Instead, it attempts to route it to the default revision of 2.0, which does not
have any instance waiting for the callback.

You cannot route callback messages based on revisions. You only receive the
option to route callback messages based on the conversion ID (if the correlation
set is not used, then even this is not under your control), operation name, and
component name.

For these reasons, different instances must use different conversation IDs (which
means different input is used for creating a conversion ID) to avoid confusion,
and routing should be solely based on a conversation ID.

9.2.4 What You May Need to Know About Setting Correlations for an IMA Using a
fromParts Element With Multiple Parts

Assume you have the following scenario:

• A BPEL 2.0 process with a WSDL message type that has multiple parts that are
identical in type.

• A property alias has been defined based on the element type of the above part.

For a process that has an inbound message activity (IMA) (for example, a receive
activity, onMessage branch of a scope or pick activity, or onEvent branch of a scope
activity in BPEL 2.0) that uses the fromParts element with fromParts defined for
each part, correlations cannot be defined because the runtime environment cannot
determine the part to which to apply the property alias.

For more information about mapping WSDL message parts with the toParts and
fromParts elements, see Mapping WSDL Message Parts in BPEL 2.0.

Creating Correlation Sets in Oracle JDeveloper

9-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

9.3 Routing Messages to the Same Instance
Oracle BPEL Process Manager supports a message aggregation feature. When multiple
messages are routed to the same process/partner link/operation name, the first
message is routed to create a new instance and subsequent messages can be routed to
continue the created instance using a midprocess receive activity.

Message aggregation enables you to use the same operation (or event name) in an
entry receive activity and a midprocess receive activity.

Note:

• This feature only performs aggregation, and not resequencing. This
feature does not resequence messages arriving out of order into an
ordered format. Therefore, the first message only means the first message
processed. This may be different from the first message in a time sequence
order.

• You must use correlation sets to take advantage of the message
aggregation feature.

• Synchronous operations as ambiguous calls (at both beginning and
midprocess receive activities) are supported. However, this is not a
recommended use of this feature and should be avoided.

9.3.1 How to Configure BPEL Process Instance Creation
You can control the number of instances to create and use to route messages with the
reenableAggregationOnComplete property.

To configure BPEL process instance creation:

1. In the SOA Composite Editor, select the BPEL process service component, as
shown in Figure 9-16.

Figure 9-16 Selected BPEL Process Service Component

2. Go to the Property Inspector in the lower right corner of Oracle JDeveloper. If the
Property Inspector is not displayed, select Property Inspector from the View main
menu.

3. In the Properties section, click the Add icon, as shown in Figure 9-17.

Routing Messages to the Same Instance

Using Correlation Sets and Message Aggregation 9-27

Figure 9-17 Property Inspector

The Create Property dialog is displayed.

4. In the Name field, enter the
bpel.config.reenableAggregationOnComplete deployment descriptor
property. The prefix of bpel.config is required for this type of deployment
descriptor.

5. In the Value field, enter true, as described in Table 9-12.

Table 9-12 reenableAggregationOnComplete Property Settings

Value Description Example

true Creates a new instance to handle
messages. However, there is a
window between messages coming
in and instance completion. This can
result in messages remaining in the
DLV_MESSAGE table. This setting can
result in the occurrence of race
conditions. For more information, see
Table 9-13.

You invoke messages 1 through 4 for a
client using the initiate operation.
This results in the following actions:

• Two instances of the BPEL process
are created and completed.

• Messages 1 and 2 are routed to the
first instance and messages 3 and 4
are routed to the second instance.

false This is the default behavior. This
setting causes the aggregation feature
to be disabled. Only one instance is
created. Messages that are not
handled by the instance remain in the
DLV_MESSAGE table. This setting is
recommended for most
environments.

You invoke messages 1 through 4 for a
client using the initiate operation.
One instance of the BPEL process is
created and completed.

Do not attempt to route multiple
messages using the same correlation set
to one BPEL instance.

Figure 9-18 shows the completed Create Property dialog.

Routing Messages to the Same Instance

9-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 9-18 Create Property Dialog

6. Click OK.

The reenableAggregationOnComplete property with the bpel.config
prefix looks as follows in the composite.xml file.

<composite name="Aggregation" revision="1.0" label="2011-07-10_13-52-24_174"
 mode="active" state="on">
. . .
. . .
<component name="Aggregation" version="1.1">
 <implementation.bpel src="Aggregation.bpel"/>
 <property name="bpel.config.reenableAggregationOnComplete" type="xs:string"
 many="false" override="may">true</property>
 </component>
. . .
. . .
</composite>

9.3.2 How to Use the Same Operation in Entry and Midprocess Receive Activities
Assume you create a correlation set as shown in the example that follows. All
messages to Oracle BPEL Process Manager are routed to the same operation name.
The messages have the same correlation ID. The interface WSDL does not differentiate
between the entry activity (receiveInput) and the midprocess receive activity
(Continue_Receive). All messages are processed using the initiate operation. A
single instance is created to which to route all messages.

This differs from releases before 11g Release 1 11.1.1.6, in which you needed to define
different operation names on the same partner link. The process had to expose two
operations and the caller had to choose the correct operation name.

<receive name="receiveInput" partnerLink="client" portType="client:BPELProcess1"
 operation="initiate" variable="inputVariable" createInstance="yes">
 <correlations>
 <correlation initiate="yes" set="CorrelationSet_1"/>
 </correlations>
</receive>

<!-- Asynchronous callback to the requester. (Note: the callback location and
 correlation id is transparently handled using WS-addressing.) -->
<assign name="Assign_1">
 <copy>
 <from variable="inputVariable" part="payload"
 query="/client:BPELProcess1ProcessRequest/client:input"/>

Routing Messages to the Same Instance

Using Correlation Sets and Message Aggregation 9-29

 <to variable="Invoke_1_initiate_InputVariable" part="payload"
 query="/ns1:BPELProcess2ProcessRequest/ns1:input"/>
 </copy>
</assign>

<receive name="Continue_Receive" partnerLink="client"
 portType="client:BPELProcess1" operation="initiate" variable="inputVariable"
 createInstance="no">
 <correlations>
 <correlation initiate="no" set="CorrelationSet_1"/>
 </correlations>
</receive>

For event delivery network (EDN) business events, you substitute the operation
attribute with bpelx:eventName in both the entry and midprocess receive activities.

bpelx:eventName="ns3:initiateEvent"/>

Information is maintained in the DLV_AGGREGATION table:

• Conversation ID

• Domain name

• Component name and type

• Composite name, label, and revision

• State

• Received date

• CI key

• Primary key

This information can be deleted from this table with the purge scripts or from the Auto
Purge page in Oracle Enterprise Manager Fusion Middleware Control. For more
information about both of these options, see the Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

9.3.3 How to Route a Message to a New or Existing Instance when Using Correlation
Sets

For a BPEL process using correlation sets, the correct routing is performed. The
message can be either of the following:

• An invoke message creating a new instance

• A callback message continuing an existing instance

Figure 9-19 shows entry and midprocess receive activities using the same operation
(process).

Routing Messages to the Same Instance

9-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 9-19 Routing a New Message to a New or Existing Instance

The following provides an example of the entry and midprocess receive activities
using the same operation (process).

<receive name="receiveInput" partnerLink="client" portType="client:BPELProcess1"
 operation="process" variable="inputVariable" createInstance="yes">
 <correlations>
 <correlation initiate="yes" set="CorrelationSet_1"/>
 </correlations>
</receive>

<!-- some business logic -->

<while name="While_1" condition=*loop for 3 iterations*>
 <sequence name="Sequence_1">
 <receive name="Continue_Receive" partnerLink="client"
 portType="client:BPELProcess1" operation="process" variable="inputVariable"
 createInstance="no">
 <correlations>
 <correlation initiate="no" set="CorrelationSet_1"/>
 </correlations>
 </receive>

<!-- some business logic -->

 </sequence>
</while>

In the initial scenario in the preceding example, the following actions occur in BPEL
process P1:

• A partner provides four messages (message 1, message 2, message 3, and message
4) for the same partner (correlation ID 101).

• Message 1 creates a new instance of BPEL process P1. This message is marked as
an invoke message.

• Messages 2, 3, and 4 are received using the Continue_Receive activity. These
messages are marked as callback messages.

• The instance closes because three iterations of the while loop are expected.

Assume now that additional messages are routed, which can potentially cause race
conditions to occur. Table 9-13 provides details.

Routing Messages to the Same Instance

Using Correlation Sets and Message Aggregation 9-31

Table 9-13 Message Delivery Scenarios

Scenario Description Marked as
Invoke
Message

Marked as
Callback Message

1 Assume the partner now provides message 5 for the same
correlation ID (101). Message 5 creates a new instance of
BPEL process P1 and waits on the Continue_Receive
activity inside the while loop for three more messages (6, 7,
and 8).

• Message 1
• Message 5

• Message 2
• Message 3
• Message 4
• Message 6
• Message 7
• Message 8

2 If messages 4 and 5 are received within a small time window,
it is possible that message 4 is closing the instance BPEL
process P1 and message 5 is routed as a callback to that
instance. This scenario can cause a race condition. For
example:

• When message 6 arrives, it is routed to the entry receive
activity of the new instance.

• Messages 7 and 8 are routed to the Continue_Receive
activity.

• Message 5 is routed to the Continue_Receive activity
only by the recovery part of the BPEL process service
engine. This is because it initially was routed to a closed
instance and could not be handled.

• Message 1
• Message 6

• Message 2
• Message 3
• Message 4
• Message 5
• Message 7
• Message 8

Routing Messages to the Same Instance

9-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 9-13 (Cont.) Message Delivery Scenarios

Scenario Description Marked as
Invoke
Message

Marked as
Callback Message

3 This is similar to scenario 2. However, in this case, messages 7,
8, and 9 are not received. For example:

• Message 5 becomes an unhandled callback message
waiting for a subscriber.

• BPEL process service engine recovery tries to process
message 5 and fails because there is no subscriber
available.

There are several options for message recovery.

• Limit recovery of callback messages with the System
MBean Browser property maxRecoverAttempt in Oracle
Enterprise Manager Fusion Middleware Control. This
count specifies the number of attempts made by
automatic recovery to recover an invoke/callback
message. Once the number of recover attempts exceeds
this count, the state of the message is changed to
exhausted. For more information, see Section
"Configuring Automatic Recovery Attempts for Invoke
and Callback Messages" in Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

• Write a custom SQL script to check that the
criteriaCallback has state set to 0. The correlation
value for this callback exists in CORRELATION_GROUP in
a closed state (state = 0). This indicates that the
callback message is marked for a closed aggregation
instance. You can cancel/purge these instances based on
business logic.

Note: BPEL is designed as a conversation-based system.
At any point in which unsolicited messages are not being
handled, the application is always aware of the messages
coming as part of correlation aggregation and chooses to
subscribe and process or ignore the message as required
by business needs.

• Message 1
• Message 6

• Message 2
• Message 3
• Message 4
• Message 5

Routing Messages to the Same Instance

Using Correlation Sets and Message Aggregation 9-33

Routing Messages to the Same Instance

9-34 Developing SOA Applications with Oracle SOA Suite

10
Using Parallel Flow in a BPEL Process

This chapter describes how to use parallel flow in a BPEL process service component.
Parallel flows enable a BPEL process service component to perform multiple tasks at
the same time. Parallel flows are especially useful when you must perform several
time-consuming and independent tasks. This chapter also describes how to customize
the number of parallel branches.

This chapter includes the following sections:

• Introduction to Parallel Flows in BPEL Processes

• Creating a Parallel Flow

• Customizing the Number of Parallel Branches

10.1 Introduction to Parallel Flows in BPEL Processes
A BPEL process service component must sometimes gather information from multiple
asynchronous sources. Because each callback can take an undefined amount of time
(hours or days), it may take too long to call each service one at a time. By breaking the
calls into a parallel flow, a BPEL process service component can invoke multiple web
services at the same time, and receive the responses as they come in. This method is
much more time efficient.

Figure 10-1 shows a flow activity named Retrieve_QuotesFromSuppliers. The
Retrieve_QuotesFromSuppliers flow activity sends order information to two suppliers
in parallel:

• An internal warehouse (InternalWarehouseService)

• An external partner warehouse (PartnerSupplierMediator)

The two warehouses return their bids for the order to the flow activity. Here, two
asynchronous callbacks execute in parallel. One callback does not have to wait for the
other to complete first. Each response is stored in a different global variable.

Using Parallel Flow in a BPEL Process 10-1

Figure 10-1 Parallel Flow Invocation

10.1.1 What You May Need to Know About the Execution of Parallel Flow Branches in a
Single Thread

Branches in flow, flowN, and forEach activities are executed serially in a single thread
(that is, the Nth branch is executed only after N-1 execution has completed). Execution
is not completely parallel. This is because the branches do not execute in concurrent
threads in this mode. Instead, one thread starts executing a flow branch until it reaches
a blocking activity (for example, an synchronous invoke). At this point, a new thread
is created that starts executing the other branch, and the process continues. This
creates the impression that the flow branches are executing in parallel. In this mode,
however, if the flow branches do not define a blocking activity, the branches still
execute serially.

This design is intended for several reasons:

• To prevent you from accidentally spawning too many threads and overloading
the system, single threading is the default method. However, you can tune
threads in other places, such as adapter polling threads, BPEL process service
engine threads, and Oracle WebLogic Server work managers.

• The BPEL process specification does not provide a mechanism to ensure the
thread safety of BPEL variables (that is, a lack of a synchronized qualifier such as
in Java), which is necessary for true multithreaded programming.

• The implication of transaction rollbacks in one of the branches is undefined.

To achieve pseudo-parallelism, you can configure invoke activities to be nonblocking
with the nonBlockingInvoke deployment descriptor property. When this property
is set to true, the process manager creates a new thread to perform each branch's
invoke activity in parallel.

For more information about the nonBlockingInvoke property, see How to Define
Deployment Descriptor Properties in the Property Inspector.

10.2 Creating a Parallel Flow
You can create a parallel flow in a BPEL process service component with the flow
activity. The flow activity enables you to specify one or more activities to be

Creating a Parallel Flow

10-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

performed concurrently. The flow activity also provides synchronization. The flow
activity completes when all activities in the flow have finished processing. Completion
of this activity includes the possibility that it can be skipped if its enabling condition is
false.

Note:

Branches in a flow activity are executed serially in a single thread. For more
information, see What You May Need to Know About the Execution of
Parallel Flow Branches in a Single Thread.

10.2.1 How to Create a Parallel Flow

To create a parallel flow:

1. In the Components window, expand BPEL Constructs > Structured Activities.

2. Drag a Flow activity into the designer.

3. Click the + sign to expand the flow activity, as shown in Figure 10-2.

Figure 10-2 Flow Activity

The flow activity initially includes two branches, each with a box for functional
elements. Populate these boxes as you do a scope activity, either by building a
function or dragging activities into the boxes. You can add additional branches by
highlighting the flow activity and clicking the Add Sequence icon. Figure 10-3
provides details.

Figure 10-3 Add Sequence Icon

4. Drag and define additional activities on each side of the flow to invoke multiple
services at the same time. Figure 10-4 provides details.

Creating a Parallel Flow

Using Parallel Flow in a BPEL Process 10-3

Figure 10-4 Expanded Flow Activity

When complete, flow activity design can look as shown in Figure 10-5. This
example shows the Retrieve_QuotesFromSuppliers flow activity. Two branches
are defined for receiving bids: one for InternalWarehouseService and the other for
PartnerSupplierMediator.

Figure 10-5 Flow Activity After Design Completion

10.2.2 What Happens When You Create a Parallel Flow
A flow activity typically contains many sequence activities. Each sequence is
performed in parallel. The following example shows the syntax for two sequences of
the Retrieve_QuotesFromSuppliers flow activity in the
OrderProcessor.bpel file after design completion. However, a flow activity can
have many sequences. A flow activity can also contain other activities. In the following
example, each sequence in the flow contains assign, invoke, and receive activities.

<flow name="Retrieve_QuotesFromSuppliers">
 <sequence name="Sequence_4">
 <assign name="Assign_InternalWarehouseRequest">
 <copy>
 <from>$inputVariable.gOrderInfoVariable/ns3:CardNum</from>
 <to>lInternalWarehouseInputVariable/ns4:ccnb</to>
 </copy>
 </assign>
 <invoke name="Invoke_InternalWarehouse"

Creating a Parallel Flow

10-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 inputVariable="lInternalWarehouseInputVariable"
 partnerLink="InternalWarehouseService"
 portType="ns1:InternalWarehouseService"
 operation="process"/>
 <receive name="Receive_InternalWarehouse"
 createInstance="no"
 variable="lInternalWarehouseResponseVariable"
 partnerLink="InternalWarehouseService"
 portType="ns1:InternalWarehouseServiceCallback"
 operation="processResponse"/>
 <assign name="Assign_InterWHResponse">
 <bpelx:append>
 <bpelx:from variable="lInternalWarehouseResponseVariable"
 part="payload"
 query="/ns1:WarehouseResponse"/>
 <bpelx:to variable="gWarehouseQuotes"
 query="/ns1:WarehouseList"/>
 </bpelx:append>
 </assign>
 </sequence>
 <sequence name="Sequence_4">
 <assign name="Assign_PartnerRequest">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO"/>
 <to variable="lPartnerSupplierInputVariable"
 part="request" query="/ns4:orderInfoVOSDO"/>
 </copy>
 </assign>
 <invoke name="Invoke_PartnerSupplier"
 partnerLink="PartnerSupplierMediator"
 portType="ns15:execute_ptt" operation="execute"
 inputVariable="lPartnerSupplierInputVariable"/>
 <receive name="Receive_PartnerResponse"
 createInstance="no"
 variable="lPartnerResponseVariable"
 partnerLink="PartnerSupplierMediator"
 portType="ns15:callback_ptt" operation="callback"/>
 <assign name="Assign_PartnerWHResponse">
 <bpelx:append>
 <bpelx:from variable="lPartnerResponseVariable"
 part="callback"
 query="/ns1:WarehouseResponse"/>
 <bpelx:to variable="gWarehouseQuotes"
 query="/ns1:WarehouseList"/>
 </bpelx:append>
 </assign>
 </sequence>
</flow>

10.2.3 Synchronizing the Execution of Activities in a Flow Activity
You can synchronize the execution of activities within a flow activity to ensure that
certain activities only execute after other activities have completed. For example,
assume you have an invoke activity, verifyFlight, that is executed in parallel with
other invoke activities (verifyHotel, verifyCarRental, and scheduleFlight)
when the flow activity begins. However, scheduling a flight is necessary only after
verifying that a flight is available. Therefore, you can add a link between the
verifyFlight and scheduleFlight invoke activities. Links provide a level of
dependency indicating that the activity that is the target of the link

Creating a Parallel Flow

Using Parallel Flow in a BPEL Process 10-5

(scheduleFlight) is only executed if the activity that is the source of the link
(verifyFlight) has completed.

The following example provides details. The link name verifyFlight-To-
scheduleFlight is assigned to the source verifyFlight and target
scheduleFlight invoke activities. If the source verifyFlight completes
execution, the target scheduleFlight is then executed.

<flow ...>
 <links>
 <link name="verifyFlight-To-scheduleFlight" />
 </links>
 <documentation>
 Verify the availability of a flight, hotel, and rental car in parallel
 </documentation>
 <invoke name="verifyFlight" ...>
 <sources>
 <source linkName="verifyFlight-To-scheduleFlight" />
 </sources>
 </invoke>
 <invoke name="verifyHotel" ... />
 <invoke name="verifyCarRental" ... />
 <invoke name="scheduleFlight" ...>
 <targets>
 <target linkName="verifyFlight-To-scheduleFlight" />
 </targets>
 </invoke>
</flow>

The preceding code provides an example of link syntax in BPEL version 2.0. The link
syntax between BPEL version 1.1 and BPEL version 2.0 is slightly different.

• BPEL version 1.1 uses <target> and <source>.

• BPEL version 2.0 uses <targets> and <sources>.

Table 10-1 provides details.

Creating a Parallel Flow

10-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 10-1 Links Syntax in BPEL Version 1.1 and BPEL Version 2.0

BPEL Version 1.1 Example BPEL Version 2.0 Example

<flow>
 <links>
 <link name="XtoY"/>
 <link name="CtoD"/>
 </links>
 <sequence name="X">
 <source linkName="XtoY"/>
 <invoke name="A" .../>
 <invoke name="B" .../>
 </sequence>
 <sequence name"Y">
 <target linkName="XtoY"/>
 <receive name="C" ...>
 <source linkName="CtoD"/>
 </receive>
 <invoke name="E" .../>
 </sequence>
 <invoke partnerLink="D" ...>
 <target linkName="CtoD"/>
 </invoke>
 </flow>

<flow>
 <links>
 <link name="AtoB"/>
 </links>
 <assign name="B">
 <targets>
 <target linkName="AtoB"/>
 </targets>
 <copy>
 <from>concat($output.payload,
 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <assign name="A">
 <sources>
 <source linkName="AtoB"/>
 </sources>
 <copy>
 <from>concat($output.payload,
 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </flow>

10.2.4 How to Create Synchronization Between Activities Within a Flow Activity

To create synchronization between activities within a flow activity:

Note:

The Sources and Targets tabs are only available in BPEL 2.0 projects. For
BPEL 1.1 projects, you must directly edit the BPEL file to use this
functionality.

1. Create a flow activity. For information, see How to Create a Parallel Flow.

2. In the General tab of the Flow activity, click the Add icon.

3. Enter a name for the link, as shown in Figure 10-6.

Creating a Parallel Flow

Using Parallel Flow in a BPEL Process 10-7

Figure 10-6 Link Name Creation

4. Click Apply, then OK.

5. Drag appropriate activities into the flow activity to define as the source with the
same link name as defined in Step 3. The value of the link name of the source and
target must be the same as the link name declared in the flow activity. For this
example, an assign activity named A is defined as the source in Figure 10-7.

Figure 10-7 Source Activity

Each source activity can specify an optional Transition Condition as a safe guard
for following the specified link. Click the row in this column to invoke the Browser
icon for accessing the Expression Builder dialog for creating a condition. If the
Transition Condition column is left blank, it is assumed to evaluate to true.

6. Define appropriate copy rules for the assign activity.

7. Click Apply, then OK.

8. Drag an additional activity into the flow activity to define as the target with the
same link name as defined in Step 3. For this example, another assign activity
named B is defined as the target in Figure 10-8.

Creating a Parallel Flow

10-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 10-8 Target Activity

9. Define appropriate copy rules for the assign activity.

10. Click Apply, then OK.

11. Continue design of your BPEL process.

When complete, design can appear similar to that shown in Figure 10-9.

Figure 10-9 Three Flow Activities Synchronized with Links

10.2.5 What Happens When You Create Synchronization Between Activities Within a
Flow Activity

The following example shows the .bpel file after design is complete for three flow
activities with links for synchronizing activity execution.

• Flow_1 shows a link between simple activities.

Flow_1 includes a link named AtoB. The activity that is the target of the link,
assign activity B, is only executed if the activity that is the source of the link,
assign activity A, has completed.

• Flow_2 shows a link between simple activity and composite activity.

Flow_2 also includes the link named AtoB. The activity that is the target of the
link, assign activity B, is only executed if the activity that is the source of the link,
scope activity scope1, has completed.

• Flow_3 shows a link between composite activities.

Creating a Parallel Flow

Using Parallel Flow in a BPEL Process 10-9

Flow_3 also includes the link named AtoB. The activity that is the target of the
link, sequence activity Sequence_1, is only executed if the activity that is the
source of the link, scope activity scope2, has completed.

<!-- link between simple activities -->
<flow name=Flow_1>
 <links>
 <link name="AtoB"/>
 </links>
 <assign name="A">
 <sources>
 <source linkName="AtoB"/>
 </sources>
 <copy>
 <from>concat($output.payload, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <assign name="B">
 <targets>
 <target linkName="AtoB"/>
 </targets>
 <copy>
 <from>concat($output.payload, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </flow>

 <!-- link between simple activity and composite activity -->
 <flow name=Flow_2>
 <links>
 <link name="AtoB"/>
 </links>
 <scope name="scope1">
 <sources>
 <source linkName="AtoB"/>
 </sources>
 <assign name="A">
 <copy>
 <from>concat($output.payload, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </scope>
 <assign name="B">
 <targets>
 <target linkName="AtoB"/>
 </targets>
 <copy>
 <from>concat($output.payload, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </flow>

 <!-- link between composite activities -->
 <flow name=Flow_3>
 <links>
 <link name="AtoB"/>
 </links>

Creating a Parallel Flow

10-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <scope name="scope2">
 <sources>
 <source linkName="AtoB"/>
 </sources>
 <assign name="A">
 <copy>
 <from>concat($output.payload, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </scope>
 <sequence name="Sequence_1>
 <targets>
 <target linkName="AtoB"/>
 </targets>
 <assign name="B">
 <copy>
 <from>concat($output.payload, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </sequence>
 </flow>
 </sequence>

10.2.6 What You May Need to Know About Join Conditions in Target Activities
You can specify an optional join condition in target activities. The value of the join
condition is a boolean expression. If a join condition is not specified, the join condition
is the disjunction (that is, a logical OR operation) of the link status of all incoming
links of this activity.

Oracle BPEL Designer does not provide design support for adding join conditions. To
add a join condition, you must manually add the condition to the .bpel file in Source
view in Oracle BPEL Designer.

The following provides an example of a join condition.

<flow>
 <links>
 <link name="linkStatus2"/>
 </links>
 <empty name="E2">
 <sources>
 <source linkName="linkStatus2">
 <transitionCondition>false()</transitionCondition>
 </source>
 </sources>
 </empty>
 <empty name="E2">
 <targets>
 <joinCondition>bpws:getLinkStatus('linkStatus2')=true()</joinCondition>
 <target linkName="linkStatus2"/>
 </targets>
 </empty>
</flow>

10.3 Customizing the Number of Parallel Branches
This section describes how to customize the number of parallel branches with the
following activities:

Customizing the Number of Parallel Branches

Using Parallel Flow in a BPEL Process 10-11

• A forEach activity in a BPEL version 2.0 project

• A flowN activity in a BPEL version 1.1 project

Note:

Branches in flowN and forEach activities are executed serially in a single
thread. For more information, see What You May Need to Know About the
Execution of Parallel Flow Branches in a Single Thread.

10.3.1 Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0
You can use a forEach activity to process multiple sets of activities sequentially or in
parallel. The forEach activity executes a contained (child) scope activity exactly N+1
times, where N equals a final counter value minus a starting counter value that you
specify in the Counter Values tab of the For Each dialog. While other structured
activities such as a flow activity can have any type of activity as its contained activity,
the forEach activity can only include a scope activity.

When the forEach activity is started, the expressions you specify for the starting
counter and final counter values are evaluated. Once the two values are returned, they
remain constant for the lifecycle of the activity. Both expressions must return a value
containing at least one character. If these expressions do not return valid values, a
fault is thrown. If the starting counter value is greater than the final counter value, the
contained scope activity is not performed and the forEach activity is considered
complete.

During each iteration, the variable specified in the Counter Name field on the General
tab is implicitly declared in the forEach activity's contained scope. During the first
iteration of the scope, the counter variable is initialized with the starting counter value.
The next iteration causes the counter variable to be initialized with the starting counter
value, plus one. Each subsequent iteration increments the previously initialized
counter variable value by one until the final iteration, where the counter is set to the
final counter value. The counter variable is local to the enclosed scope activity.
Although its value can be changed during an iteration, that value is lost after each
iteration. Therefore, the counter variable value does not impact the value of the next
iteration's counter.

The forEach activity supports the following looping iterations:

• Sequential (default)

The forEach activity performs looping iterations sequentially N times over a given
set of activities defined within a scope activity. As an example, the forEach
activity iterates over an incoming purchase order message where the purchase
order message consists of N order items. The enclosed scope activity must be
executed N+1 times, with each instance starting only after the previous iteration
has completed.

• Parallel

All looping iterations are started at the same time and processed in parallel.
Parallel iterations are useful in environments in which sets of independent data
are processed or independent interaction with different partners is performed in
parallel. To enable parallel looping, you select the Parallel Execution check box on
the General tab. In these scenarios, execution of the N+1 instances of the
contained scope activity occurs in parallel. Each copy of the scope activity has the

Customizing the Number of Parallel Branches

10-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

same counter variable that you specify in the Counter Name field of the General
tab declared in the same way as specified for a sequential forEach activity. Each
instance's counter variable must be uniquely initialized in parallel with one of the
integer values beginning with the starting counter value and proceeding up to
and including the final counter value.

Unlike a flow activity, the number of parallel branches is not known at design
time with the forEach activity. The specified counter variable iterates through the
number of parallel branches, controlled by the starting counter value and final
counter value.

You can also specify a completion condition on the Completion tab. This condition
enables the forEach activity to execute the condition and complete without executing
or finishing all the branches specified. As an example, you send out parallel requests
and a sufficient subset of the recipients have responded. A completion condition is
optionally specified to prevent the following:

• Some children from executing (in the sequential case)

• To force early termination of some of the children (in the parallel case)

If you do not specify a completion condition, the forEach activity completes when the
contained scope has completed.

If a premature termination occurs (due to a fault or the completion condition
evaluating to true), then the N+1 requirement does not apply.

The following example shows the forEach activity syntax.

<forEach counterName="MyVariableName" parallel="yes|no"
 standard-attributes>
 standard-elements
 <startCounterValue expressionLanguage="anyURI"?>
 unsigned-integer-expression
 </startCounterValue>
 <finalCounterValue expressionLanguage="anyURI"?>
 unsigned-integer-expression
 </finalCounterValue>
 <completionCondition>?
 <branches expressionLanguage="anyURI"?
 successfulBranchesOnly="yes|no"?>?
 unsigned-integer-expression
 </branches>
 </completionCondition>
 <scope ..>...</scope>
</forEach>

Note:

The successfulBranchesOnly attribute is not supported for this release.

10.3.1.1 How to Create a forEach Activity

To create a forEach activity:

1. In the Components window, expand BPEL Constructs > Structured Activities.

2. Drag a For Each activity into the designer, as shown in Figure 10-10.

Customizing the Number of Parallel Branches

Using Parallel Flow in a BPEL Process 10-13

Note the contained scope activity in the forEach activity.

Figure 10-10 Contained Scope Activity in a forEach Activity

3. Double-click the ForEach activity.

4. In the Counter Name field of the General tab, enter a counter value name, as
shown in Figure 10-11.

If the Parallel Execution check box is selected, all looping iterations are started at
the same time and processed in parallel. The next branch starts even if the previous
branch has not completed. If not selected, the next branch does not start until the
previous branch has completed.

Figure 10-11 General Tab of the forEach Activity

5. Click the Counter Values tab.

6. Click the Expression Builder icon to enter the starting counter value and final
counter value, as shown in Figure 10-12.

Customizing the Number of Parallel Branches

10-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 10-12 Counter Values Tab of the forEach Activity

7. Click the Completion tab.

8. If you want to specify a completion condition that enables the forEach activity to
execute the condition and complete without executing or finishing all the branches
specified, click the XPath Expression Builder icon above the Expression field to
enter a condition. Figure 10-13 provides details.

Figure 10-13 Completion Tab of the forEach Activity

9. Click Apply, then OK.

10. Expand the contained Scope activity of the ForEach activity.

11. Design the enclosed Scope activity.

Customizing the Number of Parallel Branches

Using Parallel Flow in a BPEL Process 10-15

When complete, the forEach and contained scope activity can appear similar in
structure to that shown in Figure 10-14.

Figure 10-14 forEach Activity with Contained and Expanded Scope Activity

10.3.1.2 What Happens When You Create a forEach Activity

The following example shows the .bpel file after design is complete for a sequential
forEach activity.

<faultHandlers>
 <catch faultName="bpel:invalidBranchCondition">
<sequence>
 <assign>
 <copy>
 <from>'invalidBranchCondition happened'</from>
 <to>$output.payload</to>
 </copy>
 </assign>

 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
</sequence>
 </catch>
 </faultHandlers>
 <sequence>
 <!-- pick input from requester -->
 <receive name="receive" createInstance="yes"
 partnerLink="client" portType="tns:Test"
 operation="process" variable="input"/>
 <assign>
 <copy>
 <from>3</from>
 <to>$request.payload</to>
 </copy>
 <copy>

Customizing the Number of Parallel Branches

10-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <from>''</from>
 <to>$output.payload</to>
 </copy>
 </assign>

 <forEach counterName="i" parallel="no">
 <startCounterValue>$input.payload/tns:startCounter+1</startCounterValue>
 <finalCounterValue>$input.payload/tns:finalCounter+1</finalCounterValue>
 <completionCondition>
 <branches>$input.payload/tns:branches+1</branches>
 </completionCondition>
 <scope name="scope1">
 <partnerLinks>
 <partnerLink name="DummyService" partnerLinkType="tns:DummyService"
 myRole="DummyServiceClient" partnerRole="DummyServiceProvider"/>
 </partnerLinks>
 <sequence>
 <assign>
 <copy>
 <from>concat($output.payload, $i, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <invoke name="invokeDummyService" partnerLink="DummyService"
 portType="tns:DummyPortType"
 operation="initiate" inputVariable="request"/>
 <receive name="receiveFromDummyService" partnerLink="DummyService"
 portType="tns:DummyCallbackPortType"
 operation="onResult" variable="response"/> <assign>
 <copy>
 <from>concat($output.payload, $i, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </sequence>
 </scope>
 </forEach>

 <!-- respond output to requester -->
 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
 </sequence>

The following example shows the .bpel file after design is complete for a parallel
forEach activity.

<sequence>
 <!-- pick input from requester -->
 <receive name="receive" createInstance="yes"
 partnerLink="client" portType="tns:Test"
 operation="process" variable="input"/>
 <assign>
 <copy>
 <from>$input.payload/tns:value1</from>
 <to>$request.payload</to>
 </copy>
 <copy>
 <from>''</from>
 <to>$output.payload</to>
 </copy>
 </assign>

Customizing the Number of Parallel Branches

Using Parallel Flow in a BPEL Process 10-17

 <forEach counterName="i" parallel="yes">
 <startCounterValue>($input.payload/tns:value1 + 1)</startCounterValue>
 <finalCounterValue>($input.payload/tns:value2 + 2)</finalCounterValue>
 <scope name="scope1">
 <partnerLinks>
 <partnerLink name="DummyService" partnerLinkType="tns:DummyService"
 myRole="DummyServiceClient" partnerRole="DummyServiceProvider"/>
 </partnerLinks>
 <sequence>
 <assign>
 <copy>
 <from>concat($output.payload, 'A')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <invoke name="invokeDummyService" partnerLink="DummyService"
 portType="tns:DummyPortType"
 operation="initiate" inputVariable="request"/>
 <receive name="receiveFromDummyService" partnerLink="DummyService"
 portType="tns:DummyCallbackPortType"
 operation="onResult" variable="response"/>
 <assign>
 <copy>
 <from>concat($output.payload, 'B')</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </sequence>
 </scope>
 </forEach>
 <!-- respond output to requester -->
 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
 </sequence>

10.3.2 Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1
In the flow activity, the BPEL code determines the number of parallel branches.
However, often the number of branches required is different depending on the
available information. The flowN activity creates multiple flows equal to the value of
N, which is defined at runtime based on the data available and logic within the
process. An index variable increments each time a new branch is created, until the
index variable reaches the value of N.

The flowN activity performs activities on an arbitrary number of data elements. As the
number of elements changes, the BPEL process service component adjusts
accordingly.

The branches created by flowN perform the same activities, but use different data.
Each branch uses the index variable to look up input variables. The index variable can
be used in the XPath expression to acquire the data specific for that branch.

For example, suppose there is an array of data. The BPEL process service component
uses a count function to determine the number of elements in the array. The process
then sets N to be the number of elements. The index variable starts at a preset value
(zero is the default), and flowN creates branches to retrieve each element of the array
and perform activities using data contained in that element. These branches are
generated and performed in parallel, using all the values between the initial index
value and N. The flowN activity terminates when the index variable reaches the value
of N. For example, if the array contains 3 elements, N is set to 3. Assuming the index

Customizing the Number of Parallel Branches

10-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

variable begins at 1, the flowN activity creates three parallel branches with indexes 1,
2, and 3.

The flowN activity can use data from other sources as well, including data obtained
from web services.

Figure 10-15 shows the runtime flow of a flowN activity in Oracle Enterprise Manager
Fusion Middleware Control that looks up three hotels. This is different from the view,
because instead of showing the BPEL process service component, it shows how the
process has actually executed. In this case, there are three hotels, but the number of
branches changes to match the number of hotels available.

Figure 10-15 Oracle Enterprise Manager Fusion Middleware Control View of the
Execution of a flowN activity

10.3.2.1 How to Create a flowN Activity

To create a flowN activity:

1. In the Components window, expand Oracle Extensions.

2. Drag a FlowN activity into the designer.

3. Click the + sign to expand the FlowN activity.

4. Click the FlowN activity to display its property fields in the Property Inspector or
double-click the FlowN activity.

Customizing the Number of Parallel Branches

Using Parallel Flow in a BPEL Process 10-19

For information about editing activities in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

Figure 10-16 shows the FlowN dialog.

Figure 10-16 FlowN Dialog

The flowN dialog enables you to:

• Name the activity

• Enter a value or an expression for calculating the value of N (the number of
branches to create)

• Define the index variable (the time to wait in each branch)

5. Drag and define additional activities in the flowN activity.

Figure 10-17 shows how a FlowN activity appears with additional activities.

Figure 10-17 FlowN Activity with Additional Activities

Customizing the Number of Parallel Branches

10-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

10.3.2.2 What Happens When You Create a FlowN Activity

The following code shows the .bpel file that uses the flowN activity to look up
information on an arbitrary number of hotels.

The following example shows the sequence name.

 <sequence name="main">
 <!-- Received input from requester.
 Note: This maps to operation defined in NflowHotels.wsdl
 The requester sends a set of hotels names wrapped into the "inputVariable"
 -->

The following actions take place. A receive activity calls the client partner link to get
the information that the flowN activity must define N times and look up the hotel
information. The following provides an example:

 <receive name="receiveInput" partnerLink="client"
 portType="client:NflowHotels" operation="initiate" variable="inputVariable"
 createInstance="yes"/>
 <!--
 The 'count()' Xpath function is used to get the number of hotelName
 noded passed in.
 An intermediate variable called "NbParallelFlow" is
 used to store the number of N flows being executed
 -->
 <assign name="getHotelsN">
 <copy>
 <from
expression="count($InputVariable.payload/client:HotelName);"/>
 <to variable="NbParallelFlow"/>
 </copy>
 </assign>
 <!-- Initiating the FlowN activity
 The N value is initialized with the value stored in the
 "NbParallelFlow" variable
 The variable call "Index" is defined as the index variable
 NOTE: Both "NbParallelFlow" and "Index" variables have to be declared
 -->

The flowN activity begins next. After defining a name for the activity of flowN, N is
defined as a value from the inputVariable, which is the number of hotel entries.
The activity also assigns index as the index variable. The following provides an
example:

<bpelx:flowN name="FlowN" N="bpws:getVariableData('NbParallelFlow')
indexVariable="Index'>
 <sequence name="Sequence_1">
 <!-- Fetching each hotelName by indexing the "inputVariable" with the
 "Index" variable.
 Note the usage of the "concat()" Xpath function to create the
 expression accessing the array element.
 -->

The copy rule shown in the following example then uses the index variable to
concatenate the hotel entries into a list:

<assign name="setHotelId">
 <copy>
 <from expression=
"bpws:getVariableData('inputVariable','payload',concat('/client:Nflo

Customizing the Number of Parallel Branches

Using Parallel Flow in a BPEL Process 10-21

wHotelsProcessRequest/client:ListOfHotels/client:HotelName[',
bpws:getVariableData('Index'),']'))"/>
 <to variable="InvokeHotelDetailInputVariable" part="payload"
 query="/ns2:hotelInfoRequest/ns2:id"/>
 </copy>
 </assign>

Using the hotel information, an invoke activity looks up detailed information for each
hotel through a web service. The following provides an example:

 <!-- For each hotel, invoke the web service giving detailed information
 on the hotel -->
 <invoke name="InvokeHotelDetail" partnerLink="getHotelDetail"
 portType="ns2:getHotelDetail" operation="process"
 inputVariable="InvokeHotelDetailInputVariable"
 outputVariable="InvokeHotelDetailOutputVariable"/>
 </sequence>
 </bpelx:flowN>

Finally, the BPEL process sends detailed information on each hotel to the client partner
link. The following provides an example:

 <invoke name="callbackClient" partnerLink="client"
 portType="client:NflowHotelsCallback" operation="onResult"
 inputVariable="outputVariable"/>
 </sequence>
 </sequence>

Customizing the Number of Parallel Branches

10-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

11
Using Conditional Branching in a BPEL

Process

This chapter describes how to use conditional branching in a BPEL process service
component. Conditional branching introduces decision points to control the flow of
execution of a BPEL process service component. This chapter also describes how to use
the switch, if, while, and repeatUntil activities to define conditional branching and
specify XPath expressions that enable you to bypass execution of activities.

This chapter includes the following sections:

• Introduction to Conditional Branching

• Defining Conditional Branching with the If or Switch Activity

• Defining Conditional Branching with the While Activity

• Defining Conditional Branching with the repeatUntil Activity

• Specifying XPath Expressions to Bypass Activity Execution

11.1 Introduction to Conditional Branching
BPEL applies logic to make choices through conditional branching. You can use the
following activities to design your code to select different actions based on conditional
branching:

• If activity (in a BPEL version 2.0 project)

Enables you to use an if activity when conditional behavior is required for specific
activities to decide between two or more branches. The if activity replaces the
switch activity that appeared in BPEL 1.1 processes. For information about how to
create if activities, see Defining Conditional Branching with the If Activity in
BPEL 2.0.

• Switch activity (in a BPEL version 1.1 project)

Enables you to set up two or more branches, with each branch in the form of an
XPath expression. If the expression is true, then the branch is executed. If the
expression is false, then the BPEL process service component moves to the next
branch condition, until it either finds a valid branch condition, encounters an
otherwise branch, or runs out of branches. If multiple branch conditions are true,
then BPEL executes the first true branch. For information about how to create
switch activities, see Defining Conditional Branching with the Switch Activity in
BPEL 1.1 .

• While activity

Using Conditional Branching in a BPEL Process 11-1

Enables you to create a while loop to select between two actions. Defining
Conditional Branching with the While Activity describes while activities.

Many branches are set up, and each branch has a condition in the form of an XPath
expression.

You can program a conditional branch to have a timeout. That is, if a response cannot
be generated in a specified period, the BPEL flow can stop waiting and resume its
activities. Using Events and Timeouts in BPEL Processes explains this feature in detail.

Note:

You can also define conditional branching logic with business rules. See
Designing Business Rules with Oracle Business Process Management.

11.2 Defining Conditional Branching with the If or Switch Activity
This section describes how to define conditional branching with the following
activities:

• If activity in a BPEL version 2.0 project

• Switch activity in a BPEL version 1.1 project

11.2.1 Defining Conditional Branching with the If Activity in BPEL 2.0
You can use an if activity when conditional behavior is required for specific activities
to decide between two or more branches. Only one activity is selected for execution
from a set of branches. The if activity consists of a list of one or more conditional
branches that are considered for execution in the following order:

• The if branch

• Optional elseif branches

• An optional else branch

The first branch whose condition evaluates to true is taken, and its contained activity
is performed. If no branch with a condition is taken, then the else branch is taken (if
present). The if activity is complete when the contained activity of the selected branch
completes, or immediately when no condition evaluates to true and no else branch is
specified.

The if activity is a BPEL version 2.0 feature that replaces the switch activity that was
included in BPEL version 1.1.

The following example shows the if activity syntax:

<if standard-attributes>
 standard-elements
 <condition>some conditon expression</condition>
 activity
 <elseif>*
 <condition>some condition expression</condition>
 some activity
 </elseif>
 <else>?
 some activity

Defining Conditional Branching with the If or Switch Activity

11-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 </else>
</if>

11.2.1.1 How to Create an If Activity

To create an If activity:

1. In the Components window, expand BPEL Constructs.

2. Drag an If activity into the designer.

The if and else conditions are displayed, as shown in Figure 11-1.

Figure 11-1 If Activity

3. Click the if branch.

4. In the Condition field, enter a condition, as shown in Figure 11-2. You can also
click the XPath Expression Builder icon to invoke the Expression Builder dialog.

Figure 11-2 if Branch of the If Activity

5. Click OK.

6. Drag and define additional activities into the if condition, as needed. These
activities are executed if the if condition evaluates to true.

7. Click the elseif branch (if you added this branch).

8. In the Condition field, enter a condition, as shown in Figure 11-3.

Defining Conditional Branching with the If or Switch Activity

Using Conditional Branching in a BPEL Process 11-3

Figure 11-3 elseif Branch of the If Activity

9. Click OK.

10. If you want to add elseif conditions, highlight the If activity, and select the Add
icon to invoke a menu.

11. Drag and define additional activities into the elseif condition, as needed. These
activities are executed if the if branch did not evaluate to true, and this elseif
branch evaluates to true.

12. Click the else label.

13. Enter a condition or drag and define additional activities into the else condition, as
needed. These activities are executed if the if and any elseif branches did not
evaluate to true, and this else branch evaluates to true.

Figure 11-4 shows a completed if activity in which each branch includes contained
activities.

Figure 11-4 Completed If Activity

11.2.1.2 What Happens When You Create an If Activity

The following code provides an example of the .bpel file after design completion.
The if activity has if, elseif, and else branches defined. The first branch to evaluate to
true is executed.

<sequence>
 <!-- receive input from requester -->
 <receive name="receiveInput" partnerLink="client" portType="tns:Test"
 operation="process" variable="input" createInstance="yes"/>
 <!-- assign default value -->

Defining Conditional Branching with the If or Switch Activity

11-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <assign>
 <copy>
 <from>'Value is greater than zero'</from>
 <to>$output.payload</to>
 </copy>
 <assign>
 <copy>
 <from>'Value is greater than zero'</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <!-- switch depends on the input value field -->
 <if>
 <condition>$input.payload > 0</condition>
 <extensionActivity>
 <bpelx:exec name="Java_Embedding" version="1.5" language="java">
 System.out.println("if condition is true.\n");
 </bpelx:exec>
 </extensionActivity>
 <elseif>
 <condition>bpws:getVariableData('input', 'payload') < 0</condition>
 <assign>
 <copy>
 <from>'Value is less than zero'</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </elseif>
 <else>
 <assign>
 <copy>
 <from>'Value is equal to zero'</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 </else>
 </if>

 <!-- respond output to requester -->
 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
 </sequence>

11.2.2 Defining Conditional Branching with the Switch Activity in BPEL 1.1
Assume you designed a flow activity in the BPEL process service component that
gathered loan offers from two companies at the same time, but did not compare either
of the offers. Each offer was stored in its own global variable. To compare the two bids
and make decisions based on that comparison, you can use a switch activity.

Figure 11-5 provides an overview of a BPEL conditional branching process that has
been defined in a switch activity.

Defining Conditional Branching with the If or Switch Activity

Using Conditional Branching in a BPEL Process 11-5

Figure 11-5 Conditional Branching

11.2.2.1 How to Create a Switch Activity

To create a switch activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Switch activity into the designer, as shown in Figure 11-6.

The Switch activity has two switch case branches by default, each with a box for
functional elements. If you want to add more branches, select the entire switch
activity, right-click, and select Add Switch Case from the menu.

Figure 11-6 Switch Activity

3. In the first branch, double-click the condition box.

A dialog for entering a condition is displayed, as shown in Figure 11-7.

Defining Conditional Branching with the If or Switch Activity

11-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 11-7 Condition Dialog

4. In the Label field, enter a name for the condition branch. When complete, this
name is displayed in Oracle BPEL Designer.

5. In the Condition field, click the Expression Builder icon to access the Expression
Builder dialog.

6. Create your expression.

bpws:getVariableDate('loanOffer1','payload','/loanOffer/APR') >
bpws:getVariableData('loanOffer2','payload','/loanOffer/APR')

In this example, two loan offers from completing loan companies are stored in the
global variables loanOffer1 and loanOffer2. Each loan offer variable contains
the loan offer's APR. The BPEL flow must choose the loan with the lower APR. One
of the following switch activities takes place:

• If loanOffer1 has the higher APR, then the first branch selects loanOffer2
by assigning the loanOffer2 payload to the selectedLoanOffer payload.

• If loanOffer1 does not have the lower APR than loanOffer2, the
otherwise case assigns the loanOffer1 payload to the
selectedLoanOffer payload.

7. Click OK.

The expression is displayed. The value you entered in the Label field of the dialog
becomes the name of the condition branch.

8. Click OK.

9. Add and configure additional activities as needed. Figure 11-8 provides details.

Defining Conditional Branching with the If or Switch Activity

Using Conditional Branching in a BPEL Process 11-7

Figure 11-8 Switch Activity Design

11.2.2.2 What Happens When You Create a Switch Activity

A switch activity, such as a flow activity, has multiple branches. In the example that
follows, there are only two branches shown in the .bpel file after design completion.
The first branch, which selects a loan offer from a company named United Loan, is
executed if a case condition containing an XPath boolean expression is met. Otherwise,
the second branch, which selects the offer from a company named Star Loan, is
executed. By default, the switch activity provides two switch cases, but you can add
more, as needed.

<switch name="switch-1">
 <case condition="bpws:getVariableData('loanOffer1','payload',
 '/autoloan:loanOffer/autoloan:APR') >
 bpws:getVariableData('loanOffer2','payload','/autoloan:loanOffer/autoloan:APR
 ')">
" name="Choose_the_Loan_with_the_Lower_APR">
 <bpelx:annotation>
 <bpelx:general>
 <bpelx:property name="userLabel">Choose the Loan with
 the Lower APR</bpelx:property>
 </bpelx:general>
 </bpelx:annotation>
 <assign name="selectUnitedLoan">
 <copy>
 <from variable="loanOffer1" part="payload">
 </from>
 <to variable="selectedLoanOffer" part="payload"/>
 </copy>
 </assign>
 </case>
 <otherwise>
 <assign name="selectStarLoan">
 <copy>
 <from variable="loanOffer2" part="payload">
 </from>
 <to variable="selectedLoanOffer" part="payload"/>
 </copy>
 </assign>
 </otherwise>
</switch>

11.3 Defining Conditional Branching with the While Activity
Another way to design your BPEL code to select between multiple actions is to use a
while activity to create a while loop. The while loop repeats an activity until a
specified success criteria is met. For example, if a critical web service is returning a

Defining Conditional Branching with the While Activity

11-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

service busy message in response to requests, you can use the while activity to keep
polling the service until it becomes available. The condition for the while activity is
that the latest message received from the service is busy, and the operation within the
while activity is to check the service again. Once the web service returns a message
other than service busy, the while activity terminates and the BPEL process service
component continues, ideally with a valid response from the web service.

11.3.1 How To Create a While Activity

To create a while activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a While activity into the designer.

3. Click the + sign to expand the while activity.

The while activity has icons to allow you to build condition expressions and to
validate the while definition. It also provides an area for you to drag an activity to
define the while loop.

4. Drag and define additional activities for using the while condition into the Drop
Activity Here area of the While activity (for example, a Scope activity).

The activities can be existing or new activities.

5. Click the XPath Expression Builder icon to open the Expression Builder dialog.

6. Enter an expression to perform repeatedly, as shown in Figure 11-9. This action is
performed until the given boolean while condition is no longer true. In this
example, this activity is set to loop while less than 5.

Figure 11-9 While Activity with an Expression

7. Click OK when complete.

Defining Conditional Branching with the While Activity

Using Conditional Branching in a BPEL Process 11-9

11.3.2 What Happens When You Create a While Activity
The code that follows provides an example of the .bpel file after design completion.
The while activity includes a scope activity. The scope activity includes sequence and
fault handlers at the top level. The sequence includes invoke and assign activities and
fault handlers that define a catchAll containing assign and wait activities wrapped
in a sequence.

The following code calls an external service. If the external service throws a fault, the
fault handler catches the fault and increments the dbStatus variable value.

Therefore, the exit condition of the while loop is either of the following:

• There is no exception, upon which the dbStatus value is set to a value of 10,
which results in the while condition evaluating to false.

• After throwing a fault five times, the dbStatus value is 5, and the while
condition returns false.

<while name="While_1" condition="bpws:getVariableData('dbStatus') > 5">
 <scope name="Scope_1">
<faultHandlers>
 <catchAll>
 <sequence name="Sequence_2">
 <assign name="assign_DB_retry">
 <copy>
 <from expression="bpws:getVariableData('dbStatus') + 1"/>
 <to variable="dbStatus"/>
 </copy>
 </assign>
 <wait name="Wait_30_sec" for="'PT31S'"/>
 </sequence>
 </catchAll>
 </faultHandlers>
 <sequence name="Sequence_1">
 <invoke name="Write_DBWrite" partnerLink="WriteDBRecord"
 portType="ns2:WriteDBRecord_ptt" operation="insert"
 inputVariable="Invoke_DBWrite_merge_InputVariable"/>
 <assign name="Assign_dbComplete">
 <copy>
 <from expression="'10'"/>
 <to variable="dbStatus"/>
 </copy>
 </assign>
 </sequence>
 </scope>
 </while>

Note:

The while activity code fragment in the preceding example uses a BPEL 1.1
construct of bpws:getVariableData('dbStatus'). For BPEL 2.0,
variables are referenced directly using $ sign and dot (.) notation. For
example:

<while name="While1">
 <condition>$inputVariable.payload/client:counter > 0
 </condition>

Defining Conditional Branching with the While Activity

11-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

11.4 Defining Conditional Branching with the repeatUntil Activity
If the body of an activity must be performed at least once, use a repeatUntil activity
instead of a while activity. The XPath expression condition in the repeatUntil activity
is evaluated after the body of the activity completes. The condition is evaluated
repeatedly (and the body of the activity processed) until the provided boolean
condition is true.

Note:

This activity is supported in BPEL version 2.0 projects.

11.4.1 How to Create a repeatUntil Activity

To create a repeatUntil activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Repeat Until activity into the designer.

3. Click the Repeat Until activity to display its property fields in the Property
Inspector or double-click the Repeat Until activity.

For information about editing activities in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

4. Enter a name or accept the default value.

5. In the Condition field, click the XPath Expression Builder icon to enter an XPath
expression condition.

The Expression Builder dialog is displayed.

6. Enter a boolean XPath expression condition, and click OK.

The condition you entered is displayed in the Repeat Until dialog, as shown in
Figure 11-10.

Defining Conditional Branching with the repeatUntil Activity

Using Conditional Branching in a BPEL Process 11-11

Figure 11-10 Completed Repeat Until Dialog

7. Click Apply, then OK.

8. Expand the Repeat Until activity, as shown in Figure 11-11.

Figure 11-11 repeatUntil Activity Being Expanded

9. Design the body of the activity by dragging in activities from the Components
window and defining their property values. These activities are evaluated until the
XPath expression condition is evaluated to true.

11.4.2 What Happens When You Create a repeatUntil Activity
The following provides an example of the .bpel file after design completion. In this
scenario, purchase order validation must be performed at least once, then repeatedly,
based on evaluating the completion status until the status is updated to 5.

<repeatUntil>
 <sequence>
 <invoke name="PurchaseOrderValidation" ... />
 <receive name="receiveValidation"
 partnerLink="PurchaseOrderValidation"
 operation="returnPurchaseOrderValidation"
 variable="PurchaseOrderStatusResponse" />
 </sequence>
 <condition>
 bpel:getVariableProperty(
 "PurchaseOrderStatusResponse","tst:completionStatus") < 5
 </condition>
</repeatUntil>

Defining Conditional Branching with the repeatUntil Activity

11-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

11.5 Specifying XPath Expressions to Bypass Activity Execution
Oracle provides an extension that enables you to specify an XPath expression in an
activity in BPEL versions 1.1 and 2.0 that, when evaluated to true, causes that activity
to be skipped. This functionality provides an alternative to using a switch activity for
conditionally executing activities. The skip condition for activities is specified as
follows:

<activity bpelx:skipCondition="boolean-expr"/>

The bpelx:skipCondition attribute causes an XPath expression to be evaluated
immediately upon creation of the activity instance. If the skip expression returns a
false boolean value, the activity is executed. If the skip expression returns a true
boolean value, the activity is completed immediately and execution moves to the
activity immediately following that one.

11.5.1 How to Specify XPath Expressions to Bypass Activity Execution

To specify XPath expressions to bypass activity execution:

1. In the Components window, expand BPEL Constructs.

2. Drag the activity into the designer in which to create the skip condition.

3. Click the Skip Condition tab.

4. Specify an XPath expression that, when evaluated to true, causes an activity to be
skipped. Figure 11-12 provides details.

Figure 11-12 Skip Condition XPath Expression

5. Click Apply, then OK.

11.5.2 What Happens When You Specify XPath Expressions to Bypass Activity
Execution

The code segment in the .bpel file defines the specific operation after design
completion.

For example, the XPath expression shown in the following code, when evaluated to
true (for example, input is 20), causes the assign activity to be skipped.

<sequence name="main">
. . .
. . .
<assign name="Assign_1"

bpelx:skipCondition="number(bpws:getVariableData('inputVariable','payload','/client:
 process/client:input')) > 10">
 <copy>
 <from expression="'Assign Block is not Skipped'"/>
 <to variable="inputVariable" part="payload"
 query="/client:process/client:input"/>
 </copy>
</assign>

Specifying XPath Expressions to Bypass Activity Execution

Using Conditional Branching in a BPEL Process 11-13

. . .

. . .
</sequence>

The bpelx:skipCondition attribute is equivalent to a switch/case structured
activity with a single case element with a condition that is the opposite of the skip
condition.

The following example shows the bpelx:skipCondition attribute in BPEL 1.1. If
myvalue is 0, the expression evaluates to true, and the assign activity is skipped. If
myvalue is 10, the expression evaluates to false, and the copy operation of the assign
activity is executed.

<assign bpelx:skipCondition="bpws:getVariableData('input',
 'payload','/tns:inputMsg/tns:myvalue') <= 0">
 <copy>
 <from expression="'Value is greater than zero'"/>
 <to variable="output" part="payload"
 query="/tns:resultMsg/tns:valueResult"/>
 </copy>
</assign>

The equivalent functionality used with a switch activity is shown in the following
example.

<switch>
 <case condition="bpws:getVariableData('input',
 'payload','/tns:inputMsg/tns:value') > 0">
 <assign>
 <copy>
 <from expression="'Value is greater than zero'"/>
 <to variable="output" part="payload"
 query="/tns:resultMsg/tns:valueResult"/>
 </copy>
 </assign>
 </case>
</switch>

In BPEL 2.0, the bpelx:skipCondition syntax appears as a child element of an
activity. The following code provides an example of an assign activity with this
convention.

<assign name="Assign4">
<bpelx:skipCondition>ora:getNodeValue($inputVariable.payload/client:input) > 5
</bpelx:skipCondition><copy>
 <from>"dummy result"</from>
 <to>$outputVariable.payload/client:result</to>
 </copy></assign>

You can also use built-in and custom XPath functions within the skip condition
expression. The following code provides several examples.

<assign bpelx:skipCondition="bpws:getVariableData('crOutput', 'payload',
 '/tns:rating') > 0">

<assign bpelx:skipCondition="custom:validateRating()" ... />

<assign xmlns:fn='http://www.w3.org/2005/xpath-functions'
 bpelx:skipCondition="fn:false()" ... />

Specifying XPath Expressions to Bypass Activity Execution

11-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

If an error is thrown by the XPath expression evaluation, the error is wrapped with a
BPEL fault and thrown from the activity.

An event is added to the BPEL instance audit trail for activities that are bypassed due
to the skip condition expression evaluating to true. Even if the skip condition
evaluates to false (meaning the activity is performed), the fact that a skip condition
expression was evaluated is still logged to the audit trail for debugging purposes.

If the XPath engine fails to evaluate the boolean value, bpws:subLanguageFault is
thrown. This is the same fault thrown when a switch/case condition does not evaluate
to a boolean value. This is also logged to the audit trail for debugging purposes.

Specifying XPath Expressions to Bypass Activity Execution

Using Conditional Branching in a BPEL Process 11-15

Specifying XPath Expressions to Bypass Activity Execution

11-16 Developing SOA Applications with Oracle SOA Suite

12
Using Fault Handling in a BPEL Process

This chapter describes how to use fault handling in a BPEL process. Fault handling
allows a BPEL process service component to handle error messages or other
exceptions returned by outside web services, and to generate error messages in
response to business or runtime faults. This chapter also describes how to use the fault
management framework to catch faults and perform user-specified actions defined in
a fault policy file.

This chapter includes the following sections:

• Introduction to a Fault Handler

• Introduction to BPEL Standard Faults

• Introduction to the Business and Runtime Fault Categories of BPEL Faults

• Handling Faults with the Fault Management Framework

• Catching BPEL Runtime Faults

• Getting Fault Details with the getFaultAsString XPath Extension Function

• Throwing Internal Faults with the Throw Activity

• Rethrowing Faults with the Rethrow Activity

• Returning External Faults

• Managing a Group of Activities with a Scope Activity

• Re-executing Activities in a Scope Activity with the Replay Activity

• Using Compensation After Undoing a Series of Operations

• Stopping a Business Process Instance with a Terminate or Exit Activity

• Throwing Faults with Assertion Conditions

• Classifying SOAP Faults as Retriable

12.1 Introduction to a Fault Handler
Fault handlers define how the BPEL process service component responds when target
services return data other than what is normally expected (for example, returning an
error message instead of a number). An example of a fault handler is where the web
service normally returns a credit rating number, but instead returns a negative credit
message.

Figure 12-1 provides an example of how a fault handler sets a credit rating variable to
-1000.

Using Fault Handling in a BPEL Process 12-1

Figure 12-1 Fault Handling

The code segment in the following example defines the fault handler for this operation
in the BPEL file:

<faultHandlers>
 <catch faultName="services:NegativeCredit" faultVariable="crError">
 <assign name="crin">
 <copy>
 <from expression="-1000">
 </from>
 <to variable="input" part="payload"
 query="/autoloan:loanApplication/autoloan:creditRating"/>
 </copy>
 </assign>
 </catch>
</faultHandlers>

The faultHandlers tag contains the fault handling code. Within the fault handler is
a catch activity, which defines the fault name and variable, and the copy instruction
that sets the creditRating variable to -1000.

When you select web services for the BPEL process service component, determine the
possible faults that may be returned and set up a fault handler for each one.

Introduction to a Fault Handler

12-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

12.2 Introduction to BPEL Standard Faults
This section identifies the standard faults for BPEL 1.1 and BPEL 2.0.

12.2.1 BPEL 1.1 Standard Faults
This section identifies the standard faults for BPEL 1.1. Unless otherwise noted below,
the defines the following standard faults in the namespace of http://
schemas.xmlsoap.org/ws/2003/03/business-process/:

• bindingFault (BPEL extension fault defined in http://
schemas.oracle.com/bpel/extension)

• conflictingReceive

• conflictingRequest

• correlationViolation

• forcedTermination

• invalidReply

• joinFailure

• mismatchedAssignmentFailure

• remoteFault (BPEL extension fault defined in http://
schemas.oracle.com/bpel/extension)

• repeatedCompensation

• selectionFailure

• uninitializedVariable

• assertFailure

• coordinationFault

• entityInternalNestedError

• maxLoopCountExceeded

• owsmPolicyFault

• rollback

• timeout

Standard faults are defined as follows:

• Typeless, meaning they do not have associated messageTypes

• Not associated with any Web Services Description Language (WSDL) message

• Caught without a fault variable:

<catch faultName="bpws:selectionFailure">

Introduction to BPEL Standard Faults

Using Fault Handling in a BPEL Process 12-3

12.2.2 BPEL 2.0 Standard Faults
The following list specifies the standard faults defined within the WS-BPEL
specification. All standard fault names are qualified with the standard WS-BPEL
namespace.

• ambiguousReceive

• completionConditionFailure

• conflictingReceive

• conflictingRequest

• correlationViolation

• invalidBranchCondition

• invalidExpressionValue

• invalidVariables

• joinFailure

• mismatchedAssignmentFailure

• missingReply

• missingRequest

• scopeInitializationFailure

• selectionFailure

• subLanguageExecutionFault

• uninitializedPartnerRole

• uninitializedVariable

• unsupportedReference

• xsltInvalidSource

• xsltStylesheetNotFound

12.2.2.1 Fault Handling Order of Precedence in BPEL 2.0

In BPEL 2.0, the order of precedence for catching faults thrown without associated
data is as follows:

• If there is a catch activity with a matching faultName value that does not specify
a faultVariable attribute, the fault is sent to the identified catch activity.

• Otherwise, if there is a catchAll activity, the fault is sent to the catchAll fault
handler.

• Otherwise, the fault is processed by the default fault handler.

In BPEL 2.0, the order of precedence for catching faults thrown with associated data is
as follows:

Introduction to BPEL Standard Faults

12-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• If there is a catch activity with a matching faultName value that does not specify
a faultVariable attribute, the fault is sent to the identified catch activity.

• If the fault data is a WSDL message type in which the following exists:

– The message contains a single part defined by an element.

– A catch activity with a matching faultName value that has a
faultVariable whose associated faultElement QName matches the
QName of the runtime element data of the single WSDL message part.

Then, the fault is sent to the identified catch activity with the faultVariable
initialized to the value in the single part's element.

• Otherwise, if there is a catch activity with a matching faultName value that does
not specify a faultVariable attribute, the fault is sent to the identified catch
activity. In this case, the fault value is not available from within the fault handler,
but is available to the rethrow activity.

• Otherwise, if there is a catch construct without a faultName attribute that has a
faultVariable whose type matches the type of the runtime fault data, then the
fault is sent to the identified catch activity.

• Otherwise, if the fault data is a WSDL message type in which the message
contains a single part defined by an element and there exists a catch activity
without a faultName attribute that has a faultVariable whose associated
faultElement QName matches the QName of the runtime element data of the
single WSDL message part, the fault is sent to the identified catch activity with the
faultVariable initialized to the value in the single part's element.

• Otherwise, if there is a catchAll activity, the fault is sent to the catchAll fault
handler.

• Otherwise, the fault is handled by the default fault handler.

12.3 Introduction to the Business and Runtime Fault Categories of BPEL
Faults

A BPEL fault has a fault name called a Qname (name qualified with a namespace) and
a possible messageType. There are two categories of BPEL faults:

• Business faults

• Runtime faults

12.3.1 Business Faults
Business faults are application-specific faults that are generated when there is a
problem with the information being processed (for example, when a social security
number is not found in the database). A business fault occurs when an application
executes a throw activity or when an invoke activity receives a fault as a response. The
fault name of a business fault is specified by the BPEL process service component. The
messageType, if applicable, is defined in the WSDL file. A business fault can be
caught with a faultHandler using the faultName and a faultVariable.

<catch faultName="ns1:faultName" faultVariable="varName">

Introduction to the Business and Runtime Fault Categories of BPEL Faults

Using Fault Handling in a BPEL Process 12-5

12.3.2 Runtime Faults
Runtime faults are the result of problems within the running of the BPEL process
service component or web service (for example, data cannot be copied properly
because the variable name is incorrect). These faults are not user-defined, and are
thrown by the system. They are generated for a variety of reasons, including the
following:

• The process tries to use a value incorrectly.

• A logic error occurs (such as an endless loop).

• A Simple Object Access Protocol (SOAP) fault occurs in a SOAP call.

• An exception is thrown by the server.

Several runtime faults are automatically provided. These faults are included in the
http://schemas.oracle.com/bpel/extension namespace. These faults are
associated with the messageType RuntimeFaultMessage. The WSDL file shown in
the following example defines the messageType:

<?xml version="1.0" encoding="UTF-8" ?>
<definitions name="RuntimeFault"
 targetNamespace="http://schemas.oracle.com/bpel/extension"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="RuntimeFaultMessage">
 <part name="code" type="xsd:string" />
 <part name="summary" type="xsd:string" />
 <part name="detail" type="xsd:string" />
 </message>
</definitions>

If a faultVariable (of messageType RuntimeFaultMessage) is used when
catching the fault, the fault code can be queried from the faultVariable, along with
the fault summary and detail.

12.3.2.1 bindingFault

A bindingFault is thrown inside an activity if the preparation of the invocation
fails. For example, the WSDL of the process fails to load. A bindingFault is not
retriable. This type of fault usually must be fixed by human intervention.

12.3.2.2 remoteFault

A remoteFault is also thrown inside an activity. It is thrown because the invocation
fails. For example, a SOAP fault is returned by the remote service.

12.3.2.3 replayFault

A replayFault replays the activity inside a scope. At any point inside a scope, this
fault is migrated up to the scope. These faults are not populated into a common fault,
but are an indication to BPEL to re-execute the scope. The server then re-executes the
scope from the beginning.

Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

12.3.3 How to Add and Propagate Fault Handling in a Synchronous BPEL Process
This section describes how to add and propagate fault handling in a synchronous
BPEL process. During the design, you perform the following tasks:

• Modify the existing schema and WSDL files to include fault element, fault
message, and fault operation details.

• Add fault handling to the BPEL process (specifically, a catch activity).

• Create a fault variable with the fault message type you specified in the WSDL file.

• Add assign and reply activities with additional fault handling details.

12.3.3.1 Edit the Schema and WSDL Files

To edit the schema and WSDL files:

1. Create a synchronous BPEL process (for this example, named TestProcess)
using the default settings in the Create BPEL Process dialog.

2. In the Schemas folder of the Applications window, double-click the
TestProcess.xsd file.

3. Click Source view, and add a new element called processFault:

<element name="processFault">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
</element>

4. In the Applications window, expand the WSDLs folder.

5. Double-click the TestProcess.wsdl file.

6. Click Source view, and add a new message type called
TestProcessFaultMessage.

<wsdl:message name="TestProcessFaultMessage">
 <wsdl:part name="payload" element="client:processFault"/>
</wsdl:message>

7. Edit the operation element in the WSDL file to add a fault.

<wsdl:operation name="process">
 <wsdl:input message="client:TestProcessRequestMessage" />
 <wsdl:output message="client:TestProcessResponseMessage"/>
 <wsdl:fault name="FaultResponse" message="
 client:TestProcessFaultMessage"/>
</wsdl:operation>

8. From the File menu, select Save.

Introduction to the Business and Runtime Fault Categories of BPEL Faults

Using Fault Handling in a BPEL Process 12-7

12.3.3.2 Add a Fault Handler

To add a fault handler:

1. In the Applications window, expand SOA > BPEL.

2. Double-click TestProcess.bpel.

3. Click the Add Catch icon in the BPEL process to add a catch activity as the fault
handler for the BPEL process. You can also use a CatchAll activity. Figure 12-2
provides details.

Figure 12-2 Add Catch Icon

4. Double-click the catch activity to specify the system fault. Figure 12-3 provides
details.

Figure 12-3 Catch Activity

There is no assert activity to trigger this system fault. You can add one to assert an
input field.

5. In the Namespace URI field, click the Browse icon.

The Fault Chooser dialog is displayed.

6. Select a system fault (for this example, assertFailure), and click OK. There are
many other system faults that can be selected. Figure 12-4 provides details.

Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 12-4 Fault Chooser Dialog

You are returned to the Edit Catch dialog.

7. In the Fault Variable field, click the Create Variable icon.

The Create Variable dialog is displayed.

A name of FaultVar and a variable of type RuntimeFaultMessage are created.
Figure 12-5 provides details.

Figure 12-5 Create Variable Dialog

8. Copy the RuntimeFault.wsdl file into the SOA > WSDLs folder. This is the same
location as the BPEL process WSDL file.

9. Click OK, and then click OK in the Edit Catch dialog.

12.3.3.3 Create a Fault Response Variable

To create a fault response variable:

1. In the Structure window, right-click the Variables folder and select Create
Variable.

2. In the Name field, enter Faultresponse.

3. Select Message Type.

4. For the Message Type field, click the Browse icon.

5. Expand Message Types > Project WSDL Files > TestProcess.wsdl > Message
Types > TestProcessFaultMessage, and click OK. Figure 12-6 provides details.

Introduction to the Business and Runtime Fault Categories of BPEL Faults

Using Fault Handling in a BPEL Process 12-9

Figure 12-6 Type Chooser Dialog

6. In the Create Variable dialog, click OK.

12.3.3.4 Add an Assign Activity to the Catch Activity Branch

To add an assign activity to the catch activity branch:

1. Drag an assign activity into the catch activity block.

2. Double-click the assign activity.

3. Concatenate the code, summary, and detail fields of the FaultVar variable to the
FaultResponse variable, and click OK. Figure 12-7 provides details.

Figure 12-7 Edit Assign Dialog

Introduction to the Business and Runtime Fault Categories of BPEL Faults

12-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

4. In the Name field of the General tab, enter a name (for this example,
FaultDataForClient).

12.3.3.5 Add a Reply Activity to the Catch Activity Branch

To add a reply activity to the catch activity branch:

1. Drag a Reply activity below the Assign activity in the catch activity block.

2. Double-click the Reply activity.

3. In the Namespace URI field, click the Browse icon.

The Fault Chooser dialog is displayed.

4. Expand Project WSDL Files > TestProcess.wsdl, and select the fault named
FaultResponse. Figure 12-8 provides details.

Figure 12-8 Fault Chooser Dialog

5. In the Name field, enter a name (for this example, ReplyWithFault).

6. In the Partner Link field, click the Browse icon.

The Partner Link Chooser dialog is displayed.

7. Select the same partner link to which the replyOutput reply activity is connected,
and click OK.

8. For the Variable field, click the Browse icon.

The Variable Chooser dialog is displayed.

9. Select the FaultResponse variable, and click OK.

Figure 12-9 Variable Chooser Dialog

10. In the Edit Reply dialog, click OK.

The BPEL process looks as shown in Figure 12-10. Both reply activities are
connected to the same partner link.

Introduction to the Business and Runtime Fault Categories of BPEL Faults

Using Fault Handling in a BPEL Process 12-11

Figure 12-10 BPEL Process Design

12.4 Handling Faults with the Fault Management Framework
Oracle SOA Suite provides a generic fault management framework for handling faults
in BPEL processes. If a fault occurs during runtime in an invoke activity in a process,
the framework catches the fault and performs a user-specified action defined in a fault
policy file associated with the composite or component. Fault policies are applicable to
the faults that result from the invoke activity. Faults can occur because of preassertion,
postassertion, invocation, or actual business failures in the target service.

If a fault results in a condition in which human intervention is the prescribed action,
you perform recovery actions from Oracle Enterprise Manager Fusion Middleware
Control. The fault management framework provides an alternative to designing a
BPEL process with catch activities in scope activities.

This section provides an overview of the components that comprise the fault
management framework.

• The fault management framework catches all faults (business and runtime) for an
invoke activity.

• A fault policy file defines fault conditions and their corresponding fault recovery
actions. Each fault condition specifies a particular fault or group of faults, which it
attempts to handle, and the corresponding action for it. A set of actions is
identified by an ID in the fault policy file.

• A set of conditions invokes an action (known as a fault policy).

• Email or JMS notify users of errors associated with a condition.

• A fault policy bindings file associates the policies defined in the fault policy file
with the following:

– SOA composite applications

– BPEL process and Oracle Mediator service components

– Reference binding components for BPEL processes and Oracle Mediator
service components

The framework looks for fault policy bindings in the same directory as the
composite.xml file of the SOA composite application or in a remote location

Handling Faults with the Fault Management Framework

12-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

identified by two properties that you set. The remote location is in the MDS
Repository.

Note:

A fault policy configured with the fault management framework overrides
any fault handling defined in catch activities of scope activities in the BPEL
process. The fault management framework can be configured to rethrow the
fault handling back to the catch activities.

• The fault policy file (fault-policies.xml) and fault policy bindings file
(fault-bindings.xml) are placed in either of the following locations:

– In the same directory as the composite.xml file of the SOA composite
application.

– In a different location that is specified with two properties that you add to the
composite.xml file. This option is useful if a fault policy must be used by
multiple SOA composite applications. This option overrides any fault policy
files that are included in the same directory as the composite.xml file. The
following example provides details about these two properties. In this
example, the fault policy files are placed into the SOA part of the Oracle
Metadata Services (MDS) Repository shared area.

<property
 name="oracle.composite.faultPolicyFile">oramds:/apps/faultpolicyfiles/
 fault-policies.xml
</property>
<property
 name="oracle.composite.faultBindingFile">oramds:/apps/faultpolicyfiles/
 fault-bindings.xml
</property>

For details about Oracle Mediator fault handling capabilities, see Using Error
Handling .

For details about creating a fault policy with Oracle Business Process Management
(BPM) Suite, see Chapter "Using Fault Handling in BPM" of Developing Business
Processes with Oracle Business Process Management Studio.

12.4.1 Understanding How the Fault Policy Binding Resolution Works
A fault policy bindings file associates the policies defined in a fault policy file with the
SOA composite application or the component (service component or reference binding
component). The framework attempts to identify a fault policy binding in the
following order:

• Reference binding component defined in the composite.xml file.

• BPEL process or Oracle Mediator service component defined in the
composite.xml file.

• SOA composite application defined in the composite.xml file.

During the resolution process, if no action is found that matches the condition, the
framework assumes that resolution failed and moves to the next resolution level.

For example, assume an invoke activity faults with faultname="abc". There is a
policy binding specified in the fault-bindings.xml file:

Handling Faults with the Fault Management Framework

Using Fault Handling in a BPEL Process 12-13

• SOA composite application binds to policy-id-1

• BPEL process or Oracle Mediator service component or reference binding
component binds to policy-id-2

In the fault-bindings.xml file, the following bindings are also specified:

• SOA composite application binds to policy-id-3

• Reference binding component or service component binds to policy-id-4

The fault management framework behaves as follows:

• First match the resolve binding (in this case, policy-id-4).

• If the fault resolution fails, go to the next possible match (policy-id-2).

• If the fault resolution fails, go to the next possible match (policy-id-3).

• If the fault resolution fails, go to the next possible match (in this case, policy-
id-1).

• If the fault resolution still fails, the fault is sent to the BPEL fault catch activity.

12.4.2 How to Design a Fault Policy for Automated Fault Recovery with the Fault Policy
Wizard

You can design a fault policy with the Fault Policy wizard and associate the fault
policy with the fault policy binding file.

To design a fault policy for automated fault recovery with the Fault Policy
wizard:

1. From the Oracle JDeveloper main menu, select File > New > From Gallery.

2. In the Categories list, select SOA Tier > Faults.

3. In the Items list, select Fault Policy Document.

The Fault Policy Editor is displayed, as shown in Figure 12-11. A single fault policy
with a name of policy1 is initially displayed for configuration.

Handling Faults with the Fault Management Framework

12-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 12-11 Fault Policy Editor When Initially Displayed

The Fault Policy Editor consists of several sections and tabs. It is recommended that
you configure the Fault Policy Editor in the following order:

• Properties tab

• Alerts tab

• Actions tab

• Fault policy name and fault handlers

• Association with the fault policy binding file

12.4.2.1 Step 1: Defining Property Sets

You first define property sets to associate with JMS alerts, which are defined in Step 2:
Defining Alerts. You can associate property sets configuration details such as JMS
destinations and connection factories with multiple JMS alerts. For example, for a JMS
alert, the destination and queue information and connection factory can be referenced
by additional JMS alerts configured in the fault policy.

Note:

You cannot create property sets for email alerts in this release.

1. Click the Properties tab. Table 12-1 provides details about available fields.

Table 12-1 Property Set Selections

For... Then...

Email alerts Email alerts do not support property sets for this release.

Handling Faults with the Fault Management Framework

Using Fault Handling in a BPEL Process 12-15

Table 12-1 (Cont.) Property Set Selections

For... Then...

JMS queue alerts
a. Click Add to specify the properties and values for JMS

alerts. The following properties and associated values
are required:

• jmsDestination: The JNDI name of the configured
queue or topic in which the alerts is queued/published.

• connectionFactory: JNDI name for the configured
connection factory to use.

Figure 12-12 shows a property set configured with JMS destination and
connection factory values.

Figure 12-12 JMS Property Set Configuration

For an example of a fully-defined fault policy file, including a defined JMS
propertySet section, see Step 4 of How to Manually Design a Fault Policy for
Automated Fault Recovery.

12.4.2.2 Step 2: Defining Alerts

1. Click the Alerts tab. Two types of notification alerts are supported:

• Email: Enables you to configure email recipients to receive alerts when a fault
occurs. You must also configure the same email recipients on the Mailer tab
of the Workflow Notification Properties page in Oracle Enterprise Manager
Fusion Middleware Control. For information, see Section "Configuring
Human Workflow Notification Properties" of Administering Oracle SOA Suite
and Oracle Business Process Management Suite.

• JMS: Enables you to enqueue the fault to a JMS queue or publish it to a JMS
topic. JMS header values can also be specified. The JMS notification can be
integrated with a third-party resolution system to handle faults. The third-
party resolution system dequeue and subscribes to the targeted queue and
topic. Further fine-graining is achieved by consuming messages based on the
header property values. The payload type of the JMS message is a text
message in XML format. You must also configure JMS queues and topics and
connection factories in Oracle WebLogic Server Administration Console. For
information, see Section "Configuring Basic JMS System Resources" of
Administering JMS Resources for Oracle WebLogic Server.

2. Click the Add icon. Table 12-2 provides details.

Handling Faults with the Fault Management Framework

12-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 12-2 Alert Selections

If You Select... Then...

email You can specify recipients to receive an email alert when a fault occurs.

a. In the ID field, specify an ID or accept the default value.

b. In the To and CC fields, specify the email recipients.

Note: Do not select any property sets from the Property Set list.
The email alert does not support property sets for this release.

c. When complete, click OK.

JMS You can specify queues to receive a JMS alert when a fault occurs.

Two properties are required for configuring a JMS alert.

• jmsDestination: The JNDI name of the configured queue or topic
on which the alert is queued and published.

• connectionFactory: The JNDI Name for the configured connection
factory to use.

a. In the ID field, specify an ID or accept the default value.

b. In the Property Set list, select an existing property set created in
Step 1: Defining Property Sets or click Create Required Properties
to create a new property set with values defined for
jmsDestination and connectionFactory.

c. In the Headers table, optionally specify JMS header values to
achieve finer-grained fault consumption for a JMS alert. Both
standard and custom external systems can filter their subscriptions
based on the configured header properties.

d. When complete, click OK.

Figure 12-13 shows email alert configuration in the Email Properties dialog.

Figure 12-13 Email Alert Configuration

Figure 12-14 shows JMS alert configuration in the JMS Properties dialog. For this
example, both property sets (defined by clicking Create Required Properties to
invoke the Property Set dialog) and headers are defined.

Handling Faults with the Fault Management Framework

Using Fault Handling in a BPEL Process 12-17

Figure 12-14 JMS Alert Configuration

For an example of a fully-defined fault policy file, including a defined Alerts
section, see Step 4 of How to Manually Design a Fault Policy for Automated Fault
Recovery.

12.4.2.3 Step 3: Defining Actions

1. Click the Actions tab. By default, all types of actions are automatically selected.
Figure 12-15 provides details.

Figure 12-15 Actions Section of Fault Policy Editor

Table 12-3 describes the available action types.

Table 12-3 Supported Action Types

Action Description

Abort Terminates the entire business flow.

Human intervention Causes the current activity to stop processing. Human
intervention from Oracle Enterprise Manager Fusion
Middleware Control is required to handle the fault. For
information, see "Recovering from Faults in a Business Flow
Instance" of Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

Handling Faults with the Fault Management Framework

12-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 12-3 (Cont.) Supported Action Types

Action Description

Java action: Enables you to execute an external Java class. For more
information, see How to Use a Java Action Fault Policy.

Replay scope Raises a replay fault.

Rethrow fault Sends the fault to the BPEL fault handlers (catch activities in
scope activities). If none are available, the fault is sent up.

Enqueue Enqueues a rejected message to a JMS queue as a JMS
message with the appropriate context and payload. For
additional configuration information, see Section "JMS
Queue" in Understanding Technology Adapters.

Invoke WS: Handles a rejected message by calling a web service. For
additional configuration information, see Section "Web
Service Handler" in Understanding Technology Adapters.

File action Creates an error handler for messages by storing a rejected
message in a file. For additional configuration information,
see Section "File" in Understanding Technology Adapters.

Retry Provides the following options for retrying the activity:

• Retry a specified number of times.
• Provide a delay between retries (in seconds).
• Increase the interval with an exponential back off.
• Chain to a retry failure action if retry N times fails.
For more information about retries, see Table 12-6.

For an example of a fault policy file with a defined Actions section, see Step 4 of
How to Manually Design a Fault Policy for Automated Fault Recovery.

12.4.2.4 Step 4: Defining Fault Names and Policies

1. Define the fault name, description, and default action of the fault policy in the
upper section of the Fault Policy Editor. Table 12-4 provides details.

Table 12-4 Fault Policy Editor - Upper Section

Element Description

Add Fault
Policy icon
(upper left
corner)

You can also add additional fault policies for configuration to a single
policy document.

Click the Add icon in the upper left corner to add an additional fault
policy. All polices are then displayed in the column on the far left of the
Fault Policy Editor. You can click the policy that you want to define.

Delete Fault
Policy

Delete a selected fault policy.

Fault Policy Enter a name for the fault policy or accept the default name of
policynumber.

Handling Faults with the Fault Management Framework

Using Fault Handling in a BPEL Process 12-19

Table 12-4 (Cont.) Fault Policy Editor - Upper Section

Element Description

Add Fault icon
(upper right
corner)

Click to add a fault.

Delete Fault Click to delete a fault.

Fault Name Select a standard type of fault to catch. This list shows the system faults
(binding, Oracle Mediator, or remote) or service (business) fault that
you can select.

Description Enter an optional description. The description is persisted into the
audit trail during runtime.

Default Action Perform the following tasks in this section:

a. From the list, select the default action to perform when this fault
occurs (for example, abort, rethrow, retry, and so on). The actions
available for selection are based on the actions you retained or
deleted in Step 3: Defining Actions.

or

a. Click the Add icon to add an if-then condition to the fault policy.
This selection displays the If, Then, and Default fields.

For example, if you specify a condition in the If field (the default is
true), you can select an action (for example, human intervention)
to be invoked in the Then field. If the condition is not true, you
can select the default action to occur (for example, abort) in the
Default field.

b. In the If field, enter a condition or click the Expression Builder
icon to build an XPath expression condition.

c. In the Then field, specify the condition to invoke if the condition
in the If field evaluates to true.

d. In the Default field, specify the condition to invoke if the
condition in the If field evaluates to false.

e. Click the Alert icon to the left of the Add icon to select the type of
alert to send when this condition occurs. The alert types available
for selection are displayed in the Alerts tab in this dialog. You can
specify multiple alerts on a condition.

When complete, the Fault Policy Editor looks as shown in Figure 12-16.

Handling Faults with the Fault Management Framework

12-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 12-16 Fault Policy Editor With Fault Name, Description, and Default
Actions Defined

2. Above the SOA Composite Editor, close the fault policy file, and click Yes when
prompted to save your changes. Figure 12-17 provides details.

Figure 12-17 Save Fault Policy Changes

Policy configuration is now complete. You are now ready to associate the fault
policy with the fault policy bindings.

12.4.2.5 Step 5: Defining the Fault Policy Bindings for the Fault Policy

After creating a fault policy with the Fault Policy wizard, you associate the fault policy
with a fault policy bindings file. The fault policy bindings file associates the policies
defined in the fault policy file with service components, service binding components,
or reference binding components in the SOA composite application.

1. Open the SOA Composite Editor.

2. Click the icon above the SOA Composite Editor to define the fault policy bindings
for this fault policy. Figure 12-18 provides details.

Figure 12-18 Fault Policy Binding Icon

The Composite Fault Policies dialog is displayed.

3. If you want to specify a different fault policy file (for example, one created in the
file directory or MDS Repository), click the Browse icon to the right of the Fault
Policy File field.

4. In the Policy column for the SOA composite application, service binding
component, or reference binding component, select the fault policy to attach.
Figure 12-19 provides details.

Handling Faults with the Fault Management Framework

Using Fault Handling in a BPEL Process 12-21

Figure 12-19 Composite Fault Policies Dialog

5. In the SOA folder in the Applications window, select the fault-bindings.xml
file to view its contents. Figure 12-20 provides details.

Figure 12-20 Selection of fault-bindings.xml File

The file looks as shown in Figure 12-21.

Figure 12-21 fault-bindings.xml file

Handling Faults with the Fault Management Framework

12-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

12.4.3 How to Manually Design a Fault Policy for Automated Fault Recovery
This section describes how to manually design a fault policy. The recommended
approach is to design a fault policy with the Fault Policy wizard, as described in How
to Design a Fault Policy for Automated Fault Recovery with the Fault Policy Wizard.

12.4.3.1 Manually Creating a Fault Policy File for Automated Fault Recovery

To manually create a fault policy file for automated fault recovery:

1. Create a fault policy file (for example, named fault-policies.xml). This file
includes condition and action sections for performing specific tasks.

2. Place the file in the same directory as the composite.xml file or place it in a
different location and define the oracle.composite.faultPolicyFile
property.

<property
 name="oracle.composite.faultPolicyFile">oramds:/apps/faultpolicyfiles/
 fault-policies.xml
</property>
<property
 name="oracle.composite.faultBindingFile">oramds:/apps/faultpolicyfiles/
 fault-bindings.xml
</property>

If the fault policy file is located in a file system, use the following format.

<property
name="oracle.composite.faultPolicyFile">file:/project/apps/fault-policies.xml
</property>

3. Define the condition section of the fault policy file.

• Note the following details about the condition section:

– This section provides a condition based on faultName.

– Multiple conditions may be configured for a faultName.

– Each condition has one test section (an XPath expression) and one
action section.

– The test section (XPath expression) is evaluated for the fault variable
available in the fault.

– The action section has a reference to the action defined in the same file.

– You can only query the fault variable available in the fault.

– The order of condition evaluation is determined by the sequential order in
the document.

– You can associate a single or multiple alerts with a condition to be
delivered (by email, JMS queue, or log file) when a specific error condition
occurs.

Handling Faults with the Fault Management Framework

Using Fault Handling in a BPEL Process 12-23

Table 12-5 provides examples of the condition section in the fault policy file.
All actions defined in the condition section must be associated with an
action in the action section.

Table 12-5 Use of the condition Section in the Fault Policy File

Condition Example Fault Policy File Syntax

This condition is checking a fault
variable for code =
"WSDLFailure"

An action of ora-terminate
is specified.

<condition>
 <test>$fault.code="WSDLReading Error"
 </test>
 <action ref="ora-terminate"/>
</condition>

No test condition is provided.
This is a catchAll condition for a
given faultName.

<condition>
 <action ref="ora-rethrow"/>
</condition>

Two user notification alerts are
defined for the condition. Select
the type of user notification alert
to create when a fault occurs (for
example, an email alert, a JMS
queue alert, or a log file alert).

<condition>
 <alert ref = "ora-jms"/>
 <alert ref = "ora-email"/>
 <action ref="ora-rethrow"/>
</condition>

If the faultName name attribute
is missing, this indicates a
catchAll activity for faults that
have any QName.

<faultName > . . . </faultName>

4. Define the action section of the fault policy file. Validation of fault policy files is
done during deployment. If you change the fault policy, you must redeploy the
SOA composite application that includes the fault policy.

Table 12-6 provides several examples of the action section in the fault policy file.
You can provide automated recovery actions for some faults. In all recovery actions
except retry and human intervention, the framework performs the actions
synchronously.

Handling Faults with the Fault Management Framework

12-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 12-6 Use of action Section in the Fault Policy File

Recovery Actions Fault Policy File Syntax

Retry: Provides the following
actions for retrying the activity.

• Retry a specified number of
times.

• Provide a delay between retries
(in seconds).

• Increase the interval with an
exponential back off.

• Chain to a retry failure action if
retry N times fails.

• Chain to a retry success action
if a retry is successful.

Note: Exponential back off indicates
that the next retry attempt is
scheduled at 2 x the delay, where
delay is the current retry interval. For
example, if the current retry interval
is 2 seconds, the next retry attempt
is scheduled at 4, the next at 8, and
the next at 16 seconds until the
retryCount value is reached.

<Action id="ora-retry">
 <Retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </Retry>
</Action>

Note the following details:

• The framework chains to the retry success action if the retry attempt
is successful.

• If all retry attempts fail, the framework chains to the retry failure
action.

Human Intervention: Causes the
current activity to stop processing.
You can now go to Oracle Enterprise
Manager Fusion Middleware
Control and perform manual
recovery actions on this instance.

<Action id="ora-human-intervention">
 <humanIntervention/></Action>

Terminate Process: Terminates the
process

<Action id="ora-terminate"><abort/></Action>

Java Code: Enables you to execute
an external Java class.

returnValue: The implemented
Java class must implement a method
that returns a string. The policy can
chain to a new action based on the
returned string.

For additional information, see How
to Use a Java Action Fault Policy.

<Action id="ora-java">
<!-- this is user provided custom java
 class-->
<javaAction className="mypackage.myClass"
 defaultAction="ora-terminate">
 <returnValue value="REPLAY"
 ref="ora-terminate"/>
 <returnValue value="RETRHOW"
 ref="ora-rethrow-fault"/>
 <returnValue value="ABORT"
 ref="ora-terminate"/>
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL"
 ref="ora-human-intervention"/>
</javaAction>
</Action>

Handling Faults with the Fault Management Framework

Using Fault Handling in a BPEL Process 12-25

Table 12-6 (Cont.) Use of action Section in the Fault Policy File

Recovery Actions Fault Policy File Syntax

Rethrow Fault: The framework
sends the fault to the BPEL fault
handlers (catch activities in scope
activities). If none are available, the
fault is sent up.

<Action id="ora-rethrow-fault"><rethrowFault/></Action>

Replay Scope: Raises a replay fault. <Action id="ora-replay-scope"><replayScope/></Action>

Note:

The preseeded recovery action tag names (ora-retry, ora-human-
intervention, ora-terminate, and so on) are only samples. You can
substitute these names with ones appropriate to your environment.

A fault policy file with fully-defined condition, action, and alert sections looks
as follows:

Note:

• Fault policy file names are not restricted to one specific name. However,
they must conform to the fault-policy.xsd schema file.

• This fault policy file provides an example of catching faults based on fault
names. You can also catch faults based on message types, or on both:

<faultName name="myfault" type="fault:faultType">

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <faultPolicy version="2.0.1" id="ModifyAndRecover"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Conditions>
 <!-- Handle remoteFault system exceptions -->
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:remoteFault">
 <condition>
 <!--<test>$fault.code="1"</test>-->
 <alert ref = "ora-jms"/>
 <alert ref = "ora-email"/>
 <action ref="default-human-intervention"/>
 </condition>
 </faultName>
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:bindingFault">
 <condition>
 <action ref="default-human-intervention"/>

Handling Faults with the Fault Management Framework

12-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 </condition>
 </faultName> </Conditions>
 <Alerts>
 <Alert id="ora-email">
 <email>
 <To>joe.smith@example.com</To>
 <CC>joe.smith@example.com</CC>
 </email>
 </Alert>
 <Alert id="ora-jms">
 <JMS propertySet="jms-props">
 <Headers>
 <property name="correlationId">myvalue</property>
 <property name="correlationId1">myvalue1</property>
 </Headers>
 </JMS>
 </Alert>
 </Alerts>
 <Actions>
 <!-- Generics -->
 <Action id="default-terminate">
 <abort/>
 </Action>
 <Action id="default-replay-scope">
 <replayScope/>
 </Action>
 <Action id="default-rethrow-fault">
 <rethrowFault/>
 </Action>
 <Action id="default-human-intervention">
 <humanIntervention/>
 </Action>
 <Action id="ora-retry-with-human-intervention">
 <retry>
 <retryCount>1</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="default-terminate"/>
 </retry>
 </Action>
 </Actions>
 <Properties>
 <propertySet name="jms-props">
 <property name="jmsDestination">MyQueue</property>
 <property
 name="connectionFactory">jms/fabric/ehconnectionfactory</property>
 </propertySet>
 </Properties>
 </faultPolicy>
</faultPolicies>

12.4.3.2 Associating a Fault Policy with Fault Policy Binding

Note:

The fault policy binding file must be named fault-bindings.xml. This
conforms to the fault-bindings.xsd schema file.

Handling Faults with the Fault Management Framework

Using Fault Handling in a BPEL Process 12-27

To associate a fault policy with fault policy binding:

1. Create a fault policy binding file (fault-bindings.xml) that associates the
policies defined in the fault policy file with the level of fault policy binding you are
using (either a SOA composite application or a component (reference binding
component or BPEL process or Oracle Mediator service component).

2. Place the file in the same directory as the composite.xml file or place it in a
remote location and define the oracle.composite.faultBindingFile
property as shown in Step 2 of Manually Creating a Fault Policy File for
Automated Fault Recovery.

This fault policy bindings file associates the fault policies defined in the fault-
policies.xml file.

<?xml version="1.0" encoding="UTF-8" ?>
<faultPolicyBindings version="0.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="FusionMidFaults"/>
 <!--<composite faultPolicy="ServiceExceptionFaults"/>-->
 <!--<composite faultPolicy="GenericSystemFaults"/>-->
</faultPolicyBindings>

12.4.3.3 Additional Fault Policy and Fault Policy Binding File Samples

This section provides additional samples of fault policy and fault policy binding files.
The following example shows the fault-policies.xml file contents.

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">
<faultPolicy version="2.0.1"
 id="CRM_ServiceFaults"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Conditions>
 <!-- Fault if wsdlRuntimeLocation is not reachable -->
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:remoteFault">
 <condition>
 <test>$fault.code="WSDLReadingError"</test>
 <action ref="ora-terminate"/>
 </condition>
 <condition>
 <action ref="ora-java"/>
 </condition>
 </faultName>
 <!-- Fault if location port is not reachable-->
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:bindingFault">
 <!--ORA-00001: unique constraint violated on insert-->
 <condition>
 <test>$fault.code="1"</test>
 <action ref="ora-java"/>
 </condition>
 <!--ORA-01400: cannot insert NULL -->
 <condition>
 <test xmlns:test="http://test">$fault.code="1400"</test>
 <action ref="ora-terminate"/>

Handling Faults with the Fault Management Framework

12-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 </condition>
 <!--ORA-03220: required parameter is NULL or missing -->
 <condition>
 <test>$fault.code="3220"</test>
 <action ref="ora-terminate"/>
 </condition>
 <condition>
 <action ref="ora-retry-crm-endpoint"/>
 </condition>
 </faultName>
 <!-- Business faults -->
 <!-- Fault comes with a payload of error, make sure the name space is
 provided here or at root level -->
 <faultName xmlns:credit="http://services.otn.com"
 name="credit:NegativeCredit">
 <!-- you get this fault when SSN starts with 0-->
 <condition>
 <test>$fault.payload="Bankruptcy Report"</test>
 <alert ref = "ora-email"/>
 <action ref="ora-human-intervention"/>
 <!--action ref="ora-retry"/-->
 </condition>
 <!-- you get this fault when SSN starts with 1-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-abort"</test>
 <action ref="ora-terminate"/>
 </condition>
 <!-- you get this fault when SSN starts with 2-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-rethrow"</test>
 <action ref="ora-rethrow-fault"/>
 </condition>
 <!-- you get this fault when SSN starts with 3-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-replay"</test>
 <action ref="ora-replay-scope"/>
 </condition>
 <!-- you get this fault when SSN starts with 4-->
 <condition>
 <test
 xmlns:myError="http://services.otn.com">$fault.payload="Bankruptcy
 Report-human"</test>
 <action ref="ora-human-intervention"/>
 </condition>
 <!-- you get this fault when SSN starts with 5-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-java"</test>
 <action ref="ora-java"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <Action id="ora-retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>

Handling Faults with the Fault Management Framework

Using Fault Handling in a BPEL Process 12-29

 <Action id="ora-retry-crm-endpoint">
 <retry>
 <retryCount>5</retryCount>
 <retryFailureAction ref="ora-java"/>
 <retryInterval>5</retryInterval>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>
 <Action id="ora-replay-scope">
 <replayScope/>
 </Action>
 <Action id="ora-rethrow-fault">
 <rethrowFault/>
 </Action>
 <Action id="ora-human-intervention">
 <humanIntervention/>
 </Action>
 <Action id="ora-terminate">
 <abort/>
 </Action>
 <Action id="ora-java">
 <!-- this is user provided class-->
 <javaAction
 className="com.oracle.bpel.client.config.faultpolicy.TestJavaAction"
 defaultAction="ora-terminate" propertySet="prop-for-billing">
 <returnValue value="REPLAY" ref="ora-terminate"/>
 <returnValue value="RETRHOW" ref="ora-rethrow-fault"/>
 <returnValue value="ABORT" ref="ora-terminate"/>
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL" ref="ora-human-intervention"/>
 </javaAction>
 </Action>
 </Actions>
 <Properties>
 <propertySet name="prop-for-billing">
 <property name="user_email_recipient">bpeladmin</property>
 <property name="email_recipient">joe@abc.com</property>
 <property name="email_recipient">mike@xyz.com</property>
 <property name="email_threshold">10</property>
 <property name="sms_recipient">+429876547</property>
 <property name="sms_recipient">+4212345</property>
 <property name="sms_threshold">20</property>
 <property name="user_email_recipient">john</property>
 </propertySet>
 <propertySet name="prop-for-order">
 <property name="email_recipient">john@abc.com</property>
 <property name="email_recipient">jill@xyz.com</property>
 <property name="email_threshold">10</property>
 <property name="sms_recipient">+42222</property>
 <property name="sms_recipient">+423335</property>
 <property name="sms_threshold">20</property>
 </propertySet>
 </Properties>
</faultPolicy>
<faultPolicy version="2.0.1"
 id="Billing_ServiceFaults"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Handling Faults with the Fault Management Framework

12-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<Conditions>
 <faultName>
 <condition>
 <action ref="ora-manual"/>
 </condition>
 </faultName>
</Conditions>
<Actions>
 <Action id="ora-manual">
 <humanIntervention/>
 </Action>
</Actions>
</faultPolicy>
</faultPolicies>

The following example shows the fault-bindings.xml file that associates the fault
policies defined in fault-policies.xml.

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="ConnectionFaults"/>
 <component faultPolicy="ServiceFaults">
 <name>Component1</name>
 <name>Component2</name>
 </component>
 <!-- Below listed component names use polic CRM_SeriveFaults -->
 <component faultPolicy="CRM_ServiceFaults">
 <name>HelloWorld</name>
 <name>ShippingComponent</name>
 <name>AnotherComponent"</name>
 </component>
 <!-- Below listed reference names and port types use polic CRM_ServiceFaults
 -->
 <reference faultPolicy="CRM_ServiceFaults">
 <name>creditRatingService</name>
 <name>anotherReference</name>
 <portType
 xmlns:credit="http://services.otn.com">credit:CreditRatingService</portType>
 <portType
 xmlns:db="http://xmlns.oracle.com/pcbpel/adapter/db/insert/">db:insert_
plt</portType>
 </reference>
 <reference faultPolicy="test1">
 <name>CreditRating3</name>
 </reference>
</faultPolicyBindings>

12.4.3.4 Designing a Fault Policy with Multiple Rejection Handlers

If you design a fault policy that uses the action handler for rejected messages, note that
only one write action can be performed. Multiple write actions cannot be performed,
even if you define multiple rejection handlers, as shown in the following example. In
this case, only the first rejection handler defined (for this example, ora-queue) is
executed.

<faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">
 <condition>
 <action ref="ora-queue"/>

Handling Faults with the Fault Management Framework

Using Fault Handling in a BPEL Process 12-31

 </condition>
 </faultName>
 <faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">
 <condition>
 <action ref="ora-file"/>
 </condition>
 </faultName>

12.4.4 How to Execute a Fault Policy
You deploy a fault policy as part of a SOA composite application. After deployment,
you can perform the fault recovery actions from Oracle Enterprise Manager Fusion
Middleware Control. Actions such as terminate, retry, rethrow, and Java are retried as
part of composite execution. No explicit user execution is required. The human
intervention action can be manually executed in Oracle Enterprise Manager Fusion
Middleware Control.

• Retry the activity

• Modify a variable (available to the faulted activity)

• Continue the instance (mark the activity as a success)

• Rethrow the exception

• Abort the instance

• Throw a replay scope exception

For additional information, see Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

12.4.5 How to Use a Java Action Fault Policy
Note the following details when using the Java action fault policy:

• The Java class provided follows a specific interface. This interface returns a string.
Multiple values can be provided for output and the fault policy to take after
execution.

• Additional fault policy can be executed by providing a mapping from the output
value (return value) of implemented methods to a fault policy.

• If no ReturnValue is specified, the default fault policy is executed, as shown in
the following example.

<Action id="ora-java">
 <javaAction className="mypackage.myclass"
 defaultAction="ora-human-intervention" propertySet="prop-for-billing">
 <!--defaultAction is a required attribute, but propertySet is optional-->
 <!-- attribute-->
 <ReturnValue value="RETRY" ref="ora-retry"/>
 <!--value is not nilable attribute & cannot be empty-->
 <ReturnValue value="RETRHOW" ref="ora-rethrow-fault"/>
 </javaAction>
</Action>

Table 12-7 provides an example of ReturnValue use.

Handling Faults with the Fault Management Framework

12-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 12-7 System Interpretation of Java Action Fault Policy

Code Description

<ReturnValue value="RETRY"
 ref="ora-retry"/>

Execute the ora-retry action if the method
returns a string of RETRY.

<ReturnValue value=""
 ref="ora-rethrow"/>

Fails in validation.

<javaAction
 className="mypackage.myclass"
 defaultAction="ora-human-
intervention">

Execute ora-human-intervention after Java
code execution. This attribute is used if the
return value from the method does not match
any provided ReturnValue.

<ReturnValue value="RETRY"
 ref="ora-retry"/>
<ReturnValue value="" ref=""/>

Fails in validation.

<javaAction
 className="mypackage.myclass"
 defaultAction=" ora-human-
intervention">
<ReturnValue></ReturnValue>

Fails in validation.

To invoke a Java class, you can provide a class that implements the
IFaultRecoveryJavaClass interface. IFaultRecoveryJavaClass is included
in the fabric-runtime.jar file. The package name is
oracle.integration.platform.faultpolicy.

The IFaultRecoveryJavaClass interface has two methods, as shown in the
following example:

public interface IFaultRecoveryJavaClass
{
public void handleRetrySuccess(IFaultRecoveryContext ctx);
public String handleFault(IFaultRecoveryContext ctx);
}

Note the following details:

• handleRetrySuccess is invoked upon a successful retry attempt. The retry
policy chains to a Java action on retrySuccessAction.

• handleFault is invoked to execute a policy of type javaAction.

• The fault policy class is packaged and deployed in either of two ways:

– Package the Java class with the SOA composite application.

– If the Java class must be shared by multiple SOA composite applications,
place it in the shared location (for example, $MW_HOME/soa/soa/
modules/oracle.soa.ext_11.1.1). The shared location includes a

Handling Faults with the Fault Management Framework

Using Fault Handling in a BPEL Process 12-33

readme file that describes how to place the Java class to make it available in
the class path.

The following example shows the data available with IFaultRecoveryContext:

public interface IFaultRecoveryContext {

/**
 * Gets implementation type of the fault.
 * @return
 */
public String getType();

/**
 * @return Get property set of the fault policy action being executed.
 */
public Map getProperties();

/**
 * @return Get fault policy id of the fault policy being executed.
 */
public String getPolicyId();

/**
 * @return Name of the faulted partner link.
 */
public String getReferenceName();

/**
 * @return Port type of the faulted reference .
 */
public QName getPortType();
}

The service engine implementation of this interface provides more information (for
example, Oracle BPEL Process Manager). The following example provides details:

public class BPELFaultRecoveryContextImpl extends BPELXExecLetUtil implements
IBPELFaultRecoveryContext, IFaultRecoveryContext{
...
}

Oracle BPEL Process Manager-specific data is available with
IBPELFaultRecoveryContext, as shown in the following example:

public interface IBPELFaultRecoveryContext {
public void addAuditTrailEntry(String message);

public void addAuditTrailEntry(String message, Object detail);

public void addAuditTrailEntry(Throwable t);
/**
 * @return Get action id of the fault policy action being executed.
 */
public String getActionId();

/**
 * @return Type of the faulted activity.
 */
public String getActivityId();

/**

Handling Faults with the Fault Management Framework

12-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 * @return Name of the faulted activity.
 */
public String getActivityName();

/**
 * @return Type of the faulted activity.
 */
public String getActivityType();

/**
 * @return Correleation id of the faulted activity.
 */
public String getCorrelationId();

/**
 * @return BPEL fault that caused the invoke to fault.
 */
public BPELFault getFault();

/**
 * @return Get index value of the instance
 */
public String getIndex(int i);

/**
 * @return get Instance Id of the current process instance of the faulted
 * activity.
 */
public long getInstanceId();

/**
 * @return Get priority of the current process instance of the faulted
 * activity.
 */
public int getPriority();

/**
 * @return Process DN.
 */
public ComponentDN getProcessDN();

/**
 * @return Get status of the current process instance of the faulted
 * activity.
 */
public String getStatus();

/**
 * @return Get title of the current process instance of the faulted
 * activity.
 */
public String getTitle();

public Object getVariableData(String name) throws BPELFault;

public Object getVariableData(String name, String partOrQuery)
throws BPELFault;

public Object getVariableData(String name, String part, String query)
throws BPELFault;

Handling Faults with the Fault Management Framework

Using Fault Handling in a BPEL Process 12-35

/**
 * @param priority
 * Set priority of the current process instance of the faulted
 * activity.
 * @return
 */
public void setPriority(int priority);

/**
 * @param status
 * Set status of the current process instance of the faulted
 * activity.
 */
public void setStatus(String status);

/**
 * @param title
 * Set title of the current process instance of the faulted
 * activity.
 * @return
 */
public String setTitle(String title);

public void setVariableData(String name, Object value) throws BPELFault;

public void setVariableData(String name, String partOrQuery, Object value)
throws BPELFault;

public void setVariableData(String name, String part, String query,
Object value) throws BPELFault;
}

The following example provides an example of javaAction implementation.

public class TestJavaAction implements IFaultRecoveryJavaClass {
public void handleRetrySuccess(IFaultRecoveryContext ctx) {
System.out.println("This is for retry success");
handleFault(ctx);
}
public String handleFault(IFaultRecoveryContext ctx) {
System.out.println("-----Inside handleFault-----\n" + ctx.toString());

 dumpProperties(ctx.getProperties());
/* Get BPEL specific context here */
BPELFaultRecoveryContextImpl bpelCtx = (BPELFaultRecoveryContextImpl) ctx;
bpelCtx.addAuditTrailEntry("hi there");
System.out.println("Policy Id" + ctx.getPolicyId());
 ...
 }

12.4.6 How to Design Fault Policies for Oracle BPM Suite
You can design and execute fault policies for Oracle BPM Suite. For more information,
see Chapter "Using Fault Handling in BPM" of Developing Business Processes with Oracle
Business Process Management Studio.

Handling Faults with the Fault Management Framework

12-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

12.4.7 What You May Need to Know About Designing a Fault Policy in a Synchronous
BPEL Process

When designing a fault policy in a synchronous process, do not specify the following
actions. These actions cause dehydration in a synchronous process and can lead to
timeouts.

• Retry

• Human intervention

• Terminate

12.4.8 What You May Need to Know About Fault Management Behavior When the
Number of Instance Retries is Exceeded

When you configure a fault policy to recover instances with the ora-retry action
and the number of specified instance retries is exceeded, the instance is marked as
open.faulted (in-flight state). The instance remains active.

Marking instances as open.faulted ensures that no instances are lost. You can then
configure another fault handling action following the ora-retry action in the fault
policy file, such as the following:

• Configure an ora-human-intervention action to manually perform instance
recovery from Oracle Enterprise Manager Fusion Middleware Control.

• Configure an ora-terminate action to close the instance (mark it as
closed.faulted) and never retry again.

However, if you do not set an action to be performed after an ora-retry action in the
fault policy file and the number of instance retries is exceeded, the instance remains
marked as open.faulted, and recovery attempts to handle the instance.

For example, if no action is defined in the fault policy file shown in the following code
after ora-retry:

<Action id="ora-retry">
 <retry>
 <retryCount>2</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 </retry>
 </Action>

The following actions are performed:

• The invoke activity is attempted (using the above-mentioned fault policy code to
handle the fault).

• Two retries are attempted at increasing intervals (after two seconds, then after
four seconds).

• If all retry attempts fail, the following actions are performed:

– A detailed fault error message is logged in the audit trail.

– The instance is marked as open.faulted (in-flight state).

Handling Faults with the Fault Management Framework

Using Fault Handling in a BPEL Process 12-37

– The instance is picked up and the invoke activity is re-attempted.

• Recovery may also fail. In that case, the invoke activity is re-executed. Additional
audit messages are logged.

12.4.9 What You May Need to Know About Binding Level Retry Execution Within Fault
Policy Retries

If you are testing retry actions on adapters with both JCA-level retries for the
outbound direction and a retry action in the fault policy file for outbound failures, the
JCA-level (or binding level) retries are executed within the fault policy retries. For
example, assume you have designed the application shown in Figure 12-22:

Figure 12-22 SOA Composite Application

You specify the retry parameters, as shown below, in the composite.xml file:

<property name="jca.retry.count" type="xs:int" many="false"
 override="may">2</property>
<property name="jca.retry.interval" type="xs:int" many="false"
 override="may">2</property>
<property name="jca.retry.backoff" type="xs:int" many="false"
 override="may">2</property>

In the fault policy file for the EQ reference binding component for the outbound
direction, you specify the actions shown in the following code:

<retryCount>3</retryCount>
<retryInterval>3</retryInterval>

If an outbound failure occurs, the expected behavior is for the JCA retries to occur
within the fault policy retries. When the first retry of the fault policy is executed, the
JCA retry is called. In this example, a JCA retry of 2 with an interval of 2 seconds and
exponential back off of 2 is executed for every retry of the fault policy:

• Fault policy retry 1:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

• Fault policy retry 2:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

• Fault policy retry 3:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

Handling Faults with the Fault Management Framework

12-38 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

12.5 Catching BPEL Runtime Faults
BPEL runtime faults can be caught as a named BPEL fault. The bindingFault and
remoteFault can be associated with a message. This action enables the
faultHandler to get details about the faults.

12.5.1 How to Catch BPEL Runtime Faults
The following procedure shows how to use the provided examples to generate a fault
and define a fault handler to catch it. In this case, you modify a WSDL file to generate
a fault, and create a catch attribute to catch it.

To catch BPEL runtime faults:

1. Import RuntimeFault.wsdl into your process WSDL. RuntimeFault.wsdl is
seeded into the MDS Repository from soa.mar inside soa-infra-wls.ear
during its deployment.

You may see a copy of soa.mar in the deployed SOA Infrastructure in the Oracle
WebLogic Server domain, which is a JAR/ZIP file containing
RuntimeFault.wsdl.

2. Declare a variable with messageType bpelx:RuntimeFaultMessage.

3. Catch it using the following syntax:

 <catch faultName="bpelx:remoteFault" | "bpelx:bindingFault" faultName="varName">

12.6 Getting Fault Details with the getFaultAsString XPath Extension
Function

The catchAll activity is provided to catch possible faults. However, BPEL does not
provide a method for obtaining additional information about the captured fault. Use
the getFaultAsString() XPath extension function to obtain additional
information.

12.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function
The following example shows how to use this function.

<catchAll>
 <sequence>
 <assign>
 <from expression="bpelx:getFaultAsString()"/>
 <to variable="faultVar" part="message"/>
 </assign>
 <reply faultName="ns1:myFault" variable="faultVar" .../>
 </sequence>
</catchAll>

For more information, see getFaultAsString.

12.7 Throwing Internal Faults with the Throw Activity
A BPEL application can generate and receive fault messages. The throw activity has
three elements: its name, the name of the fault, and the fault variable. The fault thrown

Catching BPEL Runtime Faults

Using Fault Handling in a BPEL Process 12-39

by a throw activity is internal to BPEL. You cannot use a throw activity on an
asynchronous process to communicate with a client. Throw activity syntax includes
the throw name, fault name, and fault variable:

<throw name="delay" faultName="nsPrefix:fault-1" faultVariable="fVar"/>

12.7.1 How to Create a Throw Activity

To create a throw activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Throw activity into the designer.

3. Double-click and define the Throw activity.

4. Optionally enter a name or accept the default value.

5. To the right of the Namespace URI field, click the Search icon to select the fault to
monitor.

6. Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field.
Your fault selection also automatically displays in the Local Part field.

Figure 12-23 provides an example of a completed Throw dialog.

Figure 12-23 Throw Dialog

7. Click Apply, then OK.

12.7.2 What Happens When You Create a Throw Activity
The following code shows the throw activity in the .bpel file after design completion.
The OrderProcessor process terminates after executing this throw activity.

<throw name="Throw_Fault_CC_Denied"
 faultName="client:OrderProcessorFault"/>

Throwing Internal Faults with the Throw Activity

12-40 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

12.8 Rethrowing Faults with the Rethrow Activity
The rethrow activity rethrows faults originally captured by the immediately enclosing
fault handler. Only use the rethrow activity within a fault handler (for example, within
catch and catchAll activities). The rethrow activity is used in fault handlers to rethrow
the captured fault (that is, the fault name and the fault data (if present) of the original
fault). The rethrow activity must ignore modifications to fault data. For example:

• If the fault handler modifies fault data and then calls a rethrow activity, the
original fault data is rethrown, and not the modified fault data.

• If a fault is captured using the functionality that enables message type faults with
one part defined using an element to be caught by fault handlers looking for the
same element type, then the rethrow activity rethrows the original message type
data.

Note:

This activity is supported in BPEL version 2.0 projects.

12.8.1 How to Create a Rethrow Activity

To create a rethrow activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Rethrow activity into the designer.

3. Double-click and define the Rethrow activity.

4. Optionally enter a name or accept the default value, as shown in Figure 12-24.

Figure 12-24 Rethrow Dialog

5. Click Apply, then OK.

Rethrowing Faults with the Rethrow Activity

Using Fault Handling in a BPEL Process 12-41

When complete, design can look as shown in Figure 12-25.

Figure 12-25 Throw Activity in BPEL Process

12.8.2 What Happens When You Rethrow Faults
The following example shows the .bpel file after design is complete for a rethrow
activity. The rethrow activity is inside a fault handler (catch activity).

<scope name="scope1">
 <faultHandlers>
 <catch faultName="tns:error" faultVariable="tmpVar"
 faultElement="tns:fault">
 <sequence>
 <assign>
 <copy>
 <from>concat('caught fault: ', $tmpVar)</from>
 <to>$output.payload</to>
 </copy>
 </assign>
 <rethrow name="Rethrow_1"/>
 </sequence>
 </catch>
 </faultHandlers>
 <throw faultName="tns:error" faultVariable="fault"/>
</scope>

12.9 Returning External Faults
A BPEL process service component can send a fault to another application to indicate
a problem, as opposed to throwing an internal fault. In a synchronous operation, the
reply activity can return the fault. In an asynchronous operation, the invoke activity
performs this function.

12.9.1 How to Return a Fault in a Synchronous Interaction
The syntax of a reply activity that returns a fault in a synchronous interaction is shown
in the following example:

<reply partnerlinke="partner-link-name"
 portType="port-type-name"
 operation="operation-name"
 variable="variable-name" (optional)

Returning External Faults

12-42 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 faultName="fault-name">
</reply>

Always returning a fault in response to a synchronous request is not very useful. It is
better to make the activity part of a conditional branch, in which the first branch is
executed if the data requested is available. If the requested data is not available, then
the BPEL process service component returns a fault with this information.

For more information, see the following chapters:

• Invoking a Synchronous Web Service from a BPEL Process for synchronous
interactions

• Using Conditional Branching in a BPEL Process for setting up the conditional
structure

12.9.2 How to Return a Fault in an Asynchronous Interaction
In an asynchronous interaction, the client does not wait for a reply. The reply activity
is not used to return a fault. Instead, the BPEL process service component returns a
fault using a callback operation on the same port type that normally receives the
requested information, with an invoke activity.

For more information about asynchronous interactions, see Invoking an
Asynchronous Web Service from a BPEL Process.

12.10 Managing a Group of Activities with a Scope Activity
A scope activity provides a container and a context for other activities. A scope
provides handlers for faults, events, compensation, data variables, and correlation
sets. Using a scope activity simplifies a BPEL flow by grouping functional structures.
This grouping enables you to collapse them into what appears to be a single element
in Oracle BPEL Designer.

The following example shows a scope named Scope_FulfillOrder. This scope
invokes the FulfillOrder Oracle Mediator component, which determines the
shipping method for the order.

<scope name="Scope_FulfillOrder">
 <variables>
 <variable name="lFulfillOrder_InputVariable"
 messageType="ns17:requestMessage"/>
 </variables>
 <sequence>
 <assign name="Assign_OrderData">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO"/>
 <to variable="lFulfillOrder_InputVariable"
 part="request" query="/ns4:orderInfoVOSDO"/>
 </copy>
 </assign>
 <invoke name="Invoke_FulfillOrder"
 inputVariable="lFulfillOrder_InputVariable"
 partnerLink="FulfillOrder.FulfillOrder"
 portType="ns17:execute_ptt" operation="execute"/>
 </sequence>
</scope>

Managing a Group of Activities with a Scope Activity

Using Fault Handling in a BPEL Process 12-43

12.10.1 How to Create a Scope Activity

To create a scope activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Scope activity into the designer.

3. Open the Scope activity by double-clicking it or by single-clicking the Expand icon.

4. From the Components window, drag and define activities to build the functionality
within the scope. Figure 12-26 provides details.

Figure 12-26 Expanded Scope Activity

5. Click OK.

When complete, scope activity design can look as shown in Figure 12-27. This
example shows a Scope_AuthorizeCreditCard scope activity.

Figure 12-27 Scope Activity After Design Completion

Managing a Group of Activities with a Scope Activity

12-44 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

12.10.2 How to Add Descriptive Notes and Images to a Scope Activity
You can add descriptive notes to scope activities that provide simple descriptions of
the functionality of the scope. You can also change the graphical image of scopes. The
notes and images display in Oracle BPEL Designer. This helps to make a scope easier
to understand.

To add descriptive notes and images to a scope activity:

1. Perform one of the following steps:

• Right-click the scope and select User Documentation.

• Double-click the scope and select the User Documentation tab.

The Documentation dialog appears.

2. In the Comment field, enter a brief description of the functionality of the scope.

3. In the Image field, click the Search icon to optionally change the graphical image
for the scope.

4. Click OK.

Your changes display in Oracle BPEL Designer, as shown in Figure 12-28.

Figure 12-28 Scope with Descriptive Note and Modified Image

5. To edit the note, double-click it.

12.10.3 What Happens After You Create a Scope Activity
The following example shows the scope activity in the .bpel file after design
completion. The Scope_AuthorizeCreditCard scope activity consists of activities
that perform the following actions:

Managing a Group of Activities with a Scope Activity

Using Fault Handling in a BPEL Process 12-45

• A catch activity for catching faulted orders in which the credit card number is not
provided or the credit type is not valid.

• A throw activity that throws a fault for orders that are not approved.

• An assign activity that takes the credit card type, credit card number, and
purchase amount, and assigns this information to the input variable for the
CreditCardAuthorizationService service.

• An invoke activity that calls a CreditCardAuthorizationService service to
retrieve customer information.

• A switch activity that checks the results of the credit card validation.

<scope name="Scope_AuthorizeCreditCard">
 <variables>
 <variable name="lCreditCardInput"
 messageType="ns2:CreditAuthorizationRequestMessage"/>
 <variable name="lCreditCardOutput"
 messageType="ns2:CreditAuthorizationResponseMessage"/>
 </variables>
 <faultHandlers>
 <catch faultName="bpws:selectionFailure">
 <sequence>
 <assign name="Assign_noCCNumber">
 <copy>
 <from expression="string('CreditCardCheck - NO
 CreditCard')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name ="Throw_NoCreditCard"
 faultVariable="gOrderProcessorFaultVariable"
 faultName="ns9:OrderProcessingFault"/>
 </sequence>
 </catch>
 <catch faultName="ns2:InvalidCredit">
 <sequence>
 <assign name="Assign_InvalidCreditFault">
 <copy>
 <from expression="concat(bpws:getVariableData
 ('gOrderInfoVariable','/ns4:orderInfoVOSDO/
 ns4:CardTypeCode'), ' is not a valid
 creditcard type')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="summary"/>
 </copy>
 <copy>
 <from expression="string('CreditCardCheck - NOT VALID')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name="Throw_OrderProcessingFault"
 faultName="ns9:OrderProcessingFault"
 faultVariable="gOrderProcessorFaultVariable"/>
 </sequence>
 </catch>
 </faultHandlers>
 <sequence>

Managing a Group of Activities with a Scope Activity

12-46 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <assign name="Assign_CreditCheckInput">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:OrderTotal"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:CardTypeCode"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCType"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:AccountNumber"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCNumber"/>
 </copy>
 </assign>
 <invoke name="InvokeCheckCreditCard"
 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>
 <switch name="Switch_EvaluateCCResult">
 <case condition="bpws:getVariableData('lCreditCardOutput','status','
 /ns8:status') != 'APPROVED'">
 <bpelx:annotation>
 <bpelx:pattern>status <> approved</bpelx:pattern>
 </bpelx:annotation>
 <throw name="Throw_Fault_CC_Denied"
 faultName="client:OrderProcessorFault"/>
 </case>
 /switch>
 </sequence>
</scope>

12.10.4 What You May Need to Know About Scopes
Scopes can use a significant amount of CPU and memory and should not be overused.
Sequence activities use less CPU and memory and can make large BPEL flows more
readable.

12.10.5 How to Use a Fault Handler Within a Scope
If a fault is not handled, it creates a faulted state that migrates up through the
application and can throw the entire process into a faulted state. To prevent this from
occurring, place the parts of the process that have the potential to receive faults within
a scope. The scope activity includes the following fault handling capabilities:

• The catch activity works within a scope to catch faults and exceptions before they
can throw the entire process into a faulted state. You can use specific fault names
in the catch activity to respond in a specific way to an individual fault.

• The catchAll activity catches any faults that are not handled by name-specific
catch activities.

Managing a Group of Activities with a Scope Activity

Using Fault Handling in a BPEL Process 12-47

The following example shows the syntax for catch and catchAll activities. Assume that
a fault named x:foo is thrown. The first catch is selected if the fault carries no fault
data. If there is fault data associated with the fault, the third catch is selected if the
type of the fault's data matches the type of variable bar. Otherwise, the default
catchAll handler is selected. Finally, a fault with a fault variable whose type matches
the type of bar and whose name is not x:foo is processed by the second catch. All
other faults are processed by the default catchAll handler.

<faulthandlers>
 <catch faultName="x:foo">
 <empty/>
 </catch>
 <catch faultVariable="bar">
 <empty/>
 </catch>
 <catch faultName="x:foo" faultVariable="bar">
 <empty/>
 </catch>
 <catchAll>
 <empty/>
 </catchAll>
</faulthandlers>

12.10.6 What You May Need to Know About the idempotent Property and Fault Handling
If the idempotent deployment descriptor property is set to false in the
composite.xml file and the invocation of a partner link fails, recovery does not start
from the invoke activity. Relying on the idempotent property for retrying the invoke
activity is not recommended. Instead, recovery is attempted by fault handling you
have designed into the BPEL process (such as with a catchAll activity). As a best
practice, Oracle recommends that you instead use a fault policy to retry the invoke
activity.

Table 12-8 describes the behavior when the idempotent property is set to false and
partner link invocation either succeeds or fails.

Table 12-8 Recovery Behavior When the idempotent Property Is Set to False

If Partner Link Invocation Is... Then...

Successful The invoke activity is dehydrated immediately after
execution and recorded in the dehydration store.

Unsuccessful, and your BPEL
process includes fault handling,
such as a catchAll activity

Recovery is started from the catchAll activity and not
from the invoke activity.

Unsuccessful, and your BPEL
process includes a fault policy

The fault policy is used to attempt recovery of the
invoke activity. This is the recommended approach.

For example, assume your BPEL process includes the following design:

• An invoke activity invokes a partner link (for this example, named
myPartnerLink).

• The idempotent deployment descriptor property is set to false in the
composite.xml file.

<property name="bpel.partnerLink.myPartnerLink.idempotent">false</property>

Managing a Group of Activities with a Scope Activity

12-48 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

This setting causes the BPEL process to dehydrate immediately after execution of
this activity and be recorded in the dehydration store.

You can also set this property to false in the Edit Partner Link dialog.
Figure 12-29 provides details.

Figure 12-29 Idempotence Tab of Edit Partner Link Dialog

For more information, see Managing Idempotence at the Partner Link Operation
Level.

• A catchAll activity error handler in a scope activity catches faults and throws a
rollback fault.

If the invocation by the invoke activity to the partner link fails, recovery starts from
the catchAll activity error handler, and not from the invoke activity. The recovery from
the catchAll activity can be observed in the flow activity for the BPEL process in
Oracle Enterprise Manager Fusion Middleware Control.

This is by design. The idempotent property setting is checked after execution of the
invoke activity. If the execution failed and an exception is raised, the idempotent
property setting is never reached. The BPEL process service engine saves the instance
right after opening the catchAll activity. The instance must be saved because the
idempotent property is set to false. This is why recovery resumes in the catchAll
activity.

Oracle recommends that you instead recover the failed invoke activity with a fault
policy. For more information about creating fault polices, see Handling Faults with the
Fault Management Framework.

For more information about the idempotent property, see Introduction to
Deployment Descriptor Properties.

12.10.7 How to Create a Catch Activity in a Scope

To create a catch activity in a scope:

1. In the expanded Scope activity, click Add Catch. Figure 12-30 provides details.

Managing a Group of Activities with a Scope Activity

Using Fault Handling in a BPEL Process 12-49

Figure 12-30 Add Catch

This creates a catch activity on the right side of the scope activity.

2. Double-click the Catch activity.

3. Optionally enter a name.

4. To the right of the Namespace URI field, click the Search icon to select the fault.

5. Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field.
Your fault selection also automatically displays in the Local Part field.

Figure 12-31 provides an example of a Catch dialog. This example shows the
selectionFailure catch activity of a Scope_AuthorizeCreditCard scope activity.
This catch activity catches orders in which the credit card number is not provided.

Figure 12-31 Catch Dialog

6. Design additional fault handling functionality.

7. Click OK.

Figure 12-32 provides an example of two catch activities for the
Scope_AuthorizeCreditCard scope activity. The second catch activity catches
credit types that are not valid.

Managing a Group of Activities with a Scope Activity

12-50 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 12-32 Catch Activities in the Designer

12.10.8 What Happens When You Create a Catch Activity in a Scope
The following example shows the catch activity in the .bpel file after design
completion. The selectionFailure catch activity catches orders in which the credit
card number is not provided and the InvalidCredit catch activity catches credit
types that are not valid.

<faultHandlers>
 <catch faultName="bpws:selectionFailure">
 <sequence>
 <assign name="Assign_noCCNumber">
 <copy>
 <from expression="string('CreditCardCheck - NO CreditCard')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name ="Throw_NoCreditCard"
 faultVariable="gOrderProcessorFaultVariable"
 faultName="ns9:OrderProcessingFault"/>
 </sequence>
 </catch>
 <catch faultName="ns2:InvalidCredit">
 <sequence>
 <assign name="Assign_InvalidCreditFault">
 <copy>
 <from expression="concat(bpws:getVariableData
 ('gOrderInfoVariable','/ns4:orderInfoVOSDO/ns4:CardTypeCode'), '
 is not a valid creditcard type')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="summary"/>
 </copy>
 <copy>
 <from expression="string('CreditCardCheck - NOT VALID')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name="Throw_OrderProcessingFault"
 faultName="ns9:OrderProcessingFault"
 faultVariable="gOrderProcessorFaultVariable"/>
 </sequence>
 </catch>
</faultHandlers>

If no catch or catchAll activity is selected, the fault is not caught by the current scope
and is rethrown to the immediately enclosing scope. If the fault occurs in (or is
rethrown to) the global process scope, and there is no matching fault handler for the
fault at the global level, the process terminates abnormally. This is as though a

Managing a Group of Activities with a Scope Activity

Using Fault Handling in a BPEL Process 12-51

terminate activity (described in Stopping a Business Process Instance with the
Terminate Activity in BPEL 1.1) had been performed.

12.10.9 How to Insert No-Op Instructions into a Business Process with an Empty
Activity

There is often a need to use an activity that does nothing. An example is when a fault
must be caught and suppressed. In this case, you can use the empty activity to insert a
no-op instruction into a business process.

To create an empty activity:

1. In the Components window, expand BPEL Constructs.

2. Drag an Empty activity into the designer.

3. Double-click the Empty activity.

The Empty dialog appears, as shown in Figure 12-33.

Figure 12-33 Empty Activity

4. Optionally enter a name.

5. Click OK.

12.10.10 What Happens When You Create an Empty Activity
The syntax for an empty activity is shown in the following example:

 <empty standard-attributes>
 standard-elements
 </empty>

12.11 Re-executing Activities in a Scope Activity with the Replay Activity
You can create a replay activity inside a scope activity to re-execute all of the activities
inside the scope.

Re-executing Activities in a Scope Activity with the Replay Activity

12-52 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

12.11.1 How to Create a Replay Activity

To create a replay activity:

1. In the Components window, expand Oracle Extensions.

2. Drag a Replay activity into the designer.

3. Double-click the Replay activity.

4. Enter an optional name.

5. Select the scope to re-execute, as shown in Figure 12-34.

Figure 12-34 Replay Dialog

6. Click Apply, then click OK.

7. Continue with the design of your scope activity.

When complete, design of the scope activity can look as shown in Figure 12-35.

Re-executing Activities in a Scope Activity with the Replay Activity

Using Fault Handling in a BPEL Process 12-53

Figure 12-35 Replay Activity in a Scope Activity

12.11.2 What Happens When You Create a Replay Activity
The following example shows the .bpel file after design is complete for a replay
activity in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the replay
activity is wrapped in an extensionActivity element.

<scope name="scope2">
 <sequence>
 <assign>
 <copy>
 <from>$counter2 + 1</from>
 <to>$counter2</to>
 </copy>
 </assign>
 <scope name="scope3">
 <sequence>
 <assign>
 <copy>
 <from>$counter + 1</from>
 <to>$counter</to>
 </copy>
 </assign>
 <if>
 <condition>$counter = 3</condition>
 <empty/>
 <else>
 <extensionActivity>
 <bpelx:replay name="ReplayScope" scope="Scope_RetrieveOrder"/>
 </extensionActivity>
 </else>
 </if>
 </sequence>
 </scope>
 </sequence>
 </scope>

In BPEL 1.1, the replay activity is coded as a bpelx extension.

<bpelx:replay name="ReplayScope" scope="Scope2"/>

Re-executing Activities in a Scope Activity with the Replay Activity

12-54 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

12.12 Using Compensation After Undoing a Series of Operations
Compensation occurs when the BPEL process service component cannot complete a
series of operations after some have completed, and the BPEL process service
component must backtrack and undo the previously completed transactions. For
example, if a BPEL process service component is designed to book a rental car, a hotel,
and a flight, it may book the car and the hotel and then be unable to book a flight for
the right day. In this case, the BPEL flow performs compensation by going back and
unbooking the car and the hotel.

In a scope activity, the compensation handler can reverse previously completed
process steps. The compensation handler can be invoked after successful completion
of its associated scope with either of the following activities.

• Compensate activity (in BPEL version 1.1 and 2.0 projects)

This activity causes the compensation handler of all successfully completed and
not yet compensated child scopes to be executed in default order.

• compensateScope activity (in a BPEL version 2.0 project)

This activity causes the compensation handler of one specific successfully
completed scope to be executed.

12.12.1 Using a Compensate Activity
You can invoke a compensation handler by using the compensate activity, which
names the scope for which the compensation is to be performed (that is, the scope
whose compensation handler is to be invoked). A compensation handler for a scope is
available for invocation only when the scope completes normally. Invoking a
compensation handler that has not been installed is equivalent to using the empty
activity (it is a no-op). This ensures that fault handlers do not have to rely on state to
determine which nested scopes have completed successfully. The semantics of a
process in which an installed compensation handler is invoked multiple times are
undefined.

The ability to explicitly invoke the compensate activity is the underpinning of the
application-controlled error-handling framework of the . You can use this activity only
in the following parts of a business process:

• In a fault handler of the scope that immediately encloses the scope for which to
perform compensation.

• In the compensation handler of the scope that immediately encloses the scope for
which to perform compensation.

For example:

<compensate scope="RecordPayment"/>

If a scope being compensated by name was nested in a loop, the BPEL process service
component invokes the instances of the compensation handlers in the successive
iterations in reverse order.

If the compensation handler for a scope is absent, the default compensation handler
invokes the compensation handlers for the immediately enclosed scopes in the reverse
order of the completion of those scopes.

Using Compensation After Undoing a Series of Operations

Using Fault Handling in a BPEL Process 12-55

The compensate form, in which the scope name is omitted in a compensate activity,
explicitly invokes this default behavior. This is useful when an enclosing fault or
compensation handler must perform additional work, such as updating variables or
sending external notifications, in addition to performing default compensation for
inner scopes. The compensate activity in a fault or compensation handler attached to
the outer scope invokes the default order of compensation handlers for completed
scopes directly nested within the outer scope. You can mix this activity with any other
user-specified behavior except for the explicit invocation of the nested scope within
the outer scope. Explicitly invoking compensation for such a scope nested within the
outer scope disables the availability of default-order compensation.

12.12.2 How to Create a Compensate Activity

To create a compensate activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Compensate activity into the designer.

3. Double-click the Compensate activity.

4. Select a scope activity in which to invoke the compensation handler, as shown in
Figure 12-36.

Figure 12-36 Compensate Activity

5. Click Apply, then OK.

12.12.3 What Happens When You Create a Compensate Activity
If a scope activity has a compensation handler defined inline, then the name of the
activity is the name of the scope to be used in the compensate activity. The syntax is
shown in the following example:

<compensate scope="ncname"? standard-attributes>
 standard-elements
 </compensate>

Using Compensation After Undoing a Series of Operations

12-56 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

12.12.4 Using a compensateScope Activity in BPEL 2.0
The compensateScope activity is used to start compensation on a specified inner scope
that has already completed successfully. Use this activity only from within a fault
handler, another compensation handler, or a termination handler.

When you create a compensateScope activity, you select a target that must refer to the
immediately-enclosed scope. The scope must include a fault handler or compensation
handler.

12.12.5 How to Create a compensateScope Activity

Note:

This activity is supported in BPEL 2.0 projects.

To create a compensateScope activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a CompensateScope activity into the designer.

3. Double-click the CompensateScope activity.

4. In the Target list, select a specific scope activity in which to invoke the
compensation handler. Figure 12-37 provides details.

Figure 12-37 CompensateScope Activity

5. Click Apply, then OK.

12.12.6 What Happens When You Create a compensateScope Activity
The following example shows the .bpel file after design is complete for a
compensateScope activity. The compensateScope activity is defined in a catchall fault
handler. The scope in which to invoke the compensation handler is defined.

Using Compensation After Undoing a Series of Operations

Using Fault Handling in a BPEL Process 12-57

<scope name="ScopeAssignCreditRating">
 <faultHandlers>
 <catchAll>
 <compensateScope target="ScopeAssignScreditRating2" />
 </catchAll>
 </faultHandlers>
 <sequence>
 <scope name="ScopeAssignScreditRating2">
 <compensationHandler>
 <!-- undo work -->
 </compensationHandler>
 <!-- do some work -->
 </scope>
 <!-- do more work -->
 <!-- a fault is thrown here; results of ScopeAssignScreditRating2 must be
undone -->
 </sequence>
</scope>

12.13 Stopping a Business Process Instance with a Terminate or Exit
Activity

You can stop a business process instance with either of the following activities:

• Exit activity (in a BPEL version 2.0 project)

• Terminate activity (in a BPEL version 1.1 project)

12.13.1 Immediately Ending a Business Process Instance with the Exit Activity in BPEL
2.0

You can use the exit activity to immediately end all currently running activities on all
parallel branches without involving any termination handling, fault handling, or
compensation handling mechanisms. This activity is useful for environments in which
there may not be a reasonable way for dealing with unexpected, severe failures.

Note:

Any open conversations are also impacted by the exit activity. For example,
other partners interacting with the process may wait for a response that never
arrives.

12.13.1.1 How to Create an Exit Activity

To create an exit activity:

1. In the Components window, expand BPEL Constructs.

2. Drag an Exit activity into the section of your BPEL process in which you want to
execute the exit activity.

3. Double-click the Exit activity, as shown in Figure 12-38.

Stopping a Business Process Instance with a Terminate or Exit Activity

12-58 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 12-38 Exit Activity

4. Optionally enter a name.

5. Click Apply, then OK.

When complete, the exit activity in a BPEL process appears similar to that shown in
Figure 12-39.

Figure 12-39 Exit Activity in a BPEL Process

12.13.1.2 What Happens When You Create an Exit Activity

The following example shows the .bpel file after design is complete for an exit
activity.

<sequence>
 <!-- receive input from requester -->
 <receive name="receiveInput" partnerLink="client" portType="tns:Test"
 operation="process" variable="input" createInstance="yes"/>
 <assign>
 <copy>
 <from>$input.payload</from>
 <to>$output.payload</to>

Stopping a Business Process Instance with a Terminate or Exit Activity

Using Fault Handling in a BPEL Process 12-59

 </copy>
 </assign>
 <!-- respond output to requester -->
 <reply name="replyOutput" partnerLink="client"
 portType="tns:Test" operation="process" variable="output"/>
 <exit/>
 </sequence>

12.13.2 Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1
The terminate activity immediately terminates the behavior of a business process
instance within which the terminate activity is performed. All currently running
activities must be terminated as soon as possible without any fault handling or
compensation behavior. The terminate activity does not send any notifications of the
status of a BPEL process service component. If you are going to use the terminate
activity, first program notifications to the interested parties.

12.13.2.1 How to Create a Terminate Activity

To create a terminate activity:

1. In the Components window in Oracle JDeveloper, expand BPEL Constructs.

2. Drag a Terminate activity into the designer. Figure 12-40 provides an example.

Figure 12-40 Terminate Activity

3. Double-click the terminate activity.

4. Optionally enter a name.

5. Click OK.

12.13.2.2 What Happens When You Create a Terminate Activity

The syntax for the terminate activity is shown in the following example. This stops
the business process instance.

<terminate standard-attributes>
 standard-elements
</terminate>

12.14 Throwing Faults with Assertion Conditions
You can specify an assertion condition in BPEL versions 1.1 and 2.0 that is executed
upon receipt of a callback message in request-response invoke activities, receive
activities, reply activities, and onMessage branches of pick and scope activities. The
assertion specifies an XPath expression that, when evaluated to false, causes a BPEL
fault to be thrown from the activity. This condition provides an alternative to creating
a potentially large number of switch, assign, and throw activities after a partner
callback.

Throwing Faults with Assertion Conditions

12-60 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

You can select when to execute a condition:

• Preassert: This condition is executed before the invoke or reply activity send out
the outbound message.

• Postassert: This condition is executed after an invoke activity, receive activity, or
onMessage branch receives the inbound message.

12.14.1 How to Create Assertion Conditions
You can create assertion conditions in the following activities:

• In message exchange activities such as invoke activities, receive activities, reply
activities, and OnMessage branches

• In standalone assert activities for specifying XPath expressions

12.14.1.1 To create assertion conditions in invoke activities, receive activities, reply
activities, and OnMessage branches:

1. In the , double-click the BPEL process service component.

2. In the Components window, expand BPEL Constructs.

3. Drag a Receive activity, Invoke activity, Pick activity, or Scope activity into the
designer.

4. Expand the Receive, Invoke, or onMessage branch of the Pick or Scope activity.

5. Click the Assertions tab.

6. If you are creating an assertion for a BPEL 2.0 project, perform the following tasks.
Otherwise, go to Step 6.

a. Select when to execute the condition. Table 12-9 provides details.

Table 12-9 Assertion Condition Tabs

To Create A... Select The...

Preassertion condition Pre Asserts tab

Postassertion condition Post Asserts tab

b. Click the Add icon, as shown in Figure 12-41.

Figure 12-41 Add Icon of Assertions Tab in BPEL 2.0

The Assert dialog is displayed.

Throwing Faults with Assertion Conditions

Using Fault Handling in a BPEL Process 12-61

7. If you are creating an assertion for a BPEL 1.1 project, perform the following tasks.

a. Click the Add icon, as shown in Figure 12-42.

Figure 12-42 Add Icon of Assertions Tab in BPEL 1.1

b. Select when to execute the condition. Table 12-10 provides details.

Table 12-10 Condition Execution Options

Element Description

Pre Assert If selected, the condition is executed before the invoke or reply
activity send out the outbound message.

Note: A fault policy does not handle faults thrown from a preassert
condition. Only faults thrown from a postassert condition are
supported. For more information about fault policies, see Handling
Faults with the Fault Management Framework.

Post Assert If selected, the condition is executed after an invoke activity, receive
activity, or onMessage branch receives the inbound message.

Based on your selection, the Pre Assert or Post Assert dialog is displayed.

8. Specify values for the assertion condition, as shown in Figure 12-43. For this
example, Post Assert was selected for an assertion condition on a receive activity
in a BPEL 2.0 project.

a. Select the Fault QName to be thrown by clicking the Search icon and
selecting an existing fault from the Fault Chooser dialog. You can also
provide your own values for the Namespace URI and Local Part fields of the
fault. If you do not specify anything for the Fault QName, then a
bpelx:assertFailure fault is thrown.

Figure 12-43 Assertion Condition Values

Throwing Faults with Assertion Conditions

12-62 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

9. When complete, click OK to return to the Assertions tab of the activity. The
completed assertion condition is displayed, as shown in Figure 12-44.

Figure 12-44 Assertions Tab with Data

10. Click Apply, then OK.

12.14.1.2 To create an assertion condition in standalone assert activities:

1. In the , double-click the BPEL process service component.

2. In the Components window, expand Oracle Extensions.

3. Drag an Assert activity into the designer, as shown in Figure 12-45.

Figure 12-45 Assert Activity in Components Window

4. Expand the Assert activity.

5. To the right of the Expression field, click the XPath Expression Builder icon.

6. Create an expression.

Throwing Faults with Assertion Conditions

Using Fault Handling in a BPEL Process 12-63

7. When complete, click OK.

The Assert dialog looks as shown in Figure 12-46.

Figure 12-46 Assert Dialog

8. Click Apply, then OK.

12.14.2 How to Disable Assertions
You can disable assertions in either of two ways:

• By setting the System MBean Browser property DisableAsserts to true in Oracle
Enterprise Manager Fusion Middleware Control.

• By setting bpel.config.disableAsserts to true in the composite.xml
file of the SOA composite application, as shown in the following example:

 <component name="AsyncBPELClient">
 <implementation.bpel src="AsyncBPELClient.bpel"/>
 <property name="bpel.config.disableAsserts">true</property>
 </component>

For more information about setting System MBean Browser properties, see
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

12.14.3 What Happens When You Create Assertion Conditions
The code segment in the .bpel file defines the specific operation after design
completion.

For the following BPEL1.1 example, the bpelx:assert condition in the invoke
activity, when evaluated to false (for example, a credit rating of 0 is submitted),
returns a Negative Credit message. If the condition evaluates to true, no fault is
thrown from the invoke activity and the remaining activities in the BPEL process flow
are executed normally.

<invoke name="callbackClient" partnerLink="internalwarehouseservice_client"
 portType="client:InternalWarehouseServiceCallback" operation="processResponse"
 inputVariable="outputVariable">
 <bpelx:assert name="negativeCredit"

Throwing Faults with Assertion Conditions

12-64 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 expression="$crOutput.payload/tns:rating > 0"
 message="Negative Credit"/>
</invoke>

In the BPEL 1.1 example that follows, the bpelx:assert condition in the standalone
assert activity, when evaluated to false, returns the following message:

got assertion failure on true expression

If the condition evaluates to true, no fault is thrown from the assert activity and the
remaining activities in the BPEL process flow are executed normally.

<bpelx:assert expression="true()bpws:getLinkStatus()" message="'got assertion
failure on true expression'"

12.14.4 What You May Need to Know About Assertion Conditions
This section describes key assertion condition concepts.

12.14.4.1 bpelx:postAssert and bpelx:preAssert Extensions

Depending upon the activity, you can specify when to execute a condition by clicking
the Add icon in the Assertions tab of invoke, receive, reply, and onMessage branches
of pick and scope activities, and selecting either Pre Assert or Post Assert. Based on
your selection, the following bpelx extensions are used:

• bpelx:preAssert: If you select Pre Assert, the condition is executed before the
invoke or reply activity send out the outbound message.

• bpelx:postAssert: If you select Post Assert, the condition is executed after an
invoke activity, receive activity, or onMessage branch receives the inbound
message.

The following example shows multiple bpelx:postAssert extensions in a receive
activity in BPEL 1.1:

 <receive name="Receive_1" createInstance="no"
 variable="Receive_1_processResponse_InputVariable"
 partnerLink="AsyncBPELService"
 portType="ns1:AsyncBPELServiceCallback"
 bpelx:for="'PT10S'"
 operation="processResponse">
 <bpelx:postAssert name="assert1" expression="true()" message="'assert
 true failed'" faultName="client:fault1"/>
 <bpelx:postAssert name="assert2" expression="false()" message="'assert
 false failed'" faultName="client:fault2"/>
 </receive>

The following example shows multiple bpelx:preAssert extensions in an invoke
activity in BPEL 1.1:

<invoke name="Invoke_1" inputVariable="Invoke_1_process_InputVariable"
 outputVariable="Receive_1_processResponse_InputVariable"
 partnerLink="SyncBPELService" portType="ns1:SyncBPELService"
 operation="process">
 <bpelx:preAssert name="assert1" expression="true()" message="'assert true
 failed'"/>
 <bpelx:preAssert name="assert2"
 expression="bpws:getVariableData('counter') = 3" message="concat('The value of
 counter is ', $counter)"/>

Throwing Faults with Assertion Conditions

Using Fault Handling in a BPEL Process 12-65

For information on using the Assertions tab, see How to Create Assertion Conditions.

12.14.4.2 Use of faultName and message Attributes

You can specify the faultName and message attributes of the bpelx:postAssert
element, as shown in the schema definition in the following example for BPEL 1.1.

<invoke | receive | onMessage>
 standard-elements
 <bpelx:postAssert name="ncname"? expression="boolean-expr" faultName="QName"+
 message="generic-expr"+/> *
</invoke | receive | onMessage>

The following example shows the syntax for the faultname and message attributes.

<bpelx:postAssert name="Assert_2"
 message='multiple post assert Greater value fired'
 faultName="ns2:GreaterValue"
 expression="bpws:getVariableData('invar','payload','/ns1:process/ns1:input') <
 500"/>

If you do not specify the faultName attribute, the fault defaults to
bpelx:postAssertFailure. If the message attribute is not specified, the message
value defaults to the name of the activity.

<bpelx:postAssert expression="boolean-expr" />

The specified fault is thrown whenever the assertion condition evaluates to false.
Analysis is performed on the faultName QName to ensure that it properly resolves to
a fault that is defined in the partner WSDL portType. The message expression is a
general expression that can evaluate to any XPath value type (string, number, or
boolean). If a nonstring value is returned, the string equivalent of the value is used.

12.14.4.3 Multiple Assertions

You can nest multiple assertions in receive activities, invoke activities, and the
onMessage branch of pick and scope activities, with evaluation of the assertions
continuing in the order in which they were declared until an expression evaluates to
false. The following example provides details:

<invoke name="invokeCR" partnerLink="creditRatingService"
 portType="services:CreditRatingService" operation="process"
 inputVariable="crInput" outputVariable="crOutput">
 <bpelx:postAssert name="negativeCredit" expression="$crOutput.payload/tns:rating
>
 0"
 faultName="services:NegativeCredit" message="'Negative Credit'"
 />
 <bpelx:postAssert name="insufficientCredit"
 expression="$crOutput.payload/tns:rating > 600"
 faultName="services:InsufficientCredit" message="'Insufficient
 Credit'" />
</invoke>

In the preceding example, the assertion with the expression that checks that the
response credit rating is greater than zero is evaluated first. Table 12-11 describes the
assertion behavior.

Throwing Faults with Assertion Conditions

12-66 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 12-11 Assertion Behavior

If The Credit Rating For The
Returned Response Is...

Then...

Less than zero The services:NegativeCredit fault is thrown.

Greater than or equal to zero The assertion is correct and the second assertion is evaluated.

Less than 600 The services:InsufficientCredit fault is thrown.

Greater than or equal to 600 The assertion is correct and no fault is thrown from the invoke
activity.

Any number of assertions can be nested. For no fault to be thrown from the activity,
all assertions specified must evaluate to true.

This construct enables you to apply multiple levels of validation on an incoming
payload, similar to if...else if...else statements in Java.

To enable a fault to always be thrown regardless of validation logic, the assertion
expression can be specified as false(). This is similar to the else construct in Java.

12.14.4.4 Use of Built-in and Custom XPath Functions and $variable References

You can also use built-in and custom XPath functions and $variable references
within the assertion condition. The following code provides several examples.

<bpelx:postAssert expression="bpws:getVariableData('crOutput', 'payload',
 '/tns:rating') > 0" ... />

<bpelx:postAssert expression="custom:validateRating()" ... />

<bpelx:postAssert xmlns:fn='http://www.w3.org/2005/xpath-functions'
 expression="fn:false()" ... />

If an error is thrown by the XPath expression evaluation, the error is wrapped with a
BPEL fault and thrown from the activity.

Faults that are thrown from a request-response invoke activity, receive activity, or
onMessage branch of a pick or scope activity because of a failed assertion evaluation
can be caught and handled by BPEL's fault management framework. For information,
see Handling Faults with the Fault Management Framework.

Faults that are not caught and handled within a BPEL process flow are thrown from a
BPEL component if the component WSDL declares the fault on the operation. If the
fault is not declared on the operation, the fault is converted into a
FabricInvocationException, which is a runtime fault. This fault can be caught
by any caller components (including BPEL components), but the fault type is no
longer the one originally thrown (however, the fault message string still retains traces
of the original fault message).

For more information about runtime faults, see Introduction to the Business and
Runtime Fault Categories of BPEL Faults.

For more information about fault policies, see Handling Faults with the Fault
Management Framework.

Throwing Faults with Assertion Conditions

Using Fault Handling in a BPEL Process 12-67

12.14.4.5 Assertion Condition Evaluation Logging of Events to the Instance Audit
Trail

Each assertion condition that is evaluated causes an event to be logged to the instance
audit trail. The event indicates whether the assertion passed or failed (for failure, the
fault name and message are printed). The event also includes the name attribute
specified in the assertion element. If no name attribute is provided, the line number of
the assertion element in the BPEL process flow is used. The assertion condition printed
in the audit event helps identify the assertion and better enables debugging of the
flow.

12.14.4.6 Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault

If the assertion condition XPath expression does not evaluate to an XML schema
boolean type, a bpelx:postAssertFailure fault is thrown from the activity. An
event in the instance audit trail is also logged indicating the error. The following
example provides details:

<bpelx:postAssert expression="bpws:getVariableData('crOutput', 'payload',
 '/tns:rating') > 0" ... />

<bpelx:postAssert expression="custom:validateRating()" ... />

<bpelx:postAssert xmlns:fn='http://www.w3.org/2005/xpath-functions'
 expression="fn:false()" ... />

Analysis of the assertion expression is performed by the BPEL compiler and errors are
reported if an expression does not evaluate to an XML schema boolean type. For
custom XPath functions, this type of analysis is not performed.

12.14.4.7 Assertion Conditions in a Standalone Assert Activity

You can also create assertion conditions in a standalone assert activity in a BPEL
process service component. The assertion specifies an XPath expression that, when
evaluated to false, causes a BPEL fault to be thrown from the activity.

The bpelx:assert extension implements assertions in the standalone assert activity:

<bpelx:assert name="Assert1" expression="string" message="string"/>

For information about using the standalone assert activity, see How to Create
Assertion Conditions.

12.14.5 What You May Need to Know About Postassertion and Preassertion Condition
Schemas and Syntax

The assertion condition is specified as a nested extension element. The following
example shows the postassertion condition schema definition in BPEL 2.0.

<invoke | receive | onMessage>
 standard-elements
 <bpelx:postAsserts>
 <bpelx:postAssert faultName="QName">
 <bpelx:expression expressionLanguage="anyURI"?>expression
 </bpelx:expression>
 <bpelx:message expressionLanguage="anyURI"?>expression</bpelx:message>
 </bpelx:postAssert>
 </bpelx:postAsserts>
</invoke | receive | onMessage>

Throwing Faults with Assertion Conditions

12-68 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The following example shows the postassertion condition syntax in BPEL 2.0.

<bpelx:postAsserts>
 <bpelx:postAssert faultName="ns2:InvalidInput">
 <bpelx:expression>number(concat($inputVariable.payload/client:input,'2')) <
 500</bpelx:expression>
 <bpelx:message>"AssertXpathPostInvoke_20 assert fired"</bpelx:message>
 </bpelx:postAssert>
</bpelx:postAsserts>

The following example shows the postassertion condition schema definition in BPEL
1.1. Note the differences between BPEL 1.1 and BPEL 2.0.

<invoke | receive | onMessage>
 standard-elements
 <bpelx:postAssert name="ncname" expression="boolean-expr" faultName="QName"+
 message="generic-expr"+/>
</invoke | receive | onMessage>

The following example shows the postassertion condition syntax in BPEL 1.1.

<bpelx:postAssert name="Assert_1"
 message='Post Invoke Multiple assert value fired'
 faultName="ns2:NegativeValue"
 expression="bpws:getVariableData('invar','payload','/ns1:process/ns1:input') >
0"/>

The following example shows the preassertion condition schema definition in BPEL
2.0.

<invoke | reply>
 standard-elements
 <bpelx:preAsserts>
 <bpelx:preAssert faultName="QName">
 <bpelx:expression expressionLanguage="anyURI"?>expression</bpelx:expression>
 <bpelx:message expressionLanguage="anyURI"?>expression</bpelx:message>
 </bpelx:preAssert>
 </bpelx:preAsserts>
</invoke | reply>

The following example shows the preassertion condition syntax in BPEL 2.0.

<bpelx:preAsserts>
 <bpelx:preAssert faultName="ns1:InvalidInput">
 <bpelx:expression>concat($inputVariable.payload/client:input,'2') >
 $inputVariable.payload/client:input</bpelx:expression>
 <bpelx:message>"AssertXpathPreInvoke_20 Assert test"</bpelx:message>
 </bpelx:preAssert>
</bpelx:preAsserts>

The following example shows the preassertion condition schema definition in BPEL
1.1. Note the differences between BPEL 1.1 and BPEL 2.0.

<invoke | reply>
 standard-elements
 <bpelx:preAssert name="NCName" expression="string" message="string"
 faultName="QName"/>
</invoke | reply>

The following example shows the preassertion condition syntax in BPEL 1.1.

Throwing Faults with Assertion Conditions

Using Fault Handling in a BPEL Process 12-69

<bpelx:preAssert name="Assert_1"
 expression="bpws:getVariableData('invar','payload','/ns1:process/ns1:input') >
 0"
 message='pre invoke assert NegativeInput fired'
 faultName="ns4:NegativeInput"/>

The bpelx:postAssert extension specifies the XPath expression to evaluate upon
receipt of a callback message from a partner. If the assertion expression returns a false
boolean value, the specified fault is thrown from the activity. If the assertion
expression returns a true boolean value, no fault is thrown and the activities following
the invoke activity, receive activity, or the onMessage branch of pick and scope
activities are executed as in a normal BPEL process flow.

The bpelx:preAssert or bpelx:postAssert extension is similar to the Java
assert statement. In Java, if the assert expression does not evaluate to true, an
error is reported by the JVM. Similarly, the expression in the bpelx:preAssert or
bpelx:postAssert extension must evaluate to true; otherwise, the specified fault is
thrown.

For example, with the BPEL 1.1 invoke activity shown in the following example, if the
XPath expression specified in the assertion condition returns false, the
NegativeCredit fault is thrown.

<scope>
 <faultHandlers>
 <catch faultName="services:NegativeCredit" faultVariable="crError">
 <empty/>
 </catch>
 </faultHandlers>
 <sequence>
 <invoke name="invokeCR" partnerLink="creditRatingService"
 portType="services:CreditRatingService" operation="process"
 inputVariable="crInput" outputVariable="crOutput">
 <bpelx:postAssert name="negativeCredit"
 expression="$crOutput.payload/tns:rating > 0"
 faultName="services:NegativeCredit" message="'Negative
 Credit'" />
 </invoke>
 </sequence>
</scope>

The optional name attribute for bpelx:preAssert or bpelx:postAssert is used
while creating the audit trail event message. The name in this instance enables you to
identify the assertion element in case multiple assertions are specified. If no name
attribute is specified, the line number of the assertion element in the BPEL file may be
used.

12.15 Classifying SOAP Faults as Retriable
Starting with 12c, all web service SOAP faults are not automatically retried based on
the fault code returned from the external service. SOAP faults are now retried only
when the fault code is classified as server-related (also known as receiver-related).
Fault codes classified as client-related do not result in retries. This differs from 11g
Release 1 (11.1.1.x), in which Oracle SOA Suite retried all SOAP faults regardless of
their fault code (all faults returned were converted to a bpelx:remoteFault in
BPEL, which was retriable).

In 12c when a fault occurs in a reference binding component, the fault code is returned
to a BPEL process. The fault is retried based on the setting in the fault code. This is

Classifying SOAP Faults as Retriable

12-70 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

beneficial because you may want to retry the fault only under specific circumstances
(such as a system downtime issue). For all other fault occurrences (such as incorrect
input), you may not want a retry to occur. In fact, retries on all SOAP faults can delay
the processing of legitimate messages.

As described in the Simple Object Access Protocol (SOAP) 1.1 specification at http://
www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383510, a fault can
have a code of server (also known as receiver) or client. The classification of faults
determines whether the faults are retriable.

• Server

Server errors indicate that the message cannot be processed for reasons not
directly related to the message contents, but rather to the processing of the
message. For example, processing can include communicating with a server that
did not respond. The message may succeed at a later time. This is defined as a
retriable fault.

• Client

Client errors indicate that the message was incorrectly formed or did not contain
the appropriate information to succeed. For example, the message may lack the
proper authentication or payment information. This typically indicates that the
message must first be changed before being resent. This is defined as a
nonretriable fault.

This fault classification information is propagated into a
FabricInvocationException error. For fault codes classified as client-related, the
retryType flag within this exception is set to NO_RETRY.

If necessary, you can still invoke a retry on every fault. Set the binding.ws property
oracle.soa.always.retry.on.fault to true in the composite.xml file. This
enables Oracle SOA Suite to always retry on any SOAP faults regardless of the fault
code.

<reference name="myreference"
. . .
<binding.ws port=". . . ."
location=". . ."
<property name="oracle.soa.always.retry.on.fault">true</property>
</binding.ws>

Classifying SOAP Faults as Retriable

Using Fault Handling in a BPEL Process 12-71

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383510
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383510

Classifying SOAP Faults as Retriable

12-72 Developing SOA Applications with Oracle SOA Suite

13
Transaction and Fault Propagation

Semantics in BPEL Processes

This chapter describes transaction and fault propagation semantics in Oracle BPEL
Process Manager. It describes how to configure the transaction behavior for BPEL
instances with initiating calls and the execution of one-way invocations. It also
describes how to execute a business process without a transaction.

This chapter includes the following sections:

• Introduction to Transaction Semantics

• Introduction to Execution of One-way Invocations

• Executing a Business Process Without a Transaction

• Using In-Memory SOA to Improve System Performance

13.1 Introduction to Transaction Semantics
Transaction semantics in Release 12c enable you to use the underlying Java
Transaction API (JTA) infrastructure used in the execution of components. This section
describes transaction semantics for Oracle BPEL Process Manager.

13.1.1 Oracle BPEL Process Manager Transaction Semantics
As with previous releases, Oracle BPEL Process Manager by default creates a new
transaction on a request basis. That is, if a transaction exists, it is suspended, and a
new transaction is created. Upon completion of the child (new) transaction, the master
(suspended) transaction resumes.

However, if the request is asynchronous (that is, one-way), the transaction is either:

• Inherited for insertion into the dehydration store (table dlv_message).

• Enlisted transparently into the transaction (if one exists).

There is no message loss. Either the invocation message is inserted into the
dehydration store for processing or the consumer is notified through a fault.

In Release 10.1.3.x, there were several properties to set on the consuming process (that
is, on the partner link) and the providing process. This enabled you to chain an
execution into a single global transaction. On the consuming side, you set
transaction=participate on the partner link binding in the bpel.xml file. On
the providing side, you set transaction=participate in the
<configurations> section of bpel.xml.

Transaction and Fault Propagation Semantics in BPEL Processes 13-1

In Releases 11g and 12c, you only must set a new transaction property on the BPEL
component being called (known as the callee process). You add
bpel.config.transaction as follows:

• In the Create BPEL Process dialog for a new BPEL process.

• In the BPEL process service component section in the composite.xml file of an
existing BPEL process (note the required prefix of bpel.config.).

This property configures the transaction behavior for BPEL instances with initiating
calls. If you must change this setting later, you can use the Property Inspector.

The following example provides details:

<component name="InternalWareHouseService" version="2.0">
 <implementation.bpel src="BPEL/InternalWareHouseService.bpel"/>
 <property name="bpel.config.transaction" type="xs:string"
many="false">required | requiresNew | notSupported " </property>
 </component>

Table 13-1 describes the required (the default value) and requiresNew values and
summarizes the behavior of the BPEL instance based on the settings.

Table 13-1 bpel.config.transaction Property Behavior

For... With bpel.config.transaction
Set to required...

With bpel.config.transaction
Set to requiresNew...

Request/response
(initiating) invocations

The caller's transaction is
joined (if there is one) or a
new transaction is created (if
there is not one).

A new transaction is always
created and an existing
transaction (if there is one) is
suspended.

One-way initiating
invocations in which
bpel.config.oneWayDe
liveryPolicy is set to
sync.

Invoked messages are
processed using the same
thread in the same transaction.

A new transaction is always
created and an existing
transaction (if there is one) is
suspended.

Note:

The bpel.config.transaction property does not apply for midprocess
receive activities. In those cases, another thread in another transaction is used
to process the message. This is because correlation is needed and it is always
done asynchronously.

For additional information about setting the bpel.config.transaction property,
see How to Add a BPEL Process Service Component and How to Define Deployment
Descriptor Properties in the Property Inspector.

The following sections describe the transaction and fault behavior of setting
bpel.config.transaction to either required or requiresNew.

13.1.1.1 BPELCaller Process Calls a BPELCallee Process That Has
bpel.config.transaction Set to requiresNew

In Table 13-2, the BPELCaller process calls the BPELCallee process. The BPELCallee
process has the property bpel.config.transaction set to requiresNew.

Introduction to Transaction Semantics

13-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 13-2 describes fault propagation and transaction behavior when
bpel.config.transaction is set to this value.

Table 13-2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to
requiresNew

If The BPELCallee... Then The BPELCallee
Transaction...

And The BPELCaller...

Replies with a fault (that is, it uses
<reply>).

Is saved. Gets the fault and can catch
it.

Throws a fault that is not handled
(that is, it uses <throw>).

Is rolled back. Gets the fault and can catch
it.

Replies back with a fault (FaultOne),
and then throws a fault (FaultTwo).

Is rolled back. Gets FaultTwo.

Throws a bpelx:rollback fault
(that is, it uses <throw>).

Is rolled back. Gets a remote fault.

13.1.1.2 BPELCaller Process Calls a BPELCallee Process That Has
bpel.config.transaction Set to required

In Table 13-3, the BPELCaller process calls the BPELCallee process. The BPELCallee
process has the property bpel.config.transaction set to required. Table 13-3
describes fault propagation and transaction behavior when
bpel.config.transaction is set to this value.

Table 13-3 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to
required

If The BPELCallee... Then The BPELCaller...

Replies with a fault (that is, it uses
<reply>).

Gets the fault and can catch it. The BPELCaller owns
the transaction. Therefore, if it catches it, the
transaction is committed. If the BPELCaller does not
handle it, a global rollback occurs.

Throws a fault (that is, it uses
<throw>).

Gets the fault and can catch it.

Replies back with a fault (FaultOne),
and then throws a fault (FaultTwo).

Gets FaultTwo.

Throws (that is, it uses <throw>) a
bpelx:rollback fault.

Gets its transaction rolled back; there is no way to
catch it. This fault cannot be handled.

As an example, assume you create two synchronous processes (BPELMaster and
BPELChild) that each use the same database adapter reference to insert the same
record (and therefore, causes a permission key (PK) violation). The
xADatasourceName is set for both.

Without bpel.config.transaction set, after the fault occurs, and it is not
handled, BPELChild is rolled back. If BPELMaster has a catch block, its transaction is
committed. Therefore, you end up with the record from BPELMaster in the database.

If you do not catch the fault in BPELMaster as well, you get a second rollback
(however, in two different transactions).

Introduction to Transaction Semantics

Transaction and Fault Propagation Semantics in BPEL Processes 13-3

If bpel.config.transaction is set to required for the same test case and no
fault handlers are in place, the entire transaction is rolled back based on BPELMaster's
unhandled fault.

If you add a fault handler in BPELMaster to catch the fault from BPELChild and throw
a rollback fault, the transaction is globally rolled back.

This feature enables you to control transaction boundaries and model end-to-end
transactional flows (if your sources and targets are also transactional).

13.2 Introduction to Execution of One-way Invocations
A one-way invocation (with a possible callback) is typically exposed in a WSDL file as
shown in the following example:

<wsdl:operation name="process">
 <wsdl:input message="client:OrderProcessorRequestMessage"/>
 </wsdl:operation>

This causes the BPEL process service engine to split the execution into two parts:

• For the first part, and always inside the caller transaction, the insertion into the
dlv_message table of the dehydration store occurs (in release 10.1.3.x, it was
inserted into the inv_message table).

• For the second part, the transaction and the new thread execute the work items,
and a new instance is created.

This has several advantages in terms of scalability, because the service engine's thread
pool (invoker threads) executes when a thread is available. However, the disadvantage
is that there is no guarantee that it executes immediately.

If you require a synchronous-type call based on a one-way operation, then you can use
the onewayDeliveryPolicy property, which is similar to the
deliveryPersistPolicy property of release 10.1.3.x.

Specify bpel.config.oneWayDeliveryPolicy as follows:

• In the Create BPEL Process dialog for a new BPEL process.

• In the BPEL process service component section of the composite.xml file for an
existing BPEL process.

If this value is not set in composite.xml, the value for oneWayDeliveryPolicy in
the System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control
is used. The following values are possible.

• async.persist: Messages are persisted in the database. With this setting,
reliability is obtained with some performance impact on the database. In some
cases, overall system performance can be impacted.

• async.cache: Incoming delivery messages are kept only in the in-memory
cache. If performance is preferred over reliability, consider this setting. When set
to async.cache, if the rate at which one-way messages arrive is much higher
than the rate at which they are delivered, or if the server fails, messages can be
lost. In addition, the system can become overloaded (messages become
backlogged in the scheduled queue) and you can receive out-of-memory errors.
Consult your own use case scenarios to determine if this setting is appropriate.

Introduction to Execution of One-way Invocations

13-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

When you set oneWayDeliveryPolicy to async.cache in high availability
environments, invoke and callback messages in the middle of execution at the
time of a server crash may be lost or duplicated. Server failover is not supported
for async.cache. For more information, see High Availability Guide.

• sync: Direct invocation occurs on the same thread. The scheduling of messages in
the invoke queue is bypassed, and the BPEL instance is invoked synchronously. In
some cases this setting can improve database performance.

For more information about setting the bpel.config.oneWayDeliveryPolicy
property, see How to Add a BPEL Process Service Component and How to Define
Deployment Descriptor Properties in the Property Inspector.

Table 13-4 describes the behavior when the main process calls the subprocess
asynchronously. Table 13-4 is based on the use cases described in BPELCaller Process
Calls a BPELCallee Process That Has bpel.config.transaction Set to requiresNew and
BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction Set to
required.

Table 13-4 Main Process Calls the Subprocess Asynchronously

If... If The Subprocess Throws
Any Fault...

If The Subprocess
Throws a bpelx:rollback...

onewayDeliveryPolicy=asyn
c.persist

(The BPELCallee process runs in a
separate thread/transaction.)

The BPELCaller does not
get a response because the
message is saved in the
delivery service. The
BPELCallee transaction is
rolled back if the fault is
not handled.

The BPELCaller does not
get a response because the
message is saved in the
delivery service. The
BPELCallee instance is
rolled back on the
unhandled fault.

onewayDeliveryPolicy=sync

and

transaction=requiresNew

(The BPELCallee runs in the same
thread, but a different
transaction.)

The BPELCaller receives a
FabricInvocationExce
ption. The BPELCallee
transaction rolls back if the
fault is not handled.

The BPELCaller receives a
FabricInvocationExce
ption. The BPELCallee
transaction is rolled back.

onewayDeliveryPolicy=sync

and

transaction=required

(The BPELCallee runs in the same
thread and the same transaction.)

The BPELCallee faulted.
The BPELCaller receives a
FabricInvocationExce
ption. The BPELCaller
has a chance to handle the
fault.

The whole transaction is
rolled back.

onewayDeliveryPolicy=asyn
c.cache

and

transaction=requiresNew

or

transaction=required

The BPELCaller does not
get a response because the
caller thread returns before
the request is handled. The
BPELCallee transaction is
rolled back if the fault is
not handled. The message
is lost because it is not
saved in the database.

The BPELCaller does not
get a response because the
caller thread returns before
the request is handled. The
BPELCallee transaction is
rolled back if the fault is
not handled. The message
is lost because it is not
saved in the database.

Introduction to Execution of One-way Invocations

Transaction and Fault Propagation Semantics in BPEL Processes 13-5

13.3 Executing a Business Process Without a Transaction
You can execute a business process without the need for a transaction. A transaction is
only used at the following points in the process execution:

• At the dehydration point when the internal processing state must be stored in the
back end data store.

• When storing the audit trail or instance tracking-related data during process
execution.

13.3.1 When Should I Use a BPEL Process Without a Transaction?
Executing a business process without a transaction is beneficial in scenarios similar to
the following:

• Assume you have a BPEL process in which a flowN activity spawns 2000
branches. Each branch invokes a remote synchronous web service that takes 500
ms to respond. Because the BPEL process service engine executes flowN branches
individually in a single thread, processing all 2000 branches with each one
invoking a synchronous web service takes close to 1000 seconds and the instance
does not have access to the dehydration point during this processing. The
transaction can extend for 1000 seconds and can time out (the default transaction
timeout setting is 300 seconds). Everything can be performed directly in memory
without the need for a transaction.

• The duration of a transaction gets tied up with the life cycle of business process
execution. For example, assume an asynchronous BPEL process includes a receive
activity followed by an assign activity in which a complex XSL transformation
performed on a large document takes 30 seconds. This is followed by a callback to
the client. If executed in a transaction, the BPEL process service engine starts the
transaction at the receive activity and holds a lock inside the database on the
instance while the instance is executing.

As an alternative, all activities can be performed in memory and discarded if an
error occurs. A transaction is not required because a database update does not
occur during instance execution. A transaction is only required once instance
execution reaches the dehydration point, where the BPEL process service engine
updates the instance state, and so on.

• Assume a BPEL process invokes another service or partner link that is
synchronous and participates in a BPEL process service engine's JTA transaction
(for example, if a BPEL process invokes the TaskServiceBean, which has
TransactionAttribute=REQUIRED, and there is a TaskServiceBean time
out and the transaction is roll backed). Even the BPEL process service engine's JTA
transaction gets rolled back and the BPEL process is unable to handle the error
from the TaskServiceBean.

• If a business process invokes a synchronous service and that service is performing
complex work that takes a considerable amount of time, the BPEL process service
engine transaction can time out. Even though the synchronous service is
performing correctly, the BPEL process service engine rolls back once the business
process gets a response from a remote service.

Executing a Business Process Without a Transaction

13-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

13.3.2 Guidelines for Executing Without a Transaction
To execute a business process without a transaction, select notSupported from the
Transaction list when creating a BPEL process in the Create BPEL Process dialog.

When set, the following behavior occurs:

• All XA distributed transaction benefits are disabled.

When a business process is configured to run in non-transactional mode, the
instance execution is not wrapped in an XA transaction, resulting in potential
duplicate instances, but no loss of message(s). As there is no overhead of a
transaction, the non-transactional mode provides better performance. You can use
the non-transactional option where duplicate instances are acceptable.

• The business process cannot invoke any partner that expects to participate in a
transaction (that is, the partner has the TransactionAttribute set to
MANDATORY).

• The invoke from the business process is fire and forget (that is, once the invoke is
finished, it is delivered to the partner. Even if the invoker's transaction rolls back
afterwards, the invoke message is not rolled back).

Even with bpel.config.transaction set to notSupported, the dehydration
point starts a transaction to save the internal BPEL process engine state into the back
end. This means the dehydration concept still applies for the business process. This
feature only guarantees that business process activities such as an assign, an invoke,
and others are executed without a transaction.

This property configures the transaction behavior of a BPEL instance in the case of
initiating calls. Table 13-5 describes the behavior of the BPEL instance based on the
bpel.config.transaction property setting.

Table 13-5 BPEL Process Instance Behavior Based on transaction Property Settings

Transaction Type transaction = requiresNew transaction = required transaction = notSupported

Request/response
(initiating)

A new transaction is
created for the execution.
The existing transaction (if
there is one) is suspended.

The process joins a
caller's transaction (if
there is one) or creates a
new transaction (if there
is not a transaction).

Business process activities are
executed without a transaction.
The transaction is only used to
save internal service engine/
instance state and audit details.
Any bpelx:rollback fault is
not propagated back to the client
because the current instance
does not participate in the
client's transaction.

One-way (initiating,
bpel.config.one
WayDeliveryPoli
cy=sync)

A new transaction is
created for the execution
and the existing transaction
(if there is one) is
suspended.

The invoke message is
processed using the
same thread in the same
transaction.

Business process activities are
executed without a transaction.
A transaction is only used to
save internal service engine/
instance state and audit details.
Any bpelx:rollback fault is
not propagated back to the
client.

Executing a Business Process Without a Transaction

Transaction and Fault Propagation Semantics in BPEL Processes 13-7

Table 13-5 (Cont.) BPEL Process Instance Behavior Based on transaction Property Settings

Transaction Type transaction = requiresNew transaction = required transaction = notSupported

One-way
asynchronous

Not applicable. Not applicable. Business process activities are
executed without a transaction.
The transaction is only used to
save internal service engine/
instance state and audit details.

13.3.3 How to Create a Synchronous BPEL Process Without a Transaction
You can create a synchronous BPEL process without a transaction in the Create BPEL
Process dialog.

To create a synchronous BPEL process without a transaction:

1. Create a BPEL process service component in the SOA composite application, as
described in How to Add a BPEL Process Service Component.

2. From the Template list, select Synchronous BPEL Process.

3. From the Transaction list, select notSupported. Figure 13-1 provides details.

Figure 13-1 Create BPEL Process Dialog

4. Click OK.

13.3.4 How to Create an Asynchronous BPEL Process Without a Transaction
You can create an asynchronous BPEL process without a transaction in the Create
BPEL Process dialog.

Executing a Business Process Without a Transaction

13-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To create an asynchronous BPEL process without a transaction:

1. Create a BPEL process service component in the SOA composite application, as
described in How to Add a BPEL Process Service Component.

2. From the Template list, select Asynchronous BPEL Process.

3. From the Delivery list, select sync.

The dialog is refreshed to display the Transaction list.

4. From the Transaction list, select notSupported. Figure 13-2 provides details.

Figure 13-2 Create BPEL Process Dialog

5. Click OK.

13.4 Using In-Memory SOA to Improve System Performance
You can leverage the Coherence cache associated with WebLogic Server to run your
non-transactional business processes in memory. This improves performance and
scalability for these business processes, as read and write operations are performed
out of the cache. Database performance and management also improves, as the costs
associated with continuous disk reads and writes are significantly reduced.

Note: This SOA Suite feature is part of Oracle Integration Continuous
Availability. Please refer to the Oracle Fusion Middleware Licensing Information
for more details on Oracle SOA Suite for Middleware Options.

In-memory SOA enables short-running processes to live in memory. The process state
gets written to the database only when faulted, or at regular, deferred intervals using a
write-behind thread. The BPEL state information is dehydrated and rehydrated to/
from the Coherence cache.

Using In-Memory SOA to Improve System Performance

Transaction and Fault Propagation Semantics in BPEL Processes 13-9

Enable In-Memory SOA

Enable In-Memory SOA through: SOA Administration > common properties >
inMemoryEnvironment.

The WLST Script is /net/slc07yxw/scratch/share/wlst/
enableInMemory.py (it assumes server is running at default port 7001. userid:
weblogic password:weblogic1. Make a copy and update it for your environment).

connect('weblogic', 'weblogic1') custom() cd('oracle.as.soainfra.config/
oracle.as.soainfra.config:name=soa-infra,type=SoaInfraConfig,Application=soa-infra')
set('InMemoryEnvironment', true)
exit()

13.4.1 Persistence Settings for In-Memory Flow Instances
The persistence settings for the components comprising a business flow determine
when the flow, state, and audit data is persisted to the cache, or the database. This also
impacts the flow instance data that appears in Enterprise Manager Fusion Middleware
Control.

Table 13-6 lists the various persistence settings and their impact on flow, state, audit,
and sensor data.

Table 13-6 Persistence Settings for In-Memory Flow Instances

Completion
Persist
Policy

Description Businesss Flow
Instances in Enterprise
Manager

Immediate The flow trace, BPEL audit trace, and flow instance
state data is always persisted to the database.

The behavior is the
same as if in-memory
SOA is not enabled.

Deferred All flow, audit, and state data is initially persisted to
the Coherence cache. A separate write-behind
thread performs a deferred write of the cache to the
database. The write-behind thread wakes up at
periodic intervals, the default being 5 minutes.
The number of database round-trips is reduced, and
only coalesced data is written to the database every
time the write-behind thread wakes up.

You should see all flow
instances in Enterprise
Manager Fusion
Middleware Control.
However, as the write-
behind thread writes to
the database at deferred
intervals, the flow data
updates happen at
intervals determined by
the write-behind
thread. Enterprise
Manager reads its data
from the database.

Using In-Memory SOA to Improve System Performance

13-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 13-6 (Cont.) Persistence Settings for In-Memory Flow Instances

Completion
Persist
Policy

Description Businesss Flow
Instances in Enterprise
Manager

Faulted The flow trace, BPEL audit trace, and flow instance
state data is not persisted for successful executions.
If the flow encounters a fault, then all data is
persisted to the database. Once the flow has been
recovered, all flow data is purged.
If a component reaches dehydration point, then the
state data is persisted to the Coherence cache.

For long running flows that span write delay
intervals, the write-behind thread does temporarily
persist the state of running instances to the database.
These are purged after the instances complete
execution.

For flows that use the
faulted completion
persist policy, you
should not see flow
instances in Enterprise
Manager Fusion
Middleware Control,
except for faulted flow
instances.
Note that long-running
flow instances might
transiently show up in
Enterprise Manager, as
and when they are
persisted to the
database by the write-
behind thread.
However, this data is
purged after the flow
instance completes.

The string values immediate, deferred, and faulted are case-insensitive.

As business flows can span composites and components, persistence for a flow
comprising components with different persistence settings is determined by the
components that persist. So, even if one component is configured to persist to the
database, then all components in the flow will persist to the database.

For example, if you have a BPEL component with persistence set to deferred and
another BPEL component in the same flow has persistence set to immediate, then
the immediate setting overrides the deferred setting, and all flow instance state
and flow audit trace data is persisted immediately to the database. Similarly, if you
have all components set to faulted, but even one component is set to deferred,
then the persistence setting defaults to deferred and flow state and audit data is
persisted.

Note:

• The component state and component audit trace is persisted based on the
persistence policy applied to the component. The flow instance state and
flow audit trace is determined by the override rule. So, immediate
overrides deferred overrides faulted.

• Sensor data is persisted per the flow data. If flow is persisted to the
database, then sensor data is also persisted to the database.

Write Delay for In-Memory Flows

The default interval used by the write-delay thread is 5 minutes. This means that the
data is copied from the cache to the database every 5 minutes.

Using In-Memory SOA to Improve System Performance

Transaction and Fault Propagation Semantics in BPEL Processes 13-11

If you have a strong case to modify this, say, if most of your BPEL processes complete
in 6 minutes, as opposed to 5 minutes, and you wish to tweak the write-delay in order
to reduce your database writes, you can set the following server start argument for
your SOA server:

-Dsoa.cache.writebehindDelay=6m

The WebLogic Server Administration Console can be used to set server start
arguments.

13.4.2 Steps to Enable In-Memory SOA
To enable In-Memory SOA, you need to set the in-memory SOA flag in Enterprise
Manager. In addition, you need to design your business processes to be non-
transactional, and to use the correct completion persist policy (faulted or
deferred).

The following steps are required.

1. Enabling the In-Memory SOA Flag

2. Designing Your Business Process to Run In-Memory

13.4.2.1 Enabling the In-Memory SOA Flag
If you have one or more business flows designed to run in-memory, you need to set
the InMemoryEnvironment flag in Enterprise Manager Fusion Middleware Control.
After you set the InMemoryEnvironment flag to true (default is false), SOA execution
is performed in-memory for components, composites, and flows that have been
designed to use this feature.

Use the following steps to set the SOA in-memory environment in Enterprise Manager
Fusion Middleware Control.

1. From the SOA Infrastructure menu, select SOA Administration > Common
Properties.

Using In-Memory SOA to Improve System Performance

13-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Alternatively, you can also select SOA Infrastructure Common Properties from
the SOA Composite menu on a composite page.

The SOA Infrastructure Common Properties page appears.

2. Click the More SOA Infra Advanced Configuration Properties... link near the
bottom of the page.

The System MBean Browser page appears. The attributes for the soa-infra
MBean, under Application Defined MBeans, are displayed in alphabetical
order.

3. Scroll down to the InMemoryEnvironment attribute. Set the Value field to true.

4. Click Apply near the top right of the page.

The SOA in-memory environment is now enabled.

Using In-Memory SOA to Improve System Performance

Transaction and Fault Propagation Semantics in BPEL Processes 13-13

13.4.2.2 Designing Your Business Process to Run In-Memory
To configure a business flow to run in-memory, you must design all the constituent
BPEL components to be non-transactional. In-memory SOA can only be used for non-
transactional business process as coherence cache does not support transnational
behavior at this point. Also, you must set the completion persist policy for all of your
BPEL processes to deferred or faulted.

Use the following settings, when adding a new BPEL process, in order to enable your
BPEL process to run in-memory.

1. On the General tab of the Create BPEL Process dialog, select notSupported for
Transaction.

2. Select the In Memory SOA tab to specify the completion persist policy.

Using In-Memory SOA to Improve System Performance

13-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

13.4.2.2.1 Setting an Existing Business Process to Be Non-Transactional

To ensure that your business process can use in-memory SOA, you must set up the
process to be non-transactional.

Use the following steps in JDeveloper to set your BPEL process to be non-
transactional.

Ensure that the SOA composite, containing the BPEL process, is open in JDeveloper.

1. Select the BPEL component in the composite view.

The Properties for the selected BPEL component appear in the Properties window.
If the Properties window is not visible, select Properties from the JDeveloper
Window menu.

2. If the bpel.config.transaction property appears in the Properties window,
select the property and click Edit. Else, click the Add button to add the property.

The Edit Property or Create Property dialog appears.

3. If you are adding the property, typebpel.config.transaction for the Name.

4. Type notSupported under Value.

Using In-Memory SOA to Improve System Performance

Transaction and Fault Propagation Semantics in BPEL Processes 13-15

5. Click OK.

The bpel.config.transaction property appears in the Properties window. Verify
that the Value column reads notSupported.

13.4.2.2.2 Setting the Completion Persist Policy for an Existing BPEL Process

To ensure that your business process can use in-memory SOA, you must set the
completion persist policy to deferred or faulted. When the BPEL process comes
across dehydration points, the state information is cached in memory, and not the
database.

Use the following steps in JDeveloper to set the completion persist policy for your
BPEL process.

Ensure that the SOA composite, containing the BPEL process, is open in JDeveloper.

1. Select the BPEL component in the composite view.

The Properties for the selected BPEL component appear in the Properties window.
If the Properties window is not visible, select Properties from the JDeveloper
Window menu.

2. Click the Add button to add the bpel.config.completionPersistPolicy
property.

The Create Property dialog appears.

3. Typebpel.config.completionPersistPolicy for the Name.

4. Type deferred or faulted under Value.

5. Click OK.

The bpel.config.completionPersistPolicy property appears in the Properties
window. Verify that the Value column reads deferred or faulted.

Using In-Memory SOA to Improve System Performance

13-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

14
Incorporating Java and Java EE Code in a

BPEL Process

This chapter describes how to incorporate sections of Java code into BPEL process
service components of SOA composite applications. It describes how to add custom
classes and JAR files, use the Java embedding activity, embed service data objects
(SDOs) with bpelx:exec, and implement a custom Connection Manager class with a
BPEL process.

This chapter includes the following sections:

• Introduction to Java and Java EE Code in BPEL Processes

• Incorporating Java and Java EE Code in BPEL Processes

• Adding Custom Classes and JAR Files

• Using Java Embedding in a BPEL Process in Oracle JDeveloper

• Embedding Service Data Objects with bpelx:exec

• Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager

You can also invoke a spring component. For more information, see Integrating the
Spring Framework in SOA Composite Applications.

14.1 Introduction to Java and Java EE Code in BPEL Processes
This chapter explains how to incorporate sections of Java code into a BPEL process.
This is particularly useful when there is Enterprise JavaBeans code that can perform
the necessary function, and you want to use the existing code rather than start over
with BPEL.

14.2 Incorporating Java and Java EE Code in BPEL Processes
There are several methods for incorporating Java and Java EE code in BPEL processes:

• Wrap as a Simple Object Access Protocol (SOAP) service

• Embed Java code snippets into a BPEL process with the bpelx:exec tag

• Use an XML facade to simplify DOM manipulation

• Use bpelx:exec built-in methods

• Use Java code wrapped in a service interface

Incorporating Java and Java EE Code in a BPEL Process 14-1

14.2.1 How to Wrap Java Code as a SOAP Service
You can wrap the Java code as a SOAP service. This method requires that the Java
application have a BPEL-compatible interface. A Java application wrapped as a SOAP
service appears as any other web service, which can be used by many different kinds
of applications. There are also tools available for writing SOAP wrappers.

14.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service
A Java application wrapped as a SOAP service has the following drawbacks:

• There may be reduced performance due to the nature of converting between Java
and SOAP, and back and forth.

• Since SOAP inherently has no support for transactions, this method loses atomic
transactionality, that is, the ability to perform several operations in an all-or-none
mode (such as debiting one bank account while crediting another, where either
both transactions must be completed, or neither of them are completed).

14.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag
You can embed Java code snippets directly into the BPEL process using the Java BPEL
exec extension bpelx:exec. The benefits of this approach are speed and
transactionality. It is recommended that you incorporate only small segments of code.
BPEL is about separation of business logic from implementation. If you remove a lot of
Java code in your process, you lose that separation. Java embedding is recommended
for short utility-like operations, rather than business code. Place the business logic
elsewhere and call it from BPEL.

The server executes any snippet of Java code contained within a bpelx:exec activity,
within its Java Transaction API (JTA) transaction context.The BPEL tag bpelx:exec
converts Java exceptions into BPEL faults and then adds them into the BPEL
process.The Java snippet can propagate its JTA transaction to session and entity beans
that it calls.

For example, a SessionBeanSample.bpel file uses the bpelx:exec tag shown in
the following code to embed the invokeSessionBean Java bean:

 <bpelx:exec name="invokeSessionBean" language="java" version="1.5">
 <![CDATA[
 try {
 Object homeObj = lookup("ejb/session/CreditRating");
 Class cls = Class.forName(
 "com.otn.samples.sessionbean.CreditRatingServiceHome");
 CreditRatingServiceHome ratingHome = (CreditRatingServiceHome)
 PortableRemoteObject.narrow(homeObj,cls);
 if (ratingHome == null) {
 addAuditTrailEntry("Failed to lookup 'ejb.session.CreditRating'"
 + ". Ensure that the bean has been"
 + " successfully deployed");
 return;
 }
 CreditRatingService ratingService = ratingHome.create();

 // Retrieve ssn from scope
 Element ssn =
 (Element)getVariableData("input","payload","/ssn");

Incorporating Java and Java EE Code in BPEL Processes

14-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 int rating = ratingService.getRating(ssn.getNodeValue());
 addAuditTrailEntry("Rating is: " + rating);

 setVariableData("output", "payload",
 "/tns:rating", new Integer(rating));
 } catch (NamingException ne) {
 addAuditTrailEntry(ne);
 } catch (ClassNotFoundException cnfe) {
 addAuditTrailEntry(cnfe);
 } catch (CreateException ce) {
 addAuditTrailEntry(ce);
 } catch (RemoteException re) {
 addAuditTrailEntry(re);
 }
]]>
 </bpelx:exec>

14.2.4 How to Embed Java Code Snippets in a BPEL 2.0 Process
The examples in this chapter focus primarily on how to embed Java code snippets
with the bpelx:exec extension. For BPEL projects that support version 2.0 of the
BPEL specification, the syntax is slightly different. The bpelx:exec extension and
Java code are wrapped in an <extensionActivity> element. The following
example provides details.

<extensionActivity>
 <bpelx:exec language="java">
 <![CDATA[
 java code
]]>
 </bpelx:exec>
</extensionActivity>

When you drag a Java Embedding activity into a BPEL process in Oracle BPEL
Designer, the <extensionActivity> element and bpelx:exec tag are
automatically added.

The following example shows the import syntax for BPEL 2.0:

<import location="class/package name"
 importType="http://schemas.oracle.com/bpel/extension/java"/>

Note:

The BPEL 2.0 import syntax differs from BPEL 1.1, which uses the following
syntax:

<bpelx:exec import="class/package name"/>

The following example shows a BPEL file with two Java embedding activities for a
project that supports BPEL version 2.0.

<process name="Test" targetNamespace="http://samples.otn.com/bpel2.0/ch10.9"
 . . .
 . . .
 <import location="oracle.xml.parser.v2.XMLElement"
 importType="http://schemas.oracle.com/bpel/extension/java"/>
. . .
 <sequence>

Incorporating Java and Java EE Code in BPEL Processes

Incorporating Java and Java EE Code in a BPEL Process 14-3

 . . .
<extensionActivity>
 <bpelx:exec language="java">
 XMLElement elem = (XMLElement) getVariableData("output", "payload");
 elem.setTextContent("set by java exec");
 </bpelx:exec>
 </extensionActivity>

 <extensionActivity>
 <bpelx:exec language="java">
 <![CDATA[XMLElement elem = (XMLElement) getVariableData("output",
 "payload");
 String t = elem.getTextContent();
 elem.setTextContent(t + ", set by java exec 2");]]>
 </bpelx:exec>
 </extensionActivity>
 . . .
 </sequence>
</process>

For information about using this activity, see Using Java Embedding in a BPEL Process
in .

14.2.5 How to Use an XML Facade to Simplify DOM Manipulation
You can use an XML facade to simplify DOM manipulation. provides a lightweight
Java Architecture for XML Binding (JAXB)-like Java object model on top of XML
(called a facade). An XML facade provides a Java bean-like front end for an XML
document or element that has a schema. Facade classes can provide easy manipulation
of the XML document and element in Java programs.

You add the XML facade by using a createFacade method within the bpelx:exec
statement in the .bpel file. The following provides an example:

 <bpelx:exec name= ...
 <![CDATA
 ...
 Element element = ...
 (Element)getVariableData("input","payload","/loanApplication/"):
 //Create an XMLFacade for the Loan Application Document
 LoanApplication xmlLoanApp=
 LoanApplicationFactory.createFacade(element);
 ...

14.2.6 How to Use bpelx:exec Built-in Methods
Table 14-1 lists a set of bpelx:exec built-in methods that you can use to read and
update scope variables, instance metadata, and audit trails.

Table 14-1 Built in Methods for bpelx:exec

Method Name Description

Object lookup(String name) JNDI access

long getInstanceId() Unique ID associated with each instance

String setTitle(String title) /
String getTitle()

Title of this instance

Incorporating Java and Java EE Code in BPEL Processes

14-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 14-1 (Cont.) Built in Methods for bpelx:exec

Method Name Description

String setStatus(String status) /
String getStatus()

Status of this instance

void
setCompositeInstanceTitle(String
title)

Sets the composite instance title

void setIndex(int i, String
value) / String getIndex(int i)

Six indexes can be used for a search

void setCreator(String creator) /
String getCreator()

Who initiated this instance

void setCustomKey(String
customKey) / String getCustomKey()

Second primary key

void setMetadata(String
metadata) / String getMetadata ()

Metadata for generating lists

String getPreference(String key) Access preference

void addAuditTrailEntry(String
message, Object detail)

Add an entry to the audit trail

void addAuditTrailEntry(Throwable
t)

Access a file stored in the archive

Object getVariableData(String name)
throws BPELFault

Access and update variables stored in the
scope

Object getVariableData(String name,
String partOrQuery) throws
BPELFault

Access and update variables

Object getVariableData(String name,
String part, String query)

Access and update variables

void setVariableData(String name,
Object value)

Set variable data

void setVariableData(String name,
String part, Object value)

Set variable data

void setVariableData(String name,
String part, String query, Object
value)

Set variable data

14.2.7 How to Use Java Code Wrapped in a Service Interface
Not all applications expose a service interface. You may have a scenario in which a
business process must use custom Java code. For this scenario, you can:

• Write custom Java code.

• Create a service interface in which to embed the code.

Incorporating Java and Java EE Code in BPEL Processes

Incorporating Java and Java EE Code in a BPEL Process 14-5

• Invoke the Java code as a web service over SOAP.

For example, assume you create a BPEL process service component in a SOA
composite application that invokes a service interface through a SOAP reference
binding component. For this example, the service interface used is an Oracle
Application Development Framework (ADF) Business Component.

The high-level instructions for this scenario are as follows.

To use Java code wrapped in a service interface:

1. Create an Oracle ADF Business Component service in Oracle JDeveloper.

This action generates a WSDL file and XSD file for the service.

2. Create a SOA composite application that includes a BPEL process service
component. Ensure that the BPEL process service component is exposed as a
composite service. This automatically connects the BPEL process to an inbound
SOAP service binding component.

3. Import the Oracle ADF Business Component service WSDL into the SOA
composite application.

4. Create a web service binding to the Oracle ADF Business Component service
interface.

5. Design a BPEL process in which you perform the following tasks:

a. Create a partner link for the Oracle ADF Business Component service
portType.

b. Create an assign activity. For this example, this step copies data (for example,
a static XML fragment) into a variable that is passed to the Oracle ADF
Business Component service.

c. Create an invoke activity and connect to the partner link you created in Step
55.a.

6. Connect (wire) the partner link reference to the composite reference binding
component. This reference uses a web service binding to enable the Oracle ADF
Business Component service to be remotely deployed.

7. Deploy the SOA composite application.

8. Invoke the SOA application from the Test Web Service page in Oracle Enterprise
Manager Fusion Middleware Control.

For more information on creating Oracle ADF Business Components, see Developing
Fusion Web Applications with Oracle Application Development Framework.

For more information on invoking a SOA composite application, see Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

14.3 Adding Custom Classes and JAR Files
You can add custom classes and JAR files to a SOA composite application. A SOA
extension library for adding extension classes and JARs to a SOA composite
application is available in the $ORACLE_HOME/soa/modules/
oracle.soa.ext_11.1.1 directory. For Oracle JDeveloper, custom classes and
JARs are added to the application_name/project/sca-inf/lib directory.

Adding Custom Classes and JAR Files

14-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

14.3.1 How to Add Custom Classes and JAR Files
If the classes are used in bpelx:exec, you must also add the JARs with the
BpelcClasspath property in the System MBean Browser of Oracle Enterprise Manager
Fusion Middleware Control.

14.3.1.1 To Add JARs to BpelcClasspath:

1. From the SOA Infrastructure menu, select SOA Administration > BPEL
Properties.

2. At the bottom of the BPEL Service Engine Properties page, click More BPEL
Configuration Properties.

3. Click BpelcClasspath.

4. In the Value field, specify the class path.

5. Click Apply.

6. Click Return.

In addition, ensure that the JARs are loaded by the SOA composite application.

14.3.1.2 To Add Custom Classes:

1. Copy the classes to the classes directory.

2. Restart Oracle WebLogic Server.

14.3.1.3 To Add Custom JARs:

1. Copy the JAR files to this directory or its subdirectory.

2. Run ant.

3. Restart Oracle WebLogic Server.

14.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper
In Oracle JDeveloper, you can add the bpelx:exec activity and copy the code
snippet into a dialog.

Note:

For custom classes, you must include any JAR files required for embedded
Java code in the BpelcClasspath property in the System MBean Browser of
Oracle Enterprise Manager Fusion Middleware Control. See How to Add
Custom Classes and JAR Files for instructions. The JAR files are then added to
the class path of the BPEL loader. If multiple JAR files are included, they must
be separated by a colon (:) on UNIX or a semicolon (;) on Windows.

Using Java Embedding in a BPEL Process in Oracle JDeveloper

Incorporating Java and Java EE Code in a BPEL Process 14-7

14.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper

To use Java embedding in a BPEL process in Oracle JDeveloper:

1. From the Components window, expand Oracle Extensions.

2. Drag the Java Embedding activity into the designer.

3. Click the Java Embedding activity to display its property fields in the Property
Inspector or double-click the Java Embedding activity to display the Java
Embedding dialog.

For information about editing activities in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

4. In the Name field, enter a name.

5. In the Code Snippet field, enter (or cut and paste) the Java code. Figure 14-1
provides details.

Figure 14-1 bpel:exec Code Example

Note:

As an alternative to writing Java code in the Java Embedding activity, you can
place your Java code in a JAR file, put it in the class path, and call your
methods from within the Java Embedding activity.

Using Java Embedding in a BPEL Process in Oracle JDeveloper

14-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

14.4.2 What You May Need to Know About Using thread.sleep() in a Java Embedding
Activity

If you create and deploy a BPEL process that uses thread.sleep() in a Java
Embedding activity, the executing thread is blocked and the transaction associated
with that thread is prevented from committing. This causes BPEL instances to appear
only after the wait is over, which is the expected behavior.

Instead, use a wait activity, which releases the resource upon entering the activity and
enables the ongoing transaction to commit and the BPEL instance data to hydrate into
the data store.

14.5 Embedding Service Data Objects with bpelx:exec
You can embed SDO code in the .bpel file with the bpelx:exec tag. In the syntax
provided in the following example, mytest.apps.SDOHelper is a Java class that
modifies SDOs.

</bpelx:exec>
<bpelx:exec name="ModifyInternalSDO" version="1.5" language="java">
 <![CDATA[try{
 Object o = getVariableData("VarSDO");
 Object out = getVariableData("ExtSDO");
 System.out.println("BPEL:Modify VarSDO... " + o + " ExtSDO: " + out);
 mytest.apps.SDOHelper.print(o);
 mytest.apps.SDOHelper.print(out);
 mytest.apps.SDOHelper.modifySDO(o);
 System.out.println("BPEL:After Modify VarSDO... " + o + " ExtSDO: " + out);
 mytest.apps.SDOHelper.print(o);
 mytest.apps.SDOHelper.print(out);
 }catch(Exception e)
 {
 e.printStackTrace();
}]]>
 </bpelx:exec>

The following provides an example of the Java classes modifySDO(o) and print(o)
that are embedded in the BPEL file:

public static void modifySDO(Object o){
 if(o instanceof commonj.sdo.DataObject)
 {
 ((DataObject)o).getChangeSummary().beginLogging();
 SDOType type = (SDOType)((DataObject)o).getType();
 HelperContext hCtx = type.getHelperContext();
 List<DataObject> lines =
 (List<DataObject>)((DataObject)o).get("line");
 for (DataObject line: lines) {
 line.set("eligibilityStatus", "Y");
 }
 } else {
 System.out.println("SDOHelper.modifySDO(): " + o + " is not a
 DataObject!");
 }
 }
. . .
. . .
 public static void print(Object o) {
 try{

Embedding Service Data Objects with bpelx:exec

Incorporating Java and Java EE Code in a BPEL Process 14-9

 if(o instanceof commonj.sdo.DataObject)
 {
 DataObject sdo = (commonj.sdo.DataObject)o;
 SDOType type = (SDOType) sdo.getType();
 HelperContext hCtx = type.getHelperContext();
 System.out.println(hCtx.getXMLHelper().save(sdo, type.getURI(),
 type.getName()));
 } else {
 System.out.println("SDOHelper.print(): Not a sdo " + o);
 }
 }catch(Exception e)
 {
 e.printStackTrace();
 } }

14.6 Sharing a Custom Implementation of a Class with Oracle BPEL
Process Manager

When you implement a custom Connection Manager class with the same name as a
class used by Oracle BPEL Process Manager, you must ensure that the custom class
does not override the class used by Oracle BPEL Process Manager.

For example, assume the following is occurring:

• You are using embedded Java in a BPEL project.

• The Connection Manager custom class is overriding the BPEL Connection
Manager class.

• A java.lang.NoClassDefFoundError is occurring at runtime.

14.6.1 How to Configure the BPEL Connection Manager Class to Take Precedence

To configure the BPEL Connection Manager class to take precedence:

1. Start Oracle JDeveloper.

2. Highlight the BPEL project.

3. From the Edit main menu, select Properties.

4. Select Libraries and Classpath.

5. Click Add JAR/Directory.

6. Navigate to the location of the custom JAR file, and click Select.

This adds the custom Connection Manager JAR file to the classpath.

7. Click OK.

8. Redeploy the BPEL project and retest.

Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager

14-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

15
Using Events and Timeouts in BPEL

Processes

This chapter describes how to use events and timeouts. It describes how to create a
pick activity to select to continue a process or wait, set timeouts for request-response
operations on receive activities, create wait activities to set an expiration time, create
OnEvent branches in BPEL 2.0 to wait for message arrival, set timeouts on
synchronous processes, and invoke an Oracle Enterprise Scheduler job in a BPEL
process.

This chapter includes the following sections:

• Introduction to Event and Timeout Concepts

• Selecting Between Continuing or Waiting on a Process with a Pick Activity

• Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

• Setting an Expiration Time with a Wait Activity

• Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL
2.0

• Setting Timeouts for Durable Synchronous Processes

• Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15.1 Introduction to Event and Timeout Concepts
Because web services can take a long time to return a response, a BPEL process service
component must be able to time out and continue with the rest of the flow after a
period.

This chapter provides an example of how to program a BPEL process service
component to wait one minute for a response from a web service named Star Loan
that provides loan offers. If Star Loan does not respond in one minute, then the BPEL
process service component automatically selects an offer from another web service
named United Loan. In the real world, the time limit is more like 48 hours. However,
for this example, you do not want to wait that long to see if your BPEL process service
component is working properly.

Because asynchronous web services can take a long time to return a response, a BPEL
process service component must be able to time out, or give up waiting, and continue
with the rest of the flow after a certain amount of time.

You can use a pick activity to configure a BPEL flow to either wait a specified amount
of time or to continue performing its duties. To set an expiration period for the time,
you can use the wait activity.

Using Events and Timeouts in BPEL Processes 15-1

15.2 Selecting Between Continuing or Waiting on a Process with a Pick
Activity

The pick activity provides two branches, each one with a condition. The branch that
has its condition satisfied first is executed. In the following example, one branch's
condition is to receive a loan offer, and the other branch's condition is to wait a
specified amount of time.

Figure 15-1 provides an overview. The following activities take place (in order of
priority):

1. An invoke activity initiates a service, in this case, a request for a loan offer from
Star Loan.

2. The pick activity begins next. It has the following conditions:

• onMessage

This condition has code for receiving a reply in the form of a loan offer from
the Star Loan web service. The onMessage code matches the code for
receiving a response from the Star Loan web service before a timeout was
added.

• onAlarm

This condition has code for a timeout of one minute. This time is defined as
PT1M, which means to wait one minute before timing out. In this timeout
setting:

– S is for seconds

– M for one minute

– H is for hour

– D is for day

– Y is for year

In the unlikely event that you want a time limit of 1 year, 3 days, and 15
seconds, you enter it as PT1Y3D15S. The remainder of the code sets the loan
variables selected and approved to false, sets the annual percentage rate
(APR) at 0.0, and copies this information into the loanOffer variable.

The time duration format is specified by the BPEL standard. For more
detailed information on the time duration format, see the duration section of
the most current XML Schema Part 2: Datatypes document at:

http://www.w3.org/TR/xmlschema-2/#duration

3. The pick activity condition that completes first is the one that the BPEL process
service component executes. The other branch is not executed.

Selecting Between Continuing or Waiting on a Process with a Pick Activity

15-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

http://www.w3.org/TR/xmlschema-2/#duration

Figure 15-1 Overview of the Pick Activity

An onMessage branch is similar to a receive activity in that it receives messages.
However, you can define a pick activity with multiple onMessage branches that can
wait for similar partner links and port types, but have different operations. Therefore,
separate threads and parallel processes can be invoked for each operation. This differs
from the receive activity in which there is only one operation. Another difference is
that you can create a new instance of a business process with a receive activity (by
selecting the Create Instance check box), but you cannot do this with a pick activity.

Note:

You can also create onMessage branches in BPEL 1.1 scope activities and
onAlarm branches in BPEL 1.1 and 2.0 scope activities. Expand the Scope
activity in Oracle JDeveloper, and browse the icons on the left side to find the
branch you want to add.

15.2.1 How To Create a Pick Activity

To create a pick activity:

1. In the , double-click the BPEL process service component.

2. In the Components window, expand BPEL Constructs > Structured Activities.

3. Drag a Pick activity into the designer.

The Pick activity includes an OnMessage branch. Figure 15-2 provides an example.

Selecting Between Continuing or Waiting on a Process with a Pick Activity

Using Events and Timeouts in BPEL Processes 15-3

Figure 15-2 Pick Activity

4. Click the OnMessage branch to display its property fields in the Property Inspector
or double-click the OnMessage branch.

For information about editing activities in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

5. Edit its attributes to receive the response from the loan service. Figure 15-3
provides an example.

Figure 15-3 OnMessage Branch

6. Select the Pick activity.

Icons for adding additional OnMessage branches and an OnAlarm branch are
displayed.

7. Click Add OnAlarm, as shown in Figure 15-4.

Selecting Between Continuing or Waiting on a Process with a Pick Activity

15-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 15-4 onAlarm Branch Creation

An OnAlarm branch is displayed.

8. Double-click the OnAlarm branch of the pick activity and set its time limit to 1
minute. Figure 15-5 provides an example.

Figure 15-5 OnAlarm Branch

9. Click OK.

15.2.2 What Happens When You Create a Pick Activity
The code segment in the following example defines the pick activity for this operation
after design completion:

 <pick>
 <!-- receive the result of the remote process -->
 <onMessage partnerLink="LoanService"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="loanOffer">

 <assign>

Selecting Between Continuing or Waiting on a Process with a Pick Activity

Using Events and Timeouts in BPEL Processes 15-5

 <copy>
 <from variable="loanOffer" part="payload"/>
 <to variable="output" part="payload"/>
 </copy>
 </assign>

 </onMessage>
 <!-- wait for one minute, then timesout -->
 <onAlarm for="PT1M">
 <assign>
 <copy>
 <from>
 <loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
 <providerName>Expired</providerName>
 <selected type="boolean">false</selected>
 <approved type="boolean">false</approved>
 <APR type="double">0.0</APR>
 </loanOffer>
 </from>
 <to variable="loanOffer" part="payload"/>
 </copy>
 </assign>
 </onAlarm>
</pick>

15.2.3 What You May Need to Know About Simultaneous onMessage Branches in BPEL
2.0

Oracle BPEL Process Manager's implementation of BPEL 2.0 does not support
simultaneous onMessage branches of a pick activity.

When a process has a pick activity with two onMessage branches as its starting
activity (both with initiate set to join in their correlation definitions) and an
invoking process that posts the invocations one after the other, it is assumed that both
invocations reach the same instance of the invoked process. However, in Oracle BPEL
Process Manager's implementation of BPEL 2.0, two instances of the invoked process
are created for each invocation.

This is the expected behavior, but it differs from what is described in the BPEL 2.0
specification.

For example, assume you have synchronous BPEL process A, which has a flow activity
with two parallel branches:

• Branch one invokes operation processMessage1 on asynchronous BPEL process B.

• Branch two invokes operation processMessage2 on asynchronous BPEL process B.
The invocation occurs after a five second wait. BPEL process A then waits on a
callback from BPEL process B and returns the output back to the client.

The idea is to create one instance of the invoked process and ensure that the second
invocation happens after the first instance is already active and running.

BPEL process B has a pick activity with createInstance set to yes. The pick
activity has two onMessage branches within it:

• One branch is for the processMessage1 operation. For this operation, it goes to
sleep for about 10 seconds.

• The other branch is for the processMessage2 operation. For this operation, it waits
for five seconds.

Selecting Between Continuing or Waiting on a Process with a Pick Activity

15-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Both operations have the same input message type and correlation is defined with
initiate set to join.The expectation is that the processMessage1 invocation is
invoked immediately and the BPEL process B instance is created, which should sleep
for ten seconds. After five seconds, the invoking process should then post the
processMessage2 invocation to BPEL process B and this invocation should go to the
already existing instance instead of creating a new one (since the correlation ID is the
same and initiate is set to join).

However, for each invocation, a new instance of BPEL process B is created and the
result cannot be predicted.

• If the processMessage2 operation branch finishes first, then the subsequent assign
operation fails because the input variable from processMessage1 is assumed to be
null (for that instance).

• If the processMessage1 operation branch finishes first, then the process returns
callback data with only partial information (does not include the input from
processMessage2).

In Oracle BPEL Process Manager's implementation, either one of the two operations
(processMessage1 or processMessage2) creates a new instance. This is implemented so
that database queries do not need to be made to see if there are already instances
created.

The workaround is to create two processes that are initiated by the two different
operations.

15.3 Setting Timeouts for Request-Reply and In-Only Operations in
Receive Activities

You can provide a timeout setting for the following types of operations in BPEL
versions 1.1 and 2.0:

• Request-reply (synchronous) operations.

• In-only receive (asynchronous) operations. In this scenario, the receive activity
must be a midprocess activity and not the activity that creates a new instance (that
is, the Create Instance check box in the Receive dialog is selected).

This provides an alternative to using the onMessage and onAlarm branches of a pick
activity to specify a timeout duration for partner callbacks.

Figure 15-6 shows the Timeout tab of a midprocess receive activity in which you set a
timeout.

Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

Using Events and Timeouts in BPEL Processes 15-7

Figure 15-6 Timeout Tab of a Receive Activity

For information about key concepts to understand before setting timeouts for request-
reply and in-only operations in receive activities, see What You May Need to Know
About Setting Timeouts for Request-Reply and In-Only Operations.

For information about how to set a timeout in a receive activity in Oracle JDeveloper,
see How to Set Timeouts in Receive Activities.

15.3.1 How to Set Timeouts in Receive Activities
Set timeouts in the following scenarios:

• The Create Instance check box is deselected.

• The receive activity is in the middle of the BPEL process (in most cases)

To set timeouts in receive activities:

1. In the , double-click the BPEL process service component.

2. In the Components window, expand BPEL Constructs.

3. Drag a Receive activity into the designer.

4. Expand the activity.

5. Click the Timeout tab.

This tab enables you to set a timeout for request-response operations, as shown in
Figure 15-7.

Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

15-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 15-7 Timeout Tab

6. Specify appropriate values, and click Apply. For example:

• To specify a timeout setting relative from when the activity is invoked, click
the For button and enter a value or click the Expression button and specify an
XPath expression.

• To specify a timeout setting as an absolute deadline for a request-response
operation, click the Until button and enter a value or click the Expression
button and specify an XPath expression.

7. Click Apply, then OK.

15.3.2 What Happens When You Set Timeouts in Receive Activities
The code segment in the .bpel file defines the specific operation after design
completion.

For example, if you specified that the activity expects an inbound message to arrive no
later than five minutes after the activity has started execution, the syntax displays as
shown in the following example:

<bpelx:for="'PT5M'"/>

For example, if you specified that the activity expects an inbound message to arrive no
later than January 24, 2010 11:00 AM UTC+1 after the activity has started execution,
the syntax displays as shown in the following code:

<bpelx:until="'2010-01-24T11:00:00-08:00'"/>

Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

Using Events and Timeouts in BPEL Processes 15-9

For example, if you specified an XPath expression to obtain a value for a timeout
relative from when the activity is invoked, syntax similar to that shown in the
following code can display:

<bpelx:for="bpws:getVariableData('inputVariable','payload','/tns:waitValue/tns:for
')"/>

15.3.3 What You May Need to Know About Setting Timeouts for Request-Reply and In-
Only Operations

The following sections describe request-reply and in-only timeout operations
functionality:

• Timeout settings relative from activity invocation

• Timeout settings as an absolute date time

• Timeout settings computed dynamically with an XPath expression

• bpelx:timeout fault thrown during an activity timeout

• Events added to the BPEL instance audit trail during an activity timeout

• Recoverable timeout activities during a server restart

15.3.3.1 Timeout Settings Relative from When the Activity is Invoked

You can specify a timeout setting relative from when the activity is invoked. This
setting is specified as a relative duration using the syntax shown in the following
example for BPEL 1.1.

<receive | bpelx:for="duration-expr">
 standard-elements
</receive>

For BPEL 2.0, the syntax is as shown in the following example:

<receive | <bpelx:for>'duration-expr'</bpelx:for>
 standard-elements
</receive>

This type uses the bpelx:for attribute to specify a static value or an XPath
expression that must evaluate to an XML schema type duration. Only one of the
bpelx:for or bpelx:until attributes is permitted for an activity.

If the XPath expression evaluates to a negative duration, the timeout is ignored and an
event is logged to the instance audit trail indicating that the duration value is invalid.

Once a valid duration value is retrieved, the expiration date for the activity is set to the
current node time (or cluster time after this is available), plus the duration value. For
example, the duration value bpelx:for="'PT5M'" specifies that the activity expects
an inbound message to arrive no later than five minutes after the activity has started
execution.

Note:

The timeout setting attribute does not apply to the onMessage branch of a pick
activity because the same functionality currently exists with the onMessage
and onAlarm branches of that activity.

Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

15-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Timeout durations can only be specified on the following:

• Midprocess receive activities

• Receive activities that do not specify createInstance="true"

A receive activity can only time out after it has been instantiated, which is not the case
with entry receive activities.

15.3.3.2 Timeout Settings as an Absolute Date Time

You can specify a timeout setting as an absolute deadline for request-response receive
activities. For BPEL 2.0, the syntax is as shown in the following example:

<receive <bpelx:until>"deadline-expr"</bpelx:until>
</receive>

For BPEL 1.1, the syntax is as shown in the following example:

<receive bpelx:until="deadline-expr">
 standard-elements
</receive>

The expected expiration time for the bpelx:until attribute must be at least two
seconds ahead of the current time. Otherwise, the timer scheduling is ignored and
skipped, just as if the timer was never specified.

The bpelx:until attribute specifies a static value or an XPath expression that must
evaluate to an XML schema type datetime or date. Only one of the bpelx:for or
bpelx:until attributes is permitted for an activity.

XPath version 1.0 is not XML schema-aware. Therefore, none of the built-in functions
of XPath version 1.0 can create or manipulate dateTime or date values. However, it
is possible to perform one of the following:

• Write a constant (literal) that conforms to XML schema definitions and use that as
a deadline value.

• Extract a field from a variable (part) of one of these types and use that as a
deadline value.

XPath version 1.0 treats that literal as a string literal, but the result can be interpreted
as a lexical representation of a dateTime or date value.

Once a valid datetime or date value has been retrieved, the expiration date for the
activity is set to the specified date. For example, the datetime value
bpelx:until="'2009-12-24T18:00+01:00'" specifies that the activity expects
an inbound message to arrive no later than Dec 24, 2009 6:00 pm UTC+1 after the
activity has started execution.

Note:

The timeout setting attribute does not apply to the onMessage branch of a pick
activity because the same functionality currently exists with the onMessage
and onAlarm branches of the pick activity.

Timeout dates can only be specified on the following activities:

• Midprocess receives

Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

Using Events and Timeouts in BPEL Processes 15-11

• Receive activities that do not specify createInstance="true"

A receive activity can only time out after it has been instantiated, which is not the case
with entry receive activities.

15.3.3.3 Timeout Settings Computed Dynamically with an XPath Expression

The timeout setting for request-response receives, in-only receives (callback), and
onMessage branches of pick activities can be set using an XPath expression instead of
entering a static duration or datetime value. In this case, the value of the expression
must return either:

• A string that can be interpreted as a static XML duration or datetime value

• An XML schema duration or datetime type

The following example shows the syntax for using XPath expressions in BPEL 1.1.

<bpelx:for="bpws:getVariableData('input', 'payload',
 '/tns:waitValue/tns:for')"/>

<bpelx:until="bpws:getVariableData('input', 'payload',
 '/tns:waitValue/tns:until')"/>

If the returned expression value cannot be interpreted as an XML schema duration or
datetime type, an event is logged in the instance audit trail indicating that an invalid
duration and datetime value was specified, and no activity expiration time can be
set.

15.3.3.4 bpelx:timeout Fault Thrown During an Activity Timeout

If a valid XML schema duration or datetime value is returned from the bpelx:for
or bpelx:until attribute, a bpelx:timeout fault is thrown from the timed-out
activity. This fault can be caught by any catch or catchAll block and handled like a
regular BPEL fault. The message of the fault is the name of the activity. In addition, an
event is logged to the instance audit trail indicating that the activity has timed out
because the expected callback message failed to be received before the timeout
duration.

If the activity receives a callback from the partner before the timeout period, no fault is
thrown. If a callback is received while the activity is being timed out, the callback
message is not delivered to the activity and is marked as canceled in the delivery
message table. If a timeout action is attempted at the same time that a callback
message is handled, the timeout action is ignored. As of 11g Release 1, instances are
locked optimistically (as opposed to pessimistic locking in Release 10g). Therefore, the
second action in line is still performed.

The bpelx:timeout fault can be thrown from a BPEL component if the component
WSDL declares the fault on the operation. If the fault is not declared on the operation,
the fault is converted into a FabricInvocationException runtime fault. This fault
can be caught by any caller components (including BPEL components), but the fault
type is no longer bpelx:timeout. (However, the fault message string still indicates
that the fault was originally a timeout fault.)

15.3.3.5 Event Added to the BPEL Instance Audit Trail During an Activity Timeout

Once a bpelx:timeout fault is thrown from a timed-out activity, an event is logged
to the instance audit trail indicating that the activity has timed out, as opposed to
having received the expected callback message from its partner.

Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

15-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

15.3.3.6 Recoverable Timeout Activities During a Server Restart (Refresh Expiration
Alarm Table)

Activities that specify a valid timeout duration or datetime are likely implemented
in a similar manner to wait and onAlarm activities with an expiration date for the
underlying work item object. If the node that scheduled these activities with the
scheduler goes down (either through graceful shutdown or abrupt termination), all
these activities must be rescheduled with the scheduler upon server restart.

It is not possible to have a single node (the master node) in the cluster be responsible
for rescheduling these activities upon node shutdown.

15.4 Setting an Expiration Time with a Wait Activity
The wait activity allows a process to wait for a given time period or until a time limit
has been reached. Exactly one of the expiration criteria must be specified. A typical use
of this activity is to invoke an operation at a certain time. You typically enter an
expression that is dependent on the state of a process.

When specifying a time period for waiting, note the following:

• Wait times cannot be guaranteed if they are scheduled with other events that
require processing. Due to this additional processing, the actual wait time can be
greater than the wait time specified in the BPEL process.

• Wait times of less than two seconds are ignored by the server. Wait times above
two seconds, but less than one minute, may not get executed in the exact,
specified time. However, wait times in minutes do execute in the specified time.

• The default value of 2 seconds for wait times is specified with the MinBPELWait
property in the System MBean Browser of Oracle Enterprise Manager Fusion
Middleware Control. You can set this property to any value and the wait delay is
bypassed for any waits less than MinBPELWait.

Note:

Quartz version 1.6 is supported for scheduling expiration events on wait
activities.

15.4.1 How To Specify the Minimum Wait Time
You can specify the minimum time duration for a BPEL process to perform a wait that
involves a dehydration. If the wait duration is less than or equal to the value, BPEL
continues executing activities in the same thread and transaction.

To specify the minimum wait time:

1. From the SOA Infrastructure menu, select SOA Administration > BPEL
Properties.

2. At the bottom of the BPEL Service Engine Properties page, click More BPEL
Configuration Properties.

3. Click MinBPELWait.

Setting an Expiration Time with a Wait Activity

Using Events and Timeouts in BPEL Processes 15-13

4. In the Value field, specify a value in seconds.

5. Click Apply.

6. Click Return.

15.4.2 How to Create a Wait Activity

To create a wait activity:

1. In the Components window, expand BPEL Constructs.

2. Drag a Wait activity into the designer.

3. Double-click the Wait activity to display the Wait dialog.

4. In the For section, enter the amount of time for which to wait.

5. In the Until section, select the deadline for which to wait, as shown in Figure 15-8.

Figure 15-8 Wait Dialog

15.4.3 What Happens When You Create a Wait Activity
Exactly one of the expiration criteria must be specified, as shown in the following
example for BPEL 2.0.

<wait <for>'duration-expr'</for> | <until>'duration-expr'</until>
 standard-elements
 </wait>

The following example shows the BPEL 1.1 syntax.

<wait (for="duration-expr" | until="deadline-expr") standard-attributes>
 standard-elements
 </wait>

Setting an Expiration Time with a Wait Activity

15-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

15.5 Specifying Events to Wait for Message Arrival with an OnEvent
Branch in BPEL 2.0

You can create an onEvent branch in a scope activity that causes a specified event to
wait for a message to arrive. For example, assume you have a credit request process
that is initiated by a customer's credit request message. The request may be completely
processed without the need for further interaction, and the results submitted to the
customer. In some cases, however, the customer may want to inquire about the status
of the credit request, modify the request content, or cancel the request entirely while it
is being processed. You cannot expect these interactions to occur only at specific points
in the business processing. An event handler such as an onEvent branch enables the
business process to accept requests (such as status request, modification request, or
cancellation request) to arrive in parallel to the primary business logic flow.

The onEvent event handlers are associated with an enclosed scope. The onEvent event
handlers are enabled when their scope is initialized and disabled when their scope
ends. When enabled, any number of events can occur. They are processed in parallel
to the scope's primary activity and in parallel to each other. Message events also
represent service operations exposed by a process and modeled as onEvent elements.
Event handlers cannot create new process instances. Therefore, message events are
always received by a process instance that is already active.

15.5.1 How to Create an onEvent Branch in a Scope Activity

To create an onEvent branch in a scope activity:

1. In the expanded Scope activity, click Add OnEvent, as shown in Figure 15-9.

Figure 15-9 Add OnEvent Icon

This creates an OnEvent branch and an enclosed scope activity.

2. Double-click the OnEvent branch.

The OnEvent dialog is displayed, as shown in Figure 15-10.

Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0

Using Events and Timeouts in BPEL Processes 15-15

Figure 15-10 OnEvent Dialog

3. In the Partner Link field, click the Search icon to select the partner link that
contains the endpoint reference on which the message is expected to arrive.

The Port Type and Operation fields define the port type and operation invoked by
the partner to cause the event.

4. Specify a method for receiving the message from the partner through use of a
variable or From Parts element.

5. Click Apply, then click OK.

6. Continue the design of your BPEL process.

15.5.2 What Happens When You Create an OnEvent Branch
The following example provides an overview of onEvent branches in the .bpel file
after design completion. The onEvent branches inquire about the status of the credit
request, modify the request content, or cancel the request entirely while it is being
processed.

<process name="creditRequestProcess" . . .>
 . . .
 <eventHandlers>
 <onEvent partnerLink="requestCreditScore"
 operation="queryCreditRequestStatus" ...>
 <scope name="scopeStatus">...</scope>
 </onEvent>
 <onEvent partnerLink="requestCreditScore"
 operation="modifyCreditRequest" ...>
 <scope name="scopeRequest">...</scope>
 </onEvent>
 <onEvent partnerLink="requestCreditScore"
 operation="cancelCreditRequest" ...>

Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0

15-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <scope name="scopeCancel">...</scope>
 </onEvent>
 </eventHandlers>
 . . .
</process>

15.6 Setting Timeouts for Durable Synchronous Processes
For durable synchronous processes that connect to a remote database, you must
increase the SyncMaxWaitTime timeout property in the System MBean Browser of
Oracle Enterprise Manager Fusion Middleware Control.

For information on setting this property, see Specifying Transaction Timeout Values in
Durable Synchronous Processes.

15.7 Invoking an Oracle Enterprise Scheduler Job in a BPEL Process
You can invoke an Oracle Enterprise Scheduler job in a BPEL process. An Oracle
Enterprise Scheduler job is a unit of work in the form of either Java, a database stored
procedure, or any executable. A job definition is associated with Oracle Enterprise
Scheduler, which describes how to execute the job. An Oracle Enterprise Scheduler
web service submits the job from within a BPEL process and associates a schedule
with that job request.

The scheduled Oracle Enterprise Scheduler job resides in a runtime environment and
is accessible with an Oracle Metadata Services Repository (MDS Repository)
connection, using database-based access.

Note:

This section describes how to submit a job from a BPEL process, and not how
to wait for the job to complete. If you want the BPEL process to wait for the
job to complete, you must invoke the web service to request a callback when
the job completes and then perform a receive to get the callback. For more
information, see Chapter "Using the Oracle Enterprise Scheduler Web Service"
of Developing Applications for Oracle Enterprise Scheduler.

15.7.1 How to Create Oracle Database and SOA-MDS Connections

To create Oracle database and SOA-MDS connections:

1. Create a SOA composite application. For information, see Creating a SOA
Application.

2. Create a BPEL process in the SOA Composite Editor (for this example, a
synchronous BPEL process is created). For information, see How to Add a BPEL
Process Service Component.

3. Double-click the BPEL process in the SOA Composite Editor.

Oracle BPEL Designer is displayed.

4. Create an Oracle database connection. This is required for querying Oracle
Enterprise Scheduler jobs.

a. From the File main menu, select New > Application.

Setting Timeouts for Durable Synchronous Processes

Using Events and Timeouts in BPEL Processes 15-17

b. From the Categories list, select Connection.

c. Select Database Connection.

The Create Database Connection wizard is displayed.

d. Complete the dialogs of the Create Database Connection wizard to create the
connection to the Scheduler Oracle Metadata Services Repository database for
the runtime server where Oracle Enterprise Scheduler is deployed, and click
Finish.

5. Create a SOA-MDS connection. A database-based MDS Repository is used for
retrieving the jobs to select.

a. From the File main menu, select New > Application.

b. From the Categories list, select Connection.

c. Select SOA-MDS Connection.

The Create SOA-MDS Connection dialog is displayed.

d. From the Connection Type list, select DB Based MDS.

e. From the Connection list, ensure that the database connection created in Step
4 is displayed.

f. From the Select MDS partition list, select the partition that includes Oracle
Enterprise Scheduler jobs. For jobs defined in the Oracle Enterprise Scheduler
predeployed native hosting application, the MDS partition name is
essUserMetadata.

g. Complete the remaining fields of the dialog to create the SOA-MDS
connection, and click OK.

15.7.2 How to Create a Schedule Job Activity

To create a schedule job activity:

1. From the Components window, expand Oracle Extensions.

2. Drag a Schedule Job activity into the BPEL process, as shown in Figure 15-11.

Figure 15-11 Schedule Job Icon

Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. Double-click the activity to invoke the Edit Schedule Job dialog. Figure 15-12
provides details. This dialog enables you to specify the application, the description,
the Oracle Enterprise Scheduler job, the job schedule, and the job start time.

Figure 15-12 Edit Schedule Job Dialog - General Tab

4. Provide values appropriate to your environment, as described in Table 15-1, and
click OK,

Table 15-1 Edit Schedule Job Dialog - General Tab

Field Description

Application Displays the value of the selected job's SYS_effectiveApplication
property. This property must be set, or an error message is displayed
and you cannot proceed.

The editable state of this field depends on the selected job definition:

• If the selected job definition provides SYS_effectiveApplication,
then the value for this property is displayed and this field is not
editable.

• If the job definition does not provide SYS_effectiveApplication,
then this field is editable and you must specify the application
name in the User Defined Properties section of the System
Properties tab.

Name Specify the name of the job.

Description Specify a description for the request.

Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

Using Events and Timeouts in BPEL Processes 15-19

Table 15-1 (Cont.) Edit Schedule Job Dialog - General Tab

Field Description

Job Click the Search icon to invoke the Enterprise Scheduler Browser
dialog to select the job from the SOA-MDS connection. When you
select a job, any system or application properties defined for that job
are displayed in the Application Properties and System Properties
tabs.

Schedule Click the Search icon to invoke the Enterprise Scheduler Browser
dialog to select the job schedule. If not specified, the job is executed
immediately.

You define schedules in Oracle Enterprise Manager Fusion
Middleware Control. Those schedules are then displayed for selection
in the Enterprise Scheduler Browser dialog. For more information, see
"Creating or Editing Predefined Job Schedules" of Administering Oracle
Enterprise Scheduler.

Start Time Click the XPath Expression Builder icon to specify the start time as an
XPath expression. The start is separate from the schedule, and
indicates when the job takes effect. If a start time is not specified, the
start time is immediate.

End Time Click the XPath Expression Builder icon to specify the end time as an
XPath expression. The end is separate from the schedule, and indicates
when the job ends. If a schedule is not specified, this field is not
displayed.

5. Click the Application Properties tab. Application properties are unique to a
specific job. When you select an Oracle Enterprise Scheduler job in the Edit
Schedule Job dialog - General tab, the application properties defined in the job are
displayed in this dialog. You can also specify your own application properties in
the User Defined Properties section. Figure 15-13 provides details.

Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 15-13 Edit Schedule Job Dialog - Application Properties Tab

6. Provide values appropriate to your environment, as described in Table 15-2, and
click OK.

Table 15-2 Edit Schedule Job Dialog - Application Properties Tab

Field Description

Job Properties Displays the application properties defined by the job. Only
the values can be modified. The properties in this table
cannot be removed. Double-click a property to edit its value
or click the Browse icon to the right of the Value field to
specify an XPath expression.

User-Defined Properties Displays the application properties that you have added for
this request. You can add, modify, and remove properties in
this table.

7. Click the System Properties tab. System properties are parameters with names
reserved by Oracle Enterprise Scheduler. Oracle Enterprise Scheduler represents
parameter names that are known and used by the system in the SystemProperty
class. When you select an Oracle Enterprise Scheduler job in the Edit Schedule Job
dialog - General tab, the system properties defined in the job are displayed in this
dialog. You can also specify your own system properties in the User Defined
Properties section. Figure 15-14 provides details.

Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

Using Events and Timeouts in BPEL Processes 15-21

Figure 15-14 Edit Schedule Job Dialog - System Properties Tab

For more information about system properties, see Chapter "Using Parameters and
System Properties" of Developing Applications for Oracle Enterprise Scheduler.

8. Provide values appropriate to your environment, as described in Table 15-3, and
click OK to complete configuration.

Table 15-3 Edit Schedule Job Dialog - System Properties Tab

Field Description

Job Properties Displays the system properties defined by the job. Only the
values can be modified. Double-click a property to edit its
value or click the Browse icon to specify an XPath expression
in the Expression Builder dialog.

User-Defined Properties Displays the system properties that you have added for this
request. You can add, modify, and remove properties in this
table. Select from a fixed list of system property names in this
table.

The message shown in Figure 15-15 is displayed because the Oracle Enterprise
Scheduler web service includes an abstract WSDL.

Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 15-15 WSDL Message

A BPEL process requires the following:

• A concrete WSDL

• A WSDL with partner links

9. Click Yes.

A concrete wrapper WSDL is created for the abstract WSDL. The wrapper WSDL
includes an Oracle Enterprise Scheduler partner link that is added to the BPEL
process.

10. Expand the schedule job activity in the BPEL process to display its contents.
Figure 15-16 provides details.

Figure 15-16 Expanded Job Schedule Activity in a BPEL Process.

The expanded schedule job activity consists of the following automatically
configured activities:

• EssAssign activity: Contains copy rules operations for the system and
application properties and other job information.

• EssInvoke activity: Invokes the Oracle Enterprise Scheduler partner link.

• EssService activity: Contains the Oracle Enterprise Scheduler web service
partner link.

11. Go to the SOA composite application in the SOA Composite Editor.

12. In the External References swim lane, double-click the EssService partner link.

The Update Reference dialog is displayed.

Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

Using Events and Timeouts in BPEL Processes 15-23

13. In the WSDL URL field, specify a concrete WSDL for the reference binding
component, and click OK.

15.7.3 How to Attach Security Policies to the Service and Reference Binding
Components

To attach security policies to the service and reference binding components

1. Right-click the EssService reference binding component, and select Configure
SOA WS Policies > For Request.

The Configure SOA WS Policies dialog is displayed.

2. In the Security section, click the Add icon.

3. Select oracle/wss_username_token_client_policy, and click OK.

4. In the Configure SOA WS Policies dialog, click OK.

5. Right-click the service binding component, and select Configure SOA WS Policies.

The Configure SOA WS Policies dialog is displayed.

6. In the Security section, click the Add icon.

7. Select oracle/wss_username_token_service_policy, and click OK.

Design is now complete.

Note:

The Oracle Enterprise Scheduler web service is by default not secure. You
must first secure it with an Oracle Web Services Manager policy using a WLST
command or Oracle Enterprise Manager Fusion Middleware Control before
using that web service to submit a job from a BPEL process.

Invoking an Oracle Enterprise Scheduler Job in a BPEL Process

15-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

16
Coordinating Master and Detail Processes

This chapter describes how to coordinate master and detail processes in a BPEL
process. This coordination enables you to specify the tasks performed by a master
BPEL process and its related detail BPEL processes. This is sometimes referred to as a
parent and child relationship.

This chapter includes the following sections:

• Introduction to Master and Detail Process Coordinations

• Defining Master and Detail Process Coordination in Oracle JDeveloper

16.1 Introduction to Master and Detail Process Coordinations
Master and detail coordinations consist of a one-to-many relationship between a single
master process and multiple detail processes.

For example, assume a business process imports sales orders into an application. Each
sales order consists of a header (customer information, ship-to address, and so on) and
multiple lines (item name, item number, item quantity, price, and so on).

The following tasks are performed to execute the order:

• Validate the header. If the header is invalid, processing stops.

• Validate each line. If any lines are invalid, they are marked as invalid and
processing stops.

• Perform inventory checks for each item. If an item is not available, a work order is
created to assemble it.

• Stage items at the shipping dock after items for each line are available.

• Ship the order to the customer.

To perform these tasks, create a master process to check and validate each header and
multiple BPEL processes to check and validate each line item.

Potential coordination points are as follows:

• The master process must signal the detail processes that header validation is
successful and to continue processing.

• Each detail process must signal the master process after line item validation is
complete.

• Each detail process must signal the master process after the line item is available
in inventory.

Coordinating Master and Detail Processes 16-1

• After all line items are available, the master must signal each detail process to
move its line item to the shipping dock (the dock may become too crowded if
items are simply moved as soon as they are available).

• After all lines have been moved, the master process must execute logic to ship the
fulfilled order to the customer.

Figure 16-1 provides an overview of the header and line item validation coordination
points between one master process and two detail processes.

Figure 16-1 Master and Detail Coordination Overview (One BPEL Process to Two Detail Processes)

The following BPEL process activities coordinate actions between the master and
detail processes:

• Signal: notifies the other processes (master or detail) to continue processing

• Receive signal: waits until it receives the proper notification signal from the other
process (master or detail) before continuing its processing

Both activities are coordinated with label attributes defined in the BPEL process files.
Labels are declared per master process definition.

Figure 16-2 provides an overview of the BPEL process flow coordination.

Introduction to Master and Detail Process Coordinations

16-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 16-2 Master and Detail Syntax Overview (One BPEL Process to One Detail
Process)

As shown in Figure 16-2, each master and detail process includes a signal and receive
signal activity. Table 16-1 describes activity responsibilities based on the type of
process in which they are defined.

Table 16-1 Master and Detail Process Coordination Responsibilities

If A... Contains A... Then...

Master process Signal activity The master process signals all of its associated
detail processes at runtime.

Detail process Receive signal activity The detail process waits until it receives the
signal executed by its master process.

Detail process Signal activity The detail process signals its associated master
process at runtime that processing is complete.

Master process Receive signal activity The master process waits until it receives the
signal executed by all of its detail processes.

If the signal activity executes before the receive signal activity, the state set by the
signal activity is persisted and still effective for a later receive signal activity to read.

16.1.1 BPEL File Definition for the Master Process
The BPEL file for the master process defines coordination with the detail processes.
The BPEL file shows that the master process interacts with the partner links of several
detail processes. The following provides an example:

<process name="MasterProcess"
. . .
. . .
 <partnerLinks>
 <partnerLink name="client"
 partnerLinkType="tns:MasterProcess"
 myRole="MasterProcessProvider"
 partnerRole="MasterProcessRequester"/>

Introduction to Master and Detail Process Coordinations

Coordinating Master and Detail Processes 16-3

 <partnerLink name="DetailProcess"
 partnerLinkType="dp:DetailProcess"
 myRole="DetailProcessRequester"
 partnerRole="DetailProcessProvider"/>
 <partnerLink name="DetailProcess1"
 partnerLinkType="dp1:DetailProcess1"
 myRole="DetailProcess1Requester"
 partnerRole="DetailProcess1Provider"/>
 <partnerLink name="DetailProcess2"
 partnerLinkType="dp2:DetailProcess2"
 myRole="DetailProcess2Requester"
 partnerRole="DetailProcess2Provider"/>
 </partnerLinks>

A signal activity shows the label value and the detail process coordinated with this
master process. The label value (startDetailProcess) matches with the label value
in the receive signal activity of all detail processes. This ensures that the signal is
delivered to the correct process. There is one signal process per receive signal process.
The master process signals all detail processes at runtime. This syntax in the following
example shows a signal activity in a BPEL process that supports BPEL version 2.0.

<extensionActivity>
 <bpelx:signal name="notifyDetailProcess"
 label="startDetailProcess" to="details"/>
</extensionActivity>

Note:

In BPEL 1.1, the signal activity syntax is slightly different.

<bpelx:signal name="notifyDetailProcess" label="startDetailProcess"
to="details"/>

Assign, invoke, and receive activities describe the interaction between the master and
detail processes. This example shows interaction between the master process and one
of the detail processes (DetailProcess). Similar interaction is defined in this BPEL
file for all detail processes.

In the invoke activity, ensure that the Invoke as Detail check box is selected.
Figure 16-3 provides details.

Figure 16-3 Invoke As Detail Check Box

This selection creates the partner process instance (DetailProcess) as a detail
instance. You must select this check box in the invoke activity of the master process for
each detail process with which to interact. The following provides an example of the
BPEL file contents after you select the Invoke as Detail check box:

<assign>
 <copy>
 <from variable="input" part="payload" query="/tns:processInfo/tns:value"/>
 <to variable="detail_input" part="payload" query="/dp:input/dp:number"/>
 </copy>
</assign

Introduction to Master and Detail Process Coordinations

16-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<invoke name="receiveInput" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:invokeAsDetail="true"/>

<!-- receive the result of the remote process -->
<receive name="receive_DetailProcess" partnerLink="DetailProcess"
 portType="dp:DetailProcessCallback"
 operation="onResult" variable="detail_output"/>

The master BPEL process includes a receive signal activity. This activity indicates that
the master process waits until it receives a signal from all of its detail processes. The
label value (detailProcessComplete) matches with the label value in the signal
activity of each detail process. This ensures that the signal is delivered to the correct
process. The following code provides an example. This syntax shows a receive signal
activity in a BPEL process that supports BPEL version 2.0.

<extensionActivity>
 <bpelx:receiveSignal name="waitForNotifyFromDetailProcess"
 label="detailProcessComplete" from="details"/>
</extensionActivity>

Note:

In BPEL 1.1, the receive signal activity syntax is slightly different.

<bpelx:receiveSignal name="waitForNotifyFromDetailProcess"
 label="detailProcessComplete"
 from="details"/>

16.1.1.1 Correlating a Master Process with Multiple Detail Processes

For environments in which you have one master and multiple detail processes, use the
bpelx:detailLabel attribute for signal correlation. The following example shows
how to use this attribute.

The first invoke activity invokes the DetailProcess detail process and associates it
with a label of detailProcessComplete0.

<invoke name="invokeDetailProcess" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:detailLabel="detailProcessComplete0"
 bpelx:invokeAsDetail="true"/>

The second invoke activity invokes the DetailProcess1 detail process and
associates it with a label of detailProcessComplete1. The following provides an
example.

<invoke name="invokeDetailProcess1" partnerLink="DetailProcess1"
 portType="dp1:DetailProcess1"
 operation="initiate"
 inputVariable="detail_input1"
 bpelx:detailLabel="detailProcessComplete1-2"
 bpelx:invokeAsDetail="true"/>

Introduction to Master and Detail Process Coordinations

Coordinating Master and Detail Processes 16-5

The third invoke activity invokes the DetailProcess2 detail process again through
a different port and with a different input variable. It associates the DetailProcess2
detail process with a label of detailProcessComplete1-2, as shown in the
following example:

<invoke name="invokeDetailProcess2" partnerLink="DetailProcess2"
 portType="dp2:DetailProcess2"
 operation="initiate"
 inputVariable="detail_input2"
 bpelx:detailLabel="detailProcessComplete1-2"
 bpelx:invokeAsDetail="true"/>

The receive signal activity of the master process shown in the following example waits
for a return signal from detail process DetailProcess0.

<!-- This is a receiveSignal waiting for 1 child to signal back -->
<bpelx:receiveSignal name="waitForNotifyFromDetailProcess0"
label="detailProcessComplete0" from="details"/>

The second receive signal activity of the master process shown in the following
example also waits for a return signal from DetailProcess1 and
DetailProcess2.

<!-- This is a receiveSignal waiting for 2 child (detail) processes to signal back --
>
<bpelx:receiveSignal name="waitForNotifyFromDetailProcess1-2"
 label="detailProcessComplete1-2" from="details"/>

Note:

If there is only one receive signal activity in the BPEL process, do not specify
the bpelx:detailLabel attribute in the invoke activity. In these situations,
a default bpelx:detailLabel attribute is assumed and does not need to be
specified.

16.1.2 BPEL File Definition for Detail Processes
The BPEL process file of each detail process defines coordination with the master
process.

A receive signal activity indicates that the detail process shown in the following
example waits until it receives a signal executed by its master process. The label value
(startDetailProcess) matches with the label value in the signal activity of the
master process.

<bpelx:receiveSignal name="waitForNotifyFromMasterProcess"
 label="startDetailProcess" from="master"/>

A signal activity indicates that the detail process shown in the following example
signals its associated master process at runtime that processing is complete. The label
value (detailProcessComplete) matches with the label value in the receive signal
activity of each master process.

<bpelx:signal name="notifyMAsterProcess" label="detailProcessComplete"
 to="master"/>

Introduction to Master and Detail Process Coordinations

16-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

16.2 Defining Master and Detail Process Coordination in Oracle
JDeveloper

This section provides an overview of how to define master and detail process
coordination in Oracle BPEL Designer. In this example, one master process and one
detail process are defined.

Note:

This section only describes the tasks specific to master and detail process
coordination. It does not describe the standard activities that you define in a
BPEL process, such as creating variables, creating assign activities, and so on.

16.2.1 How to Create a Master Process

To create a master process:

1. In the , create a BPEL process service component. For this example, the process is
named MasterProcess.

2. Double-click the MasterProcess BPEL process.

3. In the Components window, expand Oracle Extensions > Signal.

4. Drag a Signal activity into the designer.

5. Click the Signal activity to display its property fields in the Property Inspector or
double-click the Signal activity.

For information about editing activities in the Property Inspector, see How to Edit
BPEL Activities in the Property Inspector.

This activity signals the detail process to perform processing at runtime.

6. Enter the details described in Table 16-2:

Table 16-2 Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, contactDetailProcess).

Label Enter a label name (for this example,
beginDetailProcess). This label must match the receive
signal activity label you set in the detail process in Step 6.

To Select details as the type of process to receive this signal.

Figure 16-4 shows the Signal dialog.

Defining Master and Detail Process Coordination in Oracle JDeveloper

Coordinating Master and Detail Processes 16-7

Figure 16-4 Signal Dialog

7. Click OK.

8. Drag a Receive Signal activity into the designer.

9. Double-click the Receive Signal activity.

This activity enables the master process to wait until it receives the signal executed
by all of its detail processes.

10. Enter the details shown in Table 16-3:

Table 16-3 Receive Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, waitForDetailProcess).

Label Enter a label name (for this example,
completeDetailProcess). This label must match the
signal activity label you set in the detail process in Step 10.

To Select details as the type of process from which to receive the
signal.

Figure 16-5 shows the Receive Signal dialog.

Defining Master and Detail Process Coordination in Oracle JDeveloper

16-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 16-5 Receive Signal Dialog

11. Click OK.

The master process has now been designed to:

• Signal the detail process to perform processing at runtime.

• Wait until it receives the signal executed by the detail process.

16.2.2 How to Create a Detail Process

To create a detail process:

1. In the , create a second BPEL process service component. For this example, the
process is named DetailProcess.

2. Double-click the DetailProcess BPEL process.

3. In the Components window, expand Oracle Extensions.

4. Drag a Receive Signal activity into your BPEL process service component.

5. Double-click the Receive Signal activity.

This activity enables the detail process to wait until it receives the signal executed
by its master process.

6. Enter the details shown in Table 16-4:

Table 16-4 Receive Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example,
WaitForContactFromMasterProcess).

Defining Master and Detail Process Coordination in Oracle JDeveloper

Coordinating Master and Detail Processes 16-9

Table 16-4 (Cont.) Receive Signal Dialog Fields and Values

Field Value

Label Enter a label name (for this example,
beginDetailProcess). This label must match the signal
activity label you set in the master process in Step 6.

To Select master as the type of process from which to receive the
signal.

Figure 16-6 shows the Receive Signal dialog.

Figure 16-6 Receive Signal Dialog

7. Click OK.

8. Drag a Signal activity into the designer.

9. Double-click the Signal activity.

This activity enables the detail process to signal its associated master process at
runtime that processing is complete.

10. Enter the details described in Table 16-5:

Table 16-5 Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, contactDetailProcess).

Label Enter a label name (for this example,
completeDetailProcess). This label must match the
receive signal activity label you set in the master process in
Step 10.

To Select master as the destination.

Defining Master and Detail Process Coordination in Oracle JDeveloper

16-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 16-7 shows the Signal dialog.

Figure 16-7 Signal Dialog

11. Click OK.

The detail process has now been designed to:

• Wait until it receives the signal executed by its master process.

• Signal the master process at runtime that processing is complete.

16.2.3 How to Create an Invoke Activity

To create an invoke activity:

1. Return to the MasterProcess master process.

2. In the Components window, expand BPEL Constructs.

3. Drag an Invoke activity into your BPEL process service component.

4. Double-click the Invoke activity.

5. Select the DetailProcess BPEL process you created in Step 1 as the partner link.

6. Select the Invoke as Detail check box.

7. Complete all remaining fields in the Invoke dialog, and click OK.

8. In the designer, click Source. The BPEL file appears as follows:

<invoke name="MyInvoke" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:invokeAsDetail name="true"/>

Defining Master and Detail Process Coordination in Oracle JDeveloper

Coordinating Master and Detail Processes 16-11

This attribute creates the partner process (DetailProcess) as a detail instance.

9. If this is an environment in which one master process is interacting with multiple
detail processes, perform the following tasks:

a. Specify the bpelx:detailLabel attribute for correlating with the receive
signal activity:

<invoke name="MyInvoke" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"/>
 bpelx:detailLabel="detailProcessComplete0"
 <bpelx:invokeAsdetail name="true"/>

b. Specify the same label value of detailProcessComplete0 in the receive
signal activity of the master process:

<bpelx:receiveSignal name="waitForNotifyFromDetailProcess0-1"
label="detailProcessComplete0" from="details"/>

c. Repeat these steps as necessary for additional detail processes, ensuring that
you specify a different label value.

10. From the File main menu, select Save All.

Master and detail coordination design is now complete.

Defining Master and Detail Process Coordination in Oracle JDeveloper

16-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

17
Using the Notification Service

This chapter describes how to send notifications from a BPEL process using a variety
of channels. A BPEL process can be designed to send email, voice message, instant
messaging (IM), or short message service (SMS) notifications. A BPEL process can also
be designed to consider an end user's channel preference at runtime for selecting the
notification channel.

This chapter includes the following sections:

• Introduction to the Notification Service

• Introduction to Notification Channel Setup

• Selecting Notification Channels During BPEL Process Design

• Allowing the End User to Select Notification Channels

17.1 Introduction to the Notification Service
Various scenarios may require sending email messages or other types of notifications
to users as part of the process flow. For example, certain types of exceptions that
cannot be handled automatically may require manual intervention. In this case, a
BPEL process can use the notification service to alert users by voice, IM, SMS, or email.

The contact information (email address, phone number, and so on) of the recipient is
either static (such as admin@yourcompany.com) or obtained dynamically during
runtime. To obtain the contact information dynamically, XPath expressions can
retrieve it from the identity store (LDAP) or extract it from the BPEL payload.

This chapter uses the following terms:

• Notification

An asynchronous message sent to a user by a specific channel. The message can
be sent as an email, voice, IM, or SMS message.

• Actionable notification

A notification to which the user can respond. For example, workflow sends an
email to a manager to approve or reject a purchase order. The manager approves
or rejects the request by replying to the email with appropriate content.

• Human task email notification layer

Sends email notifications directly from a BPEL process or implicitly from the
human task part of a BPEL process. Implicit notifications are modeled from the
Human Task Editor.

Using the Notification Service 17-1

For sending email notifications directly from a BPEL process, you must explicitly
specify the user information in the BPEL process. You can be inside or outside of a
human task scope.

For sending email notifications implicitly from the human task part of a BPEL
process, you only specify the recipient based on the relationship of the user with
regards to the task (that is, the creator, assignee, and so on).

Note:

Implicit notifications are processed through more layers of code than explicit
notifications. If explicit notifications are functioning correctly, it does not
mean that implicit notifications also function correctly.

• Oracle User Messaging Service

The BPEL notification service uses the underlying infrastructure provided by
Oracle User Messaging Service to send notifications.

Oracle User Messaging Service also provides the user preference infrastructure for
getting the end user's preferred channel during runtime.

For more information on the Oracle User Messaging Service, see Developing
Applications with Oracle User Messaging Service.

Figure 17-1 shows the Oracle User Messaging Service interfaces and supported
service types.

Figure 17-1 Service Interfaces and Supported Service Types

For more information about notifications, see the following sections:

• Notifications from Human Workflow

• Specifying Participant Notification Preferences for instructions on specifying
email notifications in the Human Task Editor

• Developing Applications with Oracle User Messaging Service

Introduction to the Notification Service

17-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

17.2 Introduction to Notification Channel Setup
Notification setup is a multiple-step process that involves several user interface tools.
Table 17-1 provides an overview of this process, including the task to perform, the tool
to use, and the documentation to which to refer for more specific details.

Table 17-1 Notification Tasks

Task Description User Interface Described In...

Select a channel for
sending notifications
in a SOA composite
application.

Select a method for sending
notifications:

• Explicitly select and configure
an email, IM, SMS, or voice
channel.

or
• Do not explicitly select a

notification channel, but
simply select that a notification
must be sent. Channel
selection occurs later in the
User Messaging Preferences
user interface.

Selected and
configured by the
BPEL process
designer in Oracle
BPEL Designer

Selecting Notification
Channels During BPEL
Process Design

or

Allowing the End User
to Select Notification
Channels

Configure the driver
for the notification
channel.

You configure drivers on the same
Oracle WebLogic Server on which
you deploy the SOA composite
application. This action enables
participants to receive and forward
notifications. Driver support is
provided for email, IM, SMS, and
voice channels.

Configured by the
administrator in
Oracle Enterprise
Manager Fusion
Middleware Control

Administering Oracle
SOA Suite and Oracle
Business Process
Management Suite

Configure the
notification mode and
actionable accounts for
human workflows.

If you are using notifications with
human workflow, you configure
the notification mode and
actionable account for email.

Configured by the
administrator in
Oracle Enterprise
Manager Fusion
Middleware Control

Administering Oracle
SOA Suite and Oracle
Business Process
Management Suite

Register the devices
used to access
messages by specifying
user preferences.

This action enables workflow
participants to receive notification
messages. For example, the end
user registers email clients and
specifies the message content to
receive and the channel to use for
receiving messages.

If no channel is specified, email is
used by default. The preferences set
in this application are applicable
only to that specific end user, and
not to other users.

Registered by the end
user in the User
Messaging
Preferences user
interface. You can
access this interface
by selecting
Preferences >
Notification in Oracle
BPM Worklist.

Administering Oracle
User Messaging Service

17.3 Selecting Notification Channels During BPEL Process Design
Oracle JDeveloper includes the email, IM, SMS, and voice channel notification
channels in the Components window. You can set the exact notification channels to

Introduction to Notification Channel Setup

Using the Notification Service 17-3

use during design time. For example, a BPEL process can be designed to use the
following notification channels:

• If an expense report amount is less than $1000, an email notification channel is
used.

• If an expense report amount is between $1000 and $2000, an SMS notification
channel is used.

• If an expense report amount is more than $2000, a voice notification channel is
used.

To select the notification channel during BPEL process design:

1. In the Components window, expand Oracle Extensions.

2. Go to the Notification section.

3. Drag a notification channel into the designer:

• Email

• IM

• SMS

• Voice

4. See the section in Table 17-2 based on the notification channel you selected.

Table 17-2 Notification Channels

If You
Selected...

See...

Email How To Configure the Email Notification Channel to configure email
notification

IM How to Configure the IM Notification Channel to configure IM notification

SMS How to Configure the SMS Notification Channel to configure SMS
notification

Voice How to Configure the Voice Notification Channel to configure voice message
notification

Note:

If you delete an email, voice, SMS, or IM activity, any partner link with which
it is integrated is not automatically deleted.

17.3.1 How To Configure the Email Notification Channel
When you drag the Email icon from the Components window, the Email dialog
appears. Figure 17-2 shows the required email notification parameters.

Selecting Notification Channels During BPEL Process Design

17-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 17-2 Email Dialog

To configure the email notification channel:

1. Enter information for each field as described in Table 17-3.

Note:

For the To, CC, and Bcc fields, separate multiple addresses with a semicolon
(;).

Table 17-3 Email Notification Parameters

Name Description

Name Enter a name or accept the default name of EmailNumber.

From Account The name of the account used to send this message. The
default account is named Default and is editable from the
Mailer tab of the Workflow Notification Properties page in
Oracle Enterprise Manager Fusion Middleware Control. To
add additional accounts, you must use the System MBean
Browser in Oracle Enterprise Manager Fusion Middleware
Control.

For information on editing this property in Oracle Enterprise
Manager Fusion Middleware Control, see Administering
Oracle SOA Suite and Oracle Business Process Management
Suite.

Selecting Notification Channels During BPEL Process Design

Using the Notification Service 17-5

Table 17-3 (Cont.) Email Notification Parameters

Name Description

To The email address to which to deliver the message. This can
be one of the following:

• A static email address entered at the time the message is
created

• An email address retrieved using the identity service
• A dynamic address from the payload
The XPath Expression Builder can get the dynamic email
address from the input. See How to Select Email Addresses
and Telephone Numbers Dynamically.

CC and Bcc The email addresses to which the message is copied and
blind copied. This can also be a static or dynamic address, as
described for the To address.

Reply To The email address to use for replies. This can also be a static
or dynamic address, as described for the To address.

Subject The subject of the email message. This can be plain text or
dynamic text. The XPath Expression Builder can set dynamic
text based on data from process variables that you specify.

Body The message body of the email message. This can also be
plain text, HTML, or dynamic text, as described for the
Subject parameter.

2. Click OK.

The BPEL fragment that invokes the notification service to send the email message
is created.

3. See Table 17-1 of Introduction to Notification Channel Setup for additional
configuration procedures to perform outside of Oracle JDeveloper.

The following example uses an email activity in a scope named
Scope_NotifyCustomerofCompletion. The Oracle User Messaging Service sends
the email to a customer when an order is fulfilled. The following details are
specified in the Email dialog:

• An XPath expression specifies the customer's email address.

bpws:getVariableData('gCustomerInfoVariable','parameters','/ns3:findCustome
rInfoVO1CustomerInfoVOCriteriaResponse/ns3:result/ns2:ConfirmedEmail')

• A combination of manually-entered text and an XPath expression specifies the
ID of the order:

Order with id
<%bpws:getVariableData('gOrderInfoVariable','/ns2:orderInfoVOSDO/ns2:OrderI
d')%> shipped!

• A combination of manually-entered text and an XPath expression specifies the
body of the email message:

Dear<%bpws:getVariableData('gCustomerInfoVariable','parameters','/
ns6:findCusto
merInfoVO1CustomerInfoVOCriteriaResponse/ns6:result/ns4:FirstName')%>,
your order has been shipped.

Selecting Notification Channels During BPEL Process Design

17-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 17-3 provides details.

Figure 17-3 Email Dialog

17.3.1.1 Setting Email Attachments

You can send attachments with an email activity. Each attachment has three elements:
name, MIME type, and value. All three elements must be set for each attachment.

To add an attachment to an email message:

1. From the Components window, select Email as the notification channel.

2. Specify values for To, Subject, and Body.

3. Click the Attachments tab. Figure 17-4 provides details.

Figure 17-4 Attachments Tab

4. Click the Add icon to add as many attachments as you require. The number of
attachments does not need to include the body part.

Selecting Notification Channels During BPEL Process Design

Using the Notification Service 17-7

5. In the Name field, change the name or accept the default value of
Attachmentnumber.

6. In the Mime Type field, click the Browse icon to invoke the Expression Builder
dialog for adding MIME type contents.

7. When complete, click OK to return to the Attachments tab.

8. In the Value field, click the Browse icon to invoke the Expression Builder dialog for
adding the contents of the attachment.

9. When complete, click OK to return to the Attachments tab.

The BPEL fragment with an assign activity with multiple copy rules is generated.
One of the copy rules copies the attachment.

10. Click OK.

11. Expand the Email activity in Oracle BPEL Designer.

An assign activity named EmailParamsAssign appears.

12. Double-click EmailParamsAssign.

Note the settings in EmailParamsAssign, as shown in Figure 17-5.

Figure 17-5 EmailParamsAssign Assign Activity

For more information about sending attachments using email, see the following
documentation:

• Developing Applications with Oracle User Messaging Service

• Administering Oracle User Messaging Service

17.3.1.2 Formatting the Body of an Email Message as HTML

You can format the body of an email message as HTML instead of straight text. To
perform this action, apply an XSLT transform to generate the email body. Add in

Selecting Notification Channels During BPEL Process Design

17-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

the XSLT tag you want to use. Tools such as XMLSpy can provide assistance in writing
and testing the XSLT. The MIME type should be string('text/
html;charset=UTF-8').

The email notification assignment looks as shown in the following example:

<copy>
 <from
expression="ora:processXSLT('TransformPositionSummary7.xslt',bpws:
getVariableData('ClientPositionSummary'))"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns9:Content/ns9:ContentBody"/>
</copy>

17.3.1.3 Using Dynamic HTML for Message Content Requires a CDATA Function

If the HTML for the message content of an email activity is generated dynamically, (as
with XSLT, file read, and so on), it must be wrapped in a CDATA function. This
prevents conflicts between the XML/HTML content of the message body and BPEL's
internal XML data structures.

For example, assume you use the append operation shown in the following example
for the message content inside the email activity:

<bpelx:append>
 <bpelx:from
 expression="ora:processXSLT('xsl/email.xslt',bpws:getVariableData('Variable_1'
))"/>
 <bpelx:to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[1]
 /ns1:ContentBody"/>
</bpelx:append>

For this to work correctly, you must pass the output of the processXSLT() function
to the CDATA() function, as shown in the following example:

<%ora:toCDATA(xdk:processXSLT('xsl/email.xslt',
 bpws:getVariableData('inputVariable','payload','/client:process/client:input')
))%>

17.3.2 How to Configure the IM Notification Channel
When you drag the IM icon from the Components window, the IM dialog appears.
Figure 17-6 shows the required IM notification parameters.

Selecting Notification Channels During BPEL Process Design

Using the Notification Service 17-9

Figure 17-6 IM Dialog

To configure the IM notification channel:

1. Enter information for each field as described in Table 17-4.

Table 17-4 IM Notification Parameters

Name Description

Name Enter a name or accept the default name of IMNumber.

To The IM address to which to deliver the message. Enter the
address manually or click the XPath Expression Builder icon
to display the Expression Builder dialog to dynamically enter
an account.

Body The IM message body. This can be plain text or dynamic text.
The XPath Expression Builder can set dynamic text based on
data from process variables that you specify.

2. Click OK.

The BPEL fragment that invokes the notification service for IM notification is
created.

3. See Table 17-1 of Introduction to Notification Channel Setup for additional
configuration procedures to perform outside of Oracle JDeveloper.

17.3.3 How to Configure the SMS Notification Channel
When you drag the SMS icon from the Components window, the SMS dialog appears.
Figure 17-7 shows the required SMS notification parameters.

Selecting Notification Channels During BPEL Process Design

17-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 17-7 SMS Dialog

To configure the SMS notification channel:

1. Enter information for each field as described in Table 17-5.

Table 17-5 SMS Notification Parameters

Name Description

Name Enter a name or accept the default name of SMSNumber.

From # The telephone number from which to send the SMS
notification. This can be a static telephone number entered at
the time the message is created or a dynamic telephone
number from the payload. The XPath Expression Builder can
get the dynamic telephone number from the input. See How
to Select Email Addresses and Telephone Numbers
Dynamically.

Telephone # Select a method for specifying the telephone number to
which to deliver the message:

• A static telephone number entered at the time the
message is created.

• A telephone number retrieved using the identity service.
• A dynamic telephone number from the payload. The

XPath Expression Builder can get the dynamic telephone
number from the input.

Subject The subject of the SMS message. This can be plain text or
dynamic text. The XPath Expression Builder can set dynamic
text based on data from process variables that you specify.

Body The SMS message body. This must be plain text. This can be
plain text or dynamic text as described for the Subject
parameter.

2. Click OK.

Selecting Notification Channels During BPEL Process Design

Using the Notification Service 17-11

The BPEL fragment that invokes the notification service for SMS notification is
created.

3. See Table 17-1 of Introduction to Notification Channel Setup for additional
configuration procedures to perform outside of Oracle JDeveloper.

17.3.4 How to Configure the Voice Notification Channel
When you drag the Voice icon from the Components window, the Voice dialog
appears. Figure 17-8 shows the required voice notification parameters.

Figure 17-8 Voice Dialog

To configure the voice notification channel:

1. Enter information for each field as described in Table 17-6.

Table 17-6 Voice Notification Parameters

Name Description

Name Enter a name or accept the default name of VoiceNumber.

Telephone # The telephone number to which to deliver the message.
Specify the number through one of the following methods:

• A static telephone number entered at the time the
message is created

• A telephone number retrieved using the identity service
• A dynamic telephone number from the payload
The XPath Expression Builder can retrieve the dynamic
telephone number from the input.

Body The message body. This can be plain text, XML, or dynamic
text. The XPath Expression Builder can set dynamic text
based on data from process variables that you specify.

2. Click OK.

Selecting Notification Channels During BPEL Process Design

17-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The BPEL fragment that invokes the notification service for voice notification is
created.

3. See Table 17-1 of Introduction to Notification Channel Setup for additional
configuration procedures to perform outside of Oracle JDeveloper.

17.3.5 How to Select Email Addresses and Telephone Numbers Dynamically
You can set email addresses or telephone numbers dynamically based on certain
process variables. You can also look up contact information for a specific user using
the built-in XPath functions for the identity service:

• To get the email address or telephone number directly from the payload, use the
following XPath expression:

bpws:getVariableData('<variable name>', '<part>','input_xpath_to_get_an_address')

For example, to get the email address from variable inputVariable and part
payload based on XPath /client/BPELProcessRequest/client/mail:

<%bpws:getVariableData('inputVariable','payload','/client:BPELProcessRequest/
client:email')%>

You can use the XPath Expression Builder to select the function and enter the
XPath expression to get an address from the input variable.

• To get the email address or telephone number dynamically from the underlying
identity store (LDAP) use the following XPath expression:

ids:getUserProperty(userName, attributeName[, realmName])

The first argument evaluates to the user ID. The second argument is the property
name. The third argument is the realm name. Table 17-7 lists the property names
that can be used with this XPath function.

Table 17-7 Properties for the Dynamic User XPath Function

Property Name Description

mail Look up a user's email address.

telephoneNumber Look up a user's telephone number.

mobile Look up a user's mobile telephone number.

homephone Look up a user's home telephone number.

The following example gets the email address of the user identified by the
variable inputVariable, part payload, and queries /
client:BPELProcessRequest/client:userID:

ids:getUserProperty(bpws:getVariableData(‘inputVariable',
‘payload',‘/client:BPELProcessRequest/client:userid'), ‘mail')

If realmName is not specified, then the default realm name is used. For example,
if the default realm name is jazn.com, the following XPath expression searches
for the user in the jazn.com realm:

ids:getUserProperty('jcooper', 'mail');

Selecting Notification Channels During BPEL Process Design

Using the Notification Service 17-13

The following XPath expression provides the same functionality as the one above.
In this case, however, the realm name of jazn.com is explicitly specified:

ids:getUserProperty('jcooper', 'mail', 'jazn.com');

17.3.6 How to Select Notification Recipients by Browsing the User Directory
You can select users or groups in Oracle JDeveloper to whom you want to send
notifications by browsing the user directory (for example, Oracle Internet Directory)
that is configured for use with Oracle BPEL Process Manager. Click the Search icon to
the right of the following fields to open the Identity Lookup dialog:

• To field on the Email and IM dialogs

• Telephone # field on the SMS and Voice dialogs

For more information about using the Identity Lookup dialog, see Introduction to
Human Workflow Services.

17.4 Allowing the End User to Select Notification Channels
You can design a BPEL process in which you do not explicitly select a notification
channel during design time, but simply indicate that a notification must be sent. The
channel to use for sending notifications is resolved at runtime based on preferences
defined by the end user in the User Messaging Preferences user interface of the Oracle
User Messaging Service. This moves the responsibility of notification channel selection
from the BPEL process in Oracle BPEL Designer to the end user. If the end user does
not select a preferred channel or rule, email is used by default for sending notifications
to that user. Regardless of who selects the channel to use, channel use is still based on
the driver installation and configuration performed in the Oracle User Messaging
Service section of Oracle Enterprise Manager Fusion Middleware Control by the
administrator.

For example, an end user may set their preferences as follows:

• If an expense report amount is less than $153, they receive an email notification.

• If an expense report amount is between $153 and $3678, they receive an SMS
notification.

• If an expense report amount is more than $3678, they receive a voice notification.

Note:

You can also set user preferences for sending notifications in human
workflows in the Human Task Editor. Set these preferences in the
Notification Filters part of the Notification Settings section. These
preferences are used to evaluate rules in the task. For more information, see
How to Send Task Attachments with Email Notifications.

For more information about the Oracle User Messaging Service, see the "User
Communication Preferences" chapter of Developing Applications with Oracle User
Messaging Service.

For information about configuring the Oracle User Messaging Service in Oracle
Enterprise Manager Fusion Middleware Control, see Administering Oracle User
Messaging Service.

Allowing the End User to Select Notification Channels

17-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

17.4.1 How to Allow the End User to Select Notification Channels

To allow the end user to select notification channels:

1. From the Components window list, expand Oracle Extensions.

2. From the Notification section, drag the User Notification activity into the
designer. Figure 17-9 shows the required user notification parameters.

Figure 17-9 User Notification Dialog

3. Enter information for each field as described in Table 17-8.

Table 17-8 User Notification Parameters

Name Description

Name Enter a name or accept the default name of
UserNotificationNumber.

To Enter a valid user for the recipient of this notification
message through one of the following methods:

• Enter the user manually.
• Click the Search icon to display a dialog for selecting a

user configured through the identity service. The
identity service enables the lookup of user properties,
roles, and group memberships.

• Click the XPath Expression Builder icon to display the
Expression Builder dialog to dynamically enter a user.

Note: You must specify a user name (for example, jcooper)
instead of an address.

Allowing the End User to Select Notification Channels

Using the Notification Service 17-15

Table 17-8 (Cont.) User Notification Parameters

Name Description

Subject Enter a message name or click the XPath Expression Builder
icon to display the Expression Builder dialog to dynamically
enter a subject. If notification is sent through email, this field
is used during runtime. This field is ignored if notifications
are sent through the voice, SMS, or IM channels.

Notification Message Enter the notification message or click the XPath Expression
Builder icon to display the Expression Builder dialog to
dynamically enter a message to send.

4. Click Apply.

17.4.1.1 How to Create and Send Headers for Notifications

The Advanced tab of the User Notification dialog enables you to create and send
header and name information that may be useful to an end user in creating their own
preference rules for receiving notifications. For example:

• Oracle BPEL Designer specifies the users named jcooper and jstein in the
General tab.

• Oracle BPEL Designer creates the following header and name information in the
Advanced tab:

– Amount = payload->salary

– Application = HR-Application

• The administrator deploys the process and configures various channel drivers in
Oracle Enterprise Manager Fusion Middleware Control.

• The end user jcooper creates the following preference rules in the User
Messaging Preferences user interface:

'Email if Amount < 30000" and "SMS if Amount is between 30000 and 100000' and
"Voice if Amount > 100000"

• The end user jstein creates the following preference rule in the User Messaging
Preferences user interface:

If "Application == HR-Application" and Amount > 2000000" send Voice

1. If you want to create and send header and name information to an end user for
creating their own preference rules, click Advanced.

Figure 17-10 shows the Advanced tab of the User Notification dialog.

Allowing the End User to Select Notification Channels

17-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 17-10 User Notification Advanced Parameters

2. Click the Add icon to add a row to the Header and Name columns.

3. In the Header column, click the field to display a list for selecting a value.
Otherwise, manually enter a value.

4. In the Name column, enter a value.

5. Click OK.

Allowing the End User to Select Notification Channels

Using the Notification Service 17-17

Allowing the End User to Select Notification Channels

17-18 Developing SOA Applications with Oracle SOA Suite

18
Using Oracle BPEL Process Manager

Sensors and Analytics

This chapter describes how to use sensors to select BPEL activities, variables, and
faults to monitor during runtime in a BPEL process. It also describes how to create
sensor actions to publish the values of sensors to an endpoint.

This chapter includes the following sections:

• Introduction to Sensors

• Configuring Sensors and Sensor Actions in Oracle JDeveloper

• Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager
Fusion Middleware Control

• Configuring BPEL Process Analytics

For more information about Oracle BPEL Process Manager sensors, see Understanding
Sensor Public Views and the Sensor Actions XSD .

18.1 Introduction to Oracle BPEL Process Manager Sensors
Sensors are used to declare interest in specific events throughout the life cycle of a
BPEL process instance. In a business process, that can be the activation and completion
of a specific activity or the modification of a variable value in the business process.

When a sensor is triggered, a specific sensor value is created. For example, if a sensor
declares interest in the completion of a BPEL scope, the sensor value consists of the
name of the BPEL scope and a time stamp value of when the activity was completed. If
a sensor value declares interest in a BPEL process variable, then the sensor value
consists of the following:

• The value of the variable at the moment it was modified

• A time stamp when the variable was modified

• The activity name and type that modified the BPEL variable

The data format for sensor values is normalized and well-defined using XML schema.

A sensor action is an instruction on how to process sensor values. When a sensor is
triggered by Oracle BPEL Process Manager, a new sensor value for that sensor is
created. After that, all the sensor actions associated with that sensor are performed. A
sensor action typically persists the sensor value in a database or sends the normalized
sensor value data to a JMS queue or topic. For integration with Oracle BAM, the sensor
value can be sent to the Oracle BAM adapter.

You can define the following types of sensors, either through Oracle JDeveloper or
manually by providing sensor configuration files.

Using Oracle BPEL Process Manager Sensors and Analytics 18-1

• Activity sensors

Activity sensors monitor the execution of activities within a BPEL process. For
example, they can monitor the execution time of an invoke activity or how long it
takes to complete a scope. Along with the activity sensor, you can also monitor
variables of the activity.

• Variable sensors

Variable sensors are used to monitor variables (or parts of a variable) of a BPEL
process. For example, variable sensors can monitor the input and output data of a
BPEL process.

• Fault sensors

Fault sensors are used to monitor BPEL faults.

You typically add or edit sensors as part of the BPEL modeling of activities, faults, and
variables.

These sensors are exposed through the following public SQL views:

• BPEL_ACTIVITY_SENSOR_VALUES

• BPEL_FAULT_SENSOR_VALUES

• BPEL_VARIABLE_SENSOR_VALUES

These views can be joined with the BPEL_PROCESS_INSTANCES view to associate the
sensor value with the BPEL process instance that created the sensor values. For more
information, see Understanding Sensor Public Views and the Sensor Actions XSD .

When you model sensors in Oracle JDeveloper, two new files are created as part of the
BPEL process archive:

• bpel_process_name_sensor.xml

Contains the sensor definitions of a BPEL process

• bpel_process_name_sensorAction.xml

Contains the sensor action definitions of a BPEL process

For information about how these files are created, see How to Configure Activity_
Variable_ and Fault Sensors and How to Configure Sensor Actions.

After you define sensors for a BPEL process, you must configure sensor actions to
publish the sensor data to a specified destination. If no sensor action is defined for a
sensor, then nothing happens at runtime.

The following information is required for a sensor action:

• Name

• Publish type

The publish type specifies the destination in which the sensor data must be
presented. You can publish sensor data to the following destination types.

– Database

Publishes the sensor data to the reports schema in the database. The sensor
data can then be queried using SQL.

Introduction to Oracle BPEL Process Manager Sensors

18-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

– JMS queue

Publishes the sensor data to a JMS queue. The XML data is posted in
accordance with the Sensor.xsd file. This file is included with Oracle
JDeveloper in the following directory:

/soa/integration/seed/soa/shared/bpel/Sensor.xsd

The Sensor.xsd file is also included in the following directory:

/soa/integration/jdeveloper/seed/soa/shared/bpel/Sensor.xsd

– JMS topic

Publishes the sensor data to a JMS topic. The XML data is posted in
accordance with the same Sensor.xsd file used with JMS queues.

– Custom

Publishes the data to a custom Java class.

– JMS Adapter

Uses the JMS adapter to publish to remote queues or topics and a variety of
different JMS providers. The JMS queue and JMS topic publish types only
publish to local JMS destinations.

• List of sensors

The sensors for a sensor action.

18.1.1 Composite Sensors
While BPEL sensors are used to declare interest in specific events throughout the life
cycle of a BPEL process instance, composite sensors provide a method for
implementing trackable fields on messages. Composite sensors enable you to perform
the following tasks:

• Monitor incoming and outgoing messages.

• Publish JMS data computed from incoming and outgoing messages.

• Track composite instances initiated through business event subscriptions.

For information about composite sensors, see Defining Composite Sensors .

18.2 Configuring Sensors and Sensor Actions in Oracle JDeveloper
In Oracle JDeveloper, sensor actions and sensors are displayed as part of Monitor
view.

18.2.1 How to Access Sensors and Sensor Actions

To access sensors and sensor actions:

1. Select Change to Monitor view at the top of Oracle BPEL Designer, as shown in
Figure 18-1.

Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors and Analytics 18-3

Figure 18-1 Monitor View

Figure 18-2 shows the sensor actions and sensors in the Structure window.

Figure 18-2 Sensors and Sensor Actions Displayed in Oracle JDeveloper

You typically add or edit sensors as part of the BPEL modeling of activities, faults,
and variables.

2. Add sensor actions by right-clicking the Sensor Actions folder and selecting
Create > Sensor Action.

3. Add activity sensors, variable sensors, or fault sensors as follows:

a. Expand the Sensors folder.

b. Right-click the appropriate Activity, Variable, or Fault subfolder.

c. Click Create.

4. Add sensors to individual activities by right-clicking an activity and selecting
Create > Sensor. Figure 18-3 provides details.

Figure 18-3 Creating an Activity Sensor

The following sections describe how to configure sensors and sensor actions.

18.2.2 How to Configure Activity, Variable, and Fault Sensors
This section describes how to configure activity, variable, and fault sensors.

Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

18.2.2.1 To Configure an Activity Sensor:

Assume you are monitoring a loan flow application, and want to know the following:

• When a scope named GetCreditRating is initiated

• When it is completed

• At completion, what is the credit rating for the customer

The solution is to create an activity sensor for the GetCreditRating scope in Oracle
BPEL Designer, as shown in Figure 18-4.

1. Select Change to Monitor view at the top of Oracle BPEL Designer.

2. In the Structure window, expand the Sensors folder.

3. Right-click Activity, and select Create.

4. To the right of the Activity Name field, click the Browse icon to select the activity
for which to create the sensor. This is a required field.

Figure 18-4 Creating an Activity Sensor

Activities that have sensors associated with them are identified with a magnifying
glass in Oracle BPEL Designer.

The Evaluation Time list shown in Figure 18-4 controls the point at which the
sensor is fired.

5. Select from the following:

• All:

Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors and Analytics 18-5

The sensor monitors during the activation, completion, fault, compensation,
and retry phases.

• Activation

The sensor is fired just before the activity is executed.

• Completion

The sensor is fired just after the activity is executed.

• Fault

The sensor is fired if a fault occurs during the execution of the activity. Select
this value only for sensors that monitor simple activities.

• Compensation

The sensor is fired when the associated scope activity is compensated. Select
this value only for sensors that monitor scopes.

• Retry

The sensor is fired when the associated invoke activity is retried.

A new entry is created in the bpel_process_name_sensor.xml file:

<sensor sensorName="CreditRatingSensor"

classname="oracle.tip.pc.services.reports.dca.agents.BpelActivitySensorAgent"
 kind="activity"
 target="GetCreditRating">

 <activityConfig evalTime="all">
 <variable outputNamespace="http://www.w3.org/2001/XMLSchema"
 outputDataType="int"
 target="$crOutput/payload//services:rating"/>
 </activityConfig>
</sensor>

6. If you want to create a variable sensor on the activity, then in the Activity
Variable Sensors section, click the Add icon. This is an optional field.

7. If you want to add a sensor action on the activity, then in the Sensor Actions
section, click the Add icon. For more information, see How to Configure Sensor
Actions.

8. Click OK.

Note:

If you did not specify any values in the Activity Variable Sensors and Sensor
Actions sections, you do not receive any validation errors or warning
messages in the Log window in Oracle JDeveloper or in any log files. This is
the expected behavior.

18.2.2.2 To Configure a Variable Sensor:

If you want to record all incoming loan requests, you can create a variable sensor.

1. Select Change to Monitor view at the top of Oracle BPEL Designer.

Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

2. In the Structure window, expand the Sensors folder.

3. Right-click Variable, and select Create.

4. Click the Edit icon to the right of the Target field to create a variable sensor for a
variable (for this example, named input), as shown in Figure 18-5.

Figure 18-5 Creating a Variable Sensor

Based on your selection for the Target field, the Output Namespace and Output
Datatype fields are automatically filled in.

A new entry is created in the bpel_process_name_sensor.xml file:

<sensor sensorName="LoanApplicationSensor"
 classname="oracle.tip.pc.services.reports.dca.agents.BpelVariableSensorAgent"
 kind="variable"
 target="$input/payload">
 <variableConfig outputNamespace="http://www.autoloan.com/ns/autoloan"
 outputDataType="loanApplication"/>
</sensor>

18.2.2.3 To Configure a Fault Sensor:

If you want to monitor faults (for this example, from the identity service), you can
create a fault sensor.

1. Select Change to Monitor view at the top of Oracle BPEL Designer.

2. In the Structure window, expand the Sensors folder.

3. Right-click Fault, and select Create.

4. Click the Browse icon above the Namespace field to select to create a fault sensor,
as shown in Figure 18-6.

Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors and Analytics 18-7

Figure 18-6 Creating a Fault Sensor

Based on your selection, the Namespace and Local Parts fields are automatically
filled in.

5. If you want to add a sensor action on the fault, then in the Sensor Actions section,
click the Add icon. For more information, see How to Configure Sensor Actions.

6. Click OK.

A new entry is created in the bpel_process_name_sensor.xml file:

<sensor sensorName="IdentityServiceFault"
 classname="oracle.tip.pc.services.reports.dca.agents.BpelFaultSensorAgent"
 kind="fault"
 target="is:identityServiceFault">
 <faultConfig/>
</sensor>

18.2.3 How to Configure Sensor Actions
When you create sensors, you identify the activities, variables, and faults you want to
monitor during runtime. If you want to publish the values of the sensors to an
endpoint (for example, you want to publish the data of the LoanApplicationSensor
variable sensor created in Figure 18-5 to a JMS queue), then create a sensor action, as
shown in Figure 18-7, and associate it with the LoanApplicationSensor variable.

To configure a sensor action:

1. Select Change to Monitor view at the top of Oracle BPEL Designer.

2. In the Structure window, right-click the Sensor Actions folder.

3. Select Create > Sensor Action.

4. Enter the details described in Table 18-1.

Table 18-1 Sensor Actions Dialog

Field Description

Name Enter a name or accept the default name.

Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 18-1 (Cont.) Sensor Actions Dialog

Field Description

Publish Type Select the destination to which to publish sensor data. For
more information, see section Introduction to Sensors.

JMS Connection Factory If your publish type is JMS Queue, JMS Topic, or JMS
Adapter, specify the connection factory.

Publish Target If your publish type is JMS Queue, JMS Topic, Custom, or
JMS Adapter, specify the publish target. The publish target
represents different things depending on the publish type
specified:

• If the publish type is a database, this field is left blank.
• If the publish type is JMS Queue, JMS Topic, or JMS

Adapter, this represents the JMS destination's JNDI
name.

• If the publish type is Custom, this represents the fully-
qualified Java class name.

Filter Enter filter logic as a boolean expression. A filter enables you
to monitor sensor data within a specific range. For an
example of a configured filter, see Figure 18-9.

Enable Deselect this check box to disable a sensor action. By default,
sensor actions are enabled. If you disable a sensor action by
deselecting this check box, the action does not publish data.

Figure 18-7 Creating a Sensor Action

A new entry is created in the bpel_process_name_sensorAction.xml file:

<action name="BAMFeed"
 enabled="true"
 publishType="JMSQueue"
 publishTarget="jms/bamTopic">
 <sensorName>LoanApplicationSensor</sensorName>
 <property name=“JMSConnectionFactory“>
 weblogic.jms.ConnectionFactory
 </property>
</action>

Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors and Analytics 18-9

Note:

You cannot specify a < (less than) sign in the Filter field of the Sensor Action
dialog. If you do, Oracle JDeveloper translates the < sign to < in the
bpel_process_name_sensorAction.xml file. In addition, you cannot
specify a < sign by directly editing the filename_sensorAction.xml file.
This action causes an error.

5. If you want to publish the values of LoanApplicationSensor and
CreditRatingSensor to the reports schema in the database, create an additional
sensor action, as shown in Figure 18-8, and associate it with both
CreditRatingSensor and LoanApplicationSensor.

Figure 18-8 Creating an Additional Sensor Action

A new entry is created in the bpel_process_name_sensorAction.xml file:

<action name="PersistingAction"
 enabled="true"
 publishType="BPELReportsSchema">
 <sensorName>LoanApplicationSensor</sensorName>
 <sensorName>CreditRatingSensor</sensorName>
</action

The data of one sensor can be published to multiple endpoints. In the two
preceding code samples, the data of LoanApplicationSensor was published to a
JMS queue and to the reports schema in the database.

6. If you want to monitor loan requests for which the loan amount is greater than
$100,000, create a sensor action with a filter, as shown in Figure 18-9. There is no
design-time validation of the filter query. You must ensure the query is correct.

Figure 18-9 Creating a Sensor Action with a Filter

Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

A new entry is created in the bpel_process_name_sensorAction.xml file:

<action name="BigMoneyBAMAction"
 enabled='true'
 filter="boolean(/s:actionData/s:payload
 /s:variableData/s:data
 /autoloan:loanAmount > 100000)"
 publishType="JMSQueue"
 publishTarget="jms/bigMoneyQueue">
 <sensorName>LoanApplicationSensor</sensorName>
 <property name=“JMSConnectionFactory“>
 weblogic.jms.ConnectionFactory
 </property>
</action>

Note:

• You must specify all the namespaces that are required to configure an
action filter in the bpel_process_name_sensorAction.xml
configuration file. For example, assume you have a customer XML-
schema element with namespace "http://myCustomer" and you want
to create a filter on the customer age element. Therefore, you must
manually declare the namespace for "http:/myCustomer" in the file
before you can use it in your filter. Otherwise, it is not possible to create a
valid query. Add xmlns:ns1="http://myCustomer" in the attribute
declaration part of the file. You can then use/ns1:customer/
ns1:age/... in your query.

• You must specify the filter as a boolean XPath expression.

7. If you have special requirements for a sensor action that cannot be accomplished by
using the built-in publish types (database, JMS queue, JMS topic, and JMS adapter),
then you can create a sensor action with the custom publish type, as shown in
Figure 18-10. The name in the Publish Target field denotes a fully qualified Java
class name that must be implemented. For more information, see How to Create a
Custom Data Publisher.

Figure 18-10 Using the Custom Publish Type

18.2.4 How to Publish to Remote Topics and Queues
The JMS queue and JMS topic publish types only publish to local JMS destinations. If
you want to publish sensor data to remote topics and queues, use the JMS adapter
publish type, as shown in Figure 18-11.

Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors and Analytics 18-11

Figure 18-11 Using the JMS Adapter Publish Type

In addition to enabling you to publish sensor data to remote topics and queues, the
JMS adapter supports a variety of different JMS providers, including:

• Third-party JMS providers such as Tibco JMS, IBM WebSphere MQ JMS, and
SonicMQ

• Oracle Enterprise Messaging Service (OEMS) providers such as memory/file and
database

If you select the JMS adapter publish type, you must create an entry in the weblogic-
ra.xml file, which is updated through editing in the . Each JMS connection factory
(pool) entry created in this console corresponds to one JNDI entry in weblogic-
ra.xml. Update the Sensor Actions dialog with the chosen JNDI name selected
during the creation of the JMS connection factory (pool).

For more information about the JMS adapter, see Understanding Technology Adapters.

18.2.5 How to Create a Custom Data Publisher
To create a custom data publisher, perform the following steps:

To create a custom data publisher:

1. In the Applications window, double-click the BPEL project.

The Project Properties dialog appears.

2. Click Libraries and Classpath.

3. Browse and select the following:

SOA_ORACLE_HOME/lib/java/shared/oracle.soainfra.common/11.1.1/orabpel.jar

Figure 18-12 provides details.

Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 18-12 Project Properties Dialog

4. Create a new Java class.

The package and class name must match the publish target name of the sensor
action.

5. Implement the com.oracle.bpel.sensor.DataPublisher interface.

This updates the source file and fills in the methods and import statements of the
DataPublisher interface.

6. Using Oracle JDeveloper, implement the publish method of the DataPublisher
interface, as shown in the sample custom data publisher class in Figure 18-13.

Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors and Analytics 18-13

Figure 18-13 Custom Data Publisher Class

7. Ensure that the class compiles successfully.

The next time that you deploy the BPEL process, the Java class is added to the SOA
archive (SAR) and deployed.

Note:

Ensure that additional Java libraries needed to implement the data publisher
are in the class path.

Oracle BPEL Process Manager can execute multiple process instances
simultaneously, so ensure that the code in your data publisher is thread safe,
or add appropriate synchronization blocks. To guarantee high throughput, do
not use shared data objects that require synchronization.

18.2.6 How to Register the Sensors and Sensor Actions in the composite.xml File
Oracle JDeveloper automatically updates the composite.xml file to include
appropriate properties for sensors and sensor actions, as shown in the following
exxample:

<composite name="JMSQFComposite" applicationName="JMSQueueFilterApp"
 revision="1.0" label="2007-04-02_14-41-31_553" mode="active" state="on">
 <import namespace="http://xmlns.oracle.com/JMSQueueFilter"
 location="JMSQueueFilter.wsdl" importType="wsdl"/>
 <service name="client">
 <interface.wsdl interface="http://xmlns.oracle.com/
 JMSQueueFilter#wsdl.interface(JMSQueueFilter)"/>

Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <binding.ws
 port="http://xmlns.oracle.com/JMSQueueFilter#wsdl.endpoint(client/
 JMSQueueFilter_pt)"/>
 </service>
 <component name="JMSQueueFilter">
 <implementation.bpel src="JMSQueueFilter.bpel"/>
 <property name="configuration.sensorLocation" type="xs:string"
 many="false">JMSQueueFilter_sensor.xml</property>
 <property name="configuration.sensorActionLocation" type="xs:string"
 many="false">JMSQueueFilter_sensorAction.xml</property>
</component>
<wire>
 <source.uri>client</source.uri>
 <target.uri>JMSQueueFilter/client</target.uri>
</wire>
</composite>

You can specify additional properties with <property name= ...>, as shown in
the preceding example.

18.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise
Manager Fusion Middleware Control

Oracle Enterprise Manager Fusion Middleware Control provides support for viewing
the metadata of sensors, sensor actions, and the sensor data created as part of the
process execution.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Note:

Only sensors with an associated database sensor action are displayed in
Oracle Enterprise Manager Fusion Middleware Control. Sensors associated
with a JMS queue, JMS topic, remote JMS, or custom sensor action are not
displayed.

18.4 Configuring BPEL Process Analytics
BPEL process analytics provide the following features:

• A uniform measurement mechanism across Oracle SOA Suite components such as
Oracle BPMN, human workflow, and BPEL processes for collecting disparate
data.

• A runtime infrastructure for evaluating, publishing, and synthesizing
measurement events.

For information about BPEL process analytics integration with Oracle Business
Activity Monitoring (BAM), see Chapter "Integrating with Oracle SOA Suite" of
Monitoring Business Activity with Oracle BAM and Chapter "Gaining Business Insights
with Oracle Business Activity Monitoring" of Understanding Oracle SOA Suite.

Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control

Using Oracle BPEL Process Manager Sensors and Analytics 18-15

18.4.1 Introduction to Business Indicators
Business indicators are defined in a SOA composite application to identify objects that
contribute to the analytical and metric calculations of components. Business indicators
consist of the following types:

• Measures

Store the values of a variable such as a sales amount, an employee salary, and so
on. Measures only enable data types that are continuous, and are typically
numeric values.

• Dimensions

Label group or filter measures.

• Counters

Track the number of times a process instance completes a marked element.

Metadata specified dimensions and measures are captured as part of the
measurement.

Business indicators are designed to be sharable and bindable to multiple BPEL
processes within the composite. This enables you to monitor their value changes from
one process to another when the composite is executed during analytics runtime.

18.4.2 Introduction to Standard Sampling Points
Standard sampling points are points in a component path at which the component
inherently attempts to create a measurement event. Measurement metadata can
configure measurements at these standard sampling points. If appropriate
measurement metadata exists that enables some or all of the standard sampling point
measurement events, then these measurement events are generated, published, and
processed. For example, a standard sampling point in a process can be the following:

• Start and stop a process

• Start and stop an activity

• Faults

18.4.3 Introduction to User-Defined Sampling Points
These are the sampling points that you can specify on a component:

• Measurement mark:

A single point of measurement for the specified measure.

• Measurement interval:

A measurement consisting of a starting point and ending point (therefore,
constituting an interval identified by a measurement interval name) typically
along the path taken by a component.

• Measurement counter:

A measurement that identifies the occurrence of a specific point in the path taken
by a component.

Configuring BPEL Process Analytics

18-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Measurements are a combination of a sampling point and a selected business indicator
executed at runtime. For more information about measurements, see How to Define
Measurements.

18.4.4 How to Access Analytics View
You edit business indicators and measurements in analytics view of a BPEL process in
Oracle BPEL Designer.

To access analytics view:

1. In the SOA Composite Editor, double-click a BPEL process.

2. Above the BPEL process in Oracle BPEL Designer, click Change to Analytics view.
Figure 18-14 provides details.

Figure 18-14 Analytics View Icon in Oracle BPEL Designer

This displays the BPEL process in analytics view, as shown in Figure 18-15.

• The Components window displays a palette of measurement marks and
intervals that can be dragged onto BPEL process activities.

• The Structure window displays business indicators for creating counters,
dimensions, and measures.

Configuring BPEL Process Analytics

Using Oracle BPEL Process Manager Sensors and Analytics 18-17

Figure 18-15 Analytics View of a BPEL Process

When business indicator and measurement design is complete, analytics view
looks similar to that shown in Figure 18-16.

• Business indicators (counters, dimensions, and measures) and measurements
(intervals and marks) defined for the BPEL process are displayed in the
Structure window. You can create, edit, and delete business indicators from
the Structure window. You can edit and delete, but not create, measurements
from the Structure window. Measurements are created by dragging the
appropriate icon from the Components window.

• Measurement intervals and marks are defined as floaters on top of the read-
only activities in the BPEL process. The measurement floaters can be moved
around by mouse on top of activities in the BPEL process to achieve the
necessary topology.

• The Property Inspector at the bottom of Oracle BPEL Designer enables you to
edit the selected business indicator or measurement. Changes are
automatically committed.

Configuring BPEL Process Analytics

18-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 18-16 Analytics View with Business Indicator and Measurement Design Complete

18.4.4.1 How to Define Business Indicators

You can bind business indicators to BPEL XPath expression functions during creation.
Business indicators are designed to be sharable and bindable to multiple BPEL
processes within the composite. This enables you to monitor their value changes from
one process to another when the composite is executed during analytics runtime.

You can define the following business indicators in a BPEL process:

• Define a counter binding for the BPEL process. An available counter is selected
and bound to the BPEL process without the need to specify any XPath expression.
A counter is meant to count how many times a certain BPEL activity gets executed
at runtime. This means there is no need to specify any XPath expression for the
binding.

• Define a dimension binding for the BPEL process. An available dimension is
selected and bound to a BPEL XPath expression.

• Define a measure binding for the BPEL process. An available measure is selected
and bound to a BPEL XPath expression.

For more information about business indicators, see Introduction to Business
Indicators.

Configuring BPEL Process Analytics

Using Oracle BPEL Process Manager Sensors and Analytics 18-19

After definition, you can edit and delete business indicators in the Business Indicator
Overview Editor described in How to Edit Business Indicators in the Business
Indicator Overview Editor.

18.4.4.1.1 Defining Counters

You can define business indicator counters.

To define counters:

1. Access analytics view in a BPEL process as described in How to Access Analytics
View.

2. In the Structure window, right-click Counters and select Create.

The Bind Counter dialog is displayed.

3. Select a name, and click OK. If there is no counter to which to bind, click the Add
icon to create a new counter. You can also create counters in the Business Indicator
Overview Editor that are then displayed for selection in this dialog. For more
information, see How to Edit Business Indicators in the Business Indicator
Overview Editor.

When complete, the Bind Counter dialog looks as shown in Figure 18-17.

Figure 18-17 Bind Counter Dialog

18.4.4.1.2 Defining Dimensions

You can define business indicator dimensions.

To define dimensions:

1. Access analytics view in a BPEL process as described in How to Access Analytics
View.

2. In the Structure window, right-click Dimensions and select Create.

The Bind Dimension dialog is displayed.

3. Enter values appropriate to your environment, and click OK. Table 18-2 provides
details.

Configuring BPEL Process Analytics

18-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 18-2 Bind Dimension Dialog

Element Description

Name Select a name. If there is no dimension to which to bind, click the
Add icon to invoke the Create Dimension dialog to enter a name
and select a data type (boolean, decimal, integer, string or time)
for the dimension.

You can also create dimensions in the Business Indicator
Overview Editor that are then displayed for selection in this
dialog. For more information, see How to Edit Business Indicators
in the Business Indicator Overview Editor.

Note: Optional ranges can be specified for some data types such
as integers and decimals. This enables the dimensions to show
their ranges at analytics runtime for better reporting.

XPath Expression Click the Edit icon to invoke the Expression Builder dialog in
which to build an XPath expression for binding to the dimension.

When complete, the Bind Dimension dialog looks as shown in Figure 18-18.

Figure 18-18 Bind Dimension Dialog

18.4.4.1.3 Defining Measures

You can define business indicator measures.

To define measures:

1. Access analytics view in a BPEL process as described in How to Access Analytics
View.

2. In the Structure window, right-click Measures and select Create.

The Bind Measure dialog is displayed.

3. Enter values appropriate to your environment, and click OK. Table 18-3 provides
details.

Configuring BPEL Process Analytics

Using Oracle BPEL Process Manager Sensors and Analytics 18-21

Table 18-3 Bind Measure Dialog

Element Description

Name Select a name. If there is no measure to which to bind, click the
Add icon to invoke the Create Measure dialog to enter a name
and select a measure (decimal or integer).

You can also create measures in the Business Indicator Overview
Editor that are then displayed for selection in this dialog. For
more information, see How to Edit Business Indicators in the
Business Indicator Overview Editor.

XPath Expression Click the Edit icon to invoke the Expression Builder dialog in
which to build the XPath expression for binding to the measure.

When complete, the Bind Measure dialog looks as shown in Figure 18-19.

Figure 18-19 Bind Measure Dialog

18.4.4.2 How to Define Measurements

The Components window consists of the measurement types shown in Figure 18-20:

Figure 18-20 Measurement Types in the Components Window

You drag a measurement type on to a BPEL process activity in the designer for initial
creation. Measurements are defined as floaters on top of read-only activities in the
BPEL process. You can edit the measurement later in the Property Inspector or by
double-clicking the measurement. The measurement floaters can be moved around by
mouse on top of the BPEL process to achieve the necessary topology.

Each measurement type includes two tabs:

• General tab: For defining the impacted activity, the evaluation event that triggers
the measurement being taken, the measurement description, and whether the
measurement is enabled.

• Business Indicator tab: For selecting the business indicators for the measurement.

18.4.4.2.1 How to Define a Counter Mark

You can define a counter mark measurement.

Configuring BPEL Process Analytics

18-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To define a counter mark:

1. Access analytics view in a BPEL process as described in How to Access Analytics
View.

2. From the Components window, drag a Counter Mark icon on to an activity or
right-click an activity and select Counter Mark.

3. Double-click the icon that is added.

The Counter Mark dialog is displayed.

4. Enter values appropriate to your environment, and click OK. Table 18-4 provides
details.

Table 18-4 Counter Mark Dialog - General Tab

Element Description

Name Enter the name of the counter mark.

Activity Displays the BPEL activity on which the counter mark is
taken.

Evaluation Event Select the specific activity event that triggers the counter
mark. It can be one of the five activity events: Activate,
Compensate, Complete, Fault, and Retry.

Description Enter an optional description of the counter mark.

Enabled Select whether to enable the counter mark. By default, this
measurement is enabled.

When complete, the General tab of the Counter Mark dialog looks as shown in
Figure 18-21.

Figure 18-21 General Tab of Counter Mark Dialog

5. Click the Business Indicators tab.

Configuring BPEL Process Analytics

Using Oracle BPEL Process Manager Sensors and Analytics 18-23

6. Move selected business indicators to the Selected section. You can also click the
Add icon to create new business indicators. Created business indicators are
automatically added to the Selected section.

Note:

You can only create and select counters for counter marks. Dimensions are
implicitly added to counter marks, and you cannot create and select measures
for counter marks. Measures can only be created and selected for interval
starts, interval stops, and single marks.

When complete, the Business Indicators tab looks as shown in Figure 18-22.

Figure 18-22 Business Indicators Tab

18.4.4.2.2 How to Define an Interval Start

You can define an interval start measurement.

To define an interval start:

1. Access analytics view in a BPEL process as described in How to Access Analytics
View.

2. From the Components window, drag an Interval Start icon on to an activity or
right-click an activity and select Interval Start.

3. Double-click the icon that is added.

The Interval Start dialog is displayed.

4. Enter values appropriate to your environment, and click OK. Table 18-5 provides
details.

Table 18-5 Interval Start Dialog - General Tab

Element Description

Name Enter the name of the interval start.

Configuring BPEL Process Analytics

18-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 18-5 (Cont.) Interval Start Dialog - General Tab

Element Description

Activity Displays the BPEL activity from which the interval starts.

Evaluation Event Select the specific activity event that triggers the start of the
interval. It can be one of the five activity events: Activate,
Compensate, Complete, Fault, and Retry.

Description Enter an optional description of the interval start.

Enabled Select whether to enable the interval start. By default, this
measurement is enabled.

Note:

Any name change is propagated to the corresponding interval stop
measurement because the interval name is shared by both the interval start
and the interval stop measurements.

In addition, any activity change updates the activity anchor of the interval
start floater in the designer.

When complete, the General tab of the Interval Start dialog looks as shown in
Figure 18-23.

Figure 18-23 General Tab of Interval Start Dialog

5. Click the Business Indicators tab.

6. Move selected business indicators to the Selected section. You can also click the
Add icon to create new business indicators. Created business indicators are
automatically added to the Selected section.

Configuring BPEL Process Analytics

Using Oracle BPEL Process Manager Sensors and Analytics 18-25

Note:

You can only create and select measures for interval starts. Dimensions are
implicitly added to interval starts, and you cannot create and select counters
for interval starts. Counters can only be created and selected for counter
marks.

Any change on the business indicators for an interval start is propagated to its
corresponding interval stop because both the interval start and stop share the
same business indicators.

When complete, the Business Indicators tab looks as shown in Figure 18-24

Figure 18-24 Business Indicators Tab

18.4.4.2.3 How to Define an Interval Stop

You can define an interval stop measurement.

To define an interval stop:

1. Access analytics view in a BPEL process as described in How to Access Analytics
View.

2. From the Components window, drag an Interval Stop icon on to an activity or
right-click an activity and select Interval Stop.

3. Double-click the icon that is added.

The Interval End dialog is displayed.

4. Enter values appropriate to your environment, and click OK. Table 18-6 provides
details.

Table 18-6 Interval End Dialog - General Tab

Element Description

Name Enter the name of the interval stop.

Configuring BPEL Process Analytics

18-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 18-6 (Cont.) Interval End Dialog - General Tab

Element Description

Activity Displays the BPEL activity on which the interval stops.

Evaluation Event Select the specific activity event that triggers the stop of the
interval. It can be one of the five activity events: Activate,
Compensate, Complete, Fault, and Retry.

Description Enter an optional description of the interval stop.

Enabled Select whether to enable the interval stop. By default, this
measurement is enabled.

Note:

A name change is propagated to its corresponding interval start, because the
interval name is shared by both the interval start and the interval stop
measurements.

An activity change updates the activity anchor of the interval stop floater in
the designer.

When complete, the General tab of the Interval End dialog looks as shown in
Figure 18-25.

Figure 18-25 General Tab of Interval End Dialog

5. Click the Business Indicators tab.

6. Move selected business indicators to the Selected section. You can also click the
Add icon to create new business indicators. Created business indicators are
automatically added to the Selected section.

Configuring BPEL Process Analytics

Using Oracle BPEL Process Manager Sensors and Analytics 18-27

Note:

You can only create and select measures for interval stops. Dimensions are
implicitly added to interval stops, and you cannot create and select counters
for interval stops. Counters can only be created and selected for counter
marks.

Any change on the business indicators for an interval stop is propagated to its
corresponding interval start, because both the interval start and stop share the
same business indicators.

When complete, the Business Indicators tab looks as shown in Figure 18-26.

Figure 18-26 Business Indicators Tab

18.4.4.2.4 How to Define a Single Mark

You can define a single mark measurement.

To define a single mark:

1. Access analytics view in a BPEL process as described in How to Access Analytics
View.

2. From the Components window, drag a Single Mark icon on to an activity or right-
click an activity and select Single Mark.

3. Double-click the icon that is added.

The Management Mark dialog is displayed.

4. Enter values appropriate to your environment, and click OK. Table 18-7 provides
details.

Table 18-7 Management Mark Dialog - General Tab

Element Description

Name Enter the name of the single mark.

Configuring BPEL Process Analytics

18-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 18-7 (Cont.) Management Mark Dialog - General Tab

Element Description

Activity Displays the BPEL activity on which the single mark is taken.

Evaluation Event Select the specific activity event that triggers the single mark.
It can be one of the five activity events: Activate,
Compensate, Complete, Fault, and Retry.

Description Enter an optional description of the single mark.

Enabled Select whether to enable the single mark. By default, this
measurement is enabled.

Note:

The activity change updates the activity anchor of the single mark floater in
the designer.

When complete, the General tab of the Management Mark dialog looks as shown
in Figure 18-27.

Figure 18-27 General Tab of Management Mark Dialog

5. Click the Business Indicators tab.

6. Move selected business indicators to the Selected section. You can also click the
Add icon to create new business indicators. Created business indicators are
automatically added to the Selected section.

Note:

The activity change updates the activity anchor of the single mark floater in
the designer.

When complete, the Business Indicators tab looks as shown in Figure 18-28.

Configuring BPEL Process Analytics

Using Oracle BPEL Process Manager Sensors and Analytics 18-29

Figure 18-28 Business Indicators Tab

Note:

You can only create and select measures for single marks. Dimensions are
implicitly added to single marks, and you cannot create and select counters for
single marks. Counters can only be created and selected for counter marks.

18.4.4.3 How to Configure Composite-Level Analytic Sampling Points

You can configure analytic sampling points (process start/stop, activity start/stop) at
the SOA composite application level. Composite level configuration applies to all
BPEL processes in the composite. For information about configuring analytics at the
specific BPEL process level, see How to Configure Process-Level Analytic Sampling
Points.

To configure composite-level analytic sampling points:

1. Above the SOA Composite Editor, click the Configure Analytics icon, as shown in
Figure 18-29.

Figure 18-29 Configure Analytics Icon Above SOA Composite Editor

The SOA Analytics Metrics dialog is displayed, as shown in Figure 18-30.

Figure 18-30 SOA Analytics Metrics Dialog

Configuring BPEL Process Analytics

18-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

2. Select appropriate options, then click OK. Table 18-8 provides details.

Table 18-8 Composite Analytics Setting Dialog

Element Description

Generate For All
Activities

Generates standard analytic events for all process and
activity events.

Human Workflow
Activities Only

Generates standard analytic events only for human task
events.

Start and Stop of the
BPEL Process Only

Generates standard analytic events for starting and stopping
of the BPEL process.

Do not Generate Does not generate any standard analytic events.

18.4.4.4 How to Configure Process-Level Analytic Sampling Points

You can configure analytic sampling points (process start/stop, activity start/stop) at
the individual BPEL process level. Process level configuration only applies to the
generation of standard analytics events for the specific BPEL process. It does not
impact the generation of user-defined measurement events for the process. User-
defined measurements always generate their measurement events, if enabled.

For information about configuring analytics at the SOA composite application level,
see How to Configure Composite-Level Analytic Sampling Points.

To configure process-level analytic sampling points:

1. Access the BPEL process in analytics view as described in How to Access Analytics
View.

2. Above the BPEL process, click the Configure Analytics icon, as shown in
Figure 18-31.

Figure 18-31 Configure Analytics Icon

The Composite Analytics Sampling Points for BPEL dialog is displayed, as shown
in Figure 18-32.

Figure 18-32 Composite Analytics Sampling Points for BPEL Dialog

Configuring BPEL Process Analytics

Using Oracle BPEL Process Manager Sensors and Analytics 18-31

3. Select appropriate options, then click OK. Table 18-9 provides details.

Table 18-9 Process Analytics Setting Dialog

Element Description

Inherit From Composite
Default

Inherits the analytics setting from the composite level
analytics configuration described in How to Configure
Composite-Level Analytic Sampling Points.

Human Workflow
Activities Only

Generates standard analytic events for human task activity
events.

Generate For
Interactive(s) Only

Generates standard analytic events only for interactive
process and activity events such as human task events.

Start and Stop of the
BPEL Process Only

Generates standard analytics events for the starting and
stopping of the BPEL process.

Do not Generate Does not generate any standard analytic events.

Is Primary Process Select to inform analytics runtime if the process is one of the
primary processes for the SOA composite application.

18.4.5 How to Edit Business Indicators in the Business Indicator Overview Editor
You can create, edit, and delete business indicators for the SOA composite application
in the Business Indicator Overview Editor, regardless of whether or how these
business indicators are bound to specific BPEL processes. This editor does not change
the bindings for those business indicators as long as they are not deleted. When a
business indicator is deleted, all its bindings with the specific BPEL processes are also
deleted.

The Business Indicator Overview Editor is the only way to edit and delete business
indicators. From the various dialogs for counters, dimensions, and measures that you
access from the Structure window or Property Inspector, you cannot edit or delete the
business indicators. You can only edit their bindings to the BPEL process. The view of
business indicators from the Structure window or Property Inspector is actually a
binding view of the business indicators, and not a view of all the business indicators.
Any unbound business indicators do not show up from the Structure window or
Property Inspector.

Any relevant change in the Business Indicator Overview Editor is reflected in the
Structure window or Property Inspector. Any relevant change from the Structure
window or Property Inspector is reflected in the Business Indicator Overview Editor.

To edit business indicators in the Business Indicator Overview Editor:

1. In the Applications window, double-click Business Indicators. Figure 18-33
provides details.

Configuring BPEL Process Analytics

18-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 18-33 Business Indicators Overview Editor

2. Create, edit, and delete business indicators for counters, measures, and dimensions,
as required.

Note:

You can also create a special type of business indicator called an attribute.
However, Oracle SOA Suite analytics design time does not currently support
attribute binding to BPEL processes. Therefore, you cannot create or bind
attributes to the BPEL process in the Structure window or Property Inspector.

18.4.6 Deploying BPEL Analytics
Analytic configurations are included with SOA composite application deployment. If
there are no analytics defined in the composite, no deployment of analytics occurs.

The SOA analytics deployment performs the following procedures:

• Populates the analytics definition (composite, process, activity, role) data objects.

• Creates the composite-specific physical and logical data objects (process and
activity).

Analytics deployment is divided into two steps based on whether the data population
is at the composite level or the component (BPEL process) level:

• Composite-level analytics deployment

The composite definition data object is populated and the composite-specific
physical and logical data objects are created (process and activity). Composite-

Configuring BPEL Process Analytics

Using Oracle BPEL Process Manager Sensors and Analytics 18-33

level analytics deployment is invoked at composite deployment time. This
deployment step is performed once for a composite.

• Component-level analytics deployment

The process, activity, and role definition data objects are populated. Component-
level analytics deployment is invoked at component deployment time. This
deployment step is performed for each component of the composite.

18.4.7 Viewing BPEL Analytics at Runtime
The measurement events based on the deployed analytics metadata are triggered.
BPEL process and activity events such as start and stop trigger the measurement
events. A measurement event captures the values of all business indicators defined for
the measurement from the BPEL process service engine, and can be synthesized and
published to Oracle BAM.

BPEL process and activity events themselves can also be published to Oracle BAM
based on analytics sampling control. BPEL process and activity events also capture
applicable business intelligence values.

BPEL measurement events are published to SOA analytics data objects (process and
activity) in BAM.

For information about BPEL process analytics integration with Oracle Business
Activity Monitoring (BAM), see Chapter "Integrating with Oracle SOA Suite" of
Monitoring Business Activity with Oracle BAM and Chapter "Gaining Business Insights
with Oracle Business Activity Monitoring" of Understanding Oracle SOA Suite.

Configuring BPEL Process Analytics

18-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Part III
Using the Oracle Mediator Service

Component

This part describes the components that comprise the Oracle Mediator service
component.

This part contains the following chapters:

• Getting Started with Oracle Mediator

• Creating Routing Rules

• Working with Multiple Part Messages in Oracle Mediator

• Using Error Handling

• Resequencing in Oracle Mediator

• Understanding Message Exchange Patterns of an Oracle Mediator

19
Getting Started with Oracle Mediator

This chapter describes Oracle Mediator, which provides transformation, validation,
and routing logic to Oracle SOA Suite applications. This chapter also describes how to
create a Mediator component and the associated WSDL documents in Oracle
JDeveloper.

This chapter includes the following sections:

• Introduction to Oracle Mediator

• Mediator Functionality

• Creating a Mediator

• Introduction to the Environment

• Configuring the Mediator Interface Definition

• Defining an Interface for a Mediator

• Generating a WSDL File

• Specifying Validation and Priority Properties

• Modifying a Mediator Service Component

19.1 Introduction to Oracle Mediator
Oracle Mediator is a service component of the Oracle SOA Suite that provides
mediation capabilities such as selective routing, transformation, and validation
capabilities, along with various message exchange patterns, such as synchronous,
asynchronous, and event publishing or subscriptions.

Mediator provides a lightweight framework to mediate between various components
within a composite application, such as business processes, human workflows, and so
on, using a Web Services Description Language (WSDL) document as the interface.
Mediator converts data to facilitate communication between different interfaces
exposed by different components that are wired to build a SOA composite application.
For example, Mediator can accept data contained in a text file from an application or
service, transform it into a format appropriate for updating a database that serves as a
customer repository, and then route and deliver the data to that database.

Mediator facilitates integration between events and services, where service invocations
and events can be mixed and matched. You can use a Mediator service component to
consume a business event or receive a service invocation. A Mediator service
component can evaluate routing rules, perform transformations, validate, and either
invoke another service or raise another business event. You can use a Mediator service
component to handle returned responses, callbacks, faults, and timeouts.

Getting Started with Oracle Mediator 19-1

19.2 Mediator Functionality
The following sections describe the primary functions that Oracle Mediator supplies to
an Oracle SOA Suite application.

19.2.1 Content-Based and Header-Based Routing
Mediator enables you to define rules based on the message payload or message
headers. You can select elements or attributes from the message payload or the
message header and, based on the values in those elements or attributes, you can
specify an action. For example, Mediator receives a file from an application or service
containing data about new customers. Based on the country mentioned in the
customer's address, you can route and deliver data to the database storing data for
that particular country. Similarly, you can route a message based on the message
header.

For more information about header-based routing, see How to Access Headers for
Filters and Assignments.

19.2.2 Synchronous and Asynchronous Interactions
Mediator supports both synchronous and asynchronous request and response
interactions. In a synchronous interaction, the client requests a service and then waits
for a response to the request. In an asynchronous interaction, the client invokes the
service, but does not wait for the response. You can specify a timeout period for an
asynchronous interaction and you can specify an action to perform after the timeout
period, such as to raise an event or start a process.

Mediator also supports event-based interactions. Events are one-way (fire-and-forget)
asynchronous interactions.

For more information about synchronous and asynchronous interactions, see How to
Configure Response Messages and Understanding Message Exchange Patterns of an .

19.2.3 Sequential and Parallel Routing of Messages
Mediator lets you specify that a routing rule be executed either in parallel or in
sequence. You can configure the execution type from the Routing Rules section of the
Mediator Editor.

For more information about sequential and parallel routing of messages, see How to
Specify Sequential or Parallel Execution.

19.2.4 Message Resequencing
When you use the Mediator resequencer, it rearranges streams of related but out-of-
sequence messages into their sequential order based on the type of resequencer used
and the rules you define. When incoming messages arrive in a random order, the
resequencer orders the messages based on sequential or chronological information,
and then sends the messages to the target services in the correct order based on the
resequencing configuration.

For more information about resequencing messages, see Resequencing in .

Mediator Functionality

19-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

19.2.5 Data Transformation
Mediator lets you define data transformation from one XML schema to another. This
feature enables data interchange among applications using different schemas. For
example, you can transform a comma-delimited file to an XML schema that is
compatible with a database.

For more information about transformations, see How to Create XSLT
Transformations.

19.2.6 Payload Validation
You can configure Mediators to validate the incoming message payload using a
Schematron or an XSD file. You can specify Schematron files for each inbound
message part and Mediator executes Schematron file validations for those parts.

For more information about validations, see Specifying Validation and Priority
Properties, How to Use Semantic Validation, and http://www.schematron.com/.

19.2.7 Java Callouts
Mediator lets you add Java callouts to the routing rules. Java callouts enable you to
use external Java classes to manipulate messages flowing through the Mediator.

For more information about Java callouts, see How to Use Java Callouts.

19.2.8 Event Handling
An event is a message sent because an activity occurred in a business environment.
Mediator can both subscribe to and raise business events. You can subscribe to a
business event that is generated when a situation of interest occurs. For example, you
can subscribe to an event that is generated when a new customer is created and then
use this event to start a business process, such as sending a confirmation email.
Similarly, you can generate business events when a situation of interest occurs. For
example, after a new customer profile is created, you can generate a customer-created
event.

For more information about event handling, see Using Business Events and the Event
Delivery Network.

19.2.9 Dynamic Routing
Dynamic routing separates the control logic of a process from the execution of the
process. The control logic determines the path taken by the process. You can create
dynamic routing rules using the Mediator Editor.

For more information about dynamic routing, see How to Create Dynamic Routing
Rules.

19.2.10 Error Handling
Mediator supports both manual error handling and error handling based on fault
policies. A fault policy consists of conditions and actions, where the conditions specify
the action to be carried out for a particular error condition.

For more information about error handling, see Using Error Handling .

Mediator Functionality

Getting Started with Oracle Mediator 19-3

http://www.schematron.com/

19.2.11 Sending Messages Back to the Caller (Echo)
Mediator can echo source messages back to the initial caller without routing the
message to another target. Mediator can perform transformations, validations,
assignments, or sequencing operations before echoing the message back to the caller.

For more information about Mediator echo support, see "To echo a service:" of How to
Specify Mediator Services or Events.

19.2.12 Multiple Part Messages
Mediator can process messages that consist of multiple parts. Some Remote Procedure
Call (RPC) web services contain multiple parts in the SOAP message.

For more information about multiple part message support, see Working with
Multiple Part Messages in .

19.3 Creating a Mediator
You can create a Mediator in multiple ways, depending on where you are in your
application development process. Follow the appropriate instructions in the following
sections to create the component.

19.3.1 How to Create a Mediator
You can create a Mediator in a SOA composite application in Oracle JDeveloper at any
of the following points in the development cycle:

• When you create a composite application

• When you modify an existing composite application

• When you create a project

• When you modify an existing project

When you create a Mediator, the Create Mediator dialog appears so you can name the
Mediator and select a template for the interface.

19.3.1.1 To Create a Composite Application with a Mediator:

1. Create and Name the SOA application and project using the Create SOA
Application wizard.

2. When you reach the Configure SOA Settings page, select Composite with
Mediator in the Composite Template list, as shown in Figure 19-1.

Creating a Mediator

19-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 19-1 Composite with Mediator Selection in Create SOA Project Wizard

3. Click Finish.

The Create Mediator dialog appears.

4. Configure the Mediator interface, as described in Configuring the Mediator
Interface Definition.

5. Define routing rules for the Mediator, as described in Creating Routing Rules .

19.3.1.2 To Create a Mediator in an Existing Composite Application:

1. Open the composite application to which you are adding a Mediator in the SOA
Composite Editor.

2. Drag and drop a Mediator from the Components window (shown in Figure 19-2)
to the Components section of the editor.

Alternatively, right-click a blank area in the Components section of the editor.
Select Insert > Mediator from the context menu that appears.

Tip:

The Components window is to the right of the SOA Composite Editor.

Creating a Mediator

Getting Started with Oracle Mediator 19-5

Figure 19-2 Components Window with a Mediator Service Component

The Create Mediator dialog appears.

3. Configure the Mediator interface, as described in Configuring the Mediator
Interface Definition.

4. Define routing rules for the Mediator, as described in Creating Routing Rules .

19.3.1.3 To create a new project with a Mediator:

1. Right-click in the Applications window, and then select New.

The New Gallery wizard appears.

2. Create and name a new SOA project in the SOA Tier category.

3. On the Configure SOA Settings page of the New Gallery dialog, select Composite
With Mediator from the Composite Template list, shown in Figure 19-3.

Creating a Mediator

19-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 19-3 Create SOA Project Wizard with Composite With Mediator
Template Shown

4. Click Finish.

The Create Mediator dialog appears.

5. Configure the Mediator interface, as described in Configuring the Mediator
Interface Definition.

19.3.1.4 To create a Mediator in an existing project:

1. In the Applications window, select the project to which you want to add a
Mediator.

2. Right-click in the navigator pane and select New.

3. Under Categories, select Service Components, and then select Mediator from the
Items list, as shown in Figure 19-4.

Creating a Mediator

Getting Started with Oracle Mediator 19-7

Figure 19-4 New Gallery Dialog with Mediator Service Component

4. Click OK.

The Create Mediator dialog appears.

5. Configure the Mediator interface, as described in Configuring the Mediator
Interface Definition.

6. Define routing rules for the Mediator, as described in Creating Routing Rules .

19.4 Introduction to the Mediator Editor Environment
You can create a Mediator service component in a SOA composite application of
Oracle JDeveloper and then configure it using the Mediator Editor. To display the
Mediator Editor, double-click the Mediator service component in the . For information
about the , see Getting Started with Developing SOA Composite Applications.

Figure 19-5 shows the Mediator Editor along with the Applications window, Structure,
and Messages windows.

Note:

Oracle recommends using a Unicode database with AL32UTF8 as the database
character set for full globalization support in Mediator.

Introduction to the Mediator Editor Environment

19-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 19-5 Mediator Editor Window

Each section of the view shown in Figure 19-5 lets you perform specific design and
deployment tasks. The sections in this view include the following:

• Applications window

The Applications window, shown in the upper left section of Figure 19-5, displays
the Mediator mplan file. This file appears under the SOA Content folder of the
project where you created a Mediator. For more information about the
Applications window and the composite files, see Table 2-4.

• Mediator Editor

The Mediator Editor, shown in the middle of Figure 19-5, provides a visual view
of the Mediator. This view appears when you perform one of the following
actions:

– Double-click an icon in the .

– Double-click the.mplan file for the Mediator in the Applications window.

• Source View

The Source view displays the source code of a Mediator. Click Source at the
bottom of the Mediator Editor to view the source code. The code in Source view is
immediately updated to reflect any changes to an a Mediator.

The following example shows sample Mediator source code:

<?xml version = '1.0' encoding = 'UTF-8'?>
<!--Generated by Oracle SCA Modeler version 1.0 at [4/16/07 10:05 PM].-->
<Mediator name="CustomerDataRouter" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xmlns="http://xmlns.oracle.com/sca/1.0/mediator"/>

• History Window

Introduction to the Mediator Editor Environment

Getting Started with Oracle Mediator 19-9

The History window displays history information about the Mediator file,
including a revision history and side-by-side comparisons of read-only and
editable versions of a file. Click History at the bottom of the Design window
shown in Figure 19-5 to open the History window. Figure 19-6 shows the History
view for a Mediator file.

Figure 19-6 History Window

19.5 Configuring the Mediator Interface Definition
When you create a new Mediator, you can specify an interface template that generates
a basic set of default files in the Mediator project. These files provide a framework
from which you can design and configure the Mediator. You can create a Mediator
with the following interface options:

• Mediator with no interface definition

This creates an empty Mediator and does not create a WSDL file. This method
provides you with the flexibility to create the SOA components in the order you
want.

After you create a Mediator without an interface definition, you must create a
service or an event that starts the component. You can also define the interface
implicitly by dragging and dropping a service, or the output interface from
another component, to the Mediator input.

• Mediator with the interface defined by a WSDL file

This bases the interface definition on a WSDL file, which describes the interfaces
of a Mediator, such as port type, operations, services, and schemas. The WSDL file
can already exist or you can generate one from a schema file.

• Mediator with a one-way interface

This defines an interface with a one-way interaction, where the client sends a
message to a service and the service does not need to reply.

• Mediator with a synchronous interface

This creates an interface with synchronous request-response interactions. In a
synchronous interaction, a client sends a request to a service and receives an
immediate response. The client does not proceed further until the response
arrives.

Configuring the Mediator Interface Definition

19-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Mediator with an asynchronous interface

This creates an interface with asynchronous request-response interactions. In an
asynchronous interaction, a client sends a request to a service, but does not block
and wait for a reply.

• Mediator that subscribes to events

This creates a Mediator that subscribes to a business event generated when a
situation of interest occurs. A business event consists of message data sent as the
result of an occurrence in a business environment. For information about business
events, see Using Business Events and the Event Delivery Network.

To subscribe to events, the events must be defined in an Event Definition (EDL)
file.

19.5.1 How to Configure the Mediator Interface Definition
You configure the interface definition for a Mediator on the Create Mediator dialog.

To configure the Mediator interface definition:

1. Create a Mediator using one of the methods described in Creating a Mediator.

The Create Mediator dialog appears.

2. In the Name field, enter a name for the Mediator service component.

3. Select one of the following from the Template list. Refer to the descriptions at the
beginning of this section for more information on each.

• Define Interface Later

• Interface Definition from WSDL

• One-Way Interface

• Synchronous Interface

• Asynchronous Interface

• Subscribe to Events

Figure 19-7 and Figure 19-8 illustrate how the properties change on the Create
Mediator dialog for different interface types.

Configuring the Mediator Interface Definition

Getting Started with Oracle Mediator 19-11

Figure 19-7 Synchronous Interface Template Selection on the Create Mediator
Dialog

Figure 19-8 Interface Definition from WSDL Template Selection on the Create
Mediator Dialog

4. For any interface type except Subscribe to Events, configure the appropriate
properties. For information about the displayed properties for each type, see
Table 19-1 following these instructions.

5. If you selected Subscribe to Events, do the following:

a. Click Add on the Create Mediator dialog.

Configuring the Mediator Interface Definition

19-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 19-9 Subscribe to Events Template Selection in Create Mediator
Dialog

The Event Chooser dialog appears.

b. To the right of the Event Definition field, click Search.

The SOA Resource Browser dialog appears.

c. Select an event definition file (.edl) and click OK.

The Event field is populated with the events described in the.edl file that
you selected. For more information about creating.edl files, see Using
Business Events and the Event Delivery Network.

d. Select one or more events in the Event field, as shown in Figure 19-10, and
click OK.

Figure 19-10 Event Chooser Dialog

e. Select a level of delivery consistency for the event.

one and only one: A global (JTA) transaction is used for event delivery. If the
event call fails, the transaction is rolled back and the call is retried a
configurable number of times.

Configuring the Mediator Interface Definition

Getting Started with Oracle Mediator 19-13

guaranteed: A local transaction is used to guarantee delivery. There are no
retries upon failure.

immediate: Events are delivered on the same thread and on the same
transaction as the caller.

f. In the Run as publisher field, select whether to run the event subscription
under the security of the event publisher.

By default, event subscriptions run under the security of the event publisher.

g. To filter the event, double-click the Filter column of the selected event, or
select the event and then click the filter icon (first icon).

The Expression Builder dialog appears.

h. In the Expression field, enter an XPath expression and click OK.

Figure 19-11 shows a sample Expression Builder dialog.

Figure 19-11 Business Event Filter

The expression you created appears in the Filter column of the Create
Mediator dialog.

i. Click OK.

6. Click OK on the Create Mediator dialog.

7. If you chose to create a Mediator without an interface, you must create the
interface at a later time as described in How to Define an Interface for a Mediator .

Configuring the Mediator Interface Definition

19-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The following table lists and describes the properties you can configure to define an
interface. The available properties change depending on the interface type you select,
so not all of the listed properties apply to all interface types.

Table 19-1 Mediator Interface Properties

Property Description

Create Composite Service
with SOAP Bindings

Select this option to create an exposed service with SOAP
bindings that is automatically connected to your Mediator
when the interface is generated.

WSDL URL Enter the location of the WSDL file to use when creating the
interface from a WSDL file. Do one of the following:

• To use an existing WSDL file, enter the name of the file or
click Find existing WSDL files to browse for the file.

• To create a new WSDL file, click Generate WSDL from
schema(s).

For more information about these options, see Generating a
WSDL File.

Port Type Select the port type name from the list. The available port types
are parsed from the WSDL file that you specify in the WSDL
URL field.

Callback Port Type Select the port type name to which the response message is sent
in an asynchronous communication. The available port types
are parsed from the WSDL file that you specify in the WSDL
URL field.

Input Enter the schema element for the input message. Click Search
to the right of the field to select the element. By default, the
singleString schema element is selected for the input message.

For a sample schema, see the schema that follows after this
table.

Output Enter the schema element for the output message. Click Search
to the right of the field to select the element. By default, the
singleString schema element is selected for the input message.

You can use any XSD schema to specify the format of the input document that
Mediator processes. Here is a sample schema:

<xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://samples.otn.com/helloworld"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://samples.otn.com/helloworld">
 <include namespace="http://samples.otn.com/helloworld"
 schemaLocation="helloworld.xsd" />
 <xsd:element name="name1" type="xsd:string" />
 <xsd:element name="result1" type="xsd:string"/>
</xsd:schema>

Configuring the Mediator Interface Definition

Getting Started with Oracle Mediator 19-15

19.5.2 What Happens When You Create a Mediator
The Mediator files are generated under the specified application and project in the
Applications window, and the new Mediator appears in the Mediator Editor in Design
view. If you created the Mediator with an interface definition and the WSDL file did
not already exist, the new WSDL file is also generated with the same name as the
Mediator. If the WSDL file you specified is located in a different directory than the
project files, the file and its associated schema files are copied to the Mediator project.

19.5.2.1 Without an Interface Definition

This Mediator has no associated WSDL file, port types, or operations. You must define
these separately as described in Defining an Interface for a Mediator. Figure 19-12
shows how a Mediator created with no interface definition appears in the Mediator
Editor.

Figure 19-12 Mediator with no Interface Definition in the Mediator Editor

19.5.2.2 With a WSDL-Based Interface

The appearance and source code of this Mediator varies depending on the name of the
WSDL file and the port types and operations defined by the WSDL file. Figure 19-13
shows a sample Mediator created from a WSDL file.

Figure 19-13 Mediator from WSDL in the Mediator Editor

Configuring the Mediator Interface Definition

19-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

19.5.2.3 With a One-Way Interface Definition

Figure 19-14 shows how a Mediator created with a one-way interface appears in the
Mediator Editor. The arrow to the left of the execute operation represents a one-way
operation.

Figure 19-14 One-Way Interface in the Mediator Editor

19.5.2.4 With a Synchronous Interface Definition

In a synchronous interaction, only one port is defined because the response is sent to
the same port as the request. Figure 19-15 shows how a Mediator created with a
synchronous interface appears in the Mediator Editor. The arrows to the left of the
execute operation in Figure 19-15 represent a synchronous operation.

Figure 19-15 Synchronous Mediator in the Mediator Editor

19.5.2.5 With an Asynchronous Interface Definition

Figure 19-16 shows how a Mediator created with an asynchronous interface appears in
the Mediator Editor. The Port Type field displays the port on which the request
message is sent. The Callback Port Type field displays the port to which the response
is sent. The arrows to the left of the execute operation in Figure 19-16 represent an
asynchronous operation.

Configuring the Mediator Interface Definition

Getting Started with Oracle Mediator 19-17

Figure 19-16 Asynchronous Mediator in the Mediator Editor

19.5.2.6 With an Event Subscription

When you view the Mediator in the SOA Composite Editor, the icon on the left side of
the Mediator indicates that this Mediator is configured for an event subscription, as
shown in Figure 19-17.

Figure 19-17 Mediator Created with the Subscribe to Events Template

When you double-click the Mediator, the Mediator Editor appears, as shown in
Figure 19-18.

Figure 19-18 Event Subscription Mediator in the Mediator Editor

Configuring the Mediator Interface Definition

19-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

19.6 Defining an Interface for a Mediator
After you create a Mediator without an interface definition, you must define the
interface by subscribing to events or by defining services. You can define services in
the following two ways:

• Connect the Mediator to a service through a wire in the SOA Composite Editor.

• Use the Define Service or Add Event Subscription option in the Mediator Editor.

19.6.1 How to Define an Interface for a Mediator
The following procedures describe how to define an interface for an existing Mediator
by subscribing to events, by defining services creating a wire in the composite, and by
defining services using the Mediator Editor.

19.6.1.1 To Subscribe to Events:

To subscribe to events, the events must be defined in an Event Definition (EDL) file.

1. Open the Mediator you want to edit in the Mediator Editor.

2. In the Routing Rules section, click Add Event Subscription.

The Subscribed Events dialog appears.

3. Click Add.

The Event Chooser dialog appears.

4. To use an existing EDL file, follow the instructions under Configuring the
Mediator Interface Definition beginning with Step 55.b.

Note:

You can alternatively create a new EDL file. Click Create EDL file to create a
new EDL file. Enter the event details in the Create Event Definition dialog that
appears.

5. Click OK.

19.6.1.2 To Define Services for a Mediator Using a Wire:

• In the , drag a wire from a Mediator to a service.

For more information about wires and how to wire a service component to a
service, see How to Wire a Service and a Service Component.

Note:

You can also wire a Mediator with a defined service interface to another
interface. However, to connect a Mediator to a service, the interface of the
Mediator and of the service must match.

When you define a service using a wire, the service for the Mediator is
automatically defined using the WSDL file from the wire source. For example, if

Defining an Interface for a Mediator

Getting Started with Oracle Mediator 19-19

you connect the ReadFile service shown in Figure 19-19 to the
CustomerDataRouter Mediator, the CustomerDataRouter Mediator automatically
inherits the service definition of the ReadFile service.

Figure 19-19 Connecting Mediator to a Service

For information about how wiring two Mediator service components can cause an
infinite loop, see What You May Need to Know About Adding and Deleting
Wires.

19.6.1.3 To Define Services for a Mediator in the Mediator Editor:

1. Display the Mediator you want to edit in the Mediator Editor.

2. To the right of the WSDL URL field, click Define Service.

The Define Service dialog appears, as shown in Figure 19-20.

Defining an Interface for a Mediator

19-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 19-20 Define Service Dialog

3. Do one of the following:

• To use an existing WSDL file, click Find existing WSDLs to the right of the
WSDL URL field.

• To create a WSDL file, click Generate WSDL from schema(s) to the right of
the WSDL URL field.

For information about how to generate a WSDL file, see Generating a WSDL File.

4. From the Port Type list, select a port.

5. From the Callback Port Type list, select a port for the response message in an
asynchronous interaction.

6. Click OK.

19.7 Generating a WSDL File
You can generate the WSDL file for a message using an XML schema definition (XSD)
file. When working with Mediator, you can generate a WSDL file at either of the
following times:

• When you are creating a Mediator and you select the Interface Definition from
WSDL template in the Create Mediator dialog, selecting Generate WSDL from
Schema(s) next to the WSDL URL field opens the Create WSDL dialog.

• When you have a Mediator with no interface defined and you click Define
Service next to the WSDL URL field in the Mediator Editor, selecting Generate
WSDL from Schema(s) next to the WSDL URL field opens the Create WSDL
dialog.

The Create WSDL dialog populates standard fields, such as the file name, directory,
and namespace; and the dialog changes depending on the interface type you select.
You can specify the same or different schema files for the message inputs.

Generating a WSDL File

Getting Started with Oracle Mediator 19-21

19.7.1 How to Generate a WSDL File
The way you configure a WSDL file depends on the type of interface being defined by
the WSDL file. You can define a one-way interface, a synchronous interface, or an
asynchronous interface.

19.7.1.1 To generate a WSDL file for a one-way interface from an XSD file:

Perform these steps after the Create WSDL dialog appears when you are creating a
Mediator or when you are defining a service for a Mediator.

1. On the Create WSDL dialog, accept the default values or enter the following
information for the WSDL file:

Table 19-2 WSDL Properties

Property Description

File Name A unique name for the WSDL file.

Directory The directory where you want to store the WSDL file. By
default, it is stored in the SOA/WSDLs folder under the
project folder.

Namespace A namespace address for the WSDL file; for example,
http://oracle.com/esb/namespaces/Mediator. The
default namespace is based on the JDeveloper application
name, project name, and the mediator name.

The namespace that you specify is defined as the tns
namespace in the WSDL file.

Port Type The name of the port type in the WSDL file that contains the
operation to use.

Operation The name of the action to perform; for example,
executeQuery.

Note:

Spaces and special characters are not allowed in an operation name or port
type. Only alphabetic and numeric characters are supported, and the first
character cannot be a number.

2. In the Interface Type field, select One-Way Interface.

The Input field appears, as shown in Figure 19-21.

Generating a WSDL File

19-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 19-21 Create WSDL Dialog for a One-Way Interface

3. To the upper right of the Input field, click Add a new message part.

The Add Message Part dialog appears, as shown in Figure 19-22.

Figure 19-22 Add Message Part Dialog

4. In the Part Name field, enter a name for the message part.

5. To the right of the URL field, click the browse for schema file icon to browse for
the URL.

The Type Chooser dialog appears and contains a list of the schema files (XSD
files), as shown in Figure 19-23.

Generating a WSDL File

Getting Started with Oracle Mediator 19-23

Figure 19-23 Type Chooser Dialog

6. Expand the Type Explorer tree to locate and select the schema element to use.

If the schema you want to use is not located in the project in which you are
working, you can import a schema XSD file or WSDL file into the project using the
Import Schema File or Import WSDL icon in the upper right corner of the dialog.

After you specify a file, Oracle JDeveloper parses it to determine the defined
schema elements and displays them in a list from which you select.

7. Select the root element of the XSD file and click OK.

The Add Message Part dialog reappears with the URL and Schema Element fields
populated from the Type Chooser dialog. If you selected an XSD simple type,
these fields are replaced by a Simple Type field.

8. Click OK on the Add Message Part dialog.

The input information appears in the Input field of the Create WSDL dialog.

9. If needed, repeat the above steps to define additional message parts.

10. Click OK.

Note:

Partner link types are generally used in BPEL, so you do not need to select
Generate partnerlinkType extension for Mediator.

19.7.1.2 To generate a WSDL file for a synchronous interface from an XSD file:

Perform these steps after the Create WSDL dialog appears when you are creating a
Mediator or when you are defining a service for a Mediator.

1. On the Create WSDL dialog, enter the information for the properties listed in
Table 19-2.

2. In the Interface Type field, select Synchronous Interface.

The Input, Output, and Fault fields appear, as shown in Figure 19-24.

Generating a WSDL File

19-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 19-24 Create WSDL Dialog for a Synchronous Interface

3. Repeat steps 3 to 8, as in the previous procedure.

4. Repeat the same steps to define message parts for the Output and Fault fields.

The output represents the response message and is required in synchronous
transactions. Faults are optional.

5. Click OK.

Note:

Partner link types are generally used in BPEL, so you do not need to select
Generate partnerlinkType extension for Mediator.

19.7.1.3 To generate a WSDL file for an asynchronous interface from an XSD file:

Perform these steps after the Create WSDL dialog appears when you are creating a
Mediator or when you are defining a service for a Mediator.

1. On the Create WSDL dialog, enter the information for the properties listed in
Table 19-2.

2. In the Interface Type field, select Asynchronous Interface.

The Input field and Callback section appear, as shown in Figure 19-25.

Generating a WSDL File

Getting Started with Oracle Mediator 19-25

Figure 19-25 Create WSDL Dialog for an Asynchronous Interface

3. Repeat steps 3 to 8, as in the earlier procedure.

4. Repeat the same steps to define the input message parts for the Callback section.

Note:

The callback input represents the response message and is required in
asynchronous transactions.

5. In the Callback section, specify the following information for the response
message:

• Port Type: The name of the port type in the WSDL file that contains the
operation to use.

• Operation: The name of the action to perform; for example,
executeResponse.

Note:

Spaces and special characters are not allowed in an operation name or port
type. Only alphabetic and numeric characters are supported, and the first
character cannot be a number. Both of these fields are required.

6. Click OK.

Generating a WSDL File

19-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

Partner link types are generally used in BPEL, so you do not need to select
Generate partnerlinkType extension for Mediator.

19.8 Specifying Validation and Priority Properties
After creating a Mediator, you can configure properties for the operation or event
subscription specified for the component. On the Mediator Editor, you can specify
whether to validate the schemas of inbound messages and you can specify a priority
for the operation or event subscription.

To validate inbound message schemas, select the Validate Syntax (XSD) check box for
an operation or event subscription in the Routing Rules section of the Mediator Editor.
The Mediator Engine validates the XML inbound payload syntactic structure against
the associated XML schema. Any syntax error, such as an incorrect element name or
location, causes a fault and the routing rule is not processed.

To specify a priority for an component, select a value from zero to nine in the Priority
field in the Mediator Editor's Routing Rules section. This determines the order in
which messages are retrieved for all service components. This property is only valid
for parallel routing rules and not sequential. For more information about priorities, see
"Basic Principles of Parallel Routing Rules".

19.9 Modifying a Mediator Service Component
You can modify the operations or event subscriptions of a Mediator using the
Mediator Editor.

19.9.1 How To Modify Mediator Operations
You can modify an WSDL file by adding or deleting operations. After modifying the
WSDL file, use the Refresh WSDL dialog to synchronize the changes.

To modify operations:

1. In the Mediator Editor, click the Refresh operations From WSDL icon to the right
of the WSDL URL field.

The Refresh WSDL dialog appears. If you have made any modifications to the
WSDL file, the Refresh WSDL dialog lists all the operations to delete or add. The
Refresh will delete Mediator operation field lists all the operations that have been
removed from the WSDL file. The Refresh will add Mediator operation field lists
all the new operations that have been added in the WSDL file. Figure 19-26 shows
the Refresh WSDL dialog.

Specifying Validation and Priority Properties

Getting Started with Oracle Mediator 19-27

Figure 19-26 Refresh WSDL Dialog

2. To specify a different WSDL file, click Find existing WSDLs to the right of the
WSDL URL field to use an existing WSDL file or Generate WSDL From schema(s)
to create a WSDL file.

The Refresh WSDL dialog is updated based on the operations defined in the
specified WSDL file.

3. Click OK.

4. From the File menu, select Save All.

19.9.2 How To Modify Mediator Event Subscriptions
You can subscribe to new events, modify existing event subscriptions, and
unsubscribe from subscribed events using the Manage Event Subscriptions option in
the Mediator Editor.

To modify event subscriptions:

1. In the Mediator Editor, click the Manage Event Subscriptions icon to the right of
Event Subscriptions.

The Subscribed Events dialog appears, as shown in Figure 19-27.

Figure 19-27 The Subscribed Events Dialog

Modifying a Mediator Service Component

19-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

2. You can perform any of the following functions:

• Subscribe to a new event.

• Unsubscribe from an event.

• Modify or specify the filter criteria for an event.

• Modify the Consistency or Run as Roles properties of an event subscription.

For more information about the Consistency, Run as Roles, and Filter fields of
an event, see How to Configure the Mediator Interface Definition.

3. Click OK.

4. From the File menu, select Save All.

Modifying a Mediator Service Component

Getting Started with Oracle Mediator 19-29

Modifying a Mediator Service Component

19-30 Developing SOA Applications with Oracle SOA Suite

20
Creating Oracle Mediator Routing Rules

This chapter describes Oracle Mediator routing rules and how to specify routing rules
for a Mediator service component. Routing rules include transformation, filtering,
validation, mapping, and routing logic.

This chapter includes the following sections:

• Introduction to Routing Rules

• Resequencing Rules

• Defining Routing Rules

• Mediator Routing Use Cases

The following chapter provide additional information about defining routing rules for
specific scenarios:

• Working with Multiple Part Messages in Oracle Mediator

• Using Error Handling

• Resequencing in Oracle Mediator

20.1 Introduction to Routing Rules
Routing rules are mediation logic or execution logic that you define to achieve the
requisite mediation. Mediator lets you route data between service consumers and
service providers. As the data flows from service to service, it must be transformed.
These two tasks, routing and transformation, are the core responsibilities of Mediator.
You can use routing rules to specify how a message processed by a Mediator reaches
its next destination. Routing rules specify where a Mediator sends the message, how it
sends the message, and what changes should be made to the message structure before
sending it to the target service.

A routing rule can be triggered either by a service operation or an event subscription.
The service operation can be synchronous, asynchronous, or one-way. Routing rules
can be of the following two types:

• Static Routing Rules

Static rules do not change depending on the invocation context and are applied
consistently.

• Dynamic Routing Rules

Dynamic rules let you externalize the routing logic to an Oracle Rules Dictionary,
which in turn enables dynamic modification of the routing logic.

Creating Oracle Mediator Routing Rules 20-1

For more information about creating routing rules, see How to Create Static Routing
Rules and How to Create Dynamic Routing Rules. For information about standard
message exchange patterns and how they are handled by Mediator, see
Understanding Message Exchange Patterns of an .

20.1.1 Static Routing Rules
A static routing rule is not expected to change depending on the invocation context. In
this case, the routing can be an echo, a routing to another service, or a publishing of an
event.

When you define static rules, you can specify the following types of information:

• Target Service

Mediator sends messages to the target service you specify. This service can either
be defined as a WSDL interface or a Java interface. For information about
invoking a target service, see How to Specify Mediator Services or Events.

• Execution Type

Mediator executes routing rules either sequentially (that is, running in the same
thread) or in parallel (running on different threads). For information about
specifying an execution type, see How to Specify Sequential or Parallel Execution.

Note:

For synchronous service invocations, the routing rule should always be
sequential.

• Reply, Callback, and Fault Handlers

You can define how Mediator handles synchronous reply, callback, and fault
messages. For information about handlers, see How to Configure Response
Messages, How to Handle Faults, and Static Routing Rule Components.

20.1.1.1 Types of Static Rules

You can define the following types of static rules for a Mediator:

• Filter Expression

You can define a filter expression that is applied to the message content (payload
or headers). When you define a filter, the contents are analyzed before any service
is invoked. For example, you might apply a filter expression that specifies that a
service be invoked only if the message includes a customer ID, or if the value for
that customer ID matches a certain pattern. For information about specifying filter
expressions, see How to Specify an Expression for Filtering Messages.

• Transformations

Mediator can transform message data before forwarding the message to a service.
You can define transformations to set a value on the target payload by mapping
data or by assigning values.

The XSLT Mapper lets you define transformations that apply to the whole
message body to convert messages from one XML schema to another. The Assign
Values function works on individual fields. Using this dialog, you can assign
values from the message (for example, payload and headers), from a constant, or

Introduction to Routing Rules

20-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

from various system properties, such as the properties of an adapter present in the
data path. For information about defining transformations, see How to Create
XSLT Transformations and How to Assign Values.

• Accessing Header Variables from Expressions

Mediator can detect any SOAP headers that are used in building the expression
for the current routing rule operation. For information about accessing headers,
see How to Access Headers for Filters and Assignments and Manual Expression
Building for Accessing Properties for Filters and Assignments.

• Schematron-Based Validations

You can specify the Schematron files that Mediator should use to validate
different parts of an inbound message. For information about performing
Schematron-based validations, see How to Use Semantic Validation.

• Java Callouts

Mediator lets you add Java callouts to the routing rules. Java callouts enable you
to use external Java classes to manipulate messages flowing through the Mediator.
For information about using Java callouts, see How to Use Java Callouts.

• User-defined Extension Functions

These are your own set of functions that can be used by the XSLT Mapper. For
information about using user-defined extension functions, see "To add user-
defined extension functions:".

20.1.1.2 Static Routing Rule Components

Static routing rules define the following components:

• Request Handler: Defines how Mediator handles incoming requests.

• Reply Handler: Defines how the synchronous response from the called service is
handled by Mediator.

• Fault Handler: Defines how the named or declared faults from the called service
are handled by Mediator.

• Callback Handler: Defines how the asynchronous response and callback from the
called service are handled by Mediator.

• Timeout Handler in Callback: Defines how long Mediator waits for the
asynchronous response and callback before performing timeout handling for the
particular asynchronous request.

• Event Publishing and Service Invocation: Calls other services or publishes an
event depending on the configuration of the handlers.

20.1.2 Dynamic Routing Rules
A dynamic routing rule lets you externalize the routing logic to an Oracle Rules
Dictionary or Domain Value Map (DVM), which in turn enables dynamic modification
of the routing logic in a routing rule. Dynamic routing enables you to dynamically
route messages at runtime from a mediator to multiple target services, based on the
message content.

Dynamic routing rules are described in more detail in How to Create Dynamic
Routing Rules.

Introduction to Routing Rules

Creating Oracle Mediator Routing Rules 20-3

20.1.3 Sequential and Parallel Execution
Routing rules can be executed sequentially or in parallel. This section describes the
basic principles of both types of execution. If an operation or event has both sequential
and parallel routing rules, first sequential routing rules are evaluated and actions are
performed, and then parallel routings are queued for parallel execution.

Note:

If a Mediator service component with a request-response interface has only
parallel routing rules, the Mediator service component does not send a
response back to the caller. Though you can create this type of Mediator
service component, the caller of the Mediator service component does not
receive a response at runtime.

20.1.3.1 Basic Principles of Sequential Routing Rules

Mediator processes sequential routing rules based on the following principles:

• Mediator evaluates routings and performs the resulting actions sequentially.
Sequential routings are evaluated in the same thread and transaction as the caller.

• Mediator always enlists itself into the global transaction propagated through the
thread that is processing the incoming message. For example, if an inbound JCA
adapter invokes a Mediator, the Mediator enlists itself with the transaction that
the JCA adapter has initiated.

• Mediator propagates the transaction through the same thread as the target
components while executing the sequential routing rules.

• Mediator never commits or rolls back transactions propagated by external entities.

• Mediator manages the transaction only if the thread-invoking Mediator does not
already have an active transaction. For example, if Mediator is invoked from
inbound SOAP services, Mediator starts a transaction and commits or rolls back
the transaction depending on success and failure.

20.1.3.2 Basic Principles of Parallel Routing Rules

Mediator processes routing rules in parallel based on the following principles:

• Mediator queues and evaluates routings in parallel in different threads.

The messages of each Mediator service component are retrieved in a weighted,
round-robin fashion to ensure that all Mediator service components receive
parallel processing cycles. This is true even if one or more Mediator service
components produce a higher number of messages compared to other
components. The weight used is the message priority set when designing a
Mediator service component. Higher numbers of parallel processing cycles are
allocated to the components that have higher message priority.

You can set the Priority field in the Mediator Editor to indicate the priority of a
Mediator service component. Priorities can range from zero to nine, with nine
being the highest priority. The default priority is four.

Introduction to Routing Rules

20-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

The Priority property is applicable only to parallel routing rules.

• Mediator initiates a new transaction for processing each parallel rule. The initiated
transaction ends with an enqueue to the Mediator parallel message dehydration
store.

For example, if a Mediator service component has one parallel routing rule, one
message is enqueued on the Mediator parallel message dehydration store. The
parallel message dispatcher to the store then initiates a transaction, reads the
message from the database store, and invokes the target component or service of
this routing rule. The transaction initiated by the listener thread is a completely
new transaction and is propagated to the target components.

Note:

Dehydrating of messages means storing the incoming messages in a database
for parallel routing rules so they can be processed later by worker threads.

• Mediator commits or rolls back transactions because it is the initiator of these
transactions.

20.1.3.3 Finer Control Over Thread Allocation in Parallel Routing

You can specify dedicated work managers to handle parallel routing and error
handling messages for a mediator component. You can use the Oracle WebLogic
Server Administration Console to configure work managers. See "Viewing and
Configuring Work Manager Properties" in Administering Oracle SOA Suite and Oracle
Business Process Management Suite for more details on configuring work managers.

Use the NameWorkManagerMappings Mediator service engine property to specify
the mediator component and its associated work managers in Oracle Enterprise
Manager Fusion Middleware Control. See "Configuring Oracle Mediator Service
Engine Properties" in Administering Oracle SOA Suite and Oracle Business Process
Management Suite for more details on configuring Mediator runtime properties.

The NameWorkManagerMappings property has the following keys:

• parallelRoutingWorkManagerName: The name of the work manager configured
for parallel routing. If this is not specified, the default SOA work manager is used.

• fullyQualifiedComponentDistinguishedName: The fully qualified distinguished
name of the mediator component. The format to be used is PartitionName/
CompositeName!Revision/ComponentName. For example, soaInfra/
MyProject!1.0/Mediator1.

20.2 Resequencing Rules
Mediator includes a resequencer, which rearranges streams of related but out-of-
sequence messages into their sequential order based on the type of resequencer used
and the rules you define. When incoming messages arrive in a random order, the
resequencer orders the messages based on sequential or chronological information,
and then sends the messages to the target services in the correct order based on the
resequencing configuration.

Resequencing Rules

Creating Oracle Mediator Routing Rules 20-5

For more information about resequencing messages, see Resequencing in .

20.3 Defining Routing Rules
Routing rules can only be defined for a Mediator with a defined interface. For more
information on how to define an interface, see How to Define an Interface for a
Mediator .

20.3.1 How To Access the Routing Rules Section
You define the routing rules in the Routing Rules section of the Mediator Editor.

Figure 20-1 shows the Routing Rules section of the Mediator Editor.

Figure 20-1 Mediator Editor- Routing Rules Section

Figure 20-2 lists and describes the icons in the Routing Rules section.

Defining Routing Rules

20-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 20-2 Routing Rule Section Icons

You can access the Routing Rules section of the Mediator Editor using one of the
following methods:

20.3.1.1 From the SOA Composite Editor:

1. Double-click the icon that represents the Mediator for which you want to specify
the routing rules.

2. If the Routing Rules section is not visible, click the Plus (+) icon next to Routing
Rules.

20.3.1.2 From the Applications window:

1. In the Applications window, expand the SOA project and then expand the SOA
Content folder.

2. In the SOA Content folder, double-click the name of the Mediator file in which
you want to specify the routing rules.

The Mediator file has an MPLAN extension.

3. If the Routing Rules section is not visible, click the Plus (+) icon next to Routing
Rules.

20.3.2 How to Create Static Routing Rules
The following topics provide information and instructions for defining static routing
rules for Mediator, including specifying the services and events, defining handlers,
transformations, expressions, filters, and so on.

20.3.2.1 How to Specify Mediator Services or Events

After creating a Mediator component, you associate it with inbound service operations
or event subscriptions and with outbound targets. Targets are outbound service
operations or event publishing. A target specifies the next service or event to which a
Mediator sends messages and also specifies which service operation to invoke. You
can specify a service or an event as a target type.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-7

You can also echo source messages back to the initial caller after any transformation,
validations, assignments, or sequencing operations are performed. An echo can only
be specified if the Mediator component has a synchronous or asynchronous interface.
Whether the echo is synchronous or asynchronous depends on the WSDL file of the
caller. The echo option is only available for inbound service operations and is not
available for event subscriptions.

The purpose of the echo option is to expose all the Mediator functionality as a callable
service without having to route it to any other service. For example, you can call a
Mediator to perform a transformation, a validation, or an assignment, and then echo
the Mediator back to your application without routing it anywhere else.

You can specify multiple routings for an inbound operation or event. Each routing is
mapped to one target service invocation or event. Therefore, to specify multiple
service invocations or raise multiple events, you must specify one routing rule for each
target. For example, you can invoke an operation based on a message payload from
the following operations defined in a service:

• insert

• update

• updateid

• delete

To do this action, you must create four routing rules, one for each operation. Later,
when you specify a filter expression for each rule, you can specify which target and
operation is applied to each message instance based on the message payload, as
shown in Figure 20-3.

Defining Routing Rules

20-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 20-3 Multiple Routings for an Inbound Operation

20.3.2.1.1 To invoke a service:

To perform this step, the target service must be defined in a WSDL document or a Java
interface.

1. In the Routing Rules section, click Add next to the operation for which you are
defining routing rules, and then select static routing rule.

The Target Type dialog appears, as shown in Figure 20-4.

Figure 20-4 Target Type Dialog

2. Click Service.

The Target Services dialog appears, as shown in Figure 20-5.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-9

Figure 20-5 Target Services Dialog

3. In the Target Services dialog, navigate to and then select an operation provided by
a service.

Note:

You can select a service defined by a WSDL file or a Java interface. A service
can consist of multiple operations, as shown in Figure 20-5.

4. Click OK.

5. If you selected a target service defined by a Java interface, the Interface Required
dialog appears. Click Yes to create the required WSDL file, and then click OK on
the confirmation dialog.

A new Static Routing section appears where you can define the routing rule.

6. Configure the routing rule as described the remaining sections of this chapter.

20.3.2.1.2 To trigger an event:

1. In the Routing Rules section, click Add next to the operation for which you are
defining routing rules, and then select static routing rule.

The Target Type dialog appears, as shown in Figure 20-4.

2. Click Event.

The Event Chooser dialog appears.

3. To the right of the Event Definition field, click Search.

Defining Routing Rules

20-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The SOA Resource Browser dialog appears.

4. Select an event (.edl) file and click OK.

The Event field is populated with the events defined in the selected file, as shown
in Figure 20-6.

Figure 20-6 Event Chooser Dialog

Note:

Instead of browsing for an existing event definition file, you can create a new
file by clicking Create new event definition (edl) file and completing the
fields in the Create Event Definition File dialog.

5. Select an event.

6. Click OK.

A new Static Routing section appears where you can define the routing rule.

7. Configure the routing rule as described the remaining sections of this chapter.

20.3.2.1.3 To echo a service:

1. In the Routing Rules section, click Add next to the operation for which you are
defining routing rules, and then select static routing rule.

The Target Type dialog is displayed, as shown in Figure 20-7.

Figure 20-7 Target Type Dialog

2. Click Echo.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-11

Note:

The Echo button only appears on the Target Type dialog if the interface is
synchronous or asynchronous.

Figure 20-8 shows a routing rule with a synchronous echo. An asynchronous echo
has an icon with a dotted line on the return.

Figure 20-8 Sample Mediator Supporting Echo Operation

20.3.2.2 What You May Need to Know About Echoing a Service

The echo option has the following limitations:

• Echoing a service is supported only with Mediator interfaces having the following
types of WSDL files:

– Request/reply

– Request/reply/fault

– Request/callback

Note:

The echo option is not available for Mediator interfaces having request/reply/
fault/callback WSDL files or for one-way WSDL files.

• The echo option is available for synchronous operations such as request/reply
and request/reply/fault.

Note:

The echo option is only available for synchronous operations when the
routing rule is sequential because parallel routing rules are not supported for
Mediators with synchronous operations.

• For synchronous operations with a conditional filter, the echo option does not
return a response to the caller when the filter condition is set to false. Instead, it
returns a null response.

Defining Routing Rules

20-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• The echo option is available for asynchronous operations only if the Mediator
interface has a callback operation. In this case, the echo is run on a separate
thread.

Note:

The asynchronous echo option is available only when the routing rule is
parallel. If you use the echo option, then sequential routing rules are not
supported for Mediators with asynchronous operations.

20.3.2.3 How to Specify Sequential or Parallel Execution

A routing rule can be executed either in parallel or sequentially. To specify an
execution type for a routing rule, select the Sequential or Parallel execution type in
the Routing Rules section.

20.3.2.4 How to Configure Response Messages

In the Mediator routing rules, you can specify how to handle the response messages in
synchronous and asynchronous interactions. For synchronous interactions, you can
specify the transformations and assignments for the response and the fault message.
You can forward the response and the fault message to another service or event, or
you can send them back to the initial caller, if the initial caller is expecting responses
and faults.

For asynchronous interactions, you can specify transformations and assignments, and
a timeout period for receiving the response. The timeout period can be specified in
seconds, hours, days, months, or years. By default, the timeout period is infinite. If a
callback response does not come within the specified timeout period, a timeout
response can be forwarded to another service, to another event, or back to the initial
caller.

You cannot route a Mediator response to a two-way service. If you want to route a
response to a two-way service, you should use a one-way Mediator between the first
Mediator and the two-way service. The response should first be forwarded to the one-
way Mediator, which in turn should call the two-way service.

Note:

• Zero is an unsupported value to be specified as a timeout period.

• If the callback is received and processing of the callback fails, by default
the timeout handler is invoked for processing the action specified in the
timeout handler.

• Typically, the caller receives the callback after waiting for 100
milliseconds. However, if you have a bridge Mediator with a sequential
routing rule and a connection to a synchronous interface service, then due
to the complex flow of the program with all sequential routing rules, the
caller may take longer to get ready to receive the callback. You can work
around this issue by changing the routing rule of the bridge Mediator to
parallel.

To specify a timeout period for asynchronous processing:

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-13

The following steps are performed in the Routing Rules section of the Mediator Editor.

1. Next to the <<Target Operation>> field by the Timeout in field in the Callback
section, click the Browse for target service operation icon.

The Target Type dialog appears.

2. Select Service, Event, or Initial Caller.

If you selected Service or Event, the Target Service or the Event Chooser appears
depending on your selection.

3. Select an event or service.

4. Click OK

5. In the Timeout in field, enter the number of units for the timeout period, and then
select the unit of time from the dropdown list.

The timeout response is forwarded to the specified service or event.

Note:

If the number of routing rules is larger and the time taken to execute the
routing rules exceeds the transaction timeout, you must set the transaction
timeout to a value that is greater than the time taken to execute all the routing
rules.

20.3.2.5 How to Handle Premature Callbacks

Callback messages might arrive before the initiating transaction is completed. In this
case, correlation in Mediator fails. If you have an issue with premature callbacks, you
can use the
oracle.tip.mediator.callback.correlationWaitDuratino_in_seconds
property to set a time period in seconds for which the callback thread waits before
retrying the callback.

You define the property in the composite.xml file in the component element that
defines the Mediator component. In the example shown below, the wait time before
retrying is 15 seconds.

<component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>
 <property name="oracle.tip.mediator.callback.correlationWaitDuration_in_
 seconds">15</property>
</component>

20.3.2.6 How to Handle Multiple Callbacks

A single Mediator cannot handle multiple callbacks. If you have a composite
application with a Mediator that receives multiple callbacks, the behavior of the
composite application is undetermined. For example, in the scenario shown in
Figure 20-9, AsyncMediator forwards the callback response from
AsyncEchoMediator1 and AsyncEchoMediator2 to FileInMediator. In such a flow,
the AsyncMediator might return the callback from both AsyncEchoMediator1 and
AsyncEchoMediator2, or from either one of them. The exact behavior is random and
unpredictable.

Defining Routing Rules

20-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 20-9 Sample Mediator Handling Multiple Callback

20.3.2.7 How to Handle Faults

If you create a new routing rule in which the target service operation has one or more
faults, you still see a single fault routing section in the Mediator Editor. If the source
Mediator service component supports one or more faults, then the fault is routed back
to the caller by default. You can choose the source and target fault names to be routed.
You can also use the service browser to route the fault to another target.

20.3.2.7.1 To define an additional fault routing:

The following steps are performed in the Routing Rules section of the Mediator Editor.

1. In the Faults section, click the Add another fault routing button shown in
Figure 20-10.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-15

Figure 20-10 Adding a Second Fault

Another fault section appears in the routing rule box.

2. Configure the target service, transformations, and assign values for the new fault.

Figure 20-11 shows a second fault being routed to a file adapter service.

Figure 20-11 Second Fault Added to Routing Rules

Defining Routing Rules

20-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

You can route the same fault to multiple targets using different
transformations.

20.3.2.7.2 To remove a fault routing section:

The following steps are performed in the Routing Rules section of the Mediator Editor.

• Highlight the fault routing you want to remove by clicking in the target service
field, and then click Delete the selected fault routing, as shown in Figure 20-12.

Figure 20-12 Deleting a Fault Routing

20.3.2.8 How to Specify an Expression for Filtering Messages

The filter expression routing rule lets you filter messages based on their payload. If the
filter expression for a given message instance evaluates to true, the message is
delivered to the target service or event specified within the routing rule.

For example, you route your data to customers in two different countries, such as US
and Canada, but you only want notices regarding the MOBILE product line to be sent
to US customers and the LANDLINE product line to customers in Canada. To
implement this routing, you must define a routing rule for each component and
operation pair that sends messages to the target customers. In addition, you specify
filter expressions for the routing rules that send messages to the customers in the US
or Canada.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-17

You can also define filter expression message properties or message headers.

Filter Expression Message Properties

Two examples of filter expression message properties are shown below:

$in.property.custom.Priority = '1'

$in.property.tracking.ecid = '2'

Filter Expression Message Headers

Two examples of filter expression message headers are shown below:

$in.header.wsse_Security/wsse:Security/Priority = '234'

$in.header.wsse_Security/wsse:Security/Priority = '234'

For the preceding filter expression message headers to work, you must add the
attribute shown in the following example to the root element of the .mplan file.

wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
 secext-1.0.xsd"

20.3.2.8.1 To specify an expression for filtering messages:

You can use the Expression Builder to graphically create a filter expression. The
Expression Builder dialog contains the components and controls that assist you in
designing a filter expression.

1. To the right of the Filter Expression field in the Routing Rules section, click the
Invoke Expression Builder icon.

The Expression Builder dialog appears, as shown in Figure 20-13.

Defining Routing Rules

20-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 20-13 Expression Builder Dialog

2. Double-click a value in the Variables field or the Functions palette to add the
value to the Expression field. Using a combination of variable elements, functions,
and manually entered text, you can build an expression by which you want
message payloads to be filtered for a given routing rule.

The following table describes each of the fields in the Expression Builder dialog:

Table 20-1 Expression Builder Fields

Field Description

Expression This field contains the actual expression used to filter
messages. You can enter the filter expression either
manually or by using the Variable field and the Functions
palette.

Using the icons on the upper right side of this field, you can
undo the last edit made, redo the last edit made, or clear the
entire Expression field.

Variables This field contains the message defined for a Mediator
component. Oracle JDeveloper parses the Mediator WSDL
file and presents the message definition in the Variables
field. The input message is stored in the $in variable, and
you can use the $in.properties to access the properties
of an input message.

If the input message consists of multiple parts, use
$in.partname to access a part of an input message.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-19

Table 20-1 (Cont.) Expression Builder Fields

Field Description

Functions Palette This list provides a list of functions that you can include in
an expression. When you select a function, a preview of how
that function appears when added to the Expression field
appears in the Content Preview field, and a description of
the function appears in the Description field.

Content Preview This field indicates how a value selected from the Variables
field or Functions palette appears when it is inserted into
the Expression field.

Description This field describes the value selected from the Variables
field or Functions Palette.

20.3.2.8.2 To specify a filter expression on a message payload:

1. To the right of the Filter Expression field in the Routing Rules section, click the
Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

2. In the Variables field, expand the message definition and select the message
element on which you want to base the expression.

For example, the CustomerId element is shown selected in Figure 20-14.

Figure 20-14 Expression Builder Dialog – Variables Element Selected

3. Click Insert Into Expression.

Defining Routing Rules

20-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The expression is added in the Expression field, as shown in Figure 20-15.

Figure 20-15 Expression Builder Dialog – Variables Element Inserted

4. From the Functions list, select the function to apply to the message payload. For
example, equals.

Functions are grouped in categories that are listed when you click the down arrow
in the Functions list. For example, if you click the down arrow and select Logical
Functions, the list appears as shown in Figure 20-15.

5. Click Insert Into Expression.

The XPath expression for the selected function is inserted into the Expression
field.

6. Complete the expression.

In this example, the Customer ID must equal1001 to evaluate to true, as shown in
Figure 20-16.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-21

Figure 20-16 Sample Expression Builder Dialog – Value Entered

7. If there are any errors, you can edit the expression manually, or use the expression
editing icons, which are summarized in Figure 20-17.

Figure 20-17 Expression Editing Icons

8. Click OK.

The expression is added to the Routing Rules section.

To modify or delete a filter expression, double-click the Add Filter Expression icon,
and then modify or delete the expression in the Expression field of the Expression
Builder.

20.3.2.9 How to Translate Between Native XSD Formats and XML Formats

Mediator enables you to translate native format data into XML data, for inbound data,
and XML data into native format data for outbound translations. So, for example, you
can use inbound translation to convert an incoming comma-delimited native data file
into an XML data file. You can use outbound translation to convert XML data into
native data format for a target service.

Mediator provides the following translation features:

• Inbound Translation: Converts inbound data from native data format to XML.
Inbound translation is configured at the operation level. The translated data is
available for transform and assign operations.

Defining Routing Rules

20-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Outbound Translation: Converts outbound data from XML to native data format.
Outbound translation can be configured for each routing rule. The native data is
then routed to the target service.

• Translate and Route Only: Translates inbound data from native data format to
XML, and routes it to the target service. An outbound WSDL file is created for the
target service. This feature is only supported for mediators that have a one-way
(no response) operation.

20.3.2.10 How to Use Inbound Translation

This section demonstrates using inbound translation. Figure 20-18 shows a mediator
(Mediator1) connected to an inbound web service. The mediator receives a native
string from the inbound web service, and uses inbound translation to convert the
native string into XML.

Figure 20-18 Mediator Receiving Inbound Data

To translate inbound data from native XSD to XML format:

1. Right-click the mediator (Mediator1), and select Edit.

2. Under the Operations section, click the icon to the right of the Translate From
Native field. Figure 20-19 shows the Operations section for Mediator1.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-23

Figure 20-19 Translate From Native Option

3. In the Add Translation dialog box that appears, click the icon to the right of the
Input field. The Expression Builder dialog appears.

4. Double-click the input string in the Variables tree. Wrap (cast) the input string that
appears in the Expression field with the string() function. Figure 20-20 shows
the Expression Builder dialog with the completed input string. Click OK.

Defining Routing Rules

20-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 20-20 Completed Input String in Expression Builder

5. To the right of the NXSD Schema field, select the Search icon to invoke the Type
Chooser dialog for selecting the schema. If the schema does not exist, you can click
the second icon to create the schema.

6. Select the schema, and click OK. The Element field is populated from the selected
schema. The Output field is populated with an intermediate output variable
created by Mediator. This variable must be in the format
translateFromNative.out.some_name.

Figure 20-21 shows the completed Add Translation dialog.

Figure 20-21 Add Translation Dialog

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-25

7. Click OK. The Translate From Native field is populated.

20.3.2.11 How to Use Outbound Translation

This section demonstrates using outbound translation. Figure 20-22 shows a mediator
(Mediator1) connected to a BPEL process. The mediator uses outbound translation to
convert XML data into native string, and routes this string to the BPEL process.

Figure 20-22 Mediator Sending Outbound Data

To translate outbound data from XML to native XSD format:

1. Right-click the mediator (Mediator1), and select Edit.

2. Under the routing rule that routes data from the mediator to the BPEL process
(target service), click the icon to the right of the Translate To Native field.
Figure 20-23 shows the routing rule section for Mediator1.

Figure 20-23 Translate To Native Option

3. In the Add Translation dialog box that appears, optionally edit the default input
variable in the Input field. The Input field is populated with an intermediate input
variable created by Mediator. This variable must be in the format
translateToNative.in.some_name.

Note:

You can later assign a value to the intermediate input variable using the
Assign or Transform action of the associated routing rule.

Figure 20-24 shows the Add Translation dialog box.

Defining Routing Rules

20-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 20-24 Add Translation Dialog

4. To the right of the NXSD Schema field, select the Search icon to invoke the Type
Chooser dialog for selecting the schema. If the schema does not exist, you can click
the second icon to create the schema.

5. Select the schema, and click OK. The Element field is populated from the selected
schema.

6. Click the icon to the right of the Output field. The Expression Builder dialog
appears.

7. Double-click the output string in the Variables tree. Click OK.

Figure 20-25 Completed Output String in Expression Builder

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-27

8. Click OK in the Add Translation dialog box.

20.3.2.12 How to Create XSLT Transformations

Oracle JDeveloper provides an XSLT Mapper that lets you specify a mapper file (XSL
file) to transform data from one XML schema (expressed as an XSD file) to another.
The XSLT Mapper enables data interchange among applications using different
schemas. For example, you can map an incoming purchase order schema to an
outgoing invoice schema. After you define an XSL file, you can reuse it in multiple
routing rule specifications.

20.3.2.12.1 To create a transformation:

1. In the Routing Rules section, click the Select an existing mapper file or create a
new one icon to the right of the Transform Using field. The Request
Transformation Map dialog appears.

2. Do one of the following:

• If the XSLT map file (.xsl) exists, click Browse to find and select the XSLT file
to use. Click OK.

• If you are creating a new XSLT map file, click the Create Mapping icon. The
Create Transformation Map dialog appears.

3. In the Create Transformation Map dialog, select XSLT under Type.

4. Edit the XSLT File Name, as appropriate.

5. Edit the XSLT Directory, as appropriate. The default directory is the
SOA_Project/SOA/Transformations directory. Click Browse to browse and
select the directory.

6. Repeat the above steps for any synchronous reply, callback, response, or fault
messages.

In case of synchronous reply or fault message, the Reply Transformation Map
dialog or the Fault Transformation Map dialog contains an Include Request in
the Reply Payload option, as shown in Figure 20-26.

Figure 20-26 Reply Transformation Map Dialog

7. To create an $initial variable that contains the original message of a
synchronous interaction, select the Include Request in the Reply Payload option.

The variable is created, as shown in Figure 20-27.

Defining Routing Rules

20-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 20-27 Initial Variable in XSL File

Note:

An initial message can also consist of multiple parts. Use
$initial.partname to access a part of the initial message. If the parts of the
inbound and outbound messages are identical, then no transformation is
required for data interchange.

For information about the XSLT Mapper, see Creating Transformations with the XSLT
Map Editor .

20.3.2.12.2 To add user-defined extension functions:

You can use the Expression Builder to include user-defined extension functions.

1. Create an XPath function.

2. Register the Jaxen XPath function with a Mediator service component in the
xpath-function.xml file on the server.

3. Start Oracle JDeveloper.

4. Use the Expression Builder to customize the expression.

5. Deploy the Oracle JDeveloper project to Oracle WebLogic Server.

6. Copy the JAR file containing the user-defined extension functions to the
$BEAHOME/user_projects/domains/soainfra/autodeploy/soa-infra/
APP-INF/lib directory.

7. Modify the .mplan file of the project as follows:

• Add the function namespace you defined for the extension functions under the
Mediator element.

• Add the function names under the Expression element.

This is shown in Figure 20-28.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-29

Figure 20-28 Project .mplan file – Modified to Use User-Defined Extension Functions

8. Invoke the test page with a suitable payload.

20.3.2.13 How to Create XQuery Transformations

Oracle Mediator supports XQuery transformations from one XML schema to another.
The XQuery 1.0 specification is supported.

20.3.2.13.1 To create an XQuery transformation:

1. In the Routing Rules section, click the Select an existing mapper file or create a
new one icon to the right of the Transform Using field. The Request
Transformation Map dialog appears.

2. Do one of the following:

• If the XQuery map file (.xqy) exists, click Browse to find and select the
XQuery file to use. Click OK.

• If you are creating a new XQuery map file, click the Create Mapping icon.
The Create Transformation Map dialog appears.

3. In the Create Transformation Map dialog, select XQuery under Type.

Figure 20-29 shows the Create Transformation Map dialog.

Defining Routing Rules

20-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 20-29 Create Transformation Map Dialog

4. Edit the XQuery File Name, as appropriate.

5. Edit the XQuery Directory, as appropriate. The default directory is the
SOA_Project/SOA/Transformations directory. Click Browse to browse and
select the directory.

6. Under the External Variables section, you can define the external variables for the
XQuery. Click Add Variable to add a new external variable. The Add External
Variable dialog appears.

Note:

External variables are automatically created for implicit mediator variables
that are available as transformation input. For example, the mediator input
request in.request automatically has an external variable for it.

Figure 20-30 shows the Add External Variable dialog.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-31

Figure 20-30 Add External Variable Dialog

7. Specify a Name, Schema, and schema Element for the external variable.

8. Under From, choose how to map the value for the external variable. Select from
one of the following:

• Property: Lists the properties that you can select from.

• Expression: Enables you to build an expression using mediator implicit
variables, properties, and a list of functions that you can use in the expression.
You can click the Invoke Expression Builder icon to launch the expression
builder.

See How to Specify an Expression for Filtering Messages and Building XPath
Expressions in the Expression Builder in for more information about working
with the expression builder.

• Constant: Enables you to specify a literal value for the external variable.

• XML Fragment: Enables you to specify XML data for the external variable.

9. Click OK in the Add External Variable dialog to add the external variable. The
Create Transformation Map dialog is populated with the external variable.

Note:

To edit an external variable, select it from the list and click Update Variable.

To delete an external variable, select it from the list and click Delete Variable.

10. Click OK in the Create Transformation Map dialog. The Request Transformation
Map dialog appears, and it is populated with the Mapper File name and the
external variables defined.

Figure 20-31 shows the Request Transformation Map dialog.

Defining Routing Rules

20-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 20-31 Request Transformation Map Dialog

11. Click OK in the Request Transformation Map dialog. The transformation action
details are added to the mediator mplan file.

20.3.2.13.2 To edit an XQuery transformation:

1. In the Routing Rules section, click the Select an existing mapper file or create a
new one icon to the right of the Transform Using field. The Request
Transformation Map dialog appears.

Note:

You cannot add or delete external variables from an existing XQuery (.xqy)
map. However, you can select a variable and click Update Variable to modify
the expression or value associated with the external variable.

2. Click the Edit Mapping icon to the right of the Mapper File field. The XQuery
map opens in the XQuery Mapper.

3. See Creating Transformations with the XQuery Mapper for more information on
using the XQuery Mapper.

20.3.2.14 How to Assign Values

You can use the Assign Values field to propagate the headers, payload, and properties
of a message from source to target. Figure 20-32 shows the Assign Values dialog that is
displayed when you click the Assign Values icon in the Routing Rules section.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-33

Figure 20-32 Assign Values Dialog

The left hand pane of the Assign Values dialog contains the source variables and the
right hand pane shows the target variables. You can copy values from source variables
to target variables. You can also create complex expressions and assign them to target
variables. You can also assign literals (constants or XML fragments) to target variables.

The bottom pane of the Assign Values dialog shows the assignments you have created.
You can select and edit any assignment.

20.3.2.14.1 To copy a source node to a target node:

1. Expand the source tree in the left pane by clicking the plus sign (+) next to a
source node. Similarly expand the target tree in the right pane.

2. Use one of the following methods to copy a source variable to a target variable:

• Drag the desired source node to the target node. A line appears connecting
the source and target nodes. The assignment also appears in the bottom pane.
Figure 20-33 shows the Assign Values dialog after copying a source node to a
target node.

• Select the source node in the left pane and the target node in the right pane.
Click the Create rule from selected nodes icon (green plus icon) above the
bottom pane to create an assignment.

Defining Routing Rules

20-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 20-33 Copying Source Variables to Target Variables

3. Click OK to create the assignment.

20.3.2.14.2 To assign complex expressions:

1. Drag the Assign Source Expression icon from the top right hand corner to the
target node or the canvas (center pane). The Expression Builder appears.

2. Create an expression using the available source variables and functions.

Optionally click Help for more information about the Expression Builder dialog.

3. Click OK to close the Expression Builder.

4. If you had dragged the expression to the canvas or center pane in Step 1, drag the
expression icon in the canvas to the desired target node. This maps the expression
to the target variable.

Note:

To edit the assignment, right-click the assignment in the bottom pane. Select
Edit Source Expression or Edit Target Expression to edit the source and
target respectively.

5. Click OK to create the assignment.

20.3.2.14.3 To assign constant values and XML fragments:

1. Drag the Assign Source Literal icon from the top right hand corner to the target
node or the canvas (center pane). The Assign Source Literal dialog appears.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-35

2. Enter the constant value or XML Fragment to be assigned.

3. Select Literal is XML Fragment if your constant value is valid XML.

4. Click OK.

5. If you had dragged the source literal to the canvas or center pane in Step 1, drag
the source literal icon in the canvas to the desired target node. This maps the
source literal to the target variable.

Note:

• When you assign values to a particular Mediator property during event
publishing, the assigned value does not get propagated to the subscribing
event.

You can work around this issue by using transformations to include the
property as part of the event body.

• You cannot assign values to the jca.db.userName and
jca.db.password properties on Oracle WebLogic Server because their
data sources do not support setting the user name or password
dynamically to the getConnection method.

Table 20-2 through Table 20-4 list the various possibilities of assignment on constants
and properties, payloads, and headers of a message from source to target.

Table 20-2 Possibilities on Constants and Properties

Source Target Example

Property Property <copy
expression="$in.property.jca.file.FileName
"
target="$out.property.jca.file.FileName"/>

Constant Property <copy value="ConstantNameAssigned.xml"
target="$out.property.jca.file.FileName"/>

Table 20-3 Possibilities on Payload

Source Target Example

XPath
Expression

Property <copy
expression="concat('ExprPropMed','-',oraex
t:generate-guid())"
target="$out.property.jca.file.FileName"
xmlns:oraext="http://www.oracle.com/XSL/
Transform/java/
oracle.tip.pc.services.functions.ExtFunc"/
>

Defining Routing Rules

20-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 20-3 (Cont.) Possibilities on Payload

Source Target Example

XPath
Expression
(below part
level)

Property <copy expression="$in.body/imp1:request/
ProductReq/Make"
target="$out.property.jca.file.FileName"
xmlns:imp1="http://xmlns.oracle.com/
psft"/>

Property XPath
Expression
(below part
level)

<copy
value="$in.property.jca.file.FileName"
target="$out.request/inp1:request/
ProductReq/Model" xmlns:inp1="http://
xmlns.oracle.com/psft"/>

Constant XPath
Expression
(below part
level)

<copy value="ConstantModel"
target="$out.request/inp1:request/
ProductReq/Model" xmlns:inp1="http://
xmlns.oracle.com/psft"/>

XPath
Expression

XPath
Expression

<copy expression="$in.body"
target="$out.request"/>

XPath
Expression
(below part
level)

XPath
Expression
(below part
level)

<copy expression="$in.body/imp1:request/
ProductReq/Make" target="$out.request/
imp1:request/ProductReq/Model"
xmlns:imp1="http://xmlns.oracle.com/
psft"/>

Table 20-4 Possibilities on Header

Source Target Example

XPath
Expression
(below part
level)

Property <copy expression="$in.header.inp1_header/
inp1:header/Name"
target="$out.property.jca.file.FileName"
xmlns:inp1="http://xmlns.oracle.com/
psft"/>

Property XPath
Expression
(below part
level)

<copy
value="$in.property.jca.file.FileName"
target="$out.header.inp1_header/
inp1:header/Name" xmlns:inp1="http://
xmlns.oracle.com/psft"/>

Constant XPath
Expression
(below part
level)

<copy value="NewID.xml"
target="$out.header.inp1_header/
inp1:header/Id" xmlns:inp1="http://
xmlns.oracle.com/psft"/>

Constant XPath
Expression
(below part
level)

<copy value="sampleusername"
xmlns:wsse1="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd"
target="$out.header.wsse1_Security/
wsse1:Security/wsse1:UsernameToken/
wsse1:Username"/>

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-37

Table 20-4 (Cont.) Possibilities on Header

Source Target Example

XPath
Expression

XPath
Expression

<copy target="$out.header.inp1_header"
expression="$in.header.inp1_header"
xmlns:inp1="http://xmlns.oracle.com/
psft"/>

XPath
Expression
(below part
level)

XPath
Expression
(below part
level)

<copy target="$out.header.inp1_header/
inp1:header/Name"
expression="$in.header.inp1_header/
inp1:header/Id" xmlns:inp1="http://
xmlns.oracle.com/psft"/>

20.3.2.15 What You May Need to Know About the Assign Activity

Note the following issues about the assign activity.

• The assign activity is executed in the order of the <copy> elements that appear in
the Mediator mplan.

• You can reorder the assignments by selecting an assignment in the bottom pane of
the Assign Values dialog and clicking the Up or Down arrow to move the
assignment in the assignments list.

• When creating a new assignment, you can choose to insert it at the desired place
in the list of assignments. Select an existing assignment in the bottom pane of the
Assign Values dialog and select Insert New Rule After or Insert New Rule
Before from the list at the top left of the dialog.

• The output variable from the Translate From Native activity and the input
variable to a Translate To Native activity are also available for assignments in the
Assign Values dialog.

• All assignments that appear in the bottom pane of the Assign Values dialog are
applied to the Mediator mplan only after you click OK.

• A source XPath expression should always refer to a leaf node while the source is
assigned to a target property. Otherwise, all the values of the child nodes in the
source get concatenated and are assigned to the target property. The following
example provides details:

<copy target="$out.property.jca.file.FileName"
 expression="$in.body/imp1:request/ProductReq/Make"
 xmlns:imp1="http://xmlns.oracle.com/psft"/>

Note:

A leaf node is a node with no child nodes.

• While assigning a constant or a property to a target XPath expression, the target
XPath expression should always point to a leaf node. Otherwise, nonleaf nodes
contain only a string value that may generate nonvalid XML according to
the .xsd file. The following example provides details.

Defining Routing Rules

20-38 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<copy target="$out.request/inp1:request/ProductReq/Make" value="NewMakeValue"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

In this example, $out.request/inp1:request/ProductReq/Make refers to
the leaf node.

• If a transformation is available, then while assigning a source part to a target part,
the target is overwritten because the assign activity occurs on top of the
transformation. If the transformation is not available, then the assign activity
creates the target. The following example provides details.

<copy target="$out.request" expression="$in.body"/>

<copy target="$out.header.inp1_header" expression="$in.header.inp1_header"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

• If one of the child nodes in the target payload has to be modified, then there are
the following two use cases:

– If a transformation is available, then directly assign a source expression to a
target XPath expression that is pointing to that child node in the target. The
following example provides details:

<copy value="ConstantModel"
target="$out.request/inp1:request/ProductReq/Model"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

– If a transformation is not available, then there are two steps involved. First,
assign the source part to the target part, and then assign the source expression
to a target XPath expression that is pointing to the child node in the target.
The following example provides details:

<copy target="$out.request" expression="$in.body"/> and <copy
 value="ConstantModel" target="$out.request/inp1:request/ProductReq/Model"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

• When only one of the child nodes of the source has to be propagated into a target,
then first ensure that there is no transformation invoked. Then, assign the source
XPath expression to point to the required child node. The following example
provides details:

<copy target="$out.request/imp1:ProductReq"
 expression="$in.body/imp1:request/ProductReq"
 xmlns:imp1="http://xmlns.oracle.com/psft"/>

In this case, the source element evaluated from $in.body/imp1:request/
ProductReq does not contain a complete tree structure that starts from the root
element, but contains only a child node. The following example provides details:

<ProductReq>
 <Make>MAKE</Make>
 <Model>MODEL</Model>
</ProductReq>

• If there are multiple assign activities in a Mediator and each source XPath
expression points to a different child node, then there are the following two use
cases:

– If a transformation is available, then the corresponding child node in the
target is updated.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-39

– If a transformation is not available, then the target should be a multiple part
target with each part referring to the source child node.

• With headers, if the passThroughHeader property is set, then

– Any header manipulation in a transformation is updated in the target
headers.

– The part level assign activity overwrites the target header part.

– The below part level node assign activity updates the corresponding node in
the target.

• If multiple source nodes (below part level) are assigned to the same target node
(below part level), then the target node contains the value of the last copy element
in the assign activity. The following example provides details.

<copy target="$out.request/imp1:request/ProductReq/Make"
 expression="$in.body/imp1:request/ProductReq/Model"
xmlns:imp1="http://xmlns.oracle.com/psft"/>

<copy target="$out.request/imp1:request/ProductReq/Make"
 expression="$in.body/imp1:request/Description"
xmlns:imp1="http://xmlns.oracle.com/psft"/>

In the preceding example, the first copy element does not have any effect because
the second copy element overwrites it.

• If the XPath expression results in a list (multiple occurrences), then there are the
following two use cases:

– If the list contains a single element, then the XPath expression is propagated.

– If the list contains multiple elements, then the XPath expression is not
supported.

• The following activities happen while assigning a source child node to a target
child node:

1. The source child node name and namespace are overwritten by the target
node name and namespace, respectively.

2. The target child node is replaced by the source child node in the parent node
of the target node.

20.3.2.16 How to Access Headers for Filters and Assignments

When the Expression Builder is invoked from a Mediator, either for defining a filter or
for defining an assignment source or target, the WSDL file is parsed. This
automatically detects any SOAP headers for the current routing rule operation and
makes them visible as variables under the in or out folder as header./
ns_elementName/, as shown in Figure 20-34. Here, ns is the namespace prefix and
elementName is the root element name for the header schema.

The following scenarios provide details.

Scenario 1: Namespace Prefixes wsse and ns1 Are Already Defined

Assume the namespace prefixes wsse and ns1 are already defined in the WSDL file or
the .mplan file. You can then write an XPath expression as follows:

Defining Routing Rules

20-40 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

$in.header.wsse_Security/wsse:Security/ns1:Foo/Priority

Scenario 2: Schema Without a Namespace Predefined in the WSDL File

Assume you want to use a schema that does not have a namespace predefined in the
WSDL file. The Expression Builder is then enhanced to allow you to enter
{full_namespace} instead of a prefix. The Expression Builder then generates a
unique prefix and the prefix definition is added to the .mplan file.

For example, enter the expression in the Expression Builder shown in the following
example:

$in.header.{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd}_Security/
{"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xs
d"}:
Security/{"http://www.globalcompany.com/ns/OrderBooking"}:Foo/Priority

The .mplan file contains the content shown in the following example:

xmlns:ns1="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
xmlns:ns2="http://www.globalcompany.com/ns/OrderBooking"
...
expression="$in.header.ns1_Security/ns1:Security/ns2:Foo/Priority"

Figure 20-34 Expression Builder Dialog - Automatic Header Detection

By default, SOAP headers are not passed through by Mediator. You must add the
passThroughHeader endpoint property to the corresponding Mediator routing
service:

<property name="passThroughHeader">true</property>

For example, to add this property, you can modify the composite.xml file, as shown
in the following example:

<component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>
 <property name="passThroughHeader">true</property>
</component>

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-41

For the headers to pass through, the source and the target must have the same QName
(name and namespace). If the source and the target have different QNames, then
either a transformation or part-level assignment must be performed.

It is important to note that, with a passthrough Mediator (without a transformation
or assign), if the source and target part QNames are not identical, then Mediator
passes through the message payloads to the target service without any error.
However, this can result in an error in the target service because the message payloads
are not reconstructed according to the message structure of the target service.

Note:

• The user interface supports both SOAP 1.1 and SOAP 1.2.

• For automatic header detection, a concrete WSDL file must be used when
creating the Mediator service component.

• Assignments execute after filters. Therefore, if you are assigning a value
in a custom header, then the particular assignment is not visible to the
filter.

20.3.2.16.1 Manual Expression Building for Accessing Headers for Filters and Assignments

There are use cases in which the header schemas cannot be determined from the
WSDL files. For example, security headers that are appended to a message, or the
headers for a Mediator that are created using an abstract WSDL file. To access these
headers, you must manually enter the XPath expression into the Expression Builder.

The syntax for header expressions is shown in the following example:

$in.header.<header root element namespace prefix>_<header root element name>/<xpath>

Therefore, for the header shown in the following example:

<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-sec
ext-1.0.xsd">
<Priority>234</Priority>
</wsse:Security>

The filter expression is as follows:

$in.header.wsse_Security/wsse:Security/Priority = '234'

The assignment expression is as shown in the following example:

<copy target="$out.property.jca.jms.priority"
 expression="$in.header.wsse_Security/wsse:Security/Priority"/>

For the preceding expressions to work, you must add the attribute shown in the
following example to the root element of the .mplan file.

wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"

20.3.2.16.2 Manual Expression Building for Accessing Properties for Filters and Assignments

An example of a filter expression is as follows.

$in.property.tracking.ecid = '2'

Defining Routing Rules

20-42 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

An example of an assignment expression is as follows.

<copy target="$out.property.tracking.ecid" value="$in.property.tracking.ecid"/>

20.3.2.17 How to Use Semantic Validation

You can specify Schematron files for validating an inbound message and its various
parts. Schematron version 1.5 is the supported version.

Perform the following steps for specifying a Schematron schema to validate an
inbound message and its various parts.

To use semantic validation:

1. To the right of the Validate Semantic field, click the Select Validation File icon.

The Validations dialog is displayed.

2. Click Add.

The Add Validation dialog is displayed.

3. From the Part list, select a message part.

4. To the right of the File field, click Search.

The SOA Resource Browser dialog is displayed.

5. Select a Schematron file and click OK.

Note:

• Schematron files usually have a .sch extension.

• No error message or warning is displayed if the selected Schematron file
is empty.

The Add Validation dialog is updated, as shown in Figure 20-35.

Figure 20-35 Add Validation Dialog

6. Click OK.

The Validation dialog is updated, as shown in Figure 20-36.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-43

Figure 20-36 Validation Dialog

7. Click Add to specify a Schematron file for another message part or click OK.

For more information about building a Schematron schema, see the resources
available at

http://www.schematron.com

Note:

In semantic validation, if you check for the length of each element name, then
the element name may change for a different set of inputs. This happens when
there are white spaces between nodes because the parser treats the white
spaces as test nodes.

20.3.2.18 How to Work with Attachments

You can configure how Mediator handles attachments by adding properties to the
project's composite.xml file. For information on working with attachments, see
"Sending Attachment Streams" and "Overriding Pass Through Settings for
Attachments in ".

20.3.2.19 How to Use Java Callouts

Java callouts enable you to use external Java classes to manipulate messages flowing
through the Mediator. Only one Java callout is supported per operation or event
subscription. The callout class must implement the
oracle.tip.mediator.common.api.IjavaCallout interface. Callouts are
available for both static and dynamic routings. Figure 20-37 shows a sample Mediator
with two operations, in which both the operations have one routing rule each and the
first operation has a callout class.

Defining Routing Rules

20-44 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

http://www.schematron.com

Figure 20-37 Sample Mediator Supporting Java Callout

20.3.2.19.1 To make Java callout classes available:

You must ensure that the Java callout class is available on the server. You can use any
of the following methods for this:

• Copy the Java class to the SCA-INF/classes folder.

• Copy the JAR file containing the Java class to the SCA-INF/lib folder.

• Copy the JAR file containing the Java class to the $DOMAIN_HOME/lib folder.

If you want to make the Java callout class available to multiple Mediators, copy the
JAR file containing the Java class to the $DOMAIN_HOME/lib folder.

20.3.2.19.2 To enter the Java class for the callout:

You can either manually enter the Java class or select a class from the Class Browser.

• To manually enter the name of the Java callout class, start typing the class name in
the Callout To field, as shown in Figure 20-38. The auto-completion feature of
Oracle JDeveloper completes the address and the classes in the current project.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-45

Figure 20-38 Callout To Field

• To select from a list of available classes, click the Select Java Callout Class icon.

The standard Oracle JDeveloper class browser appears, as shown in Figure 20-39.

Figure 20-39 Class Browser Dialog

The class browser is filtered so it only displays classes that implement the
oracle.tip.mediator.common.api.IjavaCallout interface.

20.3.2.19.3 To set the payload root element (when using a filter expression):

If you have a Java callout in Mediator and use a filter expression in the same Mediator,
you must set the root element for the payload, as shown in the following example:

changexmldoc = XmlUtils.getXmlDocument(ChangedDoc);
String mykey = "request";
message.addPayload(mykey,changexmldoc.getDocumentElement());

20.3.2.19.4 To enable domain value map and cross reference functions:

To use domain value map functions or cross reference functions in a Java callout, you
must add the soa-xpath-exts.jar file to the project and import the necessary Java
classes into your code.

1. In the Oracle JDeveloper Projects Explorer, right-click the name of the project
containing the Java callout.

2. Select Project Properties.

The Project Properties dialog appears.

Defining Routing Rules

20-46 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. In the left panel, select Libraries and Classpath, as shown in Figure 20-40.

Figure 20-40 Libraries and Classes on the Project Properties Dialog

4. Click Add JAR/Directory.

The Add Archive or Directory dialog appears, as shown in Figure 20-41.

Figure 20-41 Add Archive or Directory Dialog

5. In the explorer tree, expand the directories to select <JDEV_HOME>/
jdeveloper/soa/modules/oracle.soa.fabric_11.1.1/soa-xpath-
exts.jar, and then click Select.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-47

The JAR file appears in the Classpath Entries list.

6. Click OK.

Note:

When using domain value map functions, import the following into your Java
class:

• oracle.tip.dvm.LookupValue

• oracle.tip.dvm.exception.DVMException

When using cross reference (xref) functions, import the following into your
Java class:

• oracle.tip.xref.xpath.XRefXPathFunctions

• oracle.tip.xref.exception.XRefException

20.3.2.19.5 Mediator Java Callout API

The Java callout API defines two interfaces:
oracle.tip.mediator.common.api.IjavaCallout and
oracle.tip.mediator.common.api.CalloutMediatorMessage.

Table 20-5 lists and describes the methods in the
oracle.tip.mediator.common.api.IjavaCallout interface.

Table 20-5 Description of Methods in the IjavaCallout Interface

Method Description

initialize This method is invoked when the callout implementation class
is instantiated for the first time.

preRouting This method is called before Mediator starts executing the
cases. You can customize this method to include validations
and enhancements.

preRoutingRule This method is called before Mediator starts executing any
particular case. You can customize this method to include case-
specific validations and enhancements.

preCallbackRouting This method is called before Mediator finishes executing
callback handling. You can customize this method to perform
callback auditing and custom fault tracking.

postRouting This method is called after Mediator finishes executing the
cases. You can customize this method to perform response
auditing and custom fault tracking.

Post-processing methods are called after all sequential routing
rules are executed and do not wait for parallel routing rules to
complete.

postRoutingRule This method is called after Mediator starts executing the cases.
You can customize this method to perform response auditing
and custom fault tracking.

Defining Routing Rules

20-48 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 20-5 (Cont.) Description of Methods in the IjavaCallout Interface

Method Description

postCallbackRouting This method is called after Mediator finishes executing callback
handling. You can customize this method to perform callback
auditing and custom fault tracking.

Note:

If you change the message properties of a Mediator by using a Java callout in
the preRoutingRule method or the preRouting method, then you must
explicitly copy the changed property to the outbound message by using
Mediator assignment functionality. For example, if you are changing the
jca.file.FileName property in a Java callout, then you must update the
Mediator assignment statement as follows:

<assign>
<copy target="$out.property.jca.file.FileName"
expression="$in.property.jca.file.FileName"/>
</assign>

Table 20-6 discusses the methods in the CalloutMediatorMessage interface.

Table 20-6 Description of Methods in the CalloutMediatorMessage Interface

Method Description

addPayload This method sets a payload of the Mediator messages.

addProperty This method adds a property to the Mediator messages.

addHeader This method adds a header to the Mediator messages.

getProperty This method retrieves Mediator message properties by
providing the property name.

getProperties This method retrieves Mediator message properties.

getId This method retrieves the instance ID of the Mediator messages.
This instance ID is the Mediator instance ID created for that
particular message.

getPayload This method retrieves a payload of the Mediator messages.

getHeaders This method retrieves a header of the Mediator messages.

getComponentDN This method retrieves a componentDN for the Mediator service
component.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-49

Note:

• The
oracle.tip.mediator.common.api.AbstractJavaCalloutImpl
class is a dummy implementation of the IJavaCallout interface. This
class defines all the methods present in the IJavaCallout interface.
Therefore, you can extend this class to override only a few specific
methods of the IJavaCallout interface.

Dummy implementation of an interface means that the implementation
class provides definitions for all the methods declared in the particular
interface, but one or more defined methods may have an empty method
body. Extending a dummy implementation class is much easier because
you can choose to override only a subset of the methods, unlike
implementing an interface and defining all the methods.

• Details of the processing occurring within the Java callout are not
displayed in the Mediator audit trail screen.

20.3.2.19.6 Sample Java Callout Class

The following example shows a sample Java callout class:

package qa.as11tests.javacallout;

import com.collaxa.cube.persistence.dto.XmlDocument;

import com.oracle.bpel.client.NormalizedMessage;

import java.util.logging.Logger;
import java.util.Map;
import java.util.Iterator;

import oracle.tip.mediator.common.api.CalloutMediatorMessage;
import oracle.tip.mediator.common.api.ExternalMediatorMessage;
import oracle.tip.mediator.common.api.IJavaCallout;
import oracle.tip.mediator.common.api.MediatorCalloutException;
import oracle.tip.mediator.metadata.CaseType;
import oracle.tip.mediator.utils.XmlUtils;

import oracle.tip.pc.services.functions.ExtFunc;

import oracle.xml.parser.v2.XMLDocument;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;

public class JavaCalloutSanity implements IJavaCallout {
 Logger logger = Logger.getLogger("Callout");
 public JavaCalloutSanity() { }

 public void initialize(Logger logger) throws MediatorCalloutException {
 this.logger = logger;
 this.logger.info("Initializing...");
 }
 public boolean preRouting(CalloutMediatorMessage calloutMediatorMessage) {
 System.out.println("Pre routing...");

Defining Routing Rules

20-50 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt =
calloutMediatorMessage.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if (msgKey.equals("request"))
 sPayload =
XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 sPayload_org = sPayload;
 String tobeReplaced = "CHANGE_THIS";
 String replaceWith = "JAVA_CALLOUT_||_PRE_ROUTING";
 int start = sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 String uid;
 try {
 uid = ExtFunc.generateGuid();
 } catch (Exception e) {
 }
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";
 calloutMediatorMessage.addPayload(mykey,
 changedoc.getDocumentElement());
 //calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 System.out.println("Changed from : \n"+sPayload_org+"\nTo\n"+changedPayload);
 System.out.println("End Pre routing...\n\n");
 return false;
 }
 public boolean postRouting(CalloutMediatorMessage calloutMediatorMessage,
 CalloutMediatorMessage calloutMediatorMessage1,
 Throwable throwable) throws MediatorCalloutException {
 System.out.println("Start Post routing...");
 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt =
calloutMediatorMessage1.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("reply"))
 sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }

 sPayload_org = sPayload;
 String tobeReplaced = "POST_ROUTING_RULE_REQUEST_REPLY";
 String replaceWith = "POST_ROUTING_RULE_REQUEST_REPLY_||_POSTROUTING_||
_JAVA_CALLOUT_WORKING";
 int start = sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-51

 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "reply";
 calloutMediatorMessage1.addPayload(mykey,changedoc.getDocumentElement());
 // calloutMediatorMessage1.getPayload().put(mykey,
changedoc.getDocumentElement());
 } catch (Exception f) {
 }
 System.out.println("Changed from : \n"+sPayload_org+"\nTo\n"+
 changedPayload);
 System.out.println("End Post routing...\n\n");
 return false;
 }
 public boolean preRoutingRule(CaseType caseType,
 CalloutMediatorMessage calloutMediatorMessage) {
 System.out.println("\nStart PreRoutingRule.\n");
 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt =
 calloutMediatorMessage.getPayload().entrySet().iterator();
 msgIt.hasNext();) {

 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("request"))
 sPayload =
XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 sPayload_org = sPayload;
 String tobeReplaced = "PRE_ROUTING";
 String replaceWith = "PRE_ROUTING_||_PRE_ROUTING_RULE";
 int start = sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";
 calloutMediatorMessage.addPayload(mykey,
 changedoc.getDocumentElement());
 // calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 System.out.println("Changed from : \n"+sPayload_org+"\nTo\n"+changedPayload);
 System.out.println("End PreRoutingRule.\n\n");
 return true;
 }
 public boolean postRoutingRule(CaseType caseType,
 CalloutMediatorMessage calloutMediatorMessage,
 CalloutMediatorMessage calloutMediatorMessage1,
 Throwable throwable) {
 System.out.println("Start PostRoutingRule.");

Defining Routing Rules

20-52 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 String req_sPayload = "null";
 String req_sPayload_org = "null";
 String rep_sPayload = "null";
 String rep_sPayload_org = "null";
 for (Iterator msgIt =
 calloutMediatorMessage.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("request"))
 req_sPayload =
XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 req_sPayload_org = req_sPayload;
 String tobeReplaced = "PRE_ROUTING_RULE";
 String replaceWith = "PRE_ROUTING_RULE_||_POST_ROUTING_RULE_REQUEST";
 int start = req_sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(req_sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(req_sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";
 calloutMediatorMessage.addPayload(mykey,
 changedoc.getDocumentElement());
 // calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 for (Iterator msgIt =
 calloutMediatorMessage1.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("reply"))
 rep_sPayload =
XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 rep_sPayload_org = rep_sPayload;
 tobeReplaced = "PRE_ROUTING_RULE";
 replaceWith = "PRE_ROUTING_RULE_||_POST_ROUTING_RULE_REQUEST_REPLY";
 start = rep_sPayload.indexOf(tobeReplaced);
 sb = new StringBuffer();
 sb.append(rep_sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(rep_sPayload.substring(start + tobeReplaced.length()));
 changedPayload = sb.toString();
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "reply";
 calloutMediatorMessage1.addPayload(mykey,changedoc.getDocumentElement());
 // calloutMediatorMessage1.getPayload().put(mykey,
changedoc.getDocumentElement());
 } catch (Exception e) {
 }
 System.out.println("Changed from : \n"+req_sPayload_org+"\nTo
\n"+changedPayload);

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-53

 System.out.println("End postRoutingRule\n\n");
 return true;
 }
}

20.3.3 How to Create Dynamic Routing Rules
The basic idea behind dynamic routing is to separate the control logic, which
determines the path taken by the process, from the execution of the process. Dynamic
routing enables you to dynamically route messages at runtime from a mediator to
multiple target services, based on the message content. You can use Domain Value
Maps (DVMs) or Decision Components (Business Rules) to override static routes at
runtime.

20.3.3.1 How to Dynamically Override a Static Routing Rule Using a DVM

You can use a Domain Value Map (DVM) to dynamically override an existing static
routing rule. You can create a new DVM, or use an existing DVM to override mediator
routing options.

20.3.3.1.1 To override a static route using DVM:

1. Double-click the mediator component to open the Mediator Editor.

2. Under the Routing Rules section, scroll down to the routing rule that you want to
modify.

3. To the right of the Override Using field, click the button, identified by the green
arrow. Figure 20-42 shows the Override Using field.

Figure 20-42 Override Using Field Under Routing Rules

The Override Routing dialog appears.

4. Select Use Domain Value Map to create or use a domain value map. Figure 20-43
shows the Override Routing dialog.

Defining Routing Rules

20-54 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 20-43 Override Routing Dialog

5. To the right of the Location field, click Create new DVM file, identified by the
green plus (+) icon, to create a new DVM file. The Create Domain Map Value
dialog appears.

Note:

You can also choose an existing DVM file by clicking Find existing DVM file,
identified by the Search icon.

6. In the Create Domain Map Value dialog, specify a DVM Name and select a
Directory to store the DVM file. Click OK. The DVM File Created dialog appears.

7. Click OK to confirm. The Override Routing dialog is now populated with the
details of the new DVM. shows the Override Routing dialog after creating a new
DVM.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-55

Figure 20-44 New Domain Value Map Details

A new domain is created for each feature of the mediator that can be overridden.
For example, as shown in Figure 20-44, the Filter domain is created for the
mediator Filter Expression.

8. Select a Key Domain corresponding to the lookup column for the DVM.

9. To the right of the Value Expression field, click the Invoke Expression Builder
icon to specify a value expression corresponding to the key domain. The
Expression Builder dialog appears.

Defining Routing Rules

20-56 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 20-45 Expression Builder

10. Build the expression corresponding to the value expression for the domain key,
and click OK. You can use the Help button for more information on the
Expression Builder.

11. Click OK in the Override Routing dialog.

20.3.3.1.2 To add a new domain to the DVM:

1. In the Override Routing dialog (Figure 20-44), click the Open DVM file editor
icon to the right of the Location field. The Edit Mediator Override DVM dialog
appears. Figure 20-46 shows the Edit Mediator Override DVM dialog.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-57

Figure 20-46 Edit Mediator Override DVM Dialog

2. If required, edit the Name and Description of the DVM.

3. Under Map Table, click the Add Domain/Values icon identified by the green plus
(+) icon. A pop-up menu appears.

4. To add a new domain or column, select Add Domain. The Create Domain dialog
appears.

5. Specify a Name for the new domain. Use the Help button for more details on the
Create Domain process.

Click OK

20.3.3.1.3 To add a new row to the DVM:

1. In the Override Routing dialog (Figure 20-44), click the Open DVM file editor
icon to the right of the Location field. The Edit Mediator Override DVM dialog
appears (Figure 20-46).

2. Under Map Table, click the Add Domain/Values icon identified by the green plus
(+) icon. Select Add Domain Values from the pop-up menu that appears.

3. You can click each row item to edit it. Alternatively select the row and click the
Edit Domain/Values icon to edit the row. The Edit Mediator Override Row dialog
appears. Figure 20-47 shows the Edit Mediator Override Row dialog.

Defining Routing Rules

20-58 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 20-47 Edit Mediator Override Row Dialog

4. Edit the fields, as desired. The usual mediator tools are available to assist you with
the editing. For example, clicking the Transform button next to the Transform
domain enables you to create a transformation map. After the edits are complete,
click OK.

20.3.3.1.4 To delete a domain from the DVM:

1. In the Override Routing dialog (Figure 20-44), click the Open DVM file editor
icon to the right of the Location field. The Edit Mediator Override DVM dialog
appears (Figure 20-46).

2. To delete a DVM row, select the row and click the Remove Domain/Values icon.

20.3.3.1.5 To delete a row from the DVM:

1. In the Override Routing dialog (Figure 20-44), click the Open DVM file editor
icon to the right of the Location field. The Edit Mediator Override DVM dialog
appears (Figure 20-46).

2. To delete a DVM column, select the column and click the Remove Domain/
Values icon.

20.3.3.2 How to Dynamically Override a Static Routing Rule Using a Decision
Component

You can use a decision component, or business rule, to dynamically override an
existing static routing rule. You can create a new decision component, or use an
existing decision component to override mediator routing options.

20.3.3.2.1 To override a static route using a Decision Component:

1. Double-click the mediator component to open the Mediator Editor.

2. Under the Routing Rules section, scroll down to the routing rule that you want to
modify.

3. To the right of the Override Using field, click the button, identified by the green
arrow. Figure 20-48 shows the Override Using field.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-59

Figure 20-48 Override Using Field Under Routing Rules

The Override Routing dialog appears.

4. Select Use Decision Component to create or use a decision component.

5. To the right of the Decision Component field, click Create Decision Service,
identified by the green plus (+) icon, to create a new decision service component.
The Create Decision Service dialog appears.

Note:

You can also choose an existing decision service component file by clicking
Find existing decision service component, identified by the Search icon.

6. Specify a Component Name for the decision component and a Service Name for
the service. Click OK. The new decision service component is created, and you are
returned to the Override Routing dialog. The dialog now contains the details for
the decision service component.

This creates a new business rule service component that is wired to the Mediator
service component within the SOA composite of the Mediator service component.

If you look at the design view of the composite, you can see a business rule
component wired to the mediator in addition to the static reference wiring.
Figure 20-49 shows the design view for a sample composite.

Figure 20-49 Mediator Connected to a Business Rule Component

The business rule service component includes a rule dictionary. The rule
dictionary is a metadata container for the rule engine artifacts, such as fact types,
rulesets, rules, decision tables and so on. As part of creating the business rule
service component, the rule dictionary is preinitialized with the following data.

Defining Routing Rules

20-60 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Fact Type Model

The fact type model is the data model that can be used for modeling rules.
The rule dictionary is populated with a fact type model that corresponds to
the input of a phase activity in a BPEL process, and some fixed data model
that is required as part of the contract between the Mediator service
component and the business rule service component.

• Ruleset

A ruleset is a container of rules used as a kind of grouping mechanism for
rules. A ruleset can be exposed as a service. As part of creating the business
rule service component, one ruleset is created within the rule dictionary.

• Decision Table (or matrix)

From a rule engine perspective, a decision table is a collection of rules with
the same fact type model elements in the condition and action part of the
rules. The decision table enables you to visualize rules in a tabular format. As
part of creating the business rule service component, a new decision table is
created within the ruleset.

• Decision Service

As part of creating the business rule service component, a decision service is
created to expose the ruleset as a service of the business rule service
component. The service interface is used by the Mediator service component
to evaluate the decision table.

20.3.3.2.2 To edit a decision component:

1. In the Override Routing dialog (Figure 20-44), click the Open Decision
Component Editor icon to the right of the Decision Component field. The
Decision Component Editor appears, as shown in Figure 20-50.

Figure 20-50 Decision Component Editor

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-61

2. Under Decision Tables, select the decision table and click Edit to edit the decision
table.

See Getting Started with Oracle Business Rules for more information on working
with decision tables and business rules.

20.3.3.3 How to Remove an Existing Dynamic Routing Rule

You can remove a DVM or Decision Component based routing rule override.

To remove a dynamic routing rule override:

1. Double-click the mediator component to open the Mediator Editor.

2. Under the Routing Rules section, scroll down to the routing rule that you want to
modify.

3. To the right of the Override Using field, click the button, identified by the green
arrow. Figure 20-48 shows the Override Using field.

The Override Routing dialog appears.

4. Select Remove Override to remove any static routing rule overrides.

5. Click OK.

20.3.4 What You May Need to Know About Using Dynamic Routing Rules
Note the following limitations on using dynamic routing rules with Mediator:

• All possible message patterns are supported (Synchronous, Asynchronous,
Synchronous-Asynchronous, and One-Way).

• Event publishers and echo cannot have dynamic routing rules associated with
them.

• Static rule overrides are applicable only for requests, and not for responses. If you
must override a response, you must route it to another mediator and override it as
a request.

• When overriding a target port, the overriding port must be of the same port type.

20.3.5 How to Define Default Routing Rules
Mediator processes messages depending on the conditions specified in the routing
rules. In some cases, a Mediator may not process an incoming message because the
message does not satisfy any of the conditions specified in the routing rules. You can
define a default routing rule for such messages. The default routing rule is executed
when none of the conditions of other routing rules are satisfied.

A default routing rule is the same as the routing rules discussed in How to Create
Static Routing Rules. The only difference between a default routing rule and other
routing rules is that a default routing rule does not have any condition associated with
it. Otherwise, a default routing rule is the same as other routing rules in every other
aspect, such as target service, response handling, fault handling, and so on.

Defining Routing Rules

20-62 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

• Default rules are available only for static routing rules.

• You cannot specify a default routing rule for a Mediator service
component with dynamic routing rules because you cannot define both
static and dynamic routing rules in the same Mediator service component.

20.3.5.1 Default Rule Scenarios

A default routing rule can be either a sequential rule or a parallel rule. A default
routing rule, whether sequential or parallel, is guaranteed to be executed when no
other routing rule condition is satisfied. When the default rule is executed, the
Mediator audit trail shows that the filter conditions of all the routing rules failed, and
the filter condition of the default routing rule passed and was executed. The following
example provides details:

ActivityJan 7, 2010 4:35:15 PM
Message onCase "fileout2.Write"
Jan 7, 2010 4:35:15 PM
Message Evaluation of xpath condition " No Filter (DEFAULT CASE) " resulted
true

You can define all routing rules, including default routing rules, as either sequential or
parallel routing rules, so the expected behavior of routing rules varies. The following
sections discuss each combination and the expected behavior:

Sequential Default Routing Rule

You can have the following possible scenarios with a sequential default routing rule:

• All the other routing rules of the Mediator are sequential: This is the simplest
case in which all the routing rules, including the default routing rule, are of a
sequential type. Runtime evaluates the filter conditions of all routing rules and, if
none of the filter conditions are matched, then the default sequential routing rule
is executed. Default sequential routing rule execution happens in the same
transaction as the incoming message. After the default rule is executed, a post Java
callout occurs.

• At Least One of the Routing Rules of the Mediator are parallel: This is a
complex case in which the default routing rule is sequential and at least one of the
other routing rules is parallel. The default behavior at runtime is to execute all
sequential routing rules first and then execute parallel routing rules. Therefore,
this is a tricky situation because a default rule should be executed only after all
other routing rules are evaluated to be false.

In this case, the server first evaluates the filter condition of parallel rules before
evaluating the default routing rule filter condition. If none of the other filter
conditions are matched, then the default sequential routing rule is executed.

Parallel Default Routing Rule

You can have the following possible scenarios with a parallel default routing rule:

• All the other routing rules of the Mediator are parallel: This is a straightforward
case. The default routing rule is not executed if any of the filter conditions
specified in the other routing rules are matched. If none of the filter conditions are
matched, then the default routing rule is executed asynchronously.

Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-63

• Other Routing Rules of the Mediator are sequential or parallel: This is a
complex but common use case in which there are other sequential or parallel
routing rules available, and the default routing rule is parallel. The default routing
rule is not executed if any of the other sequential or parallel routing rule criteria is
matched. If none of the conditions are matched, then the default routing rule is
executed asynchronously.

Note:

The fact that the default routing rule is executed automatically implies that the
default routing rule is the only case that was executed for the given Mediator
service component. Similarly, if a Mediator service component has one routing
rule without any filter condition and also has a default routing rule, then the
default routing rule is never executed.

20.3.5.2 Default Rule Target

The target of the default routing rule is the same as the supported targets of any other
existing routing rule. This indicates that the target can be a service, an event, or an
echo. Similarly, the response from the default routing rule target service can be
forwarded or returned to the original caller. If the target service returns a fault, then
the fault is handled in the same way as it is handled in any other routing rule.

Note:

If exceptions occur while evaluating or executing other routing rules, then the
default routing rule is not executed.

20.3.5.3 Default Rule: Validation, Transformation, and Assign Functionality

Schematron validation, transformation, and assign functionality for the default routing
rule works in the same way as other routing rules.

20.3.5.4 Default Rule: Java Callouts

The current behavior of a pre-Java callout or post-Java callout works in the same way
as for other routing rules. For Java callouts, the default routing rule is considered
another routing rule. Therefore, for the scenarios in which the default routing rule is
executed, the postRouting() callback method occurs only after the default routing
rule is executed.

Note:

The post-Java callouts occur after the execution of sequential rules and do not
wait for the parallel rules to complete execution. Therefore, if the default
routing rule is sequential, then the postRouting() callback method occurs
after executing the default routing rule. If the default routing rule is parallel,
then the postRouting() callback occurs after all sequential rules are
executed and does not wait for the execution of the parallel default routing
rule.

Defining Routing Rules

20-64 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

20.3.5.5 Default Rule: Mediator .mplan File

To set a routing rule as the default one, click the Set as Default Routing Rule icon
shown on Figure 20-2. The .mplan file changes, as shown in Figure 20-51.

Figure 20-51 .mplan File of a Mediator with a Default Routing Rule

20.4 Mediator Routing Use Cases
Two tutorials are available that give you step-by-step instructions for creating two of
the Mediator sample projects provided on the Oracle SOA Suite samples page.
They illustrate how to define routing rules for the Mediators you create. You can
download the tutorials from http://java.net/projects/
oraclesoasuite11g/downloads/download/Mediator/Tutorials/
med_rr_tutorial.pdf.

Mediator Routing Use Cases

Creating Oracle Mediator Routing Rules 20-65

http://java.net/projects/oraclesoasuite11g/downloads/download/Mediator/Tutorials/med_rr_tutorial.pdf
http://java.net/projects/oraclesoasuite11g/downloads/download/Mediator/Tutorials/med_rr_tutorial.pdf
http://java.net/projects/oraclesoasuite11g/downloads/download/Mediator/Tutorials/med_rr_tutorial.pdf

Mediator Routing Use Cases

20-66 Developing SOA Applications with Oracle SOA Suite

21
Working with Multiple Part Messages in

Oracle Mediator

This chapter describes how to define routing rules for multiple part (multipart)
messages for an service component, including defining filters, transformations, and
validations.

This chapter includes the following sections:

• Introduction to Mediator Multipart Message Support

• Working with Multipart Request Messages

For more information on routing rules, see Creating Routing Rules .

21.1 Introduction to Mediator Multipart Message Support
Mediator includes support for working with multipart source and target messages,
which include multipart filter expression building, multipart schema validation, and
transformations between multipart source and target messages for requests, replies,
faults, and callbacks.

The Mediator Editor with a multipart source looks similar to Figure 21-1.

Working with Multiple Part Messages in Oracle Mediator 21-1

Figure 21-1 Mediator Editor for a Multipart Source

21.2 Working with Multipart Request Messages
This section describes how to work with different types of multipart messages.

21.2.1 How to Specify Filter Expressions for Multipart Request Messages
If you specify a filter expression for a multipart message, then the Expression Builder
displays all message parts under the in variable, as shown in Figure 21-2:

Working with Multipart Request Messages

21-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 21-2 Expression Builder for a Multipart Request Source

21.2.2 How to Add Validations for Multipart Request Messages
If you add a validation for a multiple part message, then the Add Validation dialog
displays a list of parts from which you can choose one part, as shown in Figure 21-3.
You specify a Schematron file for each request message part. Oracle Mediator then
processes the Schematron files for the parts.

Figure 21-3 Add Validation Dialog for a Multipart Request Source

21.2.3 How to Create Transformations for Multipart Request Messages
If you create a new mapper file for a multipart message, then the generated mapper
file shows multiple source parts in the XSLT Mapper, as shown in Figure 21-4:

Working with Multipart Request Messages

Working with Multiple Part Messages in Oracle Mediator 21-3

Figure 21-4 XSLT Mapper for a Multipart Request Source

21.2.4 How to Assign Values for Multipart Request Messages
If you assign values using a source expression and invoke the Expression Builder from
the Assign Value dialog, the Expression Builder displays all message parts under the
in variable, as shown in Figure 21-2. This is the same as specifying filter expressions.

21.2.5 How to Work with Multipart Reply, Fault, and Callback Source Messages
The method to create transformations and assign values to multipart reply, fault, and
callback source messages is the same as working with request source messages.

Note:

You cannot specify filter expressions or add validations for reply, fault, and
callback messages.

21.2.6 How to Work with Multipart Target Messages
If a routing target (that is, a request, reply, fault, or callback) has a multipart message,
then the transformation is handled in a slightly different way. This is because the
XSLT Mapper does not support multipart targets. In such a case, the Mediator creates
and coordinates a separate mapper file for each target part, as shown in Figure 21-5:

Figure 21-5 Request Transformation Map for a Multipart Routing Target

Working with Multipart Request Messages

21-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

22
Using Oracle Mediator Error Handling

This chapter describes the error handling capabilities of Oracle Mediator and provides
instructions for defining error handling for both business faults and system faults.

This chapter includes the following sections:

• Introduction to Mediator Error Handling

• Using Error Handling with Mediator

• Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control

• Error Handling XML Schema Definition Files

22.1 Introduction to Mediator Error Handling
Mediator provides sophisticated error handling capabilities that enable you to
configure a Mediator service component for error occurrences and corresponding
corrective actions. Error handling enables a Mediator to handle errors that occur
during the processing of messages and also the exceptions returned by outside web
services. You can handle both business faults and system faults with Mediator.

Business faults are application-specific and are explicitly defined in the service WSDL
file. You can handle business faults by defining the fault handlers in Oracle JDeveloper
at design time. System faults occur because of some problem in the underlying system
such as a network not being available. Mediator provides fault policy-based error
handling for system faults.

Fault policies enable you to handle errors automatically or through human
intervention. Mediator fault policy-based error handling consists of the following
three components:

• Fault policies

• Fault bindings

• Error groups

22.1.1 Fault Policies
A fault policy defines error conditions and corresponding actions. Fault policies are
defined in the fault-policies.xml file, which should be created based on the
XML schema shown in Schema Definition File for fault-policies.xml .

Fault policies for sequential routing rules are handled differently than for parallel
routing rules, as described below:

Using Oracle Mediator Error Handling 22-1

• Due to the single threading of sequential routing rules, only three actions (Abort,
Rethrow, and Java) are supported for handling errors, and the specified actions
are executed immediately in the caller's thread.

• Mediator messages are not persisted in sequential routing.

• Asynchronous and one-way Mediator components cannot handle system faults
thrown from other SOA Suite components, such as a BPEL business process.

For more information about available error handling actions, see Actions.

Note:

Fault policies are not supported for the following:

• Callback execution failures

• Fault Handler action failures

• Resequencer failures

A sample fault policy file is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies>
 <faultPolicy version="2.0.1" id="CRM_ServiceFaults">
 <Conditions>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
 name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")</test>
 <action ref="ora-retry"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <Action id="ora-retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-terminate"/>
 </retry>
 </Action>
 </Actions>
 </faultPolicy>
</faultPolicies>

The two components of the fault policy (conditions and actions) are described in the
following sections.

22.1.1.1 Conditions

Conditions allow you to identify error or fault conditions and then specify the actions
to be taken when a particular error or fault condition occurs. For example, for a
particular error occurring because of a service not being available, you can perform an
action such as a retry. Similarly, for another error occurring because of the failure of
Schematron validation, you can perform the action of human intervention. This fault

Introduction to Mediator Error Handling

22-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

can be recovered manually by editing the payload and then resubmitting it through
Oracle Enterprise Manager Fusion Middleware Control.

Conditions are defined in the fault-policies.xml file, as shown in the following
example:

<Conditions>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
 name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode,"TYPE_DATA_TRANSFORMATION")</
test>
 <action ref="ora-java"/>
 </condition>
 </faultName>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")</test>
 <action ref="ora-retry"/>
 </condition>
 </faultName>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode,"TYPE_DATA_ASSIGN")</test>
 <action ref="ora-retry-crm-endpoint"/>
 </condition>
 </faultName>
</Conditions>

Identifying Fault Types Using Conditions

You can categorize the faults that can be captured using conditions into the following
types:

• Mediator-specific faults

For all Mediator-specific faults, the Mediator service engine throws only one fault,
namely {http://schemas.oracle.com/mediator/
faults}mediatorFault. Every Mediator fault is wrapped into this fault. The
errors or faults generated by a Mediator can be captured by using the format
shown in the following example:

<faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
<!-- mediatorFault is a bucket for all the mediator faults -->
 <condition>
 <test>
 contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")
 </test>
<!-- Captures TYPE_FATAL_MESH errors -->
 <action ref="ora-retry"/>
 </condition>
 </faultName>

• Business faults and SOAP faults

These errors or faults can be captured by defining an XPath condition, which is
based on the fault payload. The following example provides details:

Introduction to Mediator Error Handling

Using Oracle Mediator Error Handling 22-3

<faultName xmlns:ns1="http://xmlns.oracle.com/Customer"
 name="ns1:InvalidCustomer"> <!-- Qname of Business/SOAP fault -->
 <condition>
 <test>
contains($fault.<PART_NAME>/custid, 1011)
 </test>
<!-- xpath condition based on fault payload -->
 <action ref="ora-retry"/>
 </condition>
 </faultName>

When a reference service returns a business fault, the fault can be handled in the
Mediator service component. The returned fault can be forwarded to another
component, redirected to an adapter service such as a file adapter, or an event can
be raised. However, if both a fault policy and fault handler are defined for a
business fault, then the fault policy takes precedence over the fault handler. In
such a case, the fault handlers in the Mediator service component are ignored, if
the fault policy is successfully executed.

• Adapter-specific fault

The errors or faults generated by an adapter can be captured by using the format
shown in the following example:

<faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
 <condition>
 <test>$fault.faultCode = "1"</test> <!-- unique constraint violation in DB
adapter-->
 <action ref="ora-retry"/>
 </condition>
 </faultName>

22.1.1.2 Actions

Actions specify the tasks to perform when an error occurs. Mediator supports retry,
human intervention, abort, and Java code actions for parallel routing rules. For
sequential routing rules, fault policies can contain these actions: abort, rethrow, and
Java code.

If retry or human intervention action is chosen with sequential routing rules, the fault
goes back to the caller directly, and the policy is not applied. The fact that an
incompatible action was chosen is recorded in the log. This is consistent with BPEL
fault policy behavior. It is the responsibility of the caller to handle the fault. If the
caller is an adapter, you can define rejection handlers on the inbound adapter to take
care of the messages that error out (that is, the rejected messages). For more
information about rejection handlers, see Understanding Technology Adapters.

Fault policy actions are described in the following sections.

22.1.1.2.1 Retry Action

Retry actions such as enqueueing a message to a JMS queue that is stopped, inserting a
record with a unique key constraint error, and so on, enable you to retry a task that
caused the error. A new thread is started with every retry action. Therefore, with
every retry action, a new transaction starts. Table 22-1 describes the options available
with the retry action. Retry actions are applicable to parallel routing rules only.

Introduction to Mediator Error Handling

22-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 22-1 Retry Action Options

Option Description

Retry Count Retry N times.

Retry Interval Delay in seconds for a retry.

Exponential Backoff Retry interval increase with an exponential backoff.

Retry Failure Action Chain to this action if a retry N times fails.

Retry Success Action Chain to this action if a retry succeeds.

Note:

Exponential backoff indicates that the next retry attempt is scheduled at 2 x
the delay, where delay is the current retry interval. For example, if the current
retry interval is 2 seconds, the next retry attempt is scheduled at 4, the next at
8, and the next at 16 seconds until the retryCount value is reached.

The following example shows how to specify the retry action:

 <Action id="ora-retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>

If you set the retry interval in the fault policy to a duration of less than 30 seconds,
then the retry may not happen within the specified intervals. This is because the
default value of the org.quartz.scheduler.idleWaitTime property is 30
seconds, and the scheduler waits for 30 seconds before retrying for available triggers,
when the scheduler is otherwise idle. If the retry interval is set to a value of less than
30 seconds, then latency is expected.

If you want the system to use a retry interval that is less than 30 seconds, add the
following property under the section <property name="quartzProperties"> in
the fabric-config-core.xml file:

org.quartz.scheduler.idleWaitTime=<value>

22.1.1.2.2 Rethrow Action

Rethrow executes the fault policy in the caller's thread and returns the original
exception to the user.

An example of a rethrow action is shown below:

<Action id="ora-rethrow-fault"><rethrowFault/></Action>

22.1.1.2.3 Human Intervention Action

Introduction to Mediator Error Handling

Using Oracle Mediator Error Handling 22-5

The human intervention action allows you to manually recover the fault by correcting
the error (for example, altering the payload) and then manually retrying the message.
This action is applicable to parallel routing rules only.

An example of a human intervention action is shown below:

<Action id="ora-human-intervention"><humanIntervention/></Action>

22.1.1.2.4 Abort Action

The abort action enables you to terminate the message flow. This action is applicable
to both parallel and sequential routing rules.

When the abort action is executed for a sequential routing rule, the exception
FabricInvocationException is thrown back to the caller, and the mediator
component state changes to terminated. The fault policy is executed in the caller's
thread.

An example of an abort action is shown below:

<Action id="ora-terminate"><abort/></Action>

22.1.1.2.5 Java Code Action

The Java code action lets you call a customized Java class that implements the
oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass
interface. This action is applicable to both parallel and sequential routing rules. The
following example shows how Java code actions can be implemented.

Note:

The implemented Java class must implement a method that returns a string.
The policy can be chained to a new action based on the returned string.

The Java code action first looks for the implemented class in the domain class
library. If the class is not found there, the action looks in the Composite
Application's class library.

 <Action id="ora-java">
 <javaAction className="mypackage.myClass" defaultAction="ora-terminate">
 <returnValue value="ABORT" ref="ora-terminate"/>
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL" ref="ora-human-intervention"/>
 </javaAction>
 </Action>

For a sequential routing rule fault policy, the returnValue action must be one of
Abort, Rethrow, or Java action. If the returnValue is other than these valid values,
then the defaultAction is checked. If the defaultAction is also not a valid action
(Abort, Rethrow, or Java action), then no action is performed by default, and the
original fault is thrown back to the caller.

oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass {

 public void handleRetrySuccess(IFaultRecoveryContext ctx);
 public String handleFault(IFaultRecoveryContext ctx);
}

Introduction to Mediator Error Handling

22-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

public interface IFaultRecoveryContext {

 /**
 * Gets implementation type of the fault.
 * @return
 */
 public String getType();

 /**
 * @return Get property set of the fault policy action being executed.
 */
 public Map getProperties();

 /**
 * @return Get fault policy id of the fault policy being executed.
 */
 public String getPolicyId();

 /**
 * @return Name of the faulted reference.
 */
 public String getReferenceName();

 /**
 * @return Port type of the faulted reference link.
 */
 public QName getPortType();
}

Mediator Service Engine Implementation

The following example shows the Oracle Mediator service engine implementation of
the IFaultRecoveryContext interface.

package oracle.tip.mediator.common.error.recovery;
public class MediatorRecoveryContext implements IFaultRecoveryContext{
 ...
}

You can use the methods shown in the following example to retrieve additional
Mediator-specific data available with the MediatorRecoveryContext class:

public CommonFault getACommonFault()
public CalloutMediatorMessage getMediatorMessage()

The following example shows how to retrieve data using the
CalloutMediatorMessage interface:

 /**
 * Accessing Mediator Message properties by providing the property name
 * @param propertyName
 * @return
 * @throws MediatorException
 */
 public Object getProperty(String propertyName);

 /**
 * Accessing Mediator Message properties
 * @return
 * @throws MediatorException
 */

Introduction to Mediator Error Handling

Using Oracle Mediator Error Handling 22-7

 public Map getProperties();

 /**
 * Accessing instance id of the mediator message
 * This will be the mediator instance id created for that particular message
 * object
 * @return
 * @throws MediatorException
 */
 public String getId() throws MediatorException;

 /**
 * Accessing payload of the mediator message
 * object
 * @return
 * @throws MediatorException
 */
 public Map getPayload();

 /**
 * Accessing header of the mediator message
 * object
 * @return
 * @throws MediatorException
 */
 public List<Element> getHeaders();

 /**
 * Accessing componentDN for mediator component
 * @return
 * @throws MediatorException
 */
 public String getComponentDN(
 /**
 * Setting payload to the mediator message
 * @return
 * @throws MediatorCalloutException
 */
 public void addPayload(String partName,Object payload) throws
MediatorCalloutException;

 /**
 * Adding property to the mediator message
 * @return
 * @throws MediatorCalloutException
 */
 public void addProperty(String name,Object value) throws
MediatorCalloutException;

 /**
 * Adding header to the mediator message
 * @return
 * @throws MediatorCalloutException
 */
 public void addHeader(Object header) throws MediatorCalloutException;

22.1.2 Fault Bindings
Fault bindings associate fault policies with composites or components, and are defined
in the fault-bindings.xml file. Create the fault-bindings.xml file based on
the XML schema defined in Schema Definition File for fault-bindings.xml .

Introduction to Mediator Error Handling

22-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Fault policies can be created at the following levels:

• Composite: You can define one fault policy for all Mediator components in a
composite. You can specify this level in the following way:

<composite faultPolicy="ConnectionFaults"/>

• Component: You can define a fault policy exclusively for a Mediator service
component. A component-level fault policy overrides the composite-level fault
policy. You can specify this level as shown in the following example:

<component faultPolicy="ConnectionFaults">
 <name>Component1</name>
 <name>Component2</name>
</component>

• Reference: You can define a fault policy for the references of a Mediator
component. You can specify this level as shown in the following example:

<reference faultPolicy="policy1">
 <name>DBAdapter3</name>
 </reference>

Note:

The level of precedence for fault policies is Reference -> Component ->
Composite.

Note:

Human intervention is the default action for errors that do not have a fault
policy defined.

A sample fault binding file is shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="ConnectionFaults"/>
</faultPolicyBindings>

22.1.3 Error Groups in Mediator
You can specify an action for an error type or error group while defining the
conditions in a fault policy. In the previous examples, medns:mediatorFault
indicates that the error is a Mediator error, whereas medns:TYPE_FATAL_MESH refers
to an error group. An error group consists of one or more child error types. TYPE_ALL
is an error group that contains all Mediator errors.

The following list describes various error groups contained in the TYPE_ALL error
group:

• TYPE_DATA: Contains errors related to data handling.

– TYPE_DATA_ASSIGN: Contains errors related to data assignment.

– TYPE_DATA_FILTERING: Contains errors related to data filtering.

Introduction to Mediator Error Handling

Using Oracle Mediator Error Handling 22-9

– TYPE_DATA_TRANSFORMATION: Contains errors that occur during a
transformation.

– TYPE_DATA_VALIDATION: Contains errors that occur during payload
validation.

• TYPE_METADATA: Contains errors related to Mediator metadata.

– TYPE_METADATA_FILTERING: Contains errors that occur while processing
the filtering conditions.

– TYPE_METADATA_TRANSFORMATION: Contains errors that occur while
getting the metadata for a transformation.

– TYPE_METADATA_VALIDATION: Contains errors that occur during validation
of metadata for Mediator (.mplan file).

– TYPE_METADATA_COMMON: Contains other errors that occur during the
handling of metadata.

• TYPE_FATAL: Contains fatal errors that are not easily recoverable.

– TYPE_FATAL_DB: Contains database-related fatal errors, such as a
Datasource not found error.

– TYPE_FATAL_CACHE: Contains Mediator cache-related fatal errors.

– TYPE_FATAL_ERRORHANDLING: Contains fatal errors that occur during error
handling such as Resubmission queues not available.

– TYPE_FATAL_MESH: Contains fatal errors from the Service Infrastructure
such as Invoke service not available.

– TYPE_FATAL_MESSAGING: Contains fatal messaging errors arising from the
Service Infrastructure.

– TYPE_FATAL_TRANSACTION: Contains fatal errors related to transactions
such as Commit can't be called on a transaction which is
marked for rollback.

– TYPE_FATAL_TRANSFORMATION: Contains fatal transformation errors such
as an error occurring because of the XPath functions used in a transformation.

• TYPE_TRANSIENT: Contains transient errors that can be recovered on a retry.

– TYPE_TRANSIENT_MESH: Contains errors related to the Service
Infrastructure.

– TYPE_TRANSIENT_MESSAGING: Contains errors related to JMS such as
enqueuing and dequeuing.

• TYPE_INTERNAL: Contains internal errors.

22.2 Using Error Handling with Mediator
You can enable error handling for an Oracle Mediator by using the fault-
policies.xml and fault-bindings.xml files.

Using Error Handling with Mediator

22-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

22.2.1 How to Use Error Handling for a Mediator Service Component

To use error handling for a Mediator service component:

1. Create a fault-policies.xml file based on the schema defined in Schema
Definition File for fault-policies.xml .

2. Create a fault-bindings.xml file based on the schema defined in Schema
Definition File for fault-bindings.xml .

3. Copy the fault-policies.xml and the fault-bindings.xml file to your
SOA composite application project directory.

4. Deploy the SOA composite application project.

22.2.2 What Happens at Runtime
All the fault policies for a composite are loaded when the first error occurs. When an
error occurs, the Mediator Service Engine checks for the existence of the fault policy
files (fault-policies.xml and fault-bindings.xml). The fault policy bindings
are checked to determine the fault policy associated with the component or composite.
If a fault policy is associated with the component or composite, then Mediator
performs the action defined in the fault policy corresponding to the fault condition. If
no fault policy bindings are found for the component or composite, then no action is
performed and the behavior is the same as if the fault policies did not exist.

If there is no fault policy defined and the routing rule is executed in parallel, the
default action of human intervention is performed. If there is no fault policy defined
and the routing rule is executed sequentially, the error is thrown back to the caller.

Note:

All sequential routing transactions that encounter an error are rolled back,
even if a fault policy has been used to handle the errors.

For more information about how fault policies are processed, see Actions.

22.3 Fault Recovery Using Oracle Enterprise Manager Fusion Middleware
Control

Apart from policy-based recovery using the fault policy file, you can also perform
fault recovery actions on Oracle Mediator faults identified as recoverable in Oracle
Enterprise Manager Fusion Middleware Control. Use any of the following ways to
recover faults:

• Manual recovery by modifying the payload using Oracle Enterprise Manager
Fusion Middleware Control

• Bulk recovery without modifying the payload using Oracle Enterprise Manager
Fusion Middleware Control

• Aborting a faulted instance using Oracle Enterprise Manager Fusion Middleware
Control, if you do not want to do any more processing on the instance.

Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control

Using Oracle Mediator Error Handling 22-11

For more information about fault recovery using Oracle Enterprise Manager
Fusion Middleware Control, see Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

22.4 Error Handling XML Schema Definition Files
This section describes the schema files for the fault-policies.xml and fault-
bindings.xml files.

22.4.1 Schema Definition File for fault-policies.xml
The fault-policies.xml file should be based on the XSD file as shown in the
following example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:tns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <!-- Conditions contain a list of fault names -->
 <xs:element name="Conditions">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="faultName" type="tns:faultNameType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- action Ref must exist in the same file -->
 <xs:complexType name="actionRefType">
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <!-- one condition has a test and action, if test is missing, this is the
 catch all condition -->
 <xs:complexType name="conditionType">
 <xs:all>
 <xs:element name="test" type="tns:idType" minOccurs="0"/>
 <xs:element name="action" type="tns:actionRefType"/>
 </xs:all>
 </xs:complexType>
 <!-- One fault name match contains several conditions -->
 <xs:complexType name="faultNameType">
 <xs:sequence>
 <xs:element name="condition" type="tns:conditionType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:QName"/>
 </xs:complexType>
 <xs:complexType name="ActionType">
 <xs:choice>
 <xs:element name="retry" type="tns:RetryType"/>
 <xs:element ref="tns:rethrowFault"/>
 <xs:element ref="tns:humanIntervention"/>
 <xs:element ref="tns:abort"/>
 <xs:element ref="tns:replayScope"/>
 <xs:element name="javaAction" type="tns:JavaActionType">
 <xs:key name="UniqueReturnValue">
 <xs:selector xpath="tns:returnValue"/>
 <xs:field xpath="@value"/>
 </xs:key>
 </xs:element>

Error Handling XML Schema Definition Files

22-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 </xs:choice>
 <xs:attribute name="id" type="tns:idType" use="required"/>
 </xs:complexType>
 <xs:element name="Actions">
 <xs:annotation>
 <xs:documentation>Fault Recovery Actions</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Action" type="tns:ActionType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="JavaActionType">
 <xs:annotation>
 <xs:documentation>This action invokes java code
 provided</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="returnValue" type="tns:ReturnValueType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="className" type="tns:idType" use="required"/>
 <xs:attribute name="defaultAction" type="tns:idType" use="required"/>
 <xs:attribute name="propertySet" type="tns:idType"/>
 </xs:complexType>
 <xs:complexType name="RetryType">
 <xs:annotation>
 <xs:documentation>This action attempts retry of activity
 execution</xs:documentation>
 </xs:annotation>
 <xs:all>
 <xs:element ref="tns:retryCount"/>
 <xs:element ref="tns:retryInterval"/>
 <xs:element ref="tns:exponentialBackoff" minOccurs="0"/>
 <xs:element name="retryFailureAction"
 type="tns:retryFailureActionType" minOccurs="0"/>
 <xs:element name="retrySuccessAction"
 type="tns:retrySuccessActionType" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 <xs:simpleType name="idType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="ReturnValueType">
 <xs:annotation>
 <xs:documentation>Return value from java code can chain another action
 using
 return values</xs:documentation>
 </xs:annotation>
 <xs:attribute name="value" type="tns:idType" use="required"/>
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:element name="exponentialBackoff">
 <xs:annotation>
 <xs:documentation>Setting this will cause retry attempts to use
 exponentialBackoff algorithm</xs:documentation>
 </xs:annotation>

Error Handling XML Schema Definition Files

Using Oracle Mediator Error Handling 22-13

 <xs:complexType/>
 </xs:element>
 <xs:element name="humanIntervention">
 <xs:annotation>
 <xs:documentation>This action causes the activity to
 freeze</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="replayScope">
 <xs:annotation>
 <xs:documentation>This action replays the immediate enclosing
 scope</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="rethrowFault">
 <xs:annotation>
 <xs:documentation>This action will rethrow the
 fault</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="retryCount" type="xs:positiveInteger">
 <xs:annotation>
 <xs:documentation>This value is used to identify number of
 retries</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="retryFailureActionType">
 <xs:annotation>
 <xs:documentation>This is the action to be chained if retry attempts
 fail</xs:documentation>
 </xs:annotation>
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="retrySuccessActionType">
 <xs:annotation>
 <xs:documentation>This is the action to be chained if retry attempts
 is successful</xs:documentation>
 </xs:annotation>
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:element name="retryInterval" type="xs:unsignedLong">
 <xs:annotation>
 <xs:documentation>This is the delay in milliseconds of retry
 attempts</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="abort">
 <xs:annotation>
 <xs:documentation>This action terminates the
 process</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="Properties">
 <xs:annotation>
 <xs:documentation>Properties that can be passes to a custom java
 class</xs:documentation>
 </xs:annotation>

Error Handling XML Schema Definition Files

22-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <xs:complexType>
 <xs:sequence>
 <xs:element name="propertySet" type="tns:PropertySetType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="PropertySetType">
 <xs:sequence>
 <xs:element name="property" type="tns:PropertyValueType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="tns:idType" use="required"/>
 </xs:complexType>
 <xs:complexType name="PropertyValueType">
 <xs:simpleContent>
 <xs:extension base="tns:idType">
 <xs:attribute name="name" type="tns:idType" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:element name="faultPolicy">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:Conditions"/>
 <xs:element ref="tns:Actions"/>
 <xs:element ref="tns:Properties" minOccurs="0"/>
 <!--Every policy has on Conditions and and one Actions, however,
 Properties is optional -->
 </xs:sequence>
 <xs:attribute name="id" type="tns:idType" use="required"/>
 <xs:attribute name="version" type="xs:string" default="2.0.1"/>
 </xs:complexType>
 <xs:key name="UniqueActionId">
 <xs:selector xpath="tns:Actions/tns:Action"/>
 <xs:field xpath="@id"/>
 </xs:key>
 <xs:key name="UniquePropertySetId">
 <xs:selector xpath="tns:Properties/tns:property_set"/>
 <xs:field xpath="@id"/>
 </xs:key>
 <xs:keyref name="RetryActionRef" refer="tns:UniqueActionId">
 <xs:selector xpath="tns:Actions/tns:Action/tns:retry/
tns:retryFailureAction"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="RetrySuccessActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Actions/tns:Action/tns:retry/tns:retrySuccessAction"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="JavaActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Actions/tns:Action/tns:javaAction/tns:returnValue"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="ConditionActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Conditions/tns:faultName/tns:condition/tns:action"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>

Error Handling XML Schema Definition Files

Using Oracle Mediator Error Handling 22-15

 <xs:keyref name="JavaDefaultActionRef" refer="tns:UniqueActionId">
 <xs:selector xpath="tns:Actions/tns:Action/tns:javaAction"/>
 <xs:field xpath="@defaultAction"/>
 </xs:keyref>
 <xs:keyref name="JavaPropertySetRef" refer="tns:UniquePropertySetId">
 <xs:selector xpath="tns:Actions/tns:Action/tns:javaAction"/>
 <xs:field xpath="@property_set"/>
 </xs:keyref>
 </xs:element>
 <xs:element name="faultPolicies">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:faultPolicy" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

22.4.2 Schema Definition File for fault-bindings.xml
The fault-bindings.xml file should be based on the XSD file as shown in the
following example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:tns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="faultPolicyBindings">
 <xs:annotation>
 <xs:documentation>Bindings to a specific fault policy
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="composite" type="tns:compositeType"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="component" type="tns:componentType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="reference" type="tns:referenceType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string" default="2.0.1"/>
 </xs:complexType>
 <xs:key name="UniquePartnerLinkName">
 <xs:selector xpath="tns:reference/tns:name"/>
 <xs:field xpath="."/>
 </xs:key>
 <xs:key name="UniquePortType">
 <xs:selector xpath="tns:reference/tns:portType"/>
 <xs:field xpath="."/>
 </xs:key>
 <xs:key name="UniquePolicyName">
 <xs:selector xpath="tns:reference"/>
 <xs:field xpath="@faultPolicy"/>
 </xs:key>
 </xs:element>
 <xs:simpleType name="nameType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>

Error Handling XML Schema Definition Files

22-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <xs:complexType name="propertyType">
 <xs:simpleContent>
 <xs:extension base="tns:nameType">
 <xs:attribute name="name" type="xs:string" use="required"
 fixed="faultPolicy"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="referenceType">
 <xs:annotation>
 <xs:documentation>Bindings for a partner link. Overrides composite
 level binding.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>Specification at partner link name overrides
 specification for a port type</xs:documentation>
 </xs:annotation>
 <xs:element name="name" type="tns:nameType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="portType" type="xs:QName" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
 </xs:complexType>

 <xs:complexType name="componentType">
 <xs:annotation>
 <xs:documentation>Binding for a component </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="name" type="tns:nameType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
 </xs:complexType>
 <xs:complexType name="compositeType">
 <xs:annotation>
 <xs:documentation>Binding for the entire composite</xs:documentation>
 </xs:annotation>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
 </xs:complexType>
</xs:schema>

Error Handling XML Schema Definition Files

Using Oracle Mediator Error Handling 22-17

Error Handling XML Schema Definition Files

22-18 Developing SOA Applications with Oracle SOA Suite

23
Resequencing in Oracle Mediator

This chapter describes message resequencing concepts in Oracle Mediator, and
provides instructions for configuring standard resequencing, first-in/first-out
resequencing, and best effort resequencing.

This chapter includes the following sections:

• Introduction to the Resequencer

• Resequencing Order

• Configuring the Resequencer

23.1 Introduction to the Resequencer
The resequencer in Mediator rearranges a stream of related but out-of-sequence
messages into a sequential order. When incoming messages arrive, they may be in a
random order. The resequencer orders the messages based on sequential or
chronological information, and then sends the messages to the target services in an
orderly manner. The sequencing is performed based on the sequencing strategy
selected.

23.1.1 Groups and Sequence IDs
The resequencer works with two central concepts: groups and sequence IDs. The
sequence ID is an identifying part of the message, and messages are rearranged based
on this identifier. The messages arriving for resequencing are split into groups and the
messages within a group are sequenced according to the sequence ID. Sequencing
within a group is independent of the sequencing of messages in any other group.
Groups in themselves are not dependent on each other and can be processed
independently of each other.

As an example, messages attached to certain groups arrive to a Mediator service
component in the following order:

msg9(a), msg8(b), msg7(a), msg6(c), msg5(a), msg4(b), msg3(c), msg2(b), msg1(a)

Table 23-1 shows how the Mediator sorts the messages into groups. The order of the
messages in each group depends on the type of resequencer used.

Table 23-1 Messages Sorted into Groups

Group c Group b Group a

msg6(c), msg3(c) msg8(b), msg4(b), msg2(b) msg9(a), msg7(a), msg5(a),
msg1(a)

Resequencing in Oracle Mediator 23-1

All the groups are processed independently of each other and any error occurring in
ones group does not affect the processing of other groups.

23.1.2 Identification of Groups and Sequence IDs
Groups and sequence IDs are identified through XPath expressions in the message
payload and header. You specify XPath expressions that point to the elements in the
message payload on which grouping is done and on which sequencing is done.

In the message payload shown in Figure 23-1, CustomerId is the field on which to
base instance sequencing and Type is the field on which to base grouping.

Figure 23-1 Message Payload

Note:

Resequencing is not supported for synchronous operations.

23.2 Resequencing Order
Mediator can resequence the incoming messages in a user-specified order. This
implementation enables you to specify three types of resequencing orders:

• Standard Resequencer

• FIFO Resequencer

• Best Effort Resequencer

23.2.1 Standard Resequencer
The standard resequencer supports a standard resequencer pattern. The following
sections describe the standard resequencer and how it processes messages.

23.2.1.1 Overview of the Standard Resequencer

The standard resequencer is useful for applications that use identifiers from a simple
numeric identifier sequence in their messages. The standard resequencer receives a

Resequencing Order

23-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

stream of messages that might not arrive in order; it then stores the out-of-sequence
messages until a complete sequence based on the sequence IDs is received. The in-
sequence messages are then processed asynchronously based on their sequence ID.

It is important to note that the messages to outbound services of the standard
resequencer Mediator service component are guaranteed to arrive in sequence.

23.2.1.2 Information Required for Standard Resequencing

When using the standard resequencer in Mediator, you must always specify a group
XPath expression and a sequence ID XPath expression. These specify where the
Mediator resequencer can find the group and the sequence ID in the messages. You
must also supply the sequence numbering in terms of the start sequence ID and the
sequence ID incremental delta. This numbering is used to form each group. In
addition to the group, sequence ID, and increment properties, you can also specify a
timeout period, in seconds, to wait for the expected messages.

The Mediator standard resequencer holds back messages in the Mediator resequencer
database until it can produce the right sequence for different groups. This situation
means that if for a given group, the message with a particular sequence ID does not
arrive within the timeout period, the subsequent messages for that group are held
back forever. In such a case, you must manually unlock the group through Oracle
Enterprise Manager Fusion Middleware Control and go to the next available message,
skipping the pending message.

23.2.1.3 Example of the Standard Resequencer

Table 23-2 shows how groups are formed differently for two different values of the
incremental delta.

Table 23-2 Groups Formed Differently for Two Different Values

Start
SequenceID

Incremental
Delta

Group1 Group2 ... Groupn

1 1 1,2,3,4,5,... 1,2,3,4,5,... ... 1,2,3,4,5,...n

1 5 1,5,10,15,... 1,5,10,15,... ... 1,5,10,15,...

Note:

If the sequence numbering is different for various groups (for example, if the
groups do not have the same incremental delta or start sequence ID) and the
messages do not arrive in order, then you can use the best effort resequencer
to rearrange the messages.

23.2.2 FIFO Resequencer
The FIFO resequencer supports a standard first in, first out (FIFO) pattern. The
following sections describe the FIFO resequencer and how it processes messages.

23.2.2.1 Overview of the FIFO Resequencer

The FIFO resequencer is useful for applications that need sequencing based on the
time the messages arrive to the Mediator. The FIFO resequencer receives a stream of
messages that are in order and processes them in sequence for each group based on
the arrival time of the messages.

Resequencing Order

Resequencing in Oracle Mediator 23-3

It is important to note that the messages to outbound services of the Mediator acting as
a FIFO resequencer are guaranteed to arrive in order based on arrival time. Therefore,
the messages are delivered in the order they were stored in the resequencer data store.

23.2.2.2 Information Required for FIFO Resequencing

When using the FIFO resequencer, you must always specify a group XPath expression.
However, you do not need to specify a sequence ID because the messages are
processed according to the time of arrival to the Mediator service component that is
configured for FIFO resequencing. The group XPath expression specifies where the
FIFO resequencer should find the group information in the message to group the
messages. No further configuration is needed for a FIFO pattern.

23.2.2.3 Example of the FIFO Resequencer

Table 23-3 illustrates the behavior of the FIFO resequencer where msgX(Y,Z)
indicates that the message arrives as message number X to the Mediator service
component and the message contains sequenceID Y and group Z.

Table 23-3 FIFO Resequencer Behavior

Incoming Messages Sequenced Messages

msg12(4,c)

msg05(9,a)

msg02(7,a)

msg10(3,c)

msg10(3,a)

msg07(5,a)

msg06(1,c)

msg03(2,c)

msg12(4,c),msg10(3,c),msg06(1,c),msg03(2,c)

msg05(9,a), msg02(7,a), msg10(3,a), msg07(5,a)

As shown in Table 23-3, the messages are sequenced based on their time of arrival and
the sequenceID is not used for sequencing.

Note:

When using the FIFO resequencer, use a single-threaded inbound adapter to
avoid unpredictable results. For example, when you use the file/FTP adapter,
the database adapter, or the AQ adapter in front of a Mediator service
component that is configured as a FIFO resequencer, configure the adapter for
single-threaded processing. Otherwise, unpredictable results occur because
the arrival time of each message is calculated when the message arrives to the
Mediator service component instead when it arrives to the adapter service.

23.2.3 Best Effort Resequencer
The Mediator resequencer supports a best effort pattern. The following sections
describe the best effort resequencer and how it processes messages.

23.2.3.1 Overview of the Best Effort Resequencer

The best effort pattern is useful for applications that produce a large number of
messages in a short period and cannot provide information to the resequencer about
the identifier to use for sequencing. Typically, the identifier used for sequencing in

Resequencing Order

23-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

such scenarios is of a dateTime type or numeric type. Using the dateTime field as
the sequence ID XPath enables you to control the sequencing. The messages are
expected to be sent in sequence by the applications, thus the date and time the
messages are sent can be used for sequencing. The Mediator makes the best effort to
ensure that the messages are delivered in sequence.

The best effort resequencer can reorder messages based on no knowledge about the
increment of the sequence ID. This situation means that unlike the standard
resequencer, you do not need to define the increment of the sequence ID for the best
effort resequencer in advance. When the messages are processed, they are processed in
sequence based on the specified sequence ID and the messages that have arrived,
whether a true sequence is received. The sequence IDs are either numeric or
dateTime. Therefore, sequencing occurs on the numeric order or the dateTime order
of the sequence IDs.

23.2.3.2 Best Effort Resequencer Message Selection Strategies

The best effort resequencer processes messages asynchronously based on one of two
message selection strategies: Maximum rows selected or time window. The messages
selected and processed at any one time are based either on the maximum number of
rows you specify or on a window of time in which they arrive.

23.2.3.2.1 Maximum Rows Selected

When the best effort resequencer is configured to use a maximum number of rows, it
performs the following steps whenever new messages are available in the resequencer
database:

1. The resequencer orders the messages according to the specified sequence ID
(typically a date and time stamp).

2. The resequencer locks and selects the number of messages equal to the value of
the maxRowsRetrieved parameter from the ordered messages above.

3. The resequencer processes the selected messages one after another in its own
transaction in sequence.

23.2.3.2.2 Time Window

When the best effort resequencer is configured to use a time window instead of a
maximum number rows, the messages to select and process at one time are based on a
period you specify plus an optional buffer time. Each message belongs to a specific
time window, and messages that are part of one time window are processed
separately from messages belonging to a different time window.

In addition to the time window, you can specify a buffer time, which is an overlap
between two sequential time windows that allows messages that arrive a little late to
be associated with the first time window. By default, the buffer time is 10% of the time
window you specify.

When the best effort resequencer is configured to use a time window, groups are
processed in an iterative manner and messages are processed in the following steps:

1. The first message arrives and the time window begins.

2. The buffer is added to the time window, and processing begins after the buffer
time.

Resequencing Order

Resequencing in Oracle Mediator 23-5

3. The resequencer retrieves the messages that arrived within the time window, and
identifies the maximum sequence ID (typically a date and time stamp) from all the
messages.

4. The resequencer retrieves any messages that arrive within the buffer time and that
have a sequence ID that is less than the maximum sequence ID identified above.

5. The resequencer sorts all messages retrieved in the above steps in ascending order
of the sequence IDs and processes the messages.

23.2.3.3 Best Effort Resequencer Message Delivery

It is important to note that the messages to outbound services of the Mediator service
component configured for best effort resequencing are not guaranteed to arrive in
order of a sequence ID. At any given time, a snapshot of the available messages is
taken and sequencing is performed only on those messages. Therefore, unlike a
standard resequencer, it is not guaranteed that a message with a lesser sequence ID
value is sent before a message that ha a greater sequence ID value but that arrived
earlier. Messages with a lesser sequence ID value that arrive later might be processed
in the following cycle when a snapshot of available messages is taken again and the
messages are reordered.

23.2.3.4 Information Required for Best Effort Resequencing

When using the best effort resequencer, you must specify a group XPath expression, a
sequence ID XPath expression, and the data type of the sequence ID (numeric or
dateTime). These specify where the resequencer should find the group and the
sequence ID in the messages and how to handle the sequence ID. In addition, you
must specify either a maximum number of rows to select for each resequencing batch
or a time window during which the messages included in one batch arrive.

Unlike the standard resequencer, the best effort resequencer has no knowledge about
how the sequence is built. No further information is used by the best effort
resequencer to perform its responsibilities.

23.2.3.5 Example of Best Effort Resequencing Based on Maximum Rows

Table 23-4 illustrates the behavior of the best effort resequencer when it is configured
to use the maximum number of rows to determine which messages to process. In this
example, msgX(Y,Z) indicates that the message arrives as message number X to the
Mediator service component and the message contains sequenceID Y and group Z.

Table 23-4 Best Effort Resequencer Behavior Based on Maximum Rows

Group C Sequenced Messages

msg03(1,c)

msg06(2,c)

msg10(3,c)

msg12(4,c)

msg12(4,c),msg10(3,c),msg06(2,c),msg03(1,c)

Resequencing Order

23-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

For the best effort resequencer to work correctly, the messages must arrive in
sequence or nearly in sequence. Otherwise, they are not resequenced correctly.
If the messages do not arrive close together, set the value of the
maxRowsRetrieved parameter to 1 so the next message in the sequence has
enough time to arrive and be picked up by the next processing loop (and
therefore be delivered in sequence).

23.2.3.6 Example of Best Effort Resequencing Based on a Time Window

Table 23-5 illustrates the behavior of the best effort resequencer when it is configured
to process messages based on the time period in which they arrive. In this example,
the time window is 10 minutes, the buffer is 10% (one minute), and msgX(Y) indicates
that the message arrives as message number X to the Mediator service component and
the message contains the sequence ID Y. The first message arrives at 2:00:00, which
starts the time window. The time window lasts until 2:10:00, but with the addition of
the buffer time, messages that arrived until 2:11:00 are processed.

Table 23-5 Best Effort Resequencer Behavior Based on a Time Window

Group C
Message/Time

Sequenced Messages

msg01(04)/2:00:00

msg02(05)/2:00:20

msg03(01)/2:00:30

msg04(03)/2:00:50

msg05(07)/2:04:20

msg06(02)/2:04:45

msg07(13)/2:05:10

msg08(08)/2:05:40

msg09(06)/2:08:40

msg10(12)/2:09:20

msg11(10)/2:10:30

msg12(09)/2:10:40

msg13(14)/2:10:50

msg14(11)/2:13:00

msg03(01), msg06(02), msg04(03), msg01(04), msg02(05),
msg09(06), msg05(07), msg08(08), msg12(09), msg11(10),
msg10(12), msg07(13)

Note:

In the above example, the resequencer identified the maximum sequence ID
for the time window as 13 (from message 7). Message 13 arrived within the
buffer time, but has a sequence ID of 14. It is not processed with the original
group, but instead begins a new time window at its arrival time of 2:10:50.
Message 14 arrived too late and is included in the second time window.

23.3 Configuring the Resequencer
You can configure the resequencer using Oracle JDeveloper. This section describes
how to configure the resequencer in Oracle JDeveloper.

Configuring the Resequencer

Resequencing in Oracle Mediator 23-7

23.3.1 How to Specify the Resequencing Level
You can define resequencing at either the service component level or the operation
level. For Mediator service components with only one operation, configuring
resequencing at the operation or service component level results in the same behavior.
For Mediator service components having multiple operations, specifying the
resequencing at the service component level applies the same resequencing rules to all
the operations, and messages arriving at any operation are resequenced. By default,
the resequencing level is operations.

To specify the resequencing level:

1. On the Mediator Editor, select the resequencing level from the Resequence Level
dropdown list, as shown in Figure 23-2.

Figure 23-2 Mediator Editor with Resequence Level Field

If you choose component, the Resequence field under each operation no longer
appears and the Resequence Mode field appears under the Resequence Level field
so you can set the resequencing mode for the service component. By default, the
resequencing mode is set to off.

When you select a resequencing mode, the Resequence Options box appears
under the service component or operation, as shown in Figure 23-3. If the
Resequence Mode field for an operation is set to off, the Resequence Options box
disappears.

Figure 23-3 Mediator Editor with Resequence Options Section

The options in the Resequence Options section change depending on the
resequencing mode you select.

23.3.2 How to Configure the Resequencing Strategy
This section provides instructions on how to configure the three different types of
resequencing strategies.

Configuring the Resequencer

23-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

23.3.2.1 To configure a standard resequencer:

1. Set the resequence level as described in How to Specify the Resequencing Level.

2. On the Mediator Editor under either the Mediator component or the operation
you want to configure, select Standard from the Resequence Mode dropdown
list.

The Resequence Options box appears and includes the options for the standard
resequencer, as shown in Figure 23-4.

Figure 23-4 Oracle Mediator with Resequence Mode set to Standard

3. Fill in the fields listed inTable 23-6.

Note:

To specify values for the Group and ID fields, click the Invoke Expression
Builder button to the right of each field. This launches the Expression Builder,
which provides graphical assistance in creating field expressions and adding
functions.

Table 23-6 Standard Resequencing Options

Field Name Description Default Value Mandatory

Group The XPath that points to the field in the
incoming message on which grouping is
done.

component_na
me-operation

N

ID The XPath that points to the field in the
incoming message on which resequencing
is done.

N/A Y

Timeout The time period in seconds to wait for an
expected message. The resequencer locks
the group as timed-out if a time out
occurs.

01 N

Start The starting number of the ID sequence. 1 N

Increment The increment of the ID sequence. 1 N

1 This default value means that the timeout never happens for a group by default.

23.3.2.2 To configure a FIFO resequencer:

1. Set the resequence level as described in How to Specify the Resequencing Level.

2. On the Mediator Editor under either the Oracle Mediator component or the
operation you want to configure, select FIFO from the Resequence Mode
dropdown list.

Configuring the Resequencer

Resequencing in Oracle Mediator 23-9

The Resequence Options box appears and includes the option for the standard
resequencer, as shown in Figure 23-5.

Figure 23-5 Oracle Mediator with Resequence Mode set to FIFO

3. In the Group field, enter the XPath expression pointing to the field in the
incoming message on which grouping is performed.

23.3.2.3 To configure a best effort resequencer:

1. Set the resequence level as described in How to Specify the Resequencing Level.

2. On the Mediator Editor under either the Mediator component or the operation
you want to configure, select Best Effort from the Resequence Mode dropdown
list.

The Resequence Options box appears and includes the option for the standard
resequencer, as shown in Figure 23-6.

Figure 23-6 Oracle Mediator with Resequence Mode set to Best Effort

3. Fill in the fields listed in Table 23-7 to configure the best effort resequencer.

Note:

You can specify either a maximum number of rows to process at one time or a
time window for the messages. You cannot specify both. You must set one
control to zero for the other control to be enabled.

4. If needed, you can change the percent of the time window that is added as a
buffer. You configure the buffer using the Oracle Enterprise Manager Fusion
Middleware Control.

For instructions, see “Configuring Resequenced Messages" in the Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

Table 23-7 Best Effort Resequencing Options

Field Name Description Default Value Mandatory

Group The XPath that points to the field in the
incoming message on which grouping is
performed.

component_na
me-operation

N

ID The XPath that points to the field in the
incoming message that contains the ID on
which resequencing is performed.

N/A Y

Configuring the Resequencer

23-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 23-7 (Cont.) Best Effort Resequencing Options

Field Name Description Default Value Mandatory

Datatype The data type of the sequence ID. The
ordering process is based on the data
type. Supported values are datetime and
numeric.

Numeric Y

Max Rows Number of in-sequence messages that the
resequencer should pick from the data
store at a time.

You must specify a time window or the
maximum rows, but not both. You must
set one control to zero for the other
control to be enabled.

5 N

Time Window The length of time in minutes to wait after
a message arrives to select messages from
the data store for resequencing.

You must specify a time window or the
maximum rows, but not both. You must
set one control to zero for the other
control to be enabled.

0 N

Configuring the Resequencer

Resequencing in Oracle Mediator 23-11

Configuring the Resequencer

23-12 Developing SOA Applications with Oracle SOA Suite

24
Understanding Message Exchange Patterns

of an Oracle Mediator

This chapter describes common message exchange patterns between an Oracle
Mediator service component and other applications.

This chapter includes the following sections:

• One-way Message Exchange Patterns

• Request-Reply Message Exchange Patterns

• Request-Reply-Fault Message Exchange Patterns

• Request-Callback Message Exchange Patterns

• Request-Reply-Callback Message Exchange Patterns

• Request-Reply-Fault-Callback Message Exchange Patterns

Note:

The following exchange patterns show the default handling of responses,
faults, and callbacks by Oracle JDeveloper when a routing rule is created.
Keep in mind the following points for all cases:

• When a response, fault, or callback is sent back to the caller, it is also
possible to route the same message to a different target service or event by
clicking the button next to the target and selecting a different target.

• When the caller of the Mediator expects a response, one or more routing
rules may route the request to a target that does not return a response, but
there should be at least one sequential routing rule that returns a response.

• When there are multiple routing rules in a request-response pattern with
multiple rules sending a response back to the initial caller, the first
response that is received is the one delivered to the caller. The other
responses are ignored. Thus, the routing rules that send the response
should precede other routing rules that forward the response (if any).

24.1 One-way Message Exchange Patterns
In a one-way interaction, the Mediator is invoked, but it does not send a response back
to the caller. Depending on the type of routing rule target, the responses, faults, and
callbacks are handled as shown in Table 24-1:

Understanding Message Exchange Patterns of an Oracle Mediator 24-1

Note:

Event subscriptions follow the same exchange pattern as one-way interactions.

Table 24-1 Response When Mediator's WSDL Is a One-way Interaction

Routing Rule Target Type Response

Request No response.

Request Response Response is forwarded to another target or event.

Request Response Fault Response and fault are forwarded to another target or event.

Request Callback Callback is forwarded to another target or event.

Request Response Callback Response and callback are forwarded to another target or event.

Request Response Fault
Callback

Response, fault, and callback are forwarded to another target or
event.

Figure 24-1 illustrates the one-way message exchange pattern.

Figure 24-1 One-way Message Exchange Pattern

24.1.1 The one.way.returns.fault Property
The one.way.returns.fault property controls how faults and one-way messages
are handled for one-way interface SOAP calls. You can add this property to the service
binding component of the web service section for one-way web services in the
composite.xml file. This property is not applicable to references. It is applicable only
to services and only to the binding.ws binding type. Table 24-2 provides more
details on this property.

One-way Message Exchange Patterns

24-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 24-2 one.way.returns.fault Property

If one.way.returns.fault Is... Then...

Set to true:

. . .
<service name="Mediator1_2"
 ui:wsdlLocation="ReadFile.wsdl">
 <interface.wsdl
 interface="http://xmlns.oracle.com/pcbpel/adapter/file
 /LocalSandbox/Project1/ReadFile%2F#wsdl.interface(Read_
ptt)"/>
 <binding.ws
 port="http://xmlns.oracle.com/pcbpel/adapter/file
/LocalSandbox/Project1/ReadFile%2F#wsdl.endpoint
(Mediator1/Read_pt)">
 <property name="one.way.returns.fault" type="xs:string"
many="false"
 override="may">true</property>
 </binding.ws>
</service>
. . .

Any fault that occurs
during downstream
processing returns a
SOAP fault to the client
and an HTTP response
code of 500. (The same
behavior as 11g Release
1.)

Set to false:

. . .
<service name="Mediator1_2"
 ui:wsdlLocation="ReadFile.wsdl">
 <interface.wsdl
 interface="http://xmlns.oracle.com/pcbpel/adapter/file/
Local Sandbox/Project1/ReadFile%2F#wsdl.interface(Read_
ptt)"/>
 <binding.ws
port="http://xmlns.oracle.com/pcbpel/adapter/file/LocalSan
dbox/Project1/ReadFile%2F#wsdl.endpoint(Mediator1/Read_
pt)">
 <property name="one.way.returns.fault"
 type="xs:string" many="false"
 override="may">false</property>
 </binding.ws>
 </service>
. . .

Any fault that occurs
during downstream
processing returns only
an HTTP response code
of 500. No SOAP fault is
returned to the client.

Not set (the default case) Any fault that occurs
during downstream
processing returns a
SOAP fault to the client
and an HTTP response
code of 500. (The same
behavior as 11g Release
1.)

24.1.1.1 To add the one.way.returns.fault property:

1. In the SOA Composite Editor, select the service binding component to which you
want to add the one.way.returns.fault property.

2. Go to the Property Inspector section in the lower right part of the editor.

One-way Message Exchange Patterns

Understanding Message Exchange Patterns of an Oracle Mediator 24-3

3. In the Binding Properties section, click the Add icon.

The Create Property dialog is displayed.

4. In the Name field, enter one.way.returns.fault.

5. In the Value field, enter true or false.

6. Click OK.

24.2 Request-Reply Message Exchange Patterns
In a request-reply interaction, the Mediator is invoked and sends a reply to the caller.
Depending on the type of routing rule target, the responses, faults, and callbacks are
handled as shown in Table 24-3:

Table 24-3 Response When Mediator's WSDL Is a Request Reply

Routing Rule Target Type Response

Request There is no response from the target, but there should be at
least one sequential routing rule with a request-response
service.

Request Response The response is sent back to the caller. The response can be
forwarded to another target or event, but there should be at
least one sequential routing rule that returns a response back to
the caller.

Request Response Fault The response is sent back to the caller. The fault is forwarded to
another target or event.

Request Callback There is no response from the target, but there should be at
least one sequential routing rule with a request-response
service. The callback is forwarded to another target or event.

Request Response Callback The response is sent back to the caller. The callback is
forwarded to another target or event.

Request Response Fault
Callback

The response is sent back to the caller. The callback and fault
are forwarded to another target or event.

Figure 24-2 illustrates the request-reply message exchange pattern.

Request-Reply Message Exchange Patterns

24-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 24-2 Request-Reply Message Exchange Pattern

24.3 Request-Reply-Fault Message Exchange Patterns
In a request-reply-fault interaction, the Mediator is invoked and sends a reply and one
or more faults back to the caller. Depending on the type of routing rule target, the
responses, faults, and callbacks are handled as shown in Table 24-4:

Table 24-4 Response When Mediator's WSDL Is a Request Reply Fault

Routing Rule Target Type Response

Request There should be at least one sequential routing rule with a
request-response-fault service. Mediator returns null when
there is no response to be sent.

Request Response The response is sent back to the caller. Any exception in
Mediator message processing may result in a fault.

Request Response Fault The response and fault are sent back to the caller. Any
exception in Mediator message processing may result in a fault.

Request Callback There is no response from the target, but there should be at
least one sequential routing rule with a request-response
service. Mediator returns null when there is no response to be
sent. The callback is forwarded to another target or event.

Request Response Callback The response is sent back to the caller. Any exception in
Mediator message processing may result in a fault.

Request Response Fault
Callback

The response and fault are sent back to the caller. Any
exception in Mediator message processing may result in a fault.

Figure 24-3 illustrates the request-reply-fault message exchange pattern.

Request-Reply-Fault Message Exchange Patterns

Understanding Message Exchange Patterns of an Oracle Mediator 24-5

Figure 24-3 Request-Reply-Fault Message Exchange Pattern

24.4 Request-Callback Message Exchange Patterns
In a request-callback interaction, the Mediator is invoked and may send an
asynchronous reply to the caller. Depending on the type of routing rule target, the
responses, faults, and callbacks are handled as shown in Table 24-5:

Table 24-5 Response When Mediator's WSDL Is a Request Callback

WSDL of the Routing Rule
Target

Response

Request There should be at least one sequential routing rule with a
request-callback service. No callback is sent to the caller if there
is no routing rule with a defined callback.

Request Response The response is sent back to the caller, as a callback, in a
separate thread. You can create additional routing rules to
forward the response to another target or event.

Request Response Fault The response is sent back to the caller, as a callback, in a
separate thread. The fault is forwarded to another target or
event. As above, you can create additional routing rules to
forward the response to another target or event.

Request Callback The callback is sent back to the caller.

Request Response Callback The callback is sent back to the caller, and the response is
forwarded to another target or event.

Request Response Fault
Callback

The callback is sent back to the caller. The response and fault
are forwarded to another target or event.

Figure 24-4 illustrates the request-callback message exchange pattern.

Request-Callback Message Exchange Patterns

24-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 24-4 Request-Callback Message Exchange Pattern

24.5 Request-Reply-Callback Message Exchange Patterns
In a request-reply-callback interaction, the Mediator is invoked and sends a response
and an asynchronous reply to the initial caller. Depending on the type of routing rule
target, the responses, faults, and callbacks are handled as shown in Table 24-6:

Table 24-6 Response When Mediator's WSDL Is a Request Response Callback

Routing Rule Target Type Response

Request There should be at least one sequential routing rule that returns
a response. No callback is sent to the caller if there is no routing
rule with a defined callback.

Request Response There should be at least one sequential routing rule that returns
a response. No callback is sent if there is no routing rule with a
defined callback.

Request Response Fault There should be at least one sequential routing rule that returns
a response. No callback is sent to the caller if there is no routing
rule with a defined callback. The fault is forwarded to another
target or event.

Request Callback There should be at least one sequential routing rule that returns
a response. Mediator returns null when there is no response to
be sent.

Request Response Callback The response and callback are sent back to the caller.

Request Response Fault
Callback

The response and callback are sent back to the caller. The fault
is forwarded to another target or event.

Figure 24-5 illustrates the request-reply-callback message exchange pattern.

Request-Reply-Callback Message Exchange Patterns

Understanding Message Exchange Patterns of an Oracle Mediator 24-7

Figure 24-5 Request-Reply-Callback Message Exchange Pattern

24.6 Request-Reply-Fault-Callback Message Exchange Patterns
In a request-reply-fault-callback interaction, the Mediator is invoked and sends a
response, an asynchronous reply, and one or more fault types to the initial caller.
Depending on the type of routing rule target, the responses, faults, and callbacks are
handled as shown in Table 24-7:

Table 24-7 Response to a Request Response Fault Callback Mediator

WSDL of the Routing Rule
Target

Response

Request There should be at least one sequential routing rule with a
request-callback service and at least one sequential routing rule
that returns a response. No callback or response is sent unless
the required routing rules are defined.

Request Response There should be at least one sequential routing rule with a
request-callback service and at least one sequential routing rule
that returns a response. No callback or response is sent unless
the required routing rules are defined.

Request Response Fault There should be at least one sequential routing rule with a
request-callback service and at least one sequential routing rule
that returns a response. No callback or response is sent unless
the required routing rules are defined.

Request Callback There should be at least one sequential routing rule that returns
a response. Mediator returns null when there is no response to
be sent.

Request Response Callback The response and callback are sent back to the caller. Any
exception in Mediator message processing may result in a fault.

Request-Reply-Fault-Callback Message Exchange Patterns

24-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 24-7 (Cont.) Response to a Request Response Fault Callback Mediator

WSDL of the Routing Rule
Target

Response

Request Response Fault
Callback

The response, fault, and callback are sent back to the caller.

Figure 24-6 illustrates the request-reply-fault-callback message exchange pattern.

Figure 24-6 Request-Reply-Fault-Callback Message Exchange Pattern

Request-Reply-Fault-Callback Message Exchange Patterns

Understanding Message Exchange Patterns of an Oracle Mediator 24-9

Request-Reply-Fault-Callback Message Exchange Patterns

24-10 Developing SOA Applications with Oracle SOA Suite

Part IV
Using the Business Rules Service

Component

Learn how to use the business rules service component.

• Getting Started with Oracle Business Rules

• Using Declarative Components and Task Flows

25
Getting Started with Oracle Business Rules

Learn how to use a business rule service component to integrate a SOA composite
application with . A business rule service component is also called a decision
component. You can add business rules as part of a SOA composite application or as
part of a BPEL process.

• Introduction to the Business Rule Service Component

• Overview of Rules Designer Editor Environment

• Introduction to Creating and Editing Business Rules

• Adding Business Rules to a BPEL Process

• Adding Business Rules to a SOA Composite Application

• Running Business Rules in a Composite Application

• Using Business Rules with Fact Types

For more examples of using , see Designing Business Rules with Oracle Business Process
Management.

Note that some screen shots may reflect a previous version, however, the content is
applicable.

25.1 Introduction to the Business Rule Service Component
A decision component, also called a business rule service component, supports use of
in a SOA composite application.

Decision components support the following SOA composite usage:

• A decision component can be used within a SOA composite and wired to a BPEL
component.

• A decision component can be used within a SOA composite and used directly to
run business rules.

• A decision component can be used with the dynamic routing capability of
Mediator.

For more information, see Creating Routing Rules .

• A decision component can be used with the Advanced Routing Rules in Human
Workflow.

For more information, see Associating Human Tasks with BPEL Processes.

Getting Started with Oracle Business Rules 25-1

25.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks
You can create a SOA composite application that includes BPEL process, business rule,
and human task service components. These components are complementary
technologies. BPEL processes focus on the orchestration of systems, services, and
people. Business rules focus on decision making and policies. Human tasks enable you
to model a workflow that describes the tasks for users or groups to perform as part of
an end-to-end business process flow.

Some examples of where business rules can be used include:

• Dynamic processing

Rules can perform intelligent routing within the business process based on service
level agreements or other guidelines. For example, if the customer requires a
response within one day, send a loan application to the QuickLoan loan agency
only. If the customer can wait longer, then route the request to three different loan
agencies.

• Externalizing business rules in the process

There are typically many conditions that must be evaluated as part of a business
process. However, the parameters to these conditions can be changed
independently of the process. For example, you provide loans only to customers
with a credit score of at least 650. This value may be changed dynamically based
on new guidelines set by business analysts.

• Data validation and constraint checks

Rules can validate input data or apply additional constraints on requests. For
example, a new customer request must always be accompanied with an
employment verification letter and bank account details.

• Human task routing

Rules are frequently used for human tasks in the business process:

– Policy-based task assignments dispatch tasks to specific roles or users. For
example, a process that handles incoming requests from a portal can route
loan requests and insurance quotes to a different set of roles.

– Load balancing of tasks among users. When a task is assigned to a set of users
or a role, each user in that role acquires a set of tasks and acts on them in a
specified time. For new incoming tasks, policies may be applied to set
priorities on the task and put them in specific user queues. For example, a
specific loan agent is assigned a maximum of 10 loans at any time.

For more information about creating business rules in the Human Task editor of a
human task component, see How to Specify Advanced Task Routing Using Business
Rules.

25.2 Overview of Rules Designer Editor Environment
You can create a business rules service component in the SOA composite application
of Oracle JDeveloper and then design it by using the Business Rules Designer, which is
displayed when you double-click a business rule in the SOA Composite Editor.

Overview of Rules Designer Editor Environment

25-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The Business Rules Designer consists of the following main sections shown in
Figure 25-1. These sections allow you to work with business rules in Oracle
JDeveloper.

Figure 25-1 Rules Designer in Oracle JDeveloper

Note that a SOA installation does not have Verbal Rules or Business Phrases. This is
BPM functionality.

25.2.1 Applications Window
The Applications window displays the files in the project. Each project can only
contain one composite. But each composite can have multiple components of either
the same type or different types (Business Rules, BPEL process, Oracle Mediator, and
human workflow).

As you design business rules, additional files, folders, and elements can appear in the
Applications window.

25.2.2 Rules Designer Window
The Rules Designer window provides a visual view of the selected dictionary
component. You use the Rules Designer navigation tabs to select different parts of the
dictionary with which to work. The rules designer window displays when you
perform one of the following actions:

• In a composite, double-click a Business Rule component.

• Double-click the Business Rule component in the SOA Composite Editor.

Overview of Rules Designer Editor Environment

Getting Started with Oracle Business Rules 25-3

• In a BPEL process, double-click a business rule.

• In the Applications window, double-click a business rules dictionary file (a file
with the .rules extension).

• Click the Design tab with a .rules file selected.

Table 25-1 describes where you can find information about working with a dictionary
with Rules Designer.

Table 25-1 Rules Designer Navigation Areas Descriptions

Rules Designer
Navigation Tab

Description

Facts olink:ASRUG243Facts are the objects that rules reason on.

Functions olink:ASRUG296A function, in Oracle Business Rules, refers to the
standard mathematical functions.

Globals olink:ASRUG277A global, in Oracle Business Rules, is similar to a
public static variable in Java.

Value Sets olink:ASRUG243A Value Set puts constraints on values or ranges
of values for selection in a decision table.

Links olink:ASRUG271Links are used to link to a dictionary in the same
application or in another application.

Decision Functions olink:ASRUG99955A decision Function is a function that is
configured declaratively. It can be invoked by other components
(BPEL, Task) to reason on inputs based on configured rulesets to
arrive at outputs.

Translations This helps you localize the rules and their artifacts.

Rulesets with Rules and
s

A ruleset provides a unit of execution for rules and for decision
tables. A decision table is a set of rules written in tabular form.
Decision Tables provides additional functionality for rules that are
grouped in the table (conflicts, completeness, and so on.).

For more information and descriptions for the Rules Designer navigation areas, see
Designing Business Rules with Oracle Business Process Management.

25.2.3 Structure Window
The Structure window offers a structural view of the data in the Business Rule
dictionary currently selected in the Rules Designer window. You can perform a
variety of tasks from this section, by selecting an element and right-clicking the
element, including:

• Managing (creating, editing, refreshing, and deleting) elements such as facts,
functions, globals, value sets, dictionary links, and decision functions

• Accessing rule sets, rules, and s

Figure 25-2 shows the Structure window.

Overview of Rules Designer Editor Environment

25-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 25-2 Structure Window with Rules Designer Dictionary

25.2.4 Business Rule Validation Log Window
Rules Designer displays the status of dictionary validation in the business rule
validation log, as shown in Figure 25-3.

When a dictionary is invalid, Rules Designer produces a list of warning messages and
lists the associated dictionary objects that you can use to locate the dictionary object
and to correct the problem. You can safely ignore the validation warnings that you see
when you create rules using Rules Designer. The validation warnings are removed as
you create the rules, but are shown during the intermediate steps. To test or deploy
rules, the associated dictionary must not display warnings.

For more information on business rules validation, see Designing Business Rules with
Oracle Business Process Management.

Figure 25-3 Rules Designer Business Rule Validation Log

25.3 Introduction to Creating and Editing Business Rules
Learn how to get started with business rules and provides a brief introduction to the
main sections of Oracle JDeveloper that you use to design business rules.

25.3.1 How to Create Business Rules Components
You can add Business Rule components using the .

To create a Business Rule component:

1. Follow the instructions in Table 25-2 to start Oracle JDeveloper.

Introduction to Creating and Editing Business Rules

Getting Started with Oracle Business Rules 25-5

Table 25-2 Starting Oracle JDeveloper

To Start... On Windows... On UNIX...

Oracle JDeveloper Click JDev_Oracle_Home\JDev
\bin\jdev.exe or create a shortcut

$ORACLE_HOME/jdev/bin/jdev

2. Create a Business Rule service component through one of the following methods:

As a service component in an existing SOA composite application, drag a
Business Rule service component from the Components window into the

In a new application:

a. From the Applications window, select File > New > Applications > SOA
Application.

This starts the Create SOA Application wizard.

b. In the Name your application page, enter an application name in the Name
field.

c. In the Directory field, enter a directory path in which to create the SOA
composite application and project.

d. Click Next.

e. In the Name your project page, enter a unique project name in the Project
Name field. The project name must be unique across SOA composite
applications. This is because the uniqueness of a composite is determined by
its project name. For example, do not perform the actions described in
Table 25-3.

Table 25-3 Restrictions on Naming a SOA Project

Create an Application Named... With a SOA Project Named...

Application1 Project1

Application2 Project1

During deployment, the second deployed project (composite) overwrites the
first deployed project (composite).

f. Click Next.

g. In the Configure SOA settings page, select Composite with Business Rule.

h. Click Finish.

Each method causes the Create Business Rules dialog to appear.

3. Provide the required details. For more information on providing Inputs and
Outputs and on using the Import Dictionary option with this dialog, see
Designing Business Rules with Oracle Business Process Management.

4. Click OK.

Introduction to Creating and Editing Business Rules

25-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

25.3.2 Working with Business Rules in Rules Designer
When you are working with business rules Oracle JDeveloper displays Rules
Designer.

25.4 Adding Business Rules to a BPEL Process
You can use a decision component, also called a business rule service component, to
execute business rules in a BPEL process.

You add business rules to a BPEL process using a Business Rule component. When
you add a business rule component to a BPEL process, you must include input and
output variables to provide input to the rules and obtain results back from the
business rules.

A business rule component enables you to execute business rules and make business
decisions based on the rules. To create a business rule component, also called a
decision component, you drag-and-drop a Business Rule from the Components
window into the BPEL process.

To add a business rule to a BPEL process:

1. Create a BPEL process service component. For more information, see Introduction
to the BPEL Process Service Component.

2. Expand the BPEL process by double-clicking the process item. For example,
expand the BPEL process to view receiveInput and callbackClient as
shown in Figure 25-4.

Figure 25-4 Adding A Business Rule to a BPEL Process

3. Select Business Rule from the SOA Components section of the Components
window and drag-and-drop a Business Rule into the position where the business
rules are needed. For example, drag-and-drop a Business Rule between
receiveInput and callbackClient, as shown in Figure 25-5.

Adding Business Rules to a BPEL Process

Getting Started with Oracle Business Rules 25-7

Figure 25-5 Drag-and-drop a Business Rule into a BPEL Process

4. Oracle JDeveloper displays the business rule in the diagram. Double-click the
business rule component to display the Rule dialog box.

The Rule dialog box provides tabs, such as General, Dictionary, Correlation Sets,
and so on, where you can select an existing dictionary or enter the name of a new
dictionary to create. Under the General tab, in the Name field enter a name for the
business rule. For example, enter GetCreditRating, as shown in Figure 25-6. If
you previously created a dictionary, under the Dictionary tab, in the Dictionary
field, select an existing dictionary.

Adding Business Rules to a BPEL Process

25-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 25-6 Business Rule Added to Auto Loan BPEL Process

5. In the Business Rule area for the Business Rule Dictionary, click the Create
Dictionary icon to display the Create Business Rules dialog.

6. In the Create Business Rules dialog you do the following:

• Specify a name for the dictionary and a package name.

• Specify the input and output data elements for the business rule. For example,
for a sample decision component named GetCreditRating, the input is a
rating request document. The output is generated when you run the business
rules, and for this example is a rating document. For example, in BPEL you can
create two new variables, RatingRequest and Rating that carry the input
and output data for the GetCreditRating rules.

Enter a name for the dictionary. For example, enter GetCreditRating, as shown
in Figure 25-7.

Adding Business Rules to a BPEL Process

Getting Started with Oracle Business Rules 25-9

Figure 25-7 Adding GetCreditRating Business Rule Dictionary

25.4.1 How to Add Inputs for Business Rule

To add inputs for business rule:

1. In the Create Business Rules dialog, from the menu next to the Add icon select Add
Input Variable... to create the input variable.

This displays the Add Input Variable dialog box.

2. In the Add Input Variable dialog box, expand the Process folder and select the
Variables folder immediately inside the Process.

3. Right-click the Variables folder, and from the list select Create Variable... as
shown in Figure 25-8.

Adding Business Rules to a BPEL Process

25-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 25-8 Add Input Variable

This displays the Create Variable dialog box.

4. In the Create Variable dialog box, in the Name field enter a value. For example,
enter RatingRequest as shown in Figure 25-9.

Figure 25-9 Create Variable Dialog

5. In the Create Variable Type area click the Browse Elements icon. Use the navigator
to locate the schema element type for the input variable. For example, select the
ratingrequest type. Add any needed types using the Type Chooser.

6. Click the Import Schema File icon to import the schema. For example, import
CreditRatingTypes.xsd. Also import any other required schema for your
application.

7. In the Type Chooser dialog, select ratingrequest and click OK.

Adding Business Rules to a BPEL Process

Getting Started with Oracle Business Rules 25-11

8. In the Create Variable dialog, click OK.

9. In the Add Input Variable dialog, click OK.

25.4.2 How to Add Outputs for Business Rule

To add outputs for business rule:

1. In the Create Business Rules dialog, from the dropdown menu next to the Add
icon, select Add Output Variable.... This displays the Add Output Variable
dialog. Use this dialog to create an output variable. For example, create an output
variable for GetCreditRating in the same way you created the input variable.

2. In the Add Output Variable dialog select the scope by selecting the Variables
folder under Process.

3. Right-click and from the dropdown list select Create Variable.... This displays the
Create Variable dialog.

4. In the Create Variable dialog, in the Name field enter the output variable name.
For example enter Rating.

5. In the Create Variable dialog, in the Type area select the Browse elements icon
and use the Type Chooser dialog to enter the type for the output variable. For
example, expand the CreditRatingTypes.xsd and select the element type
rating.

6. In the Type Chooser dialog, click OK.

7. In the Create Variable dialog, click OK.

8. In the Add Output Variable dialog, click OK.

This displays the Create Business Rules dialog, as shown in Figure 25-10.

Figure 25-10 Create Business Rules Dialog with Input and Output Variables

Adding Business Rules to a BPEL Process

25-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

25.4.3 How to Set Options and Create Decision Service and Business Rule Dictionary

To create decision service and business rules dictionary:

1. If you do not want to use the default service name, then select the Advanced tab
and in the Service Name field enter the service name. For example enter the
service name CreditRatingService.

2. Determine if the decision component is stateful or stateless with Reset Session.
For more information, see What You May Need to Know About Decision
Component Stateful Operation.

3. In the Create Business Rules dialog, click OK. Oracle JDeveloper creates the
decision component and the dictionary and displays Rules Designer, as shown in
Figure 25-11.

Figure 25-11 Rules Designer Canvas Where You Work with Business Rules

For information on Rules Designer, see Designing Business Rules with Oracle Business
Process Management.

25.4.4 What Happens When You Add Business Rules to a BPEL Process
When you add business rules to a BPEL process, Oracle JDeveloper creates a decision
component to control and run the business rules using the Business Rule Service
Engine.

A decision component consists of the following:

Adding Business Rules to a BPEL Process

Getting Started with Oracle Business Rules 25-13

• Rules or s that are evaluated using the . These are defined using Rules Designer
and stored in a business rules dictionary.

• A description of the facts required for specific rules to be evaluated and the
decision function to call. Each ruleset that contains rules or s is exposed as a
service with facts that are input and output, and the name of an decision function.
The facts are exposed through XSD definitions when you define the inputs and
outputs for the business rule. A decision function is stored in an dictionary. For
more information, see Designing Business Rules with Oracle Business Process
Management.

• A web service wraps the input, output, and the call to the underlying Business
Rule service engine.

This web service lets business processes assert and retract facts as part of the
process. In some cases, all facts can be asserted from the business process as one
unit. In other cases, the business process can incrementally assert facts and
eventually consult the rule engine for inferences. Therefore, the service supports
both stateless and stateful interactions.

You can create a variety of such decision components.

For more information, see Designing Business Rules with Oracle Business Process
Management.

25.4.5 What Happens When You Create a Business Rules Dictionary
After you create an application, a project, and a rules dictionary, the rules dictionary
appears in the structure pane in Oracle JDeveloper and Rules Designer opens in the
main canvas.

As part of the create Business Rule dialog you either select an existing dictionary or a
new rule dictionary is created with the following pre-loaded data:

• XML fact type model based on the input and output information of the Business
Rule.

• A Ruleset that must be completed by adding rules or s. With an existing
dictionary, you use the import option to specify a dictionary that may already
contain the rules or s.

• A service component with the input and output contract of the decision
component.

• A decision component for the rule dictionary and wires to the BPEL process.

Adding Business Rules to a BPEL Process

25-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

When you create inputs and outputs for a business rule, the XML fact type
that is created in the associated dictionary is named based on the schema
types for the inputs and outputs that you supply in the Create Business Rules
dialog. When you specify schema type for the input and the output, Rules
Designer defines fact types and aliases associated with your type selections for
input and output. If you only use a single type for both the input and the
output, then the decision component creates a single fact that is shown in the
Rules Designer Facts tab. This fact represents the fact type you specified and
uses an alias name that is a concatenation of both the input variable name and
the output variable name. In Rules Designer you can rename this alias if you
do not like the default naming scheme for the fact type.

25.4.6 What You May Need to Know About Invoking Business Rules in a BPEL Process
When you add business rules to a BPEL process Oracle JDeveloper creates a decision
Service that supports calling with the inputs you supply, and returning the outputs
with results. The decision service provides access to Engine at runtime as a web
service. For more information, see Designing Business Rules with Oracle Business Process
Management.

25.4.7 What You May Need to Know About Decision Component Stateful Operation
A decision component running in a business rules service engine supports either
stateful or stateless operation. The Reset Session check box in the Create Business
Rules dialog provides support for these two modes of operation.

By default the Reset Session check box is selected which indicates stateless operation.
Stateless operation means that, at runtime, the rule session is released after the
decision component invocation.

When Reset Session is unselected, the underlying object is kept in the memory of the
business rules service engine at a separate location (so that it is not given back to the
Rule Session Pool when the operation is finished). A subsequent use of the decision
component re-uses the cached RuleSession object, with all its state information from
the callFunctionStateful invocation, and then releases it back to the Rule
Session pool after the callFunctionStateless operation is finished. Thus, when
Reset Session is unselected the rule session is saved for a subsequent request and a
sequence of decision service invocations from the same BPEL process should always
end with a stateless invocation.

25.5 Adding Business Rules to a SOA Composite Application
To work with in a SOA composite application, you create an application and add
business rules.

The business rule service component enables you to integrate your SOA composite
application with business rules. This creates a business rule dictionary and enables
you to execute business rules and make business decisions based on the rules.

After creating a project in Oracle JDeveloper, you must create a Business Rule Service
component within the project. When you add a business rule you can create input and
output variables to provide input to the service component and to obtain results from
the service component.

To use business rules with Oracle JDeveloper, you do the following:

Adding Business Rules to a SOA Composite Application

Getting Started with Oracle Business Rules 25-15

• Add a business rules service component

• Create input and output variables for the service component

• Create an dictionary

25.5.1 How to Add Business Rules to a SOA Composite Application
To work with in a SOA composite application you use Oracle JDeveloper to create an
application, a project, and then add a business rule component.

To create a SOA application with business rules:

1. Create a SOA application and project. For more information, see How to Create a
SOA Application and Project. For a SOA composite using business rules, pick the
required technologies for your application. For example, you may need the
following for a SOA application with business rules: ADF Business Components,
Java, and XML. You move these items to the Selected area on the Project
Technologies tab.

2. In the Applications window, if the SOA composite editor is not showing, then in
your project expand SOA Content folder and double-click composite.xml to
launch the SOA composite editor.

3. From the Components window, drag-and-drop a Business Rule from the Service
Components area of the SOA menu to the Components lane of the SOA composite
editor, as shown in Figure 25-12.

Figure 25-12 Adding Business Rules to a SOA Composite Application

4. When you drag-and-drop a Business Rule, Oracle JDeveloper displays the Create
Business Rules dialog as shown in Figure 25-13.

Adding Business Rules to a SOA Composite Application

25-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 25-13 Adding Business Rules to a SOA Composite and Creating a
Dictionary

25.5.1.1 How to Add Inputs to a Business Rule

To add inputs to a business rule:

1. In the Create Business Rules dialog box, from the menu next to the Add icon select
Input... to add input for the business rule. This displays the Type Chooser dialog.

2. In the Type Chooser dialog, add inputs. If the schema is available in the Project
Schema Files, skip to step 9 to select the appropriate schema.

3. Click the Import Schema File... icon. This brings up the Import Schema File dialog.

4. In the Import Schema File dialog click Browse Resources to choose the XML
schema elements for the input. This displays the SOA Resource Browser dialog.

5. In the SOA Resource Browser dialog, navigate to find the schema for your business
rules input. For example, select the order.xsd schema file, and click OK.

6. In the Import Schema File dialog select Copy to Project, as shown in Figure 25-14.

Adding Business Rules to a SOA Composite Application

Getting Started with Oracle Business Rules 25-17

Figure 25-14 Importing Schema for Input to Business Rules

7. In the Import Schema File dialog, click OK.

8. In the Localize Files dialog, click OK.

9. Use the Type Chooser dialog navigator to locate and select the input from the
schema and click OK. For example, select the CustomerOrder element as the
input.

25.5.1.2 How to Add Output to a Business Rule

To add outputs to a business rule:

1. In the Create Business Rules dialog, from the dropdown menu next to the Add icon
select Output....

2. In the Type Chooser dialog, in a manner similar to adding an input add the output.
For example, add OrderApproval from the order.xsd and click OK.

3. This displays the Create Business Rules dialog, as shown in Figure 25-15.

Adding Business Rules to a SOA Composite Application

25-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 25-15 Create Business Rules Dialog with Input and Output

25.5.1.3 How to Set Options and Create Decision Service and Business Rules
Dictionary

To create decision service and business rules dictionary:

1. In the Create Business Rules dialog, select Expose as Composite Service.

2. If you do not want to use the default service name, then select the Advanced tab
and in the Service Name field enter the service name.

3. In the Create Business Rules dialog, click OK. This creates the Business Rule
component, also called a decision component, and Oracle JDeveloper shows the
Business Rule component in the canvas workspace as shown in Figure 25-16.

Adding Business Rules to a SOA Composite Application

Getting Started with Oracle Business Rules 25-19

Figure 25-16 Business Rule Component in SOA Composite

4. Double-click the decision component to open Rules Designer, as shown in
Figure 25-17. The validation log shows validation warnings for the input and
output facts. By working with Rules Designer to define rules or decision tables, you
remove these warning messages.

Figure 25-17 Rules Designer Showing New Dictionary for SOA Composite
Application

For information on Rules Designer, see Designing Business Rules with Oracle Business
Process Management.

Note that a SOA installation does not have Verbal Rules or Business Phrases. This is
BPM functionality.

Adding Business Rules to a SOA Composite Application

25-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

25.5.2 How to Select and Modify a Decision Function in a Business Rule Component
You can specify one or more decision functions as inputs for calling as a component in
a composite application. For example, you can specify a particular decision function as
the input when multiple decision functions are available in an dictionary.

To specify a decision function in a composite application:

1. Add a decision function to the dictionary. For more information, see Designing
Business Rules with Oracle Business Process Management.

2. Add a Business Rule component to the composite application. For more
information, see How to Add Business Rules to a SOA Composite Application.

3. Select a business rule component, as shown in Figure 25-18.

Figure 25-18 Selecting a Business Rule Component in a Composite Application

4. Select the decision function port of interest. For example, select the port for DF_2 as
shown in Figure 25-19.

Adding Business Rules to a SOA Composite Application

Getting Started with Oracle Business Rules 25-21

Figure 25-19 Selecting a Decision Function Port in a Business Rule Component

5. When you select the port, Oracle JDeveloper shows the port information in the
Property Inspector.

6. When you double-click the port, Oracle JDeveloper displays the Update Interface
dialog for the port as shown in Figure 25-20.

Figure 25-20 Update Interface Dialog for a Decision Function in a Business Rule Decision Port

25.6 Running Business Rules in a Composite Application
You run business rules as part of a decision component within a SOA composite
application. The business rules are executed by the Business Rule Service Engine.

You can use Oracle Enterprise Manager Fusion Middleware Control to monitor the
Business Rule Service Engine and to test a SOA composite application that includes a

Running Business Rules in a Composite Application

25-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

decision component. For more information, see Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

25.6.1 What You May Need to Know About Testing a Standalone Decision Service
Component

To test a standalone decision service component by using Oracle Enterprise Manager
Fusion Middleware Control, you must provide the name of the decision service as the
value of the payload name field in the Test Web Service page as shown in
Figure 25-21.

Figure 25-21 Invoking a Standalone Test Decision Service

'name' in payload should be the decision service name as can be seen in the
sample .decs file in Figure 25-22.

Running Business Rules in a Composite Application

Getting Started with Oracle Business Rules 25-23

Figure 25-22 Sample .decs File

Without the decision service name, it is not possible to invoke the standalone decision
service with just the payload and endpoint details.

25.7 Using Business Rules with Oracle ADF Business Components Fact
Types

You can use Oracle ADF Business Components Fact Types and ActionTypes from
the Business Rules Service Engine. Typically, a decision component can be used within
a SOA composite and wired to a BPEL component and the rules act on XML types.
The Business Rules Service Engine is called as a web service with a payload containing
instances of the XML schema types, and the service engine returns a response
similarly.

You can also use Oracle ADF Business Components Fact Types from a decision
component. Instead of loading the Oracle ADF Business Components Fact Type
instances and passing them to the Business Rules Service Engine, you call the Business
Rules Service Engine with configuration information describing how the Oracle ADF
Business Components view object rows can be loaded. Special decision functions in
the DecisionPointDictionary and classes in the API then load the rows and
assert Oracle ADF Business Components fact type instances. When working with
Oracle ADF Business Components Fact Types, you write rules that use user-defined
Java classes which inherit from ActionType to affect action, such as modifying the
Oracle ADF Business Components fact type instances such that they update their
underlying database rows.

A decision component requires an XML document as input. The dictionary provides
an XML Fact Type called SimpleDecisionPointInput that serves as this input.
The primary key(s) of Oracle ADF Business Components are passed to the business
rule service component. The business rule service component invokes a user-defined
decision function which it invokes to load the Oracle ADF Business Components view
object instances, asserts them in the rules engine, and then marshals the results in the
following order:

Using Business Rules with Oracle ADF Business Components Fact Types

25-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

1. DecisionPointDictionary.DecisionPoint_Preprocessing_Webservice Ruleset: The
preprocessing ruleset reads the business component from the database and asserts
them as facts.

2. User-defined rulesets: The user ruleset matches these facts and should assert facts
that extend ActionType to update the business component.

3. DecisionPointDictionary.DecisionPoint_Postprocessing_Webservice Ruleset: The
actual updating is performed by the postprocessing ruleset. Use of ActionTypes
is optional.

For specific instructions on how to use Oracle ADF Business Components Fact Types
and ActionTypes from the Business Rules Service Engine, see the source code for -
specific samples available with the Oracle SOA Suite samples.

Using Business Rules with Oracle ADF Business Components Fact Types

Getting Started with Oracle Business Rules 25-25

Using Business Rules with Oracle ADF Business Components Fact Types

25-26 Developing SOA Applications with Oracle SOA Suite

26
Using Declarative Components and Task

Flows

Learn how to use different declarative components and task flows to develop high-
performance, interactive, and multitiered applications that are also easy to maintain. It
describes how to use the Oracle Business Rules Editor declarative component and the
Oracle Business Rules Dictionary Editor declarative component and task flow. It also
describes how to localize the ADF-based web application.

• Introduction to Declarative Components and Task Flows

• Introduction to the Oracle Business Rules Editor Declarative Component

• Introduction to the Oracle Business Rules Dictionary Editor Declarative
Component

• Introduction to the Oracle Business Rules Dictionary Editor Task Flow

• Localizing the ADF-Based Web Application

• Working with Translations

26.1 Introduction to Declarative Components and Task Flows
Declarative components are reusable, composite user interface (UI) components that
comprise other existing Application Development Framework (ADF) Faces
components.

Consider an application that contains multiple JSF pages. On a particular page, a set of
specific components is used in multiple parts of that page. In this scenario, if you make
any changes to any of the components in the set, you typically must replicate the
changes in multiple parts of the page. This approach makes it difficult to maintain the
consistency of the structure and layout of the page. However, by defining a declarative
component that comprises the given set of components, you can reuse that composite
declarative component in multiple places or pages. Declarative components, thereby,
save time and ensure integrity across pages because when you make any changes to
the components, the JSF pages using them automatically get updated.

ADF task flows are reusable components that provide a modular and transactional
method in specifying the control flow in an application. You can use a set of reusable
task flows as an alternative to representing an application as a single large JSF page
flow, thereby providing modularity. Each task flow contains a part of the entire
navigational plan of the application. The nodes in a task flow are called activities.
Apart from navigation, task flow activities can also call methods on managed beans or
call another task flow without invoking any particular page. This facilitates reuse
because business logic can be invoked independently of the page being displayed.

Using Declarative Components and Task Flows 26-1

26.2 Introduction to the Oracle Business Rules Editor Declarative
Component

Get an overview of the Oracle Business Rules Editor declarative component.

Learn how to create and run an application using the Rules Editor component, and
then deploy the application. Also get an overview of the supported tags and the
localization process for the application.

26.2.1 Using the Oracle Business Rules Editor Component
The Oracle Business Rules Editor is a declarative component that can be embedded in
any ADF-based web application. The component renders the user interface for rules
editing and handles all events associated with rules editing. The Rules Editor uses the
Rules SDK2 API to create and edit rules.

Note:

You should not confuse the Rules Editor with the Rules Dictionary Editor. The
Rules Editor is used to edit rules inside a specified ruleset. In fact, the Rules
Editor is embedded within the Rules Dictionary Editor. For more information
about the Rules Dictionary Editor, see Introduction to the Oracle Business
Rules Dictionary Editor Declarative Component.

Using the Rules Editor, you can create, delete and edit the general rules, verbal rules,
and decision tables that are part of a single ruleset. You are required to specify a
RuleSetModel object, which is a wrapper around the Rules SDK ruleset object, as a
parameter to the Rules Editor component. If multiple rulesets are required to be
modified, multiple Rules Editor components must be instantiated, one for each ruleset.

The Rules Editor component performs the following functions:

• Creates, updates, and deletes:

– Rules in a ruleset, as shown in Figure 26-1.

– Simple tests or conditions in a rule, as shown in the IF area.

– Actions in a rule, as shown in the THEN area.

Introduction to the Oracle Business Rules Editor Declarative Component

26-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 26-1 General Rules in a Ruleset

– Verbal rules, as shown in Figure 26-2.

Figure 26-2 Verbal Rules in a Ruleset

– Decision tables, as shown in Figure 26-3.

Figure 26-3 Decision Table

• Sets effective dates and priorities for rulesets and rules.

• Provides support for user-defined operators.

• Provides a Condition Browser pop-up to display the left or right value options, as
shown in Figure 26-4.

Introduction to the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-3

Figure 26-4 Condition Browser

• Provides a Date Browser for selecting date types.

• Provides a Right Operand browser to handle multiple right-hand side
expressions.

• Provides support for nested rules.

• Provides the Properties browser for editing properties of a rule action, as shown
in Figure 26-5.

Figure 26-5 Properties Browser

• Provides an Expression Builder window to build custom expressions.

• Provides a Validation panel to manage error messages, as shown in Figure 26-6.

Figure 26-6 Validation Panel to Manage Error Messages

Note:

After all the edits are done, the component user is responsible for saving the
ruleset.

Introduction to the Oracle Business Rules Editor Declarative Component

26-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

26.2.2 How to Create and Run a Sample Application by Using the Rules Editor
Component

This section lists the steps for creating and running a sample application by using the
Rules Editor component.

The prerequisite for using the Rules Editor component to create ADF-based web
applications is having a running installation of Oracle SOA Suite and Oracle
JDeveloper on your computer.

To create a sample application by using the Rules Editor:

1. Open Oracle JDeveloper.

2. From the File menu, select New.

3. Select ADF Fusion Web Application to create a new application as shown in
Figure 26-7.

Figure 26-7 Creating Fusion Web Application

4. Enter a name for the application in the Application Name field, for example,
useRulesDCApp, and click Next as shown in Figure 26-8.

Introduction to the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-5

Figure 26-8 Creating a Generic Application

5. Use the default for everything else.

6. Click Finish.

7. Right click ViewController project and select Project Properties.

8. Select Libraries and Classpath from the menu on the left.

9. a. Click the Add Library button.

b. Select Oracle Rules and Oracle Rules Dictionary Component from the
Extension List and click OK. This adds the Rules SDK and the Rules ADF
component tag libraries to the project as shown in Figure 26-9.

c. Click OK once more to come out of Project Properties.

Introduction to the Oracle Business Rules Editor Declarative Component

26-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 26-9 Adding Library

Note:

If the 'Oracle Rules' and 'Oracle Rules Dictionary Component' do not show up
in the 'Extension' List, open a SOA/BPM project within jDeveloper to load the
required libraries.

10. Click Save All to save the project.

11. Check to make sure all the required tag libraries are added.

12. a. Right click ViewController project and select Project Properties.

b. Select JSP Tag Libraries from the menu on the left and check if all the tag
libraries are added Figure 26-10.

Introduction to the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-7

Figure 26-10 Checking the Required Tag Libraries

26.2.2.1 How to Create the RuleSetModel Object

The Rules Editor component requires a
oracle.bpel.rulesdc.model.impl.RuleSetModel object.

To create the RuleSetModel object:

1. Create a Java Class e.g. 'SomeBean.java' in your project.

2. Open Oracle JDeveloper.

3. From the File menu, select New and create a Java Class.

4. In SomeBean.java provide a method that returns the RuleSetModel object. You
must specify the location/path of the rules file.The following is a sample of the
SomeBean.java file:

package view;import java.io.BufferedReader;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.Serializable;

import java.net.MalformedURLException;
import java.net.URL;

import oracle.bpel.rulesdc.model.decisiontable.impl.DecisionTablePrefsImpl;
import oracle.bpel.rulesdc.model.decisiontable.interfaces.DecisionTablePrefs;
import oracle.bpel.rulesdc.model.impl.IfThenPreferencesImpl;
import oracle.bpel.rulesdc.model.impl.RuleSetModel;
import oracle.bpel.rulesdc.model.interfaces.IfThenPreferences;
import oracle.bpel.rulessharedutils.impl.RulesSharedUtils;

Introduction to the Oracle Business Rules Editor Declarative Component

26-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

import oracle.rules.sdk2.decisionpoint.DecisionPointDictionaryFinder;
import oracle.rules.sdk2.dictionary.DictionaryFinder;
import oracle.rules.sdk2.dictionary.RuleDictionary;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.ruleset.RuleSet;
import oracle.rules.sdk2.ruleset.RuleSetTable;

public class SomeBean {
 //on windows
 private static final String RULES_FILE1 =
 "file:///D:/scratch/asuraj/system_MAIN/rules_files/ApprovalRules.rules";
 /*
 * on linux
 private static final String RULES_FILE1 =
 "file:////scratch/asuraj/backup/rules_files/ApprovalRules.rules";
 */
 private RuleSetModel ruleSetModel = null;

 private boolean viewOnly = true;
 private DecisionTablePrefs dtPrefs;

 private IfThenPreferences ifThenPrefs;

 public SomeBean() {
 super();
 }

 public RuleSetModel getRuleSetModel() {
 if (ruleSetModel != null)
 return ruleSetModel;
 ruleSetModel = new RuleSetModel(getRuleSet());
 System.out.println("ruleSetModel = " + ruleSetModel);
 return ruleSetModel;
 }

 public RuleSet getRuleSet() {

 RuleDictionary dict =
 openRulesDict(RULES_FILE1, new DecisionPointDictionaryFinder());
 if (dict == null)
 return null;

 RuleSetTable ruleSetTable = dict.getRuleSetTable();
 if (ruleSetTable == null || ruleSetTable.isEmpty())
 return null;

 return ruleSetTable.get(0);
 }

 public void saveDictionary() {

 RuleDictionary dict = null;
 String rulesFile = null;

 if (this.ruleSetModel == null)
 return;
 dict = this.ruleSetModel.getRuleSet().getDictionary();

 if (dict == null)
 return;

Introduction to the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-9

 if (dict.isModified())
 RulesSharedUtils.updateDictionary(dict);
 if (!dict.isTransactionInProgress())
 saveDictionary(dict, RULES_FILE1);
 }

 public void validate() {
 if (this.ruleSetModel == null)
 return;

 this.ruleSetModel.validate();
 }

 //utility methods

 public static RuleDictionary openRulesDict(String fileName,
 DictionaryFinder finder) {
 URL url = null;
 try {
 url = new URL(fileName);
 } catch (MalformedURLException e) {
 System.err.println(e);
 return null;
 }
 RuleDictionary dict = null;

 try {
 dict = readFromDisk(url, finder);
 } catch (Exception e) {
 System.err.println(e);
 return null;
 }
 return dict;
 }

 public static RuleDictionary readFromDisk(URL dictURL, DictionaryFinder
 finder) {
 BufferedReader buf = null;
 try {
 buf = new BufferedReader(new
 InputStreamReader(dictURL.openStream(), "UTF-8"));
 return RuleDictionary.readDictionary(buf, finder);
 } catch (SDKException e) {
 System.err.println(e);
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 if (buf != null)
 try {
 buf.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }

 return null;
 }

 public static boolean saveDictionary(RuleDictionary dict, String
 ruleFileName) {

Introduction to the Oracle Business Rules Editor Declarative Component

26-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 if (dict == null || ruleFileName == null)
 return false;

 if (dict.isTransactionInProgress())
 System.out.println("Transaction in progress, cannot save
 dictionary");

 try {
 writeToDisk(dict, new URL(ruleFileName));
 } catch (MalformedURLException e) {
 System.err.println(e);
 return false;
 } catch (Exception e) {
 System.err.println(e);
 return false;
 }
 return true;
 }

 public static void writeToDisk(RuleDictionary dic, URL dictURL) {
 OutputStreamWriter writer = null;
 try {
 writer = new OutputStreamWriter(new
 FileOutputStream(dictURL.getPath()), "UTF-8");
 dic.writeDictionary(writer);
 } catch (IOException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 } finally {
 if (writer != null)
 try {
 writer.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 }

 public void toggleMode() {
 viewOnly = !viewOnly;
 }

 public boolean isViewOnly() {
 return viewOnly;
 }

 public DecisionTablePrefs getDtPreferences() {
 if (dtPrefs == null)
 dtPrefs = new DTPreferences();
 return dtPrefs;
 }

 public IfThenPreferences getIfThenPreferences() {
 if (ifThenPrefs == null)
 ifThenPrefs = new MyIfThenPrefs();
 return ifThenPrefs;
 }
 public class MyIfThenPrefs extends IfThenPreferencesImpl implements
 Serializable {

Introduction to the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-11

 @Override
 public boolean isGenericAction() {
 return true;
 }

 @Override
 public boolean isGenericCondition() {
 return true;
 }
 }

 public class DTPreferences extends DecisionTablePrefsImpl implements
 Serializable {

 @Override
 public boolean isShowDTButtons() {
 return true;
 }
 }
}

5. Point to SomeBean.java in adfc-config.xml with Bean Name "someBean" and a
"session" scope. Example adfc-config.xml:

<?xml version="1.0" encoding="UTF-8" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <managed-bean id="__1">
 <managed-bean-name>someBean</managed-bean-name>
 <managed-bean-class>view.SomeBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
</adfc-config>

6. The ADF/JSF framework makes calls to SomeBean.java multiple times to render
the UI. For instance, someBean.ruleSetModel is called many times. So it is more
efficient to create the ruleSetModel once and cache it and return it each time
instead of recreating it.

26.2.2.2 How to Create the .jspx File

The next task is to create the .jspx file to include the Rules Editor component tag.

To create the .jspx file to include the Rules Editor Component tag:

1. Open Oracle JDeveloper.

2. From the File menu, select New and then select JSF.

3. Select JSF Page and click OK.

4. Select Document Type as JSP XML.

5. Enter rulesEditor.jspx as file name. Click OK.

6. The RulesEditor is visible in the component window in jDeveloper.

7. Select RulesEditor, after that the Rulesdc tag can be seen.

8. Drag and drop the rulesdc tag into the JSPX file. You can also add the rulesDC tag
manually in your jspx file like this:

Introduction to the Oracle Business Rules Editor Declarative Component

26-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1" xmlns:f="http://
java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich" xmlns:rdc="http://
xmlns.oracle.com/bpel/rules/editor">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document title="rulesEditor" id="d1">
 <af:form id="f1">
 <af:panelGridLayout id="pgl1" inlineStyle="margin:15px;"
styleClass="AFStretchWidth"
 partialTriggers="cb1 cb3 cb4">
 <af:gridRow id="gr2">
 <af:gridCell marginStart="5px" marginEnd="5px"
width="100%" halign="stretch" id="gc1">
 <af:panelGroupLayout id="pgl2" layout="horizontal">
 <af:commandButton text="Save Dict"
action="#{someBean.saveDictionary}" id="cb1"/>
 <af:spacer width="10" height="10" id="s2"/>
 <af:commandButton text="Validate" id="cb3"
action="#{someBean.validate}"
 partialSubmit="true"/>
 <af:spacer width="10" height="10" id="s8"/>
 <af:commandButton text="Toggle Mode" id="cb4"
action="#{someBean.toggleMode}"
 partialSubmit="true"/>
 </af:panelGroupLayout>
 </af:gridCell>
 </af:gridRow>
 <af:gridRow height="100%" id="gr1">
 <af:gridCell marginStart="5px" marginEnd="5px"
width="100%" halign="stretch" valign="stretch"
 id="gc2">
 <rdc:rulesdc rulesetModel="#{someBean.ruleSetModel}"
id="r1"

ifThenPreferences="#{someBean.ifThenPreferences}"

dtPreferences="#{someBean.dtPreferences}" viewOnly="#{someBean.viewOnly}"
 disableVerbalRules="false"></rdc:rulesdc>
 </af:gridCell>
 </af:gridRow>
 </af:panelGridLayout>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

26.2.2.3 How to Refer to the Oracle Rules Shared Libraries

After creating the .jspx file, you must refer to the oracle.rules and
oracle.soa.rules_dict_dc.webapp shared libraries from the weblogic-
application.xml file.

To refer to the oracle.rules and the oracle.soa.rules_dict_dc.webapp shared
libraries:

1. In Oracle JDeveloper, from the Application Resources, open Descriptors, and
then META-INF. Edit the weblogic-application.xml file and add the following
lines (this refers to the oracle.rules shared library.)

Introduction to the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-13

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

2. In Oracle JDeveloper,

a. Select File menu, then select New and then Deployment Descriptors.

b. Select Weblogic Deployment Descriptor and select weblogic.xml from the
list.

c. Select version 12.1.2 and click Finish.

d. In weblogic.xml overview mode, select Libraries from the left and add
oracle.soa.rules_dict_dc.webapp as the library name. Example
weblogicogic.xml file:

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.5/weblogic-web-app.xsd"
xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">
 <library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
 </library-ref>
</weblogic-web-app>

e. Click Save All.

Note:

Note that oracle.rules and oracle.soa.rules_dict_dc.webapp shared libraries
must be deployed to the embedded WLS server.

3. All the shared libraries must be deployed using the weblogic console of your
embedded WLS:

a. Launch WLS console (http://host:port/console/login/
LoginForm.jsp) and log in.

b. Click Deployments.

Check if oracle.rules and oracle.soa.rules_dict_dc.webapp shared libraries
are deployed as shown in Figure 26-11.

Introduction to the Oracle Business Rules Editor Declarative Component

26-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 26-11 Deployments

4. Deploy the shared libraries manually if they are not deployed.

To start the WLS embedded server:

a. Open JDeveloper.

b. Select Run and then select Start Server Instance as shown in Figure 26-12

Figure 26-12 Start Embedded WLS

Skip this step if the shared libraries are already deployed.

Note:

WLS embedded server on JDeveloper must be running so that the shared
libraries can be deployed.

5. To deploy the oracle.rules shared library to WLS:

Introduction to the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-15

a. Launch WLS console (http://host:port/console/login/
LoginForm.jsp) and log in.

b. Select Deployments and click Install.

c. Select <SOA_INSTALL>/soa/soa/modules/oracle.rules_11.1.1/rules.jar.

d. Click Next and then click Finish.

6. To deploy the oracle.soa.rules_dict_dc.webapp shared library to WLS:

a. In WLS console, select Deployments, click Install.

b. Select <SOA_INSTALL>/soa/soa/modules/
oracle.soa.rules_dict_dc.webapp_11.1.1/
oracle.soa.rules_dict_dc.webapp.war.

c. Click Next and then click Finish.

d. Select Install this deployment as a library.

e. Click Finish.

f. The oracle.soa.rules_dict_dc.webapp gets added to the list of deployments as
shown in Figure 26-11

26.2.2.4 How to Run the Sample Application

The last task is running the sample application.

To run the Sample Application:

1. To run the sample application, from JDeveloper, right click rulesEditor.jspx file.

2. Select Run.

This should start the sample application on a browser., as shown in Figure 26-13.

Figure 26-13 Rules Editor Running

26.2.3 How to Deploy a Rules Editor Application to a Standalone WLS
When you are ready to deploy your application EAR file to the standalone Oracle
WebLogic Server, perform the following:

Introduction to the Oracle Business Rules Editor Declarative Component

26-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

1. Check if the shared libraries are deployed using the weblogic console of your
stand-alone WLS.

a. Launch WLS console. (http://host:port/console/login/
LoginForm.jsp) and log in.

b. Click Deployments. Check if oracle.rules and
oracle.soa.rules_dict_dc.webapp shared libraries are deployed as showed in
Figure 26-11.

2. If the shared libraries are not deployed, then refer to the previous steps to deploy
the shared libraries manually.

3. In a project that uses the Rules Editor Component:

a. Include Oracle Rules Dictionary Component in your Libraries and
Classpath.

This does not deploy these libraries by default, so the jars are not included in your
project war file.

4. In a project that is deploying (i.e where you create the ear file):

a. Add this to your weblogic-application.xml:

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

b. Add this to weblogic.xml in your project's war file:

<library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
</library-ref>

5. Deploy your ear file in WLS.

For more information about creating an EAR file, see "How to Create an EAR File for
Deployment" in Oracle Fusion Middleware Java EE Developer's Guide for Oracle
Application Development Framework.

26.2.4 What You May Need to Know About the Custom Permissions for the Rules Editor
Component

For role-based authorization, Rules DC implements custom JAAS permissions
(extending the
oracle.adf.share.security.authorization.ADFPermission class to
ensure that the permission can be used by ADF security).

If a Rules Editor application supports ADF security, which means there is support for
role-based authentication and authorization, then security is enforced by
implementing custom JAAS permissions (by extending the
oracle.adf.share.security.authorization.ADFPermission class to
ensure that the permission can be used by ADF security). You have to create ADF
security policies by granting the following permissions to the user roles based on your
application requirement:

• oracle.rules.adf.permission.AddRulePermission: Displays the Add
Rule button; if permission is not granted, the Add Rule button is not visible to the
user.

Introduction to the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-17

• oracle.rules.adf.permission.DeleteRulePermission: Displays the
Delete Rule button; if permission is not granted, the Delete Rule button is not
visible to the user.

• oracle.rules.adf.permission.EditRulePermission: Displays the Edit
Rule button for rules inside a ruleset; if permission is not granted, then the rules
are view-only.

• oracle.rules.adf.permission.AddDTPermission: Displays the Add
Decision Table button; if permission is not granted, the Add Decision Table
button is not visible to the user.

• oracle.rules.adf.permission.DeleteDTPermission: Displays the
Delete Decision Table button; if permission is not granted, the Delete Decision
Table button is not visible to the user.

• oracle.rules.adf.permission.EditDTPermission: Displays the Edit
Decision Table button for decision tables within a ruleset; if permission is not
granted, the decision tables are view-only.

• oracle.rules.adf.permission.RulesEditorPermission: A global
permission that sets all the preceding permissions to true.

For example, to grant the delete rule permission to a role, specify the following code in
the jazn-data.xml file of the application:

<policy-store>
 <applications>
 <application>
 <name>UseRuleDictDCWtPerm</name>
 <app-roles>
 <app-role>
 <name>Admin</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <display-name>Admin</display-name>
 <members>
 <member>
 <name>admin</name>
 <class>oracle.security.jps.internal.core.principals.JpsXmlUserImpl</
class>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>BusinessUser</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <display-name>BusinessUser</display-name>
 <members>
 <member>
 <name>buser</name>
 <class>oracle.security.jps.internal.core.principals.JpsXmlUserImpl</
class>
 </member>
 </members>
 </app-role>
 </app-roles>
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>

Introduction to the Oracle Business Rules Editor Declarative Component

26-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <class>oracle.security.jps.service.policystore.ApplicationRole</
class>
 <name>Admin</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.rules.adf.permission.RulesEditorPermission</class>
 <name>RulesEditorPermission</name>
 <actions>access</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
 </application>
 </applications>
 </policy-store>

If you do not want to use the individual permissions, such as AddRulePermission
or DeleteRulePermission, you can set the RulesEditorPermission in the
jazn-data.xml file to set global permissions.

26.2.5 What You May Need to Know About the Supported Tags of the Rules Editor
Component

This section lists the tags and attributes that are supported by the Rules Editor
component.

Table 26-1 lists the supported attributes.

Table 26-1 Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

rulesetModel
oracle.bpel.rulesdc
.model.interfaces.R
uleSetInterface

yes Only EL Wrapper around the
Rules SDK ruleset
object. The user can
use the
RuleSetModel object
supplied as part of
the Rules Editor
Component.

ruleModel
java.lang.String

no
oracle.bpel.
rulesdc.mode
l.impl.RuleM
odel

yes Used to customize
the default
RuleModel. User
can extend the
RuleModel class to
override certain
methods.
Deprecated. Use
'ifThenPreferences'
attribute and
override
getRuleModel().

Introduction to the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-19

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

simpleTestModel
java.lang.String

no
oracle.bpel
.rulesdc.mo
del.impl.Si
mpleTestMod
el

yes Used to customize
the default
SimpleTestModel.
User can extend the
SimpleTestModel
class to override
certain methods.
Deprecated. Use
'ifThenPreferences'
attribute and
override
getSimpleTestMode
l().

viewOnly
java.lang.Boolean

no true yes In the "viewOnly"
mode user can view
the existing rules in
the ruleset. If "false",
in the "edit" mode,
the user is allowed
to add new rules
and edit existing
rules.

genericPattern
java.lang. Boolean

no true yes Deprecated and not
used.

genericAction
java.lang.Boolean

no true yes Deprecated and not
used.

locale java.util.Local
e

no
Locale.getDe
fault()

yes Used for
Localization.

timezone java.util.TimeZ
one

no
TimeZone.get
Default()

yes Used for
Localization

displayRuleSetEffDat
e

java.lang.Boole
an

no true yes Deprecated and not
used.

discloseRules java.lang.Boole
an

no false yes Deprecated and not
used.

displayRuleSetName java.lang.Boole
an

no false yes Deprecated and not
used.

disableRuleSetName java.lang.Boole
an

no false yes Deprecated and not
used.

dtColumnPageSize java.lang.
Integer

no 5 yes Deprecated and not
used.

Introduction to the Oracle Business Rules Editor Declarative Component

26-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

dtHeight java.lang.
Integer

no 16 yes Deprecated and not
used.

dateStyle java.lang.Strin
g

no gets it from
the locale

yes If specified, the date
style is used in all
inputDate
components.
Example:
"yyyy.MM.dd"

timeStyle java.lang.Strin
g

no gets it from
the locale

yes If specified, the time
style is used in all
inutDate
components.Exampl
e: "HH:mm:ss".

showValidationPanel java.lang.Boole
an

no true yes Displays the
validation panel by
default. User can
choose to hide this
by setting this to
false.

showDTButtons java.lang.Boole
an

no true yes Deprecated and not
used.

rulesPageSize java.lang.Integ
er

no 5 yes Deprecated and not
used.

decimalSeparator java.lang.
Character

no Based on
Locale

yes Used to specify the
decimal separators.
This is used in
Number Formatting.
If specified,
overrides the
decimal separator
based on locale.

groupingSeparator java.lang.Chara
cter

no Based on
Locale

yes Used to specify the
grouping separators.
This is used in
Number Formatting.
If specified,
overrides the
grouping separator
based on locale.

disableVerbalRules java.lang.Boole
an

no true yes Disables
verbalization UI if
'true'.

vldnPanelCollapsed java.lang.Boole
an

no false yes Used to specify if
validation panel
should be collapsed
by default.

Introduction to the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-21

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

vldnTabTitle java.lang.
String

no - yes Used to specify the
validation panel
title.

genericDTAddActionMe
nu

java.lang.Boole
an

yes true yes If 'true', the generic
add action menu is
displayed in the
decision table tool
bar. If 'false'
consumer must
specify the add
action menu using
'dtAddActionMenu
DDC' attribute.
Deprecated. Use
'dtPreferences'
attribute and
override
isGenericDTAddAct
ionMenu().

genericDTEditAction java.lang.Boole
an

no true yes If 'true', generic
action UI is
displayed in the
action editor
browser that shows
up when an action
row is edited in the
decision table. If
'false' consumer
must specify the edit
action UI using the
'dtEditActionDDC'
attribute.
Deprecated. Use
'dtPreferences'
attribute and
override
isGenericDTEditActi
on().

Introduction to the Oracle Business Rules Editor Declarative Component

26-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

genericDTActionParam java.lang.Boole
an

no true yes If 'true', generic UI is
displayed in the
action parameter
cell of the decision
table. If 'false',
consumer must
specify the action
parameter cell UI
using the
'dtActionParamCell
DDC' attribute.
Deprecated. Use
'dtPreferences'
attribute and
override
isGenericDTActionP
aram().

dtAddActionMenuDDC jjava.lang.Strin
g

no - yes Used only when
'genericDTAddActio
nMenu' is true.
Consumer must
pass the DDC (i.e
the dynamic
declarative
component)
including the
context path that
specifies the add
menu items in the
decision table
toolbar. Example "/
userulesdc/
decisiontable/
dtAddActionMenu.j
sff". Deprecated.
Use 'dtPreferences'
attribute and
override
getDtAddActionMe
nuDDC()..

Introduction to the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-23

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

dtEditActionDDC java.lang.
String

no - yes Used only when
'genericDTEditActio
n' is true. Consumer
must pass the DDC
(i.e the dynamic
declarative
component)
including the
context path that
specifies the action
UI to be displayed
in the action editor
browser that shows
up when an action
row is edited in the
decision table.
Example "/
userulesdc/
decisiontable/
actionEditor.jsff".
Deprecated. Use
'dtPreferences'
attribute and
override
getDtEditActionDD
C().

dtActionParamCellDDC java.lang.
String

no - yes Used only when
'genericDTActionPa
ram' is true.
Consumer must
pass the DDC (i.e
the dynamic
declarative
component)
including the
context path that
specifies the UI to be
displayed in the
action parameter
cell of the decision
table. Example "/
userulesdc/
decisiontable/
actionParamCell.jsff
". Deprecated. Use
'dtPreferences'
attribute and
override
getDtActionParamC
ellDDC().

Introduction to the Oracle Business Rules Editor Declarative Component

26-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 26-1 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required Default Value Supports
EL?

Description

dtActionNameCustomiz
er oracle.bpel.rulesdc

.model.interfaces.A
ctionNameCustomizer

no - yes Used to specify the
action name and
action parameter
name in the decision
table header.
Deprecated. Use
'dtPreferences'
attribute and
override
getDtActionNameC
ustomizer().

dtPreferences
oracle.bpel.rulesdc
.model.decisiontabl
e.interfaces.Decisi
onTablePrefs

no
oracle.bpel.
rulesdc.mode
l.decisionta
ble.impl.Dec
isionTablePr
efsImpl

yes Used to specify
decision table
preferences.
Consumers can
extend the default
implementation i.e
(oracle.bpel.rulesdc.
model.decisiontable.
impl.DecisionTableP
refsImpl) and
override only the
required
preferences. s.

ifThenPreferences
oracle.bpel.rulesdc
.model.interfaces.I
fThenPreferences

no
oracle.bpel.
rulesdc.mode
l.impl.IfThe
nPreferences
Impl

yes Used to specify if
validation panel
should be collapsed
by default.

resourceManager
joracle.bpel.ruless
hareddc.model.inter
faces.ResourceManag
erInterface

no - yes Used to specify the
resource manager
for translations UI.
Refer to the section
on 'translations'.

verbalRuleGotoDSLLis
tener oracle.bpel.rulessh

areddc.model.interf
aces.VerbalRuleGoto
LinkListener

no - yes Listener object
triggered when
'Goto phrase' link is
clicked from the
verbal rule.

26.3 Introduction to the Oracle Business Rules Dictionary Editor
Declarative Component

Get an overview of the Oracle Business Rules Dictionary Editor declarative
component.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-25

Learn how to create and run an application using the Rules Dictionary Editor
component, and then deploy the application. Also get an overview of supported tags
and the localization process for the application.

26.3.1 Using the Oracle Business Rules Dictionary Component
Rules Dictionary Editor Component is an ADF Declarative Component that allows
editing of Business Rules meta-data artifacts such as Rulesets, Value Sets, Globals,
Decision Functions and so on using the Rules SDK2 API.

Rules Dictionary Editor Component must not be confused with the Rules Editor
Component which is mainly used to edit Rules inside a specified Ruleset. The Rules
Dictionary Component is a composite component that allows editing of Globals, Value
sets, Rulesets and so on. The Rules Dictionary Editor Task Flow uses the Rules
Dictionary Editor Component.

The Rules Dictionary Editor Component provides the following features:

• CRUD (create/read/update/delete) operations on rulesets and general rules,
verbal rules and decision tables within a ruleset.

• CRUD (create/read/update/delete) operations on Business Phrases (used in
verbalization).

• CRUD (create/read/update/delete) operations on Value sets.

• CRUD (create/read/update/delete) operations on Globals/Variables.

• CRUD (create/read/update/delete) operations on Decision Functions.

• CRUD (create/read/update/delete) operations on RL and XML Facts and
viewing for all other Fact types.

• View linked dictionaries.

• Support for user-defined translations.

• Cut/copy/paste of all dictionary components.

• Compare and merge different versions of the dictionary (diff/merge support).

• Export decision tables to Excel.

The Rules Dictionary Editor task flow uses the Rules Dictionary Editor Component to
create applications. Typically, you should either use the Rules Dictionary Editor
component or the Rules Dictionary Editor task flow, but not both. For more
information on the Rules Dictionary Editor task flow, see Introduction to the Oracle
Business Rules Dictionary Editor Task Flow.

The Rules Dictionary Editor component enables you to:

• Edit globals or variables that have the final attribute set to true by using the
Globals Editor, as shown in Figure 26-14.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 26-14 Globals Editor

The Globals Editor enables you to create, delete, edit the name, description, value,
change value set, change type and make global final. It supports validation of
globals.

• Edits value sets by using the Value Sets Editor as shown in Figure 26-15.

Figure 26-15 Value Sets Editor

The Value Sets Editor enables you to perform CRUD (create, read, update, and
delete) operations on value sets and ranges inside a value set. It also supports
validation of value sets.

• Edit Rulesets, as shown in Figure 26-16.

Figure 26-16 Edit Rulesets

The Rules Dictionary Editor enables you to edit only rules inside a selected
ruleset. It does not allow creation or deletion of rulesets.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-27

• Edit General Rules, as shown in Figure 26-17.

Figure 26-17 General Rule

• Edit Verbal Rules, as shown in Figure 26-18.

Figure 26-18 Verbal Rule

• Edit Decision Tables, as shown in Figure 26-19.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 26-19 Decision Table

• Edit Business Phrases, as shown in Figure 26-20.

Figure 26-20 Business Phrases Tab

• View Explorer, as shown Figure 26-21.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-29

Figure 26-21 Explorer Tab

• Edit Facts, as shown in Figure 26-22.

Figure 26-22 Facts Tab

• Edit Decision Functions, as shown in Figure 26-23.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 26-23 Decision Functions Tab

• Edit Translations, as shown in Figure 26-24.

Figure 26-24 Translations Tab

• Create and run tests to validate rules, as shown in Figure 26-25.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-31

Figure 26-25 Tests Tab

For more information about these features and tabs, see Designing Business Rules with
Oracle Business Process Management.

26.3.2 How to Create and Run a Sample Application by Using the Rules Dictionary
Editor Component

This section lists the steps for creating and running a sample application by using the
Rules Dictionary Editor Component.

The prerequisite for using the Rules Dictionary Editor Component to create ADF-
based web applications is having JDeveloper with SOA installation.The first task is to
create a sample application.

To create a sample application by using the Rules Dictionary Editor Component:

1. Open JDeveloper, from the File Menu, select New and then select ADF Fusion
Web Application to create a new application as shown in Figure 26-26.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 26-26 Create Fusion Web Application.

2. Enter a name for the application in the Application Name field, for example,
UseRuleDictDCApp and click Next as shown in Figure 26-27.

Figure 26-27 Creating a Generic Application

3. Use the default for everything else.

4. Click Finish.

5. Right click ViewController project and select Project Properties. Select Libraries
and Classpath from the menu on the left.

a. Click Add Library.

b. Select Oracle Rules and Oracle Rules Dictionary Component from the
Extension List and click OK. This adds the Rules SDK and the Rules ADF
component tag libraries to the project as shown in Figure 26-28.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-33

Figure 26-28 Adding a Library

Note:

If the 'Oracle Rules' and 'Oracle Rules Dictionary Component' do not show up
in the 'Extension' List, open a SOA/BPM project within jDeveloper to load the
required libraries.

c. Click OK once more to come out of Project Properties.

6. Click Save All to save the project.

7. Check to make sure all the required tag libraries are added.

a. Right click ViewController project and select Project Properties.

b. Select JSP Tag Libraries from the menu on the left and check if all the tag
libraries are added as shown in Figure 26-29.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 26-29 JSP Tag Libraries

26.3.2.1 How to Create the RuleDictionaryModel Object

The Rules Dictionary Editor component requires a
oracle.bpel.ruledictionarydc.model.impl.RuleDictionaryModel object
to create the RuleDictionaryModel object.

To create the RuleDictionaryModel object:

1. To create a Java Class e.g. SomeBean.java in your project, from the File menu, select
New and then select Java Class.

2. In SomeBean.java provide a method that returns the RuleDictionaryModel object.
You must specify the location/path of the rules file. The following is an example of
SomeBean.java:

package view;

import java.io.BufferedReader;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.Serializable;

import java.net.MalformedURLException;
import java.net.URL;

import oracle.bpel.ruledictionarydc.model.impl.RuleDictionaryModel;
import oracle.bpel.ruledictionarydc.model.impl.RulesEditorPreferencesImpl;
import oracle.bpel.ruledictionarydc.model.interfaces.RulesEditorPreferences;
import oracle.bpel.rulesdc.model.decisiontable.impl.DecisionTablePrefsImpl;
import oracle.bpel.rulesdc.model.decisiontable.interfaces.DecisionTablePrefs;
import oracle.bpel.rulesdc.model.impl.IfThenPreferencesImpl;

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-35

import oracle.bpel.rulesdc.model.interfaces.IfThenPreferences;
import oracle.bpel.rulessharedutils.impl.RulesSharedUtils;

import oracle.rules.sdk2.decisionpoint.DecisionPointDictionaryFinder;
import oracle.rules.sdk2.dictionary.DictionaryFinder;
import oracle.rules.sdk2.dictionary.RuleDictionary;
import oracle.rules.sdk2.exception.SDKException;

public class SomeBean {
 private RuleDictionaryModel ruleDictModel;
 private RulesEditorPreferences rulesEditorPrefs;
 private boolean viewOnly = true;

 //on windows
 //private static final String RULES_FILE1 =
 "file:///D:/scratch/asuraj/system_MAIN/rules_
 files/insurancequoteproject/CarInsuranceRules.rules";

 // on linux
 private static final String RULES_FILE1 =
 "file:////scratch/asuraj/backup/rules_files/ApprovalRules.rules";

 public SomeBean() {
 super();
 }

 public RuleDictionaryModel getRuleDictModel() {
 if (ruleDictModel != null)
 return ruleDictModel;

 ruleDictModel = new RuleDictionaryModel(openRulesDict(RULES_FILE1, new
 DecisionPointDictionaryFinder()));
 return ruleDictModel;
 }

 public void saveDictionary() {
 RuleDictionary dict = null;

 if (this.ruleDictModel == null)
 return;
 dict = this.ruleDictModel.getRuleDictionary().getDictionary();

 if (dict == null)
 return;

 if (dict.isModified())
 RulesSharedUtils.updateDictionary(dict);
 if (!dict.isTransactionInProgress())
 saveDictionary(dict, RULES_FILE1);
 }

 public void validate() {
 if (this.ruleDictModel == null)
 return;

 this.ruleDictModel.validate();
 }

 public void toggleMode() {

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 viewOnly = !viewOnly;
 }

 public boolean isViewOnly() {
 return viewOnly;
 }

 public RulesEditorPreferences getRulesEditorPrefs() {
 if (rulesEditorPrefs == null)
 rulesEditorPrefs = new MyRulesEditorPrefs();
 return rulesEditorPrefs;
 }

 //utility methods

 public static RuleDictionary openRulesDict(String fileName, DictionaryFinder
finder) {
 URL url = null;
 try {
 url = new URL(fileName);
 } catch (MalformedURLException e) {
 System.err.println(e);
 return null;
 }
 RuleDictionary dict = null;

 try {
 dict = readFromDisk(url, finder);
 } catch (Exception e) {
 System.err.println(e);
 return null;
 }
 return dict;
 }

 public static RuleDictionary readFromDisk(URL dictURL, DictionaryFinder
 finder) {
 BufferedReader buf = null;
 try {
 buf = new BufferedReader(new
 InputStreamReader(dictURL.openStream(), "UTF-8"));
 return RuleDictionary.readDictionary(buf, finder);
 } catch (SDKException e) {
 System.err.println(e);
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 if (buf != null)
 try {
 buf.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 return null; } public static boolean saveDictionary(RuleDictionary
dict, String
 ruleFileName) {
 if (dict == null || ruleFileName == null)
 return false;

 if (dict.isTransactionInProgress())

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-37

 System.out.println("Transaction in progress, cannot save
 dictionary");

 try {
 writeToDisk(dict, new URL(ruleFileName));
 } catch (MalformedURLException e) {
 System.err.println(e);
 return false;
 } catch (Exception e) {
 System.err.println(e);
 return false;
 }
 return true;
 }

 public static void writeToDisk(RuleDictionary dic, URL dictURL) {
 OutputStreamWriter writer = null;
 try {
 writer = new OutputStreamWriter(new
 FileOutputStream(dictURL.getPath()), "UTF-8");
 dic.writeDictionary(writer);
 } catch (IOException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 } finally {
 if (writer != null)
 try {
 writer.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 }

 public class MyRulesEditorPrefs extends RulesEditorPreferencesImpl
 implements Serializable {

 private DecisionTablePrefs dtPrefs;
 private IfThenPreferences ifThenPrefs;

 @Override
 public DecisionTablePrefs getDecisionTablePreferences() {
 if (dtPrefs == null)
 dtPrefs = new DTPreferences();
 return dtPrefs;
 }

 @Override
 public IfThenPreferences getIfThenPreferences() {
 if (ifThenPrefs == null)
 ifThenPrefs = new MyIfThenPrefs();
 return ifThenPrefs;
 }

 @Override
 public boolean isShowRSButtons() {
 return true;
 }
 }

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-38 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 public class MyIfThenPrefs extends IfThenPreferencesImpl implements
 Serializable {

 @Override
 public boolean isGenericAction() {
 return true;
 }

 @Override
 public boolean isGenericCondition() {
 return true;
 }
 } public class DTPreferences extends DecisionTablePrefsImpl implements
 Serializable {

 @Override
 public boolean isShowDTButtons() {
 return true;
 }
 }
}

3. Point to SomeBean.java in adfc-config.xml with Bean Name someBean and a
session scope. Example adfc-config.xml.

4. Ensure that Java Class under Items is selected and click OK to display the Create
Java Class dialog box.

<?xml version="1.0" encoding="UTF-8" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <managed-bean id="__1">
 <managed-bean-name>someBean</managed-bean-name>
 <managed-bean-class>view.SomeBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
</adfc-config>

5. The ADF/JSF framework makes calls to SomeBean.java multiple times to render
the UI. For instance, someBean.ruleDictModel is called many times. So it is more
efficient to create the ruleDictModel once and cache it and return it each time
instead of recreating it.

26.3.2.2 How to Create .jspx File for the Rules Dictionary Editor Component

The next task is to create the .jspx file to include the Rules Dictionary Editor
Component tag.

To create the .jspx file for the Rules Dictionary Editor Component tag:

1. Open Oracle JDeveloper.

2. From the File Menu, select New and then select JSF/Facelets.

3. Select JSF Page and click OK.

4. Select Document Type as JSP XML.

5. Enter file name as ruleDictEditor.jspx. Click OK.

6. The RuleDictionaryDC is visible in the Components window in jDeveloper as
shown in Figure 26-30.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-39

Figure 26-30 Components Window

7. Select RuleDictionaryDC, now you should see the RuleDictionaryDC tag. Drag
and drop the RuleDictionaryDC tag into the JSPX fileFigure 26-31.

Figure 26-31 Rule Dictionary DC Tag

You can also add the 'RuleDictionaryDC' tag manually in your jspx file like this:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1" xmlns:f="http://
java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:rddc="http://xmlns.oracle.com/bpel/rules/dictionaryEditor">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-40 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <af:document title="ruleDictEditor" id="d1">
 <af:form id="f1">
 <af:panelGridLayout id="pgl1" inlineStyle="margin:15px;"
styleClass="AFStretchWidth"
 partialTriggers="cb2 cb3 cb6">
 <af:gridRow id="dc_gr1" marginTop="5px" marginBottom="5px">
 <af:gridCell marginStart="5px" marginEnd="5px"
width="100%" halign="stretch" id="gc1">
 <af:panelGroupLayout id="pgl3" layout="horizontal">
 <af:button text="Save Dictionary" id="cb2"
action="#{someBean.saveDictionary}"/>
 <af:spacer width="10" height="10" id="s1"/>
 <af:button text="Validate" id="cb3"
action="#{someBean.validate}"/>
 <af:spacer width="10" height="10" id="s3"/>
 <af:button text="Toggle Mode" id="cb6"
action="#{someBean.toggleMode}"/>
 </af:panelGroupLayout>
 </af:gridCell>
 </af:gridRow>
 <af:gridRow height="100%" id="gr2">
 <af:gridCell width="100%" halign="stretch"
valign="stretch" id="gc2">
 <!-- Content -->
 <rddc:ruleDictionaryDC
ruleDictModel="#{someBean.ruleDictModel}" id="rddc1"

rulesEditorPrefs="#{someBean.rulesEditorPrefs}"

viewOnly="#{someBean.viewOnly}" disableVerbalRules="false"/>
 </af:gridCell>
 </af:gridRow>
 </af:panelGridLayout>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

26.3.2.3 How to Refer the oracle.rules and the oracle.soa.rules_dict_dc.webapp
Shared Libraries

After creating the .jspx file, you must refer to the oracle.rules and
oracle.soa.rules_dict_dc.webapp shared libraries from the weblogic-
application.xml file.

To refer to the oracle.rules and the oracle.soa.rules_dict_dc.webapp shared
libraries:

1. In JDeveloper from Application Resources select Descriptors and then META-
INF. Edit the weblogic-application.xml file and add the following lines
(this refers to the oracle.rules shared library):

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

2. In JDeveloper select File, then New and then Deployment Descriptors.

a. Select Weblogic Deployment Descriptor and then select weblogic.xml from
the list.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-41

b. Select version 12.1.2 and click Finish.

c. In weblogic.xml overview mode, select Libraries from the left and add library
name as oracle.soa.rules_dict_dc.webapp. Example weblogic.xml
file:

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.5/weblogic-web-app.xsd"
xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">
 <library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
 </library-ref>
</weblogic-web-app>

d. Click Save All.

Note:

Note that 'oracle.rules' and 'oracle.soa.rules_dict_dc.webapp' shared libraries
must be deployed to the embedded WLS server.

3. Check to make sure the shared libraries are deployed using the weblogic console
of your embedded WLS.

a. Launch WLS console (http://host:port/console/login/
LoginForm.jsp) and log in.

b. Click Deployments and see if oracle.rules and
oracle.soa.rules_dict_dc.webapp shared libraries are deployed as shown in
Figure 26-32.

Figure 26-32 Deployments

4. If the shared libraries are not deployed, then follow this process to deploy them
manually:

a. To start the WLS embedded server, in JDeveloper select Run and then select
Start Server Instance as shown in Figure 26-33.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-42 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 26-33 Start Server Instance

Skip this if the shared libraries are already deployed.

Note:

WLS embedded server on JDeveloper must be running so that the shared
libraries can be deployed.

5. To deploy the oracle.rules shared library to WLS:

a. Launch WLS console (http://host:port/console/login/
LoginForm.jsp) and log in.

b. Select Deployments and click Install.

c. Select <SOA_INSTALL>/soa/soa/modules/oracle.rules_11.1.1/rules.jar and
then click Next and Finish.

6. To deploy the oracle.soa.rules_dict_dc.webapp shared library to WLS:

a. In WLS console, select Deployments, click Install.

b. Select <SOA_INSTALL>/soa/soa/modules/
oracle.soa.rules_dict_dc.webapp_11.1.1/
oracle.soa.rules_dict_dc.webapp.war.

c. Click Next and then click Finish.

d. Select Install this deployment as a library.

e. Click Finish

f. Now you should see oracle.soa.rules_dict_dc.webapp added to the list of
deployments. as shown in Figure 26-32.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-43

26.3.2.4 How to Run the Sample Rules Dictionary Editor Application

The last task is running the sample application.

To run the sample Rules Dictionary Editor application:

1. To run the sample application, from JDeveloper, right click ruleDictEditor.jspx file.

2. Select Run.

This should start the sample application on a browser as shown in Figure 26-34.

Figure 26-34 Rules Dictionary Editor Application

26.3.3 How to Deploy a Rules Dictionary Application to a Standalone Oracle WebLogic
Server

When you're ready to deploy your application ear file to the stand-alone WLS, follow
these steps to make sure everything runs smoothly.

1. Check to make sure the shared libraries are deployed using the weblogic console
of your stand-alone WLS.

a. Launch WLS console http://host:port/console/login/
LoginForm.jsp and log in.

b. Click 'Deployments' and see if 'oracle.rules' and
'oracle.soa.rules_dict_dc.webapp' shared libraries are deployed as shown in
Figure 26-11.

2. If the shared libraries are not deployed, then follow the previous process to
deploy the shared libraries manually.

3. In your project that uses the Rule Dictionary Editor Component, include the
"Oracle Rules Dictionary Component" in your 'Libraries and Classpath'. This does
not deploy these libraries by default, so the jars are not included in your project
war file.

4. In the project that is finally deploying (i.e where you create the ear file):

a. Add this to your weblogic-application.xml:

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-44 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

b. Add this to weblogic.xml in your project's war file:

<library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
</library-ref>

5. Now you can deploy your ear file in WLS and things should work.

26.3.4 What You May Need to Know About the Supported Attributes of the Rules
Dictionary Editor Component

This section lists the attributes that are supported by the Rules Dictionary Editor
component.

Table 26-2 lists the supported attributes.

Table 26-2 Supported Rules Dictionary Editor Attributes

Name Type Required Default
Value

Support
s EL?

Description

ruleDictModel
oracle.bpel.ruledict
ionarydc.model.inter
faces.RuleDictionary
Interface

yes - Only EL Wrapper around the
Rules SDK Dictionary
object.The user can use
the
RuleDictionaryModel
object supplied as part
of the Rules Dictionary
Editor Component jar
file
(adflibRuleDictionary
DC.jar).

viewOnly java.lang.Boolea
n

no true yes In the "viewOnly"
mode user can view
the existing dictionary
data but cannot edit. If
"false", i.e. the "edit"
mode, the user is
allowed to edit the
dictionary.

locale java.util.Locale no
Locale.getD
efault()

yes Used for Localization.

timezone java.util.TimeZo
ne

no
TimeZone.ge
tDefault()

yes Used for Localization

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-45

Table 26-2 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required Default
Value

Support
s EL?

Description

ruleModel java.lang.String no
oracle.bpel
.rulesdc.mo
del.impl.Ru
leModel

yes Used to customize the
default RuleModel.
User can extend the
RuleModel class to
override certain
methods. Deprecated.
Use 'rulesEditorPrefs'
and override
getIfThenPreferences().
getRuleModel().

simpleTestModel java.lang.String no
oracle.bpel
.rulesdc.mo
del.impl.Si
mpleTestMod
el

yes Used to customize the
default
SimpleTestModel.
User can extend the
SimpleTestModel class
to override certain
methods. Use
'rulesEditorPrefs' and
override
getIfThenPreferences().
getSimpleTestModel().

selectedTab java.lang.String no - yes Switches to the
specified tab name
(either GLOBALS,
FACTS, VALUESETS,
LINKS, DESC_FUNCS,
DSL_DEFNS, TESTS,
TRANSLATIONS or
the ruleset name).

selectedRulesetIdx java.lang.String no - yes Used to specify the
ruleset index to be
selected by default. If
'selectedRulesetIdx' is
specified, it overrides
the 'selectedTab'
attribute.

dtColumnPageSize java.lang.Intege
r

no 5 yes Deprecated and not
used.

dtHeight java.lang.Intege
r

no 16 yes Deprecated and not
used.

dateStyle java.lang.String no gets it from
the locale

yes If specified, the date
style is used in all
inputDate
components. Example:
"yyyy.MM.dd".

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-46 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 26-2 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required Default
Value

Support
s EL?

Description

timeStyle java.lang.String no gets it from
the locale

yes If specified, the time
style is used in all
inutDate
components.Example:
"HH:mm:ss".

showValidationPane
l

java.lang.Boolea
n

no true yes Displays the validation
panel by default. User
can choose to hide this
by setting this to false.

discloseRules java.lang.Boolea
n

no false yes Deprecated and not
used.

displayRuleSetName java.lang.Boolea
n

no true yes Deprecated and not
used.

disableRuleSetName java.lang.Boolean no false yes Deprecated and not
used.

showDTButtons java.lang.Boolea
n

no true yes Deprecated and not
used

disableDFName java.lang.Boolea
n

no false yes Disables the Decision
Function Name in the
Decision Function
editor pop-up if true.
Deprecated. Use
'dfEditorPrefs' and
override
isDisableDFName().

displayWSName java.lang.Boolea
n

no true yes Displays the decision
service name if 'true' in
the Decision Function
editor pop-up. Note
that the service name
makes sense only
when 'Invoke as rule
service' is checked.
Deprecated. Use
'dfEditorPrefs' and
override
isDisplayWSName()..

displayWSCheck java.lang.Boolea
n

no true yes Displays the 'Invoke as
rule service' check box
in the Decision
Function editor pop-
up if true. Deprecated.
Use 'dfEditorPrefs' and
override
isDisplayWSCheck().

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-47

Table 26-2 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required Default
Value

Support
s EL?

Description

disableInputOps java.lang.Boolea
n

no false yes Disables add, edit and
delete operations for
the Inputs table in the
Decision Function
editor pop-up.
Deprecated. Use
'dfEditorPrefs' and
override
isDisableInputOps().

disableOutputOps java.lang.Boolea
n

no false yes Disables add, edit and
delete operations for
the Outputs table in
the Decision Function
editor pop-up.
Deprecated. Use
'dfEditorPrefs' and
override
isDisableOutputOps().

displayAddDF java.lang.Boolea
n

no true yes Displays the add
decision function
button. Deprecated.
Use 'dfEditorPrefs' and
override
isDisableAddDF().

displayDeleteDF java.lang.Boolea
n

no true yes Displays the delete
decision function
button. Deprecated.
Use 'dfEditorPrefs' and
override
isDisableDeleteDF().

rulesPageSize java.lang.Intege
r

no 5 yes Deprecated and not
used.

decimalSeparator java.lang.Charac
ter

no Based on
Locale

yes Used to specify the
decimal separators.
This is used in
Number Formatting. If
specified, overrides the
decimal separator
based on locale.

groupingSeparator
java.lang.Character

no Based on
Locale

yes Used to specify the
grouping separators.
This is used in
Number Formatting. If
specified, overrides the
grouping separator
based on locale.

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

26-48 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 26-2 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required Default
Value

Support
s EL?

Description

vldnPanelCollapsed java.lang.Boolea
n

no false yes Used to specify if
validation panel
should be collapsed by
default.

vldnTabTitle java.lang.String no Localized
text
"Business
Rule
Validation -
Log"

yes Used to specify the
validation panel title.

resourceManager
oracle.bpel.rulessha
reddc.model.interfac
es.ResourceManagerIn
terface

no - yes Used to specify the
resource manager for
translations UI. Refer
to the section on
'translations'.

rulesEditorPrefs
oracle.bpel.ruledict
ionarydc.model.inter
faces.RulesEditorPre
ferences

no
oracle.bpel
.ruledictio
narydc.mode
l.impl.Rule
sEditorPref
erencesImpl

yes Used to specify the
rules editor
preferences.
Consumers can extend
the default
implementation i.e
(oracle.bpel.rulediction
arydc.model.impl.Rule
sEditorPreferencesImp
l) and override only
the required
preferences.

dfEditorPrefs
oracle.bpel.ruledict
ionarydc.model.inter
faces.DFEditorPrefer
ences

no
oracle.bpel
.ruledictio
narydc.mode
l.impl.DFEd
itorPrefere
ncesImpl

yes Used to specify the
decision function
editor preferences.
Consumers can extend
the default
implementation i.e
(oracle.bpel.rulediction
arydc.model.impl.DFE
ditorPreferencesImpl)
and override only the
required preferences.

showRSButtons java.lang.Boolea
n

no true yes Deprecated and not
used.

dfListener
oracle.bpel.decision
funceditordc.listene
r.DecisionFuncListen
er

no - yes Used for notification of
decision function
editor updates.
Deprecated. Use
'dfEditorPrefs' and
override
getDfListener().

Introduction to the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-49

Table 26-2 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required Default
Value

Support
s EL?

Description

dfActionListener
oracle.bpel.ruledict
ionarydc.listener.De
cisionFuncActionList
ener

no - yes Used for notification
when a decision
function is added or
deleted. Deprecated.
Use 'dfEditorPrefs' and
override
getDfActionListener()

dfServiceNameCusto
mize oracle.bpel.decision

funceditordc.listene
r.DecisionFuncServic
eNameCustomizer

no - yes Used to customize the
decision function
service name.
Deprecated. Use
'dfEditorPrefs' and
override
getDfServiceNameCus
tomizer().

dictVersionInfo
oracle.bpel.ruledict
ionarydc.model.inter
faces.DictVersionInf
o

no - yes Used in diff/merge to
retrieve the list of
dictionary versions for
comparison.
Deprecated. Use
'dfEditorPrefs' and
override
getDfServiceNameCus
tomizer().

testExecutor
oracle.bpel.testedit
ordc.interfaces.Test
Executor

no - yes Used for executing test
suites, test templates
and test cases.

disableRulesTestin
g

java.lang.Boolea
n

no false yes If true, the rule testing
capability is disabled.

disableVerbalRules java.lang.Boolea
n

no true yes If true, the
verbalization
capability is disabled
that is the Business
Phrases tab is not
displayed and CRUD
operations on verbal
rules are disabled.

boUpdateListener
oracle.bpel.ruledict
ionarydc.listener.BO
UpdateListener

no - yes Used for
synchronizing
business objects.

26.4 Introduction to the Oracle Business Rules Dictionary Editor Task
Flow

Get an overview of the Oracle Business Rules Dictionary Editor task flow.

Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-50 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Learn how to create and run an application using the Rules Dictionary Editor task
flow, and then deploy the application.

26.4.1 Using the Oracle Business Rules Dictionary Task Flow
The Oracle Rules Dictionary Editor Task Flow is basically a wrapper around the Rules
Dictionary Editor declarative component. The task flow is used in ADF-based web
applications that require a task flow instead of a declarative component. For more
information on the Rules Dictionary Editor component, see Introduction to the Oracle
Business Rules Dictionary Editor Declarative Component.

26.4.2 How to Create and Run a Sample Application By Using the Rules Dictionary
Editor Task Flow

This section lists the steps for creating and running a sample application by using the
Oracle Rules Dictionary Editor task flow.

The prerequisites for using the Oracle Rules Dictionary Editor task flow to create ADF-
based web applications is having a running installation of Oracle SOA Suite and
Oracle JDeveloper on your computer.

The first task is to create a sample application.

To create a sample application by using the Oracle Rules Dictionary Editor task
flow:

1. Open Oracle JDeveloper.

2. From the File menu, select New and then Custom Application to create an
application.

3. Enter a name for the application in the Application Name field, for example,
useRuleDictTaskFlowApp, and click Next as shown in Figure 26-35.

Figure 26-35 Creating a Generic Task Flow Application

Introduction to the Oracle Business Rules Dictionary Editor Task Flow

Using Declarative Components and Task Flows 26-51

4. Enter useRuleDictTaskFlow in the Project Name field and ensure that ADF
Faces is selected in the Project Technologies tab, as shown in Figure 26-36.

Figure 26-36 Creating a Task Flow Project

5. Click Finish to create the project.

6. Right-click the useRuleDictTaskFlow project in the Applications window of
Oracle JDeveloper, and select Project Properties to display the Project Properties
dialog box.

In the Project Properties dialog box:

a. Select JSP Tag Libraries from the left panel.

b. Click Add and select ADF Faces Components from the Extension list in the
Choose Tag Libraries dialog box, and click OK as shown in Figure 26-37.

Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-52 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 26-37 Choosing Tab Libraries for the Task Flow Application

c. Select Libraries and Classpath from the left panel and click Add Library to
display the Add Library dialog box.

d. Select Oracle Rules and then Oracle Rules Dictionary Task Flow in the
Libraries list and click OK as shown in Figure 26-38. This adds the Rules SDK
and the Rules Dictionary Task Flow JARs to the project.

Figure 26-38 Adding the Rules SDK and Rules Dictionary Task Flow

e. Click OK to close the Project Properties dialog box.

Introduction to the Oracle Business Rules Dictionary Editor Task Flow

Using Declarative Components and Task Flows 26-53

7. Click Save All from the Oracle JDeveloper File menu to save the project.

8. Create a Java class that implements the
oracle.integration.console.metadata.model.share.MetadataDeta
ils interface, which is defined in soaComposerTemplates.jar. For more
information on the MetadataDetails interface, see The MetadataDetails
Interface.

The steps are:

a. Open Oracle JDeveloper.

b. From the File menu, select New to display the New Gallery dialog box.

c. In the New Gallery dialog box, select Java under General from the
Categories panel. Ensure that Java Class under Items is selected and click
OK to display the Create Java Class dialog box.

d. Enter the name of the Java class, for example MyMetaDataDetails.

e. Add the MetadataDetails interface in the Implements box under
Optional Attributes, and click OK to create the Java class in your project, as
shown in Figure 26-39.

Figure 26-39 Creating a Java Class that Implements the MetadataDetails
Interface

The following is a sample of the content of the MyMetaDataDetails.java
file:

package useruledicttaskflow;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.UnsupportedEncodingException;
import java.io.Writer;

Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-54 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

import java.net.MalformedURLException;
import java.net.URL;

import oracle.integration.console.metadata.model.share.MetadataDetails;
import oracle.integration.console.metadata.model.share.RelatedMetadataPath;

public class MyMetaDataDetails implements MetadataDetails {
 public MyMetaDataDetails() {
 super();
 }

 private static final String RULES_FILE1 =
 "file:///<path of Rules file>";

 public String getDocument() {
 URL url = null;
 try {
 url = new URL(RULES_FILE1);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }

 public void setDocument(String string) {
 URL url = null;

 try {
 url = new URL(RULES_FILE1);
 } catch (MalformedURLException e) {
 System.err.println(e);
 return;
 }
 Writer writer = null;
 try {
 //os = new FileWriter(url.getPath());
 writer =
 new OutputStreamWriter(new FileOutputStream(url.getPath()),
 "UTF-8");
 } catch (FileNotFoundException e) {
 System.err.println(e);
 return;
 } catch (IOException e) {
 System.err.println(e);
 return;
 }
 try {
 writer.write(string);
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 if (writer != null) {
 try {
 writer.close();
 } catch (IOException ioe) {
 System.err.println(ioe);
 }
 }
 }

Introduction to the Oracle Business Rules Dictionary Editor Task Flow

Using Declarative Components and Task Flows 26-55

 }

 private String readFile(URL dictURL) {
 InputStream is;
 try {
 is = dictURL.openStream();
 } catch (IOException e) {
 System.err.println(e);
 return "";
 }
 BufferedReader reader;
 try {
 reader = new BufferedReader(new InputStreamReader(is, "UTF-8"));
 } catch (UnsupportedEncodingException e) {
 System.err.println(e);
 return "";
 }
 String line = null;
 StringBuilder stringBuilder = new StringBuilder();
 String ls = System.getProperty("line.separator");
 try {
 while ((line = reader.readLine()) != null) {
 stringBuilder.append(line);
 stringBuilder.append(ls);
 }
 } catch (IOException e) {
 System.err.println(e);
 return "";
 } finally {
 try {
 reader.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 return stringBuilder.toString();
 }

public String getRelatedDocument(RelatedMetadataPath relatedMetadataPath) {
 String currPath =
 RULES_FILE1.substring(0, RULES_FILE1.indexOf("oracle/rules"));
 String relatedDoc =
 currPath + "oracle/rules/" + relatedMetadataPath.getValue();

 URL url = null;
 try {
 url = new URL(relatedDoc);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }
}

9. Create a Java class called MyNLSPreferences that implements the
oracle.integration.console.metadata.model.share.NLSPreferenc
es interface, which is defined in soaComposerTemplates.jar.

For more information about the NLS Preferences interface, see The
NLSPreferences Interface.

Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-56 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The following sample of MyNLSPreferences.java implements the
NLSPreferences interface:

package useruledicttaskflow;

import java.util.Locale;
import java.util.TimeZone;

import oracle.integration.console.metadata.model.share.NLSPreferences;

public class MyNLSPreferences implements NLSPreferences {
 private static final String DATE_STYLE = "yyyy-MM-dd";
 private static final String TIME_STYLE = "HH-mm-ss";

 public MyNLSPreferences() {
 super();
 }

 public Locale getLocale() {
 return Locale.getDefault();
 }

 public TimeZone getTimeZone() {
 return TimeZone.getTimeZone("America/Los_Angeles");
 }

 public String getDateFormat() {
 return DATE_STYLE;
 }

 public String getTimeFormat() {
 return TIME_STYLE;
 }
}

10. Create a managed bean called MyBean.java to return the implementation of
MetadataDetails and NLSPreferences. It also returns the
oracle.integration.console.metadata.model.share.MetadataDeta
ilsMode object and provides event handlers such as toggleMode(),
saveDictionary(), saveNoValidateDictionary(), and validate().

The following is a sample of the MyBean.java file:

package useruledicttaskflow;

import javax.el.ELContext;
import javax.el.ExpressionFactory;
import javax.el.MethodExpression;

import javax.faces.context.FacesContext;
import javax.faces.event.PhaseId;

import oracle.adf.view.rich.component.rich.fragment.RichRegion;

import oracle.integration.console.metadata.model.share.MetadataDetails;
import oracle.integration.console.metadata.model.share.MetadataDetailsMode;
import oracle.integration.console.metadata.model.share.NLSPreferences;

public class MyBean {
 private MyMetaDataDetails details = null;
 private MetadataDetailsMode mode = MetadataDetailsMode.VIEW;
 private RichRegion regionComp;

Introduction to the Oracle Business Rules Dictionary Editor Task Flow

Using Declarative Components and Task Flows 26-57

 private NLSPreferences nlsPrefs;

 public MyBean() {
 super();
 }

 public MetadataDetails getMetaDataDetails() {
 if (details != null)
 return details;

 details = new MyMetaDataDetails();
 return details;
 }

 public MetadataDetailsMode getDetailsMode() {
 return mode;
 }

 public void toggleMode() {
 if (mode.equals(MetadataDetailsMode.EDIT))
 mode = MetadataDetailsMode.VIEW;
 else
 mode = MetadataDetailsMode.EDIT;
 }

 public void saveDictionary() {
 if (regionComp == null)
 return;
 FacesContext fc = FacesContext.getCurrentInstance();
 ExpressionFactory ef = fc.getApplication().getExpressionFactory();
 ELContext elc = fc.getELContext();
 MethodExpression me =
 ef.createMethodExpression(elc, "doMetadataUpdate", String.class,
 new Class[] { });
 regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,
 PhaseId.ANY_PHASE);
 }

 public void saveNoValidateDictionary() {
 if (regionComp == null)
 return;
 FacesContext fc = FacesContext.getCurrentInstance();
 ExpressionFactory ef = fc.getApplication().getExpressionFactory();
 ELContext elc = fc.getELContext();
 MethodExpression me =
 ef.createMethodExpression(elc, "doNoValidateMetadataUpdate",
 String.class, new Class[] { });
 regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,
 PhaseId.ANY_PHASE);
 }

 public void validate() {
 if (regionComp == null)
 return;
 FacesContext fc = FacesContext.getCurrentInstance();
 ExpressionFactory ef = fc.getApplication().getExpressionFactory();
 ELContext elc = fc.getELContext();
 MethodExpression me =
 ef.createMethodExpression(elc, "doValidate", String.class,
 new Class[] { });
 regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,

Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-58 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 PhaseId.ANY_PHASE);
 }

 public void setRegionComp(RichRegion regionComp) {
 this.regionComp = regionComp;
 }
 public RichRegion getRegionComp() {
 return regionComp;
 }

 public NLSPreferences getNlsPrefs() {
 if (nlsPrefs != null)
 return nlsPrefs;

 nlsPrefs = new MyNLSPreferences();
 return nlsPrefs;
 }
}

11. Open the faces-config.xml file in Overview mode and click the + button
under Managed Beans to display the Create Managed Bean dialog box.

12. Point to MyBean.java by entering MyBean in the Bean Name field and selecting
session from the Scope list, as shown in Figure 26-40.

Figure 26-40 Specifying the Bean Name and Scope in the Task Flow
Application

26.4.2.1 How to Add a Rule Dictionary Editor Task Flow

The next task is to create the .jspx file to include the Rules Dictionary Editor
component tag.

To add a Rules Dictionary Editor task flow in a .jspx file:

1. Open Oracle JDeveloper.

2. From the File menu, select New to display the New Gallery dialog box.

3. In the New Gallery dialog box, select JSF under Web Tier from the Categories
panel.

Introduction to the Oracle Business Rules Dictionary Editor Task Flow

Using Declarative Components and Task Flows 26-59

4. Select JSF Page under Items and click OK to display the Create JSF Page dialog
box, as shown in Figure 26-41.

Figure 26-41 Creating the JSF Page File to Include the Rules Dictionary Editor
Task Flow

5. In the Create JSF Page dialog box, enter useRuleDictTaskFlow.jspx as the file
name, as shown in Figure 26-42.

Figure 26-42 Specifying the Name of the JSF Page for the Task Flow

adflibRuleDictionaryTaskFlow.jar is displayed in the Components window of
Oracle JDeveloper, as shown in Figure 26-43.

Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-60 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 26-43 Rules Dictionary Task Flow JAR in the Components Window

This is because you have added the Oracle Rules Dictionary Task Flow shared
library when creating the sample application.

6. Select adflibRuleDictionaryTaskFlow.jar to make rule-dict-flow-definition
available under Regions in the Components window. You can drag and drop the
rule-dict-flow-definition region into the .jspx file as shown in Figure 26-44, and
specify all the required parameters.

Figure 26-44 Dragging and Dropping the Region

The following is a sample of the useRuleDictTaskFlow.jspx file with the task
flow added:

<f:view>
 <af:document id="d1">
 <af:form id="f1">
 <af:panelStretchLayout id="psl1" inlineStyle="margin:8px;">
 <f:facet name="top">
 <af:menuBar id="mb1">

Introduction to the Oracle Business Rules Dictionary Editor Task Flow

Using Declarative Components and Task Flows 26-61

 <af:commandMenuItem text="Toggle Mode" id="cmi1"
 action="#{MyBean.toggleMode}"
 partialSubmit="true"/>
 <af:commandMenuItem text="Save Dict" id="cmi2"
 action="#{MyBean.saveDictionary}"
 partialSubmit="true"/>
 <af:commandMenuItem text="Save Dict No Validate" id="cmi3"
 action="#{MyBean.saveNoValidateDictionary}"
 partialSubmit="true"/>
 <af:commandMenuItem text="Validate" id="cmi4"
 action="#{MyBean.validate}"
 partialSubmit="true"/>
 </af:menuBar>
 </f:facet>
 <f:facet name="center">
 <af:region value="#{bindings.rulesdictflowdefinition1.regionModel}"
 id="r2" binding="#{MyBean.regionComp}"
 partialTriggers="::cmi1 ::cmi2 ::cmi3 ::cmi4"/>
 </f:facet>
 </af:panelStretchLayout>
 </af:form>
 </af:document>
 </f:view>

In the preceding sample, you can find code snippets for rendering the following
buttons to the page:

• Toggle Mode: Enables switching between read-only and editable modes of
Oracle SOA Composer.

• Save Dict: Enables saving the dictionary (with or without validation).

26.4.2.2 How to Edit the pagedef.xml File

After you add the task flow to the .jspx file, you must edit the
useRuleDictTaskFlowPageDef.xml file. The pagedef.xml file is created when
you drop the Rules Dictionary task flow into the .jspx page.

The following is a sample of the pagedef.xml file along with all the parameters that
must be passed to the rules dictionary task flow:

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="11.1.1.55.99" id="useRuleDictTaskFlowPageDef"
 Package="useruledicttaskflow.pageDefs">
 <parameters/>
 <executables>
 <variableIterator id="variables"/>
 <taskFlow id="rulesdictflowdefinition1"
 taskFlowId= "/WEB-INF/rule-dict-flow-definition.xml#rules-dict-flow-definition"
 activation="deferred"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="details" value="#{MyBean.metaDataDetails}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="mode" value="#{MyBean.detailsMode}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="dtHeight" value="10"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="selectedTab" value="Ruleset_1"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>

Introduction to the Oracle Business Rules Dictionary Editor Task Flow

26-62 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <parameter id="dtColumnPageSize" value="6"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="nlsPrefs" value="#{MyBean.nlsPrefs}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 <parameter id="discloseRules" value="true"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 </parameters>
 </taskFlow>
 </executables>
 <bindings/>
</pageDefinition

26.4.2.3 How to Refer to oracle.rules and oracle.soa.rules_dict_dc.webapp Shared
Libraries

The next task is to refer to the oracle.rules and
oracle.soa.rules_dict_dc.webapp shared libraries from the weblogic-
application.xml file.

For more information on referring to the shared libraries, see How to Create and Run a
Sample Application by Using the Rules Dictionary Editor Component.

26.4.2.4 How to Run the Sample Task Flow Application

The last task is running the sample application in the embedded Oracle WebLogic
Server.

To run the sample task flow application:

1. To run the sample application, from Oracle JDeveloper, right-click the
useRulesDictTaskFlow.jspx file.

2. Select Run.

This starts the sample application in a web browser, as shown in Figure 26-45.

Figure 26-45 Running the Sample Rules Dictionary Editor Task Flow Application

Introduction to the Oracle Business Rules Dictionary Editor Task Flow

Using Declarative Components and Task Flows 26-63

26.4.3 How to Deploy a Rules Dictionary Editor Task Flow Application to a Standalone
Oracle WebLogic Server

When you are ready to deploy your application EAR file to the standalone Oracle
WebLogic Server, perform the following:

1. Launch the Oracle WebLogic Server Administration Console (http://
host:port/console/login/LoginForm.jsp).

2. Ensure that oracle.rules is displayed in the deployments list.

3. Ensure that oracle.soa.rules_dict_dc.webapp is displayed in the
deployments list.

4. If this is not displayed, click Install and select the JDEV_INSTALL/
jdeveloper/soa/modules/oracle.soa.rules_dict_dc.webapp_11.1.1/
oracle.soa.rules_dict_dc.webapp.war file.

5. In the project that has to be deployed (where you create the EAR file):

a. Add the following lines to the weblogic-application.xml:

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

b. Add the following lines to weblogic.xml in the project WAR file:

<library-ref>
 <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
</library-ref>

c. Deploy the EAR file in Oracle WebLogic Server.

26.5 Localizing the ADF-Based Web Application
You can localize an application that is created using the Rules Editor component,
Rules Dictionary Editor component, or Rules Dictionary Editor task flow.

To localize your application:

1. Change the faces-config.xml in the application using the Rule Dict Editor
component. The faces-config.xml file should have the following code within
the <application> tag in order to support the available resource bundles:

<locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>ar</supported-locale>
 <supported-locale>cs</supported-locale>
 <supported-locale>da</supported-locale>
 <supported-locale>de</supported-locale>
 <supported-locale>el</supported-locale>
 <supported-locale>es</supported-locale>
 <supported-locale>fi</supported-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>hu</supported-locale>
 <supported-locale>it</supported-locale>
 <supported-locale>iw</supported-locale>
 <supported-locale>ja</supported-locale>

Localizing the ADF-Based Web Application

26-64 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <supported-locale>ko</supported-locale>
 <supported-locale>nl</supported-locale>
 <supported-locale>no</supported-locale>
 <supported-locale>pl</supported-locale>
 <supported-locale>pt-BR</supported-locale>
 <supported-locale>pt</supported-locale>
 <supported-locale>ro</supported-locale>
 <supported-locale>ru</supported-locale>
 <supported-locale>sk</supported-locale>
 <supported-locale>sv</supported-locale>
 <supported-locale>th</supported-locale>
 <supported-locale>tr</supported-locale>
 <supported-locale>zh-CN</supported-locale>
 <supported-locale>zh-TW</supported-locale>
 </locale-config>

2. Change the browser language to the locale you are interested in.

3. If you want to override the locale provided by the browser and display the UI in
some particular locale then pass that locale as an attribute to the component and
modify the f:view tag to the following in the application using the component.:

<f:view locale="#{someBean.locale}">

Note:

The locale passed here should be same as the one passed to the component
using 'locale' attribute.

26.6 Working with Translations
Translations feature supports translation of aliases in Business Rules Web UI.

You can have the aliases according to the locale. You can also edit the translations of
aliases for different locales through translation tab or resource editor pop-up in
Business Rules Web UI.

26.6.1 Enabling Translations for Consumer of Reusable Rules UI ADF Task Flow
Component

To support translation of aliases, the consumers of reusable Rules UI ADF Task Flow
component must provide locale specific resource artifacts as additional parameters
while calling Rules UI ADF Task Flow. However, these additional parameters are
optional and required only if the consumers want to use the enhanced translation
support.

The additional parameters are:

property-name: relatedDetails
property-class:
oracle.integration.console.metadata.model.share.IRelatedMetadataDetails

<taskFlow id="rulesdictflowdefinition1"
 taskFlowId="/WEB-INF/rule-dict-flow-definition.xml#rules-dict-flow-
definition"
 activation="deferred" Refresh="default"
 RefreshCondition="${MyBean.refreshReqd}"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameter id="relatedDetails"

Working with Translations

Using Declarative Components and Task Flows 26-65

 value="#{MyBean.relatedMetadataDetails}"/>
</taskflow>

26.6.1.1 Sample Code to Pass an Implementation of IRelatedMetadataDetails

The consumer has to pass an implementation of
oracle.integration.console.metadata.model.share.IRelatedMetadataDetails

The implementation of IRelatedMetadataDetails contains the code for loading
the resource bundles from the repository and also for saving the bundles files when
user commits any change to rules application.

The consumer should use dictionaryName + "Translations_" +
locale.toString() + ".xml" convention to build the name of the resource
bundle file.

public class MyRelatedMetadataDetails implements IRelatedMetadataDetails {

 private static final Locale[] LOCALES = { Locale.US, Locale.FRENCH };

 private static final String RESOURCE_PATH =
 "file:///C:/scratch/sumit/system/rules/";
 private static final String RESOURCE_BASE = "SimpleRule";

 public MyRelatedMetadataDetails() {
 super();
 }

 public String getDocument(IRelatedMetadataPath relatedPath) {
 String resourceSuffix = relatedPath.getValue();
 try {
 return loadResource(resourceSuffix);
 } catch (IOException e) {
 return "";
 }
 }

 private static String loadResource(String resourceSuffix) throws IOException {

 FileInputStream fis = null;
 FileChannel fc = null;
 try {
 URL url = new URL(RESOURCE_PATH + RESOURCE_BASE + resourceSuffix);
 fis = new FileInputStream(url.getFile());
 fc = fis.getChannel();
 ByteBuffer bb = ByteBuffer.allocate((int)fc.size());
 fc.read(bb);
 bb.rewind();
 return Charset.defaultCharset().decode(bb).toString();
 } finally {
 if (fis != null) {
 fis.close();
 }
 if (fc != null) {
 fc.close();
 }
 }
 }

 public void createDocument(IRelatedMetadataPath relatedPath,
 String document) {

Working with Translations

26-66 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 try {
 storeResource(relatedPath.getValue(), document);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public void saveDocument(IRelatedMetadataPath path, String document) {
 try {
 storeResource(path.getValue(), document);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 private static void storeResource(String resourceSuffix,
 String document) throws IOException {
 FileOutputStream fos = null;
 FileChannel fc = null;
 try {
 URL url = new URL(RESOURCE_PATH + RESOURCE_BASE + resourceSuffix);
 fos = new FileOutputStream(url.getFile());
 fc = fos.getChannel();
 ByteBuffer bb = ByteBuffer.allocateDirect(1024);
 bb.clear();
 bb.put(Charset.defaultCharset().encode(document));
 bb.flip();
 while (bb.hasRemaining()) {
 fc.write(bb);
 }
 } finally {
 if (fos != null) {
 fos.close();
 }
 if (fc != null) {
 fc.close();
 }
 }
 }

 public IRelatedMetadataPathFinderFactory getFinderFactory() {
 return new RelatedMetadataPathFinderFactory();
 }

 public List<IRelatedMetadataPath> getExisting(IRelatedMetadataPathFinder finder) {

 List<IRelatedMetadataPath> paths = new ArrayList<IRelatedMetadataPath>();
 for (Locale locale : LOCALES) {
 paths.add(RelatedResourceMetadataPath.buildFromLocale(locale));
 }
 return paths;
 }

 public class RelatedMetadataPathFinderFactory implements
IRelated`MetadataPathFinderFactory {

 public IRelatedMetadataPathFinder getResourceFinder() {
 return new RelatedMetadataPathFinder();
 }
 }

Working with Translations

Using Declarative Components and Task Flows 26-67

 public class RelatedMetadataPathFinder implements IRelatedMetadataPathFinder {

 public String getType() {
 return null;
 }

 public IRelatedMetadataPath
matches(oracle.integration.console.metadata.model.share.MetadataPath srcPath,

oracle.integration.console.metadata.model.share.MetadataPath matchPath) {
 return null;
 }
 }

}

26.6.2 Enabling Translations for Consumer of Rules Web UI Application
To support translation of aliases, the consumer of Rules Web UI application must pass
an attribute to the Rules Dictionary DC or Rules DC. The attribute is
resourceManager which accepts an instance of type
oracle.bpel.rulesshareddc.model.interface.ResourceManagerInterface.java.
However, this additional parameters are optional and required only if the consumers
want to use the enhanced translation support.

<rddc:ruleDictionaryDC ruleDictModel="#{SomeBean.ruleDictModel1}"
 id="rddc1"
 resourceManager="#{SomeBean.resourceManager}">
 </rddc:ruleDictionaryDC>

26.6.2.1 Sample Code for Creating an Instance of resourceManager

Implementation of ResourceManagerInterface is provided as
oracle.bpel.rulesshareddc.model.impl.ResourceManager. Consumers may create an
instance of ResourceManager and pass it to corresponding UI component.

Note:

The consumer has to load all the saved resource bundles from the repository
and should construct a java.util.Map (resourceMap) where java.util.Locale of
the resource bundle is kept as key and the content of the resource bundle file
as value which is of type java.lang.String.

The consumer should use dictionaryName + "Translations_" +
locale.toString() + ".xml" convention to build the name of the resource
bundle file.

The consumer has to save these resource bundles to the repository whenever the user
commits any change in the application.

public ResourceManagerInterface getResourceManager() {
 if (resourceManager == null) {
 resourceManager =
 new ResourceManager(loadResources(), ruleDictionary);
 }
 return resourceManager;
 }

Working with Translations

26-68 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 private Map<Locale, String> loadResources() {

 Map<Locale, String> resourceMap = new HashMap<Locale, String>();

 for (Locale locale : LOCALES) {
 try {
 URL url =
 new URL(RULES_FILE_PATH + "Translations_" + locale.toString() +
 ".xml");
 String content =
 new Scanner(new File(url.getFile()), "UTF-8").useDelimiter("\\A").next();
 resourceMap.put(locale, content);
 } catch (IOException e) {
 resourceMap.put(locale, "");
 LOG.severe("Failed to load resource:" + e.getMessage());
 }
 }
 if (!resourceMap.keySet().contains(getLocale())) {
 resourceMap.put(getLocale(), "");
 }
 return resourceMap;
 }

 private void storeResources(Map<Locale, String> resourceMap) {
 for (Locale locale : resourceMap.keySet()) {
 try {
 URL url =
 new URL(RULES_FILE_PATH + "Translations_" + locale.toString() +
 ".xml");
 BufferedWriter out = new BufferedWriter(new FileWriter(url.getFile()));
 out.write(resourceMap.get(locale));
 out.close();
 } catch (IOException e) {
 LOG.severe("Failed to store resource:" + e.getMessage());
 }
 }
 }

Working with Translations

Using Declarative Components and Task Flows 26-69

Working with Translations

26-70 Developing SOA Applications with Oracle SOA Suite

Part V
Using the Human Workflow Service

Component

Learn how to use the human workflow service component.

• Getting Started with Human Workflow

• Creating Human Tasks

• Configuring Human Tasks

• Designing Task Forms for Human Tasks

• Human Workflow Tutorial

• Using

• Building a Custom Worklist Client

• Introduction to Human Workflow Services

27
Getting Started with Human Workflow

Get an overview of the human workflow concepts, features, and architecture. Also
check use cases for human workflow. Learn how to design your workflow from start
to finish.

• Introduction to Human Workflow

• Introduction to Human Workflow Concepts

• Introduction to Human Workflow Use Cases

• Introduction to Human Workflow Architecture

• Human Workflow and Business Rule Differences Between Oracle SOA Suite and
Oracle BPM Suite

WARNING:

You must not modify SOA Human Task database tables directly. Oracle does
not guarantee backward compatibility for the column names and data in these
tables.

27.1 Introduction to Human Workflow
Many end-to-end business processes require human interactions with the process. For
example, humans may be needed for approvals, exception management, or
performing activities required to advance the business process.

The human workflow component provides the following features:

• Human interactions with processes, including assignment and routing of tasks to
the correct users or groups

• Deadlines, escalations, notifications, and other features required for ensuring the
timely performance of a task (human activity)

• Presentation of tasks to end users through a variety of mechanisms, including a
worklist application (Oracle BPM Worklist)

• Organization, filtering, prioritization, and other features required for end users to
productively perform their tasks

• Reports, reassignments, load balancing, and other features required by
supervisors and business owners to manage the performance of tasks

Figure 27-1 provides an overview of human workflow.

Getting Started with Human Workflow 27-1

Figure 27-1 Human Workflow

In Figure 27-1, the following actions occur:

• A BPEL process invokes a special activity of the human task type when it needs a
human to perform a task.

• This creates a task in the human task service component. The process waits for the
task to complete. It is also possible for the process to watch for other callbacks
from the task and react to them.

• There is metadata associated with the task that is used by the human task service
component to manage the lifecycle of the task. This includes specification of the
following:

– Who performs the task. If multiple people are required to perform the task,
what is the order?

– Who are the other stakeholders?

– When must the task be completed?

– How do users perform the task, what information is presented to them, what
are they expected to provide, and what actions can they take?

• The human task service component uses an identity directory to determine
people's roles and privileges.

You can configure the identity store to use the embedded WebLogic LDAP, Oracle
Virtual Directory, third-party LDAPs and Active Directory RDBMS. For more
information, see Oracle Fusion Middleware Securing Applications with Oracle Platform
Security Services.

• The human task service component presents tasks to users through a variety of
channels, including the following:

Introduction to Human Workflow

27-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

– Oracle BPM Worklist, a role-based application that supports the concept of
supervisors and process owners, and provides functionality for finding,
organizing, managing, and performing tasks.

– Worklist functionality is also available as portlets that can be exposed in an
enterprise portal.

– Notifications can be sent by email, phone, SMS, and other channels. Email
notifications can be actionable, enabling users to perform actions on the task
from within the email client without connecting to Oracle BPM Worklist or
Oracle WebLogic Server.

27.2 Introduction to Human Workflow Concepts
Get an overview of key human workflow design time and runtime concepts the three
main stages of human workflow design.

27.2.1 Introduction to Design and Runtime Concepts
Before designing a human task, it is important to understand the design and runtime
concepts. A typical task consists of a subject, priority, task participants, task
parameters or data, deadlines, notifications or reminders, and task forms. This section
provides an overview of key concepts.

Note:

Human workflow design-time tasks are performed in a graphical editor
known as the Human Task Editor. The tutorial in Human Workflow Tutorial
describes how to use this editor.

27.2.1.1 Task Assignment and Routing

Human workflow supports declarative assignment and routing of tasks. In the
simplest case, a task is assigned to a single participant (user or group). However, there
are many situations in which more detailed task assignment and routing is necessary
(for example, when a task must be approved by a management chain or worked and
voted on by a set of people in parallel, as shown in Figure 27-2). Human workflow
provides declarative, pattern-based support for such scenarios.

Introduction to Human Workflow Concepts

Getting Started with Human Workflow 27-3

Figure 27-2 Participants in a Task

27.2.1.1.1 Participant

A participant is a user or set of users in the assignment and routing policy definition.
In Figure 27-2, each block with an icon representing people is a participant.

27.2.1.1.2 Participant Type

In simple cases, a participant maps to a user, group, or role. However, as discussed in
Task Assignment and Routing, workflow supports declarative patterns for common
routing scenarios such as management chain and group vote.The following participant
types are available:

• Single approver

This is the simple case where a participant maps to a user, group, or role.

For example, a vacation request is assigned to a manager. The manager must act
on the request task three days before the vacation starts. If the manager formally
approves or rejects the request, the employee is notified with the decision. If the
manager does not act on the task, the request is treated as rejected. Notification
actions similar to the formal rejection are taken.

• Parallel

This participant indicates that a set of people must work in parallel. This pattern is
commonly used for voting.

For example, multiple users in a hiring situation must vote to hire or reject an
applicant. You specify the voting percentage that is needed for the outcome to
take effect, such as a majority vote or a unanimous vote.

• Serial

This participant indicates that a set of users must work in sequence. While
working in sequence can be specified in the routing policy by using multiple
participants in sequence, this pattern is useful when the set of people is dynamic.
The most common scenario for this is management chain escalation, which is
done by specifying that the list is based on a management chain within the
specification of this pattern.

• FYI (For Your Information)

Introduction to Human Workflow Concepts

27-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

This participant also maps to a single user, group, or role, just as in single
approver. However, this pattern indicates that the participant just receives a
notification task and the business process does not wait for the participant's
response. FYI participants cannot directly impact the outcome of a task, but in
some cases can provide comments or add attachments.

For example, a regional sales office is notified that a candidate for employment
has been approved for hire by the regional manager and their candidacy is being
passed onto the state wide manager for approval or rejection. FYIs cannot directly
impact the outcome of a task, but in some cases can provide comments or add
attachments.

For more information, see Assigning Task Participants.

27.2.1.1.3 Participant Assignment

A task is work that must be done by a user. When you create a task, you assign
humans to participate in and act upon the task. Participants can perform actions upon
tasks during runtime from Oracle BPM Worklist, such as approving a vacation
request, rejecting a purchase order, providing feedback on a help desk request, or
some other action. There are three types of participants:

• Users

You can assign individual users to act upon tasks. For example, you may assign
users jlondon or jstein to a particular task. Users are defined in an identity
store configured with the SOA Infrastructure. These users can be in the embedded
LDAP of Oracle WebLogic Server, Oracle Internet Directory, or a third-party
LDAP directory.

• Groups

You can assign groups to act upon tasks. Groups contain individual users who
can claim and act upon a task. For example, users jcooper and fkafka may be
members of the group LoanAgentGroup that you assign to act upon the task.

As with users, groups are defined in the identity store of the SOA Infrastructure.

• Application roles

You can assign users who are members of application roles to claim and act upon
tasks.

Application roles consist of users or other roles grouped logically for application-
level authorizations. These roles are application-specific and are defined in the
application Java policy store rather than the identity store. These roles are used by
the application directly and are not necessarily known to a Java EE container.

Application roles define policy. Java permissions can be granted to application
roles. Therefore, application roles define a set of permissions granted to them
directly or indirectly through other roles (if a role is granted to a role). The policy
can contain grants of application roles to enterprise groups or users. In the jazn-
data.xml file of the file-based policy store, these roles are defined in <app-
role> elements under <policy-store> and written to system-jazn-
data.xml at the farm level during deployment. You can also define these roles
after deployment using Oracle Enterprise Manager Fusion Middleware Control.
You can set a task owner or approver to an application role at design time if the
role has been previously deployed.

For more information about Oracle BPM Worklist, see Task Forms.

Introduction to Human Workflow Concepts

Getting Started with Human Workflow 27-5

27.2.1.1.4 Ad Hoc Routing

In processes dealing with significant variance, you cannot always determine all
participants. Human workflow enables you to specify that a participant can invite
other participants as part of performing the task.

For more information, see Allow All Participants to Invite Other Participants or Edit
New Participants.

27.2.1.1.5 Outcome-based Completion of Routing Flow

By default, a task goes from starting to final participant according to the flow defined
in the routing policy (as shown in Figure 27-2). However, sometimes a certain outcome
at a particular step within a task's routing flow makes it unnecessary or undesirable to
continue presenting the task to the next participants. For example, if an approval is
rejected by the first manager, it does not need to be routed to the second manager.
Human workflow supports specifying that a task or subtask be completed when a
certain outcome occurs.

For more information, see Stopping Routing of a Task to Further Participants.

27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment

There are different methods for assigning users, groups, and application roles to tasks.

• Static Task Assignment

• Dynamic Task Assignment

27.2.1.2.1 Static Task Assignment

You can assign users, groups, and application roles statically (or by browsing the
identity service). The values can be either of the following:

• A single user, group, or application role (for example, jstein,
CentralLoanRegion, or ApproverRole).

• A delimited string of users, groups, or application roles (for example, jstein,
wfaulk, cdickens).

27.2.1.2.2 Dynamic Task Assignment

You can assign users, groups, and application roles dynamically in the following
ways:

• By using a task-assignment pattern. This pattern enables you to do the following:

– Simply enable participants to claim the task manually. This is the default
behavior. No task-assignment pattern is applied.

– If the participant type is either Single or FYI, then apply a task-assignment
pattern to select a single assignee of a requested type from all potential
assignees in the participant.

For example, suppose that the potential assignees comprise the user
jcooper, the group LoanAgent, and the application role Developers.
Suppose further that the requested type is user. Applying this task-
assignment pattern selects a single user from the user jcooper, and from all
members of the group LoanAgent, and from all users with the application
role Developers.

Introduction to Human Workflow Concepts

27-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

– If the particulates type is Parallel or Serial, then apply a task-assignment
pattern to select a single assignee of a requested type from each of the
potential assignees in the participant.

For example, suppose that the potential assignees comprise the user
jcooper, the group LoanAgent, and the application role Developers.
Suppose further that the requested type is user. Applying this task-
assignment pattern selects the user jcooper, and one user from the group
LoanAgent, and one user with the application role Developers.

• By using XPath expressions. These expressions enable you to dynamically
determine assignment to users not included in the participant type. Here you
create a list of potential assignees, one of whom must then claim the task.

For example, you may have a business requirement to create a dynamic list of task
approvers specified in a payload variable. The XPath expression can resolve to
zero or more XML nodes. Each node value can be either a single user, group, or
application role or a delimited string of users, groups, or application roles. The
default delimiter for the assignee delimited string is a comma (,).

For example, if the task has a payload message attribute named po within which
the task approvers are stored, you can use the following XPath expression:

/task:task/task:payload/po:purchaseOrder/po:approvers

ids:getManager('jstein', 'jazn.com')

This returns the manager of jstein.

ids:getReportees('jstein', 2, 'jazn.com')

This returns all reportees of jstein up to two levels.

ids:getUsersInGroup('LoanAgentGroup', false, 'jazn.com')

This returns all direct and indirect users in the group LoanAgentGroup.

You can use both options simultaneously—for example, you can use an XPath
expression to dynamically select a group, and then apply a task-assignment pattern to
dynamically select a user from that group.

27.2.1.2.3 Assign tasks with Business Rules

You can create the list of task participants with complex expressions. The result of
using business rules is the same as using XPath expressions. You can also apply the
task-assignment pattern to a participant list created using business rules.

27.2.1.3 Task Stakeholders

A task has multiple stakeholders. Participants are the users defined in the assignment
and routing section of the task definition. These users are the primary stakeholders
that perform actions on the task.

In addition to the participants specified in the assignment and routing policy, human
workflow supports additional stakeholders:

• Owner

This participant has business administration privileges on the task. This
participant can be specified as part of the task definition or from the invoking
process (and for a particular instance). The task owner can act upon tasks they
own and also on behalf of any other participant. The task owner can change both
the outcome of the task and the assignments.

Introduction to Human Workflow Concepts

Getting Started with Human Workflow 27-7

For more information, see How to Specify a Task Owner to specify an owner in
the Human Task Editor or Specifying a Task Owner to specify an owner in the
Advanced tab of the Human Task dialog box.

• Initiator

The person who initiates the process (for example, the initiator files an expense
report for approval). This person can review the status of the task using initiated
task filters. Also, a useful concept is for including the initiator as a potential
candidate for request-for-information from other participants.

For more information, see Specifying the Task Initiator and Task Priority.

• Reviewer

This participant can review the status of the task and add comments and
attachments. You can grant the reviewer role to a participant at runtime using the
process instance attributes reviewer and reviewerType. The reviewer process
attribute stores the name of the reviewer, the default value is "ProcessReviewer"
or the value assigned in the Human Task configuration. The reviewerType
process attribute stores the type of reviewer which can be: user, role or group. You
can set these attributes dynamically to modify the effective reviewer.

• Admin

This participant can view all tasks and take certain actions such as reassigning a
test, suspending a task to handle errors, and so on. The task admin cannot change
the outcome of a task.

While the task admin cannot perform the types of actions that a task participant
can, such as approve, reject, and so on, this participant type is the most powerful
because it can perform actions such as reassign, withdraw, and so on.

• Error Assignee

When an error occurs, the task is assigned to this participant (for example, the task
is assigned to a nonexistent user). The error assignee can perform task recovery
actions from Oracle BPM Worklist, the task form in which you perform task
actions during runtime.

For more information, see How to Configure the Error Assignee and Reviewers.

27.2.1.4 Task Deadlines

Human workflow supports the specification of deadlines associated with a task. You
can associate the following actions with deadlines:

• Reminders:

The task can be reminded multiple times based on the time after the assignment
or the time before the expiration.

• Escalation:

The task is escalated up the management hierarchy.

• Expiration:

The task has expired.

• Renewal:

The task is automatically renewed.

Introduction to Human Workflow Concepts

27-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For more information, see Escalating_ Renewing_ or Ending the Task.

27.2.1.5 Notifications

You can configure your human task to use notifications. Notifications enable you to
alert interested users to changes in the state of a task during the task lifecycle. For
example, a notification is sent to an assignee when a task has been approved or
withdrawn.

You can specify for notifications to be sent to different types of participants for
different actions. For example, you can specify the following:

• For the owner of a task to receive a notification message when a task is in error
(for example, sent to a nonexistent user).

• For a task assignee to receive a notification message when a task has been
escalated.

You can specify the contents of the notification message and the notification channel to
use for sending the message.

• Email

You can configure email notification messages to be actionable, meaning that a
task assignee can act upon a task from within the email.

• Voice message

• Instant messaging (IM)

• Short message service (SMS)

For example, you may send the message shown below by email when a task assignee
requests additional information before they can act upon a task:

For me to approve this task, more information is required to justify the need
 for this business trip

During runtime, you can mark a message sender's address as spam and also display a
list of bad or invalid addresses. These addresses are automatically added to the bad
address list.

For more information about notifications, see the following:

• Using the Notification Service

• Specifying Participant Notification Preferences

• Part XI, "Using Oracle User Messaging Service"

27.2.1.6 Task Forms

Task forms provide you with a way to interact with a task. Oracle BPM Worklist
displays all worklist tasks that are assigned to task assignees in the task form. When
you navigate into a specific task, the task form displays the contents of the task to the
user's worklist. For example, an expense approval task may show a form with line
items for various expenses, and a help desk task form may show details such as
severity, problem location, and so on.

The integrated development environment of Oracle SOA Suite includes Oracle
Application Development Framework (Oracle ADF) for this purpose. With Oracle

Introduction to Human Workflow Concepts

Getting Started with Human Workflow 27-9

ADF, you can design a task form that depicts the human task in the SOA composite
application.

ADF-based task forms can be automatically generated. Advanced users can design
their own task forms by using ADF data controls to lay out the content on the page
and connect to the workflow service engine at execution time to retrieve task content
and act on tasks.

You can create task forms in JSF, .NET, or any other client technologies using the APIs.

For more information, see the following:

• Designing Task Forms for Human Tasks .

• Using

27.2.1.7 Advanced Concepts

This section describes advanced human workflow concepts.

• Rule-based Routing

You can use Oracle Business Rules to dynamically alter the routing flow. If used,
each time a participant completes their step, the associated rules are invoked and
the routing flow can be overridden from the rules.

For more information, see How to Specify Advanced Task Routing Using
Business Rules.

• Rule-based Participant Assignment

You can use Oracle Business Rules to dynamically build a list of users, groups,
and roles to associate with a participant.

For more information, see Assigning Task Participants.

• Stages

A stage is a way of organizing the approval process for blocks of participant
types. You can have one or more stages in sequence or in parallel. Within each
stage, you can have one or more participant type blocks in sequence or in parallel.

For more information, see Assigning Task Participants.

• Access Rules

You can specify access rules that determine the parts of a task that assignees can
view and update. For example, you can configure the task payload data to be read
by assignees. This action enables only assignees (and nobody else) to have read
permissions. No one, including assignees, has write permissions.

For more information, see Introduction to Access Rules.

• Callbacks

While human workflow supports detailed behavior that can be declaratively
specified, in some advanced situations, more extensible behavior may be required.
Task callbacks enable such extensibility; these callbacks can either be handled in
the invoking BPEL process or a Java class.

For more information, see Specifying Java Callbacks.

Introduction to Human Workflow Concepts

27-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

27.2.1.8 Reports and Audit Trails

Oracle BPM Worklist provides several out-of-the-box reports for task analysis:

• Unattended tasks

Analysis of tasks assigned to users' groups or reportees' groups that have not yet
been acquired.

• Tasks priority

Analysis of tasks assigned to a user, reportees, or their groups, based on priority.

• Tasks cycle time

Analysis of the time taken to complete tasks from assignment to completion based
on users' groups or reportees' groups.

• Tasks productivity

Analysis of assigned tasks and completed tasks in a given time period for a user,
reportees, or their groups.

• Tasks time distribution

The time an assignee takes to perform a task.

You can view an audit trail of actions performed by the participants in the task and a
snapshot of the task payload and attachments at various points in the workflow. The
short history for a task lists all versions created by the following tasks:

• Initiate task

• Reinitiate task

• Update outcome of task

• Completion of task

• Erring of task

• Expiration of task

• Withdrawal of task

• Alerting of task to the error assignee

For more information, see Using .

27.2.2 Introduction to the Stages of Human Workflow Design
Human workflow modeling consists of three stages of modeling:

• Stage 1: You create and define contents of the human task in the Human Task
Editor, including defining a participant type, routing policy, escalation and
expiration policy, notification, and so on. For more information, see Introduction
to Creating a Human Task Definition.

• Stage 2: You associate the human task definition with a BPEL process. The BPEL
process integrates a series of activities (including the human task activity) and
services into an end-to-end process flow. For more information, see Introduction
to Associating the Human Task Definition with a BPEL Process.

Introduction to Human Workflow Concepts

Getting Started with Human Workflow 27-11

• Stage 3: You create a task form. This form displays the task details on which you
act at runtime in Oracle BPM Worklist. For more information, see Introduction to
Generating the Task Form.

27.3 Introduction to Human Workflow Use Cases
Get an overview of use cases for human workflow and services. After that, a tutorial
guides you through the design of a human task from start to finish.

27.3.1 Task Assignment to a User or Role
A vacation request process may start with getting the vacation details from a user and
then routing the request to their manager for approval. User details and the
organizational hierarchy can be looked up from a user directory or identity store. This
scenario is shown in Figure 27-3.

Figure 27-3 Assigning Tasks to a User or Role from a Directory

27.3.2 Use of the Various Participant Types
A task can be routed through multiple users with a group vote, management chain, or
sequential list of approvers participant type. For example, consider a loan request that
is part of the loan approval flow. The loan request may first be assigned to a loan
agent role. After a specific loan agent acquires and accepts the loan, the loan may be
routed further through multiple levels of management if the loan amount is greater
that $100,000. This scenario is shown in Figure 27-4.

Introduction to Human Workflow Use Cases

27-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 27-4 Flow Patterns and Routing Policies

You can use these types as building blocks to create complex workflows.

27.3.3 Escalation, Expiration, and Delegation
A high-priority task can be assigned to a certain user or role based on the task type
through use of custom escalation functions. However, if the user does not act on it in a
certain time, the task may expire and in turn be escalated to the manager for further
action. As part of the escalation, you may also notify the users by email, telephone
voice message, or SMS. Similarly, a manager may delegate tasks from one reportee to
another to balance the load between various task assignees. All tasks defined in BPEL
have an associated expiration date. Additionally, you may specify escalation or
renewal policies, as shown in Figure 27-5. For example, consider a support call, which
is part of a help desk service request process. A high-priority task may be assigned to a
certain user, and if the user does not respond in two days, the task is routed to the
manager for further action.

Figure 27-5 Escalation and Notification

27.3.4 Automatic Assignment and Delegation
A user may decide to have another user perform tasks on their behalf. Tasks can be
explicitly delegated from the Oracle BPM Worklist or can be automatically delegated.

Introduction to Human Workflow Use Cases

Getting Started with Human Workflow 27-13

For example, a manager sets up a vacation rule saying that all their high priority tasks
are automatically routed to one of their direct reports while the manager is on
vacation. In some cases, tasks can be routed to different individuals based on the
content of the task. Another example of automatic routing is to allocate tasks among
multiple individuals belonging to a group. For example, a help desk supervisor
decides to allocate all tasks for the western region based on a round robin basis or
assign tasks to the individual with the lowest number of outstanding tasks (the least
busy).

27.3.5 Dynamic Assignment of Users Based on Task Content
An employee named James in the human resources department requests new
hardware that costs $5000. The company may have a policy that all hardware expenses
greater than $3000 must go through manager and vice president approval, and then
review by the director of IT. In this scenario, the workflow can be configured to
automatically determine the manager of James, the vice president of the human
resources department, and the director of IT. The purchase order is routed through
these three individuals for approval before the hardware is purchased.

27.4 Introduction to Human Workflow Architecture
An overview of human workflow architecture.

• The services that perform a variety of operations in the lifecycle of a task, such as
querying tasks for a user, retrieving metadata information related to a task, and so
on.

• The two ways to use a human task:

– Associated with a BPEL process service component

– Used in standalone mode

• The role of the service engine in the life of a human task

27.4.1 Human Workflow Services
Starting with release 11g, all human task metadata is stored and managed in the
Metadata Service (MDS) repository. The workflow service consists of many services
that handle various aspects of human interaction with a business process.

Figure 27-6 shows the following workflow service components:

• Task Service:

The task service provides task state management and persistence of tasks. In
addition to these services, the task service exposes operations to update a task,
complete a task, escalate and reassign tasks, and so on. The task service is used by
Oracle BPM Worklist to retrieve tasks assigned to users. This service also
determines if notifications are to be sent to users and groups when the state of the
task changes. The task service consists of the following services.

– Task Routing Service

The task routing service offers services to route, escalate, and reassign the
task. The service makes these decisions by interpreting a declarative
specification in the form of the routing slip.

– Task Query Service

Introduction to Human Workflow Architecture

27-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The task query service queries tasks for a user based on a variety of search
criterion such as keyword, category, status, business process, attribute values,
history information of a task, and so on.

– Task Metadata Service

The task metadata service exposes operations to retrieve metadata
information related to a task.

• Identity Service

The identity service is a thin web service layer on top of the 11g security
infrastructure or any custom user repository. It enables authentication and
authorization of users and the lookup of user properties, roles, group
memberships, and privileges.

• Notification Service

The notification service delivers notifications with the specified content to the
specified user through any of the following channels: email, telephone voice
message, IM, and SMS. See Notifications from Human Workflow for more
information.

• User Metadata Service

The user metadata service manages metadata related to workflow users, such as
user work queues, preferences, vacations, and delegation rules.

• Runtime Config Service

The runtime config service provides methods for managing metadata used in the
task service runtime environment. It principally supports management of task
payload mapped attribute mappings.

• Evidence service

The evidence service supports storage and nonrepudiation of digitally-signed
workflow tasks.

Introduction to Human Workflow Architecture

Getting Started with Human Workflow 27-15

Figure 27-6 Workflow Services Components

Figure 27-7 shows the interactions between the services and the business process.

Introduction to Human Workflow Architecture

27-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 27-7 Workflow Services and Business Process Interactions

27.4.2 Use of Human Task
You can use a human task in the following ways:

• Human task associated with a BPEL process

You can associate your human task with a BPEL process. The BPEL process
integrates a series of activities (including the human task activity) and services
into an end-to-end process flow.

• Human task associated with a BPMN process

You can associate your human task with a BPMN process. The BPMN process
may contain other types of BPMN flow objects as part of the flow of the process.
The human task is the implementation of a BPMN user task.

Introduction to Human Workflow Architecture

Getting Started with Human Workflow 27-17

• Standalone human task

You can also create the human task as a standalone component only in the and not
associate it with a BPEL process. Standalone human task service components are
useful for environments in which there is no need for any automated activity in an
application. In the standalone case, the client can create the task themselves.

27.4.3 Service Engines
During runtime, the business logic and processing rules of the human task service
component are executed by the human workflow service engine. Each service
component (BPEL process, human workflow, decision service (business rules), and
Oracle Mediator) has its own service engine container for performing these tasks. All
human task service components, regardless of the SOA composite application of
which they are a part, are executed in this single human task service engine.

For more information about configuring, monitoring, and managing the human
workflow service engine, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

27.5 Human Workflow and Business Rule Differences Between Oracle
SOA Suite and Oracle BPM Suite

Oracle SOA Suite and Oracle Business Process Management (BPM) Suite both provide
support for business rules and human workflow. However, Oracle BPM Suite
provides additional business rules and human workflow features that are not
available in Oracle SOA Suite.

Table 27-1 identifies which business rule and human workflow features are supported
in each suite.

Table 27-1 Business Rule and Human Workflow Features in Oracle SOA Suite and
Oracle BPM Suite

Feature Supported in
Oracle BPM Suite?

Supported in
Oracle SOA Suite?

Workspaces, process tracking, standard
dashboards, case management, and applications
menu

Yes No

Approval groups (participant list) Yes No

Human workflow and business rules
(participant list, routing rules)

Yes Yes

Verbal rules Yes No

Rules business phrases Yes No

Oracle BPM Composer - design time rules
editing

Yes No

Process asset catalog (PAM) for source
management between Oracle BPM Studio and
Oracle BPM Composer

Yes No

Rules testing in both Oracle JDeveloper and SOA
Composer with usability enhancements

Yes Yes

Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle BPM Suite

27-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 27-1 (Cont.) Business Rule and Human Workflow Features in Oracle SOA
Suite and Oracle BPM Suite

Feature Supported in
Oracle BPM Suite?

Supported in
Oracle SOA Suite?

Microsoft Excel import/export for rules decision
tables

Yes Yes

For more information about Oracle BPM Suite, see Developing Business Processes with
Oracle Business Process Management Studio.

Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle BPM Suite

Getting Started with Human Workflow 27-19

Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle BPM Suite

27-20 Developing SOA Applications with Oracle SOA Suite

28
Creating Human Tasks

Learn how to create a human task, save it, and associate it with a BPEL process. Also
describes how to delete a human task and remove its association with a BPEL process.

• Introduction to Human Tasks

• Creating Human Tasks

• Configuring Human Tasks

• Exiting the Human Task Editor and Saving Your Changes

• Associating Human Tasks with BPEL Processes

For information about human task concepts, see Getting Started with Human
Workflow .

For information about troubleshooting human workflow issues, see section "Human
Workflow Troubleshooting" of Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

For information about installing and using the organizational hierarchy of users and
groups known as the demo user community, see Appendix "Installing the Demo User
Community in the Database" of Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

28.1 Introduction to Human Tasks
Oracle SOA Suite provides a graphical tool, known as the Human Task Editor, for
modeling your task metadata.

The modeling process consists of the following:

• Creating and modeling a human task service component in the

• Associating it with a BPEL process

• Generating the task form for displaying the human task during runtime in Oracle
BPM Worklist.

To use the Human Task Editor, you must understand human task design concepts,
including the following:

• The types of users to which to assign tasks

• The methods by which to assign users to tasks (statically, dynamically, or rule-
based)

• The task participant types available for modeling a task to which you assign users

• The options for creating lists of task participants

Creating Human Tasks 28-1

• The participants involved in the entire life cycle of a task

This section provides a brief overview of these modeling tasks and provides references
to specific modeling instructions.

For more information about using the , see Getting Started with Developing SOA
Composite Applications.

For information about available samples, see Human Workflow Tutorial.

28.1.1 Introduction to Creating a Human Task Definition
The Human Task Editor enables you to specify human task metadata such as task
outcome, payload structure, assignment and routing policy, expiration and escalation
policy, notification settings. This information is saved to a metadata task configuration
file with a .task extension. In addition, some workflow patterns may also need to use
the Oracle Business Rules Designer to define task routing policies or the list of
approvers.

After you create a Human Task you can configure its metadata using the Human Task
Editor. For a detailed description of the metadata and configuration procedures, see
Configuring Human Tasks .

You define the metadata for the human task in either of two ways:

• By dragging a human task from the Components window into a BPEL process in
Oracle BPEL Designer and clicking the Add icon in the Create Human Task dialog
that automatically is displayed. This displays a dialog for creating the human task
service component. When creation is complete, the Human Task Editor is
displayed.

• By dragging a human task service component from the Components window into
the SOA Composite Editor. This displays a dialog for creating the human task
component. When creation is complete, the Human Task Editor is displayed.

For more information, see Creating Human Tasks.

28.1.2 Introduction to Associating the Human Task Definition with a BPEL Process
You can associate the .task file that consists of the human task settings with a BPEL
process in Oracle BPEL Designer. Association is made with a human task that you
drag into your BPEL process flow for configuring, as shown in Figure 28-1.

Introduction to Human Tasks

28-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 28-1 Dragging a Human Task into a BPEL Process

You also specify the task definition, task initiator, task priority, and task parameter
mappings that carry the input data to a BPEL variable. You can also define advanced
features, such as the scope and global task variables names (instead of accepting the
default names), task owner, identification key, BPEL callback customizations, and
whether to extend the human task to include other workflow tasks.

When association is complete, a task service partner link is created. The task service
exposes the operations required to act on the task.

You can also create the human task as a standalone component only in the and not
associate it with a BPEL process. Standalone human task service components are
useful for environments in which there is no need for any automated activity in an
application. In the standalone case, the client can create the task themselves.

For more information, see Associating Human Tasks with BPEL Processes.

28.1.3 Introduction to Generating the Task Form
You can generate a task form using the Oracle Application Development Framework
(ADF). This form is used for displaying the task details on which you act at runtime in
Oracle BPM Worklist.

For information on generating the task form, see Designing Task Forms for Human
Tasks .

28.2 Creating Human Tasks
The Human Task Editor enables you to define the metadata for the task. The editor
enables you to specify human task settings, such as task outcome, payload structure,
assignment and routing policy, expiration and escalation policy, notification settings,
and so on.

You create a human task service component in the or in Oracle BPEL Designer. After
creation, you design the component in the Human Task Editor. The method by which
you create the human task service component determines whether the component can
be associated later with a BPEL process service component or is a standalone
component in the .

Creating Human Tasks

Creating Human Tasks 28-3

28.2.1 How to Create a Human Task Using the SOA Composite Editor
You can create a human task using the SOA Composite Editor. You can use this
method to create a human task to later associate with a BPEL process or use as a
standalone component.

To create a human task service component in the SOA Composite Editor:

1. Go to the SOA project in which to create a human task service component in the .

2. From the Components window list, select SOA.

The list refreshes to display service components and service adapters.

3. From the list, drag a Human Task into the designer.

The Create Human Task dialog appears.

4. In the Name field, enter a name.

The name you enter becomes the .task file name.

5. Note the Create Composite Service with SOAP Bindings check box. The
selection of this check box determines how the human task service component is
created.

a. To create a human task service component that you later associate with a
BPEL process service component, do not select the Create Composite Service
with SOAP Bindings check box. The human task service component is
created as a component that you explicitly associate with a BPEL process
service component. Figure 28-2 provides details.

Figure 28-2 Human Task Component

b. To create the human task service component as a standalone component in
the , select the Create Composite Service with SOAP Bindings check box.
This creates a human task service component that is automatically wired to a
Simple Object Access Protocol (SOAP) web service. Figure 28-3 provides
details.

Figure 28-3 Standalone Human Task Component

This web service provides external customers with an entry point into the
human task service component of the SOA composite application.

6. Click OK.

Creating Human Tasks

28-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For more information about creating a human task service component in the , see
Getting Started with Developing SOA Composite Applications.

28.2.2 How to Create a Human Task Using Oracle BPEL Designer
You can create a human task using Oracle BPEL Designer. Generally you use this
method when you want to create a human task to use with a BPEL process.

To create a human task in Oracle BPEL Designer:

1. In the Components window, expand SOA Components.

2. From the list, drag a Human Task into the designer.

The Create Human Task dialog appears.

3. Click the Add icon to create a human task.

4. In the Name field, enter a name.

The name you enter becomes the .task file name.

5. In the Title field, enter a task.

6. Click OK.

The Human Task Editor appears.

Note:

You can also create a human task that you later associate with a BPEL process
by selecting New from the File main menu, then selecting SOA Tier > Service
Components > Human Task.

28.2.3 What Happens When You Create a Human Task
When a human task is created, the following folders and files appear:

• The human task settings specified in the Human Task Editor are saved to a
metadata task configuration file in the metadata service (MDS) repository with
a .task extension. This file appears in the Applications window under
SOA_Project_Name > SOA. You can re-edit the settings in this file by double-
clicking the following:

– The .task file in the Applications window in either the or Oracle BPEL
Designer

– The human task icon in the or in your BPEL process in Oracle BPEL Designer.

This reopens the .task file in the Human Task Editor.

• A Human Tasks folder containing the human task you created appears in the
Structure window of the .

Figure 28-4 shows these folders and files.

Creating Human Tasks

Creating Human Tasks 28-5

Figure 28-4 Human Task Folders and Files

For information about available samples, see Human Workflow Tutorial.

28.3 Configuring Human Tasks
After creating a human task, modify its settings using the Human Task Editor.

For more information on how to configure a human task, see Configuring Human
Tasks .

28.4 Exiting the Human Task Editor and Saving Your Changes
You can save your human task changes at any time. The task can be re-edited at a later
time by double-clicking the metadata task configuration .task file in the Applications
window.

To exit the Human Task Editor and save your changes:

1. From the File main menu, select Save or click the X sign shown in Figure 28-5 to
close the .task metadata task configuration file.

Figure 28-5 File Closure

2. If you click the X sign, select Yes when prompted to save your changes.

Configuring Human Tasks

28-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

28.5 Associating Human Tasks with BPEL Processes
To associate the human task service component created in the with a BPEL process,
follow these instructions. When association is complete, a task service partner link is
created in Oracle BPEL Designer. The task service exposes the operations required to
act on a task.

For more information about creating a human task, see Creating Human Tasks.

28.5.1 How to Associate a Human Task with a BPEL Process
There are two ways to associate a human task service component with a BPEL process:

• If you have created a human task service component in the SOA composite
application, drag a human task activity into the BPEL process in Oracle BPEL
Designer. Then, select the existing human task service component from the Task
Definition list of the Create Human Task dialog. You can then specify the task
title, initiator, parameter values, and other values.

• If you have not created a human task service component, drag the human task
activity into the BPEL process in Oracle BPEL Designer Then, click the Add icon
to the right of the Task Definition list in the Create Human Task dialog. This
action enables you to specify the name of the new human task service component,
the parameters, and the outcomes. The Human Task Editor then opens for you to
design the remaining task metadata. After design completion, close the Human
Task Editor.

To associate a human task with a BPEL process:

1. Go to the .

2. Double-click the BPEL process service component with which to associate
the .task file of the human task service component.

3. In the Components window, expand SOA Components.

4. Drag a new Human Task activity into the BPEL process.

5. Double-click the Human Task activity.

The Human Task dialog appears.

6. From the Task Definition list of the General tab, select the human task, as shown
in Figure 28-6.

Associating Human Tasks with BPEL Processes

Creating Human Tasks 28-7

Figure 28-6 Task Definition List Selection

The .task file of the human task service component is associated with the BPEL
process.

Note:

After you complete association of your human task activity with a BPEL
process and close the Create Human Task dialog, you can always re-access
this dialog by double-clicking the human task activity in Oracle BPEL
Designer.

28.5.2 What You May Need to Know About Deleting a Wire Between a Human Task and
a BPEL Process

If you delete the wire between a BPEL process and the human task service component
that it invokes, the invoke activity of the human workflow is deleted from the BPEL
process. However, the taskSwitch switch activity for taking action (contains the
approve, reject, and otherwise task outcomes) is still there. This is by design for the
following reasons:

• The switch activity contains user-entered BPEL code.

• The switch can be reused if the intention for deleting the wire is only to point to
another human task.

• Deleting the switch is a single-step action.

If you then drag and drop a human task service component into the BPEL process to
use the same taskSwitch switch activity, a new taskSwitch switch activity is created.
You then have two switch activities in the BPEL process with the same name. To
determine which one to delete, you must go into the approve, reject, and otherwise
task outcomes of the taskSwitch switch activities to determine which is the older,
modified switch and which is the newer switch.

Associating Human Tasks with BPEL Processes

28-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

28.5.3 How to Define the Human Task Activity Title, Initiator, Priority, and Parameter
Variables

Figure 28-7 shows the General tab that displays after you select the human task.

Figure 28-7 Human Task — General Tab (After Selection)

The General tab of the Human Task activity enables you to perform the tasks shown
in Table 28-1:

Table 28-1 Human Task - General Tab

For this Field... See...

Task Title Specifying the Task Title

Initiator

Priority

Specifying the Task Initiator and Task Priority

Task Parameters Specifying Task Parameters

28.5.3.1 Specifying the Task Title

The title displays the task in Oracle BPM Worklist during runtime. This is a
mandatory field. Your entry in this field overrides the task title you entered in the
Task Title field of the General section of the Human Task Editor described in How to
Specify a Task Title.

In the Task Title field of the General tab, enter the task title by entering the title
manually. Alternatively, click the icon to the right of the field to display the
Expression Builder dialog to dynamically create the title.

You can also combine static text and dynamic expressions in the same title. To include
dynamic text, place your cursor at the appropriate point in the text and click the icon
on the right to invoke the Expression Builder dialog.

Associating Human Tasks with BPEL Processes

Creating Human Tasks 28-9

28.5.3.2 Specifying the Task Initiator and Task Priority

You can specify a task initiator. The initiator is the user who initiates a task. The
initiator can view their created tasks from Oracle BPM Worklist and perform specific
tasks, such as withdrawing or suspending a task.

To specify the task initiator and task priority:

1. To the right of the Initiator field of the General tab, enter the initiator (for example,
jcooper) or click the icon to display the Expression Builder dialog for
dynamically specifying an initiator. This field is optional. If not specified, the
initiator defaults to the task owner specified on the Advanced tab of the Human
Task dialog. The initiator defaults to bpeladmin if a task owner is also not
specified.

2. From the Priority list, select a priority value between 1 (the highest) and 5. This
field is provided for user reference and does not make this task a higher priority
during runtime. Use the priority to sort tasks in Oracle BPM Worklist. This priority
value overrides the priority value you select in the Priority list of the General
section of the Human Task Editor.

For more information about specifying the priority in the Human Task Editor, see
How to Specify a Task Title.

28.5.3.3 Specifying Task Parameters

The task parameter table shown in Figure 28-8 displays a list of task parameters after
you complete the Task Title and Initiator fields.

Figure 28-8 Task Parameter Table

To specify task parameters:

1. In the BPEL Variable column, double-click the dots to map the task parameter to
the BPEL variable. To display these dots for selection, you must have already
specify your data parameters. For more information on how to specify the data

Associating Human Tasks with BPEL Processes

28-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

parameters, see How to Specify the Task Payload Data Structure. You must map
only the task parameters that carry input data. For output data that is filled in from
Oracle BPM Worklist, you do not need to map the corresponding variables.

The Task Parameters dialog appears.

2. Expand the Variables tree shown in Figure 28-9 and select the appropriate task
variable.

Figure 28-9 Variables Tree

3. Click OK.

The Human Task dialog shown in Figure 28-10 appears as follows.

Figure 28-10 Human Task Dialog

Associating Human Tasks with BPEL Processes

Creating Human Tasks 28-11

4. To define advanced features for the human task activity, click the Advanced tab
and go to How to Define the Human Task Activity Advanced Features . Otherwise,
click OK to close the Human Task dialog.

28.5.4 How to Define the Human Task Activity Advanced Features
Figure 28-11 shows the Advanced tab.

Figure 28-11 Create Human Task — Advanced Tab

The Advanced tab of the Human Task activity enables you to perform the tasks shown
in Table 28-2:

Table 28-2 Human Task - Advanced Tab

For this Field... See...

Scope Name

Global Task Variable Name

Specifying a Scope Name and a Global Task Variable
Name

Owner Specifying a Task Owner

Identification Key Specifying an Identification Key

Identity Context Specifying an Identity Context

Application Context Specifying an Application Context

Include task history from Including the Task History of Other Human Tasks

28.5.4.1 Specifying a Scope Name and a Global Task Variable Name

You are automatically provided with default scope and global task variable names
during human task activity creation. However, you can specify custom names that are
used to name the scope and global variable during human task activity creation.

Associating Human Tasks with BPEL Processes

28-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To specify a scope name and a global task variable name:

1. In the Scope Name field of the Advanced tab, enter the name for the BPEL scope to
be generated.

This BPEL scope encapsulates the entire interaction with the workflow service and
BPEL variable manipulation.

2. In the Global Task Variable Name field of the Advanced tab, enter the global task
variable name.

This is the name of the BPEL task variable used for the workflow interaction.

28.5.4.2 Specifying a Task Owner

The task owner can view tasks belonging to business processes they own and perform
operations on behalf of any of the task assignees. Additionally, the owner can also
reassign, withdraw, or escalate tasks.

If you do not specify a task initiator on the General tab of the Human Task dialog, it
defaults to the owner specified here. In the Owner field of the Advanced tab, enter the
task owner name or click the icon to the right to use the Expression Builder to
dynamically specify the owner of this task.

28.5.4.3 Specifying an Identification Key

The identification key can be used as a user-defined ID for the task. For example, if the
task is meant for approving a purchase order, the purchase order ID can be set as the
identification key of the task. Tasks can be searched from Oracle BPM Worklist using
the identification key. This attribute has no default value.

In the Identification Key field of the Advanced tab, enter an optional identification
key value to specify a key.

28.5.4.4 Specifying an Identity Context

The identity realm name is used for the task when multiple realms are configured.
You cannot have assignees from multiple realms working on the same task. This field
is required if you are using multiple realms. To specify an identity context, in the
Identity Context field of the Advanced tab, enter a value

28.5.4.5 Specifying an Application Context

The stripe name of the application contains the application roles used in the task. To
specify an application context, in the Application Context field of the Advanced tab,
enter a value.

28.5.4.6 Including the Task History of Other Human Tasks

This feature enables one human task to be continued with another human task. There
are many scenarios in which you have related tasks in a single BPEL process. For
example, assume you have the following:

• A procurement process to obtain a manager's approval for a computer

• Several BPEL activities in between

• Another task for the IT department to buy the computer

The participant of the second task may want to see the approval history, comments,
and attachments created when the manager approved the purchase. You can link these

Associating Human Tasks with BPEL Processes

Creating Human Tasks 28-13

different tasks in the BPEL process by chaining the second task to the first task with
this option.

For chained tasks, the title of the new task cannot be set from the task metadata
(.task file). For example, assume existing Task A is chained with new task Task B,
and Task B has a new title set in the Human Task Editor; this title is not recognized.
Therefore, if the chained task requires a different title, it must be set in the task
instance before calling the task service reinitiate operation. If a BPEL process is
initiating the tasks, set the task title before the workflow service APIs are called. If a
Java program is calling the workflow APIs programatically, then it must set the title.

To include the task history of other tasks:

1. Select the Include task history from check box of the Advanced tab to extend a
previous workflow task in the BPEL process. Selecting this check box includes the
task history, comments, and attachments from the previous task. This provides you
with a complete end-to-end audit trail.

When a human task is continued with another human task, the following
information is carried over to the new workflow:

• Task payload and the changes made to the payload in the previous workflow

• Task history

• Comments added to the task in the previous workflow

• Attachments added to the task in the previous workflow

• Due date

In the Include task history from list, all existing workflows are listed.

2. Select a particular human task to extend (continue) the selected human task.

For example, a hiring process is used to hire new employees. Each interviewer
votes to hire or not hire a candidate. If 75% of the votes are to hire, then the
candidate is hired; otherwise, the candidate is rejected. If the candidate is to be
hired, an entry in the HR database is created and the human resources contact
completes the hiring process. The HR contact also must see the interviewers and
the comments they made about the candidate. This process can be modeled using a
parallel participant type for the hiring. If the candidate is hired, a database adapter
is used to create the entry in the HR database. After this action, a simple workflow
can include the task history from the parallel participant type so that the hiring
request, history, and interviewer comments are carried over. This simple workflow
is assigned to the HR contact.

3. Select a payload to use:

• Clear old payload and recreate

This option is applicable when the payload attributes in the XML files of the
human tasks involved in this extended workflow are different. For example,
the payload attribute for the human task whose history you are including has
three extra attributes than the payload of the other human task.

• Use existing payload

This option is applicable when the payload attributes in the XML files of the
human tasks involved in this extended workflow are the same.

Associating Human Tasks with BPEL Processes

28-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

28.5.5 How to View the Generated Human Task Activity
When you have completed modeling the human task activity, the human task is
generated in the designer.

Figure 28-12 shows how a workflow interaction is modeled. Figure 28-12 also
illustrates the interaction when no BPEL callbacks are modeled. In this case, after a
task is complete, the BPEL process is called back with the completed task. No
intermediary events are propagated to the BPEL process instance. It is recommended
that any user customizations be done in the first assign, AssignTaskAttributes, and
that AssignSystemTaskAttributes not be changed.

Figure 28-12 Workflow Interaction Modeling

Click the Expand icon next to the human task activity in Oracle BPEL Designer to
display its contents, as shown in Figure 28-13.

Figure 28-13 Expanding the Human Task Activity

28.5.5.1 Invoking BPEL Callbacks

If intermediary events must be propagated to the BPEL process instance, select the
Allow task and routing customization in BPEL callbacks check box in the Events
section of the Human Task Editor. When this option is selected, the workflow service
invokes callbacks in the BPEL instance during each update of the task. The callbacks
are listed in the TaskService.wsdl file and described as follows:

• onTaskCompleted

This callback is invoked when the task is completed, expired, withdrawn, or
errored.

• onTaskAssigned

Associating Human Tasks with BPEL Processes

Creating Human Tasks 28-15

This callback is invoked when the task is assigned to a new set of assignees due to
the following actions:

– Outcome update

– Skip current assignment

– Override routing slip

• onTaskUpdated

This callback is invoked for any other update to the task that does not fall in the
onTaskComplete or onTaskAssigned callback. This includes updates on tasks
due to a request for information, a submittal of information, an escalation, a
reassign, and so on.

• onSubTaskUpdated

This callback is invoked for any update to a subtask.

Figure 28-14 shows how a workflow interaction with callbacks is modeled. After this
task is initiated, a while loop is used to receive messages until the task is complete.
The while loop contains a pick with four onMessage branches — one for each of the
above-mentioned callback operations. The workflow interaction works fine even if
nothing is changed in the onMessage branches, meaning that customizations in the
onMessage branches are not required.

In this scenario, a workflow context is captured in the BPEL instance. This context can
be used for all interaction with the workflow services. For example, to reassign a task
if it is assigned to a group, then you need the workflow context for the
reassignTask operation on the task service.

It is recommended that any user customizations be performed in the first assign,
AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.

Associating Human Tasks with BPEL Processes

28-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 28-14 Workflow Interaction Modeling (with Callbacks)

28.5.6 What You May Need to Know About Changing the Generated Human Task
Activity

If you must change a generated human task activity, note the following details:

• Do not modify the assign tasks that are automatically created in a switch activity
when you add a human task to a BPEL process flow. Instead, add a new assign
activity outside the switch activity.

• If the parameter passed into a human task is modified (for example, you change
the parameter type in the Edit Task Parameter dialog), you must open the human
task activity in the BPEL process flow and click OK to correct the references to the
payload variable. Not doing so causes the parameter name to change and become
uneditable.

Associating Human Tasks with BPEL Processes

Creating Human Tasks 28-17

If the task outcomes in the Human Task Editor are modified, you must edit the
human task activity and click OK. The switch case is then updated based on the
changes to the outcomes.

• If you make any changes to the translatable strings of the title or category of a task
in the resource bundle, those changes do not appear in any instances of that task
that are already initiated. However, they do appear in instances of that task that
are initiated after you make the changes.

• When you copy comments to a human task, make sure that those comments do
not contain the task ID. The taskId element must be empty.

28.5.7 What You May Need to Know About Deleting a Partner Link Generated by a
Human Task

Deleting a partner link that was generated by a human task (for example,
human_task_name.TaskService in the Partner Links swimlane) causes the human
task to become unusable. If you delete the partner link, you must delete the human
task activity in Oracle BPEL Designer and start over again.

28.5.8 How to Define Outcome-Based Modeling
In many cases, the outcome of a task determines the flow of the business process. To
facilitate modeling of the business logic, when a user task is generated, a BPEL switch
activity is also generated with prebuilt BPEL case activities. By default, one case
branch is created for each outcome selected during creation of the task. An otherwise
branch is also generated in the switch to represent cases in which the task is
withdrawn, expired, or in error.

28.5.8.1 Specifying Payload Updates

The task carries a payload in it. If the payload is set from a business process variable,
then an assign activity with the name copyPayloadFromTask is created in each of
the case and otherwise branches to copy the payload from the task back to its source. If
the payload is expressed as other XPath expressions (such as ora:getNodes(...)),
then this assign is not created because of the lack of a process variable to copy the
payload back. If the payload does not require modification, then you can remove the
assign generated in the switch-case after the task scope.

28.5.8.2 Using Case Statements for Other Task Conclusions

By default, the switch activity contains case statements for the outcomes only. The
other task conclusions are captured in the otherwise branch. These conclusions are as
follows:

• The task is withdrawn.

• The task is in error.

• The task is expired.

If business logic must be added for each of these other conclusions, then case
statements can be added for each of the preceding conditions. The case statements can
be created as shown in the following BPEL segment. The XPath conditions for the
other conclusions in the case activities for each of the preceding cases are shown in
bold in the following example:

Associating Human Tasks with BPEL Processes

28-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<switch name="taskSwitch">
 <case condition="bpws:getVariableData('SequentialWorkflowVar1',
'/task:task/task:state') = 'COMPLETED' and
bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:conclusion') =
'ACCEPT'">
 <bpelx:annotation>
 <bpelx:pattern>Task outcome is ACCEPT
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'WITHDRAWN'">
 <bpelx:annotation>
 <bpelx:pattern>Task is withdrawn
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'EXPIRED'">
 <bpelx:annotation>
 <bpelx:pattern>Task is expired
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'ERRORED'">
 <bpelx:annotation>
 <bpelx:pattern>Task is errored
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <otherwise>
 <bpelx:annotation>
 <bpelx:pattern>Task is EXPIRED, WITHDRAWN or ERRORED
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </otherwise>
</switch>

28.5.9 What You May Need to Know About Encoding an Attachment
To enable text files to be attached to a human task, you must set a flag that describes
whether the content of text attachments is encoded. This flag is named
isContentEncoded.You can set this flag by customizing the BPEL code in any
Human Workflow sample that includes a human task. To do this customization, in
the .bpel file in the sample, enter the following copy rule in the BPEL assign activity
code:

<copy>
<from>true()</from>
<to>$initiateTaskInput.payload/task:task/task:attachment/task:isContentEncoded
</to>
</copy>

Associating Human Tasks with BPEL Processes

Creating Human Tasks 28-19

Once you have entered this copy rule, you can either save the file and continue
designing the BPEL process or, if you have finished designing, you can deploy the
process.

Associating Human Tasks with BPEL Processes

28-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

29
Configuring Human Tasks

Learn how to configure the different properties of a human task. It covers basic
properties, task payload data structure, participant assignment, routing policies,
localization, escalation, notification preferences, access policies and task actions,
restrictions and Java and business event callbacks.

• Accessing the Sections of the Human Task Editor

• Specifying the Title_ Description_ Outcome_ Priority_ Category_ Owner_ and
Application Context

• Specifying the Task Payload Data Structure

• Assigning Task Participants

• Selecting a Routing Policy

• Specifying Multilingual Settings and Style Sheets

• Specify What to Show in Task Details in the Worklist

• Escalating_ Renewing_ or Ending the Task

• Specifying Participant Notification Preferences

• Specifying Access Policies and Task Actions on Task Content

• Specifying Restrictions on Task Assignments

• Specifying Java or Business Event Callbacks

For information about troubleshooting human workflow issues, see section “Human
Workflow Troubleshooting" of Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

29.1 Accessing the Sections of the Human Task Editor
Learn how to access the sections of the Human Task Editor.

To access the sections of the Human Task Editor:

1. Double-click the Human Task icon in the SOA Composite Editor or double-click
the Human Task icon in Oracle BPEL Designer.

The Human Task Editor consists of the main sections shown on the left side in
Figure 29-1. These sections enable you to design the metadata of a human task.

Configuring Human Tasks 29-1

Figure 29-1 Human Task Editor

Instructions for using these main sections of the Human Task Editor to create a
workflow task are listed in Table 29-1.

Table 29-1 Human Task Editor

Section Description See...

General

(title, description,
outcomes, category,
priority, owner, and
application context)

Enables you to define task
details such as title, task
outcomes, owner, and other
attributes.

Specifying the Title_
Description_ Outcome_
Priority_ Category_ Owner_
and Application Context

Data Enables you to define the
structure (message elements) of
the task payload (the data in the
task).

Specifying the Task Payload
Data Structure

Assignment Enables you to assign
participants to the task and
create a policy for routing the
task through the workflow.

Assigning Task Participants

Selecting a Routing Policy

Presentation Enables you to specify the
following settings:

• Multilingual settings
• WordML and custom style

sheets for attachments

Specifying Multilingual
Settings and Style Sheets

Deadlines Enables you to specify the
expiration duration of a task,
custom escalation Java classes,
and due dates.

Escalating_ Renewing_ or
Ending the Task

Notification Enables you to create and send
notifications when a user is
assigned a task or informed that
the status of the task has
changed.

Specifying Participant
Notification Preferences

Accessing the Sections of the Human Task Editor

29-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 29-1 (Cont.) Human Task Editor

Section Description See...

Access Enables you to specify access
rules for task content and task
actions, workflow signature
policies, and assignment
restrictions.

Specifying Access Policies and
Task Actions on Task Content

How to Specify a Workflow
Digital Signature Policy

Specifying Restrictions on
Task Assignments

Events Enables you to specify callback
classes and task and routing
assignments in BPEL callbacks.

Specifying Java or Business
Event Callbacks

29.2 Specifying the Title, Description, Outcome, Priority, Category,
Owner, and Application Context

Learn how to specify the task details such as the title, description, outcome, priority,
category Owner and the Application context.

To specify the details of a task:

1. Access the Human Task Editor.

2. Click the General tab.

Figure 29-2 shows the General section of the Human Task Editor.

This section enables you to specify details such as the task title, description, task
outcomes, task category, task priority, and task owner.

Figure 29-2 Human Task Editor — General Section

Instructions for configuring the following subsections of the General section are
listed in Table 29-2:

Table 29-2 Human Task Editor — General Section

For This Subsection... See...

Title How to Specify a Task Title

Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

Configuring Human Tasks 29-3

Table 29-2 (Cont.) Human Task Editor — General Section

For This Subsection... See...

Description How to Specify a Task Description

Outcomes How to Specify a Task Outcome

Priority How to Specify a Task Priority

Category How to Specify a Task Category

Owner How to Specify a Task Owner

Application Context How To Specify an Application Context

29.2.1 How to Specify a Task Title
Enter an optional task title. The title defaults to this value only if the initiated task does
not have a title set in it. The title provides a visual identifier for the task. The task title
displays in Oracle BPM Worklist. You can also search on titles in Oracle BPM
Worklist.

To specify a task title:

1. In the Task Title field of the General section, select a method for specifying a task
title:

• Plain Text: Manually enter a name (for example, Vacation Request
Approved).

• Text and XPath: Enter a combination of manual text and a dynamic
expression. After manually entering a portion of the title (for example,
Approval Required for Order Id:), place the cursor one blank space to
the right of the text and click the icon to the right of this field. This displays the
Expression Builder for dynamically creating the remaining portion of the title.
After completing the dynamic portion of the name, click OK to return to this
field. The complete name is displayed. For example:

Approval Required for Order Id: <%/task:task/task:payload/task:orderId%>

The expression is resolved during runtime with the exact order ID value from
the task payload.

• Translation: Click the Lookup button and locate a translation bundle to use to
specify the title.

• Resource Xpath: Click the Lookup button and locate a resource bundle to use
to specify the title.

2. If you enter a title in the Task Title field of the General tab of the Create Human
Task dialog box described in Specifying the Task Title, the title you enter here is
overridden.

29.2.2 How to Specify a Task Description
You can optionally specify a description of the task in the Description field of the
General section. The description enables you to provide additional details about a
task. For example, if the task title is Computer Upgrade Request, you can provide

Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

additional details in this field, such as the model of the computer, amount of CPU,
amount of RAM, and so on. The description does not display in Oracle BPM Worklist.

To add a task description:

1. Select the drop-down menu and choose either Plain Text or Translation.

2. Provide the description:

Plain text:

a. Type a description into the dialog box.

b. Click Ok.

Translation:

a. Click the Lookup button.

b. Locate a resource bundle and provide a description.

c. Click Ok.

29.2.3 How to Specify a Task Outcome
Task outcomes capture the possible outcomes of a task. Oracle BPM Worklist displays
the outcomes you specify here as the possible task actions to perform during runtime.
Figure 29-3 provides details.

Figure 29-3 Outcomes in Oracle BPM Worklist

You can specify the following types of task outcomes:

• Select a seeded outcome

• Enter a custom outcome

The task outcomes can also have runtime display values that are different from the
actual outcome value specified here. This permits outcomes to be displayed in a
different language in Oracle BPM Worklist. For more information about
internationalization, see How to Specify Multilingual Settings.

Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

Configuring Human Tasks 29-5

To specify a task outcome:

1. To the right of the Outcomes field in the General section, click the Search icon.

The Outcomes dialog box shown in Figure 29-4 displays the possible outcomes for
tasks. APPROVE and REJECT are selected by default.

Figure 29-4 Outcomes Dialog

2. Enter the information shown in Table 29-3.

Table 29-3 Outcomes Dialog

Field Description

Select one or more
outcomes

Select additional task outcomes or deselect the default outcomes.

Add icon Click to invoke a dialog box for adding custom outcomes.

In the Name field of the dialog box, enter a custom name, and
click OK. Your outcome displays in the Outcomes field.

Notes: Be aware of the following naming restrictions:

• Do not specify a custom name that matches a name listed in
the Actions tab of the Access section of the Human Task
Editor (for example, do not specify Delete). Specifying the
same name can cause problems at runtime.

• Do not specify a custom name with blank spaces (for
example, On Hold). This causes an error when the custom
outcome is accessed in Oracle BPM Worklist. If you must
specify an outcome with spaces, use a resource bundle. For
more information, see Introduction to Human Workflow
Services.

• A custom task outcome must begin with a letter of the
alphabet, either upper or lower case. It should contain only
letters of the alphabet and the numbers zero (0) through nine
(9).

Outcomes Requiring
Comment

Click to select an outcome to which an assignee adds comments in
Oracle BPM Worklist at runtime. The assignee must add the
comments and perform the action without saving the task at
runtime.

Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 29-3 (Cont.) Outcomes Dialog

Field Description

Default Outcome Select the default outcome for this outcome.

The seeded and custom outcomes selected here display for selection in the
Majority Voted Outcome section of the parallel participant type.

3. For more information, see Specifying the Voting Outcome.

29.2.4 How to Specify a Task Priority
Specify the priority of the tasks. Priority can be 1 through 5, with 1 being the highest.
By default, the priority of a task is 3. This priority value is overridden by any priority
value you select in the General tab of the Create Human Task dialog box. You can
filter tasks based on priority and create views on priorities in Oracle BPM Worklist.

From the Priority list in the General section, select a priority for the task to specify a
priority.

For more information about specifying a priority value in the Create Human Task
dialog box, see Specifying the Task Initiator and Task Priority.

29.2.5 How to Specify a Task Category
You can optionally specify a task category in the Category field of the General section.
This categorizes tasks created in a system. For example, in a help desk environment,
you may categorize customer requests as either software-related or hardware-related.
The category displays in Oracle BPM Worklist. You can filter tasks based on category
and create views on categories in Oracle BPM Worklist.

To specify a task category:

1. Select a method for specifying a task category in the Category field of the General
section:

• By Name: Manually enter a name.

• By Expression: Click the icon to the right of this field to display the Expression
Builder for dynamically creating a category.

• Translation: If the composite contains a resource bundle file, then use the
Lookup button to locate the resource bundle file and to specify a category.

29.2.6 How to Specify a Task Owner
The task owner can view the tasks belonging to business processes they own and
perform operations on behalf of any of the assigned task participant types.
Additionally, the owner can also reassign, withdraw, or escalate tasks. The task owner
can be considered the business administrator for a task. The task owner can also be
specified in the Advanced tab of the Create Human Task dialog box described in
Specifying a Task Owner. The task owner specified in the Advanced tab overrides any
task owner you enter here.

For more information about the task owner, see Task Stakeholders.

Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

Configuring Human Tasks 29-7

To specify a task owner:

1. Select a method for specifying the task owner:

• Statically through the identity service user directory or the list of application
roles

• Dynamically through an XPath expression

For example: If the task has a payload message attribute named po within
which the owner is stored, you can specify an XPath expression such as:

/task:task/task:payload/po:purchaseOrder/po:owner

ids:getManager('jstein', 'jazn.com')

The manager of jstein is the task owner.

For more information about users, groups, and application roles, see Task Assignment
and Routing.

29.2.6.1 Specifying a Task Owner Statically Through the User Directory or a List of
Application Roles

Task owners can be selected by browsing the user directory (Oracle Internet Directory,
Java AuthoriZatioN (JAZN)/XML, LDAP, and so on) or a list of application roles
configured for use with Oracle SOA Suite.

To specify a task owner statically through the user directory or a list of
application roles:

1. In the first list to the right of the Owner field in the General section, select User,
Group, or Application Role as the type of task owner. Figure 29-5 provides
details.

Note:

By default, group names in human tasks are case sensitive. Therefore, if you
select Group and enter a name in upper case text (for example,
LOANAGENTGROUP), no task is displayed under the Administrative Tasks tab
in Oracle BPM Worklist. To enable group names to be case agnostic (case
insensitive), you must set the caseSensitiveGroups property to false in the
System MBeans Browser. For information, see Administering Oracle SOA Suite
and Oracle Business Process Management Suite.

Figure 29-5 Specify a Task Owner By Browsing the User Directory or
Application Roles

2. In the second list to the right of the Owner field in the General section, select
Static.

Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. See the step in Table 29-4 based on the type of owner you selected.

Table 29-4 Type of Owner

If You Selected... See Step...

User or Group 4

Application Role 5

4. If you selected User or Group, the Identity Lookup dialog box shown in
Figure 29-6 appears.

Figure 29-6 Identity Lookup Dialog

To select a user or group, you must first create an application server connection by
clicking the Add icon. Note the following restrictions:

• Do not create an application server connection to an Oracle WebLogic
Administration Server from which to retrieve the list of identity service
realms. This is because there is no identity service running on the
Administration Server. Therefore, no realm information displays and no users
display when performing a search with a search pattern in the Identity
Lookup dialog box. Instead, create an application server connection to a
managed Oracle WebLogic Server.

• You must select an application server connection configured with the
complete domain name (for example, myhost.us.example.com). If you
select a connection configured only with the hostname (for example,
myhost), the Realm list may not display the available realms. If the existing
connection does not include the domain name, perform the following steps:

Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

Configuring Human Tasks 29-9

– In the Resource Palette, right-click the application server connection.

– Select Properties.

– In the Configuration tab, add the appropriate domain to the hostname.

– Return to the Identity Lookup dialog box and reselect the connection.

a. Select or create an application server connection to display the realms for
selection. A realm provides access to a policy store of users and roles
(groups).

b. Search for the owner by entering a search string such as jcooper, j*, *,
and so on. Clicking the Lookup icon to the right of the User Name field
fetches all the users that match the search criteria. Figure 29-7 provides
details. One or more users or groups can be highlighted and selected by
clicking Select.

Figure 29-7 Identity Lookup with Realm Selected

c. View the hierarchy of a user by highlighting the user and clicking Hierarchy.
Similarly, clicking Reportees displays the reportees of a selected user or
group. Figure 29-8 provides details.

Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 29-8 User Hierarchy in Identity Lookup Dialog

d. View the details of a user or group by highlighting the user or group and
clicking Detail. Figure 29-9 provides details.

Figure 29-9 User or Group Details

e. Click OK to return to the Identity Lookup dialog box.

f. Click Select to add the user to the Selected User section.

g. Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

5. If you selected Application Role, the Select an Application Role dialog box
appears.

a. In the Application Server list, select the type of application server that
contains the application role or click the Add icon to launch the Create
Application Server Connection wizard to create a connection.

Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

Configuring Human Tasks 29-11

b. In the Application list, select the application that contains the application
roles (for example, a custom application or soa-infra for the SOA
Infrastructure application).

c. In the Available section, select appropriate application roles and click the >
button. To select all, click the >> button. Figure 29-10 provides details.

Figure 29-10 Application Role

d. Click OK.

29.2.6.2 Specifying a Task Owner Dynamically Through an XPath Expression

Task owners can be selected dynamically in the Expression Builder dialog box.

To specify a task owner dynamically:

1. In the first list to the right of the Owner field in the General section, select User,
Group, or Application Role as the type of task owner. Figure 29-11 provides
details.

Figure 29-11 Specify a Task Owner Dynamically

Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

29-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

2. In the second list to the right of the Owner field in the General section, select
XPath.

3. Click the icon to launch the Expression Builder.

This displays the Expression Builder dialog box shown in Figure 29-12:

Figure 29-12 Expression Builder

4. Browse the available variable schemas and functions to create a task owner.

5. Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

For more information, see the following:

• Click Help for instructions on using the Expression Builder dialog box and
XPath Building Assistant

• XPath Extension Functions for information about workflow service dynamic
assignment functions, identity service functions, and instructions on using the
XPath Building Assistant

29.2.7 How To Specify an Application Context
You can specify the name of the application that contains the application roles used in
the task. This indicates the context in which the application role operates. If you do not
explicitly create a task, but end up having one, you can set up the context.

Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

Configuring Human Tasks 29-13

Note:

An application context is required to be set in the task definition in order to be
able to reassign the task to an application role in the Oracle Process
Workspace and Oracle BPM Worklist applications.

In the Application Context field of the General section, enter the name to specify an
application context.

29.3 Specifying the Task Payload Data Structure
Learn how to specify the structure (message elements) of the task payload (the data in
the task) defined in the XSD file.

Create parameters to represent the elements in the XSD file. This makes the payload
data available to the workflow task. For example:

• You create a parameter for an order ID element for placing an order from a store
front application.

• You create parameters for the location, type, problem description, severity, status,
and resolution elements for creating a help desk request.

Figure 29-13 shows the Data section of the Human Task Editor.Task payload data
consists of one or more elements or types. Based on your selections, an XML schema
definition is created for the task payload.

Figure 29-13 Human Task Editor — Parameters Section

29.3.1 How to Specify the Task Payload Data Structure

To specify the task payload data structure:

1. Click the Data tab.

2. Click the Add icon and select a payload type:

• String

• Integer

• Boolean

• Other

The Add Task Parameter dialog box is displayed, as shown in Figure 29-14.

Specifying the Task Payload Data Structure

29-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 29-14 Add Task Parameter Dialog

3. Enter the details described in Table 29-5:

Table 29-5 Add Task Parameter Dialog Fields and Values

Field Description

Parameter Type Select Type or Element and click the Search icon to display
the Type Chooser dialog box for selecting the task parameter.

Parameter Name Accept the default name or enter a custom name. This field
only displays if Type is the selected parameter type.

Editable via worklist Select this check box to enable users to edit this part of the
task payload in Oracle BPM Worklist. For example, for a loan
approval task, the APR attribute may need to be updated by
the user reviewing the task, but the SSN field may not be
editable.

You can also specify access rules that determine the parts of a
task that participants can view and update. For more
information, see Specifying Access Policies and Task Actions
on Task Content.

Use Collections If a task uses collections, then define this parameter to use
collections. Click the Add button to provide the collection
name and the Xpath expression for the collection type. Use
Expression Builder to look up the collection type from the
schema.

Specifying the Task Payload Data Structure

Configuring Human Tasks 29-15

Note:

You can only define payload mapped attributes (previously known as flex
field mappings) in Oracle BPM Worklist for payload parameters that are
simple XML types (string, integer, and so on) or complex types (for example, a
purchase order, and so on). If you must search tasks using keywords or define
views or delegation rules based on task content, then you must use payload
parameters based on simple XML types. These simple types can be mapped to
flex columns in Oracle BPM Worklist.

4. Select the type, as shown in Figure 29-15.

Figure 29-15 Parameter Type

5. Click OK to return to the Human Task Editor.

Your selection displays in the Data section.

6. To edit your selection, select it and click the Edit icon in the upper right part of the
Data section.

29.4 Assigning Task Participants
Learn how to select a participant type that meets your business requirements. While
configuring the participant type, you build lists of users, groups, and application roles
to act upon tasks.

Figure 29-16 shows the Assignment section of the Human Task Editor.

Assigning Task Participants

29-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 29-16 Human Task Editor — Assignment Section

You can easily mix and match participant types to create simple or complex workflow
routing policies. You can also extend the functionality of a previously configured
human task to model more complex workflows.

A participant type is grouped in a block under a stage (for example, named Stage1 in
Figure 29-16). A stage is a way of organizing the approval process for blocks of
participant types. You can have one or more stages in sequence or in parallel. Within
each stage, you can have one or more participant type blocks in sequence or in
parallel. The up and down keys enable you to rearrange the order of your participant
type blocks.

For example:

• You can create all participant type blocks in a single stage (for example, a
purchase order request in which the entire contents of the order are approved or
rejected as a whole).

• You can create more complex approval tasks that may include one or more stages.
For example, you can place one group of participant type blocks in one stage and
another block in a second stage. The list of approvers in the first stage handles line
entry approvals and the list of approvers in the second stage handles header entry
approvals.

Each of the participant types has an associated editor that you use for configuration
tasks. The sequence in which the assignees are added indicates the execution
sequence.

To specify a different stage name or have a business requirement that requires you to
create additional stages, perform the following steps. Creating additional stages is an
advanced requirement that may not be necessary for your environment.

For more information about participant types, see Task Assignment and Routing.

29.4.1 How to Specify a Stage Name and Add Parallel and Sequential Blocks
The stage is named Stage1 by default, however you can change the name.

Assigning Task Participants

Configuring Human Tasks 29-17

To specify a stage name and add parallel and sequential blocks:

1. Double-click the name. The Edit dialog box displays.

2. In the Edit dialog box, enter the following details and click OK.

• Stage: The name of the stage.

• Non Repeating: Do not stage in parallel for each item in the collection.

• Repeat Stage in parallel for each item in a collection: Choose one collection
from the drop-down list to specify which collection type to use for the repeated
stages.

3. Drag and drop the type of participant from the Participant palette on the right onto
the stage.

4. Drag Stage from the Participant Palette on the right and drop it on the green dot of
the existing stage.

When you bring the new stage closer to the current stage, four green dots display
around the current stage. Choose the green dot that is to right to the current stage.
A second stage is added in parallel to the first stage, as shown in Figure 29-17.

Figure 29-17 Parallel Stage

5. Drag Stage from the Participant Palette on the right and drop it on the green dot of
the existing stage

When you bring the new stage below the current stage, four green dots display
around the current stage. Choose the green dot that is below the current stage.

A sequential stage is added below the selected block.

Assigning Task Participants

29-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 29-18 Sequential Stage

You create participant types within these blocks.

29.4.2 How to Assign Task Participants

To assign task participants:

1. In the Assignment section, perform one of the following tasks:

• Drag and drop Participants from the Components window onto Stage. The
first time you create a task participant, the box is labeled <Edit Participant>.

• Double-click the participant box.

The Edit Participant Type dialog box appears. This dialog box enables you to select
a specific participant type.

2. From the Type list, select a participant type shown in Figure 29-19.

Figure 29-19 Type List

3. See the section shown in Table 29-6 based on your selection.

Table 29-6 Participant Types

Participant
Type

For a Description of this
Participant Type, See...

For Instructions on Configuring this Participant Type,
See...

• Single
• Parallel
• Serial
• FYI

Task Assignment and Routing How to Configure the Single Participant Type

How to Configure the Parallel Participant Type

How to Configure the Serial Participant Type

How to Configure the FYI Participant Type

Assigning Task Participants

Configuring Human Tasks 29-19

29.4.3 How to Configure the Single Participant Type
Figure 29-20 shows the Edit Participant Type dialog box for the single participant type.
Figure 29-21 shows the expanded Advanced section.

Figure 29-20 Edit Participant Type — Single Type

Assigning Task Participants

29-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 29-21 Edit Participant Type — Advanced Tab

To be dynamically assigned to a task, a single participant can be selected from a
group, an application role, or a participant list.

To configure the single participant type:

1. In the Label field, enter a recognizable label for this participant. This label must be
unique among all the participants in the task definition (for example, Approval
Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type
dialog box for the single participant type are listed in Table 29-7:

Table 29-7 Edit Participant Type — Single Type

For This Subsection... See...

Participant List Creating a Single Task Participant List

Limit allocated duration to
(under the Advanced section)

Specifying a Time Limit for Acting on a Task

Allow this participant to invite
other participants (under the
Advanced section)

Inviting Additional Participants to a Task

Specify skip rule (under the
Advanced section)

Bypassing a Task Participant

Assigning Task Participants

Configuring Human Tasks 29-21

Table 29-7 (Cont.) Edit Participant Type — Single Type

For This Subsection... See...

Assignment Control (under the
Advanced section)

If this participant is associated with a particular
assignment context, then add that name here. Use the
Add button to add new entry. Use the drop-down
list to select the assignment context Name and
provide a value for this assignment context.

Let participants manually claim
task (under the General section)

Creating Participant Lists Consisting of Value-Based
Names and Expressions

Auto assign task to a single user/
group/application role (under the
General section)

Creating Participant Lists Consisting of Value-Based
Names and Expressions

29.4.3.1 Creating a Single Task Participant List

Users assigned to a participant list can act upon tasks. In a single-task participant list,
only one user is required to act on the task. You can specify either a single user or a list
of users, groups, or application roles for this pattern. If a list is specified, then all users
on the list are assigned the task. You can specify either that one of them must
manually claim and act upon the task, or that one user from the list is automatically
selected by an assignment pattern. When one user acts on the task, the task is
withdrawn from the task list of other assignees.

You can create several types of lists for the single user participant, and for the parallel,
serial, and FYI user participants, for example:

• Value-based name and expression lists

These lists enable you to statically or dynamically select users, groups, or
application roles as task assignees.

• Value-based management chain lists

Management chains are typically used for serial approvals through multiple users
in a management chain hierarchy. Therefore, this list is most likely useful with the
serial participant type. This is typically the case if you want all users in the
hierarchy to act upon the task. Management chains can also be used with the
single participant type. In this case, however, all users in the hierarchy get the task
assigned at the same time. As soon as one user acts on the task, it is withdrawn
from the other users.

For example, a purchase order is assigned to a manager. If the manager approves
the order, it is assigned to their manager. If that manager approves it, it is
assigned to their manager, and so on until three managers approve the order. If
any managers reject the request or the request expires, the order is rejected if you
specify an abrupt termination condition. Otherwise, the task flow continues to be
routed.

• Rule-based names and expression lists and management chain lists

Business rules enable you to create the list of task participants with complex
expressions. For example, you create a business rule in which a purchase order
request below $5000 is sent to a manager for approval. However, if the purchase
order request exceeds $5000, the request is sent to the manager of the manager for
approval. Two key features of business rules are facts and action types, which are
described in How to Specify Advanced Task Routing Using Business Rules.

Assigning Task Participants

29-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

When you select a participant type, a dialog box enables you to choose an option for
building your list of task participant assignees (users, groups, or application roles), as
shown in Figure 29-22. The three selections described above are available: Names and
expressions, Management Chain, and Rule-based.

Figure 29-22 Build a List of Participants

After selecting an option, you dynamically assign task participant assignees (users,
groups, or application roles) and a data type, as shown in Figure 29-23.

Figure 29-23 Assignment of Task Assignees

This section describes how to create these lists of participants.

Assigning Task Participants

Configuring Human Tasks 29-23

29.4.3.1.1 Creating Participant Lists Consisting of Value-Based Names and Expressions

Select a method for statically or dynamically assigning a user, group, or application
role as a task participant. If the participant list contains a user, the selecting a group or
an application role causes the dynamic assignment to fail.

For conceptual information, see the following:

• Users, groups, or application roles, see Task Assignment and Routing.

• Statically and dynamically assigning task participants, see Static_ Dynamic_ and
Rule-Based Task Assignment.

To create participant lists consisting of value-based names and expressions:

1. From the Build a list of participants using list, select Names and expressions.

2. Do either of the following:

• Select Let participants manually claim the task. If you select this option, then
the task is assigned to all participants in the list. An individual user from the
task assignees can then manually claim the task to work on it.

• Select Auto-assign to a single list, select User, Group, or Application Role,
then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it,
click Assignment Pattern. The Assignment Pattern dialog box appears.
Figure 29-24 shows an example of an Assignment Pattern dialog box.

Figure 29-24 Selecting and Configuring an Assignment Pattern

When you specify an application server connection in the Application Server
field, the assignment patterns are loaded into the Assignment Pattern list.
When you select one of the patterns from the Assignment Pattern list, a
description of your selection appears in the text box.

Assigning Task Participants

29-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

If you want the assignment pattern to consider all types of tasks, then select
Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern
considers only this task type when determining the selected user. For example,
to assign a vacation request task to the least busy user, and you select Use
tasks of all types to evaluate pattern criteria, then all assigned tasks are taken
into consideration when determining the least busy user. If you do not select
Use tasks of all types to evaluate pattern criteria, then only assigned vacation
request tasks are considered when determining the least busy user.

A particular pattern may enable you to specify input parameters that control
how the pattern is evaluated. For example, as shown in Figure 29-24, the Most
Productive pattern enables you to specify the Time Period (in days) over which
the productivity is calculated. Input values can be static, or can be dynamically
set by using an XPath expression. Not all patterns accept parameters.

3. From the Specify attributes using list, select Value-based.

The dialog box refreshes to display the fields shown in Figure 29-25.

Figure 29-25 Value-Based Names and Expressions

4. Click the Add icon and select a user, group, or application role as a task
participant.

The Identification Type column of the Participant Names table displays your
selection of user, group, or application role.

5. To change your selection in the Identification Type column, click it to invoke a
drop-down list.

6. In the Data Type column, click your selection to invoke a drop-down list to assign
a value:

• By Name: If your identification type is a user or group, click the Browse icon
(the dots) on the right to display a dialog box for selecting a user or group
configured through the identity service. The identity service enables the
lookup of user properties, roles, and group memberships. User information is
obtained from an LDAP server such as Oracle Internet Directory. You can use
wild cards (*) to search for IDs.

If your selection is an application role, click the Browse icon to display the
Select an Application Role dialog box for selecting an application role. To
search for application roles, you must first create a connection to the
application server. When searching, you must specify the application name to
find the name of the role. The task definition can refer to only one application

Assigning Task Participants

Configuring Human Tasks 29-25

name. You cannot use application roles from different applications as
assignees or task owners.

• By Expression: For a user, group, or application role, click the Browse icon to
dynamically select a task assignee in the Expression Builder dialog box. Use
the bpws:getVariableData(...) expression or the ids:getManager()
XPath function.

The Value column displays the value you specified.

7. To manually enter a value, click the field in the Value column and specify a value.

29.4.3.1.2 Creating Participant Lists Consisting of Value-Based Management Chains

Select a method for statically or dynamically assigning management chain parameters
as task participants.

For conceptual information about the following:

• Users, groups, or application roles, see Task Assignment and Routing.

• Statically and dynamically assigning task participants, see Static_ Dynamic_ and
Rule-Based Task Assignment.

• Management chains, see Creating a Single Task Participant List.

To create participant lists based on value-based management chains:

1. From the Build a list of participants using list, select Management Chain.

2. Do either of the following:

• Select Let participants manually claim the task. If you select this option, then
the task is assigned to all participants in the list. An individual user from the
task assignees can then manually claim the task to work on it.

• Select Auto-assign to a single list, select User, then select an assignment
pattern.

To find out more about each assignment pattern, and to select and configure it,
click Assignment Pattern. The Assignment Pattern dialog box appears.
Figure 29-24 shows an example of an Assignment Pattern dialog box.

When you specify an application server connection in the Application Server
field, the assignment patterns are loaded into the Assignment Pattern list.
When you select one of the patterns from the Assignment Pattern list, a
description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select
Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern
considers only this task type when determining the selected user. For example,
to assign a vacation request task to the least busy user, and you select Use
tasks of all types to evaluate pattern criteria, then all assigned tasks are taken
into consideration when determining the least busy user. If you do not select
Use tasks of all types to evaluate pattern criteria, then only assigned vacation
request tasks are considered when determining the least busy user.

A particular pattern may enable you to specify input parameters that control
how the pattern is evaluated. For example, as shown in Figure 29-24, the Most
Productive pattern enables you to specify the Time Period (in days) over which

Assigning Task Participants

29-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

the productivity is calculated. Input values can be static, or can be dynamically
set by using an XPath expression. Not all patterns accept parameters.

3. From the Specify attributes using list, select Value-based.

The dialog box refreshes to display the fields shown in Figure 29-26.

Figure 29-26 Value-Based Management Chains

4. See Step 4 through Step 7 of Creating a Single Task Participant List for instructions
on assigning a user, group, or application role to a list in the Starting Participant
table.

5. In the Top Participant list, select a method for assigning the number of task
participant levels:

• By Title: Select the title of the last (highest) approver in the management chain.

• XPath: Select to dynamically enter a top participant through the Expression
Builder dialog box.

6. In the Number of Levels list, select a method for assigning a top participant:

• By Number: Enter a value for the number of levels in the management chain to
include in this task. For example, if you enter 2 and the task is initially
assigned to user jcooper, both the user jstein (manager of jcooper) and
the user wfaulk (manager of jstein) are included in the list (apart from
jcooper, the initial assignee).

• XPath: Select to dynamically enter a value through the Expression Builder
dialog box.

Assigning Task Participants

Configuring Human Tasks 29-27

29.4.3.1.3 Creating Participant Lists Consisting of Rulesets

A ruleset provides a unit of execution for rules and for decision tables. In addition,
rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets
can be executed in order. This is called rule flow. The ruleset stack determines the
order. The order can be manipulated by rule actions that push and pop rulesets on the
stack. In rulesets, the priority of rules applies to specify the order of firing of rules in
the ruleset. Rulesets also provide an effective date specification that identifies that the
ruleset is always active, or that the ruleset is restricted based on a time and date range,
or a starting or ending time and date.

The method by which you create a ruleset is based on how you access it. This is
described in the following section.

Note:

You cannot update facts after the rule dictionary is created.

To specify participant lists based on rulesets:

Business rules can define the participant list. There are two options for using business
rules:

• Rules define parameters of a specific list builder (such as Names and Expressions
or Management Chain). In this case, the task routing pattern is modeled to use a
specific list builder. In the list builder, the parameters are listed as coming from
rules. Rules return the list builder of the same type as the one modeled in Oracle
JDeveloper.

1. From the Build a list of participants using list, select Names and expressions
or Management Chain.

2. From the Specify attributes using list, select Rule-based.

3. In the List Ruleset field, enter a ruleset name.

Figure 29-27 provides details.

Assigning Task Participants

29-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 29-27 Rulesets

4. Do either of the following:

– Select Let participants manually claim the task. If you select this option,
then the task is assigned to all participants in the list. An individual user
from the task assignees can then manually claim the task to work on it.

– Select Auto-assign to a single list, select User, Group, or Application
Role, then select an assignment pattern.

To find out more about each assignment pattern, and to select and
configure it, click Assignment Pattern. The Assignment Pattern dialog
box appears. Figure 29-24 shows an example of an Assignment Pattern
dialog box.

When you specify an application server connection in the Application
Server field, the assignment patterns are loaded into the Assignment
Pattern list. When you select one of the patterns from the Assignment
Pattern list, a description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then
select Use tasks of all types to evaluate pattern criteria. Otherwise, the
pattern considers only this task type when determining the selected user.
For example, to assign a vacation request task to the least busy user, and
you select Use tasks of all types to evaluate pattern criteria, then all
assigned tasks are taken into consideration when determining the least
busy user. If you do not select Use tasks of all types to evaluate pattern

Assigning Task Participants

Configuring Human Tasks 29-29

criteria, then only assigned vacation request tasks are considered when
determining the least busy user.

A particular pattern may enable you to specify input parameters that
control how the pattern is evaluated. For example, as shown in
Figure 29-24, the Most Productive pattern enables you to specify the Time
Period (in days) over which the productivity is calculated. Input values
can be static, or can be dynamically set by using an XPath expression.
Not all patterns accept parameters.

5. Click OK.

• Rules define the list builder and the list builder parameters. In this case, the list
itself is built using rules. The rules define the list builder and the parameters.

1. From the Build a list of participants using list, select Rule-based.

2. In the List Ruleset field, enter a ruleset name.

Figure 29-28 provides details.

Figure 29-28 Rulesets

3. Do either of the following:

– Select Let participants manually claim the task. If you select this option,
then the task is assigned to all participants in the list. An individual user
from the task assignees can then manually claim the task to work on it.

Assigning Task Participants

29-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

– Select Auto-assign to a single list, select User, Group, or Application
Role, then select an assignment pattern.

To find out more about each assignment pattern, and to select and
configure it, click Assignment Pattern. The Assignment Pattern dialog
box appears. Figure 29-24 shows an example of an Assignment Pattern
dialog box.

When you specify an application server connection in the Application
Server field, the assignment patterns are loaded into the Assignment
Pattern list. When you select one of the patterns from the Assignment
Pattern list, a description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then
select Use tasks of all types to evaluate pattern criteria. Otherwise, the
pattern considers only this task type when determining the selected user.
For example, to assign a vacation request task to the least busy user, and
you select Use tasks of all types to evaluate pattern criteria, then all
assigned tasks are taken into consideration when determining the least
busy user. If you do not select Use tasks of all types to evaluate pattern
criteria, then only assigned vacation request tasks are considered when
determining the least busy user.

4. Click OK.

Both options create a rule dictionary, if one is not already created, and preseed several
rule functions and facts for easy specifications of the participant list. In the rule
dictionary, the following rule functions are seeded to create participant lists:

• CreateResourceList

• CreateManagementChainList

The Task fact is asserted by the task service for basing rule conditions.

29.4.3.1.3.1 Viewing the Rule Dictionary

After the rule dictionary is created, the Oracle Business Rules Designer is displayed.

1. Model your rule conditions. In the action part, call one of the above functions to
complete building your lists. Figure 29-29 provides details.

Figure 29-29 Business Rules

The parameters for the rule functions are similar to the ones in Oracle JDeveloper
modeling. In addition to the configurations in Oracle JDeveloper, some additional
options are available in the Oracle Business Rules Designer for the following
attributes:

Assigning Task Participants

Configuring Human Tasks 29-31

• responseType: If the response type is REQUIRED, the assignee must act on
the task. Otherwise, the assignment is converted to an FYI assignment.

• ruleName: The rule name can create reasons for assignments.

• lists: This object is a holder for the lists that are built. Clicking this option
shows a pre-asserted fact Lists object to use as the parameter.

An example of rules specifying management chain-based participants is shown in
Figure 29-30.

Figure 29-30 Business Rules

If multiple rules are fired, the list builder created by the rule with the highest
priority is selected.

29.4.3.2 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on
a task. If the user, group, or role does not act in the time specified, the global escalation
and renewal policies that you set in the Deadlines section (known as the routing slip
level) of the Human Task Editor are applied. For example, if the global policy is set to
escalate the task and this participant does not act in the duration provided, the task is
escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:

1. Expand the Advanced section of the Edit Participant Type dialog box for the single
type, as shown in Figure 29-31.

Figure 29-31 Advanced Section of Edit Participant Type — Single Type

2. Select Limit allocated duration to.

3. Specify the amount of time.

For more information about setting the global escalation and renewal policies in the
Deadlines section of the Human Task Editor, see Escalating_ Renewing_ or Ending
the Task.

Assigning Task Participants

29-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

29.4.3.3 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before
routing it to the next assignee in this workflow. For example, assume the approval
workflow goes from James Cooper to John Steinbeck. If this option is checked, James
Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

This is also known as ad hoc routing. If this option is selected, Adhoc Route is added
to the Actions list in Oracle BPM Worklist at runtime.

Note:

Do not add adhoc assignees either above or below an FYI participant.

To invite additional participants to a task:

1. Expand the Advanced section of the Edit Participant Type dialog box for the single
type, as shown in Figure 29-31.

2. Select Allow this participant to invite other participants.

29.4.3.4 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific
condition is satisfied. For example, if a user submits a business trip expense report that
is under a specific amount, no approval is required by their manager.

To bypass a task:

1. Expand the Advanced section of the Edit Participant Type dialog box for the single
type, as shown in Figure 29-31.

2. Select Specify skip rule.

This action displays an icon for accessing the Expression Builder dialog box for
building a condition.

The expression to bypass a task participant must evaluate to a boolean value. For
example, /task:task/task:payload/order:orderAmount < 1000 is a valid XPath
expression for skipping a participant.

For more information about creating dynamic rule conditions, see How to Specify
Advanced Task Routing Using Business Rules.

29.4.4 How to Configure the Parallel Participant Type
The parallel participant type is used when multiple users, working in parallel, must
act simultaneously, such as in a hiring situation when multiple users vote to hire or
reject an applicant. You specify the voting percentage that is needed for the outcome
to take effect, such as a majority vote or a unanimous vote. In case of parallel routing
with parallel participants, the voting and the percentage rule takes precedence to
decide the final outcome of the parent task.

For example, a business process collects the feedback from all interviewers in the
hiring process, consolidates it, and assigns a hire or reject request to each of the
interviewers. At the end, the candidate is hired if the majority of interviewers vote for
hiring instead of rejecting.

Assigning Task Participants

Configuring Human Tasks 29-33

Figure 29-32 and Figure 29-33 display the upper and lower sections of the Parallel
dialog box.

Figure 29-32 Edit Participant Type — Parallel Type (Upper Section of Dialog)

Figure 29-33 Edit Participant Type — Parallel Type (Lower Section of Dialog)

To assign participants to the parallel participant type:

1. In the Label field, enter a recognizable label for this participant. This label must be
unique among all the participants in the task definition (for example, Approval
Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type
dialog box for the parallel participant type are listed in Table 29-8:

Table 29-8 Edit Participant Type — Parallel Type

For This Subsection... See...

Vote Outcome Specifying the Voting Outcome

Participant List Creating a Parallel Task Participant List

Assigning Task Participants

29-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 29-8 (Cont.) Edit Participant Type — Parallel Type

For This Subsection... See...

Limit allocated duration to
(under the Advanced section)

Specifying a Time Limit for Acting on a Task

Allow this participant to invite
other participants (under the
Advanced section)

Inviting Additional Participants to a Task

Specify skip rule (under the
Advanced section)

Bypassing a Task Participant

Add Assignment Context (under
the Advanced section)

If this participant is associated with a particular
assignment context, then add that name here. Use the
Add button to add a new entry. Use the drop-down
list to select an assignment context Name and to
provide a value for this assignment context.

29.4.4.1 Specifying the Voting Outcome

You can specify a voted-upon outcome that overrides the default outcome selected in
the Default Outcome list. This outcome takes effect if the required percentage is
reached. Outcomes are evaluated in the order listed in the table.

To specify group voting details:

1. Go to the Vote Outcome section of the Edit Participant Type dialog box for the
parallel type.

2. From the list in the Voted Outcomes column, select an outcome for the task (for
example, Any, ACCEPT, REJECT, or any other outcome specified in How to
Specify a Task Outcome).

The Any outcome enables you to determine the outcome dynamically at runtime.
For example, if you select Any and set the outcome percentage to 60, then at
runtime, whichever outcome reaches 60% becomes the final voted outcome. If 60%
of assignees vote to reject the outcome, then it is rejected.

3. From the list in the Outcome Type column, select a method for determining the
outcome of the final task.

• By Expression: Dynamically specify the details with an XPath expression.

• By Percentage: Specify a percentage value that determines when the outcome
of this task takes effect.

4. From the list in the Value column, specify a value based on your selection in Step 3.

• If you selected By Expression, click the Browse icon to the right of the field to
display the Expression Builder dialog box for creating an expression.

• If you selected By Percentage, enter a percentage value required for the
outcome of this task to take effect (for example, a majority vote (51) or a
unanimous vote (100)). For example, assume there are two possible outcomes
(ACCEPT and REJECT) and five subtasks. If two subtasks are accepted and
three are rejected, and the required acceptance percentage is 50%, the outcome
of the task is rejected. Figure 29-34 provides details.

Assigning Task Participants

Configuring Human Tasks 29-35

This functionality is nondeterministic. For example, selecting a percentage of
30% when there are two subtasks does not make sense.

Figure 29-34 Vote Outcomes Section

5. Click the Add icon to specify additional outcomes.

6. In the Default Outcome list, select the default outcome or enter an XPath
expression for this task to take effect if the consensus percentage value is not
satisfied. This happens if there is a tie or if all participants do not respond before
the task expires. Seeded and custom outcomes that you entered in the Outcomes
dialog box in How to Specify a Task Outcome display in this list.

29.4.4.2 Creating a Parallel Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several
types of lists:

• Value-based name and expression lists

• Value-based management chain lists

• Rule-based names and expression lists

• Rule-based management chain lists

• Rule-based links

For information about creating these lists of participants, see section Creating a Single
Task Participant List.

29.4.4.3 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on
a task. If the user, group, or role does not act in the time specified, the global escalation
and renewal policies that you set in the Deadlines section (known as the routing slip
level) of the Human Task Editor are applied. For example, if the global policy is set to
escalate the task and this participant does not act in the duration provided, the task is
escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:

1. In the Advanced section of the Edit Participant Type dialog box for the parallel
type, click the Advanced tab to expand the section shown in Figure 29-33.

2. Select Limit allocated duration to.

3. Specify the amount of time.

For more information about setting the global escalation and renewal policies in the
Deadlines section of the Human Task Editor, see Escalating_ Renewing_ or Ending
the Task.

Assigning Task Participants

29-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

29.4.4.4 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before
routing it to the next assignee in this workflow. For example, assume the approval
workflow goes from James Cooper to John Steinbeck. If this option is checked, James
Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:

1. In the Advanced section of the Edit Participant Type dialog box for the parallel
type, click the Advanced icon to expand the section (if not expanded).

2. Select Allow this participant to invite other participants.

29.4.4.5 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific
condition is satisfied. For example, if a user submits a business trip expense report that
is under a specific amount, no approval is required by their manager.

To bypass a task participant:

1. In the Edit Participant Type dialog box for the parallel type, select the Specify skip
rule check box.

This action displays an icon for accessing the Expression Builder dialog box for
building a condition. The expression must evaluate to a boolean value.

For information about a valid XPath expression for skipping a participant, see
Bypassing a Task Participant.

29.4.5 How to Configure the Serial Participant Type
This participant type enables you to create a list of sequential participants for a
workflow. For example, if you want a document to be reviewed by John, Mary, and
Scott in sequence, use this participant type. For the serial participant type, they can be
any list of users or groups.

Figure 29-35 displays the Serial dialog box. Figure 29-36 shows the expanded
Advanced section.

Assigning Task Participants

Configuring Human Tasks 29-37

Figure 29-35 Edit Participant Type — Serial Type

Assigning Task Participants

29-38 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 29-36 Edit Participant Type — Serial Type (Advanced Tab)

To configure the serial participant type:

1. In the Label field, enter a recognizable label for this participant. This label must be
unique among all the participants in the task definition (for example, Approval
Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type
dialog box for the serial participant type are listed in Table 29-9.

Table 29-9 Edit Participant Type — Serial Type

For This Subsection... See...

Participant List Creating a Serial Task Participant List

Limit allocated duration to
(under the Advanced section)

Specifying a Time Limit for Acting on a Task

Note that if you specify the task expiry time at the
level of a serial participant, then, when that time
expires, the task does not move to the next
participant in the series. Rather, the entire task
expires.

Allow this participant to invite
other participants (under the
Advanced section)

Inviting Additional Participants to a Task

Assigning Task Participants

Configuring Human Tasks 29-39

Table 29-9 (Cont.) Edit Participant Type — Serial Type

For This Subsection... See...

Specify skip rule (under the
Advanced section)

Bypassing a Task Participant

Assignment Context (under the
Advanced section)

If this participant is associated with a particular
assignment context, then add that name here. Use the
Add button to add a new entry. Use the drop-down
list to select assignment context Name and to provide
a value for this assignment context.

29.4.5.1 Creating a Serial Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several
types of lists:

• Value-based name and expression lists

• Value-based management chain lists

• Rule-based names and expression lists

• Rule-based management chain lists

• Rule-based lists

See section Creating a Single Task Participant List for instructions on creating these
lists of participants.

29.4.5.2 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on
a task. If the user, group, or role does not act in the time specified, the global escalation
and renewal policies that you set in the Deadlines section (known as the routing slip
level) of the Human Task Editor are applied. For example, if the global policy is set to
escalate the task and this participant does not act in the duration provided, the task is
escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:

1. In the Advanced tab of the Edit Participant Type dialog box for the serial type, click
the Advanced icon to expand the section shown in Figure 29-35.

2. Click Limit allocated duration to.

3. Specify the amount of time.

Note:

If you specify the task expiry time at the level of a serial participant, then,
when that specified time limit is reached, the task does not move to the next
participant in the series. Rather, the entire task expires.

For more information about setting the global escalation and renewal policies in the
Deadlines section of the Human Task Editor, see Escalating_ Renewing_ or Ending
the Task.

Assigning Task Participants

29-40 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

29.4.5.3 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before
routing it to the next assignee in this workflow. For example, assume the approval
workflow goes from James Cooper to John Steinbeck. If this option is checked, James
Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:

1. In the Advanced section of the Edit Participant Type dialog box for the serial type,
click the Advanced icon to expand the section (if not already expanded).

2. Select Allow this participant to invite other participants.

Note:

For the serial participant type, additional participants can be invited as
follows:

• Globally specifying that the ad hoc participants can be invited at anytime.
In this case, even in a sequential workflow, approvers can invite other
participants at any level in the sequential workflow.

• Specifying that an ad hoc invitation of other participants can be done only
in specific points in the workflow. In this case, other ad hoc participants
are invited only when a series is complete.

29.4.5.4 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific
condition is satisfied. For example, if a user submits a business trip expense report that
is under a specific amount, no approval is required by their manager.

In the Advanced section of the Edit Participant Type dialog box for the serial type,
select the Specify skip rule check box to bypass a task participant. This action displays
an icon for accessing the Expression Builder dialog box for building a condition. The
expression must evaluate to a boolean value.

For more information about a valid XPath expression for skipping a participant, see
Bypassing a Task Participant.

29.4.6 How to Configure the FYI Participant Type
This participant type is used when a task is sent to a user, but the business process
does not wait for a user response; it just continues. FYIs cannot directly impact the
outcome of a task, but in some cases can provide comments or add attachments.

For example, a magazine subscription is due for renewal. If the user does not cancel
the current subscription before the expiration date, the subscription is renewed. This
user is reminded weekly until the request expires or the user acts on it.

Figure 29-37 displays the Edit Participant Type dialog box for the FYI type. This dialog
box also includes a Participants Exclusion List at the bottom that is not displayed in
Figure 29-37.

Assigning Task Participants

Configuring Human Tasks 29-41

Figure 29-37 Edit Participant Type — FYI Type

To configure the FYI participant type, in the Label field, enter a recognizable label for
this participant. This label must be unique among all the participants in the task
definition (for example, Approval Manager, Primary Reviewers, and so on).

29.4.6.1 Creating an FYI Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several
types of lists:

• Value-based name and expression lists

• Value-based management chain lists

• Rule-based names and expression lists

• Rule-based management chain lists

• Rule-based lists

See section Creating a Single Task Participant List for instructions on creating these
lists of participants.

29.5 Selecting a Routing Policy
You can select a routing policy in the Human Task Editor.

After you configure a participant type and are returned to the Human Task Editor, use
the links on the top right corner as shown in Figure 29-38.

Selecting a Routing Policy

29-42 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 29-38 Human Task Editor — Assignment Section

Table 29-10 describes the routing policy methods provided.

Table 29-10 Routing Policy Method

Routing Policy Selection Use This Policy In Environments
Where...

Section

• Allow all
participants to
invite other
participants

A participant can select users or groups as
the next assignee (ad hoc) when approving
the task.

Allow All Participants to Invite Other
Participants or Edit New Participants

• Complete task when
a participant
chooses: <outcome>

A participant in a task can accept or reject
it, thus ending the workflow without the
task being sent to any other participant. For
example, a manager rejects a purchase
order, meaning that purchase order is not
sent to their manager for review.

Stopping Routing of a Task to Further
Participants

• Enable early
completion in
parallel subtasks

Note: This option is for environments in
which you have multiple stages and
participants working in parallel.

Participants perform subtasks in parallel,
and one group's rejection or approval of a
subtask does not cause the other group's
subtask to also be rejected or approved.

Enabling Early Completion in Parallel
Subtasks

• Complete parent
tasks of early
completing subtasks

Note: This option is for environments in
which you have multiple stages and
participants working in parallel.

Participants perform subtasks in parallel,
and one group's rejection or approval of a
subtask causes the other group's subtask to
also be rejected or approved.

Completing Parent Subtasks of Early
Completing Subtasks

Selecting a Routing Policy

Configuring Human Tasks 29-43

Table 29-10 (Cont.) Routing Policy Method

Routing Policy Selection Use This Policy In Environments
Where...

Section

Use Advanced Rules The participants to whom the task is routed
are determined by the business rule logic
that you model. For example, a loan
application task is designed to go through
a loan agent, their manager, and then the
senior manager. If the loan agent approves
the loan, but their manager rejects it, the
task is returned to the loan agent.

How to Specify Advanced Task
Routing Using Business Rules

Use External Routing The participants in a task are dynamically
determined. For example, a company's
rules may require the task participants to
be determined and then retrieved from a
back-end database during runtime.

How to Use External Routing

Assignment tab A participant is assigned a failed task for
the purposes of recovery.

How to Configure the Error Assignee
and Reviewers

29.5.1 How to Customize Tasks Routing
Tasks are reviewed by all the selected participants in the order they appear. This is the
default routing. However, you can add some Adhoc or Dynamic routing rules.

Dynamic and Adhoc Routing Rules

Dynamic and Adhoc Routing help you with the following:

• Allowing all participants to invite other participants

• Completing a task when a participant chooses

• Enabling early completion in parallel subtasks

• Completing parent subtasks of early completing subtasks

29.5.1.1 Exclude Task Creator from Approval List
Before you create the task and create routing rules for the tasks, you can exclude the
task creator from the list of approvers by adding the creator to the excluded
participant list. At the same time, you can assign to the task to the task creator’s
manager.

To exclude the task creator from the participant list and add task creator’s manager to
the approval list:

1. Click the Configure icon on the top.

Task Properties screen appears.

2. Select the Skip Creator from Approval List option.

3. Select the Assign to Creator’s Manager option.

4. Click OK.

Selecting a Routing Policy

29-44 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• When you select only the Skip Creator from Approval List option:

– If there are multiple users in the task and one of the users is the task creator,
then the assignment is skipped for the task creator and assigned to other
users.

– If there is only one user and the user is the task creator, then the task moves to
completed state. There is no assignee for the task.

• When you select both the Skip Creator from Approval List and Assign to
Creator’s Manager options:

– If there are multiple users in the task and one of the users is the task creator,
then the creator’s manager is fetched from the identity store and the task is
assigned to the manager along with other users.

– If there is only one user in the task and the user is the task creator, then the
creator’s manager is fetched from the identity store and the task is assigned to
the manager.

29.5.1.2 Allow All Participants to Invite Other Participants or Edit New Participants

This check box is the equivalent of the ad hoc workflow pattern of pre-10.1.3 Oracle
BPEL Process Manager releases. This applies when there is at least one participant. In
this case, each user selects users or groups as the next assignee when approving the
task.

To allow all participants to invite other participants:

1. Click Adhoc Routing.

2. Select the Allow all participants to invite other participants check box for this task
assignee to invite other participants into the workflow before routing it to the next
assignee in this workflow.

3. Select the Allow participants to edit new participants check box for this task
assignee to edit other adhoc participants that were added to the routing slip.

Note:

Do not add adhoc assignees either above or below an FYI participant.

29.5.1.3 Allow Initiator to Add Participants

In the Adhoc Routing screen, select the Allow all initiator to add participants check
box so this task initiator can invite other participants into the workflow before routing
to the next assignee in this workflow.

29.5.1.4 Stopping Routing of a Task to Further Participants

You can specify conditions under which a task can be marked complete early,
regardless of the other participants in the workflow.

For example, assume an expense report goes to the manager, and then the director. If
the first participant (manager) rejects it, you can end the workflow without sending it
to the next participant (director).

Selecting a Routing Policy

Configuring Human Tasks 29-45

To abruptly complete a condition:

1. Click Early Completion.

2. Select the Complete task when a participant chooses: <outcome> check box.

The Abrupt Completion Details screen appears. There are two methods for
specifying the abrupt completion of a task:

• Outcomes

• XPath expression routing condition

If outcomes are specified, any time the selected task outcome occurs, the task
completes. If both outcome and routing condition are specified, the workflow
service performs a logical OR operation on the two.

3. Select appropriate outcomes and click the > button, as shown in Figure 29-39. To
select all, click the >> button.

Figure 29-39 Abrupt Completion Details

4. To the right of the Routing Condition field, click the icon to display the Expression
Builder dialog box for dynamically creating a condition under which to complete
this task early. For example, if a user submits a business trip expense report that is
under a specific amount, no approval is required by their manager.

An early completion XPath expression is not evaluated until at least one user has
acted upon the task.

5. To enable early completion, click Enable early completion in parallel with
subtasks. For more information, see Enabling Early Completion in Parallel
Subtasks.

6. To enable early completion of parent tasks, click Complete parent tasks of early
completing subtasks. For more information, see Completing Parent Subtasks of
Early Completing Subtasks.

7. Click OK to return to the Human Task Editor.

You can click the icon to the right of the Complete task when a participant
chooses: <outcome> check box to edit this information.

Selecting a Routing Policy

29-46 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

29.5.1.5 Enabling Early Completion in Parallel Subtasks

You can use this option in the following environments:

• Multiple stages and groups of participants perform subtasks in parallel.

• A participant in one group approves or rejects a subtask, which causes the other
participants in that same group to stop acting upon the task. However, this does
not cause the other parallel group to stop acting upon subtasks. That group
continues taking actions on tasks.

For example, assume there are two parallel subgroups, each in separate stages. One
group acts upon lines of a purchase order. The other group acts upon headers of the
same purchase order. If participant ApproveLines.Participant2 of the first group
rejects a line, all other task participants in the first group stop acting upon tasks.
However, the second parallel group continues to act upon headers in the purchase
order. In this scenario, the entire task does not complete early. Figure 29-40 provides
details.

Figure 29-40 Early Completion of Parallel Subtasks

29.5.1.6 Completing Parent Subtasks of Early Completing Subtasks

You can use this option in the following environments:

• Multiple stages and groups of participants perform subtasks in parallel.

• A participant in one group approves or rejects a subtask, which causes the other
participants in that same group to stop acting upon the task. This also causes the
other parallel group to stop acting upon subtasks.

For example, assume there are two parallel subgroups, each in separate stages, as
shown in Figure 29-40. One group acts upon lines of a purchase order. The other
group acts upon headers of the same purchase order. If participant
ApproveLines.Participant2 of the first group rejects a line, all other task participants
in the first group stop acting upon tasks. In addition, the second parallel group stops
acting upon headers in the purchase order. In this scenario, the entire task completes
early.

Selecting a Routing Policy

Configuring Human Tasks 29-47

29.5.2 How to Specify Advanced Task Routing Using Business Rules
Use advanced routing rules to create complex workflow routing scenarios. The
participant types (single, parallel, serial, and FYI) are used to create a linear flow from
one set of users to another with basic conditions such as abrupt termination, skipping
assignees, and so on. However, there is often a need to perform more complex back
and forth routing between multiple individuals in a workflow. One option is to use
the BPEL process as the orchestrator of these tasks. Another option is to specify it
declaratively using business rules. This section describes how you can model such
complex interactions by using business rules with the Human Task Editor.

29.5.2.1 Introduction to Advanced Task Routing Using Business Rules

You can define state machine routing rules using Oracle Business Rules. This action
enables you to create Oracle Business Rules that are evaluated:

• After a routing slip task participant sets the outcome of the task

• Before the task is assigned to the next routing slip participant

This action enables you to override the standard task routing slip method described in
How to Route Tasks to All Participants in the Specified Order and build complex
routing behavior into tasks.

Using Oracle Business Rules, you define a set of rules (called a ruleset) that relies on
business objects, called facts, to determine which action to take.

29.5.2.2 Facts

A fact is an object with certain business data. Each time a routing slip assignee sets the
outcome of a task, instead of automatically routing the task to the next assignee, the
task service performs the following steps:

• Asserts facts into the decision service

• Executes the advanced routing ruleset

Rules can test values in the asserted facts and specify the routing behavior by setting
values in a TaskAction fact type.

Table 29-11 describes the fact types asserted by the task service.

Table 29-11 Fact Types Asserted By the Task Service

Fact Type Description

Task This fact contains the current state of the workflow task instance. All task
attributes can be tested against it. The task fact also contains the current
task payload. This fact enables you to construct tests against payload
values and task attribute values.

Selecting a Routing Policy

29-48 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 29-11 (Cont.) Fact Types Asserted By the Task Service

Fact Type Description

PreviousOutco
me

This fact describes the previous task outcome and the assignee who set
the outcome. The previous outcome fact contains the following attributes:

• actualParticipant: The name of the participant who set the task
outcome (for example, jstein)

• logicalParticipant: The logical name (or label) for the routing
slip participant responsible for setting the task outcome (for
example, assignee1)

• outcome: The outcome that was set (for example, approve or reject)
• level: If the previous participant was part of a management chain,

then this attribute records their level in the chain, where 1 is the first
level in the chain. For other participant types, the value is -1.

• totalNumberOfApprovals: The total number of users that have
now set the outcome of the task.

TaskAction This fact is not intended for writing rule tests against it. Instead, it is
updated by the ruleset, and returned to the task service to indicate how
the task should be routed. Rules should not directly update the
TaskAction fact. Instead, they should call one of the RL functions
described in Action Types. These functions handle updating the
TaskAction fact with the appropriate values.

Some fact types can only be used in workflow routing rules, while others can only be
used in workflow participant rules. Table 29-12 describes where you can use each
type.

Table 29-12 Use of Fact Types

Fact Type Can Use in Routing Rules? Can Use in Participant Rules?

Task Yes Yes

PreviousOutcome Yes No

TaskAction Yes No

Lists No Yes

RoutingSlipObjectFac
tory

No Yes

ResourceListType No Yes

ManagementChainListT
ype

No Yes

ResourceType No Yes

ParameterType No Yes

AutoActionType No Yes

ResponseType No Yes

Selecting a Routing Policy

Configuring Human Tasks 29-49

29.5.2.3 Action Types

To instruct the task service on how to route the task, rules can specify one of many
task actions. This is done by updating the TaskAction fact asserted into the rule
session. However, rules should not directly update the TaskAction fact. Instead,
rules should call one of the action RL functions, passing the TaskAction fact as a
parameter. These functions handle the actual updates to the fact. For example, to
specify an action of go forward, you must add a call GO_FORWARD(TaskAction) to
the action part of the rule.

Each time a state machine routing rule is evaluated, the rule takes one of the actions
shown in Table 29-13:

Table 29-13 Business Rule Actions

Action Description Parameters

GO_FORWARD Goes to the next participant in the routing
slip (default behavior).

None

PUSHBACK Goes back to the previous participant in
the routing slip (the participant before the
one that just set the task outcome).

Note: Pushback is designed to work with
single approvers and not with group
votes. Pushback from a stage with group
vote (or parallel) scenario to another stage
is not allowed. Similarly, you cannot
push back from a single assignee to a
group vote (or parallel) scenario.

None

GOTO Goes to a specific participant in the
routing slip.

participant'

A string that identifies the
label of the participant (for
example, Approver1) to
which to route the task.

COMPLETE Finishes routing and completes the task.
The task is marked as completed, and no
further routing is required.

None

ESCALATE Escalates and reassigns the task according
to the task escalation policy (usually to
the manager of the current assignee).

None

29.5.2.4 Sample Ruleset

This section describes how to use rules to implement custom routing behavior with a
simple example. A human workflow task is created for managing approvals of
expense requests. The outcomes for the task are approve and reject. The task definition
includes an ExpenseRequest payload element. One of the fields of
ExpenseRequest is the total amount of the expense request. The routing slip for the
task consists of three single participants (assignee1, assignee2, and assignee3).

By default, the task gets routed to each of the assignees, with each assignee choosing
to approve or reject the task.

Instead of this behavior, the necessary routing behavior is as follows:

Selecting a Routing Policy

29-50 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• If the total amount of the expense request is less than $100, approval is only
required from one of the participants. Otherwise, it must be approved by all three.

• If an expense request is rejected by any of the participants, it must be returned to
the previous participant for re-evaluation. If it is rejected by the first participant,
the expense request is rejected and marked as completed.

This behavior is implemented using the following rules. When a rule dictionary is
generated for advanced routing rules, it is created with a template rule that
implements the default GO_FORWARD behavior. You can edit this rule, and make
copies of the template rule by right-clicking and selecting Copy Rule in the Oracle
Business Rules Designer.

If the amount is greater than $100 and the previous assignee approved the task, it is
not necessary to provide a rule for routing a task to each of the assignees in turn. This
is the default behavior that is reverted to if none of the rules in the ruleset are
triggered:

• Early approval rule (Figure 29-41):

Figure 29-41 Early Approval Rule

• Push back on the rejected rule (Figure 29-42):

Figure 29-42 Push Back On The Rejected Rule

• Complete the Assignee1 rejected rule (Figure 29-43):

Selecting a Routing Policy

Configuring Human Tasks 29-51

Figure 29-43 Completion of the Assignee1 Rejected Rule

For information about iterative design, see the workflow-106-IterativeDesign
sample available with the Oracle SOA Suite samples.

29.5.2.5 Linked Dictionary Support

For human workflow, business rule artifacts are now stored in two rules dictionaries.
This is useful for scenarios in which you must customize your applications. For
example, you create and ship version 1 of an application to a customer. The customer
then customizes the rulesets in the application with Oracle SOA Composer. Those
customizations are now stored in a different rules dictionary than the base rules
dictionary. The rules dictionary that stores the customized rulesets links with the rules
in the base dictionary. When you later ship version 2 of the application, the base rule
dictionary may contain additional changes introduced in the product. The ruleset
customization changes previously performed by the customer are preserved and
available with the new changes in the base dictionary. When an existing application
containing a task using rules is opened, if the rules are in the old format using one
dictionary, they are automatically upgraded and divided into two rules dictionaries:

• Base dictionary

• Custom dictionary

For more information about customizations, see Customizing SOA Composite
Applications .

29.5.2.6 Creating Advanced Routing Rules

To create advanced routing rules:

1. In the Assignment section, click Dynamic Routing Rules.

The Use Advanced Rules edit box displays.

2. Click Create Rules.

This starts the Oracle Business Rules Designer with a pre-seeded repository
containing all necessary fact definitions, as shown in Figure 29-44. A decision
service component is created for the dictionary, and is associated with the task
service component.

Selecting a Routing Policy

29-52 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 29-44 Human Task Rule Dictionary

3. Define state machine routing rules for your task using Oracle Business Rules.

This automatically creates a fully-wired decision service in the human task and the
associated rule repository and data model.

To edit the business rules, click the Edit icon, next to the Rules Dictionary field.

For more information about business rules, see the following documentation:

• Sample Ruleset for an example human task ruleset

• Designing Business Rules with Oracle Business Process Management

• Rules Language Reference for Oracle Business Process Management

29.5.3 How to Use External Routing
You configure an external routing service that dynamically determines the
participants in the workflow. If this routing policy is specified, all other participant
types are ignored. It is assumed that the external routing service provides a list of
participant types (single approver, serial approver, parallel approver, and so on) at
runtime to determine the routing of the task.

Use this option if you do not want to use any of the routing rules to determine task
assignees. In this case, all the logic of task assignment is delegated to the external
routing service.

Note:

If you select Use External Routing in the Configure Assignment dialog box,
specify a Java class, and click OK to exit, the next time you open this dialog
box, the other two selections (Route task to all participants, in order
specified and Use Advanced Rules) no longer appear in the drop-down list.
To access all three selections again, you must delete the entire assignment.

To use external routing

1. Drag and drop External Routing Service from the Workflow Editor Components
window.

The Use External Routing edit box displays.

2. Click the Edit icon.

Selecting a Routing Policy

Configuring Human Tasks 29-53

The External Routing dialog box appears, as shown in Figure 29-45.

Figure 29-45 Use External Routing Dialog

3. In the Class Name field, enter the fully qualified class file name (for example, the
org.mycompany.tasks.RoutingService class name). This class must
implement the following interface:

oracle.bpel.services.workflow.task.IAssignmentService

4. Add name and pair value parameters by name or XPath expression that can be
passed to the external service, as shown in Table 29-14.

Table 29-14 External Routing

Field Description

By Name Enter a name in the Name field and a value in the Value
field.

By Expression Enter a name and dynamically enter a value by clicking the
icon to the right of the field to display the Expression Builder
dialog box.

5. Click the Add icon to add additional name and pair value parameters.

29.5.4 How to Configure the Error Assignee and Reviewers
Tasks can error for reasons such as incorrect assignments. When such errors occur, the
task is assigned to the error assignee, who can perform corrective actions. Recoverable
errors are as follows:

• Invalid user and group for all participants

• Invalid XPath expressions that are related to assignees and expiration duration

• Escalation on expiration errors

• Evaluating escalation policy

Selecting a Routing Policy

29-54 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Evaluating renewal policy

• Computing a management chain

• Evaluating dynamic assignment rules. The task is not currently in error, but is still
left as assigned to the current user and is therefore recoverable.

• Dynamic assignment cyclic assignment (for example, user A > user B > user A).
The task is not currently in error, but is still left as assigned to the last user in the
chain and is therefore recoverable.

The following errors are not recoverable. In these cases, the task is moved to the
terminating state ERRORED.

• Invalid task metadata

• Unable to read task metadata

• Invalid GOTO participant from state machine rules

• Assignment service not found

• Any errors from assignment service

• Evaluating custom escalate functions

• Invalid XPath and values for parallel default outcome and percentage values

During modeling of workflow tasks, you can specify error assignees for the workflow.
If error assignees are specified, they are evaluated and the task is assigned to them. If
no error assignee is specified at runtime, an administration user is discovered and is
assigned the alerted task. The error assignee can perform one of the following actions:

• Ad hoc route

Route the task to the actual users assigned to the task. Ad hoc routing allows the
task to be routed to users in sequence, parallel, and so on. Note: Do not add adhoc
assignees either above or below a FYI participant.

• Reassign

Reassign the task to the actual users assigned to this task

• Error task

Indicate that this task cannot be rectified.

If there are any errors in evaluating the error assignees, the task is marked as being in
error.

This dialog box enables you to specify the users or groups to whom the task is
assigned if an error in assignment has occurred.

To configure the error assignee:

1. Click the Add icon to assign reviewers or error assignees, as shown in Figure 29-46.

Selecting a Routing Policy

Configuring Human Tasks 29-55

Figure 29-46 Error Assignment Details

2. Click the Add icon and select a user, group, or application role to participate in this
task.

The Identification Type column of the Starting Participant table displays your
selection of user, group, or application role.

3. See Step 5 through 7 of Creating a Single Task Participant List for instructions on
selecting a user, group, or application role.

4. If you are using parallel participant types, you can specify where to store the
subtask payload with the following options.

• Use server settings

The SharePayloadAcrossAllParallelApprovers System MBean Browser
boolean property in Oracle Enterprise Manager Fusion Middleware Control
determines whether to share the payload of subtasks in the root task. By
default, this property is set to true. If set to true, the All task participants share
the same payload (better performance and less storage space) option is used. If
this property is set to false, the Each parallel participant has a local copy of
the payload option is used. To change the settings, see How to Change Server
Settings.

• All task participants share the same payload (better performance and less
storage space)

The payload for the subtasks is stored in their root task. This situation means
that the payload of the root task is shared across all its subtasks. Internally, this
option provides better performance and storage space consumption. Less
storage space is consumed because the payload of the root task is shared across
all its subtasks.

• Each parallel participant has a local copy of the payload

Each subtask has its own copy of the payload. Internally, this option provides
lesser performance and storage space consumption because more storage space
is consumed.

5. Click OK.

Selecting a Routing Policy

29-56 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For more information about users, groups, or application roles, see Task Assignment
and Routing.

29.5.4.1 How to Change Server Settings

To change the default setting of SharePayloadAcrossAllParallelApprovers property,
perform the following steps:

1. Right-click soa-infra and select Administration > System MBean Browser.

2. Expand Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowConfig > human-workflow.

3. Click SharePayloadAcrossAllParallelApprovers.

4. Change this property in the list, and click Apply.

29.6 Specifying Multilingual Settings and Style Sheets
You can specify resource bundles to displaying task details in different languages and
custom style sheets.

The Presentation section shown in Figure 29-47 enables you to specify resource
bundles for displaying task details in different languages in Oracle BPM Worklist and
WordML and custom style sheets for attachments.

Figure 29-47 Presentation Section

29.6.1 How to Specify WordML and Other Style Sheets for Attachments

To specify WordML style sheets for attachments:

1. In the Stylesheet for Attachments list of the Presentation section, select one of the
following options:

• Word ML: This option dynamically creates Microsoft Word documents for
sending as email attachments using a WordML XSLT style sheet. The XSLT
style sheet is applied on the task document.

• Other: This option creates email attachments using an XSLT style sheet. The
XSLT style sheet is applied on the task document.

2. Click the Search icon to select the style sheet as an attachment.

Specifying Multilingual Settings and Style Sheets

Configuring Human Tasks 29-57

29.6.2 How to Specify Multilingual Settings
You can specify resource bundles for displaying task details in different languages in
Oracle BPM Worklist. Resource bundles are supported for the following task details:

• Displaying the value for task outcomes in plain text or with the message(key)
format.

• Making email notification messages available in different languages. At runtime,
you specify the hwf:getTaskResourceBundleString(taskId, key,
locale?) XPath extension function to obtain the internationalized string from
the specified resource bundle. The locale of the notification recipient can be
retrieved with the function
hwf:getNotificationProperty(propertyName).

Resource bundles can also simply be property files. For example, a resource bundle
that configures a display name for task outcomes can look as follows:

• APPROVE=Approve

• REJECT=Reject

To specify multilingual settings:

1. In the Presentation section, click the Add icon across from Resource Bundle.

The Resource Details dialog box shown in Figure 29-48 appears.

Figure 29-48 Resource Details Dialog

2. In the Resource Name field, enter the name of the resource used in the resource
bundle. This should be a .properties-based resource bundle file.

3. In the Resource Location field, click the Search icon to select the JAR or ZIP
resource bundle file to use. The resource bundle is part of your system archive
(SAR) file.

If the resource bundle is outside of the composite project, you are prompted to
place a local copy in SCA-INF/lib.

Specifying Multilingual Settings and Style Sheets

29-58 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

If the resource bundle file is not in the composite class loader (directly under SCA-
INF/classes or in a JAR file in SCA-INF/lib), you must specify its location. For
example, if the resource bundle is accessible from a location outside of the
composite class loader (for example, an HTTP location such as http://
host:port/bundleApp/taskBundles.jar), then this location must be
specified in this field.

4. Click OK to return to the Human Task Editor.

For more information, see How to Configure Notification Messages in Different
Languages.

29.7 Specify What to Show in Task Details in the Worklist
The Presentation section enables you to specify the records in the runtime history
section of the task details form in worklistapp.

Merge repeating stages: Select this option to view one aggregated entry for all
repeating stages. The Worklist UI also provides an option to set or unset this option.

Show future participants: Select this option to see details about all future participants
in the task.

Show only user performed actions: By default, task history details contain records for
Admin and system actions, such as root task updates. Select this option to not see only
user-performed action updates in the task details.

29.8 Escalating, Renewing, or Ending the Task
You can specify the expiration duration of a task in this global policy section (also
known as the routing slip level).

Figure 29-49 shows the Deadlines section of the Human Task Editor.

If the expiration duration is specified at the routing slip level instead of at the
participant type level, then this duration is the expiration duration of the task across
all the participants. However, if you specify expiration duration at the participant type
level (through the Limit allocated duration to check box), then those settings take
precedence over settings specified in the Deadlines section (routing slip level).

You can also specify that a task be escalated to a user's manager after a specified time
period. For more information, see Specifying a Time Limit for Acting on a Task.

Figure 29-49 Human Task Editor — Deadlines Section

Specify What to Show in Task Details in the Worklist

Configuring Human Tasks 29-59

29.8.1 Introduction to Escalation and Expiration Policy
This section provides an overview of how specifying the expiration duration at this
level makes this setting the expiration duration of the task across all the participants.

For example, participant LoanAgentGroup and participant Supervisor have three
days to act on the task between them, as shown in Figure 29-50:

Figure 29-50 Expire After Policy

If there is no expiration specified at either the participant level or this routing slip
level, then that task has no expiration duration.

If expiration duration is specified at any level of the participants, then for that
participant, the participant expiration duration is used. However, the global expiration
duration is still used for the participants that do not have participant level expiration
duration. The global expiration duration is always decremented by the time elapsed in
the task.

The policy for interpreting the participant level expiration for the participants is
described as follows:

• Serial

Each assignment in the management chain gets the same expiration duration as
the one specified in the serial. The duration is not for all the assignments resulting
from this assignment. If the task expires at any of the assignments in the
management chain, the escalation and renewal policy is applied.

• Parallel:

– In a parallel workflow, if the parallel participants are specified as a resource, a
routing slip is created for each of the resources. The expiration duration of
each created routing slip follows these rules:

The expiration duration equals the expiration duration of the parallel
participant if it has an expiration duration specified.

The expiration duration that is left on the task if it was specified at the routing
slip level.

Otherwise, there is no expiration duration.

– If parallel participants are specified as routing slips, then the expiration
duration for the parallel participants is determined by the routing slip.

Escalating, Renewing, or Ending the Task

29-60 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

When the parent task expires in a parallel task, the subtasks are withdrawn if
those tasks have not expired or completed.

29.8.2 How to Specify a Policy to Never Expire
You can specify for a task to never expire.

In the drop-down list in the Deadlines section, as shown in Figure 29-49, select Never
Expire to specify a policy to never expire.

29.8.3 How to Specify a Policy to Expire
You can specify for a task to expire. When the task expires, either the escalation policy
or the renewal policy at the routing slip level is applied. If neither is specified, the task
expires. The expiration policy at the routing slip level is common to all the
participants.

To specify for a task to expire:

1. In the drop-down list of the Deadlines section, select Expire after, as shown in
Figure 29-51.

2. Specify the maximum time period for the task to remain open.

The expiration policy for parallel participants is interpreted as follows:

• If parallel participants are specified as resources in parallel elements, there is
no expiration policy for each of those participants.

• If parallel participants are specified as routing slips, then the expiration policy
for the routing slip applies to the parallel participants.

Figure 29-51 indicates that the task expires in three days.

Figure 29-51 Expire After Policy

Note:

The escalation time is limited to future times that are before the year 2286.
Using a value that is greater results in runtime errors. The technical limit of
the future value is 9,999,999,999,999 milliseconds since January 1, 1970,
00:00:00 GMT.

Escalating, Renewing, or Ending the Task

Configuring Human Tasks 29-61

29.8.4 How to Extend an Expiration Policy Period
You can extend the expiration period when the user does not respond within the
allotted time. You do this by specifying the number of times the task can be renewed
upon expiration (for example, renew it an additional three times) and the duration of
each renewal (for example, three days for each renewal period).

To extend an expiration policy period:

1. In the drop-down list of the Deadlines section, select Renew after, as shown in
Figure 29-52.

2. Specify the maximum number of times to continue renewing this task.

In Figure 29-52, when the task expires, it is renewed at most three times. It does not
matter if the task expired at the LoanAgentGroup participant or the Supervisor
participant.

Figure 29-52 Renew After Policy

29.8.5 How to Escalate a Task Policy
You can escalate a task if a user does not respond within the allotted time. For
example, if you are using the escalation hierarchy configured in your user directory,
the task can be escalated to the user's manager. If you are using escalation callbacks,
the task is escalated to whoever you have defined. When a task has been escalated the
maximum number of times, it stops escalating. An escalated task can remain in a user
inbox even after the task has expired.

To escalate a task policy:

1. In the drop-down list of the Deadlines section, select Escalate after, as shown in
Figure 29-53.

2. Specify the following additional values. When both are set, the escalation policy is
more restrictive.

• Maximum Escalation Levels

Number of management levels to which to escalate the task. This field is
required.

• Highest Approver Title

The title of the highest approver (for example, self, manager, director, or CEO).
These titles are compared against the title of the task assignee in the
corresponding user repository. This field is optional.

Escalating, Renewing, or Ending the Task

29-62 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The escalation policy specifies the number of times the task can be escalated on
expiration and the renewal duration. In Figure 29-53, when the task expires, it is
escalated at most three times. It does not matter if the task expired at the
LoanAgentGroup participant or the Supervisor participant.

Figure 29-53 Escalate After Policy

29.8.6 How to Specify Escalation Rules
This option allows a custom escalation rule to be plugged in for a particular workflow.
For example, to assign the task to a current user's department manager on task
expiration, you can write a custom task escalation function, register it with the
workflow service, and use that function in task definitions.

The default escalation rule is to assign a task to the manager of the current user. To
add a new escalation rule, follow these steps.

To specify escalation rules:

1. Implement the following interface:

oracle.bpel.services.workflow.assignment.dynamic.IDynamicTaskEscalationFunction

This implementation must be available in the class path for the server.

2. Log in to Oracle Enterprise Manager Fusion Middleware Control.

3. Expand the SOA folder in the navigator.

4. Right-click soa-infra, and select SOA Administration > Workflow Config > Task
tab.

The Workflow Task Service Properties page appears.

5. Add a new function. For example:

• Function name: DepartmentSupervisor

• Classpath:
oracle.bpel.services.workflow.assignment.dynamic.patterns.
DepartmentSupervisor

• Function parameter name

• Function parameter value

6. In the Custom Escalation Java Class field of the Deadlines section, enter the
function name as defined in the Workflow Task Service Properties page for the
escalation rule.

Escalating, Renewing, or Ending the Task

Configuring Human Tasks 29-63

For more information, see Custom Escalation Function.

29.8.7 How to Specify a Due Date
A due date indicates the date by which the task should be completed. The due date is
different from the expiration date. When a task expires it is either marked expired or
automatically escalated or renewed based on the escalation policy. The due date is
generally a date earlier than the expiration date and an indication to the user that the
task is about to expire.

You can enter a due date for a task, as shown in Figure 29-49. A task is considered
overdue after it is past the specified due date. This date is in addition to the expiration
policy. A due date can be specified irrespective of whether an expiration policy has
been specified. The due date enables Oracle BPM Worklist to display a due date, list
overdue tasks, filter overdue tasks in the inbox, and so on. Overdue tasks can be
queried using a predicate on the TaskQueryService.queryTask(...) API.

To specify a due date:

1. In the Deadlines section, select the Action Requested Before check box.

2. Select By Duration to enter a time duration or select By Expression to dynamically
enter a value as an XPath expression.

Note the following details:

• The due date can be set on both the task (using the Create ToDo Task dialog
box in Oracle BPM Worklist) and in the .task file (using the Human Task
Editor). This is to allow to-do tasks without task definitions to set a due date
during initiation of the task. A due date that is set in the task (a runtime object)
overrides a due date that is set in the .task file.

• In the task definition, the due date can only be specified at the global level, and
not for each participant.

• If the due date is set on the task, the due date in the .task file is ignored.

• If the due date is not set on the task, the due date in the .task file is evaluated
and set on the task.

• If there is no due date on either the task or in the .task file, there is no due
date on the task.

Note:

You cannot specify business rules for to-do tasks.

For more information, see How To Create a ToDo Task.

29.9 Specifying Participant Notification Preferences
Notifications indicate when a user or group is assigned a task or informed that the
status of the task has changed. Notifications can be sent through email, voice message,
instant message, or SMS. Notifications are sent to different types of participants for
different actions. Notifications are configured by default with default messages. For
example, a notification message is sent to indicate that a task has completed and
closed. You can create your own or modify existing configurations.

Specifying Participant Notification Preferences

29-64 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 29-54 shows the General tab of the Notification section of the Human Task
Editor (when fully expanded).

Note:

Embedded LDAP does not support group email addresses. Therefore, when a
task is assigned to a group ID, emails are sent to all of its members instead of
to the group email address.

Figure 29-54 Human Task Editor — General Tab of Notification Section

To specify participant notification preferences:

1. Click the Notification tab (displays as shown in Figure 29-54).

Instructions for configuring the following subsections of the General tab of the
Notification section are listed in Table 29-15.

Table 29-15 Human Task Editor — General Tab of Notification Section

For This Subsection... See...

Task Status

Recipient

How to Notify Recipients of Changes to Task Status

Notification Header How to Edit the Notification Message

For information about the notification service, see Notifications from Human
Workflow.

2. In the Notification section, click the Advanced tab. Figure 29-55 provides details.

Specifying Participant Notification Preferences

Configuring Human Tasks 29-65

Figure 29-55 Notification Section - Advanced Tab

Instructions for configuring the following subsections of the Advanced tab of the
Notification section are listed in Table 29-16.

Table 29-16 Human Task Editor — Advanced Tab of Notification Section

For This Subsection... See...

Reminders How to Set Up Reminders

Encoding How to Change the Character Set Encoding

Make notifications secure
(exclude details)

How to Secure Notifications to Exclude Details

Show worklist URL in
notifications

How to Display the URL in Notifications

Make notifications actionable How to Make Email Messages Actionable

Send task attachments with email
notifications

How to Send Task Attachments with Email
Notifications

Group notification configuration How to Send Email Notifications to Groups and
Application Roles

Notification header attributes How to Customize Notification Headers

29.9.1 How to Notify Recipients of Changes to Task Status
Three default status types display in the Task Status column: Assign, Complete, and
Error. You can select other status types for which to receive notification messages.

To notify recipients of changes to task status:

1. In the Notification section, click the General tab.

2. In the Task Status column, click a type to display the complete list of task types:

Specifying Participant Notification Preferences

29-66 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Alerted

When a task is in an alerted state, you can notify recipients. However, none of
the notification recipients (assignees, approvers, owner, initiator, or reviewer)
can move the task from an alerted state to an error state; they only receive an
FYI notification of the alerted state. The owner can reassign, withdraw, delete,
or purge the task, or ask the error assignee to move the task to an error state if
the error cannot be resolved. Only the error assignee can move a task from an
alerted state to an error state.

You configure the error assignee on the Assignment tab of the Configure
Assignment dialog box under the Task will go from starting to final
participant icon in the Assignment section. For more information, see How to
Configure the Error Assignee and Reviewers.

• Assign

When the task is assigned to users or a group. This captures the following
actions:

– Task is assigned to a user

– Task is assigned to a new user in a serial workflow

– Task is renewed

– Task is delegated

– Task is reassigned

– Task is escalated

– Information for a task is submitted

• Complete

• Error

• Expire

• Request Info

• Resume

• Suspend

• Update

– Task payload is updated

– Task is updated

– Comments are added

– Attachments are added and updated

• Update Outcome

• Withdraw

• All Other Actions

Specifying Participant Notification Preferences

Configuring Human Tasks 29-67

– Any action not covered in the above task types. This includes acquiring a
task.

3. Select a task status type.

Notifications can be sent to users involved in the task in various capacities. This
includes when the task is assigned to a group, each user in the group is sent a
notification if there is no notification endpoint available for the group.

4. In the Recipient column, click an entry to display a list of possible recipients for the
notification message:

• Assignees

The users or groups to whom the task is currently assigned.

• Initiator

The user who created the task.

• Approvers

The users who have acted on the task up to this point. This applies in a serial
participant type in which multiple users have approved the task and a
notification must be sent to all of them.

• Owner

The task owner

• Reviewer

The user who can add comments and attachments to a task.

For more information, see How to Configure the Notification Channel Preferences.

29.9.2 How to Edit the Notification Message
A default notification message is available for delivery to the selected recipient. If you
want, you can modify the default message text.

To edit the notification message:

1. In the Notification section, click the General tab.

2. In the Notification Header column, click the Edit icon to modify the default
notification message.

The Edit Notification Message dialog box shown in Figure 29-56 appears.

Specifying Participant Notification Preferences

29-68 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 29-56 Edit Notification Message Dialog

This message applies to all the supported notification channels: email, voice,
instant messaging, and SMS. Email messages can also include the worklist task
detail defined in this message. The channel by which the message is delivered is
based upon the notification preferences you specify.

3. Modify the message wording as necessary.

4. Click OK to return to the Human Task Editor.

For more information about notification preference details, see Notifications from
Human Workflow.

29.9.3 How to Set Up Reminders
You can send task reminders, which can be based on the time the task was assigned to
a user or the expiration time of a task. The number of reminders and the interval
between the reminders can also be configured.

To set up reminders:

1. In the Notification section, click the Advanced tab.

2. From the list, select the number of reminders to send.

3. If you selected to remind the assignee one, two, or three times, select the interval
between reminders, and whether to send the reminder before or after the
assignment.

For more information, see How to Send Reminders.

29.9.4 How to Change the Character Set Encoding
Unicode is a universally-encoded character set that enables information from any
language to be stored using a single character set. Unicode provides a unique code
value for every character, regardless of the platform, program, or language. You can
use the default setting of UTF-8 or you can specify a character set with a Java class.

To change the character set encoding

1. In the Notification section, click the Advanced tab.

Specifying Participant Notification Preferences

Configuring Human Tasks 29-69

2. From the Encoding list, select Specify by Java Class.

3. Enter the Java class to use.

29.9.5 How to Secure Notifications to Exclude Details

To secure notifications, make messages actionable, and send attachments:

1. In the Notification section, click the Advanced tab.

2. Select Make notifications secure (exclude details).

If selected, a default notification message is used. There are no HTML worklist task
details, attachments, or actionable links in the email. Only the task number is in the
message.

For more information, see How to Send Secure Notifications.

29.9.6 How to Display the Oracle BPM Worklist URL in Notifications
You can configure whether to display the Oracle BPM Worklist URL in email
notification messages.

To display the Oracle BPM Worklist URL in notifications:

1. In the Notification section, click the Advanced tab.

2. Select the Show worklist URL in notifications check box to display the Oracle
BPM Worklist URL in email notification messages. If this check box is not selected,
the URL is not displayed.

29.9.7 How to Make Email Messages Actionable

To make email messages actionable:

1. In the Notification section, click the Advanced tab.

2. Select Make notification actionable. This action enables you to perform task
actions through email.

Note:

FYI tasks are not actionable and cannot be acknowledged from email
messages.

For more information about additional configuration details, see How to Send
Actionable Messages.

For more information about configuring outbound and inbound emails, see
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

29.9.8 How to Send Task Attachments with Email Notifications
You can send task attachments with email notifications.

Specifying Participant Notification Preferences

29-70 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To send task attachments with email notifications:

1. In the Notification section, click the Advanced tab.

2. Select Send task attachments with email notifications.

29.9.9 How to Send Email Notifications to Groups and Application Roles
You can send email notifications to groups and application roles to which tasks are
assigned.

To send email notifications to groups and application roles:

1. In the Notification section, click the Advanced tab.

2. From the Group notification configuration list, select one of the following options.

• Send individual emails

Each user in the group or application role receives an individual email
notification. This is the default selection.

In addition, the Use separate task forms based on locale check box is
automatically selected. When selected, this sends individual emails with a
separate task form based on the language locale. When not selected, this sends
individual emails and reuses (shares) the task form.

• Send one email containing all user addresses

A shared notification email is generated once for a user locale in a group or
application role, thereby saving time in notification email content generation.
The email is sent to all users in the group or application role.

Note:

– Since all (or a subset of) users receive the same email, the users in the
group or application role are expected to have the same privilege. This
ensures that the user does not see task details to which they are not
entitled.

– When sending one email to all users, the maximum number of characters
allowed in the address field is 2000. If the limit is exceeded, email is sent
to only those user addresses contained within the maximum limit.

29.9.10 How to Customize Notification Headers
Custom notification headers are used to specify name and value pairs to identify key
fields within the notification. These entries can be used by users to define delivery
preferences for their notifications. For example:You can set Name to ApprovalType
and value to Expense or Name to Priority and value to High.Users can then specify
delivery preferences in Oracle BPM Worklist. These preferences can be based on the
contents of the notification.

The rule-based notification service is only used to identify the preferred notification
channel to use. The address for the preferred channel is still obtained from the identity
service.

Specifying Participant Notification Preferences

Configuring Human Tasks 29-71

To customize notification headers:

1. In the Notification section, click the Advanced tab.

2. Expand Notification Header Attributes.

3. Add name and pair value parameters by name or XPath expression.

For more information about preferences, see the following sections:

• How to Send Inbound and Outbound Attachments

• How to Create Custom Notification Headers

• Developing Applications with Oracle User Messaging Service

29.10 Specifying Access Policies and Task Actions on Task Content
You can specify access rules on task content and actions to perform on that content.

You can specify access rules that determine the parts of a task that participants can
view and update. Access rules are enforced by the workflow service by applying rules
on the task object during the retrieval and update of the task.

Note:

Task content access rules and task actions access rules exist independently of
one another.

29.10.1 Introduction to Access Rules
Access rules are computed based on the following details:

• Any attribute configured with access rules declines any permissions for roles not
configured against it. For example, assume you configure the payload to be read
by assignees. This action enables only assignees and nobody else to have read
permissions. No one, including assignees, has write permissions.

• Any attribute not configured with access rules has all permissions.

• If any payload message attribute is configured with access rules, any
configurations for the payload itself are ignored due to potential conflicts. In this
case, the returned map by the API does not contain any entry for the payload.
Write permissions automatically provide read permissions.

• If only a subset of message attributes is configured with access rules, all message
attributes not involved have all permissions.

• Only comments and attachments have add permissions.

• Write permissions on certain attributes are meaningless. For example, write
permissions on history do not grant or decline any privileges on history.

• The following date attributes are configured as one in the Human Task Editor.
The map returned by TaskMetadataService.getVisibilityRules()
contains one key for each. Similarly, if the participant does not have read
permissions on DATES, the task does not contain any of the following task
attributes:

Specifying Access Policies and Task Actions on Task Content

29-72 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

– START_DATE

– END_DATE

– ASSIGNED_DATE

– SYSTEM_END_DATE

– CREATED_DATE

– EXPIRATION_DATE

– ALL_UPDATED_DATE

• The following assignee attributes are configured as one in the Human Task Editor.
The map returned by TaskMetadataService.getVisibilityRules()
contains one key for each of the following. Similarly, if the participant does not
have read permissions on ASSIGNEES, the task does not contain any of the
following task attributes:

– ASSIGNEES

– ASSIGNEE_USERS

– ASSIGNEE_GROUPS

– ACQUIRED_BY

• Mapped attributes do not have individual representation in the map returned by
TaskMetadataService.getVisibilityRules().

• All message attributes in the map returned by
TaskMetadataService.getVisibilityRules() are prefixed by
ITaskMetadataService.TASK_VISIBILITY_ATTRIBUTE_PAYLOAD_MESSA
GE_ATTR_PREFIX (PAYLOAD).

An application can also create pages to display or not display task attributes based on
the access rules. This can be achieved by retrieving a participant's access rules by
calling the API on
oracle.bpel.services.workflow.metadata.ITaskMetadataService. as
shown in the example below:

public Map<String, IPrivilege> getTaskVisibilityRules(IWorkflowContext context,
 String taskId)
 throws TaskMetadataServiceException;

For more information about this method, see Workflow Services Java API Reference for
Oracle SOA Suite.

29.10.2 Specifying User Privileges for Acting on Task Content
You can specify the privileges that specific users (such as the task creator or owner)
have for acting on specific task content (such as a payload).

To specify user privileges for acting on task content:

1. Click the Access tab.

2. Click the Content tab.

Specifying Access Policies and Task Actions on Task Content

Configuring Human Tasks 29-73

3. Select the task content for which to specify access privileges, as shown in
Figure 29-57.

Figure 29-57 Configure Task Content Access

4. Assign privileges (read, write, or no access) to users to act upon task content. A
user cannot be assigned a privilege above their highest level. For example, an
ADMIN user cannot be assigned write access on the PAYLOAD task content.
Table 29-17 shows the maximum privilege each user has on task content.

Table 29-17 Highest Privilege Levels for Users of Task Content

Task Content Individual with Read Access Individual with Write Access

Assignees Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Attachments Admin, Approvers Assignees, Creator, Owner,
Reviewers

Comments Admin, Approvers Assignees, Creator, Owner,
Reviewers

Dates Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Flexfields Admin, Approvers, Reviewers Assignees, Creator, Owner

History Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Payload Admin, Approvers, Reviewers Assignees, Creator, Owner

Reviewers Admin, Approvers, Assignees,
Creator, Owner, Reviewers

--

Payload elements Inherited from payload Inherited from payload

For example, if you accept the default setting of ASSIGNEES, CREATOR, and
OWNER with write access, ADMIN, APPROVERS, and REVIEWERS with read
access, and PUBLIC with no access to the PAYLOAD task content, the dialog box
appears as shown in Figure 29-57.

Specifying Access Policies and Task Actions on Task Content

29-74 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

5. Select the method for displaying task content in this dialog box. Choosing the
currently unselected option causes all settings to reset to their default values.

• Coarse grained (default)

Displays the task content as a whole (for example, displays only one payload
or reviewer).

• Fine grained

Displays the content as individual elements (for example, displays all payloads
(such as p1, p2, and p3) and all reviewers assigned to this task (such as jstein,
wfaulk, and cdickens).

Note:

Access rules are always applied on top of what the system permits, depending
on who is performing the action and the current state of the task.

29.10.3 Specifying Actions for Acting Upon Tasks
You can specify the actions (either access or no access) that specific users (such as the
task creator or owner) have for acting on the task content (such as a payload) that you
specified in the Configure Task Content Access dialog box.

To specify actions for acting upon tasks:

1. Click the Access tab.

2. Click the Actions tab.

3. Select the task action for which to specify users, as shown in Figure 29-58.

Figure 29-58 Selection of Add Action Access Rule

4. Select if participants can or cannot perform the selected actions.

5. Select the method for displaying task actions in this dialog box. Choosing the
currently unselected option causes all settings to reset to their default values.

• Coarse grained (default)

Specifying Access Policies and Task Actions on Task Content

Configuring Human Tasks 29-75

Displays the task actions as a whole (for example, displays only one approval
or rejection).

• Fine grained

Displays the content actions as individual elements. (for example, displays all
approvals or rejections).

29.10.4 How to Specify a Workflow Digital Signature Policy
Digital signatures provide a mechanism for the nonrepudiation of digitally-signed
human tasks. This ability to mandate that a participant acting on a task signs the
details and their action before the task is updated ensures that they cannot repudiate it
later.

Note:

If digital signatures are enabled for a task, actionable emails are not sent
during runtime. This is the case even if actionable emails are enabled during
design time.

To specify a workflow digital signature policy:

1. Click the Access tab.

2. From the Signature Policy list, select Configure Policy, as shown in Figure 29-59.

Figure 29-59 Digital Signatures

3. Specify the signature policy for task participants to use:

• No signature required

Participants can send and act upon tasks without providing a signature. This is
the default policy.

• Password required

Participants specify a signature before sending tasks to the next participant.
Participants must reenter their password while acting on a task. The password
is used to generate the digital signature. A digital signature authenticates the

Specifying Access Policies and Task Actions on Task Content

29-76 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

identity of the message sender or document signer. This ensures that the
original content of the sent message is unchanged.

• Digital certificate required

Participants must possess a digital certificate for the nonrepudiation of
digitally-signed human tasks. A digital certificate establishes the participant's
credentials. It is issued by a certification authority (CA). It contains the name, a
serial number, expiration dates, a copy of the certificate holder's public key
(used for encrypting messages and digital signatures), digital signature of the
certificate-issuing authority so that message authenticity can be established

The CA names and CA CRL and URLs of the issuing authorities must be
configured separately.

4. Click OK.

For more information, see Evidence Store Service and Digital Signatures.

29.10.4.1 Specifying a Certificate Authority

To use digital signatures, you must specify CAs you consider trustworthy in the
System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control.
Only certificates issued from such CAs are considered valid by human workflow.

To specify a certificate authority:

1. From the SOA Infrastructure menu, select Administration > System MBean
Browser.

2. Select Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowConfig > human.workflow.

3. Click the Operations tab.

4. Click AddTrustedCA.

5. In the Value fields for CaName and CaURL, specify appropriate values.

6. Click Invoke.

7. Click Return.

You must validate these values before using them.

29.11 Specifying Restrictions on Task Assignments
You can restrict the users to which a task can be reassigned or routed by using a
callback class.

The user community seeded in a typical LDAP directory can represent the whole
company or division. However, it may be necessary at times to limit the potential list
of users to associate with a task based on the scope or importance of the task or
associated data. For example, in a large company with thousands of users, only a few
people have the ability to approve and create purchase orders. Specifically for such
tasks, the users that can be chosen for ad hoc routing and reassignment should not be
the whole company. Instead, only a few users who are relevant or have the right
privilege should be chosen. This can be achieved by the restricted assignment
functionality. This is implemented as a callback class that can implement the logic to

Specifying Restrictions on Task Assignments

Configuring Human Tasks 29-77

choose the right set of users dynamically based on the task object that is passed
containing the instance data.

Note:

Certain functions, such as restricted task reassignment, are available only
when a single task is selected. If multiple tasks that use restricted
reassignment are selected, then the restricted reassignment algorithm is not
invoked. In that case, the complete list of users gets returned as though
restricted reassignment had not been specified.

29.11.1 How to Specify Restrictions on Task Assignments

To specify restrictions on task assignments:

1. In the Access section, click Configure Restricted Assignments.

The Configure Restricted Assignment dialog box appears.

2. Enter the class name. The class must implement the
oracle.bpel.services.workflow.task.IRestrictedAssignmentCallb
ack interface.

3. Click the Add icon to add name and value pairs for the property map passed to
invoke the callback.

4. Click OK.

29.12 Specifying Java or Business Event Callbacks
You can specify Java or business event callbacks. You can register callbacks for the
workflow service to call when a particular stage is reached during the lifecycle of a
task.

Note:

If you implemented a callback, then the user callback implementation
overrides any other form of restricted assignment. When you perform a
search, the result only shows the users that the user callback returns.

Two types of callbacks are supported:

• Java callbacks: The callback class must implement the interface
oracle.bpel.services.workflow.task.IRoutingSlipCallback. Make
the callback class available in the class path of the server.

• Business event callbacks: You can have business events raised when the state of a
human task changes. You do not need to develop and register a Java class. The
caller implements the callback using an Oracle Mediator service component to
subscribe to the applicable business event to be informed of the current state of an
approval transaction.

Specifying Java or Business Event Callbacks

29-78 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To specify callback classes on task status:

1. Click the Events tab.

The following state change callbacks are available for selection:

• OnAssigned

Select if the callback class must be called on any assignment change,
including standard routing, reassignment, delegation, escalation, and so on. If
a callback is required when a task has an outcome update (that is, one of the
approvers in a chain approves or rejects the task), this option must be
selected.

• OnUpdated

Select if the callback class must be called on any update (including payload,
comments, attachments, priority, and so on).

• OnCompleted

Select if the callback class must finally be called when the task is completed
and control is about to be passed to the initiator (such as the BPEL process
initiating the task).

• OnStageCompleted

Select if the callback class must be called to enable business event callbacks in
a human workflow task. When the event is raised, it contains the name of the
completed stage, the outcome for the completed stage, and a snapshot of the
task when the callback is invoked.

• OnSubtaskUpdated

Select if the callback class must be called on any update (including payload,
comments, attachments, priority, and so on) on a subtask (one of the tasks in a
parallel-and-parallel scenario).

If your Oracle JDeveloper installation is updated to include both the BPEL and
BPM extensions, then the following content callbacks are also available for
selection:

• Comments Callback

Select if the callback class must be called to store the comments in a schema
other than the WFCOMMENTS column. The callback class must implement the
oracle.bpel.services.workflow.callback.NotesStore interface.

• Attachment Call Back

Select if the callback class must be called to store the attachments in a schema
other than the WFATTACHMENT table in the soa-infra schema. The callback
class must implement the
oracle.bpel.services.workflow.callback.AttachmentStore
interface.

• Validation Callback

Select if the callback class must be called to validate either the task or payload
before updating, approving, and so on. The callback class must implement
the

Specifying Java or Business Event Callbacks

Configuring Human Tasks 29-79

oracle.bpel.services.workflow.task.ITaskValidationCallbac
k interface.

2. See the following section based on the type of callback to perform.

• Specifying Java Callbacks

• Specifying Business Event Callbacks

29.12.1 Specifying Java Callbacks
To specify Java callbacks:

1. In the State column of the Events section, select a task state.

2. In the Java Class column, click the empty field to enter a value. This value is the
complete class name of the Java class that implements
oracle.bpel.services.workflow.task.IRoutingSlipCallback.
Figure 29-60 provides details.

Figure 29-60 CallBack Details Dialog with Java Selected

3. Click OK.

29.12.2 Specifying Business Event Callbacks

To specify business event callbacks:

1. In the State column of the Events section, select a task state. Leave the Java Class
field empty.

2. Select the Trigger Workflow Event check box. This action disables the Java Class
column, as shown in Figure 29-61. Each callback, such as OnAssigned, corresponds
to a business event point. When a business event is fired, the event details contain
the task object and a set of properties that are populated based on the context of the
event being fired.

Specifying Java or Business Event Callbacks

29-80 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 29-61 CallBack Details Dialog with Business Events Selected

A pre-seeded, static event definition language (EDL) file (JDev_Home
\jdeveloper\integration\seed\soa\shared\workflow
\HumanTaskEvent.edl) provides the list of available business events to which to
subscribe. These business events correspond to the callbacks you select in the
Callback Details dialog box. You must now create an Oracle Mediator service
component in which you reference the EDL file and subscribe to the appropriate
business event.

Note:

A file-based MDS connection is required so that the EDL file can be located.
The location for the file-based MDS is JDev_Home\jdeveloper
\integration\seed.

3. Create an Oracle Mediator service component in the same or a different SOA
composite application that can subscribe to the event.

4. In the Template list during Oracle Mediator creation, select Subscribe to Events.

5. Click the Add icon to subscribe to a new event.

6. To the right of the Event Definition field, click the Browse icon to select the EDL
file.

The SOA Resource Browser dialog box appears.

7. Select the previously created file-based MDS connection.

8. From the list at the top, select Resource Palette.

9. Select SOA > Shared > Workflow > HumanTaskEvent.edl.

Click OK.

Specifying Java or Business Event Callbacks

Configuring Human Tasks 29-81

The Event Chooser is now populated with EDL file business events available for
selection.

10. In the Event field, select the event to which to subscribe. Figure 29-62 provides
details.

Figure 29-62 Event Callbacks

You can have multiple human tasks available for subscribing to the event. For
example, assume you performed the following:

• Configured a human task named TaskA to subscribe to the event (for example,
OnAssigned)

• Configured a human task named TaskB to subscribe to the same event

To distinguish between events for TaskA and TaskB and ensure that an event is
processed only by the intended Oracle Mediator, you can add a static routing filter:

xpath20:compare(med:getComponentName(), 'TaskA')

This only invokes this routing when the sending component is TaskA.

11. If the EDL file was not selected from the file-based MDS connection, accept to
import the dependent XSD files when prompted, and click OK. If the EDL file was
selected from the file-based MDS connection, you are not prompted.

The Oracle Mediator service component is now populated with the business event
to which to subscribe. You can also subscribe to other business events defined in
the same EDL file now or at a later time.

See the following documentation for additional details about business events and
callbacks:

• Using Business Events and the Event Delivery Network for specific details about
business events

• Sample workflow-116-WorkflowEventCallback, which is available with the Oracle
SOA Suite samples.

29.12.3 How to Specify Task and Routing Customizations in BPEL Callbacks
In general, the BPEL process calls into the workflow component to assign tasks to
users. When the workflow is complete, the human workflow service calls back into the

Specifying Java or Business Event Callbacks

29-82 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

BPEL process. However, if you want fine-grained callbacks (for example,
onTaskUpdate or onTaskEscalated) to be sent to the BPEL process, you can use
the Allow task and routing customization in BPEL callbacks option.

Make sure to manually refresh the BPEL diagram for this callback setting.

To specify task and routing customizations in BPEL callbacks:

1. In the Events section, select the Allow task and routing customization in BPEL
callbacks check box.

2. Return to Oracle BPEL Designer.

3. Open the task activity dialog box.

4. Click OK.

This creates the while, pick, and onMessage branch of a pick activity for BPEL callback
customizations inside the task scope activity.

For more information about specifying task and routing customizations, see Invoking
BPEL Callbacks.

29.12.4 How to Disable BPEL Callbacks
A user talk activity (in Oracle BPEL Designer) has an invoke activity followed by a
receive or pick activity. Deselecting the Disable BPEL callbacks check box enables
you to invoke the task service without waiting for a reply.

To disable BPEL callbacks:

1. In the Events section, deselect the Disable BPEL callbacks check box.

2. Click OK.

Specifying Java or Business Event Callbacks

Configuring Human Tasks 29-83

Specifying Java or Business Event Callbacks

29-84 Developing SOA Applications with Oracle SOA Suite

30
Designing Task Forms for Human Tasks

Learn how to design and customize task forms for human tasks by using ADF task
flows in Oracle JDeveloper. Human tasks enable users to interact with the business
process. Each task has two parts—the task metadata and the task form. The task form
is used to display the contents of the task to the user's worklist.

Oracle BPM Worklist displays all worklist tasks that are assigned to a user or a group.
When a worklist user drills down into a specific task, the task form renders the details
of that task.

• Introduction to the Task Form

• Associating the Task Flow with the Task Service

• Creating an ADF Task Flow Based on a Human Task

• Creating a Task Form

• Refreshing Data Controls When the Task XSD Changes

• Securing the Task Flow Application

• Creating an Email Notification

• Deploying a Composite Application with a Task Flow

• Displaying a Task Form in the Worklist

• Displaying a Task in an Email Notification

• Reusing the Task Flow Application with Multiple Human Tasks

For information about troubleshooting human workflow issues, see section "Human
Workflow Troubleshooting" of Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

30.1 Introduction to the Task Form
If your SOA composite includes a human task, then you need a way for users to
interact with the task. The integrated development environment of Oracle SOA Suite
includes Oracle Application Development Framework (Oracle ADF) for this purpose.
With Oracle ADF, you can design a task form that depicts the human task in the SOA
composite.

The task form is a Java Server Page XML (.jspx) file that you create in the Oracle
JDeveloper designer where you created the SOA composite containing the human
task. You must set the page encoding to UTF-8 in Oracle JDeveloper before creating
the Java Server Page XML file. You can do this in Oracle JDeveloper by choosing Tools
> Preferences > Environment, and selecting UTF-8 using the Encoding dropdown list.

Designing Task Forms for Human Tasks 30-1

Figure 30-1 shows the Oracle JDeveloper ADF Task Flow Based on Human Task
option where you start creating a task form.

Figure 30-1 ADF Task Flow Based on a Human Task, in Oracle JDeveloper

30.1.1 What You May Need to Know About Task Forms: Time Zone Conversion
Time zone conversion is not automatic for datetime elements in the task payload when
a task form is created. You must add the <af:convertDateTime> tag to enable time
zone conversion on a datetime element. See any standard task header time label for an
example. The following example shows a sample header:

<af:outputText value="#{bindings.createdDate.inputValue}"
 id="ot15">
 <f:convertDateTime type="#{pageFlowScope.dt}"
 timeZone="#{pageFlowScope.tz}"
 dateStyle="#{pageFlowScope.df}"
 timeStyle="#{pageFlowScope.tf}"/>
 </af:outputText>

30.2 Associating the Task Flow with the Task Service
When you create an ADF task flow based on a human task, you must select a task
metadata file to generate the data control. This data control is used to lay out the
content on the page and connect to the workflow service engine at execution time to
retrieve task content and act on tasks.

The hwtaskflow.xml file is used to capture the details on connecting with the
service engine. By default, it uses remote EJBs to connect to the workflow server. The
SOA server URL and port are automatically determined by using WebLogic Server
runtime MBeans. However, you can override these by explicitly specifying the URL
and port information here.

Associating the Task Flow with the Task Service

30-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Seed a user that has ORMI privileges so that the task details application can connect to
the workflow service. You can seed this user by using Oracle Enterprise Manager
Fusion Middleware Control.

30.3 Creating an ADF Task Flow Based on a Human Task
ADF task flows are used to model the user interface for the task details page. You can
create the task flow in the same application that contains the human task or in a
separate application.

You must have previously created a human task (.task file) as part of a SOA
composite before you can create a task flow. See Creating Human Tasks for how to
create the.task file.

If the task flow is in the same application as the human task, create a different project
for the task flow. If the SOA composite contains multiple human tasks, create a
separate project for each ADF task flow associated with each human task. By using an
ADF task flow, you create data controls based on the task parameters and outcomes.

To autogenerate an ADF task form, access the human task in the SOA composite
application (form and task are in the same application). See How To Create an ADF
Task Flow from the Human Task Editor, for more information.

To create an ADF task form in a separate application, create the new application and
project and browse for the .task file for the human task. See How To Create an ADF
Task Flow Based on a Human Task, for more information.

An ADF task form does not validate user inputs. The only validation that is done is to
check that mandatory inputs have values. You should review your task forms and add
additional validators as needed.

30.3.1 How To Create an ADF Task Flow from the Human Task Editor
The.task file that specifies the human task is easily associated with the task flow
when the two are located in the same application.

To create an ADF task flow for a human task:

1. Open the BPEL process within the SOA composite application.

2. Double-click the human task activity and click Edit.

Figure 30-2 shows the Human Task dialog.

Creating an ADF Task Flow Based on a Human Task

Designing Task Forms for Human Tasks 30-3

Figure 30-2 Editing a Human Task

3. In the .task tab (shown in Figure 30-3), click Form and select Auto-Generate Task
Form.

Creating an ADF Task Flow Based on a Human Task

30-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 30-3 Creating a Task Flow from the Human Task Editor

4. Provide a project name and a directory path (or use the default) and click OK.

The taskDetails1_jspx icon appears in the designer, as shown in Figure 30-4.

Figure 30-4 The taskDetails1_jspx Icon

Creating an ADF Task Flow Based on a Human Task

Designing Task Forms for Human Tasks 30-5

The task flow and task form are complete and ready to be deployed.

30.3.2 How To Create an ADF Task Flow Based on a Human Task
The ADF Task Flow Based on Human Task option (shown in Figure 30-1) creates an
ADF task flow and additional artifacts to make deployment easier. When you select
the .task file to associate with the ADF task flow, human task data controls are
created based on the task parameters and outcomes. These are then available to use in
the JSPX page. You must have access to the SOA composite project while creating the
task flow project.

To create an ADF task flow based on a human task:

1. From the File main menu, select New > Applications > Custom Application.

2. Click OK.

3. Provide an application name and directory information (or accept the default),
and click Finish.

4. Right-click the project name and select New.

5. Under Web Tier, select JSF.

6. Select ADF Task Flow Based on Human Task and click OK.

7. In the SOA Resource Browser, find and select the .task file where you defined
the human task and click OK.

a. If the human task is in the same application as the task definition, then click
File System to use the file browser to navigate to the .task file, which is
typically in the composite directory.

b. If the human task is in a different application, then click SOA-MDS to use the
MDS resource catalog and find the .task file in the composite application.

c. If the .task file is located within the current application, then click
Application.

This displays the Create Task Flow dialog and creates the data controls.

8. In the Create Task Flow dialog, accept the defaults and click OK.

The taskDetails1_jspx icon appears in the designer, as shown in Figure 30-4. The
task flow has a view, a control flow, and a task return.

To continue creating the task form, see the following:

• How To Create a Task Form Using the Complete Task with Payload Drop
Handler.

• How To Create Task Form Regions Using Individual Drop Handlers.

30.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task
With an ADF task flow based on a human task, the task flow application has task data
controls that wire the task form with the workflow services. The data controls provide
the following:

Creating an ADF Task Flow Based on a Human Task

30-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Various parameters and operations to access task data and act on it

• Drop handlers with which you can create interface regions to display the contents
of the task

The human task-aware data controls appear in the Data Controls panel of the Oracle
JDeveloper Applications window, as shown in Figure 30-5.

Figure 30-5 The Task Collection in the Data Controls Panel

The data controls for the task (represented by the Task node in Figure 30-5) have drop
handlers to render the task form. See Creating a Task Form, for more information.

30.3.4 What You May Need to Know About Having Multiple ADF Task Flows That
Contain the Same Element with Different Meta-attributes

You must create separate ADF task flows if both contain the same element, but with
different meta-attributes specified (for example, editable and noneditable).

For example, assume you perform the following tasks.

Creating an ADF Task Flow Based on a Human Task

Designing Task Forms for Human Tasks 30-7

1. Create two task form applications for a SOA composite application:

• Task form application one (for example, named EnterBankDetails.task) has
one editable payload (for example, named BankDetails) and one noneditable
payload (for example, named Employee).

• Task form application two (for example, named
ValidatePersonalInformation.task) has one editable payload (for example,
also Employee).

While creating the task form, the wizard provides you with the option to define
the ADF table for payload Employee.

2. Complete the wizard, then deploy the process.

3. Invoke the process.

4. Log in to Oracle BPM Worklist.

There is a Validate Personal Information task (for
ValidatePersonalInformation.task).

5. Select the task.

Employee details are available for modification, as expected.

6. Add a new record, then approve the task.

7. Select the Enter Bank Details task (for EnterBankDetails.task). In the task form, the
Insert New and Delete buttons are still present for Employee data, even though it
is a noneditable payload.

8. Click Delete, then select Approve. The payload gets deleted.

Ensure that you create two separate ADF task flow applications because both contain
the Employee element, but with different meta-attributes specified (editable and
noneditable).

30.4 Creating a Task Form
You can create a task form by using the Auto-Generate Task Form option, the Launch
Task Form Wizard option, or by using human task drop handlers.

• For how to use the Auto-Generate Task Form option, see How To Create an
Autogenerated Task Form.

• For how to use the Launch Task Form Wizard option, see How To Create a Task
Form Using the Custom Task Form Wizard.

• For how to use human task drop handlers, see the following:

– How To Create a Task Form Using the Complete Task with Payload Drop
Handler

– How To Create Task Form Regions Using Individual Drop Handlers

– How To Add the Payload to the Task Form

Creating a Task Form

30-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

A task form name must begin with a letter of the alphabet, either upper or
lower case. It should contain only letters of the alphabet and the numbers zero
(0) through nine (9).

30.4.1 How To Create an Autogenerated Task Form
Autogenerating a task form opens a default template that you can then modify.

To create an autogenerated task form:

1. Open the BPEL process within the SOA composite application.

2. Double-click the human task activity and click Edit.

3. From the .task editor, click Create Form and select Auto-Generate Task Form, as
shown in Figure 30-6.

Figure 30-6 Creating a Task Form

4. Provide a project name and a directory path (or use the default) and click OK.

The default form opens in the taskDetails1.jspx tab. The default form for
ApprovalHumanTask is shown in Figure 30-7.

Creating a Task Form

Designing Task Forms for Human Tasks 30-9

Figure 30-7 Autogenerated Task Form for ApprovalHumanTask

30.4.2 How to Register the Library JAR File for Custom Page Templates
You can optionally specify your own custom page templates in the Custom Task Form
wizard. As described in How To Create a Task Form Using the Custom Task Form
Wizard, you select Custom in the Name and Definition page of the Custom Task Form
Wizard and select the library and .jspx template.

As a prerequisite, you first must register the library JAR file in Oracle JDeveloper.

To create the library JAR file for custom page templates:

1. From the Tools menu, select Manage Libraries.

2. Click New.

The Create Library dialog appears.

3. Highlight Class Path, and click Add Entry.

The Select Path Entry dialog appears.

4. Select the class path for the library, and click Select.

The class path is displayed below Class Path and the library JAR file name is
displayed in the Library Name field. Ensure that the library name you select ends
with a suffix of .jar. Figure 30-8 provides details.

Creating a Task Form

30-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 30-8 Custom Library JAR File

5. Select the Deployed by Default check box.

6. Click OK.

When you run the Custom Task Form wizard, you select the Custom radio button
on the Name and Definition page, and select the library and template that you
registered.

30.4.3 How To Create a Task Form Using the Custom Task Form Wizard
This wizard enables you to create a task form using ADF page templates and
standardized task regions. The page templates can be either of the following:

• Default page templates that are automatically provided at the following location:

[JDeveloper_Home}/jdeveloper/soa/modules/oracle.soa.worklist_11.1.1/
adflibWorklistComponents.jar

The default page templates are:

– Nontabbed, default template: taskDetailsTemplate.jspx

– Tabbed templates in which the payload and comments, attachment, and
history sections are displayed on a separate tab:
taskDetailsTemplate2.jspx

In the Name and Definition page of the Custom Task Flow wizard, select
Packaged, then select either Default or Tabbed.

Creating a Task Form

Designing Task Forms for Human Tasks 30-11

• Custom page templates that you define. In the Name and Definition page of the
Custom Task Flow wizard, select Custom, then select the library name and the
template name.

You package a page template and its artifacts into an ADF library JAR file. These
JAR files can be packaged, deployed, discovered, and used like any other Oracle
library component. The wizard prompts you to specify the JAR name and
template location in the JAR.

Page templates let you define entire page layouts, including values for certain
attributes of the page. When pages are created using a template, they all inherit the
defined layout. When you make layout modifications to the template, all pages that
consume the template automatically reflect the layout changes.

The templates used in the wizard generate content for the following six facets:

• Actions

• Attachments

• Body

• Comments

• Header

• History

For the action, header, and body facets, you can pick the content and attributes to be
displayed and then fine tune the layout.

All six facets are defined in the default page templates. In the case of custom
templates, you use these exact facet names in your template. If your template does not
include these facets, then the facet content is not generated in the JSPX file.

To create a custom task form:

1. Open the BPEL process within the SOA composite application.

2. Double-click the human task activity, and click the Edit icon.

The Human Task Editor appears.

3. Above the editor, click Form and select Launch Task Form Wizard.

4. Provide a project name and a directory path (or use the default), and click OK. The
Custom Form Wizard displays the Name and Definition screen as shown in
Figure 30-9.

Creating a Task Form

30-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 30-9 Custom Task Form Wizard: Form Name and Definition

5. In the Form Name field, provide the name of the form (.jspx file) that is to be
generated at the end of the wizard. If you do not provide a name, then the default
name, Humantasknumber_Form, is provided. Ensure that valid characters are
used in the name. Spaces are not permitted.

6. Specify the Task Flow Name, that is, the name of the ADF task flow that is
generated at the end of the wizard. Accept the default name of
Humantasknumber_TaskFlow or specify a different name.

7. In the Page Templates section, select either:

• Packaged: Select this to use one of the default page templates, then select the
particular template from the list.

• Custom: Select the library and template. If no library is listed, click Manage
Libraries and follow the instructions in How to Register the Library JAR File
for Custom Page Templates.

Click Next. The Header page appears.

8. On the Header page, shown in Figure 30-10, perform the following procedures and
click Next.

• In the Actions facet section, select the options to include in the title bar of the
task form:

Other actions (menu): Lists the system actions that are possible for the task,
such as Request Information, Reassign, Renew, Suspend, Escalate, and Save.

Outcomes (buttons): Displays buttons for task actions that are defined in the
human task, such as setting task outcomes.

Creating a Task Form

Designing Task Forms for Human Tasks 30-13

• In the Header facet section, enter the number of display columns. If you want
each header label to display in its own column, then enter the same number as
the number of headers you move into the Selected list. If you enter 1, but select
7 headers, all 7 headers appear in one column.

• Move header labels into the Selected list and reorder them as needed.

Figure 30-10 Custom Task Form Wizard: Setting Up the Header

9. On the Body page, shown in Figure 30-11, perform the following procedures in the
Body facet section to set up the form, and click Next:

• Enter a title that describes the body panel.

• Enter the number of columns for row 1. For a simple form, you may want to
enter the same number as you entered for the number of header columns.

• Click the Add (+) button to add more rows. For each new row, you can also
specify the number of columns. Each row can have its own column layout. For
each column in each row, a body page is created, labeled Row1, Column1, and
so on.

Creating a Task Form

30-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 30-11 Custom Task Form Wizard: Setting Up the Body

Note:

If you specify rows or columns for which no payload data appears, then an
empty panel group is displayed. You can use this blank section to add content
to the form later by using data controls.

10. On the Row1 Column1 page, shown in Figure 30-12, move all or part of the
payload to the Selected list and click Next.

Figure 30-12 Custom Task Form Wizard: Selecting the Body Fields

11. For any Rown Columnn page after Row1 Column1, repeat Step 10 and click Next.

The Footer page that displays is based upon the page template you selected on the
Name and Definition page in Step 6 (either Default Page Template or Custom Page
Template).

Creating a Task Form

Designing Task Forms for Human Tasks 30-15

If you selected Default Page Template, the Footer page shown in Figure 30-13 is
displayed. Deselect any comments, attachments, or history facet that you do not
want to include in the footer, and click Next. By default, the comments,
attachments, and history facets are all selected.

Figure 30-13 Custom Task Form Wizard: Selecting the Footer Fields for the Default Page
Template

12. On the Summary page, shown in Figure 30-14, inspect your selections. Click Back
to make changes or click Finish.

This form is created as an ADF task flow and added to the project.

Figure 30-14 Custom Task Form Wizard: Summary

Creating a Task Form

30-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The Designer initializes and the form_name.jspx tab is displayed, as shown in
Figure 30-15 (upper part of tab) and Figure 30-16 (lower part of tab).

Figure 30-15 Custom Task Form (Upper Part of Tab)

Creating a Task Form

Designing Task Forms for Human Tasks 30-17

Figure 30-16 Custom Task Form (Lower Part of Tab)

30.4.4 How To Create a Task Form Using the Complete Task with Payload Drop Handler
The human task drop handlers appear in the context menu of the designer, as shown
in Figure 30-17.

Creating a Task Form

30-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 30-17 Human Task Drop Handlers for Creating the Task Form

Other ADF drop handlers—for forms, tables, trees, and so on (shown in Figure 30-17)
—can also be used to create task forms.

To create a task form using the Complete Task with Payload drop handler:

1. In the designer, double-click taskDetails1_jspx.

2. In the Create JSF Page dialog, provide a file name and directory information (or
accept the defaults) and click OK.

3. In the Data Controls panel of the Applications window, expand the human task
node, then the getTaskDetails node, and then the Return node.

4. Drag the Task icon into the taskDetails.jspx window.

5. Select Human Task, and then Complete Task with Payload.

6. In the Edit Action Binding dialog, shown in Figure 30-18, click OK.

Creating a Task Form

Designing Task Forms for Human Tasks 30-19

Figure 30-18 Edit the Action Binding

7. In the next Edit Action Binding dialog, the data collection is selected, as shown in
Figure 30-19; click OK.

Creating a Task Form

30-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 30-19 Select the Data Collection and Action

The task form is displayed, as shown in Figure 30-20.

Creating a Task Form

Designing Task Forms for Human Tasks 30-21

Figure 30-20 Task Form

30.4.4.1 Complete Task with Payload

This option creates the combination of all the preceding task form components (the
task header, task history, task actions, and task comments and attachments), plus the
interface for the payload. The payload interface is created as follows:

• All text nodes are created as text input fields.

• If an element has maxOccurs="unbounded", then it appears as a table.

• Nested tables are not rendered; that is, if an element has
maxOccurs="unbounded" and it has a child with maxOccurs="unbounded",
then the child element is not rendered.

• If there are multiple levels of nesting, then drag and drop the individual sections
and use a standard ADF drop handler.

30.4.4.2 Complete Task without Payload

This option creates the combination of all of the preceding task form components (the
task header, task history, task actions, and task comments and attachments).

30.4.4.3 Task Details for Email

This option creates an ADF region that renders well when sent by email. It generates
the form shown in Figure 30-21.

Creating a Task Form

30-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 30-21 Task Form for Email Notification

See Creating an Email Notification , for more information.

30.4.4.4 Task Header

All the standard header fields are added to the task form. This includes the task
number and title; the state, outcome, and priority of the BPEL process, and
information about who created, updated, claimed, or is assigned to the task. The
header also displays dates related to task creation, last modification, and expiration.
You can add or remove header fields as required for your task display.

Figure 30-22 shows an example of header information.

Figure 30-22 Header Information

Buttons for task actions are also created in the header, as shown in Figure 30-23.

Figure 30-23 Task Header: Task Action Buttons

30.4.4.5 Task Actions

The following task actions appear from the Actions dropdown list or as buttons. The
tasks that appear depend on the state of the task (assigned, completed, and so on) and
the privileges that are granted to the user viewing the task. For example, when a task
is assigned to a group, only the Claim button appears. After the task is claimed, other
actions such as Reject and Approve appear.

The first three custom actions appear on the task form as buttons: Claim, Dismiss, and
Resume. Only those buttons applicable to the task appear. Other actions are displayed

Creating a Task Form

Designing Task Forms for Human Tasks 30-23

under the Actions list, starting with Request for Information, Reassign, and Route.
Systems actions—Withdraw, Pushback, Escalate, Release, Suspend, and Renew—
follow the custom actions, followed by the Save button. These actions require no
further dialog to complete.

• Claim—A task that is assigned to a group or multiple users must be claimed first.
Claim is the only action available in the Task Action list for group or multiuser
assignments. After a task is claimed, all applicable actions are listed.

Note:

– If an FYI task is sent to multiple users, a user must first select the Claim
button to claim the task before they can dismiss it.

– Pushback is designed to work with single approvers and not with group
votes. Pushback from a stage with group vote (or parallel) scenario to
another stage is not allowed. Similarly, you cannot push back from a
single assignee to a group vote (or parallel) scenario.

• Dismiss—This action is used for a task that requires the person acting on the task
to acknowledge receipt, but not take any action (such as an FYI).

• Resume—A task that was halted by a Suspend action can be worked on again.
See Suspend.

• Request for Information—You can request more information from the task
creator or any of the previous assignees. If reapproval is not required, then the
task is assigned to the next approver or the next step in the business process.

• Reassign—Managers can reassign a task to reportees. The Reassign option also
provides a Delegate function. A task can be delegated to another user or group.
The delegated task appears in both the original user's and the delegated user's
worklists. The delegated user can act on behalf of the original assignee, and has
the same privileges for that task as the original assignee.

• Route—If there is no predetermined sequence of approvers or if the workflow
was designed to permit ad hoc routing, then the task can be routed in an ad hoc
fashion. For such tasks, a Route button appears on the task details page. From the
Routing page, you can look up one or more users for routing. When you specify
multiple assignees, you can choose whether the list of assignees is for simple
(group assignment to all users), sequential, or parallel assignment. In the case of
parallel assignment, you provide the percentage of votes required for approval.

• Withdraw—Only the task creator can withdraw (cancel) the task. The Comments
area is available for an optional comment. The business process determines what
happens next.

• Pushback—This action sends a task up one level in the workflow to the previous
assignee. Note: Pushback is designed to work with single approvers and not with
group votes. Pushback from a stage with group vote (or parallel) scenario to
another stage is not allowed. Similarly, you cannot push back from a single
assignee to a group vote (or parallel) scenario.

• Escalate—An escalated task is assigned to the user's manager. The Comments
area is available for an optional comment.

Creating a Task Form

30-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Release—Releasing a task makes it available to other assignees. A task assigned to
a group or multiple users can then be claimed by the other assignees.

• Suspend—This action suspends the expiration date indefinitely, until the task is
resumed. Suspending and resuming tasks are available only to users who have
been granted the BPMWorkflowSuspend role. Other users can access the task by
selecting Previous in the task filter or by looking up tasks in the Suspended status.
Buttons that update a task are disabled after suspension.

• Renew—Renewing a task extends the task expiration date seven days (P7D is the
default). The renewal duration is controlled from . A renewal appears in the task
history. The Comments area is available for an optional comment.

• Save—Changes to the task are saved.

While you are creating a task form, all possible system action buttons appear,
although only those actions that are appropriate for the task state and fit the user's
privileges appear in the worklist.

30.4.4.6 Task History

The history of task actions appears on the task details page, and is displayed in the
worklist as a history table. The history includes the following fields:

• Version number

• Participant name—the person who acted on the task

• Action—for example, if the task was approved or assigned

• Updated By—name of the person who last updated the task

• Action date

See Figure 32-20 and Figure 32-21 for how task history is displayed in Oracle BPM
Worklist, including the options to take a history snapshot, list future participants, and
list full task actions.

30.4.4.7 Task Comments and Attachments

A trail of comments with the comment date and comment writer's user name is
maintained throughout the life cycle of a task.

Files or reference URLs associated with a task can be added by any of the human task
participants.

Figure 30-24 shows an example of the comments and attachments region.

Figure 30-24 Comments and Attachment Region

Creating a Task Form

Designing Task Forms for Human Tasks 30-25

30.4.5 How To Create Task Form Regions Using Individual Drop Handlers
You can create a display form with multiple regions using the individual Task
Header, Task Action, Task History, and Task Comment and Attachment drop
handlers shown in Figure 30-25.

Figure 30-25 Using Human Task Drop Handlers

Task Header provides both header and task actions, so you do not need the Task
Action drop handler when you use Task Header. Use Task Action when you want
the actions dropdown menu and buttons, but not header details.

To create the task form without building each region individually, see How To Create
a Task Form Using the Complete Task with Payload Drop Handler.

Before you create this task form, you must have created the following:

• A new application and SOA project, and a human task service.

• An ADF task flow based on the human task. See Introduction to the Human
Workflow Tutorial for more information.

To create task form regions using individual drop handlers:

1. In the designer, double-click taskDetails1.jspx.

2. In the Create JSF Page dialog, provide a file name and directory information (or
accept the defaults) and click OK.

3. In the Data Controls panel of the Applications window, expand the human task
node, then the getTaskDetails node, and then the Return node.

4. Drag the Task icon into the taskDetails.jspx window.

5. Select Human Task, and then Task Header.

This creates the Actions dropdown list and buttons for task actions, as shown in
Figure 30-26, and header details, as shown in Figure 30-27.

Figure 30-26 Designing the Task Form: Buttons for Task Actions

Creating a Task Form

30-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 30-27 Designing the Task Form: Task Headers

6. Drag additional Task icons into the JSPX designer, selecting these options with
each iteration:

• Human Task, then Task History

• Human Task, then Task Comment and Attachment

The task form now has multiple regions for task action dropdown lists and buttons,
task header details, task history, and comments and attachments.

To continue creating the task form, see Step 1 in How To Add the Payload to the Task
Form.

30.4.6 How To Add the Payload to the Task Form
In addition to adding the payload, you can create task form regions. See Step 1 in How
To Create Task Form Regions Using Individual Drop Handlers.

To add the payload to the task form:

1. From the Components window, select ADF Faces.

2. Expand Layout.

3. Drag Panel Group Layout between the Header and Comment sections.

4. In the Data Controls panel, expand Task, and then Payload.

5. Drag the payload data collection to the left of the Panel Group Layout area.

An alternative to dropping the payload node onto the form is to expand the
payload node and drop the necessary child elements onto the form. For example, to
create a read-only form for the VacationRequest payload, expand the payload
node, drag the Vacation Request Process Request node onto the form, and select
Forms > ADF Read-only Form.

6. From the context menu, select Forms, then ADF Read-only Form, as shown in
Figure 30-28.

Creating a Task Form

Designing Task Forms for Human Tasks 30-27

Figure 30-28 Adding ADF Read-Only Fields to the Task Form Payload Region

7. In the Edit Form Fields dialog, accept the defaults and click OK.

This creates read-only fields in the payload region, between the Details and
History sections.

The payload regions appear, as shown in Figure 30-29.

Figure 30-29 The Payload Region of the Task Form

The task form, shown in Figure 30-30, is complete and ready to be deployed.

Creating a Task Form

30-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 30-30 The Task Form (taskDetails.jspx)

30.4.7 What Happens When You Create a Task Form
The form you designed is saved in the .jspx file at

JDev_Oracle_Home\mywork\task_form_application_name\project_name\public_html

The task form is ready to be deployed. See Deploying a Composite Application with a
Task Flow.

30.5 Refreshing Data Controls When the Task XSD Changes
When task metadata changes, refresh the Data Controls view (XSD changes are not
refreshed) that is based on that task metadata.

The refresh functionality re-creates the data control. Figure 30-31 shows the Refresh
option.

Refreshing Data Controls When the Task XSD Changes

Designing Task Forms for Human Tasks 30-29

Figure 30-31 Refreshing Data Controls

To refresh the data control:

1. Right-click the data control.

2. Select the Edit Definition option to display the Refresh Data Control dialog, as
shown in Figure 30-32.

Figure 30-32 The Refresh Data Control Button

30.6 Securing the Task Flow Application
You can use any container-based security for securing the task flow.

See Requirements for Client Applications For Identity Propagation , for more
information. Form-based authentication and SSO-based authentication are available
for web security.

If you are sending a notification as email, do not secure the URL with "/
notification/secure" to use container-based security because this is accessed by
SOA APIs using an internal context that cannot be created outside of SOA. The URL
pattern inside security cannot contain "/" (all URLs) and "//notification".

Securing the Task Flow Application

30-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

No additional steps are required for identity propagation. Identity is automatically
propagated to the server EJBs.

30.7 Creating an Email Notification
A task form is used to provide an email notification, if email notification is defined as
part of the human task.

Options for email notification include:

• Default email notification—Use the first page of the task form that you create for
the human task. The content is sent as an HTML-based email. Images in the task
flow are included as attachments so that the notification can be viewed in
disconnected mode. All drop handlers, including Complete Task with Payload
and Complete Task without Payload, are suitable for emails.

• Custom email notification—Use the Task display for email drop handler to create
a custom email notification task page.

Notifications from Human Workflow to review notification settings as part of a
human task definition (.task file).

30.7.1 How To Create an Email Notification
To send a custom email notification whose content and layout you have specified,
create another JSPX file in which you design an email notification page. (Note,
however, that you can use the default page for notification with no further
modifications.) Create the custom notification page by using the custom and standard
drop handlers, or use the email notification drop handler. In addition, do the
following:

• Add a router to the task flow. The router directs the task flow to send either the
email notification page or the default page, depending on the control flow based
on the bpmClientType page flow scope value.

• Edit the generated inline CSS to customize the page. No additional CSS is
included at runtime and the ADF CSS is not available at runtime. See the samples
notification-101 and notification-102 available with the Oracle SOA Suite samples.

• Reference images directly from the HTML or JSF page. (Indirect references, for
example, an included JSF that in turn includes the image, are not allowed.)

30.7.1.1 Creating a Task Flow with a Router

The control flow case with a router enables you to direct the request to a specific page
based on certain parameters. For an ADF task flow based on a human task, you need a
special page for email notifications. This section describes how to create a special page
for email notifications.

To create a task flow with a router:

1. In the Applications window, expand the task flow project and double-click
project_name _TaskFlow.xml.

The XML file opens in the designer. In the diagram view, you see the
taskDetails1.jspx icon.

2. From the Components window, select ADF Task Flow, and drag the View icon
into the designer.

Creating an Email Notification

Designing Task Forms for Human Tasks 30-31

3. Click view1 below the icon and enter a name for the email notification page.

Figure 30-33 shows an example using the name EmailPage.

Figure 30-33 Creating the Email Page

4. From the Components window, drag Router into the designer.

5. Click router1 below the icon and enter a router name.

Figure 30-35 shows an example using the name PageRouter.

6. To ensure that the router is called, right-click the router icon and click Mark
Activity > Default Activity, as shown in Figure 30-34.

Figure 30-34 Marking the Router as the Default Activity

Creating an Email Notification

30-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

7. Click the router - router_name - Property Inspector tab.

8. In the default-outcome field, enter default.

9. Click Add, and in the Outcome field, enter the name of the email notification page.

10. Use the Expression Builder to enter the following in the expression field:
#{pageFlowScope.bpmClientType=="notificationClient"}

11. In the Components window, click Control Flow Case.

12. In the designer, drag from the router page icon to taskDetails1.jspx.

The control flow is automatically labeled default, as shown in Figure 30-35.

Figure 30-35 Connecting the Control Flow

13. In the Components window, click Control Flow Case.

14. In the designer, drag from the router page icon to the email notification page icon.

15. Click the control-flow-case - email_page_name - Property Inspector tab.

16. From the from-outcome list, select the name of the email notification page.

Figure 30-36 shows the completed control flow.

Creating an Email Notification

Designing Task Forms for Human Tasks 30-33

Figure 30-36 Completed Control Flow for an Email Notification

To continue creating the email notification page, see Step 1 in Creating an Email
Notification Page.

30.7.1.2 Creating an Email Notification Page

Creating an email notification page is similar to creating a task form, with the addition
of defining layout and inline styles.

To create an email notification page:

1. In the designer, double-click EmailPage.

2. In the Create JSF Page dialog, provide a file name and directory information (or
accept the defaults) and click OK.

The EmailPage.jspx tab opens in the designer.

3. From the Components window, drag any of the Common Components (for an
image, for example) or Layout components into the designer.

4. For the layout component you selected, provide alignment and other details in the
Property Inspector tab.

Figure 30-37 shows the layout fields available when Panel Group Layout is
selected.

Creating an Email Notification

30-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 30-37 Specifying a Layout

5. Expand Appearance, Style and Theme, Behavior, Advanced, Customization, and
Annotations to specify other details, as shown in Figure 30-38.

Creating an Email Notification

Designing Task Forms for Human Tasks 30-35

Figure 30-38 Specifying a Layout: More Details

6. From the Data Controls panel, expand the human task node, then the
getTaskDetails node, and then the Return node.

7. Drag Task into the panel group layout area.

8. Select Human Task, and then Task details for email, as shown in Figure 30-39.

Creating an Email Notification

30-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 30-39 Human Task Drop Handlers

This drop handler includes a header with inline style, a payload using ADF, and a
comment using inline style. Because the payload is dynamically generated, it does
not include an inline style.

In general, you can find the inline styles for the Header section for each component
and use the same style for the Content section for the respective components.

9. In the Edit Action Bindings dialog, select the data collection and click OK.

The email task form is complete and ready to be deployed.

30.7.2 What Happens When You Create an Email Notification Page
The email notification page is sent as HTML content in the email message body.
Images on the page are inlined as attachments. Relative URLs are converted to
absolute URLs.

A notification may not display correctly in email if the styles used in the fields of the
form are not valid for email. Editing the generated inline CSS to customize the page
may be required. See How To Create an Email Notification, for more information.

Security issues can also prevent the form from being rendered correctly. See Securing
the Task Flow Application, for more information.

30.8 Deploying a Composite Application with a Task Flow
The composite application that contains the task flow must be deployed before you
can use the task form in the Worklist Application.

The process for deploying an application with a task flow is basically the same as
deploying any SOA composite application, as described in How To Deploy a
Composite Application with a Task Flow. See Deploying SOA Composite Applications
for more information.

30.8.1 How To Deploy a Composite Application with a Task Flow
An application server connection is required to do the following.

To deploy a composite application with a task flow:

1. Right-click the composite application name, select Deploy, and then
application_name > to > application_server_connection.

Deploying a Composite Application with a Task Flow

Designing Task Forms for Human Tasks 30-37

If you do not have a connection, select New Connection and use the Application
Server Connection wizard.

2. In the Select Deployment Targets dialog, select a server instance.

3. Click OK.

30.8.2 How To Redeploy the Task Form
If you change the task form and want to redeploy it, repeat the deployment step.
(Right-click the task form application name, select Deploy, and then
application_name > to > application_server_connection.) A message asking you if you
want to undeploy the form is displayed. Click OK and deploy the task form again.

30.8.3 How To Deploy a Task Flow as a Separate Application
If you want to deploy the task flow as a separate application, outside of the SOA
composite application, then create an application and project as a container for the
task flow. After you deploy the SOA composite application, deploy the task flow
application.

30.8.4 How To Deploy a Task Form to a non-SOA Oracle WebLogic Server
This section describes how to deploy a task form to a non-SOA Oracle WebLogic
Server.

30.8.4.1 Before Deploying the Task Form: Port Changes

If you are not using the default values for RMI or HTTP ports, open the
wf_client_config.xml file in Oracle JDeveloper to change values.

When you want to deploy task details on non-SOA servers, you must configure the
wf_client_config.xml file. This file should be created and added to the task
details project only if the task detail is deployed to a separate managed server that is
not the SOA server. The <serverURL> and <rootEndpointURL> in the file should
refer to the SOA server host name and port number.

The following example shows a sample wf_client_config.xml file.

<?xml version="1.0" encoding="UTF-8" ?>
xmlns="http://xmlns.oracle.com/bpel/services/client">
 <server default="true" name="default">
 <localClient>

<participateInClientTransaction>false</participateInClientTransaction>
 </localClient>
 <remoteClient>
 <serverURL>t3://my_host.us.example.com:8001</serverURL>

<initialContextFactory>weblogic.jndi.WLInitialContextFactory</initialContextFactory>

<participateInClientTransaction>false</participateInClientTransaction>
 </remoteClient>
 <soapClient>

<rootEndPointURL>http://my_host.us.example.com:8001</rootEndPointURL>
 </soapClient>
 </server>
</workflowServicesClientConfiguration>

Deploying a Composite Application with a Task Flow

30-38 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

30.8.4.2 Configuring Unique Cookie Context Paths for the Session Tracking Cookies

Before deploying the task form to a non-SOA Oracle Weblogic Server, ensure that the
session tracking cookie of your task-form web application is configured with a cookie
trigger path unique to your application. This ensures that your task form application
has its unique session tracking cookie and cannot be overwritten by the session
tracking cookies created for other Oracle BPM applications such as Oracle BPM
Worklist or Oracle Business Process Management Workspace.

To configure the session cookie trigger path, in JDeveloper, open the weblogic.xml
file in your web project. Choose the overview tab in your .xml file editor, and choose
the session. In the cookie trigger path field, enter the application context path of your
web application. For example, if the URL of your application is http://
host:port/my-application-context-root in which my-application-
context-root is the name of your application context root, then the cookie trigger
path is set as follows:

/my-application-context-root

30.8.4.3 Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server

The oracle.soa.workflow.jar shared library is needed on the non-SOA Oracle
WebLogic Server. It is available from

ORACLE_JDEV_HOME\jdeveloper\soa\modules\oracle.soa.workflow_11.1.1

Use Oracle WebLogic Server Administration Console to deploy the JAR file.

To deploy oracle.soa.workflow.jar:

1. Go to Oracle WebLogic Server Administration Console at

http://remote_hostname:remote_portnumber/console

2. In the Domain Structure area, click Deployments.

3. Click Install, as shown in Figure 30-40.

Deploying a Composite Application with a Task Flow

Designing Task Forms for Human Tasks 30-39

Figure 30-40 Oracle WebLogic Server Administration Console: List of Deployments

4. In the Path field, provide the following path and click Next.

ORACLE_JDEV_HOME/jdeveloper/soa/modules/oracle.soa.workflow_11.1.1/
oracle.soa.workflow.jar

5. Keep the same name for the deployment and click Next, as shown in Figure 30-41.

Deploying a Composite Application with a Task Flow

30-40 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 30-41 Oracle WebLogic Server Administration Console: Install Applications Assistant

6. Select the Deploy as Library option and click Finish.

7. Confirm that the oracle.soa.workflow(11.1.1,11.1.1) library is in the Active state, as
shown in Figure 30-42.

Figure 30-42 Oracle WebLogic Server Administration Console: The oracle.soa.workflow Active
State

See Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server, to
continue.

30.8.4.4 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server

Use Oracle WebLogic Server Administration Console to complete this portion of the
task.

Deploying a Composite Application with a Task Flow

Designing Task Forms for Human Tasks 30-41

To define the foreign JNDI provider:

1. In the Domain Structure area, expand Services and click Foreign JNDI Providers.

2. Click New.

3. In the Name field, enter ForeignJNDIProvider-SOA, as shown in Figure 30-43,
and click Next.

Figure 30-43 Creating a Foreign JNDI Provider

4. Click the ForeignJNDIProvider-SOA link.

5. Do the following and click Save.

• For Initial Context Factory, enter
weblogic.jndi.WLInitialContextFactory.

• For Provider URL, enter t3://soa_hostname:soa_portnumber/soa-
infra.

In a clustered environment, for Provider URL, enter http://
soa_hostname:soa_portnumber/soa-infra.

• For User, enter weblogic.

• For Password, enter weblogic.

Figure 30-44 shows the page where you enter this information.

Deploying a Composite Application with a Task Flow

30-42 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 30-44 Defining the Foreign JNDI Provider

See Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server,
to continue.

30.8.4.5 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic
Server

Use Oracle WebLogic Server Administration Console to complete this portion of the
task.

To define the foreign JNDI provider links:

1. In the Domain Structure area, expand Services and click Foreign JNDI Providers.

2. Click the ForeignJNDIProvider-SOA link.

3. Click the Links tab.

4. Click New.

Figure 30-45 shows the Links tab.

Deploying a Composite Application with a Task Flow

Designing Task Forms for Human Tasks 30-43

Figure 30-45 Defining the Foreign JNDI Provider Links: The Links Tab

5. Do the following and click OK.

• For Name, enter RuntimeConfigService.

• For Local JNDI Name, enter RuntimeConfigService.

• For Remote JNDI Name, enter RuntimeConfigService.

Figure 30-46 shows where you do this.

Figure 30-46 Defining the Foreign JNDI Provider Links: Link Properties

6. Do the following and click OK.

• For Name, Local JNDI Name, Remote JNDI Name, enter ejb/bpel/
services/workflow/TaskServiceBean.

• For Name, Local JNDI Name, Remote JNDI Name, enter ejb/bpel/
services/workflow/TaskMetadataServiceBean.

Deploying a Composite Application with a Task Flow

30-44 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• For Name, Local JNDI Name, Remote JNDI Name, enter
TaskReportServiceBean.

• For Name, Local JNDI Name, Remote JNDI Name, enter
TaskEvidenceServiceBean.

• For Name, Local JNDI Name, Remote JNDI Name, enter
TaskQueryService.

• For Name, Local JNDI Name, Remote JNDI Name, enter
UserMetadataService.

See Including a Grant for bpm-services.jar, to continue.

30.8.4.6 Including a Grant for bpm-services.jar

To include a grant for bpm-services.jar, edit the system-jazn-data.xml file and
then restart the non-SOA Oracle WebLogic Server.

To include a grant for bpm-services.jar:

1. Locate the system-jazn-data.xml file by navigating to the domain directory,
soa-infra, and then to

ORACLE_WEBLOGIC_INSTALL/user_projects/domains/your_domain_name/config/fmwconfig

2. In system-jazn-data.xml, add the following grant. (If all or some portion of
the grant exists, then add only what is missing.)

<grant>
 <grantee>
 <codesource>
 <url>file: ORACLE_JDEV_HOME/jdeveloper/soa/modules/oracle.soa.workflow_
11.1.1/bpm-services.jar</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>VerificationService.createInternalWorkflowContext</name>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission
 </class>
 <name>credstoressp.credstore.BPM-CRYPTO.BPM-CRYPTO</name>
 <actions>read,write</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>IdentityAssertion</name>
 <actions>*</actions>
 </permission>
 </permissions>
</grant>

3. Restart the non-SOA Oracle WebLogic Server.

See Deploying the Application, to continue.

Deploying a Composite Application with a Task Flow

Designing Task Forms for Human Tasks 30-45

30.8.4.7 Deploying the Application

Deploy the application that contains the task form to a non-SOA Oracle WebLogic
Server the same way other applications are deployed. When you set up the application
server connection, specify the domain on the non-SOA server (the domain you
specified in Step 1 of Including a Grant for bpm-services.jar.. See Deploying SOA
Composite Applications for information on deploying applications.

30.8.5 What Happens When You Deploy the Task Form
When the task form is deployed, an automatic association is created between the task
metadata and the task flow application URL. Use Oracle Enterprise Manager Fusion
Middleware Control to update this mapping. Access the task flow component in the
Component Metrics table for a specific SOA composite application. The
Administration tab shows the URI for the task form. See Administering Oracle SOA
Suite and Oracle Business Process Management Suite for more information. If the task
flow is configured for HTTPS access, you may need to do additional settings in
Enterprise Manager.

Note:

For the task form association to happen automatically, the SOA server must be
running. If the association does not happen, then you receive the message
Task details not found for this task when you try to access the task
form for that task in Worklist Application or Oracle Business Process
Management Workspace. In this case, you can either restart the application or
go to Oracle Enterprise Manager and register the task form URL manually.

See Using for information on how to act on tasks.

Note:

• For the task form to work correctly, always specify the URL using the
complete name for the host on which the task flow is deployed.

• If you want to access the task form from a different URL that has a
different port number than the hostname and port number previously set
in Oracle WebLogic Server Administration Console, then you must
change the port number for the front-end in Oracle WebLogic Server
Administration Console and redeploy the task form so that the task
details appear correctly in the worklist.

30.8.6 What You May Need to Know About Undeploying a Task Flow
When a task flow Web application is deployed, the task flow URL is registered in the
database. This URL is displayed in Oracle BPM Worklist when a task is clicked and the
task details are displayed. If the task flow Web application is later undeployed or
stopped, the task flow URL in the database is not removed as part of the
undeployment. Consequently, when you click the task in the worklist to see the task
details, a 404 Not Found error is displayed rather than the message Details not
available for task. To avoid the 404 Not Found error, use Oracle Enterprise

Deploying a Composite Application with a Task Flow

30-46 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Manager Fusion Middleware Control to undeploy the task flow application from the
application home page.

30.9 Displaying a Task Form in the Worklist
The task form is displayed in Oracle BPM Worklist, a web-based interface for users to
act on their assigned human tasks. Specific actions are available or unavailable
depending on a user's privileges.

Figure 30-47 shows how the task form for the help desk request example is displayed
in the Worklist Application task details page.

Figure 30-47 Worklist Task Details Page

The task form is available in Oracle BPM Worklist after you log in. See How To Log In
to the Worklist for instructions.

30.10 Displaying a Task in an Email Notification
Learn how to display a task in an email notification.

Figure 30-48 shows how an email task notification appears in email.

Displaying a Task Form in the Worklist

Designing Task Forms for Human Tasks 30-47

Figure 30-48 Email Task Notification

You can click an available action, RESOLVED or UNRESOLVED, or click the
Worklist Application link to log in to the worklist. Clicking an action displays an
email composer window in which you can add a comment and send the email.

By default, the text in a task notification refers to "Worklist Application," but you can
change that text and its associated URL.

30.10.1 Changing the Text for the Worklist Application in Task Notifications
By default, the text in a task notification refers to "Worklist Application," but you can
change that text. To change it, you create a custom resource bundle and modify the
appropriate strings.

To change the text in a task notification:

1. Open the WorkflowLabels.properties resource bundle in the sample
workflow-110-workflowCustomizations.

2. In the WorkflowLabels.properties file, modify the following strings:

TASK_NOTIF_MSG.WORKLIST_APPLICATION=Worklist Application
TASK_NOTIF_MSG.WORKSPACE_APPLICATION=Workspace Application

Displaying a Task in an Email Notification

30-48 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For more details on how to modify the resource bundle string, see the
workflow-110-workflowCustomizations sample.

3. Update the Workflow Custom Classpath URL configuration parameter on your
instance.

You do not have to deploy the WorkflowLabels.properties file as an
application for it to work. Instead, you can do either of the following:

• Host it on the file system, using a URL beginning with file:/// to point to
the appropriate location.

• Host the file in MDS, using a URL beginning with oramds:///....

30.10.2 Changing the URL of the Worklist Application in Task Notifications

To change the text in a task notification:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. In the navigator, expand the SOA folder.

3. Right-click soa-infra, and select SOA Administration > Workflow Config > Task
tab.

The Workflow Task Service Properties page appears.

4. Expand Advanced.

5. Modify the Worklist Application URL. For example, you can change an existing
entry like this:

http://[HTTP_HOST]:[HTTP_PORT]/integration/worklistapp/TaskDetails?
taskId=PC_HW_TASK_ID_TAG

to something like this:

http://[HTTP_HOST]:[HTTP_PORT]/patch/info/page.jspx?taskId=PC_HW_TASK_ID_TAG

For information about showing or hiding the URL of the Worklist Application, see
How to Display the URL in Notifications.

30.11 Reusing the Task Flow Application with Multiple Human Tasks
You can reuse a single task flow application with multiple human tasks. To use this
feature, all human tasks must have both the payload elements and the outcomes must
be identical.

30.11.1 How To Reuse the Task Flow Application with Multiple Human Tasks

1. Open the TASKFLOW_PROJ_DIR\adfmsrc\hwtaskflow.xml file.

2. For each additional human task, add the following element inside the file (at the
bottom just before </hwTaskFlows>):

<hwTaskFlow>
 <WorkflowName>$TASK_NAME</WorkflowName>
 <TaskDefinitionNamespace>$TASK_NAMESPACE</TaskDefinitionNamespace>

Reusing the Task Flow Application with Multiple Human Tasks

Designing Task Forms for Human Tasks 30-49

 <TaskFlowId>$TASK_FLOW_NAME</TaskFlowId>
 <TaskFlowFileName>$TASK_FLOW_FILENAME</TaskFlowFileName>
</hwTaskFlow

where:

• $TASK_NAME is replaced with the name of the human task inside the .task
file (value of the <name> element).

• $TASK_NAMESPACE is replaced with the namespace of the human task inside
the .task file (value of the attribute targetNameSpace of element
<taskDefinition>).

• $TASK_FLOW_NAME is copied from the existing <hwTaskFlow>/
<TaskFlowId> element.

• $TASK_FLOW_FILENAME is copied from the existing <hwTaskFlow>/
<TaskFlowFileName> element.

30.11.2 How to Reuse the Task Flow Application with Different Actions
You can reuse a single task flow that has different actions for different tasks. To do
this:

1. Define all actions in the task that you use to generate the taskflow.

2. In any given task, disable the actions that you do not want to include.

Reusing the Task Flow Application with Multiple Human Tasks

30-50 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

31
Human Workflow Tutorial

Learn how to design your first workflow from start to finish.

• Introduction to the Human Workflow Tutorial

• Prerequisites

• Creating an Application and a Project with a BPEL Process

• Creating the Human Task Service Component

• Designing the Human Task

• Associating the Human Task and BPEL Process Service Components

• Creating a Task Form Project

• Deploying the Task Form

• Creating an Application Server Connection

• Deploying the SOA Composite Application

• Initiating the Process Instance

• Acting on the Task in Oracle BPM Worklist

• Additional Tutorials

31.1 Introduction to the Human Workflow Tutorial
Learn how to create a new application and SOA project and how to design a human
task to send a vacation request to a manager for approval or rejection with the help of
the tutorial.

The application developed in this tutorial is based on the following use-case:

• an employee submits a vacation request

• the manager approves or rejects the vacation request

• the employee receives a notification that approves or rejects their request

The SOA composite application contains the following components:

• A BPEL process

• A human task, for approving a vacation request submitted by an employee

It also describes how to create an Oracle ADF-based task form that enables the end
user to act upon the vacation request once the application is deployed and running. To

Human Workflow Tutorial 31-1

create an Oracle ADF-based task form you must create a new application and a new
project.

This tutorial guides you through the following tasks:

• Using the

• Using the Human Task Editor

• Modeling a single approval workflow using Oracle BPEL Designer

• Creating an Oracle ADF-based Oracle BPM Worklist

• Using Oracle BPM Worklist to view and respond to the task

31.2 Prerequisites
This tutorial makes the following assumptions:

• Oracle SOA Suite is installed on a host on which the SOA Infrastructure is
configured.

• You are familiar with basic BPEL constructs, including BPEL activities and partner
links, and basic XPath functions. Familiarity with the and Oracle BPEL Designer,
the environment for designing and deploying BPEL processes, is also assumed.

Create a file named VacationRequest.xsd with the following syntax. This file
includes the schema for the vacation request and subsequent response.

<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/VacationRequest"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="VacationRequestProcessRequest">
 <complexType>
 <sequence>
 <element name="creator" type="string"/>
 <element name="fromDate" type="date"/>
 <element name="toDate" type="date"/>
 <element name="reason" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="VacationRequestProcessResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
</schema>

Note:

The VacationRequest.xsd file is also available for download as part of
tutorial workflow-100-VacationRequest. See Additional Tutorials for
information on downloading this and other tutorials.

Prerequisites

31-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

31.3 Creating an Application and a Project with a BPEL Process
Learn how to create an application and a project with a BPEL process.

This tutorial makes the following assumptions:

• Oracle SOA Suite is installed on a host on which the SOA Infrastructure is
configured.

• You are familiar with basic BPEL constructs, including BPEL activities and partner
links, and basic XPath functions. Familiarity with the and Oracle BPEL Designer,
the environment for designing and deploying BPEL processes, is also assumed.

Create a file named VacationRequest.xsd with the following syntax. This file
includes the schema for the vacation request and subsequent response.

<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/VacationRequest"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="VacationRequestProcessRequest">
 <complexType>
 <sequence>
 <element name="creator" type="string"/>
 <element name="fromDate" type="date"/>
 <element name="toDate" type="date"/>
 <element name="reason" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="VacationRequestProcessResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
</schema>

To create an application and a project with a BPEL process:

1. Start Oracle JDeveloper. From the File main menu, select New > Applications >
SOA Application.

Click OK.

2. In the Application Name field, enter VacationRequest, and click Next.

3. In the Project Name field, enter VacationRequest, and click Next.

4. In the Composite Template list, select Composite with BPEL Process, and click
Finish.

The Create BPEL Process dialog appears.

5. In the Name field, enter VacationRequestProcess.

Go to the bottom of the Create BPEL Process dialog.

6. To the right of the Input field, click the Search icon.

Creating an Application and a Project with a BPEL Process

Human Workflow Tutorial 31-3

The Type Chooser dialog appears.

7. In the upper right corner, click the Import Schema File icon.

The Import Schema File dialog appears.

8. Browse for and select the VacationRequest.xsd file.

Click OK until you are returned to the Type Chooser dialog.

Figure 31-1 Type Chooser Dialog with the Request and Response Elements

9. Select the input element VacationRequestProcessRequest, and click OK.

You are returned to the Create BPEL Process dialog.

10. To the right of the Output field, click the Search icon.

11. Select the output element VacationRequestProcessResponse, and click OK.

You are returned to the Create BPEL Process dialog.

Creating an Application and a Project with a BPEL Process

31-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 31-2 BPEL Process Dialog

12. Accept the default values for all other settings, and click OK.

A BPEL process service component is created in the SOA Composite Editor.
Because Expose as a SOAP service was selected in the Create BPEL Process dialog,
the BPEL process is automatically connected with a service binding component.
The service exposes the SOA composite application to external customers.

Figure 31-3 BPEL Process in SOA Composite Editor

For more information about service components and the SOA Composite Editor,
see Getting Started with Developing SOA Composite Applications.

31.4 Creating the Human Task Service Component
Learn to create the human task service component in which you design your human
task.

Creating the Human Task Service Component

Human Workflow Tutorial 31-5

To create the human task service component:

1. From the Service Components section of the Components window, drag a Human
Task into the .

The Create Human Task dialog appears.

2. Enter the details described in Table 31-1.

Table 31-1 Create Human Task Dialog Fields and Values

Field Value

Name Enter VacationRequestTask.

Namespace Accept the default value.

Create Composite Service
with SOAP Bindings

Do not select the check box. Instead, you create a human task
that you later associate with the BPEL process you created in
Creating an Application and a Project with a BPEL Process.
The BPEL process was created with an automatically-bound
web service.

3. Click OK.

The Human Task icon appears in the above the BPEL process, as shown in
Figure 31-4.

Figure 31-4 Human Task Icon in

4. Double-click the Human Task icon.

The Human Task Editor appears. You are now ready to begin design of your
human task.

31.5 Designing the Human Task
Learn how to design a human task.

Designing the Human Task

31-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To design the human task:

1. In the Task Title field, enter Request for Vacation.

2. Accept the default values for outcomes (APPROVE and REJECT). For this task,
these outcomes represent the two choices the manager has for acting on the
vacation request.

3. Click the Data tab on the left side of the editor and click the Add icon to specify the
task payload

4. Select Add string parameter.

The Add Task Parameter dialog is displayed. You now create parameters to
represent the elements in your XSD file. This makes the payload data available to
the workflow task.

5. Select Element. To the right of the Element field, click the Search icon.

The Type Chooser dialog appears.

6. Expand and select Project Schema Files > VacationRequest.xsd > process, and
click OK. Figure 31-5 provides details.

Figure 31-5 Type Chooser Dialog

Ensure that the Editable via worklist check box is selected. This provides you with
the option to modify this parameter during runtime from Oracle BPM Worklist.

Designing the Human Task

Human Workflow Tutorial 31-7

Click OK on the Add Task Parameter dialog.

7. Click the Assignment tab on the left side of the editor.

8. From the Participants section from the Components window, grab a Single
Participant type and drop it in the <Drop participant here> box, as shown in
Figure 31-6. You select this type because a single assignee, the manager, acts on the
vacation request task.

Oracle SOA Suite provides several out-of-the-box patterns known as participant
types for addressing specific business needs. For more information, see Task
Assignment and Routing.

Figure 31-6 Assignment and Routing Policy

9. Double-click the participant you added.

The Edit Participant Type dialog box opens.

10. In the Participant Names table, click the Add icon, and select Add User.

This participant type acts alone on the task.

11. Click the Data Type column, and select By Expression from the list that is
displayed. Figure 31-7 provides details.

This action enables the task to be assigned dynamically by the contents of the task.
The employee filing the vacation request comes from the parameter passed to the
task (the creator element in the XSD file you imported in Creating an
Application and a Project with a BPEL Process). The task is automatically routed to
the employee's manager.

Figure 31-7 Selection of By Expression from the Data Type Column

12. In the Value column, click the Browse icon (the dots) to invoke the Expression
Builder dialog.

13. In the dropdown list in the Functions section, select Identity Service Functions.

Designing the Human Task

31-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

14. Select getManager. This function gets the manager of the user who created the
vacation request task.

15. Above the Functions section, click Insert into Expression. Place the cursor between
the parentheses of the function.

16. In the Schema section, expand task:task > task:payload >
ns1:VacationRequestProcessRequest > ns1:creator.

where ns1 is the namespace for this example; your namespace may be different.

17. Click Insert into Expression.

The Expression Builder dialog displays the XPath expression in the Expression
section. Figure 31-8 provides details.

Figure 31-8 XPath Expression

18. Click OK to exit the Expression Builder dialog. Again, click OK to exit the Add
Participant Type dialog.

19. From the File menu, select Save All.

31.6 Associating the Human Task and BPEL Process Service
Components

Learn how to associate your human task with the BPEL.

Associate your human task with the BPEL process you created in Creating an
Application and a Project with a BPEL Process.

To associate the human task and BPEL process service component:

1. In the Applications window, double-click composite.xml.

2. Double-click the VacationRequestProcess BPEL process service component in the .

The BPEL process displays in Oracle BPEL Designer.

3. In the Components window, expand SOA Components.

4. Drag a Human Task beneath the receiveInput receive activity. Double-click the
activity.

The Human Task dialog appears.

5. From the Task Definition list, select the VacationRequestTask task you created (if
it is not currently displaying).

The dialog refreshes as shown in Figure 31-9 to display additional fields.

Associating the Human Task and BPEL Process Service Components

Human Workflow Tutorial 31-9

Figure 31-9 Human Task Dialog

6. In the BPEL Variable column, click the Browse icon (dots) shown in Figure 31-10.

Figure 31-10 BPEL Variable Entry

The Task Parameters dialog appears.

7. From the Type list, select Variable.

8. Expand Process > Variables > inputVariable > payload >
ns1:VacationRequestProcessRequest. Figure 31-11 provides details.

Associating the Human Task and BPEL Process Service Components

31-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 31-11 Variable Selection

Click OK.

9. Click OK to close the Human Task dialog.

The human task activity appears as shown in Figure 31-12.

Figure 31-12 Human Task and Partner Links in Oracle BPEL Designer

Associating the Human Task and BPEL Process Service Components

Human Workflow Tutorial 31-11

10. Return to the SOA Composite Editor and note that the BPEL process and human
task service components have been automatically connected. Figure 31-13 provides
details. From the File menu, select Save All.

Figure 31-13 SOA Composite Editor

31.7 Creating a Task Form Project
Learn to create a project for the task form. This is a separate project from the one in
which you created the human task.

To create a task form project:

1. Double-click the VacationRequestTask human task.

The Human Task Editor is displayed.

2. From the Form menu at the top, select Auto-Generate Task Form. Figure 31-14
provides details.

Figure 31-14 Task Form Creation

The Create Project dialog appears.

3. In the Project Name field, enter VacationRequestTaskFlow, and click OK.

Creating a Task Form Project

31-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

4. From the File main menu, select Save All.

31.8 Deploying the Task Form
Learn how to deploy the task form.

To deploy the task form:

1. In the Applications window, right-click the VacationRequestTaskFlow project and
select Deploy > VacationRequestTaskFlow.

2. Follow the pages of the deployment wizard to deploy the task form.

The task form is deployed.

For more information about deployment, see Deploying SOA Composite
Applications in .

3. Return to Oracle BPM Worklist.

4. Note that the task form now appears at the bottom of Oracle BPM Worklist.

31.9 Creating an Application Server Connection
Learn to create a connection to the application server on which Oracle SOA Suite is
installed and configured with the SOA Infrastructure. These instructions describe how
to create a connection to Oracle WebLogic Server.

For information about creating a connection to other application servers such as IBM
WebSphere Server, see .

To create an application server connection

1. From the File main menu, select New > Connections > Application Server
Connection.

Click OK.

2. In the Connection Name field, enter a connection name.

3. From the Connection Type list, select WebLogic 10.3.

Click Next.

4. In the Username field, enter weblogic.

5. In the Password field, enter the password for connecting to the application server.

Click Next.

6. Enter the hostname for the application server that is configured with the SOA
Infrastructure.

7. In the Weblogic Domain field, enter the Oracle WebLogic Server domain.

Click Next.

8. Click Test Connection.

If successful, the message shown in Figure 31-15 is displayed.

Deploying the Task Form

Human Workflow Tutorial 31-13

Figure 31-15 Connection Success

9. Click Finish.

10. From the File menu, select Save All.

31.10 Deploying the SOA Composite Application
Learn how to deploy to the application server on which you created the connection.

To deploy the SOA composite application

1. In the Applications window, right-click the VacationRequest project and select
Deploy > VacationRequest.

2. Follow the pages of the deployment wizard to deploy the project.

The project is deployed.

For more information about deployment, see Deploying SOA Composite
Applications in .

31.11 Initiating the Process Instance
Learn how to initiate the process instance.

See Administering Oracle SOA Suite and Oracle Business Process Management Suite for
instructions on accessing the Test Web Service page for initiating the process instance.

31.12 Acting on the Task in Oracle BPM Worklist
Learn how to act on the tasks in Oracle BPM Worklist.

To resolve the task in Oracle BPM Worklist:

1. Go to Oracle BPM Worklist:

http://hostname:7001/integration/worklistapp

2. Log in to Oracle BPM Worklist.

3. Resolve the task.

Deploying the SOA Composite Application

31-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

31.13 Additional Tutorials
In addition to the vacation request use case, other tutorials are available from the
Oracle SOA Suite samples.

Table 31-2 provides an overview of some samples. All Oracle SOA Suite samples show
the use of worklist applications and workflow notifications.

Table 31-2 End-to-End Examples

Sample Description Name

Demo Community
Seed Application

Performs demo community seeding.
This is a prerequisite for all other
workflow samples.

workflow-001-
DemoCommunitySeedApp

Vacation Request Provides a sample in which a user
submits a vacation request that gets
assigned to their manager for approval
or rejection. This sample also describes
how to create Oracle ADF task forms
for the vacation request to act on the
task.

workflow-100-
VacationRequest

Sales Quote Request Provides a complex workflow sample
with chaining of multiple tasks.

workflow-102-SalesQuote

Contract Approval Provides a sample of approving a
contract. This sample uses digital
signatures for tasks.

workflow-104-
ContractApproval

Iterative Design Provides a sample in which a
workflow task can be passed multiple
times between assignees during the
design process. Advanced routing
rules implement the routing behavior.

workflow-106-
IterativeDesign

Workflow
Customizations

Demonstrates how to deploy
customizations to workflow service
APIs, such as custom resource strings
for task attributes, view names, and so
on.

workflow-110-
workflowCustomizations

MLS Sample Demonstrates the setting up of a task
with multiple translations for the task
title.

workflow-114-MLSSample

Workflow Event
Callback

Demonstrates the use of the workflow
event callback. Workflow events
generated by task lifecycle events are
consumed by an Oracle Mediator.

workflow-116-
WorkflowEventCallback

User Config Data
Migrator

Moves user configurations (views,
mapped attributes, and so on) from
one instance to another through an
intermediate export file.

workflow-117-
UserConfigDataMigrator

Java Samples Provides an assortment of samples that
use Java to interact with human
workflow.

workflow-118-JavaSamples

Additional Tutorials

Human Workflow Tutorial 31-15

Additional Tutorials

31-16 Developing SOA Applications with Oracle SOA Suite

32
Using Oracle BPM Worklist

Get an overview of how worklist users and administrators interact with Oracle BPM
Worklist, and how to customize the worklist display to reflect local business needs,
languages, and time zones.

• Introduction to Oracle BPM Worklist

• Logging In to Oracle BPM Worklist

• Customizing the Task List Page

• Acting on Tasks: The Task Details Page

• Approving Tasks

• Setting a Vacation Period

• Setting Rules

• Using the Worklist Administration Functions

• Specifying Notification Settings

• Using Mapped Attributes (Flex Fields)

• Creating Worklist Reports

• Accessing in Local Languages and Time Zones

• Creating Reusable Worklist Regions

• Java Code for Enabling Customized Applications in Worklist Application

For information about how to use the APIs exposed by the workflow service, Building
a Custom Worklist Client.

For information about troubleshooting human workflow issues, see section "Human
Workflow Troubleshooting" of Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

32.1 Introduction to Oracle BPM Worklist
Oracle BPM Worklist enables business users to access and act on tasks assigned to
them. For example, from a worklist, a loan agent can review loan applications or a
manager can approve employee vacation requests.

Oracle BPM Worklist provides different functionality based on the user profile.
Standard user profiles include task assignee, supervisor, process owner, reviewer, and
administrator. For example, worklist users can update payloads or business data,
attach documents or comments, and route tasks to other users, in addition to
completing tasks by providing conclusions such as approvals or rejections.

Using Oracle BPM Worklist 32-1

Supervisors or group administrators can use the worklist to analyze tasks assigned to
a group and route them appropriately.

Users can filter their tasks by creating views or saved searches.

Using Oracle BPM Worklist, task assignees can do the following:

• Perform authorized actions on tasks in the worklist, acquire and check out shared
tasks, define personal to-do tasks, and define subtasks.

• Filter tasks in a worklist view based on various criteria.

• Work with standard work queues, such as high priority tasks, tasks due soon, and
so on. Work queues allow users to create a custom view to group a subset of tasks
in the worklist, for example, high priority tasks, tasks due in 24 hours, expense
approval tasks, and more.

• Define custom work queues.

• Gain proxy access to part of another user's worklist.

• Define custom vacation rules and delegation rules.

• Enable group owners to define task dispatching rules for shared tasks.

• Collect a complete workflow history and audit trail.

• Use digital signatures for tasks.

Figure 32-1 shows an illustration of Oracle BPM Worklist.

Figure 32-1 Oracle BPM Worklist—Access Tasks, Forms, Attachments, and
Reports

The worklist is the list of tasks. A task form displays and updates the task details. You
can create a task form using ADF task flows in Oracle JDeveloper. See Designing Task
Forms for Human Tasks for more information.

You can build clients for workflow services using the APIs exposed by the workflow
service. The APIs enable clients to communicate with the workflow service using local
and remote EJBs, SOAP, and HTTP.

Introduction to Oracle BPM Worklist

32-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

32.2 Logging In to Oracle BPM Worklist
The following are the different types of users recognized by Oracle BPM Worklist,
based on the privileges assigned to the user.

Table 32-1 Worklist User Types

Type of User Access

End user (user) Acts on tasks assigned to him or his group and has access to system and custom
actions, routing rules, and custom views

Supervisor (manager) Acts on the tasks, reports, and custom views of his reportees, in addition to his own
end-user access

Process owner Acts on tasks belonging to the process but assigned to other users, in addition to his
own end-user access

Group administrator Manages group rules and dynamic assignments, in addition to his own end-user
access

Workflow administrator Administers tasks that are in an errored state, for example, tasks that must be
reassigned or suspended. The workflow administrator can also change application
preferences and map attributes, and manage rules for any user or group, in addition
to his own end-user access.

Assignee Acts on tasks assigned to him, in addition to his own end-user access

Reviewer Acts on tasks assigned for review, in addition to his own end-user access

Note:

Multiple authentication providers (for example, SSO and forms) are not
supported.

32.2.1 How To Log In to the Worklist
To log in, you must have installed Oracle SOA Suite and the SOA server must be
running. See Installing and Configuring Oracle SOA Suite and Business Process
Management for more information.

Use a supported web browser:

• Microsoft Internet Explorer 7.x

• Mozilla Firefox 2.x

• Mozilla Firefox 3.x

• Apple Safari

To log in:

1. Go to

http://hostname:port_number/integration/worklistapp

Logging In to Oracle BPM Worklist

Using Oracle BPM Worklist 32-3

• hostname is the name of the host computer on which Oracle SOA Suite is
installed

• The port_number used at installation

2. Enter the user name and password.

You can use the preseeded user to log in as an administrator. If you have loaded
the demo user community in the identity store, then you can use other users such
as jstein or jcooper.

The user name and password must exist in the user community provided to JAZN.
See Administering Oracle SOA Suite and Oracle Business Process Management Suite for
the organizational hierarchy of the demo user community used in examples
throughout this chapter.

3. Click Login.

32.2.1.1 Enabling the weblogic User for Logging in to the Worklist

For the weblogic user in Oracle Internet Directory to log in to Oracle BPM Worklist,
the Oracle Internet Directory Authenticator must have an Administrators group, and
the weblogic user must be a member of that group.

To enable the weblogic user:

1. Create a weblogic user in Oracle Internet Directory using the LDAP browser. The
users.ldif file is imported to Oracle Internet Directory as follows:

dn: cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com
objectclass: inetorgperson
objectclass: organizationalPerson
objectclass: person
objectclass: orcluser
objectclass: orcluserV2
objectclass: top
sn: weblogic
userpassword: welcome1
uid: weblogic

2. Create an Administrators group in Oracle Internet Directory and assign the
weblogic user to it. The groups.ldif file is imported to Oracle Internet
Directory as follows:

dn: cn=Administrators,cn=Groups,dc=us,dc=oracle,dc=com
objectclass: groupOfUniqueNames
objectclass: orclGroup
objectclass: top
owner: cn=orcladmin,cn=Users,dc=us,dc=oracle,dc=com
uniquemember: cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com

32.2.2 What Happens When You Log In to the Worklist
Identity service workflow APIs authenticate and authorize logins using a user name,
password, and optionally a realm set, if multiple realms were defined for an
organization. See How to Specify the Login Page Realm Label, for information on how
administrators can set a preference to change the realm label displayed in the
interface, or specify an alternative location for the source of the login page image.

Figure 32-2 shows an example of the Home page.

Logging In to Oracle BPM Worklist

32-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-2 Oracle BPM Worklist—The Home (Task List) Page

This page lists all the tasks and work items assigned to you, depending on your role.
For example, all users can access the My Tasks and Initiated Tasks pages. Only
supervisors can access the My Staff page, and only Process Workspace administrators
can access the Administrative Tasks page.

At the far left, as shown in Figure 32-3, is a list of views with My Tasks selected.
Expand this list to select:

• A particular view showing the number of open tasks for each view. Selecting a
particular view refreshes the task count to the latest number.

• A list of applications deployed to Process Workspace

• Any favorite links or applications you may have specified

To keep this list visible while you work on tasks, click Pin. Then, to hide it, click
Unpin

Logging In to Oracle BPM Worklist

Using Oracle BPM Worklist 32-5

Figure 32-3 Selecting a View

Table 32-2 describes the components of the Home (task list) page.

Table 32-2 Components of the Home (Task List) Page

Component Description

Views list Inbox, Standard Views, My Views—See How To Create_ Delete_ and Customize Worklist
Views, for more information.

The inbox views displayed depend on the role granted to the logged-in user.

• Everyone (the user role) sees My Tasks, Initiated Tasks and Administrative Tasks.
• Users who are also managers see the My Tasks, Initiated Tasks, Administrative Tasks and

My Staff Tasks tabs.
• Users who are also administrators (the BPMWorkflowAdmin), but not managers, see the My

Tasks, Initiated Tasks, Administrative Tasks, Administration, and Evidence Search tabs.
• Users who are managers and administrators see all the tabs— My Tasks, Initiated Tasks,

My Staff Tasks, Administrative Tasks, Administration, and Evidence Search.
• Users with the workflow.admin.evidenceStore permission also see the Evidence Search tab.
See the following for more information:

• How To Act on Tasks That Require a Digital Signature, for information about evidence
search

• How To Manage Other Users' or Groups' Rules (as an Administrator)

Worklist
Views

-

Task Status A bar chart shows the status of tasks in the current view. See How To Customize the Task Status
Chart, for more information.

Logging In to Oracle BPM Worklist

32-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 32-2 (Cont.) Components of the Home (Task List) Page

Component Description

Display
Filters

Specify search criteria from the Assignee or State fields. The category filters that are available
depend on which tab is selected.

• From the My Tasks tab, the Assignee filters are Me, My Group, Me & My Group, Me
(Previously) (tasks worked on previously), and Me (Review Only). From the Initiated
Tasks tab, the assignee filter is not available. From the My Staff Tasks tab, the only assignee
filter is Reportees. From the Administrative Tasks tab, the assignee filter is not available.

• The State filters include Any, Assigned, Completed, Suspended, Withdrawn, Expired,
Errored, Alerted, Information Requested.

Use Search to enter a keyword, or use Advanced Search. See How To Filter Tasks, for more
information.

Actions List Select a group action (Claim) or a custom action (for example, Approve or Reject) that was
defined for the human task. Claim appears for tasks assigned to a group or multiple users, even
if the task is an FYI task; one user must claim the task before it can be worked on. Other possible
actions for a task, such as system actions, are displayed on the task details page for a specific task.
You can also create ToDo tasks and subtasks here.

Note:

• If a task is aggregated, you only see actions such as Approve and Reject, even if the
aggregated task includes FYI tasks. No acknowledge action is explicitly provided. Approve
or Reject can be interpreted as an acknowledge action.

• The Claim button remains enabled even when Auto Claim has been previously enabled.
This button enables a user to claim and continue working on the task rather than to simply
approve it.

Default
Columns

Title—The title specified when the human task was created. Tasks associated with a purged or
archived process instance do not appear.

Number—A unique ID number assigned to the task.

Creator—The user who created the task.

Assigned—The date that the task was assigned.

Priority—The priority specified when the human task was created. The highest priority is 1; the
lowest is 5.

Task Details Task details can be viewed in the lower half of the worklist by selecting the task in the Inbox. You
can also view them in the same window or a new window by hiding the task details pane in Edit
Inbox Settings. After you complete a task:

• The Task Details page for the completed task disappears.
• The task list refreshes to show only the remaining tasks.
• The details of the next open task are shown.
See Acting on Tasks: The Task Details Page, for more information.

Figure 32-2 also shows the Administration, Reports, and Preferences links (upper-
right corner). Table 32-3 summarizes the Home, Administration, Reports, and
Preferences pages.

Table 32-3 Worklist Main Pages Summary

Page Description

Home As described in Table 32-2, the logged-in user's list of tasks, details for a selected
task, and all the functions needed to start acting on a task are provided.

Logging In to Oracle BPM Worklist

Using Oracle BPM Worklist 32-7

Table 32-3 (Cont.) Worklist Main Pages Summary

Page Description

Administration The following administrative functions are available:

• Setting application preferences
• Mapping attributes
• Searching the evidence store
• Administering approval groups
• Configuring tasks

Reports The following reports are available: Unattended Tasks Report, Tasks Priority Report,
Tasks Cycle Time Report, Tasks Productivity Report, and Tasks Time Distribution
Report. See How To Create Reports, for more information.

Preferences Preference settings include:

• Setting rules for users or groups, including vacation rules, and setting vacation
periods

• Uploading certificates
• Specifying user notification channels and message filters

32.2.3 What Happens When You Change a User's Privileges While They are Logged in
to Oracle BPM Worklist

If you change a user's privileges in Oracle Enterprise Manager Fusion Middleware
Control while the user is logged in to Oracle BPM Worklist, the changes take effect
only after a subsequent login by the user. This is true for situations in which there are
two active worklist sessions, one in which the user is logged in before the privileges
are changed, and one in which the same user logs in after the privileges are changed.
In the first case, the changes to the user's privileges do not take effect while the user is
logged in. In the second case, when the user logs in to the second instance of the
Worklist Application, the changes to the user's privileges do take effect.

32.3 Customizing the Task List Page
You can customize your task list in several ways, including adding worklist views,
selecting which columns to display, setting the task details pane to show or hide, and
displaying a subset of the tasks based on filter criteria. Resize the task list display area
to increase the number of tasks fetched.

Note:

When you deploy SOA composite applications with human tasks to partitions,
the tasks created for these composites cannot be filtered using the partition as
a parameter inside Oracle BPM Worklist. For example, you can select a task
type corresponding to a particular partition (the same task type, but in
different partitions), but filtering does not work with the advanced search,
custom views, custom rules, and mapped attribute features. For example,
assume VacationRequestApp is deployed to partition 1 and partition 2. When
the advanced search is used to select tasks corresponding to composites
deployed in partition 1, the result does not return the tasks.

Customizing the Task List Page

32-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

32.3.1 How To Filter Tasks
Figure 32-4 shows the filter fields.

Figure 32-4 Filters—Assignee, Status, Search, and Advanced Search

Filters are used to display a subset of tasks, based on the following filter criteria:

• Assignee

From the Assignee drop-down list, select from the following:

– Me—Retrieves tasks directly assigned to the logged-in user

– My Group—Retrieves the following:

* Tasks that are assigned to groups to which the logged-in user belongs

* Tasks that are assigned to an application role that the logged-in user is
assigned

* Tasks that are assigned to multiple users, one of which is the logged-in
user

– Me & My Group—Retrieves all tasks assigned to the user, whether through
direct assignment, or by way of a group, application role, or list of users

– Me (Previously)—Retrieves tasks that the logged-in user has previously
updated or closed

– Me (Review Only)—Retrieves task for which the logged-in user is a reviewer

From the My Staff Tasks tab, select Reportees.

• State—Select from the following: Any, Assigned, Completed, Suspended (can be
resumed later), Withdrawn, Expired, Errored (while processing), Alerted, or
Information Requested.

• Search—Enter a keyword to search task titles, comments, identification keys, and
the flex string fields of tasks that qualify for the specified filter criterion.

• Advanced—Provides additional search filters.

Note:

If a task is assigned separately to multiple reportees, then, when a manager
looks at the My Staff Tasks list, the manager sees as many copies of that task
as the number of reportees that the task is assigned to.

32.3.1.1 To Filter Tasks Based on Assignee or State

Customizing the Task List Page

Using Oracle BPM Worklist 32-9

To filter tasks based on assignee or state:

Select options from the Assignee and State lists. The task list is automatically updated
based on the filter selections.

32.3.1.2 To Filter Tasks Based on Keyword Search

To filter tasks based on keyword search:

1. Enter a keyword to search task titles, comments, identification keys, and the flex
string fields of tasks that qualify for the specified filter criterion.

2. Press Enter or click Refresh.

32.3.1.3 To Filter Tasks Based on an Advanced Search

To filter tasks based on an advanced search:

Mapped attribute labels can be used in an advanced search if you select task types for
which mapped attribute mappings have been defined.

See How To Map Attributes, for more information.

1. Click Advanced.

2. (Optional) Check Save Search As View, provide a view name, and use the Display
tab to provide other information, as shown in Figure 32-5 and Figure 32-6.

Figure 32-5 Worklist Advanced Search—Definition Tab

Customizing the Task List Page

32-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-6 Worklist Advanced Search—Display Tab

Table 32-4 describes the advanced search view columns available in the Display
tab.

Table 32-4 Advanced Search—View Columns

Column Description

Start Date The start date of the task (used with ToDo tasks).

Task Definition Name The name of the task component that defines the task
instance.

Owner Role The application role (if any) that owns the task instance. Task
owners can be application roles, users, or groups. If the
owner of the task is an application role, this field is set.

Updated Date The date the task instance was last updated.

Composite Version The version of the composite that contains the task
component that defines the task instance.

Creator The name of the creator of the task.

From User The from user for the task.

Percentage Complete The percentage of the task completed (used with ToDo
tasks).

Owner Group The group (if any) that owns the task instance. Task owners
can be application roles, users, or groups. If the owner of the
task is a group, this field is set.

End Date The end date of the task (used with ToDo tasks).

Customizing the Task List Page

Using Oracle BPM Worklist 32-11

Table 32-4 (Cont.) Advanced Search—View Columns

Column Description

Composite The name of the composite that contains the task component
that defines the task instance.

Due Date The due date of the task (used with ToDo tasks).

Composite Distinguished
Name

The unique name for the particular deployment of the
composite that contains the task component that defines the
task instance.

Task Display URL The URL to display the details for the task.

Updated By The user who last updated the task.

Outcome The outcome of the task, for example Approved or Rejected.
This is only set on completed task instances.

Task Namespace A namespace that uniquely defines all versions of the task
component that defines this task instance. Different versions
of the same task component can have the same namespace,
but no two task components can have the same namespace.

Approvers The approvers of the task.

Application Context The application to which any application roles associated
with the tasks (such as assignees, owners, and so on) belong.

Owner User The user (if any) that owns the task instance. Task owners
can be application roles, users, or groups. If the owner of the
task is a user, this field is set.

Identifier The (optional) custom unique identifier for the task. This is
an additional unique identifier to the standard task number.

Category The category of the task.

Acquired By The name of the user who claimed the task in the case when
the task is assigned to a group, application role, or to
multiple users, and then claimed by the user.

Component The name of the task component that defines the task
instance.

Original Assignee User The name of the user who delegated the task in the case
when the user delegates a task to another user.

Assigned The date that this task was assigned.

Partition The domain to which the composite that contains the task
component that defines the task instance belongs.

Title The title of the task.

Number An integer that uniquely identifies the task instance.

Priority An integer that defines the priority of the task. A lower
number indicates a higher priority—typically numbers 1 to 5
are used.

Customizing the Task List Page

32-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 32-4 (Cont.) Advanced Search—View Columns

Column Description

Assignees The current task assignees (users, groups or application
roles).

State The state of the task instance.

Created The date that the task instance was created.

Expires The date on which the task instance expires.

Custom Date 1 Custom flex field 1 with Date data type

Custom Date 2 Custom flex field 2 with Date data type

Custom String 1 Custom flex field 1 with String data type

Custom String 2 Custom flex field 2 with String data type

Custom Number 1 Custom flex field 1 with Number data type

Custom Number 2 Custom flex field 2 with Number data type

The saved view appears in the Views pane under My Views, as shown in
Figure 32-7.

Note:

When a user view is created, and there are multiple versions of the same
composite deployed, then selecting the task type with a particular version, for
example, 'TestCompositeHumanTask2.0 ' does not ensure that only the tasks
corresponding to this version are filtered. Instead use the task definition id
column in the conditions, apart from selecting the task type, to get the correct
result.

Customizing the Task List Page

Using Oracle BPM Worklist 32-13

Figure 32-7 Saving a View

3. Select an assignee, as shown in Figure 32-8.

Figure 32-8 Worklist Advanced Search

4. Add conditions (filters), as shown in Figure 32-9.

Customizing the Task List Page

32-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-9 Adding Filters for an Advanced Search on Tasks

Table 32-5 describes the available conditions.

Table 32-5 Advanced Search—Conditions

Condition Description

User Conditions -

Acquired By The name of the user who claimed the task in the case when
the task is assigned to a group, application role, or to
multiple users, and then claimed by the user.

Approvers The approvers of the task.

Creator The name of the creator of the task.

From User The from user for the task.

Original Assignee User The name of the user who delegated the task in the case
when the user delegates a task to another user.

Owner Group The group (if any) that owns the task instance. Task owners
can be application roles, users, or groups. If the owner of the
task is a group, this field is set.

Owner Role The application role (if any) that owns the task instance. Task
owners can be application roles, users, or groups. If the
owner of the task is an application role, this field is set.

Owner User The user (if any) that owns the task instance. Task owners
can be application roles, users, or groups. If the owner of the
task is a user, this field is set.

Updated By The user who last updated the task.

Advanced Conditions -

Application Context The application to which any application roles associated
with the tasks (such as assignees, owners, and so on) belong.

Customizing the Task List Page

Using Oracle BPM Worklist 32-15

Table 32-5 (Cont.) Advanced Search—Conditions

Condition Description

Component The name of the task component that defines the task
instance.

Composite The name of the composite that contains the task component
that defines the task instance.

Composite Distinguished
Name

The unique name for the particular deployment of the
composite that contains the task component that defines the
task instance.

Composite Version The version of the composite that contains the task
component that defines the task instance.

Partition The domain to which the composite that contains the task
component that defines the task instance belongs.

Task Display URL The URL to display the details for the task.

Basic Conditions -

Category The category of the task.

Identifier The (optional) custom unique identifier for the task. This is
an additional unique identifier to the standard task number.

Number An integer that uniquely identifies the task instance.

Outcome The outcome of the task, for example Approved or Rejected.
This is only set on completed task instances.

Percentage Complete The percentage of the task completed (used with ToDo
tasks).

Priority An integer that defines the priority of the task. A lower
number indicates a higher priority; typically numbers 1 to 5
are used.

State The state of the task instance.

Task Definition Name The name of the task component that defines the task
instance.

Task Namespace The namespace of the task.

Title The title of the task.

Time Conditions The category of the task.

Assigned The date that this task was assigned.

Created The date that the task instance was created.

Due Date The due date of the task (used with ToDo tasks).

End Date The end date of the task (used with ToDo tasks).

Expires The date on which the task instance expires.

Start Date The start date of the task (used with ToDo tasks).

Customizing the Task List Page

32-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 32-5 (Cont.) Advanced Search—Conditions

Condition Description

Updated Date The date that the task instance was last updated.

Custom Conditions -

Custom Date 1 Custom flex field 1 with Date datatype

Custom Date 2 Custom flex field 2 with Date datatype

Custom String 1 Custom flex field 1 with String datatype

Custom String 2 Custom flex field 2 with String datatype

Custom Number 1 Custom flex field 1 with Number datatype

Custom Number 2 Custom flex field 2 with Number datatype

5. Select Any or All for matching multiple filters.

6. Add parameter values, shown in Figure 32-10.

Figure 32-10 Advanced Search

7. Specify whether to share either this view's definition or its data, and the users or
groups to share it with.

8. Click Search.

The task list appears with the tasks filtered according to your criteria.

32.3.2 How To Create, Delete, and Customize Worklist Views
The Views menu, shown in Figure 32-11, displays the following:

• Inbox—Shows all tasks that result from any filters you may have used. The
default shows all tasks.

Customizing the Task List Page

Using Oracle BPM Worklist 32-17

• Standard Views—Shows standard views and views that you defined.

• My Views—Shows views that you have created.

Figure 32-11 Worklist Views

Use Views to create, share, and customize views.

To create a worklist view:

1. In the Views section, click Add View. The Create User View dialog box appears
as shown in figure

2. Use the Definition tab of the Create User View dialog box, shown in Figure 32-12,
to do the following:

• Name—Specify a name for your view.

• Add to Standard Views—This option applies to administrators only.
Administrators select this option to create the view as a standard view, which
then appears in the Standard Views list for all worklist users.

• Assignee—Select Me, My Group, Me & My Group, Me (Previously), Me
(Review Only), Creator, Reportees, Admin, Owner.

• Match—Select All or Any to match the conditions you added.

• Add Condition (a plus sign)—Select the conditions that apply to your view.

• Share View—You can grant access to another user to either the definition of
this view, in which case the view conditions are applied to the grantee's data,
or to the data itself, in which case the grantee can see the grantor's worklist
view, including the data. Sharing a view with another user is similar to
delegating all tasks that correspond to that view to the other user; that is, the
other user can act on your behalf. Shared views are displayed under My
Views.

• Users—Specify the users (grantees) who can share your view.

• Groups—Specify the groups who can share your view.

Customizing the Task List Page

32-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-12 Creating a Worklist View

3. Use the Display tab of the Create User View dialog, shown in Figure 32-13, to
customize the fields that appear in the view.

Figure 32-13 Displaying Fields in a Worklist View

Customizing the Task List Page

Using Oracle BPM Worklist 32-19

• Select View Columns—Specify which columns you want to display in your
task list. They can be standard task attributes or mapped attributes that have
been mapped for the specific task type. The default columns are the same as
the columns in your inbox.

• Sort by—Select a column to sort on.

• Then by—Select a second column to sort on.

• Then by—Select a third column to sort on.

• Then by—Select a forth column to sort on.

• Sort Order—Select ascending or descending order.

4. Click OK.

The saved view appears in the Views panel under My Views

To delete a view:

Note:

If an administrator inadvertently deletes the pre-seeded standard views, then
those views do not remain permanently deleted. They are recreated when the
server restarts.

1. In the Views panel, select a view.

2. Click the Delete icon.

3. The Confirm Delete dialog box prompts you to confirm that you want to delete the
view.

4. Click Yes. The view is deleted.

32.3.2.1 To Customize a Worklist View

To customize a worklist view:

1. In the Views pane, select the view you want to customize.

2. Select Edit View. The Edit User View dialog box appears.

3. Use the items in the Edit User View dialog box to customize the view, as shown in
Figure 32-14, and click OK.

Customizing the Task List Page

32-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-14 Customizing Fields in a Worklist View

32.3.3 How To Customize the Task Status Chart
The bar chart shows tasks broken down by status, with a count of how many tasks in
each status category. The chart applies to the filtered set of tasks within the current
view.

To customize the task status chart:

1. Click the Edit icon.

2. Add or remove status states for display, as shown in Figure 32-15, and click OK.

Figure 32-15 Customizing the Task Status Chart

Customizing the Task List Page

Using Oracle BPM Worklist 32-21

32.3.4 How To Create a ToDo Task
Use the Create ToDo Task dialog, shown in Figure 32-16, to create a top-level ToDo
task for yourself or others. This task is not associated with a business task.

Figure 32-16 The Create ToDo Task Dialog

To-Do tasks appear in the assignee's Inbox.

You can create ToDo tasks that are children of other ToDo tasks or business tasks. A
ToDo task can have only one level of child ToDo tasks. When all child ToDo tasks are
100% complete, the parent ToDo task is also marked as completed. If the parent ToDo
task is completed, then child ToDo tasks are at 100% within the workflow system. If
the parent is a business task, the child ToDo is not marked as completed. You must set
the outcome and complete it. If you explicitly set a ToDo task to 100%, there is no
aggregation on the parent task.

ToDo tasks can be reassigned, escalated, and so on, and deleted (logical delete) and
purged (physical delete). Reassignment, escalation, and so on of the parent task does
not affect the assignment of any child ToDo tasks. The completion percentage of a
ToDo task can be reset to less than 100% after it is completed.

Assignment rules (such as vacation rules) are not applied to ToDo tasks. You cannot
specify business rules for ToDo tasks.

To create a To-Do task:

1. From the Actions list, select Create To-Do Task, as shown in Figure 32-17.

Figure 32-17 Creating a To-Do Task

2. Provide details in the Create ToDo Task dialog, shown in Figure 32-16, and click
OK.

• Task Title: Enter anything that is meaningful to you.

• Category: Enter anything that is meaningful to you.

• Priority: Select from 1 (highest) to 5 (lowest)

• Percentage Complete: This attribute indicates how much of the task is
completed. 100% sets the attribute as completed.

Customizing the Task List Page

32-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• StartDate: The task start date. The start date need not be the current date.

• Due Date: The due date does not trigger an expiration. You can also see
overdue tasks.

• Assignee: You can assign yourself or someone else.

32.3.5 How to Create Subtasks in Worklist Application
A subtask is a child of a parent task, either a ToDo task or a business task. Creating a
subtask can be helpful, for example, when a purchase order contains several line items
and you need a separate approval process for one of them.

32.3.5.1 What You May Need to Know About Creating Subtasks

Here are some things to keep in mind when creating subtasks:

• A ToDo task can have only one level of subtasks. When all ToDo subtasks are
100% complete, the parent ToDo task is also marked as complete. If the parent
ToDo task is completed, then ToDo subtasks are at 100% within the workflow
system.

If the parent is a business task and that task is completed, then the subtasks of that
task are withdrawn.

• If you explicitly set a ToDo task to 100%, there is no aggregation on the parent
task.

• If you are using a release of Oracle Business Process Management that is before
11g Release 1 (11.1.1.7.0), then you must re-create the task form for any task for
which you are creating a subtask. You may, however, continue to use processes
that were deployed in earlier releases.

If you do not re-create the task form, then the Actions list in the task form itself
does not provide the option to create a subtask. You can, however, create a
subtask by selecting Create Subtask from the Actions list above the worklist.

• If you are the administrator for the BPMN service engine, be aware that subtasks
do not appear in the Oracle Enterprise Manager Fusion Middleware Control.

To create a subtask:

1. In the worklist, select the task for which you want to create a subtask.

2. From the Actions list, select Create Subtask.

The Create Subtask dialog box appears.

3. In the Create Subtask dialog, define the subtask, keeping the following in mind:.

• Title is a required field.

• If there is more than one available form for this subtask, then the Form field
provides a list for your selection. Otherwise, the Form field shows the name of
the default form. You can use a task form different from the one associated
with the parent task.

• Possible routing types are:

Customizing the Task List Page

Using Oracle BPM Worklist 32-23

– Single Approver

– Group Vote, also referred to as a parallel task. For this routing type, you
are prompted to enter multiple participants.

– Chain of Single Approvers, also referred to as a sequential task. For this
routing type, you are prompted to enter multiple participants.

• You specify participants by performing a search and selecting from the results.
You can select multiple users, groups, or application roles.

4. When you have finished specifying the subtask, in the Create Subtask dialog box,
click OK. This refreshes the task list. When you select the parent task, the Task
Details page now includes a Subtasks section displaying the details about the
subtask you created for that task.

Note:

• If you specified more than one participant for the subtask, then the
Subtask region displays a separate item for each participant.

• If a participant completes a subtask, then you must manually refresh the
task to show the details for that completed subtask.

32.4 Exporting Tasks to Microsoft Excel
You can export tasks to Excel based on a selected view.

The export downloads all rows and columns displayed in the selected view. For
example, if you select My Tasks view, you will download 16 tasks. If you select the
Administrative Tasks view, you will download 49,694 tasks, as shown in Figure 32-18:

Exporting Tasks to Microsoft Excel

32-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-18 Tasks Views

32.4.1 How to Export Tasks to Excel
Any logged-in user can export tasks.

To export tasks:

1. Select the appropriate View from the list.

2. Click the Export button

3. Choose a folder location and enter a filename for the download and click Save.

4. Open the file in Excel to view the downloaded tasks.

32.5 Acting on Tasks: The Task Details Page
Any kind of change to the task details page, such as changing a priority or adding a
comment or attachment, requires you to save the change before you go on to make any
other changes.

Task details can be viewed inline (see the lower section in Figure 32-2) or in the same
window or a new window. (Modify settings in Edit Inbox Settings.)

Figure 32-19 shows the task details page.

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 32-25

Figure 32-19 Task Details Page

The task details page has the following components:

• Actions—Lists the system actions that are possible for the task, such as Request
Information, Reassign, Renew, Suspend, Escalate, and Save.

• Action buttons—Displays buttons for custom actions that are defined in the
human task, such as setting task outcomes (for example, Resolved and
Unresolved for a help desk request or Approve and Reject for a loan request). For
the task initiator, manager, or administrator, Withdraw may also appear.

• Details—Displays task attributes, including the assignee, task creator, task
number, state, priority, who acquired the task, and other mapped attributes. It
also displays dates related to task creation, last update, and expiration date.

• History—Displays the approval sequence and the update history for the task. See
Task History, for more information.

Table 32-6 tells what the icons used in the Task Details History section signify.

Table 32-6 Icons for Task Action History

Icon Description

Indicates an approver in an ad hoc routing scenario.

Indicates that the task has been approved.

Acting on Tasks: The Task Details Page

32-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 32-6 (Cont.) Icons for Task Action History

Icon Description

Indicates that the participant is an FYI participant—that is, this participant just
receives a notification task and the business process does not wait for the
participant's response. Participant cannot directly impact the outcome of a task,
but in some cases can provide comments or add attachments.

Indicates that a set of people must work in parallel. This pattern is commonly
used for voting.

Indicates that the participant belongs to a management chain.

Indicates the simple case in which a participant maps to a user, group, or role.

Indicates that the task is untouched.

• Comments—Displays comments entered by various users who have participated
in the workflow. A newly added comment and the commenter's user name are
appended to the existing comments. A trail of comments is maintained
throughout the life cycle of the task. To add or delete a comment, you must have
permission to update the task.

• Attachments—Displays documents or reference URLs that are associated with a
task. These are typically associated with the workflow as defined in the human
task or attached and modified by any of the participants using the worklist. To
add or delete an attachment, you must have permission to update the task. When
adding file attachments, you can use an absolute path name or browse for a file.

Note:

In an environment with servers clustered for high availability purposes, file
uploading is not supported if a failover occurs. If the active server shuts down,
then the uploading process is not assumed by the other server and the upload
fails.

Comments and attachments are shared between tasks and subtasks. For example,
when you create a ToDo task and add comments and attachments, subtasks of this
ToDo task include the same comments and attachments.

The Task Details page may appear differently depending on the tool used during
design time to develop the task form it displays.

A user can view a task when associated with the task as the current assignee (directly
or by group membership), the current assignee's manager, the creator, the owner, or a
previous actor.

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 32-27

A user's profile determines his group memberships and roles. The roles determine a
user's privileges. Apart from the privileges, the exact set of actions a user can perform
is also determined by the state of the task, the custom actions, and restricted actions
defined for the task flow at design time.

Note:

Certain functions, such as restricted task reassignment, are available only
when a single task is selected. If multiple tasks that use restricted
reassignment are selected, then the restricted reassignment algorithm is not
invoked. In that case, the complete list of users gets returned as though
restricted reassignment had not been specified.

The following algorithm is used to determine the actions a user can perform on a task:

1. Get the list of actions a user can perform based on the privileges granted to him.

2. Get the list of actions that can be performed in the current state of the task.

3. Create a combined list of actions that appear on the preceding lists.

4. Remove any action on the combined list that is specified as a restricted action on
the task.

The resulting list of actions is displayed in the task list page and the task details page
for the user. When a user requests a specific action, such as claim, suspend, or
reassign, the workflow service ensures that the requested action is contained in the list
determined by the preceding algorithm.

Step 2 in the preceding algorithm deals with many cases. If a task is in a final,
completed state (after all approvals in a sequential flow), an expired state, a
withdrawn state, or an errored state, then no further update actions are permitted. In
any of the these states, the task, task history, and subtasks (parent task in parallel flow)
can be viewed. If a task is suspended, then it can only be resumed or withdrawn. A
task that is assigned to a group must be claimed before any actions can be performed
on it.

Note:

If you act on a task from the task details page, for example, if you approve a
task, then any unchanged task details data is saved along with the saved
changes to the task. However if you act on a task from the Actions menu, then
unchanged task details are not saved.

32.5.1 System Actions
The action bar displays system actions, which are available on all tasks based on the
user's privileges. Table 32-7 lists system actions.

Acting on Tasks: The Task Details Page

32-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 32-7 System Task Actions

Action Description

Claim If a task is assigned to a group or multiple users, then the task must be claimed first.
Claim is the only action available in the Task Action list for group or multiuser
assignments. After a task is claimed, all applicable actions are listed.

Escalate If you are not able to complete a task, you can escalate it and add an optional
comment in the Comments area. The task is reassigned to your manager (up one
level in a hierarchy).

Pushback Use this action to send a task down one level in the workflow to the previous
assignee.

The pushback action overrides all other actions. For example, if a task is pushed back
and then reassigned, after the reassignee approves it, the task goes to the user who
performed the pushback. This is the expected behavior.

Note:

• If the task is aggregated, then the Pushback action is not available.
• Pushback is designed to work with single approvers and not with group votes.

Pushback from a stage with group vote (or parallel) scenario to another stage is
not allowed. Similarly, you cannot push back from a single assignee to a group
vote (or parallel) scenario.

Reassign If you are a manager, you can delegate a task to reportees.

Release If a task is assigned to a group or multiple users, it can be released if the user who
claimed the task cannot complete the task. Any of the other assignees can claim and
complete the task.

Renew If a task is about to expire, you can renew it and add an optional comment in the
Comments area. The task expiration date is extended one week. A renewal appears
in the task history. The renewal duration for a task can be controlled by an optional
parameter. The default value is P7D (seven days).

Submit Information and
Request Information

Use these actions if another user requests that you supply more information or to
request more information from the task creator or any of the previous assignees. If
reapproval is not required, then the task is assigned to the next approver or the next
step in the business process.

Suspend and Resume If a task is not relevant, you can suspend it. These options are available only to users
who have been granted the BPMWorkflowSuspend role. Other users can access the
task by selecting Previous in the task filter or by looking up tasks in the Suspended
status. A suspension is indefinite. It does not expire until Resume is used to resume
working on the task.

Withdraw If you are the creator of a task and do not want to continue with it, for example, you
want to cancel a vacation request, you can withdraw it and add an optional comment
in the Comments area. The business process determines what happens next. You can
use the Withdraw action on the home page by using the Creator task filter.

Start/Stop Task When the user chooses to start or stop work on the task the time stamp is assigned to
all the tasks selected. It is used to calculate the working durations of the task. The
user can use Start/Stop Task multiple times on the same task, for example startTask -
> stopTask -> startTask -> stopTask -> startTask -> completeTask

The total working duration is the sum of all of these time intervals.

Start/Stop Task operations are only available for tasks in Assigned or Request
Information status. Start/Stop Task is not available for Aggregated Task.

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 32-29

32.5.2 Task History
The task history maintains an audit trail of the actions performed by the participants
in the workflow and a snapshot of the task payload and attachments at various points
in the workflow. The short history for a task lists all versions created by the following
tasks:

• Initiate task

• Re-initiate task

• Update outcome of task

• Completion of task

• Error of task

• Expiration of task

• Withdrawal of task

• Alerting of task to the error assignee

You can include the following actions in the short history list by modifying the
shortHistoryActions element.

• Acquire

• Ad hoc route

• Auto release of task

• Delegate

• Escalate

• Information request on task

• Information submit for task

• Override routing slip

• Update outcome and route

• Push back

• Reassign

• Release

• Renew

• Resume

• Skip current assignment

• Suspend

• Update

The history provides a graphical view of a task flow, as shown in Figure 32-20.

Acting on Tasks: The Task Details Page

32-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-20 History: Graphical View

Check Full task actions to see all actions performed, including those that do not make
changes to the task, such as adding comments, as shown in Figure 32-21.

Figure 32-21 History: Full Task Actions

Available ways to view the task history include:

• Take a task snapshot

• See future approvers

• See complete task actions

• Aggregate tasks

Note:

The history of a parent task also displays the history of any subtasks it
contains.

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 32-31

32.5.3 How To Act on Tasks
If the human task was designed to permit ad hoc routing, or if no predetermined
sequence of approvers was defined, then the task can be routed in an ad hoc fashion in
the worklist. For such tasks, a Route button appears on the task details page. From the
Route page, you can look up one or more users for routing. When you specify multiple
assignees, you can select whether the list of assignees is for simple (group assignment
to all users), sequential, or parallel assignment.

Parallel tasks are created when a parallel flow pattern is specified for scenarios such as
voting. In this pattern, the parallel tasks have a common parent. The parent task is
visible to a user only if the user is an assignee or an owner or creator of the task. The
parallel tasks themselves (referred to as subtasks) are visible to whomever the task is
assigned, just like any other task. It is possible to view the subtasks from a parent task.
In such a scenario, the task details page of the parent task contains a View SubTasks
button. The SubTasks page lists the corresponding parallel tasks. In a voting scenario,
if any of the assignees updates the payload or comments or attachments, the changes
are visible only to the assignee of that task.

A user who can view the parent task (such as the final reviewer of a parallel flow
pattern), can navigate to the subtasks and view the updates made to the subtasks by
the participants in the parallel flow. The parent task is a container for the subtasks
while they are worked on by the assignees. The task owner must not act on or approve
the parent task.

The task list does not display the actions for a task. A user has to take action from the
task details.

If a human task was set up to require a password, then when you act on it, you must
provide the password.

Note:

Any kind of change to the task details page, such as changing a priority or
adding a comment, requires you to save the change. If you add an attachment
to a task, it is automatically saved.

To reassign or delegate a task:

1. From the Actions list, select Reassign, as shown in Figure 32-22.

Figure 32-22 Reassigning a Task

2. Select Reassign or Delegate.

Acting on Tasks: The Task Details Page

32-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Delegate differs from Reassign in that the privileges of the delegatee are based on
the delegator's privileges. This function can be used by managers' assistants, for
example.

3. Provide or browse for a user or group name, as shown in Figure 32-23.

Figure 32-23 Reassigning a Task

A supervisor can always reassign tasks to any of his reportees.

4. Select the names by clicking the check box and click OK.

You can reassign to multiple users or groups. One of the assignees must claim the
task, as shown in Figure 32-24.

Figure 32-24 Claiming a Task

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 32-33

Note:

When task details have been upgraded from an earlier release, you can see a
"Request Failed" error when executing the Reassign action. Actually, the
reassign completes, and when you click OK again, a popup says the task is
already assigned.

To eliminate the error message, upgrade your task flow applications by
opening them in Oracle JDeveloper, then redeploy the task form.

32.5.3.1 To Request Information

To request information:

1. From the Actions list, select Request Information, as shown in Figure 32-25.

This action is available only when you enable the "Allow participants to invite
other participants" setting in the task definition.

Figure 32-25 Requesting Information

2. Request information from a past approver or search for a user name, or push the
task back to the previous assignee, as shown in Figure 32-26.

Figure 32-26 Requesting Information from Past Approvers or Another User, or
Pushing the Task Back

If you use the Search icon to find a user name, the Identity Browser appears, as
shown in Figure 32-27.

Acting on Tasks: The Task Details Page

32-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-27 Identity Browser

Note:

If you are in a multi-tenancy environment, search for a user simply by the user
identifier and not by the tenant identifier. For example, if the user identifier is
jstein and the tenant identifier is company_name.jstein, you search by using
jstein.

3. Click OK.

32.5.3.2 To Route a Task

Note:

The task definition must be set to Allow participants to invite other
participants before the task can be routed.

To route a task:

1. From the Task Actions list, select Adhoc Route, as shown in Figure 32-28.

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 32-35

Figure 32-28 Ad Hoc Routing

2. Select an action and a routing option, as shown in Figure 32-29.

Figure 32-29 Routing a Task

• Single Approver: Use this option for a single user to act on a task. If the task is
assigned to a role or group with multiple users, then one member must claim
the task and act on it.

• Group Vote: Use this option when multiple users, working in parallel, must
act, such as in a hiring situation when multiple users vote to hire or reject an
applicant. You specify the voting percentage that is needed for the outcome to
take effect, such as a majority vote or a unanimous vote, as shown in
Figure 32-30.

Acting on Tasks: The Task Details Page

32-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-30 Providing Consensus Information

• Chain of Single Approvers: Use this option for a sequential list of approvers.
The list can comprise any users or groups. (Users are not required to be part of
an organization hierarchy.)

3. Add optional comments for the next participant on the route.

4. Provide or search for user or group names; then move the names to the Selected
area.

5. Click OK.

32.5.3.3 To Add Comments or Attachments

To add comments or attachments:

Note:

• If you are the initiator of the task, then your comment is shared with all
process participants and not only with task assignees. The option to share
with only task participants is not available to you.

• Comments added to a parent task also appear in any subtasks of that
parent.

• Click Save before you browse for or upload attachments, to ensure that
any previous changes to the task details page are saved.

• When you remove a file or URL attachment, the task is not automatically
updated. You must explicitly select Actions > Save. Otherwise, the
attachment is not removed, even though it is displayed as removed. This
is the expected behavior.

• If you add a file attachment, you do not need to explicitly select Actions >
Save.

• If you add a URL attachment, you must explicitly select Actions > Save.

• In an environment with servers clustered for high availability purposes,
file uploading is not supported if a failover occurs. If the active server
shuts down, then the uploading process is not assumed by the other
server and the upload fails.

• If you are using an ADF connection and you receive a "No Protocol" error
when attempting to add an attachment, verify that your
connections.xml file is synchronized with the correct WSDL file. The
connections.xml file is located in the directory .adf/META-INF/ in
your ADF workspace.

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 32-37

1. In the Comments or Attachments area, click Add.

Figure 32-31 Worklist Comments and Attachments

2. Enter comment text and click OK. Comments cannot be deleted after they are
added.

The date and timestamp and your user name are included with the comment.

3. For attachments, provide a file or URL attachment, as shown in Figure 32-32, and
click OK.

Figure 32-32 Adding a Worklist Attachment

If you attach a URL file in Oracle BPM Worklist (for example, http://
www.example.com/technology/products/oem/management_partners/
snmpwp6.gif), it is not sent as an email attachment. Instead, it appears as a link in
the task details of the email notification. However, if a desktop file is attached, it
can be seen as a separate attachment in the task notification.

Note:

Attachment file names that use a multibyte character set (MBCS) are not
supported.

Attachments of up to 1998K can be uploaded. You can modify this setting by
setting the context parameter in web.xml as follows:

<context-param>
 <param-name>org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE</param-name>
 <param-value>1998</param-value>
</context-param>

For more information about file uploading, see the Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application.

4. From the Task Actions list, click Save.

32.5.4 How To Act on Tasks That Require a Digital Signature
The worklist supports the signature policy created in the human task:

• No signature required — Participants can send and act on tasks without
providing a signature.

• Password required — Participants mus tspecify their login passwords.

Acting on Tasks: The Task Details Page

32-38 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Digital certificate (signature) required —Participants must possess a digital
certificate before being able to send and act on tasks. A digital certificate contains
the digital signature of the certificate-issuing authority so that anyone can verify
that the certificate is real. A digital certificate establishes the participant's
credentials. It is issued by a certification authority (CA). It contains your name, a
serial number, expiration dates, a copy of the certificate holder's public key (used
for encrypting messages and digital signatures), and the digital signature of the
certificate-issuing authority so that a recipient can verify that the certificate is real.

When you act on a task that has a signature policy, the Sign button appears, as shown
in Figure 32-33.

Figure 32-33 Digital Signature Task Details

The evidence store service is used for digital signature storage and nonrepudiation of
digitally signed human tasks. You can search the evidence store, as shown in
Figure 32-34.

Figure 32-34 The Evidence Store

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 32-39

See Evidence Store Service and Digital Signatures for more information.

To provide a digital signature:

1. In the upper right corner of Oracle BPM Worklist, click Preferences.

2. Select the Certificates link.

3. Upload the certificate you want to use to sign your decision, as shown in
Figure 32-35.

When signing a task outcome using your certificate, you must upload the entire
chain of certificates through Oracle BPM Worklist as a .P7B (PKCS7 format) file,
not just the one certificate issued to you by the certificate issuer. The entire chain
can be exported through Internet Explorer. Mozilla Firefox does not let you export
the chain as a .P7B file. Therefore, you can perform the following steps:

a. Export the chain from Mozilla Firefox as a .P12 file (PKCS12 format that also
contains your private key).

b. Import the .P12 file in Internet Explorer.

c. Export it again from Internet Explorer as a .P7B file.

d. Upload it through Oracle BPM Worklist.

Figure 32-35 Uploading a Certificate

Note the following important points when providing your certificate to the
system. Otherwise, you cannot use your certificate to sign your decisions on tasks.

• The PKCS7 file format is a binary certificate format. Select this option if you
have a standalone certificate file stored on your disk.

• The PKCS12 file format is a keystore format. Select this option if you have
your certificate stored inside a keystore.

Acting on Tasks: The Task Details Page

32-40 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• If you want to copy and paste the contents of the certificate, select Type or
Paste Certificate Contents and paste the BASE64-encoded text into the field.
Do not paste a certificate in any other format into this field. Likewise, if you
choose to upload a certificate, do not try to upload a BASE64-encoded
certificate. Only PKCS12 and PKCS7 formatted files are supported for
uploads.

4. Return to the task list by clicking the Home link in the upper-right corner of
Oracle BPM Worklist.

5. Click a task to approve or reject.

The task details are displayed.

6. Click either Approve or Reject.

Details about the digital signature are displayed.

7. For a task that has a signature policy, click Sign.

The Text Signing Report dialog appears.

8. Select the certificate from the list to use to sign your decision.

9. Enter the master password of the web browser that you are using.

10. Click OK.

The web browser signs the string displayed in the upper half of the Text Signing
Request with the certificate you selected and invokes the action (approval or
rejection) that you selected. The task status is appropriately updated in the human
workflow service.

For more information about how certificates are uploaded and used, see Evidence
Store Service and Digital Signatures.

32.6 Approving Tasks
Get an overview of types of actions that can be performed on tasks by various task
approvers.

Table 32-8 Task Actions and Approvers

Task
Action

Admin Owner (+
Owner
Group)

Assignee (+ Assignee Manager +
Assignee Group + Proxy
Assignee)

Creator Reviewer Approver

Acquire
(Claim)

No Yes Yes No No No

Custom No Yes1 Yes1 No No No

Delegate No No Yes No No No

Delete No2 No2 Yes2 Yes2 No No

Error No No Yes3 No No No

Escalate Yes4 Yes4 Yes No No No

Info
Request

No No Yes No No No

Approving Tasks

Using Oracle BPM Worklist 32-41

Table 32-8 (Cont.) Task Actions and Approvers

Task
Action

Admin Owner (+
Owner
Group)

Assignee (+ Assignee Manager +
Assignee Group + Proxy
Assignee)

Creator Reviewer Approver

Info
Submit

No No Yes No No No

Override
Routing
Slip

Yes Yes No No No No

Push Back No No Yes No No No

Purge Yes2 Yes2 No Yes No No

Reassign Yes5 Yes5 Yes (No for proxy assignee) No No No

Release Yes Yes Yes No No No

Renew No Yes Yes No No No

Resume Yes Yes Yes No No No

Route No Yes Yes No No No

Skip
Current
Assignmen
t

Yes Yes No No No No

Suspend Yes Yes Yes No No No

Update No Yes Yes Yes No No

Update
Attachmen
t

Yes Yes Yes Yes Yes No

Update
Comment

Yes Yes Yes Yes Yes No

View
Process
History

Yes Yes Yes Yes No No

View Sub
Tasks

Yes Yes Yes No No No

View Task
History

Yes Yes Yes Yes Yes Yes

Withdraw Yes Yes No Yes No No

1 Not valid for ToDo tasks
2 Valid only for ToDo tasks
3 Applicable for tasks in alerted states
4 Without claim and escalate to current assignee's manager
5 Without claim

Approving Tasks

32-42 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

32.7 Setting a Vacation Period
You can set a vacation period so that you are removed from automatic task
assignment during the dates you specify

The figureFigure 32-36 shows how to set vacation period..

Figure 32-36 Setting a Vacation Period

Vacation rules are not executed for ToDo tasks. See Setting Rules, for how to set a
vacation rule that is synchronized with the vacation period.

To create a vacation period:

1. Click the Preferences link.

The My Rules tab is displayed.

2. Select Enable vacation period.

3. Provide start and end dates.

4. Click Save.

The vacation period is enabled, as shown in Figure 32-37.

Setting a Vacation Period

Using Oracle BPM Worklist 32-43

Figure 32-37 Enabling a Vacation Period

32.8 Setting Rules
Rules act on tasks, either a specific task type or all the tasks assigned to a user or
group.

Figure 32-38 shows where you set rules, including vacation rules (different from the
vacation period settings described in Setting a Vacation Period).

Setting Rules

32-44 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-38 Creating a Rule

A rule cannot always apply in all circumstances in which it is used. For example, if a
rule applies to multiple task types, it may not be possible to set the outcome for all
tasks, since different tasks can have different outcomes.

Rules are executed in the order in which they are listed. Rules can be reordered by
using the up and down buttons in the header, as shown in Figure 32-38.

If a rule meets its filter conditions, then it is executed and no other rules are evaluated.
For your rule to execute, you must be the only user assigned to that task. If the task is
assigned to multiple users (including you), the rule does not execute.

You cannot specify business rules for ToDo tasks

32.8.1 How To Create User Rules
Specify the following when creating a user rule:

• Rule name

• If the rule is a vacation rule. See Setting a Vacation Period, for how to set the
vacation period that is synchronized with the vacation rule.

• Which task or task type the rule applies to—If unspecified, then the rule applies to
all tasks. If a task type is specified, then any attributes mapped for that task type
can be used in the rule condition.

• When the rule applies

Setting Rules

Using Oracle BPM Worklist 32-45

• Conditions on the rule—These are filters that further define the rule, such as
specifying that a rule acts on priority 1 tasks only, or that a rule acts on tasks
created by a specific user. The conditions can be based on standard task attributes
and any mapped attributes that have been mapped for the specific tasks. See How
To Map Attributes, for more information.

User rules do the following actions:

• Reassign to—You can reassign tasks to subordinates or groups you manage.

• Delegate to—You can delegate to any user or group. Any access rights or
privileges for completing the task are determined according to the original user
who delegated the task. (Any subsequent delegations or re-assignments do not
change this from the original delegating user.)

• Set outcome to—You can specify an automatic outcome if the workflow task was
designed for those outcomes, for example, accepting or rejecting the task. The rule
must be for a specific task type. If a rule is for all task types, then this option is not
displayed.

• Take no action—Use this action to prevent other more general rules from
applying. For example, to reassign all your tasks to another user while you are on
vacation, except for loan requests, for which you want no action taken, then create
two rules. The first rule specifies that no action is taken for loan requests; the
second rule specifies that all tasks are reassigned to another user. The first rule
prevents reassignment for loan requests.

To create a user rule:

1. Click the Preferences link

The My Rules tab is displayed.

2. In the Rules pane, click My Rules and click Add.

3. In the My Rule area, do the following and click Save:

• Provide a name for the rule.

• Select Use as a vacation rule if you are creating a vacation rule. The start and
end dates of the rule are automatically synchronized with the vacation period.

• Select Execute rule only between these dates and provide rule execution
dates.

• In the TASKS area, select All Tasks or Tasks matching these conditions. Then
use the Add button to add rule conditions.

• Browse for task types to which the rule applies.

• In the ACTION area, select actions to be taken: Reassign to, Delegate to, Set
outcome to, or Take no action), as shown in Figure 32-38.

The new rule appears under the My Rules node.

32.8.2 How To Create Group Rules
Creating a group rule is similar to creating a user rule, with the addition of a list of the
groups that you (as the logged-in user) manage. Examples of group rules include:

Setting Rules

32-46 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Assigning tasks from a particular customer to a member of the group

• Ensuring an even distribution of task assignments to members of a group by
using round-robin assignment

• Ensuring that high-priority tasks are routed to the least busy member of a group

Group rules do the following actions:

• Assign to member via—You can specify a criterion to determine which member
of the group gets the assignment. This dynamic assignment criterion can include
round-robin assignment, assignment to the least busy group member, or
assignment to the most productive group member. You can also add your custom
functions for allocating tasks to users in a group.

• Assign to—As with user rules, you can assign tasks to subordinates or groups
you directly manage.

• Take no action—As with user rules, you can create a rule with a condition that
prevents a more generic rule from being executed.

To create a group rule:

1. Click the Preferences link

2. Click the Other Rules tab.

3. Select Group from the list.

4. Enter a group name and click the Search icon, or enter a group name.

The Identity Browser opens for you to find and select a group.

5. Select the group name under the Group Rules node and click Add New Rule, as
shown in Figure 32-39.

Setting Rules

Using Oracle BPM Worklist 32-47

Figure 32-39 Creating a Group Rule

6. Provide group rule information and click Save.

• Provide a name for the rule.

• Browse for task types to which the rule applies.

• Provide rule execution dates.

• In the TASKS area, add rule conditions.

• In the ACTION area, select the actions to be taken (or none) (Assign to
member via, Assign to, or Take no action), as shown in Figure 32-39.

The new rule appears under the Group Rules node.

32.8.3 Assignment Rules for Tasks with Multiple Assignees
If a task has multiple assignees, then assignment rules are not evaluated for the task,
and the task is not automatically routed. This is because each of the task's assignees
can define assignment rules, which can potentially provide conflicting actions to take
on the task. Only tasks that are assigned exclusively to a single user are routed by the
assignment rules.

For example, consider the following sequence:

1. A rule is created for user cdickens to reassign all assigned requests to user jstein.

2. User jcooper reassigns the allocated tasks to cdickens and cdoyle.

3. Cdickens claims the task, and the task appears in their inbox.

Setting Rules

32-48 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The task is not automatically reassigned to jstein. The task is routed to jstein, following
the assignment rule set for cdickens, if user jcooper explicitly re-assigns the task only
to cdickens instead of reassigning the task to multiple users (cdickens and cdoyle).

32.8.4 How to Avoid Circular Logic in Reassigned Vacation Rules
When creating vacation rules, ensure that approval tasks are not reassigned in a
circular fashion.

For example, jstein is jcooper’s manager, and tasks that need to, go to jstein for
approval. If jstein creates a vacation rule, ensure that those tasks will not be re-
assigned to jcooper.

Alternatively, you can use the delegate option in vacation rules instead of reassign.
For more information about the delegate option, see Reassigning and Delegating Tasks
in Process Workspace.

How To Avoid Circular Dependency

In this example, we define two rules for User2, who wants to set a vacation period and
reassign his tasks to someone else. The first rule states that if the task is not coming
from User1, then reassign it to User1. The second rule states that if the task is coming
from User1, then reassign it to User3.

The task flow is: jcooper to jstein to wfaulk. The rules are set for jstein.

1. Login to Worklist as jstein and go to the Preferences page.

2. Ensure that the Vacation Period is disabled, as shown below:

3. Click My Rules and click Add New Rule +.

4. Enter a name for the rule, for example VacationRule1.

5. Clear the Use as vacation rule check box.

6. Check the Execute rule only between these dates check box and enter the
appropriate dates.

7. In the Tasks drop down, choose Tasks matching these conditions.

8. Click Add condition + and select User, From User.

9. In the new row, select isn't.

10. In the text box next to it, enter jcooper for the user name.

11. In the Action section, select Reassign to and enter jcooper for the user name.

12. Click Save.

Repeat the steps above to create another rule with these inputs:

Setting Rules

Using Oracle BPM Worklist 32-49

13. Enter a name for the second rule, for example VacationRule2.

14. Select the same start and end dates as in VacationRule1.

15. Add a From User condition of is.

16. Enter jcooper for the user name.

17. In the Action section, select Reassign to and enter wfaulk for the user name.

18. Click Save.

Invoke the composite and the tasks will be assigned as expected based on these two
new rules defined for jstein.

32.9 Using the Worklist Administration Functions
Administrators who are granted the BPMWorkflowAdmin role, can use the worklist
Administration Funcations.

Administration functions include the following:

• Managing other users' or groups' rules

• Setting the worklist display (application preferences). Application preferences
customize the appearance of the worklist, including:

– The login realm label

– The resource bundle

– Where the language locale information is retrieved from

– The branding logo

– The branding title

– The branding skin

– Any external applications you want to use, for example, oracle.com, or
google.com

• Specifying mapped attributes

An administrator can view and update all tasks assigned to all users. An
administrator's Assignee filter displays Admin when the Admin tab is selected.

• How To Manage Other Users' or Groups' Rules (as an Administrator)

• How to Specify the Login Page Realm Label

• How to Specify the Resource Bundle

• How to Specify the Language Locale Information

• How to Specify a Branding Logo

• How to Specify the Branding Title

• How to Choose a Skin

• How to Enable Customized Applications and Links

Using the Worklist Administration Functions

32-50 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For information about specifying mapped attributes, see Using Mapped Attributes
(Flex Fields)

32.9.1 How To Manage Other Users' or Groups' Rules (as an Administrator)
This function is useful for fixing a problem with a rule. Also, for a user who no longer
works for the company, administrators can set up a rule for that user so that all tasks
assigned to the user are automatically assigned to another user or group.

To create a rule for another user or group:

1. Click the Preferences link

2. Click the Other Rules tab.

3. Search for the user or group for whom rules are to be created, as shown in
Figure 32-40.

Figure 32-40 Creating Rules for Another User or Group

4. Click a user rules node, or click a group name (for a group rule).

5. Click the Add icon to create a rule.

6. Provide rule information, as shown in Figure 32-39, and click Save.

32.9.2 How to Specify the Login Page Realm Label
If the identity service is configured with multiple realms, then, when a user logs in to
Oracle BPM Worklist, the login page displays a list of realm names.
LABEL_LOGIN_REALM specifies the resource bundle key used to look up the label to
display these realms. You can change the term realm to fit the user community—terms
such as country, company, division, or department may be more appropriate. To change
the term realm, customize the resource bundle, specify a resource bundle key for this
string, and then set the Login page realm label parameter to point to that resource
bundle key.

Figure 32-41 shows the Application Preferences page with the Login page realm label
field highlighted. You reach the Application Preferences page by clicking
Administration on the global toolbar at the very top of the Worklist Application
interface.

Using the Worklist Administration Functions

Using Oracle BPM Worklist 32-51

Figure 32-41 Specifying the Login Page Realm Label

32.9.3 How to Specify the Resource Bundle
The resource bundle provides the strings displayed in the Worklist Application. By
default, the class path to the resource bundle is:

oracle.bpel.worklistapp.resource.WorklistResourceBundle

Figure 32-42 shows the Application Preferences page with the Resource Bundle field
highlighted. You reach the Application Preferences page by clicking Administration
on the global toolbar at the very top of the Worklist Application interface.

Using the Worklist Administration Functions

32-52 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-42 Specifying the Resource Bundle

As an administrator, you can add or modify strings shown in the application by
creating a custom resource bundle. You can then use the Resource Bundle field in the
Application Preferences page to specify the class path to your custom resource bundle.

For more information about customizing resource bundles, see Managing and
Monitoring Processes with Oracle Business Process Management.

32.9.4 How to Specify the Language Locale Information
From the Application Preferences page, you can specify how the Worklist Application
display language is determined. Information about the language locale can be derived
from either the user's browser or the identity provider that stores information on
worklist users.

Figure 32-43 shows the Applications Preferences page with the Use language settings
of options highlighted. You reach the Application Preferences page by clicking
Administration on the global toolbar at the very top of the Worklist Application
interface.

Figure 32-43 Specifying Language Local Information

32.9.5 How to Specify User Name Format
From the Application Preferences page, you can specify how the user's name is
displayed on the screen after they have logged in. You can choose to display the
userid, such as jstein, or the user's name, John Steinbeck.

Using the Worklist Administration Functions

Using Oracle BPM Worklist 32-53

32.9.6 How to Specify a Branding Logo
A branding logo is the image displayed in the top left corner of every page of the
Worklist Application. The Oracle logo is the default, and you can change it to one of
your choosing.

Note:

The ideal image size is 120px x 40px (length x width) for proper display.
Although images with high resolution and size are compressed to fit the
branding logo size, smaller images display better.

Figure 32-44 shows the Application Preferences page with the Branding Logo field
highlighted. You reach the Application Preferences page by clicking Administration
on the global toolbar at the very top of the Worklist Application interface.

Figure 32-44 Specifying the Branding Logo

To specify the branding logo:

Do one of the following:

• Refer to an external image-hosting web site. To do this task: In the Branding Logo
field, enter the URL of the image.

• Upload an image to a particular location on the server and, in the Branding Logo
field, enter its relative path, for example, /afr/my_logo.png.

• Refer to an image from the shared library. To do this task: In the Branding Logo
field, enter the path of the logo name as found in the shared library, for
example, /my_logo.pngv.

Using the Worklist Administration Functions

32-54 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

Customizing the branding logo from either the Worklist Application or
Process Workspace changes the logo in both applications. For example, if you
change the logo from Worklist, the Workspace logo is changed automatically.

For information about deploying images and JAR files as part of a shared library, see
Managing and Monitoring Processes with Oracle Business Process Management.

32.9.7 How to Specify the Branding Title
You can specify the title for your site, changing the default title, BPM Worklist, to one
that you choose.

Figure 32-45 shows the Application Preferences field with the Branding Title field
highlighted. You reach the Application Preferences page by clicking Administration
on the global toolbar at the very top of the Worklist Application interface.

Figure 32-45 Specifying the Branding Title

To specify the branding title:

Do one of the following:

• In the Branding Title field, enter a simple string for your title.

• In the Branding Title field, enter a label that refers to a key-value pair in the
Resource Bundle. In this way, you can internationalize your title, for example,
LABEL_WORKLIST_TITLE.

32.9.8 How to Choose a Skin
A skin determines the look and feel of your graphical interface. You specify the skin
from the Application Preferences page. You reach the Application Preferences page by
clicking Administration on the global toolbar at the very top of the Worklist
Application interface.

Using the Worklist Administration Functions

Using Oracle BPM Worklist 32-55

Figure 32-46 shows the Application Preferences page with the Choose a Skin field
highlighted.

Figure 32-46 Choosing a Skin

32.9.8.1 To Choose A Skin

To choose a skin:

Do one of the following:

• From the Choose a Skin list, select one of the default ADF skins

• Upload your own customized skin .css file in a .JAR file and deploy it as a part
of shared library. Then, when you restart your application from the console, your
custom skin appears in the Choose a Skin list.

32.9.8.2 To Create a JAR File Containing Customized Skins

To create a JAR file containing customized skins:

1. Create a directory structure similar to the following example:

C:\temp\META-INF\adf\oracle\skin\images
 META-INF\skins\custom.css
 META-INF\trinidad-skins.xml

In this example, you can change the word custom to the name of your own
customized skin.

2. Make sure the content of trinidad-skins.xml file is as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin>
 <id>custom.desktop</id>
 <family>custom</family>
 <extends>custom.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>

Using the Worklist Administration Functions

32-56 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <style-sheet-name>skins/custom.css</style-sheet-name>
 </skin>
</skins>

3. Create the .JAR file by issuing the following command from the c:\temp
directory:

jar -cvf customSkin.jar META-INF/

4. Copy this JAR file to the directory /scratch/username/sharedLib.

Note:

Refer to the images in your css file this way:

../adf/oracle/skin/images/example.gif (with the two trailing dots).

This allows the search for the META-INF root to start one directory above the
META-INF/skin directory in which the .css file is located.

For information about deploying JAR files as part of a shared library, see Managing and
Monitoring Processes with Oracle Business Process Management.

32.9.9 How to Enable Customized Applications and Links
For Process Workspace, you can create customized external applications and links that
become available in the External Applications panel. Moreover, in both Process
Workspace and the Worklist Application, you can specify the columns that appear in
the Task Details pane.

You specify a custom application by using the Application Preferences page. You
reach the Application Preferences page by clicking Administration on the global
toolbar at the very top of the Worklist Application interface.

To see the Java code for specifying a custom application, see Java Code for Enabling
Customized Applications in .

To enable customized applications:

1. In the Application Preferences page, enter the class name of your custom
application in the Application customization class name field, as shown in
Figure 32-47.

Using the Worklist Administration Functions

Using Oracle BPM Worklist 32-57

Figure 32-47 Specifying a Custom Application

2. Restart the application from the console.

Depending on your customization, you can now see its effects.

If your customization is for Process Workspace and involves either creating an
external application or specifying inbox columns in the Task Details pane or both,
you see the following:

• Your custom application listed in the External Applications panel of the
Process Workspace Home page as shown in Figure 32-48.

Figure 32-48 External Applications Panel in Process Workspace

• The columns of the Task Details inbox adjusted according to your
specifications as shown in Figure 32-49.

Figure 32-49 Customized Columns in Task Details Pane

For more information about customizing applications in Worklist Application
and Process Workspace, see Managing and Monitoring Processes with Oracle
Business Process Management.

Using the Worklist Administration Functions

32-58 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

32.9.10 How to Specify an Image for a Task Action
If you are an administrator, then you can specify whether an action is displayed with a
red X icon or with a green check mark icon.

To specify an image for a task action:

1. Select Administration, then Application Preferences.

2. From the lists in the Map task actions to an image field, select the tasks you want
to map to either the green check mark icon or the red X icon.

3. Click Save.

32.10 Specifying Notification Settings
You can configure the notification settings to control how, when, and where you
receive messages in cases when you have access to multiple communication channels
(delivery types). Specifically, you can define messaging filters (delivery preferences)
that specify the channel to which a message should be delivered, and under what
circumstances.

For example, you might want to create filters for messages received from customers
with different Service Level Agreements (SLA), specifying to be notified through
business phone and SMS channels for customers with a premium SLA and by EMAIL
for customers with a nonpremium SLA.

32.10.1 Messaging Filter Rules
A messaging filter rule consists of rule conditions and rule actions. A rule condition
consists of a rule attribute, an operator, and an associated value. A rule action is the
action to be taken if the specified conditions in a rule are true.

32.10.1.1 Data Types

Table 32-9 lists data types supported by messaging filters. Each attribute has an
associated data type, and each data type has a set of predefined comparison operators.

Table 32-9 Data Types Supported by Messaging Filters

Data Type Comparison Operators

Date isEqual, isNotEqual, isGreaterThan, isGreaterThanOrEqual,
isLessThan, isLessThanOrEqual, Between, isWeekday, isWeekend

Time isEqual, isNotEqual, Between

Number isEqual, isNotEqual, Between, isGreaterThan, isGreaterThanOrEqual,
isLessThan, isLessThanOrEqual

String isEqual, isNotEqual, Contains, NotContains

Note:

The String data type does not support regular expressions.

Specifying Notification Settings

Using Oracle BPM Worklist 32-59

32.10.1.2 Attributes

Table 32-10 lists the predefined attributes for messaging filters.

Table 32-10 Predefined Attributes for Messaging Filters

Attribute Data Type

Total Cost Number

From String

Expense Type String

To String

Application Type String

Duration Number

Application String

Process Type String

Status String

Subject String

Customer Type String

Time Time

Group Name String

Processing Time Number

Date Date

Due Date Date

User String

Source String

Amount Number

Role String

Priority String

Customer Name String

Expiration Date Date

Order Type String

Organization String

Classification String

Service Request Type String

Specifying Notification Settings

32-60 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

32.10.2 Rule Actions
For a given rule, a messaging filter can define the following actions:

• Send No Messages: Do not send a message to any channel.

• Send Messages to All Selected Channels: Send a message to all specified
channels in the address list.

• Send to the First Available Channel: Send a message serially to channels in the
address list until one successful message is sent. This entails performing a send to
the next channel when the current channel returns a failure status. This filter
action is not supported for messages sent from the human workflow layer.

32.10.3 Managing Messaging Channels
In Oracle BPM Worklist, messaging channels represent both physical channels, such as
business mobile phones, and also email client applications running on desktops.
Specifically, Oracle BPM Worklist supports the following messaging channels:

• EMAIL

• IM

• MOBILE

• SMS

• VOICE

• WORKLIST

Note the following about message channels:

• Addresses for messaging channels are fetched from the configured identity store.

• SMS and MOBILE notifications are sent to the mobile phone number.

• VOICE notifications are sent to the business phone number.

• No special notification is sent when the messaging channel preference is
WORKLIST. Instead, log in to Oracle BPM Worklist to view tasks.

• EMAIL is the default messaging channel preference when a preferred channel has
not been selected.

You can use Available Channels to view, create, edit, and delete messaging channels.

32.10.3.1 Viewing Your Messaging Channels

You can display your existing messaging channels.

To view messaging channels:

1. Click the Preferences link.

2. Click the Notification tab.

3. Expand Available Channels.

Specifying Notification Settings

Using Oracle BPM Worklist 32-61

The Available Channels list appears (Figure 32-50) and displays the following
information:

• Name: The name of the messaging channel.

• Type: The type of messaging channel, such as EMAIL or SMS.

• Address: The address for the channel, such as a phone number or email
address.

• Default: Specifies whether this channel is the default messaging channel.

Figure 32-50 Messaging Channels

4. Click View > Columns and select the columns to display or hide.

You can also click View > Reorder Columns to display a dialog to reorder the
displayed columns.

Messaging channel names and addresses are retrieved from the underlying identity
store, such as Oracle Internet Directory.

32.10.3.2 Creating, Editing, and Deleting a Messaging Channel

Oracle BPM Worklist uses an underlying identity store, such as Oracle Internet
Directory, to manage messaging channels and addresses. Therefore, you cannot
directly create, modify, or delete messaging channels using Oracle BPM Worklist.

To perform these actions, contact the system administrator responsible for managing
your organization's identity store.

32.10.4 Managing Messaging Filters
You can use Messaging Filters to define filters that specify the types of notifications
you want to receive along with the channels through which to receive these
notifications. You can do this through a combination of comparison operators (such as
is equal to, is not equal to), attributes that describe the notification type, content, or
source, and notification actions, which send the notifications to the first available
messaging channels, all messaging channels, or to no channels (effectively blocking
the notification).

For example, you can create a messaging filter called Messages from Lise, that retrieves
all messages addressed to you from your boss, Lise. Notifications that match all of the
filter conditions might first be directed to your business mobile phone, for instance,
and then to your business email if the first messaging channel is unavailable.

Specifying Notification Settings

32-62 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

32.10.4.1 Viewing Messaging Filters

You can display your existing messaging filters.

To view your messaging filters:

1. Click the Notification tab.

2. Expand Messaging Filters.

The Messaging Filters list appears (Figure 32-51) and displays the following
information:

• Name: The name of the messaging filter

• Description: An optional description of the messaging filter

• Enabled: Specifies if this filter is being used in message handling

Figure 32-51 Messaging Filters

3. Click View > Columns and select the columns to display or hide.

32.10.4.2 Creating Messaging Filters

To create a messaging filter:

1. Click Create.

The Create Filter dialog box appears, as shown in Figure 32-52.

Specifying Notification Settings

Using Oracle BPM Worklist 32-63

Figure 32-52 Adding a Messaging Filter

2. Specify the following information:

• Name: The name of the messaging filter.

• Description: An optional description for the messaging filter.

• Enabled: By default this option is checked. Clear if you do not want this filter
used in message handling.

3. Select whether notifications must meet all of the conditions or any of the
conditions by selecting either the Match all of the following conditions or the
Match any of the following conditions options.

4. Click Create.

Define the filter conditions in the Create Condition dialog box, as follows:

a. Select the attribute from the list.

b. Select the operator, such as isEqual, from the list.

c. Type the value of the condition in the Operand field.

d. Click OK to add the condition to the list.

e. Repeat these steps to add more filter conditions. To remove a filter condition,
click Delete.

5. Select from the following messaging options in the Action section:

• Do not send messages: Do not send a message to any channel.

• Send to all selected channels: Send a message to all specified channels in the
address list.

• Send to first available channel: Send a message serially to channels in the
address list until one successful message is sent. This entails performing a
send to the next channel when the current channel returns a failure status.

6. To set the delivery channel, select a channel from the Add Notification Channel
list and click Add. To remove a channel, click Delete.

Specifying Notification Settings

32-64 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

7. Use the up and down arrows to prioritize channels. If available, the top-most
channel receives messages meeting the filter criteria if you select Send to the First
Available Channel.

8. Click OK.

The messaging filter appears on under Messaging Filters area. The Messaging
Filters area enables you to edit or delete the channel.

32.10.4.3 Editing a Messaging Filter

To edit a messaging filter:

1. Select the filter from the Messaging Filters area.

2. Click Edit.

3. Click OK to update the messaging filter. Click Cancel to dismiss the dialog without
modifying the filter.

32.10.4.4 Deleting a Messaging Filter

To delete a messaging filter:

1. Select the filter from the Messaging Filters area.

2. Click Delete. A confirmation dialog appears.

3. Click OK to delete the messaging filter. Click Cancel to dismiss the dialog without
deleting the filter.

32.11 Using Mapped Attributes (Flex Fields)
Human workflow mapped attributes (formerly referred to as flex fields) store and
query use case-specific custom attributes. These custom attributes typically come from
the task payload values.

Storing custom attributes in mapped attributes provides the following benefits:

• They can be displayed as a column in the task listing.

• They can filter tasks in custom views and advanced searches.

• They can be used for a keyword-based search.

For example the Requester, PurchaseOrderID, and Amount fields in a purchase
order request payload of a task can be stored in the mapped attributes. An approver
logging into Oracle BPM Worklist can see these fields as column values in the task list
and decide which task to access. The user can define views that filter tasks based on
the mapped attributes. For example, a user can create views for purchase order
approvals based on different amount ranges. If the user must also retrieve tasks at
some point related to a specific requester or a purchase order ID, they can specify this
in the keyword field and perform a search to retrieve the relevant tasks.

For the mapped attributes to be populated, an administrator must create mapped
attribute mappings, as follows:

1. Specify a label for the mapped attribute to be populated.

2. Map the payload attribute containing the data to the label.

Using Mapped Attributes (Flex Fields)

Using Oracle BPM Worklist 32-65

These mappings are valid for a certain task type. Therefore, each task type can have
different mapped attribute mappings. After the mapping is complete and any new
task is initiated, the value of the payload is promoted to the mapped attribute. Tasks
initiated before the mapping do not contain the value in the mapped attribute. Only
top-level simple type attributes in the payload can be promoted to a mapped attribute.
Complex attributes or simple types nested inside a complex attribute cannot be
promoted. It is important to define the payload for a task in the Human Task Editor,
keeping in mind which attributes from the payload may must promoted to a mapped
attribute. All text and number mapped attributes are automatically included in the
keyword-based search.

Essentially, the Human Task Editor is used only when defining the payload for a task.
All other operations are performed at runtime.

Directory naming is not available concomitant with the flex file naming convention.

Note:

• Mapped attributes must be defined before instances of the business
process are generated. Only instances generated after mapped attributes
are created reflect the correct mapped attributes. Older instances of the
business process do not reflect subsequent mapped attribute changes.

• When you add a new locale, the mapped attribute labels are not
automatically translated until you have flushed the cache. You may flush
the cache either by restarting the server, or by changing a value in the
workflow configuration settings—for example, by changing the
workflowCustomClasspathURL property in the workflow
configuration to some new value, then changing it back again.

32.11.1 How To Map Attributes
An administrator, or users with special privileges, can use attribute mapping, shown
in Figure 32-53, to promote data from the payload to inline mapped attributes. By
promoting data to mapped attributes, the data becomes searchable and can be
displayed as columns on the task list page.

Administrators can map public mapped attributes. Users who have been granted the
workflow.mapping.publicFlexField privilege can map public mapped
attributes, and see a Public Flex Fields node on the Administration tab.

Using Mapped Attributes (Flex Fields)

32-66 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-53 Mapped Attribute Mapping

32.11.1.1 To Create Labels

To create labels:

To create a mapped attribute mapping, an administrator first defines a semantic label,
which provides a more meaningful display name for the mapped attribute. Click Add
to use the Create Label dialog, as shown in Figure 32-54.

Figure 32-54 Creating a Label

As Figure 32-54 shows, labelName is mapped to the task attribute TextAttribute3. The
payload attribute is also mapped to the label. In this example, the Text attribute type is
associated with labelName. The result is that the value of the Text attribute is stored

Using Mapped Attributes (Flex Fields)

Using Oracle BPM Worklist 32-67

in the TextAttribute3 column, and labelName is the column label displayed in the
user's task list. Labels can be reused for different task types. You can delete a label
only if it is not used in any mappings.

A mapped payload attribute can also be displayed as a column in a custom view, and
used as a filter condition in both custom views and workflow rules. The display name
of the payload attribute is the attribute label that is selected when doing the mapping.

Note the following restrictions:

• Only simple type payload attributes can be mapped.

• A mapped attribute (and thus a label) can be used only once per task type.

• Data type conversion is not supported for the number or date data types. For
example, you may not map a payload attribute of type string to a label of type
number.

32.11.1.2 To Browse All Mappings

To browse all mappings:

1. Click Browse all mappings.

2. Select a row in the label table to display all the payload attributes mapped to a
particular label.

Figure 32-55 Browsing Mappings

32.11.1.3 To Edit Mappings by Task Type

Using Mapped Attributes (Flex Fields)

32-68 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To edit mappings by task type:

1. Click Edit mappings by task type, optionally provide a task type, and click Search.

2. Select a task type and click OK.

Figure 32-56 Selecting a Task Type

3. With the task type displayed in the Edit mappings by task type field, click Go.

All current mappings for the task type are displayed, as shown in Figure 32-57.

Using Mapped Attributes (Flex Fields)

Using Oracle BPM Worklist 32-69

Figure 32-57 Selecting a Label

4. Select a mapping label and click Select.

Figure 32-58 shows a completed mapping.

Figure 32-58 Mapped Attribute Mapping Created

See Internationalization of Attribute Labels for more information.

Using Mapped Attributes (Flex Fields)

32-70 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

32.11.2 Custom Mapped Attributes
The following mapped attributes are included in the WorkflowTask.xsd file and are
available for your use without restrictions.

Table 32-11 Custom Mapped Attributes

Attribute Data Type

customerAttributeString1 String

customerAttributeString2 String

customerAttributeNumber1 Double

customerAttributeNumber2 Double

customerAttributeDate1 Date

customerAttributeDate2 Date

Use the following Java Architecture for XML Binding (JAXB) methods to set and get
these attributes:

task.getCustomerAttributes.getCustomerAttributeString1()

task.getCustomerAttributes.setCustomerAttributeString1("String")

task.getCustomerAttributes.getCustomerAttributeNumber1()

task.getCustomerAttributes.setCustomerAttributeNumber2(9)

task.getCustomerAttributes.setCustomerAttributeDate1()

task.getCustomerAttributes.setCustomerAttributeDate2()

These fields are persisted in the database as customerAttributeString1,
customerAttributeString2, customerAttributeNumber1,
customerAttributeNumber2, customerAttributeDate1,
customerAttributeDate2.

32.12 Creating Worklist Reports
Get an over view of worklist reports and various parameters in the reports.

Table 32-12 lists the worklist reports available for task analysis.

Table 32-12 Worklist Report Types

Report Name Description Input Parameters

Unattended
Tasks

Provides an analysis of
tasks assigned to users'
groups or reportees'
groups that have not
yet been acquired (the
"unattended" tasks).

• Assignee—This option (required) selects tasks assigned to the
user's group (My Group), tasks assigned to the reportee's
groups (Reportees), tasks where the user is a creator (Creator),
or tasks where the user is an owner (Owner).

• Creation Date—An optional date range
• Expiration Date—An optional date range
• Task State—The state (optional) can by Any, Assigned,

Expired, or Information Requested.
• Priority—The priority (optional) can be Any, Highest, High,

Normal, Low, or Lowest.

Creating Worklist Reports

Using Oracle BPM Worklist 32-71

Table 32-12 (Cont.) Worklist Report Types

Report Name Description Input Parameters

Tasks Priority Provides an analysis of
the number of tasks
assigned to a user,
reportees, or their
groups, broken down
by priority.

• Assignee—Depending on the assignee that you select, this
required option includes tasks assigned to the logged-in user
(My), tasks assigned to the user and groups that the user
belongs to (My & Group), or tasks assigned to groups to which
the user's reportees belong (Reportees).

• Creation Date—An optional date range
• Ended Date—An optional date range for the end dates of the

tasks to be included in the report
• Priority—The priority (optional) can by Any, Highest, High,

Normal, Low, or Lowest.

Tasks Cycle
Time

Provides an analysis of
the time taken to
complete tasks from
assignment to
completion based on
users' groups or
reportees' groups.

• Assignee—Depending on the assignee that you select, this
required option includes your tasks (My) or tasks assigned to
groups to which your reportees belong (Reportees).

• Creation Date—An optional date range
• Ended Date—An optional date range for the end dates of the

tasks to be included in the report
• Priority—The priority (optional) can by Any, Highest, High,

Normal, Low, or Lowest.

Tasks
Productivity

Provides an analysis of
assigned tasks and
completed tasks in a
given time period for a
user, reportees, or their
groups.

• Assignee—Depending on the assignee that the user selects, this
required option includes the user's tasks (My & Group) or
tasks assigned to groups to which the user's reportees belong
(Reportees).

• Creation Date (range)—An optional creation date range. The
default is one week.

• Task Type—Use the Search (flashlight) icon to select from a list
of task titles. All versions of a task are listed on the Select
Workflow Task Type page (optional).

Tasks Time
Distribution

Provides the time an
assignee takes to
perform a task.

• Assignee—Depending on the assignee that the user selects, this
required option includes the user's tasks (My & Group) or
tasks assigned to groups to which the user's reportees belong
(Reportees).

• From...to (date range)—An optional creation date range. The
default is one week.

• Task Type—Use the Search (flashlight) icon to select from a list
of task titles. All versions of a task are listed on the Select
Workflow Task Type page (optional).

32.12.1 How To Create Reports
Reports are available from the Reports link. Report results cannot be saved.

To create a report:

1. Click the Reports link.

2. Click the type of report you want to create.

Figure 32-59 shows the report types available.

Creating Worklist Reports

32-72 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-59 Oracle BPM Worklist Reports

3. Provide inputs to define the search parameters of the report.

Figure 32-60 shows an example of the Unattended Tasks Report input page. The
other reports are similar. See Table 32-12 for information about input parameters
for all the report types.

Figure 32-60 Unattended Tasks Report—Input Page for Task Analysis

4. Click Run.

32.12.2 What Happens When You Create Reports
As shown in Figure 32-61, report results (for all report types) are displayed in both a
table format and a bar chart format. The input parameters used to run the report are
displayed under Report Inputs, in the lower-left corner (may require scrolling to
view).

Creating Worklist Reports

Using Oracle BPM Worklist 32-73

Figure 32-61 Report Display—Table Format, Bar Chart Format, and Report Inputs

32.12.2.1 Unattended Tasks Report

Figure 32-62 shows an example of an Unattended Tasks report.

Figure 32-62 Unattended Tasks Report

The report shows that the California group has 15 unattended tasks, the Supervisor
group has 7 unattended tasks, and the LoanAgentGroup has 11 unattended tasks. The

Creating Worklist Reports

32-74 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

unattended (unclaimed) tasks in this report are all DocumentReview tasks. If multiple
types of unattended task exists when a report is run, all task types are included in the
report, and the various task types are differentiated by color.

32.12.2.2 Tasks Priority Report

Figure 32-63 shows an example of a Tasks Priority report.

Figure 32-63 Tasks Priority Report

The report shows that the California group, the Supervisor group, and the
LoanAgentGroup each have 16 tasks of normal priority. The users rsteven and jcooper
have 5 and 22 tasks, respectively, all normal priority. Priorities (highest, high, normal,
low, lowest) are distinguished by different colors in the bar chart.

32.12.2.3 Tasks Cycle Time Report

Figure 32-64 shows an example of a Tasks Cycle Time Report.

Creating Worklist Reports

Using Oracle BPM Worklist 32-75

Figure 32-64 Tasks Cycle Time Report

The report shows that it takes 1 hour and 6 minutes on average to complete
DocumentReview tasks, and 1 hour and 28 minutes on average to complete
VacationApproval tasks. The bar chart shows the average cycle time in milliseconds.

32.12.2.4 Tasks Productivity Report

Figure 32-65 shows an example of a Tasks Productivity Report.

Figure 32-65 Tasks Productivity Report

The report shows the number of tasks assigned to the California, LoanAgentGroup,
and Supervisor groups. For individual users, the report shows that jcooper has 22
assigned tasks. In addition to his assigned tasks, jcooper has completed 2 tasks. The
report shows that mtwain and rsteven have completed 6 and 11 tasks respectively. In

Creating Worklist Reports

32-76 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

the bar chart, the two task states—assigned and completed—are differentiated by
color.

Note:

The Me and Group and Reportees options have been removed from the
Productivity Report.

32.13 Accessing Oracle BPM Worklist in Local Languages and Time
Zones

A user's preferred worklist language is configured from either the identity store or the
browser and preferred time zone is configured from the identity store.

If no preference information is available, then the user's preferred language and time
zone are determined by the system defaults. System defaults are based on the server
settings for language and time zone.

If the custom resource bundle class in the browser locale is not available and the
custom resource bundle class in default server locale is available, then the language is
derived from the custom resource bundle class in default server locale.If the custom
resource bundle class in the default server locale is also not available, then the
language is derived from the custom base class.

If no user language preferences are set, or if they are set to a language not supported
by Oracle BPM Worklist, then the Worklist Application defaults to English.

For more information, see the following sections for instructions on how to select
Browser or Identity Provider in the worklist interface:

• How to Specify the Login Page Realm Label for how to select Browser or Identity
Provider from the Application Preferences page

• Customizing the Task List Page and Figure 32-14

32.13.1 Strings in Oracle BPM Worklist
Most strings in the worklist come from the Worklist Application bundle. By default,
this is the class

oracle.bpel.services.workflow.resource.WorkflowResourceBundle

However, this can be changed to a custom resource bundle by setting the appropriate
application preference (see How to Specify the Resource Bundle) or by providing an
updated version of the default bundle class. See the Workflow Customizations sample
for details.

For task attribute names, mapped attribute labels, and dynamic assignment function
names, the strings come from configuring the resource property file
WorkflowLabels.properties. This file exists in the wfresource subdirectory of
the services config directory. See Introduction to Human Workflow Services for
information on adding entries to this file for dynamic assignment functions and
attribute labels.

For custom actions and task titles, the display names come from the message bundle
specified in the task configuration file. If no message bundle is specified, then the
values specified at design time are used. See Introduction to Human Workflow

Accessing Oracle BPM Worklist in Local Languages and Time Zones

Using Oracle BPM Worklist 32-77

Services for information on how to specify message bundles so that custom actions
and task titles are displayed in the preferred language.

Note:

You cannot use Korean characters in the human task name. In place of Korean
characters, Oracle recommends using only letters A-Z, a-z, 0-9, and "_" in the
human task name.

32.13.2 How to Change the Preferred Language, Display Names of Users, and Time
Zone Settings if the Identity Store is LDAP-Based

If an LDAP-based provider such as Oracle Internet Directory is used, then language
settings are changed in the Oracle Internet Directory community. Connect to the
embedded LDAP server, where you can change language settings in the Oracle
Internet Directory community.

1. Start an LDAP browser (for example, openLdap browser, ldapbrowser, jXplorer,
and so on). See the documentation for your browser for instructions.

2. Connect to the LDAP server by providing the hostname, the port number on
which the server is running, and the administration user credentials with which to
log in.

• For Embedded LDAP:

a. The default managed server port number is 7001.

b. The administration credential username is cn=admin.

c. The administration password credential is accessible from the Oracle
WebLogic Server Administration Console by selecting Security >
Embedded LDAP for your domain.

For instructions on changing the default password credential, see,
"Managing the Embedded LDAP Server" of Administering Security for
Oracle WebLogic Server 12c (12.2.1).

• For Oracle Internet Directory:

a. The default port number is 3060.

b. The administration username is cn=orcladmin.

c. The administration password is the password for the LDAP server.

3. To change a user's preferred language, navigate to the user entry, and either add
or set the preferredLanguage attribute. See Table 32-13 for a list of supported
languages.

You can also determine the language in which user names are displayed. To do
this task, navigate to the user entry in the LDAP directory, then add or specify the
displayname attribute.

Accessing Oracle BPM Worklist in Local Languages and Time Zones

32-78 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

• The user name that appears in the Assignee column in the worklist does
not honor the setting of the displayname attribute.

• Display names are taken from LDAP. So even when you change the
display name, only the LDAP user name is displayed when you log into
workspace.

To change the time zone setting, either add or set the orclTimeZone attribute.
The format of the time zone string is Continent/Region. You can find the time
zone values in the $JAVA_HOME/jre/lib/zi directory. The directories specify
the continent names, for example, Africa, Asia, America, and so on, while the files
within the directories specify the regions. Some regions include subregions, for
example America/Indiana/Indianapolis.

When a user logs in, the worklist pages are rendered in the user's preferred
language and time zone.

32.13.3 How to Change the Language in Which Tasks Are Displayed
For better performance, only the English language is listed for the LocaleList
property in the System MBean Browser in Oracle Enterprise Manager Fusion
Middleware Control. If you want to display the task title, category, and subcategory in
other languages or add other languages, you must change the required language
locale in the System MBean Browser.

Note:

You should add all languages at the very beginning. If you add another
language later, then any tasks previously written in other languages no longer
appear in the worklist. For example, if the previously specified language was
English, and you later added French, then any tasks written before you added
French no longer appear in the worklist.

To add or change a language:

1. In Oracle Enterprise Manager Fusion Middleware Control, right-click soa-infra
in the navigator, select Administration, then select System MBean Browser.

2. Expand the following in sequence: Application Defined MBeans; then
oracle.as.soainfra.config; then Server: server_name; then
WorkflowConfig.

3. Click human-workflow.

To change the language:

a. In the Name column, click LocaleList.

b. In the Value field, click the value.

c. In the Name column, click Language.

d. In the Value field, change en to the language value to use.

Accessing Oracle BPM Worklist in Local Languages and Time Zones

Using Oracle BPM Worklist 32-79

e. Click Apply.

To add additional languages:

a. Click the Operations tab.

b. In the Name column, click createLocale.

c. In the Value field, enter a value. For better performance, ensure that you
include only the languages that you need for task title, category, and
subcategory.

d. Click Invoke.

32.13.4 How To Change the Language Preferences from a JAZN XML File
In the JAZN XML file, change the portion in bold to set the user's preferred language.

<preferredLanguage>en</preferredLanguage>

Oracle BPM Worklist supports the languages shown in Table 32-13.

Table 32-13 Languages Supported in Oracle BPM Worklist

Language Format

English (en)

French (fr)

German (de)

Spanish (International) (es)

Italian (it)

Portuguese (Brazil) (pt-BR)

Japanese (ja)

Korean (ko)

Chinese (Traditional) (zh-TW)

Chinese (Simplified) (zh-CN)

Arabic (ar)

Czech (cs)

Danish (da)

Dutch (nl)

Finnish (fi)

Greek (el)

Hebrew (he)

Accessing Oracle BPM Worklist in Local Languages and Time Zones

32-80 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 32-13 (Cont.) Languages Supported in Oracle BPM Worklist

Language Format

Hungarian (hu)

Norwegian (no)

Polish (po)

Portuguese (pt)

Romanian (ro)

Russian (ru)

Slovak (sk)

Swedish (sv)

Thai (th)

Turkish (tr)

Canadian French (fr-CA)

32.13.5 What You May Need to Know Setting Display Languages in Worklist
Oracle BPM Worklist can be configured to set the language from the browser or from
the identity store (LDAP). There are two levels to this setting: the application level and
the user level. If the user preference is set, as LDAP in the user setting, it takes
precedence in determining the worklist display language. If you do not set a language
in LDAP, worklist follows default language as server locale. However, email
notifications always follow the language set in LDAP. If no language is set in LDAP,
email notifications follow server locale.

32.13.6 How To Change the Time Zone Used in the Worklist
The following is based on extracting a user's time zone from a JAZN XML file.

To change the time zone:

Change the string in bold to set the user's preferred time zone.

<timeZone>America/Los_Angeles</timeZone>

The format of the time zone string is Continent/Region. You can find the time zone
values in the $JAVA_HOME/jre/lib/zi directory. The directories specify the
continent names, for example Africa, Asia, America, and so on, while the files within
the directories specify the regions. Some regions include sub-regions, for example
America/Indiana/Indianapolis.

32.14 Creating Reusable Worklist Regions
Some features available in worklist are exposed as standalone reusable components
that can be embedded in any application.

Creating Reusable Worklist Regions

Using Oracle BPM Worklist 32-81

Moreover, these standalone task flows provide many customizations through
parameters that enable you to build and customize a worklist application to meet
requirements. All of the task flows are bundled in an ADF library that can be included
in the embedding application.

32.14.1 How to Create an Application With an Embedded Reusable Worklist Region
The usage of each reusable worklist region is the same with a few exceptions. The
following procedure provides the detailed steps to create an application and embed
the Task List task flow in the application. Where applicable, notes on how to use other
types of reusable worklist regions are provided.

To create an application with an embedded reusable worklist region:

1. Create new Fusion Web Application in Oracle JDeveloper. In this example, the
name of the application is TaskListTaskFlowSample. Figure 32-66 provides
details.

Figure 32-66 Creation of Application with an Embedded Reusable Worklist
Region

2. Open the View Controller Project Properties, Libraries and Classpath section, and
click Add Library to add the following libraries in the class path:

• BPM Worklist Components Add this library to add the task flow JAR
adflibTaskListTaskFlow.jar and
adflibWorklistComponents.jar, which are required in the project's
class path.

• BPM Services

• WSRP Container

Figure 32-67 provides details.

Creating Reusable Worklist Regions

32-82 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-67 Libraries and Classpath Section

3. If your application runs on non-SOA server, you must perform two additional
steps.

a. Install the oracle.soa.workflow shared library.

If your server has oracle.soa.workflow.wc already installed, you do not
need to install oracle.soa.workflow.

b. Configure a foreign JNDI on the server.

If you run the Task List task flow in federated mode, you do not need to do
this step. See "federatedMode" in section What You May Need to Know
About Task List Task Flow for information about how to use the task flow in
federated mode.

4. Select the View Controller project and choose File > New > Current Project
Technologies > Web Tier > JSF Page to create a jspx file (for example,
testSample.jspx).

Be sure to select Create as XML document (*.jspx) in the Create JSF Page dialog.

5. Choose adflibTaskListTaskFlow.jar from the Components window. It
contains the list of all the Task Flows and Regions. Figure 32-68 provides details.

Creating Reusable Worklist Regions

Using Oracle BPM Worklist 32-83

Figure 32-68 Components Window

6. Drag and drop one of the task flow Regions to the jspx page, and select Region in
the Create menu (for example, taskList-task-flow-definition for Task List Task
Flow).

See the following sections for details about the task flow definitions:

• What You May Need to Know About Task List Task Flow

• What You May Need to Know About Certificates Task Flow

• What You May Need to Know About the Reports Task Flow

• What You May Need to Know About Application Preferences Task Flow

• What You May Need to Know About Mapped Attributes Task Flow

• What You May Need to Know About Rules Task Flow

• What You May Need to Know About Approval Groups Task Flow

• What You May Need to Know About Task Configuration Task Flow

7. If you chose flex-fields-task-flow-definition, rules-task-flow-definition, tasklist-
reports-task-flow-definition, or taskList-task-flow-definition, pass the task flow
parameters in the Edit Task Flow Binding dialog that appears.

8. A new entry is added to the pagenamePagedef.xml file.

For example, adding the taskList-task-flow-definition results in the following
new entry:

<taskFlow id="taskListtaskflowdefinition1"
 taskFlowId="/WEB-INF/taskList-task-flow-definition.xml#taskList-task-
flow-definition"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="taskFlowMode" value="MODE_WORKLIST"/>
 <parameter id="showTaskDetailsPanel" value="true"/>
 <parameter id="showActionDropdown" value="true"/>
 <parameter id="showViewFilter" value="true"/>
 <parameter id="showStatusFilter" value="true"/>
 <parameter id="showSearchControl" value="true"/>
 </parameters>
</taskFlow>

Creating Reusable Worklist Regions

32-84 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

9. Add the shared libraries in the weblogic-application.xml file. If you have
oracle.soa.workflow.wc installed on your server, add that library.

 <library-ref>
 <library-name>oracle.soa.workflow</library-name>
 </library-ref>

If the generated custom application is a module, use weblogic.xml.

 <library-ref>
 <library-name>oracle.soa.worklist.webapp</library-name>
 </library-ref>

Before deploying the application, see How to Set Up the Deployment Profile.

32.14.2 How to Set Up the Deployment Profile
Before deploying the application, you must edit the deployment profile.

To edit the deployment profile

1. Select the View Controller project and choose File > New > General > Deployment
Profiles, select WAR File, and click OK.

2. Select WEB-INF/lib > Filters, and check adflibTaskListTaskFlow.jar,
adflibWorklistComponents.jar and wsrp-container.jar.

32.14.3 How to Prepare Federated Mode Task Flows For Deployment
If you are using the task flow in federated mode, you must pass the list of federated
servers to the task flow. See "federatedMode" in section What You May Need to Know
About Task List Task Flow for details.

If the task flow is used in the federated mode, then enable global trust between the
federated servers. This is done so that the already authenticated user token is passed
to all the federated servers passed.

Do the below steps for all the federated servers and restart all the servers. It is very
important that you restart all the servers.

To restart the servers:

1. Login to the Oracle Weblogic Server console.

2. Select the domain name soainfra under Domain Structures. The domain name
may be different if a SOA server is not used.

3. Select the Security tab.

4. Select the Advanced link (near the bottom Save button).

5. Enter a password in the Credential field. (The same password must be given for all
the federated servers).

6. Click Save.

7. Restart the server.

Creating Reusable Worklist Regions

Using Oracle BPM Worklist 32-85

32.14.4 What You May Need to Know About Task List Task Flow
The Task List task flow takes in the parameters to control the display behavior of the
embedded region. Figure 32-69 provides details.

Figure 32-69 Task List

Some of the parameters are listed below.

• federatedMode

• federatedServers

• showServerColumn

• wfCtxID

federatedMode

If this is passed as true, the task list is shown in the federated mode. To run the task
flow in federated mode, the list of federated servers must be passed to the task flow.
You can pass the federated servers list to the task flow in one of the following two
ways.

• Provide the client configuration file wf_client_config.xml in the class path
(APP-INF\classes\wf_client_config.xml at the EAR level, or the WEB-
INF\classes of the web application). The client configuration file contains all
federated server details.

• Construct a JAXB object, which contains the federated servers list. This JAXB
object can be passed to the task flow through the federatedServers parameter.
See "federatedServers" below for information about constructing the JAXB object.

If both the client configuration file (wf_client_config.xml) and the JAXB object
were provided to the task flow, the JAXB object takes the precedence.

Creating Reusable Worklist Regions

32-86 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

federatedServers

This parameter is a JAXB object that contains the list of servers if the task flow is run in
federated mode. This parameter takes precedence over the client configuration file
(wf_client_config.xml) if it were also provided. See the code sample below for
details about constructing the JAXB object
(WorkflowServicesClientConfigurationType).

Make sure that you set one of the servers as default, as shown in the code sample
below. Only one server is required to be designated as the default. Also, verify that the
server you designate as the default is excluded from the federated servers list. The
relevant code for doing this is in bold in the example.

The default server is used when you have many servers defined in
wf_client_config.xml or in the JAXB object, but the workflow client is desired for
a single server. There are a few legacy APIs that do not take a server name as a
parameter. To support such legacy APIs, your must define a single server as the
default server, otherwise any legacy APIs that do not take a server name do not work.

import oracle.bpel.services.workflow.client.config.IdentityPropagationType;
import oracle.bpel.services.workflow.client.config.PolicyReferenceType;
import oracle.bpel.services.workflow.client.config.PolicyReferencesType;
import oracle.bpel.services.workflow.client.config.RemoteClientType;
import oracle.bpel.services.workflow.client.config.ServerType;
import oracle.bpel.services.workflow.client.config.SoapClientType;
import
oracle.bpel.services.workflow.client.config.WorkflowServicesClientConfigurationType;

WorkflowServicesClientConfigurationType wscct =
 new WorkflowServicesClientConfigurationType();

List<ServerType> servers = wscct.getServer();

/**** Setting default server in the list ****/

ServerType defalutServer = new ServerType();
servers.add(defalutServer);

defalutServer.setDefault(true);
defalutServer.setExcludeFromFederatedList(true);
defalutServer.setName("default");

RemoteClientType rct = new RemoteClientType();
rct.setServerURL("t3://myhost.us.example.com:7001");
rct.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct.setParticipateInClientTransaction(false);
defalutServer.setRemoteClient(rct);

SoapClientType sct = new SoapClientType();
PolicyReferencesType prts = new PolicyReferencesType();

PolicyReferenceType prt = new PolicyReferenceType();
prt.setEnabled(true);
prt.setCategory("security");
prt.setUri("oracle/wss10_saml_token_client_policy");
prts.getPolicyReference().add(prt);

IdentityPropagationType ipt = new IdentityPropagationType();
ipt.setMode("dynamic");
ipt.setType("saml");
ipt.setPolicyReferences(prts);

Creating Reusable Worklist Regions

Using Oracle BPM Worklist 32-87

sct.setRootEndPointURL("http://myhost.us.example.com:7001");
sct.setIdentityPropagation(ipt);

defalutServer.setSoapClient(sct);

/****** Setting Federated Server 1 to the list ****/

ServerType server1 = new ServerType();
servers.add(server1);
server1.setName("Human Resource");

RemoteClientType rct1 = new RemoteClientType();
rct1.setServerURL("t3://myhost.us.example.com:7001");
rct1.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct1.setParticipateInClientTransaction(false);
server1.setRemoteClient(rct1);

SoapClientType sct1 = new SoapClientType();
PolicyReferencesType prts1 = new PolicyReferencesType();

PolicyReferenceType prt1 = new PolicyReferenceType();
prt1.setEnabled(true);
prt1.setCategory("security");
prt1.setUri("oracle/wss10_saml_token_client_policy");
prts1.getPolicyReference().add(prt1);
IdentityPropagationType ipt1 = new IdentityPropagationType();
ipt1.setMode("dynamic");
ipt1.setType("saml");
ipt1.setPolicyReferences(prts1);

sct1.setRootEndPointURL("http://myhost.us.example.com:7001");
sct1.setIdentityPropagation(ipt1);

server1.setSoapClient(sct1);

/****** Setting Federated Server 2 to the list ****/

ServerType server2 = new ServerType();
servers.add(server2);
server2.setName("Financials");

RemoteClientType rct2 = new RemoteClientType();
rct2.setServerURL("t3://myhost.us.example.com:7001");
rct2.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct2.setParticipateInClientTransaction(false);
server2.setRemoteClient(rct2);

SoapClientType sct2 = new SoapClientType();
PolicyReferencesType prts2 = new PolicyReferencesType();

PolicyReferenceType prt2 = new PolicyReferenceType();
prt2.setEnabled(true);
prt2.setCategory("security");
prt2.setUri("oracle/wss10_saml_token_client_policy");
prts2.getPolicyReference().add(prt2);

IdentityPropagationType ipt2 = new IdentityPropagationType();
ipt2.setMode("dynamic");
ipt2.setType("saml");
ipt2.setPolicyReferences(prts2);

Creating Reusable Worklist Regions

32-88 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

sct2.setRootEndPointURL("http://myhost.us.example.com:7001");
sct2.setIdentityPropagation(ipt2);

server2.setSoapClient(sct2);

showServerColumn

If the task flow is run in federated mode, the server column in the task list is not
shown by default. The server column is shown if this parameter is passed as true,
otherwise it is not.

wfCtxID

This is a workflow context token string. It is used to create workflow context inside the
task flow. If the application is SSO-enabled, or it is secured using ADF security, this
parameter is not required, otherwise this is a required parameter. You can get the
workflow context ID as shown in the code sample below:

IWorkflowContext wfCtx =
wfSvcClient.getTaskQueryService().authenticate(username,password,realm,null);
wfCtxID = wfCtx.getToken();

32.14.5 What You May Need to Know About Certificates Task Flow
The user can upload the certificate to use to sign a decision, as shown in the following
graphic. When signing a task outcome using your certificate, you must upload the
entire chain of certificates through Oracle BPM Worklist as a .P7B (PKCS7 format) file,
not only the one certificate issued to you by the certificate issuer.

A digital certificate contains the digital signature of the certificate-issuing authority, so
that anyone can verify that the certificate is real. A digital certificate establishes the
participant's credentials. It is issued by a certification authority (CA). It contains your
name, a serial number, expiration dates, a copy of the certificate holder's public key
(used for encrypting messages and digital signatures), and the digital signature of the
certificate-issuing authority, so that a recipient can verify that the certificate is real.

Certificates task flow does not have any parameters. Figure 32-70 provides details.

Creating Reusable Worklist Regions

Using Oracle BPM Worklist 32-89

Figure 32-70 Digital Certificate

32.14.6 What You May Need to Know About the Reports Task Flow
Figure 32-71 shows the unattended tasks report.

Figure 32-71 Unattended Tasks Report

The following worklist reports are available for task analysis.

Unattended Tasks

Unattended Tasks provides an analysis of tasks assigned to users' groups or reportees'
groups that have not yet been acquired (the "unattended" tasks).

• Assignee -This option (required) selects tasks assigned to the user's group (My
Group), tasks assigned to the reportee's groups (Reportees), tasks where the user
is a creator (Creator), or tasks where the user is an owner (Owner).

• Creation Date - An optional date range

• Expiration Date - An optional date range

Creating Reusable Worklist Regions

32-90 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Task State - The state (optional) can by Any, Assigned, Expired, or Information
Requested.

• Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or
Lowest.

Tasks Priority

Tasks Priority provides an analysis of the number of tasks assigned to a user,
reportees, or their groups, broken down by priority.

• Assignee - Depending on the assignee that you select, this required option
includes tasks assigned to the logged-in user (My), tasks assigned to the user and
groups that the user belongs to (My & Group), or tasks assigned to groups to
which the user's reportees belong (Reportees).

• Creation Date - An optional date range

• Ended Date - An optional date range for the end dates of the tasks to be included
in the report.

• Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or
Lowest.

Tasks Cycle Time

Tasks Cycle Time provides an analysis of the time taken to complete tasks from
assignment to completion based on users' groups or reportees' groups.

• Assignee - Depending on the assignee that you select, this required option
includes your tasks (My) or tasks assigned to groups to which your reportees
belong (Reportees).

• Creation Date - An optional date range

• Ended Date - An optional date range for the end dates of the tasks to be included
in the report.

• Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or
Lowest.

Tasks Productivity

Tasks Productivity provides an analysis of assigned tasks and completed tasks in a
given time period for a user, reportees, or their groups.

• Assignee - Depending on the assignee that the user selects, this required option
includes the user's tasks (My & Group) or tasks assigned to groups to which the
user's reportees belong (Reportees).

• Creation Date (range) - An optional creation date range. The default is one week.

• Task Type - Use the Search (flashlight) icon to select from a list of task titles. All
versions of a task are listed on the Select Workflow Task Type page (optional).

Tasks Time Distribution

Tasks Time Distribution provides the time an assignee takes to perform a task.

• Assignee - Depending on the assignee that the user selects, this required option
includes the user's tasks (My & Group) or tasks assigned to groups to which the
user's reportees belong (Reportees).

Creating Reusable Worklist Regions

Using Oracle BPM Worklist 32-91

• From...to (date range) - An optional creation date range. The default is one week.

• Task Type - Use the Search (flashlight) icon to select from a list of task titles. All
versions of a task are listed on the Select Workflow Task Type page (optional).

32.14.7 What You May Need to Know About Application Preferences Task Flow
Application preferences customize the appearance of the worklist. Administrators can
specify the following:

• Login page realm label-If the identity service is configured with multiple realms,
then the Oracle BPM Worklist login page displays a list of realm names.
LABEL_LOGIN_REALM specifies the resource bundle key used to look up the label
to display these realms. The term realm can be changed to fit the user community.
Terms such as country, company, division, or department may be more
appropriate. Administrators can customize the resource bundle, specify a resource
key for this string, and then set this parameter to point to the resource key.

• Global branding icon-This is the image displayed in the top left corner of every
page of the worklist. (The Oracle logo is the default.) Administrators can provide
a .gif, .png, or .jpg file for the logo. This file must be in the public_html
directory.

• Resource bundle-An application resource bundle provides the strings displayed
in the worklist. By default, this is the class at
oracle.bpel.worklistapp.resource.WorklistResourceBundle.
Figure 32-72 provides details.

Creating Reusable Worklist Regions

32-92 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-72 Application Preferences

32.14.8 What You May Need to Know About Mapped Attributes Task Flow
Human workflow mapped attributes store and query use case-specific custom
attributes. These custom attributes typically come from the task payload values.
Storing custom attributes in mapped attributes provides the following benefits:

• They can be displayed as a column in the task listing.

• They can filter tasks in custom views and advanced searches.

• They can be used for a keyword-based search.

For example the Requester, PurchaseOrderID, and Amount fields in a purchase order
request payload of a task can be stored in the mapped attributes. An approver logging
into Oracle BPM Worklist can see these fields as column values in the task list and
decide which task to access. The user can define views that filter tasks based on the
mapped attributes.

For example, a user can create views for purchase order approvals based on different
amount ranges. If the user must also retrieve tasks at some point related to a specific
requester or a purchase order ID, they can specify this in the keyword field and
perform a search to retrieve the relevant tasks. Figure 32-73 provides details.

Creating Reusable Worklist Regions

Using Oracle BPM Worklist 32-93

Figure 32-73 Mapped Attribute Mapping

32.14.9 What You May Need to Know About Rules Task Flow
Rules act on tasks, either a specific task type, or all the tasks assigned to a user or
group. The graphic below shows where you set rules, including vacation rules.

A rule cannot always apply in all circumstances in which it is used. For example, if a
rule applies to multiple task types, it may not be possible to set the outcome for all
tasks, since different tasks can have different outcomes.

Rules are executed in the order in which they are listed. Rules can be reordered by
using the up and down buttons in the header. If a rule meets its filter conditions, then
it is executed and no other rules are evaluated. For your rule to execute, you must be
the only user assigned to that task. If the task is assigned to multiple users (including
you), the rule does not execute.

The showOtherUsersRules parameter takes a boolean value. When it is passed as
True other users' rules are displayed, and when it is passed as False other users'
rules are not shown. In addition, this user has to have required permission to view
other user rules. Figure 32-74 and Figure 32-75 provide details.

Creating Reusable Worklist Regions

32-94 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 32-74 Vacation Period

Figure 32-75 My Rule

32.14.10 What You May Need to Know About Approval Groups Task Flow
Approval groups are either a statically defined or a dynamically generated list of
approvers. Approval groups usually are configured by the process owner using the
worklist application. Typically, they are used to model subject matter experts outside

Creating Reusable Worklist Regions

Using Oracle BPM Worklist 32-95

the transaction's managerial chain of authority, such as human resources or legal
counsel, that must act on a task before or after management approval.

Static approval groups are predetermined lists of approvers, while dynamic approval
groups generate approver lists at runtime. Dynamic approval groups require:

• delivery of an implementation according to the dynamic approver list interface by
the developer

• registration of the implementation as a dynamic approval group using the Oracle
BPM Worklist's UI by the IT department

• availability of the class file in a globally well-known directory that is part of the
SOA class path

32.14.11 What You May Need to Know About Task Configuration Task Flow
Task Configuration is a web-based application in Worklist Application that enables
business users and administrators to review and modify rules that were predefined by
the workflow designer. These predefined rules can be changed for a specific customer
based on the customer's applicable corporate policies.

For example, suppose that a corporate policy requires two levels of approvals for
expense amounts greater than 1000. Suppose further that this policy is changed to
require three levels. You can use Task Configuration to change the rule rather than
having your IT department modify the rule in the underlying process and then deploy
it again. Any change to the rule is applied starting with the next instance, and
instances already in progress use the current rule definitions.

Task Configuration enables you to edit the event driven and data-driven rules
associated with an approval flow at runtime—that is, when the workflow has already
been deployed.

32.15 Java Code for Enabling Customized Applications in Worklist
Application

Given below is the Java Code for Enabling Customized Applications in Worklist
Application.

How to Enable Customized Applications and Links explained how to specify a custom
application by using the Application Preferences page of Worklist Application. The
Java code for performing this specification is as follows:

package view.customisationimpl;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import oracle.bpel.services.workflow.client.IWorkflowServiceClient;
import oracle.bpel.services.workflow.runtimeconfig.IRuntimeConfigService;
import oracle.bpel.services.workflow.runtimeconfig.model.AttributeLabelType;
import oracle.bpel.services.workflow.runtimeconfig.model.AttributeLabelUsageList;
import oracle.bpel.services.workflow.runtimeconfig.model.AttributeLabelUsages;
import oracle.bpel.services.workflow.verification.IWorkflowContext;
import oracle.bpm.ui.customization.CustomLink;
import oracle.bpm.ui.customization.IBPMUICustomizations;

public class WorkspaceCustomisationImpl implements IBPMUICustomizations {
 private static Map displayNameMap = new HashMap();

Java Code for Enabling Customized Applications in Worklist Application

32-96 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 public WorkspaceCustomisationImpl() {
 displayNameMap.put("instanceId", "Instance Id");
 displayNameMap.put("protectedTextAttribute1", "Business Status");
 }
 public List<CustomLink> getCustomGlobalLinks() {
 CustomLink globalLink1 =
 new CustomLink("Oracle Home Page", "www.oracle.com", null);
 CustomLink globalLink2 =
 new CustomLink("Self Services Application", "http://global-
ebusiness.example.com/",
 null);
 CustomLink globalLink3 =
 new CustomLink("BUG DB", "https://bug.example.com/", null);
 List<CustomLink> globalLinks = new ArrayList<CustomLink>();
 globalLinks.add(globalLink1);
 globalLinks.add(globalLink2);
 globalLinks.add(globalLink3);
 return globalLinks;
 }
 public String getColumnNames() {
 return "title,taskNumber,instanceId,creator,protectedTextAttribute1";
 }

 private static void initDisplayMap(IWorkflowServiceClient client,
 IWorkflowContext context) {
 // you can use service to load all label namess for text attributes
 if (displayNameMap == null) {
 synchronized (String.class) {
 if (displayNameMap == null) {
 displayNameMap = new HashMap();
 try {
 IRuntimeConfigService service =
 client.getRuntimeConfigService();
 AttributeLabelUsageList list =
 service.getAttributeLabelUsages(context, "Text");
 List<AttributeLabelUsages> list1 =
 list.getAttributeLabelUsages();
 for (AttributeLabelUsages usage : list1) {
 AttributeLabelType type = usage.getLabel();
 displayNameMap.put(type.getTaskAttribute(),
 type.getLabelName());
 }
 } catch (Exception exc) {
 }
 }
 }
 }
 }

 public String getColumnDisplayName(IWorkflowServiceClient client,
 IWorkflowContext context,
 java.lang.String colName) {
 initDisplayMap(client, context);
 return (String)displayNameMap.get(colName);
 }
}

Java Code for Enabling Customized Applications in Worklist Application

Using Oracle BPM Worklist 32-97

Java Code for Enabling Customized Applications in Worklist Application

32-98 Developing SOA Applications with Oracle SOA Suite

33
Building a Custom Worklist Client

Learn how, starting with the sample Worklist Application, a developer can build
clients for workflow services by using the APIs exposed by the workflow service. The
APIs enable clients to communicate with the workflow service by using remote EJBs,
SOAP, and HTTP.

• Introduction to Building Clients for Workflow Services

• Packages and Classes for Building Clients

• Workflow Service Clients

• Class Paths for Clients Using SOAP

• Class Paths for Clients Using Remote EJBs

• Initiating a Task

• Changing Workflow Standard View Definitions

• Writing a Using the HelpDeskUI Sample

33.1 Introduction to Building Clients for Workflow Services
When creating a Java client application to call Human Workflow service, ensure that
JRF is running on the same environment as the Java client application.

The typical sequence of calls when building a simple worklist application is as follows.

To build a simple worklist application:

1. Get a handle to IWorklistServiceClient from
WorkflowServiceClientFactory.

2. Get a handle to ITaskQueryService from IWorklistServiceClient.

3. Authenticate a user by passing a username and password to the authenticate
method on ITaskQueryService. Get a handle to IWorkflowContext.

4. Query the list of tasks using ITaskQueryService.

5. Get a handle to ITaskService from IWorklistServiceClient.

6. Iterate over the list of tasks returned, performing actions on the tasks using
ITaskService.

The code sample below demonstrates how to build a client for workflow services. A
list of all tasks assigned to jstein is queried. A task whose outcome has not been set is
approved.

Building a Custom Worklist Client 33-1

try
{
 //Create JAVA WorflowServiceClient
 IWorkflowServiceClient wfSvcClient = WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT);
 //Get the task query service
 ITaskQueryService querySvc = wfSvcClient.getTaskQueryService();

 //Login as jstein
 IWorkflowContext ctx = querySvc.authenticate("jstein","welcome1".toCharArry(),null);
 //Set up list of columns to query
 List queryColumns = new ArrayList();
 queryColumns.add("TASKID");
 queryColumns.add("TASKNUMBER");
 queryColumns.add("TITLE");
 queryColumns.add("OUTCOME");

 //Query a list of tasks assigned to jstein
 List tasks = querySvc.queryTasks(ctx,
 queryColumns,
 null, //Do not query additional info
 ITaskQueryService.AssignmentFilter.MY,
 null, //No keywords
 null, //No custom predicate
 null, //No special ordering
 0, //Do not page the query result
 0);
 //Get the task service
 ITaskService taskSvc = wfSvcClient.getTaskService();
 //Loop over the tasks, outputting task information, and approving any
 //tasks whose outcome has not been set...
 for(int i = 0 ; i < tasks.size() ; i ++)
 {
 Task task = (Task)tasks.get(i);
 int taskNumber = task.getSystemAttributes().getTaskNumber();
 String title = task.getTitle();
 String taskId = task.getSystemAttributes().getTaskId();
 String outcome = task.getSystemAttributes().getOutcome();
 if(outcome == null)
 {
 outcome = "APPROVE";
 taskSvc.updateTaskOutcome(ctx,taskId,outcome);
 }
 System.out.println("Task #"+taskNumber+" ("+title+") is "+outcome);
 }

}
catch (Exception e)
{
 //Handle any exceptions raised here...
 System.out.println("Caught workflow exception: "+e.getMessage());
}

33.2 Packages and Classes for Building Clients
Use the following packages and classes for building clients.

• oracle.bpel.services.workflow.metadata.config.model

Packages and Classes for Building Clients

33-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The classes in this package contain the object model for the workflow
configuration in the task definition file. The ObjectFactory class can create
objects.

• oracle.bpel.services.workflow.metadata.routingslip.model

The classes in this package contain the object model for the routing slip. The
ObjectFactory class can create objects.

• oracle.bpel.services.workflow.metadata.taskdisplay.model

The classes in this package contain the object model for the task display. The
ObjectFactory class can create objects.

• oracle.bpel.services.workflow.metadata.taskdefinition.model

The classes in this package contain the object model for the task definition file. The
ObjectFactory class can create objects.

• oracle.bpel.services.workflow.client.IWorkflowServiceClient

The interface for the workflow service client.

• oracle.bpel.services.workflow.client.WorkflowServiceClientFa
ctory

The factory for creating the workflow service client.

• oracle.bpel.services.workflow.metadata.ITaskMetadataService

The interface for the task metadata service.

• oracle.bpel.services.workflow.task.ITaskService

The interface for the task service.

• oracle.bpel.services.workflow.task.IRoutingSlipCallback

The interface for the callback class to receive callbacks during task processing.

• oracle.bpel.services.workflow.task.IAssignmentService

The interface for the assignment service.

33.3 Workflow Service Clients
Any worklist application accesses the various workflow services through the
workflow service client. The workflow service client code encapsulates all the logic
required for communicating with the workflow services using different local and
remote protocols. After the worklist application has an instance of the workflow
service client, it does not need to consider how the client communicates with the
workflow services.

The advantages of using the client are as follows:

• Hides the complexity of the underlying connection mechanisms such as SOAP/
HTTP and Enterprise JavaBeans

• Facilitates changing from using one particular invocation mechanism to another,
for example from SOAP/HTTP to remote Enterprise JavaBeans

The following class is used to create instances of the IWorkflowServiceClient
interface:

Workflow Service Clients

Building a Custom Worklist Client 33-3

oracle.bpel.services.workflow.client.WorkflowServiceClientFactory

WorkflowServiceClientFactory has several methods that create workflow
clients. The simplest method, getWorkflowServiceClient, takes a single
parameter, the client type. The client type can be one of the following:

• WorkflowServiceClientFactory.REMOTE_CLIENT—The client uses a
remote Enterprise JavaBeans interface to invoke workflow services located
remotely from the client.

• WorkflowServiceClientFactory.SOAP_CLIENT—The client uses SOAP to
invoke web service interfaces to the workflow services, located remotely from the
client.

The other factory methods enable you to specify the connection properties directly
(rather than having the factory load them from the wf_client_config.xml file),
and enable you to specify a logger to log client activity.

The following enhancements to the workflow service clients are included in this
release:

• You can specify the workflow client configuration using either a JAXB object or a
map, as shown in example 1 and 2 below:

Example 1

WorkflowServicesClientConfigurationType wscct = new WorkflowServicesClientConfigurationType();
 List<ServerType> servers = wscct.getServer();
 ServerType server = new ServerType();
 server.setDefault(true);
 server.setName(serverName);
 servers.add(server);

 RemoteClientType rct = new RemoteClientType();
 rct.setServerURL("t3://stapj73:7001");
 rct.setUserName("weblogic");
 rct.setPassword("weblogic"));
 rct.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
 rct.setParticipateInClientTransaction(false);
 server.setRemoteClient(rct);
 IWorkflowServiceClient wfSvcClient = WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT, wscct,
logger);

Example 2

Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,java.lang.String> properties = new
 HashMap<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,java.lang.String>();

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.MODE,
 IWorkflowServiceClientConstants.MODE_DYNAMIC);

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://localhost:8888");

IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

• Clients can optionally pass in a java.util.logging.Logger where the client
logs messages. If no logger is specified, then the workflow service client code does

Workflow Service Clients

33-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

not log anything. The code sample below shows how a logger can be passed to the
workflow service clients:

java.util.logging.Logger logger =;

IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory.REMOTE_CLIENT,
 properties, logger);

Through the factory, it is possible to get the client libraries for all the workflow
services. See Table 34-1 for the clients available for each of the services.

You can obtain instances of BPMIdentityService and
BPMIdentityConfigService by calling the getSOAPIdentityServiceClient
and getSOAPIdentityConfigServiceClient methods on
WorkflowServiceClientFactory. You can obtain all other services through an
instance of IWorkflowServiceClient.

The client classes use the configuration file wf_client_config.xml for the service
endpoints. In the client class path, this file is in the class path directly, meaning the
containing directory is in the class path. The wf_client_config.xml file contains:

• A section for remote clients, as shown in the code sample below:

<remoteClient>
 <serverURL>t3://hostname.domain_name:7001</serverURL>
 <userName>weblogic</userName>
 <password>weblogic</password>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory
 </initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
</remoteClient>

• A section for SOAP endpoints for each of the services, as shown in the code
sample below:

<soapClient>
 <rootEndPointURL>http://hostname.domain_name:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
</soapClient>

The workflow client configuration XML schema definition is in the
wf_client_config.xsd file.

33.3.1 The IWorkflowServiceClient Interface
The IWorkflowServiceClient interface provides methods, summarized in
Table 33-1, for obtaining handles to the various workflow services interfaces.

Table 33-1 IWorkflowServiceClient Methods

Method Interface

getTaskService oracle.bpel.services.workflow.task.ITaskService

Workflow Service Clients

Building a Custom Worklist Client 33-5

Table 33-1 (Cont.) IWorkflowServiceClient Methods

Method Interface

getTaskQueryService oracle.bpel.services.workflow.query.ITaskQueryService

getTaskReportService oracle.bpel.services.workflow.report.ITaskReportService

getTaskMetadataService oracle.bpel.services.workflow.metadata.ITaskMetadataService

getUserMetadataService oracle.bpel.services.workflow.user.IUserMetadataService

getRuntimeConfigService oracle.bpel.services.workflow.runtimeconfig.IRuntimeConfigService

getTaskEvidenceService oracle.bpel.services.workflow.metadata.ITaskMetadataService

33.4 Class Paths for Clients Using SOAP
SOAP clients must have the following JAR files in their class path.

$SOA_HOME/soa/modules/oracle.bpm.client_11.1.1/
 oracle.bpm.bpm-services.client.jar
 oracle.bpm.bpm-services.interface.jar
 oracle.bpm.client.jar
 oracle.bpm.web-resources.jar

$SOA_HOME/soa/modules/oracle.bpm.project_11.1.1/
 oracle.bpm.project.catalog.jar
 oracle.bpm.project.draw.jar
 oracle.bpm.project.jar
 oracle.bpm.project.model.jar

$SOA_HOME/soa/modules/oracle.bpm.runtime_11.1.1/
 oracle.bpm.bpm-services.implementation.jar
 oracle.bpm.bpm-services.internal.jar
 oracle.bpm.core.jar
 oracle.bpm.lib.jar
 oracle.bpm.metadata.jar
 oracle.bpm.metadata-interface.jar
 oracle.bpm.papi.jar
 oracle.bpm.xml.jar

$SOA_HOME/soa/modules/oracle.soa.fabric_11.1.1/
 fabric-runtime.jar
 bpm-infra.jar

$SOA_HOME/soa/modules/oracle.soa.workflow_11.1.1/
 bpm-services.jar
 bpm-workflow-datacontrol.jar

$SOA_HOME/soa/modules/
 soa-startup.jar

Class Paths for Clients Using SOAP

33-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

$MW_HOME/oracle_common/modules/oracle.webservices_11.1.1/
 wsclient.jar

$MW_HOME/oracle_common/modules/oracle.jrf_11.1.1/
 jrf-api.jar

$MW_HOME/wlserver_10.3/server/lib/
 wlthint3client.jar

${bea.home}/wlserver/server/lib/
 wlfullclient.jar

$ORACLE_HOME/soa/plugins/jdeveloper/external/
 oracle.external.soa.jrf-wsclient-extended.jar

${bea.home}/oracle_common/module/clients/
 com.oracle.webservices.wls.jaxws-owsm-client_12.1.3.jar

You can generate the wlfullclient.jar file using the commands shown in the
code sample below:

cd ${bea.home}/wlserver/server/lib
java -jar ../../../modules/com.bea.core.jarbuilder_2.2.0.0.jar

Note:

Client applications no longer use the system\services\config or system
\services\schema directories in the class path.

33.5 Class Paths for Clients Using Remote EJBs
Clients using remote EJBs must have the following JAR files in their class path.

• wlfullclient.jar

• oracle.external.soa.jrf-wsclient-extended.jar

• wlclient.jar

• xmlparserv2.jar

• xml.jar

• bpm-infra.jar

• bpm-services.jar

• fabric-runtime.jar

Note:

Client applications no longer use the system\services\config or system
\services\schema directories in the class path.

33.6 Initiating a Task
Tasks can be initiated programmatically.

Class Paths for Clients Using Remote EJBs

Building a Custom Worklist Client 33-7

Set the following task attributes:

• taskDefinitionId

• title

• payload

• priority

The following task attributes are optional, but are typically set by clients:

• creator

• ownerUser—Defaults to bpeladmin if empty

• processInfo

• identificationKey—Tasks can be queried based on the identification key
from the TaskQueryService.

33.6.1 Creating a Task
The task object model is available in the package

oracle.bpel.services.workflow.task.model

To create objects in this model, use the ObjectFactory class.

33.6.2 Creating a Payload Element in a Task
The task payload can contain multiple payload message attributes. Since the payload
is not well defined until the task definition, the Java object model for the task does not
contain strong type objects for the client payload. The task payload is represented by
the AnyType Java object. The AnyType Java object is created with an XML element
whose root is payload in the namespace

http://xmlns.oracle.com/bpel/workflow/task

The payload XML element contains all the other XML elements in it. Each XML
element defines a message attribute.

The code sample below shows how to set a task payload:

import oracle.bpel.services.workflow.task.model.AnyType;
import oracle.bpel.services.workflow.task.model.ObjectFactory;
import oracle.bpel.services.workflow.task.model.Task;
..........

Document document = //createXMLDocument
Element payloadElem = document.createElementNS("http://xmlns.oracle.com/bpel/workflow/
 task", "payload");
Element orderElem = document.createElementNS("http://xmlns.oracle.com/pcbpel/test/order", "order");
Element child = document.createElementNS("http://xmlns.oracle.com/pcbpel/test/order", "id");
 child.appendChild(document.createTextNode("1234567"));
 orderElem.appendChild(child);
 payloadElem.appendChild(orderElem);
 document.appendChild(payloadElem);

 task.setPayloadAsElement(payloadElem);

Initiating a Task

33-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

The AnyType.getContent() element returns an unmodifiable list of XML
elements. You cannot add other message attributes to the list.

33.6.3 Initiating a Task Programmatically
The code sample below shows how to initiate a vacation request task
programmatically:

 // create task object
 ObjectFactory objectFactory = new ObjectFactory();
 Task task = objectFactory.createTask();

 // set title
 task.setTitle("Vacation request for jcooper");

 // set creator
 task.setCreator("jcooper");

// set taskDefinitionId. taskDefinitionId is the target
// namespace of the task
// If namespace is used, the active version of the composite corresponding
// to that of the namespace will be used.
task.setTaskDefinitionId("http://xmlns.oracle.com/VacationRequest/
Project1/Humantask1"); (Your task definition ID will be different.)

 // create and set payload
 Document document = XMLUtil.createDocument();
 Element payloadElem = document.createElementNS(TASK_NS, "payload");
 Element vacationRequestElem = document.createElementNS(VACATION_REQUEST_NS,
 "VacationRequestProcessRequest");

 Element creatorChild = document.createElementNS(VACATION_REQUEST_NS, "creator");
 creatorChild.appendChild(document.createTextNode("jcooper"));
 vacationRequestElem.appendChild(creatorChild);

 Element fromDateChild = document.createElementNS(VACATION_REQUEST_NS, "fromDate");
 fromDateChild.appendChild(document.createTextNode("2006-08-05T12:00:00"));
 vacationRequestElem.appendChild(fromDateChild);

 Element toDateChild = document.createElementNS(VACATION_REQUEST_NS, "toDate");
 toDateChild.appendChild(document.createTextNode("2006-08-08T12:00:00"));
 vacationRequestElem.appendChild(toDateChild);

 Element reasonChild = document.createElementNS(VACATION_REQUEST_NS, "reason");
 reasonChild.appendChild(document.createTextNode("Hunting"));
 vacationRequestElem.appendChild(reasonChild);

 payloadElem.appendChild(vacationRequestElem);
 document.appendChild(payloadElem);

 task.setPayloadAsElement(payloadElem);

 IWorkflowServiceClient workflowServiceClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.SOAP_CLIENT);
 ITaskService taskService = workflowServiceClient.getTaskService();
 IInitiateTaskResponse iInitiateTaskResponse = taskService.initiateTask(task);

Initiating a Task

Building a Custom Worklist Client 33-9

 Task retTask = iInitiateTaskResponse.getTask();
 System.out.println("Initiated: " + retTask.getSystemAttributes().getTaskNumber() + " - " +
 retTask.getSystemAttributes().getTaskId());
 return retTask;

33.7 Changing Workflow Standard View Definitions
The worklist application and the UserMetadataService API provide methods that
you can use to create, update, and delete standard views.

See User Metadata Service for more information.

33.8 Writing a Worklist Application Using the HelpDeskUI Sample
Learn how to modify the help desk interface that is part of the HelpDeskRequest
demo.

To write a worklist application

1. Create the workflow context by authenticating the user.

// get workflow service client
 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.REMOTE_CLIENT);

//get the workflow context
IWorkflowContext wfCtx =
wfSvcClient.getTaskQueryService().authenticate(userId, pwd, null);

This is Step 3 in Introduction to Building Clients for Workflow Services.

The login.jsp file of HelpDeskRequest uses the preceding API to authenticate
the user and create a workflow context. After the user is authenticated, the
statusPage.jsp file displays the tasks assigned to the logged-in user.
#unique_1211/unique_1211_Connect_42_CIHDECBA shows sample code from the
login.jsp file.

<%@ page import="javax.servlet.http.HttpSession"
 import="oracle.bpel.services.workflow.client.IWorkflowServiceClient"
 import="oracle.bpel.services.workflow.client.WorkflowServiceClientFactory"
 import="java.util.Set"
 import="java.util.Iterator"
 import="oracle.bpel.services.workflow.verification.IWorkflowContext"
 import="oracle.tip.pc.services.identity.config.ISConfiguration"%>
<%@ page contentType="text/html;charset=windows-1252"%>

<html>
<head>
<title>Help desk request login page</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body bgcolor="#F0F0F0" text="#000000" style="font: 12px verdana; line-height:18px">
<center>
<div style="width:640px;padding:15px;border-width: 10px; border-color: #87b4d9; border-style:
 solid;
background-color:white; text-align:left">

 <!-- Page Header, Application banner, logo + user status -->
 <jsp:include page="banner.jsp"/>

Changing Workflow Standard View Definitions

33-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <!-- Initiate Meta Information -->

 <div style="background-color:#F0F0F0; border-top:10px solid white;border-bottom:
 10px solid white;padding:10px;text-align:center" >
 Welcome to the HelpDesk application
 </div>

 <%
 String redirectPrefix = "/HelpDeskUI/";
 // Ask the browser not to cache the page
 response.setHeader("Pragma", "no-cache");
 response.setHeader("Cache-Control", "no-cache");

 HttpSession httpSession = request.getSession(false);
 if (httpSession != null) {

 IWorkflowContext ctx = (IWorkflowContext) httpSession.getAttribute("workflowContext");
 if (ctx != null) {
 response.sendRedirect(redirectPrefix + "statusPage.jsp");
 }
 else
 {
 String authFailedStr = request.getParameter("authFailed");
 boolean authFailed = false;
 if ("true".equals(authFailedStr))
 {
 authFailed = true;
 }
 else
 {
 authFailed = false;
 }

 if (!authFailed)
 {
 //Get page parameters:
 String userId="";
 if(request.getParameter("userId") != null)
 {
 userId = request.getParameter("userId");
 }
 String pwd="";
 if(request.getParameter("pwd") != null)
 {
 pwd = request.getParameter("pwd");
 }

 if(userId != null && (!("".equals(userId.trim())))
 && pwd != null && (!("".equals(pwd.trim()))))
 {
 try {
 HttpSession userSession = request.getSession(true);

 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.REMOTE_CLIENT);
 IWorkflowContext wfCtx =
 wfSvcClient.getTaskQueryService().authenticate(userId, pwd, null);
 httpSession.setAttribute("workflowContext", wfCtx);
 response.sendRedirect(redirectPrefix + "statusPage.jsp");

Writing a Worklist Application Using the HelpDeskUI Sample

Building a Custom Worklist Client 33-11

 }
 catch (Exception e)
 {
 String worklistServiceError = e.getMessage();
 response.sendRedirect(redirectPrefix + "login.jsp?authFailed=true");
 out.println("error is " + worklistServiceError);
 }
 }
 } else
 {
 out.println("Authentication failed");
 }
 }
 }
 %>

 <form action='<%= request.getRequestURI() %>' method="post">
 <div style="width:100%">
 <table cellspacing="2" cellpadding="3" border="0" width="30%" align="center">
 <tr>
 <td>Username
 </td>
 <td>
 <input type="text" name="userId"/>
 </td>
 </tr>
 <tr>
 <td>Password
 </td>
 <td>
 <input type="password" name="pwd"/>
 </td>
 </tr>
 <tr>
 <td>
 <input type="submit" value="Submit"/>
 </td>
 </tr>
 </table>
 </form>
 </div>
</div>
</center>
 </body>
</html>

2. Query tasks using the queryTask API from TaskQueryService.

//add list of attributes to be queried from the task
List displayColumns = new ArrayList();
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("PRIORITY");
 displayColumns.add("STATE");
 displayColumns.add("UPDATEDDATE");
 displayColumns.add("UPDATEDBY");
 displayColumns.add("CREATOR");
 displayColumns.add("OUTCOME");
 displayColumns.add("CREATEDDATE");
 displayColumns.add("ASSIGNEEUSERS");

Writing a Worklist Application Using the HelpDeskUI Sample

33-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 displayColumns.add("ASSIGNEEGROUPS");
 // get the list of tasks
 List tasks = wfSvcClient.getTaskQueryService().queryTasks
 (wfCtx,
 displayColumns,
 null,
 ITaskQueryService.AssignmentFilter.MY_AND_GROUP,
 null,
 null,
 null,
 0,
 0);
 // create listing page by using above tasks
 //add href links to title to display details of the task by passing taskId
 as input parameter
 Use getTaskDetailsById(IWorkflowContext wftx, String taskId);

This is Step 4 in Introduction to Building Clients for Workflow Services.

The statusPage.jsp file of HelpDeskRequest is used to display the status of
help desk requests. The code sample below shows the statusPage.jsp.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page import="oracle.tip.pc.services.identity.BPMAuthorizationService,
 oracle.bpel.services.workflow.verification.IWorkflowContext,
 oracle.tip.pc.services.common.ServiceFactory,
 oracle.bpel.services.workflow.client.IWorkflowServiceClient,
 oracle.bpel.services.workflow.client.WorkflowServiceClientFactory,
 oracle.bpel.services.workflow.query.ITaskQueryService,
 oracle.bpel.services.workflow.task.model.Task,
 oracle.bpel.services.workflow.task.model.IdentityType,
 oracle.tip.pc.services.identity.BPMUser,
 java.util.List,
 java.util.Calendar,
 java.text.SimpleDateFormat,
 java.util.ArrayList"%>
<%@ page contentType="text/html;charset=UTF-8"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>RequestPage</title>
 <style TYPE="text/css">
 Body, Form, Table, Textarea, Select, Input, Option
 {
 font-family : tahoma, verdana, arial, helvetica, sans-serif;
 font-size : 9pt;
 }
 table.banner
 {
 background-color: #eaeff5;
 }
 tr.userInfo
 {
 background-color: #eaeff5;
 }
 tr.problemInfo
 {
 background-color: #87b4d9;
 }
 </style>
 </head>

Writing a Worklist Application Using the HelpDeskUI Sample

Building a Custom Worklist Client 33-13

 <body bgcolor="White">
 <%
 HttpSession httpSession = request.getSession(false);
 httpSession.setAttribute("pageType","STATUSPAGE");
 %>
 <table bordercolor="#eaeff5" border="4" width="100%">
 <tr><td> <jsp:include page="banner.jsp"/> </td></tr>
 </table>
 <%
 BPMUser bpmUser = null;
 String redirectPrefix = request.getContextPath() + "/";
 IWorkflowContext ctx = null;
 if (httpSession != null) {

 ctx = (IWorkflowContext) httpSession.getAttribute("workflowContext");
 if (ctx != null) {
 bpmUser = getAuthorizationService(ctx.getIdentityContext()).
 lookupUser(ctx.getUser());
 }
 else
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 }
 else
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 if(bpmUser == null)
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 String status = (String)httpSession.getAttribute("requeststatus");
 if(status != null && !status.equals(""))
 {
 %>
 <p></p>
 <div style="text-align:left;color:red" >
 <%= status %>
 </div>
 <%
 }
 httpSession.setAttribute("requeststatus",null);
 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT);
 List displayColumns = new ArrayList();
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("PRIORITY");
 displayColumns.add("STATE");
 displayColumns.add("UPDATEDDATE");
 displayColumns.add("UPDATEDBY");
 displayColumns.add("CREATOR");
 displayColumns.add("OUTCOME");
 displayColumns.add("CREATEDDATE");
 displayColumns.add("ASSIGNEEUSERS");
 displayColumns.add("ASSIGNEEGROUPS");

Writing a Worklist Application Using the HelpDeskUI Sample

33-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 List tasks = wfSvcClient.getTaskQueryService().queryTasks
 (ctx,
 displayColumns,
 null,
 ITaskQueryService.ASSIGNMENT_FILTER_CREATOR,
 null,
 null,
 null,
 0,
 0);
 %>
 <p></p>
 <div style="text-align:left;color:green" >

 Previous help desk request

 </div>
 <p></p>
 <div style="text-align:center" >
 <table cellspacing="2" cellpadding="2" border="3" width="100%">
 <TR class="problemInfo">
 <TH>TaskNumber</TH>
 <TH>Title</TH>
 <TH>Priority</TH>
 <TH>CreatedDate</TH>
 <TH>Assignee(s)</TH>
 <TH>UpdatedDate</TH>
 <TH>UpdatedBy</TH>
 <TH>State</TH>
 <TH>Status</TH>
 </TR>
 <%
 SimpleDateFormat dflong = new SimpleDateFormat("MM/dd/yy hh:mm a");
 for(int i = 0 ; i < tasks.size() ; i ++)
 {
 Task task = (Task)tasks.get(i);
 int taskNumber = task.getSystemAttributes().getTaskNumber();
 String title = task.getTitle();
 int priority = task.getPriority();
 String assignee = getAssigneeString(task);
 Calendar createdDate = task.getSystemAttributes().getCreatedDate();
 Calendar updateDate = task.getSystemAttributes().getUpdatedDate();
 String updatedBy = task.getSystemAttributes().getUpdatedBy().getId();
 String state = task.getSystemAttributes().getState();
 String outcome = task.getSystemAttributes().getOutcome();
 if(outcome == null) outcome = "";
 String titleLink = "http://" + request.getServerName() +
 ":" + request.getServerPort() +
 "/integration/worklistapp/TaskDetails?taskId=" +
 task.getSystemAttributes().getTaskId();
 %>
 <tr class="userInfo">
 <td><%=taskNumber%></td>
 <td><a href="<%=titleLink%>" target="_blank"><%=title%></td>
 <td><%=priority%></td>
 <td><%=dflong.format(createdDate.getTime())%></td>
 <td><%=assignee%></td>
 <td><%=dflong.format(updateDate.getTime())%></td>
 <td><%=updatedBy%></td>
 <td><%=state%></td>
 <td><%=outcome%></td>

Writing a Worklist Application Using the HelpDeskUI Sample

Building a Custom Worklist Client 33-15

 <tr>
 <%
 }
 %>
 </table>
 </div>
 <%!
 private BPMAuthorizationService getAuthorizationService(String identityContext)
 {
 BPMAuthorizationService authorizationService =
 ServiceFactory.getAuthorizationServiceInstance();
 if (identityContext != null)
 authorizationService = ServiceFactory.getAuthorizationServiceInstance(identityContext);

 return authorizationService;
 }
 private String getAssigneeString(Task task) throws Exception
 {
 List assignees = task.getSystemAttributes().getAssigneeUsers();
 StringBuffer buffer = null;
 for(int i = 0 ; i < assignees.size() ; i++)
 {
 IdentityType type = (IdentityType)assignees.get(i);
 String name = type.getId();
 if(buffer == null)
 {
 buffer = new StringBuffer();
 }
 else
 {
 buffer.append(",");
 }
 buffer.append(name).append("(U)");
 }
 assignees = task.getSystemAttributes().getAssigneeGroups();
 for(int i = 0 ; i < assignees.size() ; i++)
 {
 IdentityType type = (IdentityType)assignees.get(i);
 String name = type.getId();
 if(buffer == null)
 {
 buffer = new StringBuffer();
 }
 else
 {
 buffer.append(",");
 }
 buffer.append(name).append("(G)");
 }
 if(buffer == null)
 {
 return "";
 }
 else
 {
 return buffer.toString();
 }
 }
 %>
 </body>
</html>

Writing a Worklist Application Using the HelpDeskUI Sample

33-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

34
Introduction to Human Workflow Services

Learn how the human workflow services in Oracle SOA Suite are used. These services
perform a variety of operations in the life cycle of a task.

• Introduction to Human Workflow Services

• Notifications from Human Workflow

• Assignment Service Configuration

• Class Loading for Callbacks and Resource Bundles

• Resource Bundles in Workflow Services

• Introduction to Human Workflow Client Integration with Services

• Task States in a Human Task

• Database Views for Oracle Workflow

Note:

In previous releases, Oracle BPM Worklist included a feature known as flex
fields. Starting with Release 11g R1 (11.1.1.4), flex fields are now known as
mapped attributes.

34.1 Introduction to Human Workflow Services
Get an overview of human workflow services.

• Task service

• Task query service

• Identity service

• Task metadata service

• User metadata service

• Task report service

• Runtime config service

• Evidence store service

Introduction to Human Workflow Services 34-1

34.1.1 SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow
Services

Table 34-1 lists the type of Simple Object Access Protocol (SOAP), Enterprise
JavaBeans, and Java support provided for the task services. Most human workflow
services are accessible through SOAP and remote Enterprise JavaBeans APIs. You can
use these services directly by using appropriate client proxies. Additionally, the client
libraries are provided to abstract out the protocol details and provide a common
interface for all transports.

Table 34-1 Enterprise JavaBeans, SOAP, and Java Support

Service Name Supports SOAP
Web Services

Supports
Remote
Enterprise
JavaBeans

Task Service: Provides task state management and
persistence of tasks. In addition to these services, the task
service exposes operations to update a task, complete a
task, escalate and reassign tasks, and so on.

Yes Yes

Task Query Service: Queries tasks for a user based on a
variety of search criteria such as keyword, category, status,
business process, attribute values, history information of a
task, and so on.

Yes Yes

Identity Service: Enables authentication of users and the
lookup of user properties, roles, group memberships, and
privileges.

Yes No

Task Metadata Service: Exposes operations to retrieve
metadata information related to a task.

Yes Yes

User Metadata Service: Manages metadata related to
workflow users, such as user work queues, preferences,
vacation, and delegation rules.

Yes Yes

Task Reports Service: Provides workflow report details. Yes Yes

Runtime Config Service: Provides methods for managing
metadata used in the task service runtime environment.

Yes Yes

Evidence Store Service: Supports storage and
nonrepudiation of digitally-signed workflow tasks.

Yes Yes

Table 34-2 lists the location for the SOAP Web Services Description Language (WSDL)
file for each task service.

Table 34-2 SOAP WSDL Location for the Task Services

Service name SOAP WSDL location

Task Service http://host:port/integration/services/
TaskService/TaskServicePort?WSDL

Task Query Service http://host:port/integration/services/
TaskQueryService/TaskQueryService?WSDL

Introduction to Human Workflow Services

34-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 34-2 (Cont.) SOAP WSDL Location for the Task Services

Service name SOAP WSDL location

Identity Service http://host:port/integration/services/
IdentityService/configuration?WSDL

http://host:port/integration/services/
IdentityService/identity?WSDL

Task Metadata Service http://host:port/integration/services/
TaskMetadataService/TaskMetadataServicePort?
WSDL

User Metadata Service http://host:port/integration/services/
UserMetadataService/UserMetadataService?WSDL

Task Report Service http://host:port/integration/services/
TaskReportService/TaskReportServicePort?WSDL

Runtime Config Service http://host:port/integration/services/
RuntimeConfigService/RuntimeConfigService?WSDL

Evidence Store Service http://host:port/integration/services/
EvidenceService/EvidenceService?WSDL

Table 34-3 lists the JDNI names for the different Enterprise JavaBeans.

Table 34-3 JNDI Names for the Different Enterprise JavaBeans

Service name JNDI Names for the Different Enterprise JavaBeans

Task Service ejb/bpel/services/workflow/TaskServiceBean

Task Service Enterprise
JavaBeans participating
in client transaction

ejb/bpel/services/workflow/
TaskServiceGlobalTransactionBean

Task Metadata Service ejb/bpel/services/workflow/
TaskMetadataServiceBean

Task Query Service TaskQueryService

User Metadata Service UserMetadataService

Runtime Config Service RuntimeConfigService

Task Report Service TaskReportServiceBean

Task Evidence Service TaskEvidenceServiceBean

For more information about the client library for worklist services, see Building a
Custom Worklist Client for details.

34.1.1.1 Support for Foreign JNDI Names

Human workflow services can be integrated with J2EE applications through web
services and remote method invocation (RMI). To simplify the remote lookup of
Enterprise JavaBeans in other managed servers and clusters or even other Oracle
WebLogic Server domains, Oracle WebLogic Server includes foreign JNDI providers

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-3

that are configured with the remote server's host and port to link Enterprise JavaBeans
from that remote server into the local server's JNDI trees.

Workflow services expose the Enterprise JavaBeans listed in Table 34-3 that must all
be linked through the foreign JNDI providers to provide full support for the task
query service, ADF task flow for human task registration, and embedded worklist
region use cases.

To provide support for foreign JNDI names:

1. Log in to Oracle WebLogic Server Administration Console.

http://host:port/console

2. In the Domain Structure, select Services > JDBC > Foreign JNDI Providers.

There is one caveat when linking remote Enterprise JavaBeans names to the local
JNDI namespace through a foreign JNDI provider from a SOA server to a managed
server or cluster in the same Oracle WebLogic Server domain. The local JNDI
names are exposed to all of the managed servers within that domain. This causes
namespace collisions on the SOA server within that domain, which already has
those Enterprise JavaBeans registered from the Oracle BPM Worklist. An
alternative, which avoids collisions while keeping configuration to a minimum, is
to use JNDI suffixing. This is done by appending a consistent suffix to the end of all
the local JNDI links of the remote workflow Enterprise JavaBeans and creating a
simple wf_client_config.xml file that contains the suffix key.

There are different ways to define client properties. For more information, see
Configuration Option.

3. Append the JNDI suffix to each Enterprise JavaBeans name shown in Table 34-3 to
register the foreign JNDI names.

• ejb/bpel/services/workflow/
TaskServiceGlobalTransactionean_server1

• ejb/bpel/services/workflow/TaskServiceBean_server1

• ejb/bpel/services/workflow/TaskMetadataServiceBean_server1

• TaskQueryService_server1

• UserMetadataService_server1

• RuntimeConfigService_server1

• TaskReportServiceBean_server1

• TaskEvidenceServiceBean_server1

4. Define the remote name by specifying only the ejbJndiSuffix element value in
the wf_client_config.xml file, as shown in the code sample below. You can
also use the JAXB WorkflowServicesClientConfigurationType object or
the CONNECTION_PROPERTY.EJB_JNDI_SUFFIX in the
Map<CONNECTION_PROPERTY, String> properties.

<remoteClient>
 <ejbJndiSuffix>_server1</ejbJndiSuffix>
</remoteClient>

Introduction to Human Workflow Services

34-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

34.1.2 Security Model for Services
With the exception of the identity service, all services that use the above-mentioned
APIs (SOAP and remote Enterprise JavaBeans) require authentication to be invoked.
All the above channels support passing the user identity using the human workflow
context. The human workflow context contains either of the following:

• Login and password

• Token

The task query service exposes the authenticate operation that takes the login and
password and returns the human workflow context used for all services. Optionally,
with each request, an administrator can pass the human workflow context with the
login and password.

The authenticate operation also supports the concept of creating the context on
behalf of a user with the admin ID and admin password. This operation enables you to
create the context for a logged-in user to the Oracle BPM Worklist if the password for
that user is not available.

Oracle recommends that you get the workflow context one time and use it
everywhere. There are performance implications for getting the workflow context for
every request.

A realm is an identity service context from the identity configuration. The realm name
can be null if the default configuration is used.

34.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP
Web Services

Identity propagation is the replication of authenticated identities across multiple
SOAP web services used to complete a single transaction. SOAP web services also
support web service security. When web service security is used, the human workflow
context does not need to be present in the SOAP input. Web service security can be
configured from Oracle Enterprise Manager Fusion Middleware Control.

Note:

Human workflow SOAP clients have been enhanced to work with Security
Assertion Markup Language (SAML) token-based identity propagation when
the web service is secured.

34.1.2.2 Creating Human Workflow Context on Behalf of a User

The authenticateOnBehalfOf API method on the task query service can create the
human workflow context on behalf of a user by passing the user ID and password of
an admin user in the request. An admin user is a user with the workflow.admin
privilege. This created context is as if it was created using the password on behalf of
the user.

This is useful for environments in which a back-end system acts on workflow tasks
while users act in their own system. There is no direct interaction with workflow
services; the system can use the on-behalf-of-user login to get a context for the user.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-5

Note:

Oracle recommends that you only use this feature for system operations. This
is because you must create an admin user context and then query for the
human workflow context created on behalf of the user. If you instead use
identity propagation, the user is already authenticated and the client can get
IWorkflowContext for the already authenticated user. For more
information, see Obtaining the Workflow Context for a User Previously
Authenticated by a JAAS Application.

In the code sample below, the human workflow context is created for user jcooper.

String adminUser = "...."
String adminPassword = "...."
String realm = "...."

IWorkflowContext adminCtx =
taskQueryService.authenticate(user,password.toCharArray(),realm);

IWorkflowContext behalfOfCtx =
 taskQueryService.authenticateOnBehalfOf(adminCtx,"jcooper");

34.1.2.3 Obtaining the Workflow Context for a User Previously Authenticated by a
JAAS Application

If the client wants to obtain the workflow context for a user previously authenticated
by a JAAS application, you can use identity propagation as shown in the code sample
below.

public IWorkflowContext getWorkflowContextForAuthenticatedUser() throws
WorkflowException;

This API returns a workflow context for the authenticated user if the client configures
the identity propagation for the appropriate client type. If the client type is remote,
Enterprise JavaBeans identity propagation is used with this method. If the client type
is SOAP, SAML token propagation is used with this method.

34.1.3 Task Service
The task service exposes operations to act on tasks. Table 34-4 describes some of the
common operations of the task service. Package
oracle.bpel.services.workflow.task corresponds to the task service.

For more information about task service, see Workflow Services Java API Reference for
Oracle SOA Suite.

Table 34-4 Task Service Methods

Method Description

acquireTask Acquire a task.

acquireTasks Acquire a set of tasks.

Introduction to Human Workflow Services

34-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 34-4 (Cont.) Task Service Methods

Method Description

addAttachment Add an attachment to a task.

Note: This API enables a client to call the API to add an
attachment before the creation of a task. If the task is not yet
created, then the client can call the API with taskId equals
NULL. However, because the attachment is uploaded before
the task is created, Oracle Workflow Services does not enable
multiple attachments with the same name to be added to the
pre-initiation of a task.

If a task is already created, then Oracle Workflow Services
keeps only the latest version of the attachment in case multiple
attachments have the same name.

addComment Add a comment to a task.

createToDoTask Create a to-do task.

delegateTask Delegate a task to a different user. Both the current assignee
and the user to whom the task is delegated can view and act
on the task.

delegateTasks Delegate a list of tasks to a different user. Both the current
assignee and the user to whom the list of tasks is delegated can
view and act on the tasks.

deleteTask Perform a logical deletion of a task. The task still exists in the
database.

deleteTasks Perform a logical deletion of a list of tasks. The tasks still exist
in the database.

errorTask Cause the task to error. This operation is typically used by the
error assignee.

escalateTask Escalate a task. The default escalation is to the manager of the
current user. This can be overridden using escalation
functions.

escalateTasks Escalate tasks in bulk. The default escalation is to the manager
of the current user. This can be overridden using escalation
functions.

getApprovers Get the previous approvers of a task.

getFutureParticipants Get the future participants of a task. The future participants
are returned in the form of a routing slip that contains simple
participants (participant node and parallel nodes that contain
routing slips).

getUsersToRequestInfo
ForTask

Get the users from whom a request for information can be
requested.

initiateTask Initiate a task.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-7

Table 34-4 (Cont.) Task Service Methods

Method Description

mergeAndUpdateTask Merge and update a task. Use this operation when a partial
task should be updated. A partial task is one in which not all
the task attributes are present. In this partial task, only the
following task attributes are interpreted:

• Task payload
• Comments
• Task state
• Task outcome

overrideRoutingSlip Override the routing slip of a task instance with a new routing
slip. The current task assignment is nullified and the new
routing slip is interpreted as its task is initiated.

purgeTask Remove a task from the persistent store.

purgeTasks Remove a list of tasks from the persistent store.

pushBackTask Push back a task to the previous approver or original
assignees. The original assignees do not need to be the
approver, as they may have reassigned the task, escalated the
task, and so on. The property PushbackAssignee in the
System MBean Browser of Oracle Enterprise Manager Fusion
Middleware Control controls whether the task is pushed back
to the original assignees or the approvers.

1. From the SOA Infrastructure menu, select
Administration > System MBean Browser.

2. Select Application Defined MBeans >
oracle.as.soainfra.config > Server: soa_server1 >
WorkflowConfig > human-workflow.

3. Click PushbackAssignee to view or change the value.

Note: Pushback is designed to work with single approvers and
not with group votes. Pushback from a stage with group vote
(or parallel) scenario to another stage is not allowed. Similarly,
you cannot push back from a single assignee to a group vote
(or parallel) scenario.

reassignTask Reassign a task.

reassignTasks Reassign tasks in bulk.

reinitiateTask Reinitiate a task. Reinitiating a task causes a previously
completed task to be carried forward so that the history,
comments, and attachments are carried forward in a new task.

releaseTask Release a previously acquired task.

releaseTasks Release a set of previously acquired tasks.

removeAttachment Remove a task attachment.

renewTask Renew a task to extend the time it takes to expire.

requestInfoForTask Request information for a task.

Introduction to Human Workflow Services

34-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 34-4 (Cont.) Task Service Methods

Method Description

requestInfoForTaskWit
hReapproval

Request information for a task with reapproval. For example,
assume jcooper created a task and jstein and wfaulk
approved the task in the same order. When the next approver,
cdickens, requests information with reapproval from
jcooper, and jcooper submits the information, jstein and
wfaulk approve the task before it comes to cdickens. If
cdickens requests information with reapproval from
jstein, and jstein submits the information, wfaulk
approves the task before it comes to cdickens.

resumeTask Resume a task. Operations can only be performed by the task
owners (or users with the BPMWorkflowSuspend privilege)
to remove the hold on a workflow. After a human workflow is
resumed, actions can be performed on the task.

resumeTasks Resume a set of tasks.

routeTask Allow a user to route the task in an ad hoc fashion to the next
user(s) who must review the task. The user can specify to route
the tasks in serial, parallel, or single assignment. Routing a
task is permitted only when the human workflow permits ad
hoc routing of the task.

skipCurrentAssignment Skip the current assignment and move to the next assignment
or pick the outcome as set by the previous approver if there
are no more assignees.

submitInfoForTask Submit information for a task. This action is typically
performed after the user has made the necessary updates to
the task or has added comments or attachments containing
additional information.

suspendTask Allow task owners (or users with the BPMWorkflowSuspend
privilege) to put a human workflow on hold temporarily. In
this case, task expiration and escalation do not apply until the
workflow is resumed. No actions are permitted on a task that
has been suspended (except resume and withdraw).

suspendTasks Suspend a set of tasks.

updateOutcomeOfTasks Update the outcome of a set of tasks.

updatePriority Update the priority of the task and its subtasks for the given
task ID. If UpdatePriorityType is INCREMENT then the
task is updated by incrementing the given priority by 1—that
is, the priority of the task is raised. If the
UpdatePriorityType is DECREMENT, then the task is
updated by decrementing the priority by 1—that is, the
priority of the task is lowered, otherwise the task is updated
with the given priority.

updatePriorityOfTasks For bulk update of tasks. A list of tasks for which the priority
must be updated can be passed as a parameter to this API. The
priorities of the list of tasks is updated. It updates the priority
of the task and its subtasks.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-9

Table 34-4 (Cont.) Task Service Methods

Method Description

updateTask Update the task.

updateTaskOutcome Update the task outcome.

updateTaskOutcomeAndR
oute

Update the task outcome and route the task. Routing a task
allows a user to route the task in an ad hoc fashion to the next
user(s) who must review the task. The user can specify to route
the tasks in serial, parallel, or single assignment. Routing a
task is permitted only when the human workflow permits ad
hoc routing of the task.

withdrawTask The creator of the task can withdraw any pending task if they
are no longer interested in sending it further through the
human workflow. A task owner can also withdraw a task on
behalf of the creator. When a task is withdrawn, the business
process is called back with the state attribute of the task set to
Withdrawn.

withdrawTasks Withdraw a set of tasks.

For more information, see the following:

• Task Instance Attributes

• Workflow Services Java API Reference for Oracle SOA Suite

• Sample workflow-118-JavaSamples, which demonstrates some APIs

34.1.4 Task Query Service
The task query service queries tasks based on a variety of search criteria such as
keyword, category, status, business process, attribute values, historical information of
a task, and so on. Table 34-5 describes some of the common operations of the task
query service. Package oracle.bpel.services.workflow.query corresponds to
the task query service.

For more information about task query service, see Workflow Services Java API Reference
for Oracle SOA Suite.

Table 34-5 Task Query Service Methods

Method Description

authenticate Authenticates a user with the identity authentication service
and passes back a valid IWorkflowContext object.

authenticateOnBehalfO
f

Optionally makes authentication on behalf of another user.

countTasks Counts the number of tasks that match the specified query
criteria.

countViewTasks Counts the number of tasks that match the query criteria of
the specified view.

Introduction to Human Workflow Services

34-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 34-5 (Cont.) Task Query Service Methods

Method Description

createContext Creates a valid IWorkflowContext object from a
preauthenticated HTTP request.

doesTaskExist Checks to see if any existing tasks match the specified query
criteria.

doesViewTaskExist Checks to see if any tasks exist match the query criteria of the
specified view.

getWorkflowContext Gets a human workflow context with the specified context
token.

destroyWorkflowContex
t

Cleans up a human workflow context that is no longer
needed. This method is typically used when a user logs out.

getTaskDetailsById Gets the details of a specific task from the task's taskId
property.

getTaskDetailsByNumbe
r

Gets the details of a specific task from the task's task
number property.

getTaskHistory Gets a list of the task versions for the specified task ID.

getTaskSequence Gets the task sequence tree of a task whose ID is a task ID, for
those type of sequences.

getTaskVersionDetails Gets the specific task version details for the specified task ID
and version number.

getWorkflowContextFor
AuthenticatedUser

Gets the IWorkflowContext object for a user authenticated
by a JAAS application. Use this either with Enterprise
JavaBeans or SAML token identity propagation.

queryAggregatedTasks Executes the specified query, and aggregates a count of the
tasks returned by the query, grouped by the specified column.

queryTaskErrors Returns a list of task error objects matching the specified
predicate.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-11

Table 34-5 (Cont.) Task Query Service Methods

Method Description

queryTasks Returns a list of tasks that match the specified filter
conditions. Tasks are listed according to the ordering
condition specified (if any). The entire list of tasks matching
the criteria can be returned or clients can execute paging
queries in which only a specified number of tasks in the list
are retrieved. The filter conditions are as follows:

• assignmentFilter: Filters tasks according to whom
the task is assigned, or who created the task. Possible
values for the assignment filter are as follows:

ADMIN: No filtering; returns all tasks regardless of
assignment or creator.

ALL: No filtering; returns all tasks regardless of
assignment or creator.

CREATOR: Returns tasks in which the context user is the
creator.

GROUP: Returns tasks that are assigned to a group,
application role, or list of users of which the context user
is a member.

MY: Returns tasks that are assigned exclusively to the
context user.

MY_AND_GROUP: Returns tasks that are assigned
exclusively to the context user, or to a group, application
role, or list of users of which the context user is a
member, excluding any tasks that have been claimed by
other users.

MY_AND_GROUP_ALL: Returns tasks that are assigned
exclusively to the context user, or to a group, application
role, or list of users of which the context user is a
member, including any tasks that have been claimed by
other users.

OWNER: Returns tasks in which the context user is the
task owner.

PREVIOUS: Returns tasks the context user previously
updated.

REPORTEES: Returns tasks that are assigned to reportees
of the context user.

REVIEWER: Returns tasks for which the context user is a
reviewer.

• keywords: An optional search string. This only returns
tasks in which the string is contained in the task title,
task identification key, or one of the task text mapped
attributes (formerly referred to as flex fields).

• predicate: An optional
oracle.bpel.services.workflow.repos.Predic
ate object that allows clients to specify complex, SQL-
like query predicates.

queryViewAggregatedTa
sks

Executes the query as defined in the specified view, and
aggregates the selected tasks according to the chart property
defined in the view.

Introduction to Human Workflow Services

34-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 34-5 (Cont.) Task Query Service Methods

Method Description

queryViewTasks Returns a list of tasks according to the criteria in the specified
view. The entire list or paged list of tasks can be returned.
Clients can specify additional filter and ordering criteria to
those in the view.

For more information, see the following:

• Task Instance Attributes

• Workflow Services Java API Reference for Oracle SOA Suite in the documentation
library

• Sample workflow-118-JavaSamples, which demonstrates some APIs

34.1.5 Identity Service
The identity service is a thin web service layer on top of the Oracle WebLogic Server
security infrastructure, namely Oracle Identity Management and Oracle Platform
Security Services (OPSS), or any custom user repository. The identity service enables
authentication of users and the lookup of user properties, roles, group memberships,
and privileges. Oracle Identity Management is the sole identity service provider for
Oracle WebLogic Server. Oracle Identity Management handles all storage and retrieval
of users and roles for various repositories, including XML, LDAP, and so on. More
specifically, Oracle Identity Management provides the following features:

• All providers are supported through Oracle Identity Management. The OracleAS
JAAS Provider (JAZN) and LDAP providers are no longer supported. The custom
provider is deprecated and supported only for backward compatibility. All
customization of providers is performed through the custom provider to Oracle
Identity Management, through configuring Oracle Virtual Directory (OVD) as an
LDAP provider to Oracle Identity Management, or through both. OVD aggregates
data across various repositories.

• The OPSS layer is used, which includes the following:

– Identity store

– Policy store

– Credential store

– Framework

For more information, see . All security configuration is done through the jps-
config.xml file.

• All privileges are validated against permissions, as compared to actions in
previous releases.

• The following set of application roles are defined. These roles are automatically
defined in the SOA Infrastructure application of the OPSS policy store.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-13

– SOAAdmin: Grant this role to users who must perform administrative actions
on any SOA module. This role is also granted the BPMWorkflowAdmin and
B2BAdmin roles.

– BPMWorkflowAdmin: Grant this role to users who must perform any
workflow administrative action. This includes actions such as searching and
acting on any task in the system, creating and modifying user and group
rules, performing application customization, and so on. This role is granted
the BPMWorkflowCustomize role and the following permissions:

* workflow.mapping.protectedFlexField

* workflow.admin.evidenceStore

* workflow.admin

– BPMWorkflowCustomize: Grant this role to business users who must
perform mapped attributes (formally flex field) mapping to public mapped
attributes. This role is also granted the
workflow.mapping.publicFlexField permission.

• The following workflow permissions are defined:

– workflow.admin: Controls who can perform administrative actions related
to tasks, user and group rules, and customizations.

– workflow.admin.evidenceStore: Controls who can view and search
evidence records related to digitally-signed tasks (tasks that require a
signature with the use of digital certificates).

– workflow.mapping.publicFlexField: Controls who can perform
mapping of task payload attributes to public mapped attributes.

– workflow.mapping.protectedFlexField: Controls who can perform
mapping of task payload attributes to protected mapped attributes.

Note:

You cannot specify multiple authentication providers for Oracle SOA Suite.
This is because OPSS does not support multiple providers. The provider to
use for human workflow authentication must be the first one listed in the
order of authentication providers for Oracle SOA Suite.

34.1.5.1 Identity Service Providers

Oracle Identity Management is the only supported provider for release 11g, as shown
in Figure 34-1.

Introduction to Human Workflow Services

34-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 34-1 Identity Service Providers

34.1.5.1.1 Custom User Repository Plug-ins

Starting with release 11g, custom provider plug-ins in the identity service are not
supported. All identity customizations are now done in the identity store. Oracle
Fusion Middleware supports providers that enable the User and Role API to interact
with custom identity stores. For more information, visit the following URL:

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html

34.1.6 Task Metadata Service
The task metadata service exposes operations to retrieve metadata information related
to a task. Table 34-6 describes some of the common operations of task metadata
service. Package oracle.bpel.services.workflow.metadata corresponds to
the task metadata service.

For more information about task metadata service, see Workflow Services Java API
Reference for Oracle SOA Suite.

Table 34-6 Task Metadata Service Methods

Method Description

getTaskMetadataByNam
espace

Gets the TaskMetadata object that describes the human task
service component with the specified task definition namespace
and composite version.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-15

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html

Table 34-6 (Cont.) Task Metadata Service Methods

Method Description

getOutcomes Gets the permitted outcomes of a task. The outcomes are
returned with their display values.

getResourceBundleInf
o

Gets the resource bundle information of the task. The resource
bundle information contains the location and the name of the
bundle.

getRestrictedActions Gets the actions that are restricted for a particular task.

getTaskAttributesFor
TaskDefinitions

Gets a list of TaskAttribute objects that describe standard
task attributes and mapped attribute columns that are common
for the specified task definitions.

getTaskAttributesFor
TaskNamespaces

Gets a list of TaskAttribute objects that describe standard
task attributes and mapped attribute columns that are common
for task definitions identified by the specified namespaces.

getTaskAttributes Gets the task message attributes.

getTaskAttributesFor
TaskDefinition

Gets the message attributes for a particular task definition.

getTaskDefinition Gets the task definition associated with the task.

getTaskDefinitionByI
d

Gets the task definition by the task definition ID.

getTaskDefinitionOut
come

Gets the outcomes given the task definition ID.

getTaskVisibilityRul
es

Gets the task visibility rules.

getTaskDisplayRegion Gets the task display region for a task.

getVersionTrackedAtt
rs

Gets the task attributes that when changed cause a task version
creation.

listTaskMetadata Lists the task definitions in the system.

For more information, see Workflow Services Java API Reference for Oracle SOA Suite.

34.1.7 User Metadata Service
The user metadata service provides methods for managing metadata specific to
individual users and groups. It is used for getting and setting user worklist
preferences, managing user custom views, and managing human workflow rules for
users and groups.

For most methods in the user metadata service, the authenticated user can query and
update their own user metadata. However, they cannot update metadata belonging to
other users.

In the case of group metadata (for example, human workflow rules for groups), only a
user designated as an owner of a group (or a user with the workflow.admin

Introduction to Human Workflow Services

34-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

privilege) can query and update the metadata for that group. However, a user with the
workflow.admin privilege can query and update metadata for any user or group.

Table 34-7 describes some of the common operations of the user metadata service.
Package oracle.bpel.services.workflow.user corresponds to the user
metadata service.

For more information about user metadata service, see Workflow Services Java API
Reference for Oracle SOA Suite.

Table 34-7 User Metadata Service Methods

Method Description

createRule Creates a new rule.

decreaseRulePriori
ty

Decreases the priority of a rule by one. This method does nothing
if this rule has the lowest priority.

deleteRule Deletes a rule.

getVacationInfo Retrieves the date range (if any) during which a user is
unavailable for the assignment of tasks.

getRuleDetail Gets the details for a particular human workflow rule.

getRuleList Retrieves a list of rules for a particular user or group.

updateRule Updates an existing rule.

increaseRulePriori
ty

Increases the priority of a rule by one. Rules for a user or group
are maintained in an ordered list of priority. Higher priority rules
(those closer to the head of the list) are executed before rules with
lower priority. This method does nothing if this rule has the
highest priority.

getUserTaskViewLis
t

Gets a list of the user task views that the user owns.

getGrantedTaskView
List

Gets a list of user task views that have been granted to the user by
other users. Users can use granted views for querying lists of
tasks, but they cannot update the view definition.

getStandardTaskVie
wList

Gets a list of standard task views that ship with the human
workflow service, and are available to all users.

getUserTaskViewDet
ails

Gets the details for a single view.

createUserTaskView Creates a new user task view.

updateUserTaskView Updates an existing user task view.

deleteUserTaskView Deletes a user task view.

updateGrantedTaskV
iew

Updates details of a view grant made to this user by another user.
Updates are limited to hiding or unhiding the view grant (hiding
a view means that the view is not listed in the main inbox page of
Oracle BPM Worklist), and changing the name and description
that the granted user sees for the view.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-17

Table 34-7 (Cont.) User Metadata Service Methods

Method Description

getUserPreferences Gets a list of user preferences for the user. User preferences are
simple name-value pairs of strings. User preferences are private to
each user (but can still be queried and updated by a user with the
workflow.admin privilege).

setUserPreferences Sets the user preference values for the user. Any preferences that
were previously stored and are not in the new list of user
preferences are deleted.

getPublicPreferenc
es

Gets a list of public preferences for the user. Public preferences are
similar to user preferences, except that any user can query them.
However, only the user that owns the preferences, or a user with
the workflow.admin privilege, can update them. Public
preferences are useful for storing application-wide preferences
(preferences can be stored under a dummy user name, such as
MyAppPrefs).

setPublicPreferenc
es

Sets the public preferences for the user.

setVacationInfo Sets a date range over which the user is unavailable for the
assignment of tasks. (Dynamic assignment functions do not assign
tasks to a user that is on vacation.)

getStandardTaskVie
wDetails

Gets the full details for a particular standard view, identified by
its viewId.

For more information, see the following:

• Using for details about the rule configuration and user preference pages

• Sample workflow-118-JavaSamples, which demonstrates some APIs

• Workflow Services Java API Reference for Oracle SOA Suite

34.1.8 Task Report Service
The task report service executes a report and receives the results. Table 34-8 shows the
list of reports. Package oracle.bpel.services.workflow.report corresponds
to the task report service. The standard reports shown in Table 34-8 are available as
part of installation.

Table 34-8 Task Report Service

Report Description

Unattended tasks report Provides an analysis of tasks assigned to users' groups or
reportees' groups that require attention because they have not
yet been acquired.

Tasks priority report Provides an analysis of the number of tasks by priorities
assigned to a user, reportees, or their groups.

Introduction to Human Workflow Services

34-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 34-8 (Cont.) Task Report Service

Report Description

Tasks cycle time report Provides an analysis of time taken to complete tasks from
assignment to completion based on users' groups or reportees'
groups.

Tasks productivity report Provides an analysis of tasks assigned and tasks completed in a
given time period for a user, reportees, or their groups.

Tasks time distribution
report

Provides an analysis of time taken to complete their part of the
tasks for a given user, user's groups, or reportees in the given
time period.

34.1.9 Runtime Config Service
The runtime config service provides methods for managing metadata used in the task
service runtime environment. It principally supports the management of task payload
mapped attribute mappings and the URIs used for displaying task details.

The task object used by the task service contains many mapped attributes, which can
be populated with information from the task payload. This allows the task payload
information to be queried, displayed in task listings, and used in human workflow
rules.

The runtime config service provides methods for querying and updating the URI used
for displaying the task details of instances of a particular task definition in a client
application. For any given task definition, multiple display URIs can be supported,
with different URIs being used for different applications. The method
getTaskDisplayInfo can query the URIs for a particular task definition. The
method setTaskDisplayInfo can define new URIs or update existing ones. Only
users with the workflow.admin privilege can call setTaskDisplayInfo, but any
authenticated user can call getTaskDisplayInfo.

The runtime config service allows administrators to create mappings between simple
task payload attributes and these mapped attributes.

Only a user with the workflow.mapping.publicFlexField or
workflow.mapping.protectedFlexField privilege can make updates to
payload mappings for public mapped attributes. Only a user with the
workflow.mapping.protectedFlexField privilege can make updates to
payload mappings for protected mapped attributes. Any authenticated user can use
the query methods in this service.

An administrator can create attribute labels for the various mapped attributes. These
attribute labels provide a meaningful label for the attribute (for example, a label
Location may be created for the mapped attribute TextAttribute1). A given
mapped attribute may have multiple labels associated with it. This attribute label is
what is displayed to users when displaying lists of attributes for a specific task in
Oracle BPM Worklist. The attribute labels for a specific task type can be determined by
calling the getTaskAttributesForTaskDefinition method on the task metadata
service.

When defining attribute labels, the following fields are automatically populated by the
service. You do not need to specify values for these attributes when creating or
updating attribute labels:

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-19

• Id

• CreatedDate

• WorkflowType

• Active

Valid values for the task attribute field for public mapped attributes are as follows:

• TextAttribute1 through TextAttribute20

• FormAttribute1 through FormAttribute10

• UrlAttribute1 through UrlAttribute10

• DateAttribute1 through DateAttribute10

• NumberAttribute1 through NumberAttribute10

Mappings can then be created between task payload fields and the attribute labels. For
example, the payload field customerLocation can be mapped to the attribute label
Location. Different task types can share the same attribute label. This allows payload
attributes from different task types that have the same semantic meaning to be
mapped to the same attribute label.

Note:

Payload fields that are simple XML types can be mapped directly, or an xpath
expression can be specified to select a simple XML type value from a complex
payload field.

The runtime config service also provides the following:

• Methods for querying the dynamic assignment functions supported by the server

• Methods for maintaining the task display URLs used for displaying the task
details in Oracle BPM Worklist and other applications

• Methods for getting the server HTTP and JNDI URLs

Table 34-9 describes some of the common operations of the runtime config service.
Package oracle.bpel.services.workflow.runtimeconfig corresponds to the
runtime config service.

For more information about runtime config service, see Workflow Services Java API
Reference for Oracle SOA Suite.

Table 34-9 Runtime Config Service

Method Description

CreateAttributeLabel Creates a new attribute label for a particular task mapped
attribute.

createPayloadMapping Creates a new mapping between an attribute label and a task
payload field.

DeleteAttributeLabel Deletes an existing attribute label.

Introduction to Human Workflow Services

34-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 34-9 (Cont.) Runtime Config Service

Method Description

deletePayloadMapping Deletes an existing payload mapping.

getAttributeLabelUsa
ges

Gets a list of attribute labels (either all attribute labels or labels
for a specific type of attribute) for which mapping (if any) the
labels are currently used.

getDynamicAssignment
Functions

Returns a list of dynamic assignment functions that are
implemented on this server.

getTaskDisplayInfo Retrieves information relating to the URIs used for displaying
task instances of a specific task definition.

getTaskStatus Gets the status of a task instance corresponding to a particular
task definition and composite instance.

GetWorkflowPayloadMa
ppings

Gets a list of all the mapped attribute mappings for a particular
human workflow definition.

setTaskDisplayInfo Sets information relating to the URIs to be used for displaying
task instances of a specific task definition.

updateAttributeLabel Updates an existing attribute label.

For more information, see the following:

• Dynamic Assignment and Task Escalation Patterns for additional details

• Using for details about mapped attribute mappings

• Sample workflow-118-JavaSamples, which demonstrates some APIs.

• Workflow Services Java API Reference for Oracle SOA Suite

34.1.9.1 Internationalization of Attribute Labels

Attribute labels provide a method of attaching a meaningful label to a task mapped
attribute. It can be desirable to present attribute labels that are translated into the
appropriate language for the locale of the user.

To use a custom resource bundle, place it at the location identified by the workflow
configuration parameter workflowCustomClasspathURL (which can be a file or
HTTP path).

This can be set in either of two places in Oracle Enterprise Manager Fusion
Middleware Control:

• System MBean Browser page

• Workflow Task Service Properties page

For more information, see the workflow-110-workflowCustomizations sample, which
describes how to use this parameter. Visit the Oracle SOA Suite samples for details:

Entries for mapped attribute labels must be of the form:

FLEX_LABEL.[label name]=Label Display Name

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-21

For instance, the entry for a label named Location is:

FLEX_LABEL.Location=Location

Adding entries to these files for attribute labels is optional. If no entry is present in the
file, the name of the attribute label as specified using the API is used instead.

34.1.10 Evidence Store Service and Digital Signatures
The evidence store service is used for digital signature storage and nonrepudiation of
digitally-signed human workflows. A digital signature is an electronic signature that
authenticates the identity of a message sender or document signer. This ensures that
the original content of the message or document sent is unchanged. Digital signatures
are transportable, cannot be imitated by others, and are automatically time-stamped.
The ability to ensure that the original signed message arrived means that the sender
cannot repudiate it later. Digital signatures ensure that a human workflow document:

• Is authentic

• Has not been forged by another entity

• Has not been altered

• Cannot be repudiated by the sender

A cryptographically-based digital signature is created when a public key algorithm
signs a sender's message with a sender's private key.

During design time, signatures are enabled for the task. During runtime in Oracle
BPM Worklist, when a user approves or rejects the task, the web browser:

• Asks the user to choose the private key to use for signing.

• Generates a digital signature using the private key and task content provided by
Oracle BPM Worklist.

Figure 34-2 provides an example.

Introduction to Human Workflow Services

34-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 34-2 Digital Signature and Certificate

Note:

• The certificate refers to a Personal Information Exchange Syntax Standard
(PFX) file that includes a certificate and a private key, and is protected by
a simple text password. PFX specifies a portable format for storing or
transporting a user's private keys, certificates, miscellaneous secrets, and
so on.

• The possession of a private key that corresponds to the public key of a
certificate is sufficient to sign the data, because the signature is verifiable
through the public key in the certificate. However, no attempt is made to
correlate the name of a user of a certificate with the person updating it.
For example, user jstein can sign using the private key of user
cdickens if jstein has that private key.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-23

The following digital signature features are supported:

• PKCS7 signatures based on X.509 certificates

• Browser-based, digitally-signed content without attachments

34.1.10.1 Prerequisites

Prerequisites for using digital signatures and certificates are as follows:

• Users of the Oracle BPM Worklist must have certificates

• The administrator must specify the CAs and corresponding CRL URL whose
certificates must be trusted. Users are expected to upload only certificates issued
by these CAs. This is done by editing the System MBean Browser in Oracle
Enterprise Manager Fusion Middleware Control.

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. In the navigator, expand the SOA folder.

3. Right-click soa-infra, and select Administration > System Mbean Browser.

The System Mbean Browser displays on the right side of the page.

4. Expand Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowConfig > human-workflow.

5. Click the Operations tab on the right side of the page.

6. Click addTrustedCA.

7. Provide values for caName and caURL. You must do this for each certificate
in the trust chain. For example, values provided for each invocation may look
as shown in Table 34-10.

Table 34-10 caName and caURL Values

caName caURL

CN = Intg, OU

=AppServ, O

=Oracle, C = US

http://www.oracle.com/Integration%20CRL

%20Data.crl

CN = Intg1, OU

=AppServ, O

=Oracle, C = US

http://www.oracleindia.in.com/Integration

%20In.crl

CN = Intg2, OU

=AppServ, O

=Oracle, C = US

http://www.oracle.us.com/integration.crl

8. Click Invoke.

34.1.10.2 Interfaces and Methods

Table 34-11 through Table 34-14 describe the methods in the evidence store service.
Package oracle.bpel.services.security.evidence corresponds to the
evidence service.

Introduction to Human Workflow Services

34-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 34-11 ITaskEvidenceService Interface

Method Description

createEvidence Creates evidence and stores it in the repository for
nonrepudiation.

getEvidence Gets a list of evidence matching the given criteria. The result
also depends on the privileges associated with the user
querying the service. If the user has been granted the
workflow.admin.evidenceStore permission (points to a
location detailing how to grant the permission), all matching
evidence is visible. Otherwise, only that evidence created by the
user is visible.

uploadCertificate Uploads certificates to be used later for signature verification.
This is a prerequisite for creating evidence using a given
certificate. A user can only upload their certificates.

updateEvidence Updates the CRL verification part of the status. This includes
verified time, status, and error messages, if any.

validateEvidenceSign
ature

Validates the evidence signature. This essentially performs a
nonrepudiation check on the evidence. A value of true is
returned if the signature is verified. Otherwise, false is
returned.

Table 34-12 Evidence Interface

Method Description

getCertificate Gets the certificate used to sign this evidence.

getCreateDate Gets the creation date of the evidence.

getErrorMessage Gets the error message associated with the CRL validation.

getEvidenceId Gets the unique identifier associated with the evidence.

getPlainText Gets the content that was signed as part of this evidence.

getPolicy Gets the signature policy of the evidence. This is either
PASSWORD or CERTIFICATE.

getSignature Gets the signature of this evidence.

getSignedDate Gets the date on which the signature was created.

getStatus Gets the CRL validation status. This can be one of the
following:

• AVAILABLE: The evidence is available for CRL validation.
• FAILURE: CRL validation failed.
• SUCCESS: CRL validation succeeded.
• UNAVAILABLE: The CRL data could not be fetched.
• WAIT: CRL validation is in progress.

getTaskId Gets the unique identifier of the task with which this evidence
is associated.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-25

Table 34-12 (Cont.) Evidence Interface

Method Description

getTaskNumber Gets the task number of the task with which this evidence is
associated.

getTaskPriority Gets the task priority of the task with which this evidence is
associated.

getTaskStatus Gets the task status of the task with which this evidence is
associated.

getTaskSubStatus Gets the task substatus of the task with which this evidence is
associated.

getTaskTitle Gets the title of the task with which this evidence is associated.

getTaskVersion Gets the version of the task with which this evidence is
associated.

getVerifiedDate Gets the date on which the CRL validation of the certificate
used was performed.

getWorkflowType Gets the workflow type of the task with which this evidence is
associated. This is typically BPELWF.

Table 34-13 Certificate Interface

Method Description

getCA Gets the certificate issuer's distinguished name (DN).

getCertificate Gets the certificate object that is abstracted by the interface.

getID Gets the certificate's serial number.

getIdentityContext Gets the identity context with which the uploader of this
certificate is associated.

getUserName Gets the user name with whom this certificate is associated.

isValid Returns true if the certificate is still valid.

Table 34-14 Policy Type and Workflow Type Interface

Method Description

fromValue Constructs an object from the string representation.

value Returns the string representation of this object.

For more information, see the following:

• How to Specify a Workflow Digital Signature Policy for details about specifying
digital signatures and digital certificates in the Human Task Editor

• Designing Task Forms for Human Tasks for details about digitally signing a task
action in the Oracle BPM Worklist

Introduction to Human Workflow Services

34-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

34.1.11 Task Instance Attributes
A task is work that must be done by a user. When you create a task, you assign
humans to participate in and act upon the task. Table 34-15 describes the task
attributes that are commonly used and interpreted by applications.

Table 34-15 Task Attributes

Task Attribute Name Description

task/
applicationContext

The application with which any application roles associated
with this task (assignees, owners, and so on) belong.

task/category An optional category of the task.

task/creator The name of the creator of this task.

task/dueDate The due date for the task. This is used on to-do tasks.

task/identificationKey An optional, custom, unique identifier for the task. This can
be set as an additional unique identifier to the standard task
ID and task number. This key can retrieve a task based on
business object identifiers for which the task is created.

task/identityContext The identity realm under which the users and groups are
seeded. In a single realm environment, this defaults to the
default realm.

task/ownerGroup The group (if any) that owns this task instance. Task owners
can be application roles, users, or groups. If the owner of the
task is a group, this field is set.

task/ownerRole The application role (if any) that owns this task instance.
Task owners can be application roles, users, or groups. If the
owner of the task is an application role, this field is set.

task/ownerUser The user (if any) that owns this task instance. Task owners
can be application roles, users, or groups. If the owner of the
task is a user, this field is set.

task/payload The task payload that is captured as XML.

task/
percentageComplete

The percentage of the task completed. This is used on to-do
tasks.

task/priority An integer number that defines the priority of this task. A
lower number indicates a higher priority. The numbers 1 to
5 are typically used.

task/startDate The start date for the task. This is used on to-do tasks.

task/subCategory An optional subcategory of the task.

task/taskDefinitionId The task definition ID that binds the task to the task
metadata. At task initiation time, this can be either the
compositeDN/componentName string or the
targetNamespace in the .task file. If the later is used, the
active version matching the targetNamespace is used.

task/taskDisplayUrl The URL to use to display the details for this task.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-27

Table 34-15 (Cont.) Task Attributes

Task Attribute Name Description

task/title The title of the task.

Table 34-16 lists the attributes that capture process metadata information.

Table 34-16 Attributes Capturing Process Metadata Information

Attribute Description

task/sca/applicationName The partition to which the task component that defines
this task instance is deployed.

task/sca/componentName The name of the task component that defines this task
instance.

task/sca/compositeDN A unique name for the particular deployment of the
composite that contains the task component that defines
this task instance.

task/sca/
compositeInstanceId

The composite instance ID.

task/sca/compositeName The name of the composite that contains the task
component that defines this task instance.

task/sca/
compositeVersion

The version of the composite that contains the task
component that defines this task instance.

task/sca/
compositeCreatedTime

The date and time on which the composite flow to which
this task instance belongs was started.

task/sca/flowId A unique identifier for the composite flow to which this
task instance belongs.

Table 34-17 lists the attachment-related attributes.

Table 34-17 Attachment-related attributes

Attribute Description

task/attachment/
content

The attachment content.

task/attachment/
mimeType

The Multipurpose Internet Mail Extension (MIME) type of the
attachment.

task/attachment/name The name of the attachment.

task/attachment/
updatedBy

The user who updated the attachment.

task/attachment/
updatedDate

The date on which the attachment was updated.

task/attachment/URI The URI if the attachment is URI-based.

Introduction to Human Workflow Services

34-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 34-18 lists the comment-related attributes.

Table 34-18 Comment-related Attributes

Attribute Description

task/userComment/comment The user comment.

task/userComment/
updatedBy

The user who added the comment.

task/userComment/
updatedDate

The date on which the comment was added. This is set by
services when saving comments. If set by client when
saving the comment, it is ignored.

task/userComment/
displayNameLanguage

Set by services when reading comments. This indicates
the language in which the updatedBy displayName is
populated.

task/userComment/acl Not used.

task/userComment/
doesBelongToParent

If the comment is inherited from parent (example process
comment).

task/userComment/
isSystemComment

Set by services if the comment is set by the workflow
system (example, a comment is created if the task goes
into alerted state).

task/userComment/taskId The taskId in which the comment was created. For
example, if the scope is "BPM", the comment may be
visible in a task different than the one in which it was
created. Also, for parallel task, the current taskId and
comment taskId may be different. This is set by services.

task/userComment/commentScope
The values - null, empty or "TASK" implies that the
comment is for that task only. The value "BPM" implies
that it is for the whole process. The value has to be set to
"BPM" when adding comment if you want the comment
to be applicable to the whole process.

task/userComment/
updatedBy/id

ID of the user who updated the comment.

task/userComment/
updatedBy/displayName

Display name of the user who updated the comment.

task/userComment/
updatedBy/type

Type of User, Group, or Role of the user who updated the
comment.

Table 34-19 lists the attributes manipulated by the workflow services system.

Table 34-19 Attributes Manipulated by the Workflow Services System

Attribute Description

task/
systemAttributes/
acquiredBy

If a task is assigned to a group, application role, or to multiple
users, and then claimed by a user, this field is set to the name of
the user who claimed the task.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-29

Table 34-19 (Cont.) Attributes Manipulated by the Workflow Services System

Attribute Description

task/
systemAttributes/
approvers

The IDs of users who performed custom actions on the task.

task/
systemAttributes/
assignedDate

The date that this task was assigned.

task/
systemAttributes/
assignees

The current task assignees (can be users, groups, or application
roles).

task/
systemAttributes/
createdDate

The date the task instance was created.

task/
systemAttributes/
customActions

The custom actions that can be performed on the task.

task/
systemAttributes/
endDate

The end date for the task. This is used on to-do tasks.

task/
systemAttributes/
expirationDate

The date on which the task instance expires.

task/
systemAttributes/
fromUser

The user who previously acted on the task.

task/
systemAttributes/
hasSubTasks

If true, there are subtasks.

task/
systemAttributes/
isGroup

If true, the task is assigned to a group.

task/
systemAttributes/
originalAssigneeUser

If a user delegates a task to another user, this field is populated
with the name of the user who delegated the task.

task/
systemAttributes/
outcome

The outcome of the task (for example, approved or rejected).
This is only set on completed task instances.

task/
systemAttributes/
parentTaskId

This is only set on reinitiated tasks (the task ID of the previous
task that is being reinitiated).

task/
systemAttributes/
parentTaskVersion

This only set on a subtask. This refers to the version of the
parent task.

Introduction to Human Workflow Services

34-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 34-19 (Cont.) Attributes Manipulated by the Workflow Services System

Attribute Description

task/
systemAttributes/
participantName

The logical name of the participant as modeled from Oracle
JDeveloper.

task/
systemAttributes/
reviewers

The reviewers of the task. This can be a user, group, or
application role.

task/
systemAttributes/
rootTaskId

The ID of the root task. This is the same as the task ID for the
root task.

task/
systemAttributes/
stage

The stage name that is being executed.

task/
systemAttributes/
state

The current state of the task instance.

task/
systemAttributes/
substate

The current substate of the task.

task/
systemAttributes/
subTaskGroupInstance
Id

A unique ID that is set on a subtask. This same ID is set on the
parent task's taskGroupInstanceId. This is required to
identify which subtasks were created at which time.

task/
systemAttributes/
systemActions

The system actions (such as reassign, escalate, and so on) that
can be performed on a task.

task/
systemAttributes/
taskDefinitionName

The name of the task component that defines this task instance.

task/
systemAttributes/
taskGroupId

The ID of the immediate parent task. This only sets a subtask.

task/
systemAttributes/
taskGroupInstanceId

A unique ID that is set on the parent task. This same ID is set on
the subtask's subTaskGroupInstanceId. This is required to
identify which subtasks were created at which time.

task/
systemAttributes/
taskId

The unique ID of the task.

task/
systemAttributes/
taskNamespace

A namespace that uniquely defines all versions of the task
component that defines this task instance. Different versions of
the same task component can have the same namespace, but no
two task components can have the same namespace.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 34-31

Table 34-19 (Cont.) Attributes Manipulated by the Workflow Services System

Attribute Description

task/
systemAttributes/
taskNumber

An integer number that uniquely identifies this task instance.

task/
systemAttributes/
updatedBy

The user who last updated the task.

task/
systemAttributes/
updatedDate

The date this instance was last updated.

task/
systemAttributes/
version

The version of the task.

task/
systemAttributes/
versionReason

The reason the version was created.

task/
systemAttributes/
workflowPattern

The pattern that is being executed (for example, parallel, serial,
FYI, or single).

Table 34-20 lists the mapped attributes.

Table 34-20 Mapped Attributes

Attribute Description

task/
systemMessageAttribu
tes/*

The mapped attributes.

34.2 Notifications from Human Workflow
Notifications are sent to alert users of changes to the state of a task. Notifications can
be sent through any of the following channels: email, telephone voice message, instant
messaging (IM), or short message service (SMS). Notifications can be sent from a
human task in a BPEL process or directly from a BPEL process.

In releases before 11g, email notifications were sent through the human workflow
email notification layer. Voice and SMS notifications were sent through Oracle's
hosted notification service. IM notifications were not supported.

Starting with release 11g, the human workflow email notification layer works with
Oracle User Messaging Service to alert users to changes in the state of a task. The
Oracle User Messaging Service exposes operations that can be invoked from the BPEL
process or human task to send notifications through email, voice, IM, or SMS channels.

The Oracle User Messaging Service supports features such as:

• Sending and receiving messages and statuses

• Sending notifications to a specific address on a particular channel

Notifications from Human Workflow

34-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Sending notifications to a set of failover addresses

On application servers other than Oracle Fusion Middleware, the human workflow
email notification layer can be used for email notifications.

For more information about configuring the Oracle User Messaging Service, see the
following:

• Using the Notification Service

• Developing Applications with Oracle User Messaging Service

• Administering Oracle User Messaging Service for instructions on configuring
notification service delivery channels in Oracle Enterprise Manager Fusion
Middleware Control

34.2.1 Contents of Notification
Each email notification can contain the following parts:

• The notification message

• The HTML content from Oracle BPM Worklist:

This is a read-only view of Oracle BPM Worklist on the task. For information on
how you can configure email notifications to include the content from Oracle BPM
Worklist, see Creating an Email Notification .

• Task attachments:

For notifications that include task attachments.

• Actionable links

Notifications through SMS, IM, and voice contain only the notification message.

The notification message is an XPath expression that can contain static text and
dynamic values. In creating the messages, only the task BPEL variable is available for
dynamic values. This restriction is because the messages are evaluated outside the
context of the BPEL process. The payload in the task variable is also strongly typed to
contain the type of the payload for XPath tree browsing. The XPath extension function
hwf:getNotificationProperty(propertyName) is available to get properties
for a particular notification. The function evaluates to corresponding values for each
notification. The propertyName can be one of the following values:

• recipient

The recipient of the notification

• recipientDisplay

The display name of the recipient

• taskAssignees

The task assignees

• taskAssigneesDisplay

The display names of the task assignees

• locale

Notifications from Human Workflow

Introduction to Human Workflow Services 34-33

The locale of the recipient

• taskId

The ID of the task for which the notification is meant

• taskNumber

The number of the task for which the notification is meant

• appLink

The HTML link to the Oracle BPM Worklist task details page

The following example demonstrates the use of hwf:getNotificationProperty
and hwf:getTaskResourceBundle:

concat('Dear ', hwf:getNotificationProperty('recipientDisplay'), ' Task ',
/task:task/task:systemAttributes/task:taskNumber, ' is assigned to you. ',
hwf:getTaskResourceBundleString(/task:task/task:systemAttributes/task:taskId,
'CONGRATULATIONS', hwf:getNotificationProperty('locale')))

This results in a message similar to the following:

Dear Cooper, James Task 1111 is assigned to you. Congratulations

34.2.2 Error Message Support
The human workflow email notification layer is automatically configured to warn an
administrator about error occurrences in which intervention is required. Error
notifications and error response messages are persisted.

You can view messages in Oracle Enterprise Manager Fusion Middleware Control.

For more information about viewing messages, see Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

34.2.3 Reliability Support
The human workflow email notification layer works with Oracle User Messaging
Service to provide the following reliability support:

• Messages are not lost:

– If the human workflow email notification layer fails after acknowledging
receipt of a message from the human workflow.

– If the human workflow email notification layer and Oracle User Messaging
Service both fail before the Oracle User Messaging Service acknowledges
receipt of a message from the human workflow.

– If the Oracle User Messaging Service is down. Message delivery is retried
until successful.

– If a notification channel is down.

• Notifications that cannot be delivered are retried three times and the address is
marked as invalid. The address is also added to the bad address list. If needed,
you can manually remove these addresses from the bad address list in Oracle
Enterprise Manager Fusion Middleware Control. Outgoing notifications are not
resent until the address is corrected. To guard against any incorrect identification,

Notifications from Human Workflow

34-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

the address is marked as invalid only for about an hour. No new notifications are
sent in this time.

• Incoming notification responses from an address that has been identified as a
spam source are ignored.

• Incoming notification messages are persisted.

• Incoming notification responses that indicate notification delivery failure (for
example, an unknown host mail) are not ignored. Instead, corrective actions are
automatically taken (for example, the bad address list is updated).

• Incoming notification responses can be configured to send acknowledgements
indicating notification status to the sender.

• Validation of incoming notification responses is performed by correlating the
incoming notification message with the outgoing notification message.

For more information about notifications, see the following:

• Using the Notification Service

• Administering Oracle SOA Suite and Oracle Business Process Management Suite

34.2.4 Management of Oracle Human Workflow Notification Service
An administrator can perform the following management tasks from Oracle Enterprise
Manager Fusion Middleware Control:

• View failed notifications and erroneous incoming notification responses and take
corrective actions.

• Perform corrective actions such as delete, resend, and edit on outgoing
notifications and addresses.

• View bad emails and block email addresses for incoming notification responses.

• Manage the bad email address list.

• Access runtime data of failed notifications. You can purge this data when it is no
longer needed.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

34.2.5 How to Configure the Notification Channel Preferences

To configure the notification channel preferences:

1. In Oracle JDeveloper, configure the notification service for email and other
channels. See Using the Notification Service for details.

2. Open the Human Task Editor in Oracle JDeveloper.

The notifications for a task can be configured during the creation of a task in the
Human Task Editor. Notifications can be sent to different types of participants for
different actions.

The actions for which a task notification can be sent are described in How to Notify
Recipients of Changes to Task Status.

Notifications from Human Workflow

Introduction to Human Workflow Services 34-35

Notifications can be sent to users involved in the task in various capacities. These
users are described in How to Notify Recipients of Changes to Task Status.

When the task is assigned to a group, each user in the group is sent a notification if
no notification endpoint is available for the group.

For more information, see the following:

• Using the Notification Service

• Specifying Participant Notification Preferences to configure task notifications
in the Human Task Editor

• Administering Oracle SOA Suite and Oracle Business Process Management Suite for
details about configuring the notification channel

3. From the messaging server pages of Oracle Enterprise Manager Fusion
Middleware Control, configure the appropriate channel (for example, email). See
Administering Oracle SOA Suite and Oracle Business Process Management Suite for
details.

4. From the Workflow Notification Properties pages of Oracle Enterprise Manager
Fusion Middleware Control, configure the notification mode parameter for the
notification service to either all channels or email.

By default, this value is set to NONE, meaning that no notifications are sent. The
possible values are:

• ALL

The email, IM, SMS, and voice channels are configured and notification is sent
through any channel.

• EMAIL

Only the email channel is configured for sending notification messages.

• NONE

No channel is configured for sending notification messages. This is the default
setting.

34.2.6 How to Configure Notification Messages in Different Languages
A notification consists of four types of data generated from multiples sources and
internationalized differently.

To configure notification messages in different languages:

1. Use one of the following methods to internationalize messages in the notification
content:

a. To use values from the resource bundle specified during the task definition,
use the following XPath extension function:

hwf:getTaskResourceBundleString(taskId, key, locale?)

This function returns the internationalized string from the resource bundle
specified in the task definition.

Notifications from Human Workflow

34-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The locale of the notification recipient can be retrieved with the following
function:

hwf:getNotificationProperty('locale')

The task ID corresponding to a notification can be retrieved with the
following function:

hwf:getNotificationProperty('taskId')

b. If a different resource bundle is used, then use the following XPath extension
to retrieve localized messages:

orcl:get-localized-string()

However, for all internationalized notifications, the locale is obtained from the
BPMUser object of the identity service.

• Prepackaged strings (action links, comments, Oracle BPM Worklist, and so on)

These strings are internationalized in the product as part of the following
package:

oracle.bpel.services.workflow.resource

The user's locale is used to get the appropriate message.

• Task details attachment

The user's locale is used to retrieve the task detail HTML content.

• Task outcome strings (approve, reject, and so on)

The resource bundle for outcomes is specified when the task definition is modeled
in the Advanced Settings section of the Human Task Editor. The key to each of
the outcomes in the resource bundle is the outcome name itself.

• Notification message

For more information, see How to Specify Multilingual Settings.

34.2.7 How to Send Actionable Messages
There are several methods for sending actionable messages. This section provides an
overview of procedures.

Note:

If digital signatures are enabled for a task, actionable emails are not sent
during runtime. This is the case even if actionable emails are enabled during
design time.

34.2.7.1 How to Send Actionable Emails for Human Tasks

Task actions can be performed through email if the task is set up to enable actionable
email (the same actions can also be performed from Oracle BPM Worklist). An
actionable email account is the account in which task action-related emails are
received and processed.

Notifications from Human Workflow

Introduction to Human Workflow Services 34-37

To send actionable emails for human tasks:

1. In the Advanced tab of the Notification section of the Human Task Editor, select
Make notification actionable to make email notifications actionable. This action
enables you to perform task actions through email.

If a notification is actionable, the email contains links for each of the custom
outcomes.

2. To send task attachments with the notification message, select Send task
attachments with email notifications.

When an actionable email arrives, perform the following tasks.

3. Set properties such as incoming server, outgoing mail server, outgoing user name
and password, and others from the Oracle User Messaging Service section of
Oracle Enterprise Manager Fusion Middleware Control.

4. In the Workflow Notification Properties page of Oracle Enterprise Manager Fusion
Middleware Control, set the notification mode to ALL or EMAIL.

5. Click the Approve link to invoke a new email window with approval data.
Figure 34-3 provides details.

Figure 34-3 Actionable Notifications

6. Add comments in the comments section of the approval mail. For example:

This contract has been approved based on the attached information.

7. Add attachments as needed, as shown in Figure 34-4.

Notifications from Human Workflow

34-38 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 34-4 Attachment to an Actionable Email

8. Do not change anything in the subject or the body in this email. If you change the
content with the NID substrings, the email is not processed.

9. Click Send.

10. In the Workflow Task Service Properties page of Oracle Enterprise Manager Fusion
Middleware Control, set the actionable email account name.

For more information about the Oracle User Messaging Service section, Workflow
Notification Properties page, and Workflow Task Service Properties page of Oracle
Enterprise Manager Fusion Middleware Control, see Administering Oracle User
Messaging Service and Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

34.2.8 How to Send Inbound and Outbound Attachments
If the include attachments flag is checked; only email is sent. The emails include all the
task attachments as email attachments.

To send inbound and outbound attachments:

1. Select Send task attachments with email notifications in the Advanced tab of the
Notification section of the Human Task Editor.

In the actionable email reply, the user can add attachments in the email. These
attachments are added as task attachments.

For more information, see How to Make Email Messages Actionable.

34.2.9 How to Send Inbound Comments

To send inbound comments:

1. Add comments in the actionable email reply between Comments[[‘ and ‘]], as
shown in Figure 34-3. Those contents are added as task comments. For example,
Comments[[looks good]].

34.2.10 How to Send Secure Notifications

To send secure notifications:

1. Select Make notifications secure (exclude details) in the Advanced tab of the
Notification section of the Human Task Editor. This action enables a default

Notifications from Human Workflow

Introduction to Human Workflow Services 34-39

notification message to be used. In this case, the notification message does not
include the content of the task. Also, this notification is not actionable. The default
notification message includes a link to the task in Oracle BPM Worklist. You must
log in to see task details.

For more information, see How to Secure Notifications to Exclude Details.

34.2.11 How to Set Channels Used for Notifications

To set channels used for notifications:

1. Set up preferred notification channels by using the preferences user interface in
Oracle BPM Worklist. The channel is dynamically determined by querying the user
preference store before sending the notification. If the user preference is not
specified, then the email channel is used.

34.2.12 How to Send Reminders
Tasks can be configured to send reminders, which can be based on the time the task
was assigned to a user or the expiration time of a task. The number of reminders and
the interval between the reminders can also be configured. The message used for
reminders is the message that is meant for ASSIGNEES when the task is marked as
ASSIGNED.

To send reminders:

1. Set reminders in the Advanced tab of the Notification section of the Human Task
Editor. Reminder configuration involves the following parameters:

• Specify the number of times reminders are sent. The values are No
Reminders, Remind Once, Remind Twice, Remind Three Times.

• Specify when the reminder must be sent. Select the values from Day, Hour,
Minutes, and select Before Expiration or After Expiration. The
values Before Expiration or After Expiration are related to the
expiration of the task.

For more information, see How to Set Up Reminders.

34.2.13 How to Set Automatic Replies to Unprocessed Messages
The human workflow notification service sends you an automatic reply message when
it cannot process an incoming message (due to system error, exception error, user
error, and so on). You can modify the text for these messages in the global resource
bundle. The code sample below shows the WorkflowLabels.properties file. For
more information, see Global Resource Bundle – WorkflowLabels.properties.

String to be prefixed to all auto reply messages
AUTO_REPLY_PREFIX_MESSAGE=Oracle Human Workflow Service
String to be sufixed to all auto reply mesages
AUTO_REPLY_SUFFIX_MESSAGE=This message was automatically generated by Human \
 Workflow Mailer. Do not reply to this mail.

Message indicating closed status of a notified task
TaskClosed=You earlier received the notification shown below. That notification \
 is now closed, and no longer requires your response. You may \
 simply delete it along with this message.

Notifications from Human Workflow

34-40 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Message indicating that notification was "replied" to instead of "responded" by
using the response link.
EMailRepliedNotification=The message you sent appeared to be a reply to a \
 notification. To respond to a notification, use the \
 response link that was included with your notification.

#
EMailUnSolicited= The message you sent did not appear to be in response to a \
 notification. If you are responding to a notification \
 Use the response link that was included with your notification.

EMailUnknownContent= The message you sent did not appear to be in response to a \
 notification. If you are responding to a notification, \
 Use the response link that was included with your notification.

ResponseNotProcessed=Your response to notification could not be processed. \
 Log in to worklist application for more details.

ResponseProcessed=Your response to notification was successfully processed.

34.2.14 How to Create Custom Notification Headers
Some task participants may have access to multiple notification channels. You can use
custom notification headers to enable this type of participant to specify a single
channel as the preferred channel on which to receive notifications.

To create custom notification headers:

1. In the Notification header attributes section of the Advanced tab of the
Notification section of the Human Task Editor, create custom notification headers
that specify the preferred notification channel to use (such as voice, SMS, and so
on). The human workflow email notification layer provides these header values to
the rule-based notification service of the Oracle User Messaging Service for use.

For example, set the Name field to deliveryType and the Value field to SMS.

The rule-based notification service is only used to identify the preferred notification
channel to use. The address for the preferred channel is obtained from Oracle
Identity Management. The notification message is created from the information
provided by both services.

For more information, see the following:

• How to Send Task Attachments with Email Notifications

• Developing Applications with Oracle User Messaging Service

34.3 Assignment Service Configuration
Learn how to configure the assignment service with dynamic assignment functions.

• Dynamic Assignment and Task Escalation Patterns

• Dynamically Assigning Task Participants with the Assignment Service

• Custom Escalation Function

Assignment Service Configuration

Introduction to Human Workflow Services 34-41

34.3.1 Dynamic Assignment and Task Escalation Patterns
When tasks are assigned to a group, application role, or list of users a single user must
claim a task to act on it. However, you can also automatically send work to users by
using various dispatching mechanisms.

Automatic task dispatching is done through dynamic assignment patterns. Dynamic
assignment patterns select a particular user or group from either a group or a list of
users or groups. Similarly, when a task is escalated, a task escalation pattern can be
used to determine the user to whom the task should be escalated to. Several patterns
are provided out of the box. However, you can also create your own patterns for
dynamic assignment and task escalation and register them with the workflow service.
Table 34-21 describes the three dynamic assignment patterns and one task escalation
pattern that are provided out-of-the-box.

Table 34-21 Dynamic Assignment Patterns

Assignment Pattern Type Description

LEAST_BUSY Dynamic
assignment

Picks the user or group with the least number
of tasks currently assigned to it.

MOST_PRODUCTIVE Dynamic
assignment

Picks the user or group that has completed the
most tasks over a certain time period (by
default, the last seven days).

ROUND_ROBIN Dynamic
assignment

Picks each user or group in turn.

MANAGERS_MANAGE
R

Task escalation Picks the manager's manager.

These patterns all check a user's vacation status. A user that is currently unavailable is
not automatically assigned tasks.

Dynamic assignment patterns can be used when defining a task participant, as
described in How to Configure the Single Participant Type. They can also be used
with task-assignment rules allowing end-users to specify dynamic assignment of tasks
to the members of groups that they manage, as described in How To Create Group
Rules.

The dynamic assignment patterns can also be called by using an xpath function in any
xpath expression in the task definition.

The signature of the function is:

hwf:dynamicTaskAssign(patternName, participants, inputParticipantType,
targetAssigneeType, isGlobal, invocationContext, parameter1, parameter2, ...,
parameterN)

The parameters are:

• patternName: Mandatory. Name of the pattern to use

• participants: Mandatory. The participant or participants to select the assignee
from. Can be a string or element containing a participant name or a comma-
separated list of participant names, or a set of elements containing participant
names or comma-separated lists of participant names. Participants must all be of
the same type.

Assignment Service Configuration

34-42 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• inputParticipantType: Mandatory. The type of the input participants (user,
group, or application_role)

• targetAssigneeType: Mandatory. The type of assignee to select (user, group,
or application_role). Value must match the context in which the function is being
used (for example, must be user if dynamically selecting an owner user. If the
inputParticipantType is user, the only valid value here is user.

• isGlobal: Boolean value that indicates if the pattern should be assessed using
tasks of all types, or just tasks of the same type as the current task. Optional -
defaults to false.

• invocationContext: String to uniquely identify where this function is being
used. If not specified, a default context is assigned.

• parameterN: Some dynamic assignment patterns allow parameters to be
specified. The parameter values can be specified as name-value pairs, using an “="
character as a delimiter - for example, “TIME_PERIOD=7"

Example usages:

hwf:dynamicTaskAssign(“LEAST_BUSY","jcooper,jstein,mtwain","user","user","true","Erro
rAssignee")

hwf:dynamicTaskAssign(“MOST_PRODUCTIVE",task:task/task:payload/
task:users,"user","user","false","OwnerUser","TIME_PERIOD=7")

hwf:dynamicTaskAssign(“LEAST_BUSY","DeveloperRole","application_role","group"):

Before 12c Release 1 (12.1.3), dynamic assignment could be achieved by using the
XPath functions wfDynamicUserAssign and wfDynamicGroupAssign. These
XPath functions have been deprecated in 12c Release 1 (12.1.3). They can still be used,
but Oracle recommends that you migrate any existing usage of these XPath functions
to the new dynamicTaskAssign function.

34.3.1.1 How to Implement a Dynamic Assignment Pattern

Follow these procedures to implement your own dynamic assignment pattern.

To implement dynamic assignment patterns:

Write a Java class that implements the following interface:

oracle.bpel.services.workflow.assignment.dynamic.IDynamicAssignmentPattern

Implementations must provide support for selecting a single assignee from a list of
participants (all of the same type) by implementing the method
getAssigneeFromParticipantList.

An implementation does not have to support all assignee types. The interface provides
the method getSupportedAssigneeType to enable the implementation to specify
which types of assignee it supports.

Implementations can accept input parameters to specify selection criteria, the Dynamic
Assignment Framework validates these input parameters, and the implementation can
define its parameters (if any) in the method getPatternParameters().

An implementation can also accept initialization parameters, which are set when the
implementation is initialized by the framework. The parameter values are defined in
the human workflow configuration (either using configMBean, or by Human

Assignment Service Configuration

Introduction to Human Workflow Services 34-43

Workflow Service Engine configuration in Oracle Enterprise Manager Fusion
Middleware Control), where the dynamic assignment pattern is registered.

For convenience, the framework provides the class
AbstractDynamicAssignmentPattern which implements some common
functionality. Assignment pattern implementations can extend this abstract class, to
save implementing some parameter and localization support.

Before 11g (11.1.1.6.0), custom dynamic assignment patterns were implemented using
one or both of the following interfaces:

oracle.bpel.services.workflow.assignment.dynamic.IDynamicGroupAssignmentFunction
oracle.bpel.services.workflow.assignment.dynamic.IDynamicUserAssignmentFunction

These interfaces do not offer all the features available in the
IDynamicAssingmentPattern interface, and have been deprecated. The Dynamic
Assignment Framework remains backward compatible with implementations that use
the old interface, but Oracle recommends that you migrate any implementations you
have to use the new interface.

For information about the Javadoc for dynamic assignment interfaces and utilities, see
Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process
Manager.

34.3.1.2 How to Configure Dynamic Assignment Patterns

Dynamic assignment patterns are configured along with other human workflow
configuration parameters in Oracle Enterprise Manager Fusion Middleware Control.

Each dynamic assignment has two mandatory parameters:

• name:

The name of the pattern

• classpath:

The fully qualified class name of the class that implements the pattern.

In addition, each pattern can optionally have any number of properties. These
properties are simple name-value pairs that are passed as initialization parameters to
the pattern.

The property values specified in these tags are passed as a map (indexed by the value
of the name attributes) to the setInitParameters method of the dynamic
assignment patterns.

Two of the out-of-the-box patterns have initialization parameters. These are:

• ROUND_ROBIN

The parameter MAX_MAP_SIZE specifies the maximum number of sets of users or
groups for which the pattern can maintain ROUND_ROBIN counts. The dynamic
assignment pattern holds a list of users and groups in memory for each group (or
list of users and groups) on which it is asked to execute the ROUND_ROBIN
pattern.

• MOST_PRODUCTIVE

The parameter DEAFULT_TIME_PERIOD specifies the length of time (in days)
over which to calculate the user's productivity. This value can be overridden
when calling the MOST_PRODUCTIVE dynamic assignment pattern.

Assignment Service Configuration

34-44 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

34.3.1.3 How to Configure Display Names for Dynamic Assignment Patterns

The runtime config service provides methods for returning a list of available user and
group dynamic assignment patterns. These patterns return both the name of the
pattern, and a user-displayable label and description for the pattern and its
parameters. The patterns support localization of the display name, so that it displays
in the appropriate language for the context user. These patterns are used by Oracle
BPM Worklist and the JDeveloper Human Task Editor to show a list of available
dynamic assignment patterns.

The dynamic assignment framework provides methods allowing pattern
implementations to provide human-readable display names and descriptions for
patterns and their parameters.

The out-of-the-box pattern implementations, and custom implementations that extend
the AbstractDynamicPattern class use the WorkflowLabels.properties
resource bundle file to configure these display strings.

To configure display names for dynamic assignment patterns:

Specify display names and descriptions (and appropriate translations) for your
dynamic assignment patterns and their parameters by adding entries to the resource
property file WorkflowLabels.properties, and associated resource property files
in other languages. This file should be placed in the class path identified in the
workflow configuration parameter workflowCustomizationsClasspathURL, at
the path

oracle/bpel/services/workflow/resource/WorkflowLabels.properties

Entries for dynamic assignment patterns must be of the following form:

DYN_ASSIGN_FN.[pattern name]=Pattern Display Name

DYN_ASSIGN_DESCR.[pattern name]=Function Description

DYN_ASSIGN_PARAM_LABEL.[pattern name].[parameter name]=Parameter Display Name

DYN_ASSIGN_PARAM_LABEL.[pattern name].[parameter name]=Parameter Description

For instance, the entries for the MOST_PRODUCTIVE pattern are:

DYN_ASSIGN_FN.MOST_PRODUCTIVE = Most Productive

DYN_ASSIGN_DESCR.MOST_PRODUCTIVE = Picks the user, group or application role that
has completed the highest number of tasks within a certain time period. For group
and application roles the total number of tasks completed by all the users who
are direct members of that group or role are counted. The time period to use can
be specified using the Time Period parameter. If no time period is specified,
then the default value specified in the dynamic assignment configuration for the
instance is used.

DYN_ASSIGN_PARAM_LABEL.MOST_PRODUCTIVE.TIME_PERIOD = Time Period

DYN_ASSIGN_PARAM_DESCR.MOST_PRODUCTIVE.TIME_PERIOD = The previous number of days
over which to count the number of completed tasks. If not specified, the default
value defined in the human workflow dynamic assignment configuration is used.

Adding entries to these files for dynamic assignment patterns is optional. If no entry is
present in the file, then the name of the function (for example, ROUND_ROBIN') is used
instead.

Assignment Service Configuration

Introduction to Human Workflow Services 34-45

For more information about the WorkflowLabels.properties file, see the
workflow-110-workflowCustomizations sample available with the Oracle SOA
Suite samples.

34.3.1.4 How to Implement a Task Escalation Pattern

Task escalation functions are very similar to dynamic assignment patterns, but
perform a different function (determining to whom a task is assigned when it is
escalated). Custom implementations must implement a different interface
(IDynamicTaskEscalationPattern).

34.3.2 Dynamically Assigning Task Participants with the Assignment Service
Human workflow participants are specified declaratively in a routing slip. The routing
slip guides the human workflow by specifying the participants and how they
participate in the human workflow (for example, management chain hierarchy, serial
list of approvers, and so on).

The Human Task Editor enables you to declaratively create the routing slip using
various built-in patterns. In addition, you can use advanced routing based on business
rules to do more complex routing. However, to do more sophisticated routing using
custom logic, you implement a custom assignment service to do routing.

To support a dynamic assignment, an assignment service is used. The assignment
service is responsible for determining the task assignees. You can also implement your
own assignment service and plug in that implementation for use with a particular
human workflow.

The assignment service determines the following task assignment details in a human
workflow:

• The assignment when the task is initiated.

• The assignment when the task is reinitiated.

• The assignment when a user updates the task outcome. When the task outcome is
updated, the task can either be routed to other users or completed.

• The assignees from whom information for the task can be requested.

• If the task supports reapproval from Oracle BPM Worklist, a user can request
information for reapproval.

• The users who reapprove the task if reapproval is supported.

The human workflow service identifies and invokes the assignment service for a
particular task to determine the task assignment.

For example, a simple assignment service iteration is as follows:

1. A client initiates an expense approval task whose routing is determined by the
assignment service.

2. The assignment service determines that the task assignee is jcooper.

3. When jcooper approves the task, the assignment service assigns the task to
jstein. The assignment service also specifies that a notification must be sent to
the creator of the task, jlondon.

4. jstein approves the task and the assignment service indicates that there are no
more users to whom to assign the task.

Assignment Service Configuration

34-46 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

34.3.2.1 How to Implement an Assignment Service

To implement an assignment service:

1. Implement the assignment service with the IAssignmentService interface. The
human workflow service passes the following information to the assignment
service to determine the task assignment:

• Task document

The task document that is executed by the human workflow. The task
document contains the payload and other task information like current state,
and so on.

• Map of properties

When an assignment service is specified, a list of properties can also be
specified to correlate callbacks with back-end services that determine the task
assignees.

• Task history

The task history is a list of chronologically-ordered task documents to trace the
history of the task. The task documents in this list contain a subset of attributes
in the actual task (such as state, updatedBy, outcome, updatedDate, and
so on).

34.3.2.2 Example of Assignment Service Implementation

Note:

• The assignment service class cannot be stateful. This is because every time
human workflow services must call the assignment service, it creates a
new instance.

• The getAssigneesToRequestForInformation method can be called
multiple times because one of the criteria to show the request-for-
information action is that there are users to request information.
Therefore, this method is called every time the human workflow service
tries to determine the permitted actions for a task.

You can implement your own assignment service plug-in that the human workflow
service invokes during human workflow execution.

The code sample below provides a sample IAssignmentService implementation
named TestAssignmentService.java.

/* $Header: TestAssignmentService.java 24-may-2006.18:26:16 Exp $ */
/* Copyright (c) 2004, 2006, Oracle. All rights reserved. */
/*
 DESCRIPTION
 Interface IAssignmentService defines the callbacks an assignment
 service implements. The implementation of the IAssignmentService
 is called by the workflow service
 PRIVATE CLASSES
 <list of private classes defined - with one-line descriptions>
 NOTES

Assignment Service Configuration

Introduction to Human Workflow Services 34-47

 <other useful comments, qualifications, etc.>
 MODIFIED (MM/DD/YY)

 */
/**
 * @version $Header: IAssignmentService.java 29-jun-2004.21:10:35 Exp
 $
 *
 *
 */
package oracle.bpel.services.workflow.test.workflow;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import oracle.bpel.services.workflow.metadata.routingslip.model.*;
import oracle.bpel.services.workflow.metadata.routingslip.model.Participants;
import oracle.bpel.services.workflow.metadata.routingslip.model.ParticipantsType.*;
import oracle.bpel.services.workflow.task.IAssignmentService;
import oracle.bpel.services.workflow.task.ITaskAssignee;
import oracle.bpel.services.workflow.task.model.Task;
public class TestAssignmentService implements
 oracle.bpel.services.workflow.task.IAssignmentService {
 static int numberOfApprovals = 0;
 static String[] users = new String[]{"jstein", "wfaulk", "cdickens"};
 public Participants onInitiation(Task task,
 Map propertyBag) {
 return createParticipant();
 }
 public Participants onReinitiation(Task task,
 Map propertyBag) {
 return null;
 }
 public Participants onOutcomeUpdated(Task task,
 Map propertyBag,
 String updatedBy,
 String outcome) {
 return createParticipant();
 }
 public Participants onAssignmentSkipped(Task task,
 Map propertyBag) {
 return null;
 }
 public List getAssigneesToRequestForInformation(Task task,
 Map propertyBag) {
 List rfiUsers = new ArrayList();
 rfiUsers.add("jcooper");
 rfiUsers.add("jstein");
 rfiUsers.add("wfaulk");
 rfiUsers.add("cdickens");
 return rfiUsers;
 }
 public List getReapprovalAssignees(Task task,
 Map propertyBag,
 ITaskAssignee infoRequestedAssignee) {
 List reapprovalUsers = new ArrayList();
 reapprovalUsers.add("jstein");
 reapprovalUsers.add("wfaulk");
 reapprovalUsers.add("cdickens");
 return reapprovalUsers;
 }
 private Participants createParticipant() {

Assignment Service Configuration

34-48 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 if (numberOfApprovals > 2) {
 numberOfApprovals = 0;
 return null;
 }
 String user = users[numberOfApprovals++];

 ObjectFactory objFactory = new ObjectFactory();
 Participants participants = objFactory.createParticipants();
 Participant participant = objFactory.createParticipantsTypeParticipant();
 participant.setName("Loan Agent");
 ResourceType resource2 = objFactory.createResourceType(user);
 resource2.setIsGroup(false);
 resource2.setType("STATIC");
 participant.getResource().add(resource2);

 participants.getParticipantOrSequentialParticipantOrAdhoc().
 add(participant);
 return participants;
 }

}

34.3.2.3 How to Deploy a Custom Assignment Service

To deploy a custom assignment service:

1. Use one of the following methods to make an assignment service implementation
class and its related classes available in the class path of Oracle BPEL Process
Manager:

• Load your classes in SCA-INF/classes directly or in SCA-INF/lib as a
JAR.

• Place the class files for your custom function in a directory tree or JAR file.
Then, update the worklfowCustomClasspathURL configuration parameter
to point to the JAR or root directory in which your classes are located. As this
is a URL, it is possible to host the class files on a web server, and make them
accessible to multiple Oracle WebLogic Servers through HTTP. It is even
possible to deploy the files into the metadata repository (MDS), and use an
ORAMDS URL to point to the appropriate location. This approach is described
in detail in sample workflow-110-workflowCustomizations. To download this
sample, visit the Oracle SOA Suite samples.

Note:

• You cannot create different versions of the assignment service for use in
different BPEL processes unless you change package names or class
names.

• Java classes and JAR files in the suitcase are not available in the class path
and therefore cannot be used as a deployment model for the assignment
service.

• The steps must be repeated for each node in a cluster.

Assignment Service Configuration

Introduction to Human Workflow Services 34-49

34.3.3 Custom Escalation Function
The custom escalation function enables you to integrate a custom rule in a human
workflow.

To implement a custom escalation function:

1. Create a custom task escalation function and register this with the human
workflow service that uses that function in task definitions.

2. Use the Human Task Editor to integrate the rule in a human workflow.

For more information, see How to Specify Escalation Rules.

34.4 Class Loading for Callbacks and Resource Bundles
You can load classes for callbacks and resource bundles directly from the SOA project
instead of having to load classes in the oracle.soainfra.common shared library
and restarting Oracle WebLogic Server.

Callbacks

• IAssignmentService

• IRestrictedAssignmentService

• IRoutingSlipCallback

• IPercentageCompletionCallback

• INotificationCallback

• Project level resource bundles

The callback classes can be in the following locations:

• JARs in the SCA-INF/lib directory of the project

• Classes in the SCA-INF/classes directory of the project

Additionally, to support backward compatibility, the project level resource bundles
can also be in the same directory as the .task file.

34.5 Resource Bundles in Workflow Services
Get an overview of the resource bundles used in human workflow services and how
they can be customized to provide alternative resource strings.

The human workflow service APIs and Oracle BPM Worklist use the locale set in the
IWorkflowContext object to access the APIs. This is the locale of the user in the user
directory configured with the identity service. If no locale is specified for the user, then
the default locale for the Java EE server is used instead.

It is possible for API clients to override this locale by setting a new value in the
IWorkflowContext object. Oracle BPM Worklist provides a user preference option
that allows users to use their browser's locale, rather than the locale set in their user
directory.

Class Loading for Callbacks and Resource Bundles

34-50 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

34.5.1 Task Resource Bundles
Each human workflow component can be associated with a resource bundle. The
bundle defines the resource strings to use as display names for the task outcomes. The
resource strings are returned by the TaskMetadataService method
getTaskDefinitionOutcomes, and are displayed in Oracle BPM Worklist and the
task flow task details application.

In addition, you can use the human workflow XPath function
getTaskResourceBundle string to look up resource strings for the task's resource
bundle. For example, this XPath function can be part of the XPath expression used to
construct notification messages for the task.

A human workflow component is associated with a resource bundle by setting the
Resource Name and Resource Location fields of the Resource Details dialog in the
Presentation section of the Human Task Editor. The value for the Resource Location
field is a URL, and the resource bundle can be contained within a JAR file pointed to
by the URL. It is possible to share the same resource bundle between multiple human
workflow components by using a common location for the resource bundle.

If no resource bundle is specified for the human workflow component, the resource
string is looked up in the global resource bundle. (See Global Resource Bundle –
WorkflowLabels.properties.) Commonly-used task outcomes can be defined in the
global resource bundle, alleviating the need to define a resource bundle for individual
human workflow components.

If no resource string can be located for a particular outcome, then the outcome name is
used as the display value in all locales.

34.5.2 Global Resource Bundle – WorkflowLabels.properties
The following global resource bundle is used by human workflow service APIs to look
up resource strings:

oracle.bpel.services.workflow.resource.WorkflowLabels.properties

You can customize this bundle to provide alternatives for existing display strings or to
add additional strings (for example, for mapped attribute labels, standard views, or
custom dynamic assignment functions).

The global resource bundle provides resource strings for the following:

• Task attributes:

Labels for the various task attributes displayed in Oracle BPM Worklist (or other
clients). Resource string values are returned from the following
TaskMetadataService methods:

– getTaskAttributes

– getTaskAttributesForTaskDefinition

– getTaskAttributesForTaskDefinitions

• Mapped attribute labels:

Mapped attribute labels created through the runtime config service. These strings
are used in Oracle BPM Worklist when displaying mapped attributes. Resource
string values are returned from the TaskMetadataService methods:

Resource Bundles in Workflow Services

Introduction to Human Workflow Services 34-51

– getTaskAttributesForTaskDefinition

– getTaskAttributesForTaskDefinitions

If translated resource strings are required for mapped attribute mappings, then
customize the WorkflowLabels.properties bundle to include the
appropriate strings.

• Task outcomes:

Default resource strings for common task outcomes. These can be overridden by
the task resource bundle, as described above. The resource strings are returned by
the TaskMetadataService method getTaskDefinitionOutcomes, if no
task-specific resource bundle has been specified. As shipped, the global resource
bundle contains resource strings for the following outcomes:

– Approve

– Reject

– Yes

– No

– OK

– Defer

– Accept

– Acknowledge

• Dynamic assignment function names:

Labels for dynamic assignment functions. These strings are returned from the
runtime config service methods getUserDynamicAssignmentFunctions and
getGroupDynamicAssignmentFunctions. The shipped resource bundle
contains labels for the standard dynamic assignment functions (ROUND_ROBIN,
LEAST_BUSY, and MOST_PRODUCTIVE). If additional custom dynamic
assignment functions have been created, then modify the
WorkflowLabels.properties resource bundle to provide resource strings for
the new functions.

• Standard view names:

Labels for standard views. If you want translated resource strings for any
standard views you create, then add them here. Standard view resource strings
are looked up from the resource bundle, and are returned as the standard view
name from the UserMetadataService methods getStandardTaskViewList
and getStandardTaskViewDetails. The key for the resource string should be
the name given to the standard view when it is created. If no resource string is
added for a particular standard view, then the name as entered is used instead.

• Notification messages:

Resource strings used when the task service sends automatic notifications. These
can be customized to suit user requirements.

• Task routing error comments:

Resource Bundles in Workflow Services

34-52 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

When an error is encountered in the routing of a task, the task service
automatically appends comments to the task to describe the error. The various
strings used for the comments are defined in this resource bundle.

A copy of the WorkflowLabels.properties resource bundle is available in the
sample workflow-110-workflowCustomizations.

You can customize the WorkflowLabels.properties resource bundle.

To customize the file:

1. Edit the properties file.

2. Add the customized class to the class-path used for workflow services. Ensure
that customized file is located before the default class in the class-path.

3. Save the customized file to the following directory:

directory_path/oracle/bpel/services/workflow/resource/WorkflowLabels.properties

4. Update the worklfowCustomClasspathURL configuration parameter to point
to directory_path. As this is a URL, it is possible to host the resource bundles
on a web server, or to store them in the MDS repository for the SOA server, and
use the 'oramds' URL protocol, and make them accessible to multiple Oracle
WebLogic Servers. This approach is described in detail in sample workflow-110-
workflowCustomizations. To download this sample, visit the Oracle SOA Suite
samples.

34.5.3 Worklist Client Resource Bundles
The ADF worklist client application uses two resource bundles that contain all the
strings displayed in the worklist client web application.

• oracle.bpel.worklistapp.resource.WorkflowResourceBundle:

This contains strings used by both the ADF Oracle BPM Worklist, and the JSP-
based sample Oracle BPM Worklist that shipped with version 10.1.3 of Oracle
SOA Suite.

• oracle.bpel.worklistapp.resource.WorklistResourceBundle:

This contains strings used only by the ADF Oracle BPM Worklist.

Copies of the worklist resource bundles are available in the sample workflow-110-
workflowCustomizations.

The sample illustrates how to customize Oracle BPM Worklist by recompiling these
resource bundles, and adding the updated classes to Oracle BPM Worklist.

34.5.4 Task Detail ADF Task Flow Resource Bundles
The ADF task flow applications and associated data controls that get created to
display the details of a particular task type use the resource bundle
oracle.bpel.services.workflow.worklist.resource.worklist to store
their resource strings.

You can provide your own custom resource strings for a task detail ADF task flow by
adding a customized resource bundle in the task flow application.

Resource Bundles in Workflow Services

Introduction to Human Workflow Services 34-53

You can localize the XML element name displayed in the task flow form through this
resource bundle. You can add keys, and use them in the task flow form contents
section. The input text label looks as follows:

#{resources.mykeyword}

A copy of the WorkflowLabels.properties resource bundle is available in the
sample workflow-110-workflowCustomizations. This sample illustrates in detail how
to provide your own customized resource strings for the task detail ADF task flow
application.

34.5.5 Specifying Stage and Participant Names in Resource Bundles
You can provide translated values for stage names and participant names in the
composite resource bundle. The resource bundle should contain entries such as the
following:

• stage_name=translated_value

• participant_name=translated_value

34.5.6 Case Sensitivity in Group and Application Role Names
By default, the human workflow system is case insensitive to user names. All user
names are stored in lowercase. However, group names and application role names are
always case sensitive. User name case insensitivity can be changed in Oracle
Enterprise Manager Fusion Middleware Control.

Caution:

Only change this setting after performing a new installation. Changing this
value on an installation that is actively processing instances, or has many
instances in the database, causes serious issues.

To change case sensitivity:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. In the navigator, expand the SOA folder.

3. Right-click soa-infra, and select Administration > System Mbean Browser.

The System MBean Browser displays on the right side of the page.

4. Expand Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowIdentityConfig > human-workflow >
WorkflowIdentityConfig.PropertyType.

5. Click caseSensitive.

6. Click the Operations tab.

7. Click setValue.

8. In the Value field, enter true, and click Invoke.

If you are upgrading from 10.1.3, which by default was case sensitive, set
caseSensitive to true for the system to be the same as with 10.1.3.

Resource Bundles in Workflow Services

34-54 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

34.6 Introduction to Human Workflow Client Integration with Oracle
WebLogic Server Services

Learn how human workflow clients integrate with Oracle WebLogic Server services.

34.6.1 Human Workflow Services Clients
Human workflow services expose the following workflow services:

• Task service

• Task query service

• User metadata service

• Task evidence service

• Task metadata service

• Runtime config service

• Task report service

To use any of these services, you must use the abstract factory pattern for workflow
services. The abstract factory pattern provides a way to encapsulate a group of
individual factories that have a common theme.

Perform the following tasks:

• Get the IWorkflowServiceClient instance for the specific service type. The
WorkflowServiceClientFactory provides a static factory method to get
IWorkflowServiceClient according to the service type.

• Use the IWorkflowServiceClient instance to get the service instance to use.

The supported service types are Remote and Soap.

Remote clients use Enterprise JavaBeans clients (remote Enterprise JavaBeans,
accordingly). SOAP uses SOAP clients. Each type of service requires you to configure
workflow clients. The first code sample in Workflow Client Configuration File -
wf_client_config.xml provides details.

The client configuration file can contain definitions for several configurations. Each
server must have its own unique name. If the configuration file defines multiple
servers, one server must be set with the default attribute equal to true. The
workflowServicesClientConfiguration has an optional attribute named
serverType that can be set to one of the following: LOCAL, REMOTE, or SOAP. Each
server can override the client type by using the optional attribute clientType.

The second code sample in Workflow Client Configuration File - wf_client_config.xml
provides details.

In the second example, server2 uses the default clientType of REMOTE, while
server1 overrides the default clientType value to use the clientType of SOAP.
The same rule applies if the JAXB
WorkflowServicesClientConfigurationType object is used instead of the
wf_client_config.xml file.

If the configuration defines a client type, you can use the factory method from the
WorkflowServiceClientFactory class. See the code sample below:

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 34-55

public static IWorkflowServiceClient
 getWorkflowServiceClient(WorkflowServicesClientConfigurationType wscc, Logger
 logger) throws WorkflowException

If the map defines a client type with the property
CONNECTION_PROPERTY.CLIENT_TYPE, the factory method in the code sample
below can be used:

public static IWorkflowServiceClient getWorkflowServiceClient(Map<CONNECTION_
PROPERTY, String> properties, String serverName, Logger logger) throws
 WorkflowException

34.6.1.1 Task Query Service Client Code

The code sample below provides an example of the task query service client code:

/**
 * WFClientSample
 */
package oracle.bpel.services.workflow.samples;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import oracle.bpel.services.workflow.IWorkflowConstants;
import oracle.bpel.services.workflow.WorkflowException;
import oracle.bpel.services.workflow.client.IWorkflowServiceClient;
import oracle.bpel.services.workflow.client.WorkflowServiceClientFactory;
import oracle.bpel.services.workflow.client.IWorkflowServiceClientConstants
 .CONNECTION_PROPERTY;
import oracle.bpel.services.workflow.query.ITaskQueryService;
import oracle.bpel.services.workflow.query.ITaskQueryService.AssignmentFilter;
import oracle.bpel.services.workflow.query.ITaskQueryService.OptionalInfo;
import oracle.bpel.services.workflow.repos.Ordering;
import oracle.bpel.services.workflow.repos.Predicate;
import oracle.bpel.services.workflow.repos.TableConstants;
import oracle.bpel.services.workflow.verification.IWorkflowContext;

public class WFClientSample {

 public static List runClient(String clientType) throws WorkflowException {
 try {

 IWorkflowServiceClient wfSvcClient = null;
 ITaskQueryService taskQuerySvc = null;
 IWorkflowContext wfCtx = null;

 // 1. this step is optional since configuration can be set in wf_client_
 config.xml file
 Map<CONNECTION_PROPERTY, String> properties = new HashMap<CONNECTION_
PROPERTY, String>();
 if (WorkflowServiceClientFactory.REMOTE_CLIENT.equals(clientType)) {
 properties.put(CONNECTION_PROPERTY.EJB_INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 properties.put(CONNECTION_PROPERTY.EJB_PROVIDER_URL,
 "t3://myhost.us.example.com:7001");
 properties.put(CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS,
 "weblogic");
 properties.put(CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL, "weblogic");
 } else if (WorkflowServiceClientFactory.SOAP_CLIENT.equals(clientType)) {

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-56 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost:7001");
 properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_
PROPAGATION,"non-saml"); // optional
 }
 // 2. gets IWorkflowServiceClient for specified client type
 wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient(clientType, properties,
 null);

 // 3. gets ITaskQueryService instance
 taskQuerySvc = wfSvcClient.getTaskQueryService();

 // 4. gets IWorkflowContext instance
 wfCtx = taskQuerySvc.authenticate("jcooper", "welcome1".toCharArray(),
 "jazn.com");

 // 5. creates displayColumns
 List<String> displayColumns = new ArrayList<String>(8);
 displayColumns.add("TASKID");
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("CATEGORY");

 // 6. creates optionalInfo
 List<ITaskQueryService.OptionalInfo> optionalInfo = new
 ArrayList<ITaskQueryService.OptionalInfo>();
 optionalInfo.add(ITaskQueryService.OptionalInfo.DISPLAY_INFO);

 // 7. creates assignmentFilter
 AssignmentFilter assignmentFilter = AssignmentFilter.MY_AND_GROUP;

 // 8. creates predicate
 List<String> stateList = new ArrayList<String>();
 stateList.add(IWorkflowConstants.TASK_STATE_ASSIGNED);
 stateList.add(IWorkflowConstants.TASK_STATE_INFO_REQUESTED);
 Predicate predicate = new Predicate(TableConstants.WFTASK_STATE_COLUMN,
 Predicate.OP_IN, stateList);

 // 9. creates ordering
 Ordering ordering = new Ordering(TableConstants.WFTASK_DUEDATE_COLUMN,
 true, false);
 ordering.addClause(TableConstants.WFTASK_CREATEDDATE_COLUMN, true,
 false);

 // 10. calls service - query tasks
 List taskList = taskQuerySvc.queryTasks(wfCtx,
 (List<String>) displayColumns,
 (List<OptionalInfo>) optionalInfo,
 (AssignmentFilter)
 assignmentFilter,
 (String) null, // keywords is
 optional (see javadoc)
 // optional
 predicate,
 ordering,
 0, // starting row
 100); // ending row for paging, 0
 if no paging

 // Enjoy result

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 34-57

 System.out.println("Successfuly get list of tasks for client type: " +
 clientType +
 ". The list size is " + taskList.size());
 return taskList;
 } catch (WorkflowException e) {
 System.out.println("Error occurred");
 e.printStackTrace();
 throw e;
 }
 }

 public static void main(String args[]) throws Exception {
 runClient(WorkflowServiceClientFactory.REMOTE_CLIENT);
 runClient(WorkflowServiceClientFactory.SOAP_CLIENT);
 }

}

34.6.1.2 Configuration Option

Each type of client is required to have a workflow client configuration. You can set the
configuration in the following locations:

• JAXB object

• wf_client_config.xml file

• Property map

The property map is always complementary to the wf_client_config.xml file.
The JAXB object or property map can overwrite the configuration attribute. The file is
optional. If it cannot be found in the application class path, then the property map is
the main source of configuration.

34.6.1.2.1 JAXB Object

You can use the JAXB object to define the client configuration. The code sample below
shows how to use the WorkflowServiceClientFactory method.

public static IWorkflowServiceClient getWorkflowServiceClient(String
clientType,WorkflowServicesClientConfigurationType wscc,Logger logger) throws
WorkflowException

34.6.1.2.2 Workflow Client Configuration File - wf_client_config.xml

The client configuration XSD schema is present in the wf_client_config.xsd file.

The server configuration should contain three types of clients:

• localClient

• remoteClient

• soapClient

Oracle recommends that you specify all clients. This is because some services (for
example, the identity service) do not have remote clients. Therefore, when you use
remote clients for other services, the identity service uses the SOAP service.

An example of a client configuration XML file is shown in the code sample below. The
configuration defines a server named default. The XML file must go into the client
application's EAR file.

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-58 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<workflowServicesClientConfiguration>
server name="default" default="true">

<remoteClient>
 <serverURL>t3://myhost.us.example.com:7001</serverURL>
 <userName>weblogic</userName>
 <password>weblogic</password>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory
 </initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
</remoteClient>

<soapClient>
 <rootEndPointURL>http://myhost.us.example.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
</soapClient>

</server>
</workflowServicesClientConfiguration>

The following code sample shows an example of a client configuration file with
multiple configuration definitions:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<workflowServicesClientConfiguration
 xmlns="http://xmlns.oracle.com/bpel/services/client" clientType="REMOTE"
 <server name="server1" default="true" clientType="SOAP">
 <remoteClient>
 <serverURL>t3://myhost1.us.example.com:7001</serverURL>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory</
initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
 </remoteClient> -->
 <soapClient>
 <rootEndPointURL>http://myhost1.us.example.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
 </soapClient>
 </server>
 <server name="server2">
 <remoteClient>
 <serverURL>t3://myhost2.us.example.com:7001</serverURL>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory</
initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
 </remoteClient> -->
 <soapClient>
 <rootEndPointURL>http://myhost2us.example.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 34-59

 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
 </soapClient>
 </server>
</workflowServicesClientConfiguration>

You can define client properties in wf_client_config.xml when
WorkflowServicesClientConfigurationType wscc is null.

The WorkflowServiceClientFactory getWorkflowServiceClient()
methods always look for wf_client_config.xml in the class path. If this file is
found, the client properties are loaded.

All properties defined in either the property map or the JAXB object override values
defined in the wf_client_config.xml file.

34.6.1.2.3 Workflow Client Configuration in the Property Map

To specify the connection property dynamically, you can use a java.util.Map to
specify the properties. The properties take precedence over definitions in the
configuration file. Therefore, the values of the properties overwrite the values defined
in wf_client_config.xml. If you do not want to dynamically specify connection
details to the server, you can omit the property setting in the map and pass a null
value to the factory method. In that case, the configuration wf_client_config.xml
is searched for in the client application class path.

The configuration file must be in the class path only to get the configuration from the
file. It is optional to have the file if all settings from the specific client type are done
through the property map. The JAXB object is also not required to have the file, since
all settings are taken from the JAXB object. The code sample below provides details.

IWorkflowServiceClient wfSvcClient =
WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory
.REMOTE_CLIENT,
(Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY, String>) null, null);

If you do so, the value from wf_client_config.xml found in the class path is used
by the client to access the services. If the file is not found in the class path and you do
not provide the setting according to the service type, a workflow exception is thrown.
If the properties map is null and the file is not found, an exception is thrown. If the
client omits some properties in the map while the file is not found, the service call fails
at runtime (the properties are complementary to the file).

You can define client properties by using the WorkflowServiceClientFactory
method. The code sample below provides details.

public static IWorkflowServiceClient getWorkflowServiceClient(String
clientType,Map<CONNECTION_PROPERTY, String> properties,
Logger logger) hrows WorkflowException

If the map defines a client type with the property CONNECTION_PROPERTY type, the
factory method shown below can be used:

public static IWorkflowServiceClient getWorkflowServiceClient(Map<CONNECTION_
PROPERTY, String> properties, Logger logger) throws WorkflowException

The IWorkflowServiceClientConstants.CONNECTION_PROPERTY, which can
be used in the properties map for setting client properties, as shown below:

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-60 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

public enum CONNECTION_PROPERTY {
 MODE, // not supported , deprecated
 EJB_INITIAL_CONTEXT_FACTORY,
 EJB_PROVIDER_URL,
 EJB_SECURITY_PRINCIPAL,
 EJB_SECURITY_CREDENTIALS,
 // SOAP configuration
 SOAP_END_POINT_ROOT,
 SOAP_IDENTITY_PROPAGATION, // if value is 'saml' then SAML-token
 identity propagation is used
 SOAP_IDENTITY_PROPAGATION_MODE, // "dynamic'
 MANAGEMENT_POLICY_URI, // dafault value is "oracle/log_policy"
 SECURITY_POLICY_URI, // default value is "oracle/wss10_
 saml_token_client_policy"
 // REMOTE EJB
 TASK_SERVICE_PARTICIPATE_IN_CLIENT_TRANSACTION // default value is
 false
 //(task service EJB starts a new transaction)
 CLIENT_TYPE, DISCOVERY_OF_END_POINT,
 WSS_RECIPIENT_KEY_ALIAS,
 EJB_JNDI_SUFFIX // append to jndi name to used foreign jndi name
 };

Note:

If you use the properties map, you do not need to specify
IWorkflowServiceClientConstants.CONNECTION_PROPERTY.MODE.
This property is deprecated in 11g Release 1.

The code sample below provides an example for remote Enterprise JavaBeans clients.

Map<CONNECTION_PROPERTY,String> properties = new HashMap<CONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.EJB_INITIAL_CONTEXT_
FACTORY,"weblogic.jndi.WLInitialContextFactory");

properties.put(CONNECTION_PROPERTY.EJB_PROVIDER_URL,
 "t3://myhost.us.example.com:7001");
properties.put(CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL, "weblogic");
properties.put(CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS, "weblogic");
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT,
 properties, null);

The code sample below provides an example for a SOAP client.

Map<CONNECTION_PROPERTY,String> properties = new HashMap<CONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT, "http://myhost:7001");
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

34.6.1.3 Client Logging

Clients can optionally pass in a java.util.logging.Logger to where the client
logs messages. If there is no logger specified, the workflow service client code does not

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 34-61

log anything. The code sample below shows how to pass a logger to the workflow
service clients:

java.util.logging.Logger logger =;

IWorkflowServiceClient client =
WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory
.REMOTE_CLIENT, properties, logger);

34.6.1.4 Configuration Migration Utility

The client configuration schema has changed between release 10.1.3.x and 11g Release
1. To migrate from release 10.1.3.x to 11g Release 1, use the utility shown in the code
sample below:

java -classpath wsclient_extended.jar:bpm-services.jar
 oracle.bpel.services.workflow.client.config.MigrateClientConfiguration
original_file [new_file];

where original_file is a wf_client_config.xml file from 10.1.3.x and
new_file is the optional name of the new configuration file. If a new name is not
specified, the utility backs up the original configuration file and overwrites the
wf_client_config.xml file.

34.6.2 Identity Propagation
This section describes how to propagate identities using Enterprise JavaBeans and
SAML-tokens for SOAP clients.

There are performance implications for getting the workflow context for every request.
This is also true for identity propagation. If you use identity propagation with SAML-
token or Enterprise JavaBeans, authenticate the client by passing null for the user and
password, get the workflow context instance, and use another service call with
workflow context without identity propagation.

34.6.2.1 Enterprise JavaBeans Identity Propagation

The client application can propagate user identity to services by using Enterprise
JavaBeans identity propagation. The client code is responsible for securing the user
identity.

34.6.2.1.1 Client Configuration

If you use identity propagation, the client code must omit the element's <userName>
and <password> under the <remoteClient> element in the
wf_client_config.xml configuration file. In addition, do not populate the
following properties into
Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,String>
properties as you did in Workflow Client Configuration in the Property Map.

• IWorkflowServiceClientConstants.CONNECTION_PROPERTY.EJB_SECU
RITY_PRINCIPAL

• IWorkflowServiceClientConstants.CONNECTION_PROPERTY.EJB_SECU
RITY_CREDENTIALS

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-62 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

34.6.2.1.2 Requirements for Client Applications For Identity Propagation

Identity propagation only works if the application is deployed under the Oracle
WebLogic Server container and secured with container security or the client is secured
with a custom JAAS login module.

End users log in to the client application with the correct user name and password.
The users using the client application must be available in the identity store used by
the SOA application. As a best practice, configure the client to use the same identity
store as the workflow services and Oracle SOA Suite are using. This guarantees that if
the user exists on the client side, they also exist on the server side.

For information about configuring the identity store, see .

For information about interacting with custom identity stores, visit the following URL:

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html

34.6.2.2 SAML Token Identity Propagation for SOAP Client

If you use a SOAP client, you can use the SAML-token identity propagation supported
by Oracle web services.

This section assumes the application resides in and is secured by the Oracle WebLogic
Server container.

34.6.2.2.1 Client configuration

To enable identity propagation, the client configuration must specify a special
propagation mode.

34.6.2.2.1.1 Identity Propagation Mode Setting Through Properties

If properties are used, then populate the property
CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION with the value saml.

• Dynamic SAML token propagation mode

The SAML token policy is provided dynamically (the default). The property
shown in the code sample below is optional. If the identity propagation mode is
set, you run by default in dynamic mode.

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.SOAP_
IDENTITY_PROPAGATION_MODE , "dynamic");

By default, SAML-token constructs dynamic policy based on the following security
policy URI: oracle/wss10_saml_token_client_policy. Logging is not used. To
overwrite the default policy URI, the client can add the code shown below:

properties.put(CONNECTION_PROPERTY.SECURITY_POLICY_URI "oracle/wss10_saml_
token_client_policy");
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");

The code sample below shows the SAML token dynamic client:

Map<CONNECTION_PROPERTY,String> properties = new HashMap<ONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION , "saml");
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost.us.example.com:7001");
properties.put(ONNECTION_PROPERTY.SECURITY_POLICY_URI, "oracle/wss10_saml_token_
client_policy"); //optional
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 34-63

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/index.html

 //optional
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.SOAP_CLIENT,
properties, null);

The client reference to the policy URI must match the server policy URI. Otherwise,
SAML token propagation fails.

34.6.2.2.1.2 Identity Propagation Mode Setting in Configuration File

In the configuration file, you can define the propagation mode by using the
<identityPropagation> element in the <soapClient>, as shown below:

<soapClient>
 <rootEndPointURL>http://myhost.us.example.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation> </soapClient>

34.6.2.2.1.3 Identity Propagation Mode Setting Through the JAXB Object

You can programmatically set the identity propagation mode with the JAXB object.

34.6.2.3 Public Key Alias

You can use the
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_R
ECIPIENT_KEY_ALIAS property with the workflow client. This property sets the
alias for the recipient's public key that is used to encrypt the type outbound message.
Use this property to secure workflow services with the public key alias. This property
is only relevant when the SOAP client type uses identity propagation.

The client code must add the WSS_RECIPIENT_KEY_ALIAS value to the map if the
public key alias is defined. The code sample below provides details.

Map<CONNECTION_PROPERTY,String> properties = new HashMap<ONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION , "saml");
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost.us.example.com:7001");
properties.put(CONNECTION_PROPERTY.WSS_RECIPIENT_KEY_ALIAS,keyAlias);
// where keyAlias is a key alias value
properties.put(ONNECTION_PROPERTY.SECURITY_POLICY_URI, "oracle/wss10_saml_token_
client_policy"); //optional
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");
 //optional
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

If the client uses the JAXB WorkflowServicesClientConfigurationType object
or the wf_client_config.xml file, an optional element called
wssRecipientKeyAlias is added under the identityPropagation element for a
SOAP client. The code sample below provides details.

<xsd:complexType name="identityPropagationType">
 <xsd:sequence>

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

34-64 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <xsd:element name="policy-references" type="PolicyReferencesType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="wssRecipientKeyAlias" type="xsd:string" minOccurs="0"
 maxOccurs="1"/> </xsd:sequence>
 <xsd:attribute name="type" type="xsd:string" default="saml"/>
 <xsd:attribute name="mode" type="xsd:string" default="dynamic"/>
 </xsd:complexType>

For more information about how to create and use the public key alias in the
credential store, see Administering Web Services.

34.6.3 Client JAR Files
A client application without identity propagation must have the bpm-services.jar
file in its class path. For 12c Release 1 (12.1.3), the client class path requires the files
shown below:

$fmwhome/wlserver/server/lib/wlfullclient.jar
$fmwhome/wlserver/lib/weblogic.jar
$fmwhome/wlserver/server/lib/wlclient.jar
$fmwhome/oracle_common/modules/clients/com.oracle.webservices.fmw.client_
12.1.3.jar
$fmwhome/soa/soa/modules/com.oracle.webservices.fmw.client_12.1.3.jar
$fmwhome/oracle_common/modules/oracle.xdk_12.1.3/xml.jar
$fmwhome/oracle_common/modules/oracle.nlsrtl_11.2.0/orai18n-mapping.jar
$fmwhome/soa/soa/modules/oracle.soa.fabric_11.1.1/bpm-infra.jar
$fmwhome/soa/soa/modules/oracle.soa.workflow_11.1.1/bpm-services.jar
$fmwhome/soa/soa/modules/soa-startup.jar

The wlfullclient.jar file must be generated.

• Generate the wlfullclient.jar as follows:

cd $fmwhome/wlserver/server/lib
java -jar ../../modules/com.bea.core.jarbuilder_2.2.0.0.jar

34.7 Task States in a Human Task
The constants for all states are defined in IWorkflowConstants.java.

The following list identifies all the task states available in a human task.

• String TASK_STATE_ALERTED = "ALERTED";

• String TASK_STATE_ASSIGNED = "ASSIGNED";

• String TASK_STATE_COMPLETED = "COMPLETED";

• String TASK_STATE_DELETED = "DELETED";

• String TASK_STATE_ERRORED = "ERRORED";

• String TASK_STATE_EXPIRED = "EXPIRED";

• String TASK_STATE_INFO_REQUESTED = "INFO_REQUESTED";

• String TASK_STATE_OUTCOME_UPDATED = "OUTCOME_UPDATED";

• String TASK_STATE_STALE = "STALE";

• String TASK_STATE_SUSPENDED = "SUSPENDED";

Task States in a Human Task

Introduction to Human Workflow Services 34-65

• String TASK_STATE_WITHDRAWN = "WITHDRAWN";

For more information about IWorkflowConstants.java, see Workflow Services Java
API Reference for Oracle SOA Suite.

34.8 Database Views for Oracle Workflow
Overview of database views that enable queries against the Oracle workflow services
schema to receive reports.

Table 34-22 lists the reports exposed in Oracle BPM Worklist and the database views
corresponding to these reports.

Table 34-22 Report Views

Existing Worklist Report Corresponding Database View

Unattended Tasks report WFUNATTENDEDTASKS_VIEW

Task Cycle Time report WFTASKCYCLETIME_VIEW

Task Productivity report WFPRODUCTIVITY_VIEW

Task Priority Report WFTASKPRIORITY_VIEW

34.8.1 Unattended Tasks Report View
Table 34-23 describes the WFUNATTENDEDTASKS_VIEW report view.

Table 34-23 Unattended Tasks Report View

Name Type

TASKID1 VARCHAR2(64)

TASKNAME VARCHAR2(200)

TASKNUMBER NUMBER

CREATEDDATE DATE

EXPIRATIONDATE DATE

STATE VARCHAR2(100)

PRIORITY NUMBER

ASSIGNEEGROUPS VARCHAR2(2000)

1 NOT NULL column

For example:

• Query unattended tasks that have an expiration date of next week, as shown
below:

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE expirationdate > current_date AND expirationdate < current_date +
 7;

• Query unattended tasks for mygroup, as shown below:

Database Views for Oracle Workflow

34-66 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE 'mygroup' IN assigneegroups;

• Query unattended tasks created in the last 30 days, as shown below:

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE createddate > current_date -30;

34.8.2 Task Cycle Time Report View
Table 34-24 describes the WFTASKCYCLETIME_VIEW report view.

Table 34-24 Task Cycle Time Report View

Name Type

TASKID1 VARCHAR2(64)

TASKNAME VARCHAR2(200)

TASKNUMBER NUMBER

CREATEDDATE DATE

ENDDATE DATE

CYCLETIME NUMBER(38)

1 NOT NULL column

For example:

• Compute the average cycle time (task completion time) for completed tasks that
were created in the last 30 days, as shown below:

SELECT avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE createddate >
 (current_date - 30);

• Query the average cycle time for all completed tasks created in the last 30 days
and group them by task name, as shown below:

SELECT taskname, avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE
 createddate > (current_date - 30) GROUP BY taskname;

• Query the least and most time taken by each task, as shown below:

SELECT taskname, min(cycletime), max(cycletime) FROM WFTASKCYCLETIME_VIEW
 GROUP BY taskname;

• Compute the average cycle time for tasks completed in the last seven days, as
shown below:

SELECT avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE enddate >
 (current_date - 7);

• Query tasks that took more than seven days to complete, as shown below:

SELECT taskname, avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE cycletime
 > ((current_date +7) - current_date) GROUP BY taskname;

34.8.3 Task Productivity Report View
Table 34-25 describes the WFPRODUCTIVITY_VIEW report view.

Database Views for Oracle Workflow

Introduction to Human Workflow Services 34-67

Table 34-25 Task Productivity Report View

Name Type

TASKNAME VARCHAR2(200)

TASKID VARCHAR2(200)

TASKNUMBER NUMBER

USERNAME VARCHAR2(200)

STATE1 VARCHAR2(100)

LASTUPDATEDDATE DATE

1 For completed tasks, the state is null. Use decode(outcome, '', 'COMPLETED', outcome)
in queries.

For example:

• Count the number of unique tasks that the user has updated in the last 30 days, as
shown below:

SELECT username, count(distinct(taskid)) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -30) GROUP BY username;

• Count the number of tasks that the user has updated (one task may have been
updated multiple times) in the last seven days, as shown below:

SELECT username, count(taskid) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -7) GROUP BY username;

• Count the number of tasks of each task type on which the user has worked, as
shown below:

SELECT username, taskname, count(taskid) FROM WFPRODUCTIVITY_VIEW GROUP
 BY username, taskname;

• Count the number of tasks of each task type that the user has worked on in the
last 100 days, as shown below:

SELECT username, taskname, count(taskid) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -100) GROUP BY username, taskname;

34.8.4 Task Priority Report View
Table 34-26 describes the WFTASKPRIORITY_VIEW report view.

Table 34-26 Task Priority Report View

Name Type

TASKID1 VARCHAR2(64)

TASKNAME VARCHAR2(200)

TASKNUMBER NUMBER

PRIORITY NUMBER

Database Views for Oracle Workflow

34-68 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 34-26 (Cont.) Task Priority Report View

Name Type

OUTCOME VARCHAR2(100)

ASSIGNEDDATE DATE

UPDATEDDATE DATE

UPDATEDBY VARCHAR2(64)

1 NOT NULL column

For example:

• Query the number of tasks updated by each user in each task priority, as shown
below:

SELECT updatedby, priority, count(taskid) FROM WFTASKPRIORITY_VIEW GROUP
 BY updatedby, priority;

• Query task-to-outcome distribution, as shown below:

SELECT taskname, decode(outcome, '', 'COMPLETED', outcome), count
 (taskid) FROM WFTASKPRIORITY_VIEW GROUP BY taskname, outcome;

• Query the number of tasks updated by the given user in each priority, as shown
below:

SELECT priority, count(taskid) FROM WFTASKPRIORITY_VIEW WHERE
 updatedby='jstein' GROUP BY priority;

Database Views for Oracle Workflow

Introduction to Human Workflow Services 34-69

Database Views for Oracle Workflow

34-70 Developing SOA Applications with Oracle SOA Suite

Part VI
Using Binding Components

This section describes how to use binding components.

This part contains the following chapters:

• Getting Started with Binding Components

• Integrating REST Operations in SOA Composite Applications

• Integrating Enterprise JavaBeans with Composite Applications

• Using Direct Binding to Invoke Composite Services

35
Getting Started with Binding Components

This chapter describes the supported service and reference binding component types
and technologies that you can integrate in a SOA composite application. Supported
binding components include web services, HTTP binding, JCA adapters, Cloud
adapters, Oracle Business Activity Monitoring (BAM), Oracle B2B, Oracle Healthcare,
ADF-BC services, Enterprise JavaBeans (EJB) services, Managed File Transfer (MFT),
Representational State Transfer (REST) services, and direct binding services. Creation
of tokens for use in the binding URLs of external references is also described.

This chapter includes the following sections:

• Introduction to Binding Components

• Introduction to Integrating a Binding Component in a SOA Composite
Application

• Creating Tokens for Use in the Binding URLs of External References

For more information, see Adding Service Binding Components and Adding
Reference Binding Components.

35.1 Introduction to Binding Components
Binding components establish the connection between a SOA composite application
and the external world. There are two types of binding components:

• Services

Provide the outside world with an entry point to the SOA composite application.
The WSDL file of the service advertises its capabilities to external applications.
These capabilities are used for contacting the SOA composite application
components. The binding connectivity of the service describes the protocols that
can communicate with the service (for example, SOAP/HTTP or REST binding).

• References

Enable messages to be sent from the SOA composite application to external
services in the outside world. For REST bindings, a Web Application Description
Language (WADL) file advertises the capabilities to external applications.

Figure 35-1 shows an OrderBookingComposite project in which a service
(UpdateOrderStatus) in the Exposed Services swimlane provides the entry point to
the composite and a reference (BAM_OrderDO) in the External References swimlane
enables information to be sent to an Oracle BAM Server in the outside world.

Getting Started with Binding Components 35-1

Figure 35-1 Service and Reference Binding Components

Binding components enable you to integrate the following types of technologies with
SOA composite applications:

• SOAP web services

• HTTP binding

• JCA adapters

• Oracle E-Business Suite

• Oracle BAM 11g (This adapter can only connect to an Oracle BAM 11g server.)

• Oracle B2B

• Oracle Healthcare

• Oracle Managed File Transfer (MFT)

• ADF-BC services

• EJB services

• Direct binding services

• REST binding

• Cloud adapters

These technologies are described in the following sections.

35.1.1 SOAP Web Services
This service enables you to integrate applications with a standards-based web service
using the Simple Object Access Protocol (SOAP) over HTTP. Web services are
described in the WSDL file.

Dragging a web service into a swimlane of the SOA Composite Editor invokes the
Create Web Service dialog for specifying configuration properties.

For more information about web services, see How to Define the Interface (WSDL) for
a Web Service.

For information about adding Message Transmission Optimization Mechanism
(MTOM) attachments to web services, see Sending and Receiving MTOM-Optimized
Messages to SOA Composite Applications.

35.1.1.1 WS-AtomicTransaction Support

The Create Web Service dialog also enables you to configure support for WS-
Coordination and WS-AtomicTransaction (WS-AT) transactions. WS-AT provides
transaction interoperability between Oracle WebLogic Server and other vendors'
transaction services. Interoperability is provided at two levels:

Introduction to Binding Components

35-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Exporting transactions from the local Java Transaction API (JTA) environment for
a web service request.

• Importing transactions from a web service request into the local JTA environment.
This allows for distributed transaction processing between multiple nodes in the
web services environment.

Figure 35-2 shows the support for WS-AT at the bottom of the Create Web Service
dialog.

Figure 35-2 WS-AT Support in Create Web Service Dialog

Table 35-1 describes the WS-AT fields. For a description of the remaining fields in the
Create Web Service dialog, see How to Define the Interface (WSDL) for a Web Service.

Introduction to Binding Components

Getting Started with Binding Components 35-3

Table 35-1 WS-AT Fields of the Create Web Service Dialog

Property Description

Transaction
Participation

Select a value. If you added the web service to the Exposed Services
swimlane, this action enables external transaction managers to coordinate
resources hosted on Oracle WebLogic Server over WS-AT. If you added the
web service to the External References swimlane, this addition enables Oracle
WebLogic Server transactions to coordinate resources hosted in external
environments over WS-AT.

• Never

No transaction context is imported (for services) or exported (for
references). This is the default value if you add the web service as a
service binding component in the Exposed Services swimlane.

• Supports

If a transaction exists, a transaction context is imported (for services) or
exported (for references). This information is added to the
composite.xml file.

• Mandatory

A transaction context is imported (for services) or exported (for
references). This information is added to the composite.xml file. For
exports, a web service exception message is thrown if there is no active
transaction. For imports, a fault is returned to the client if there is no
transaction context in the request.

• WSDLDriven

This property only displays if you add the web service as a reference
binding component in the External References swimlane. This is the
default value.

Version Displays the WS-AT supported version (1.0, 1,1, 1,2, or default). By default,
this list is only enabled if you select Supports or Mandatory from the
Transaction Participation list.

When complete, the composite.xml file displays your WS-AT selections, as shown
in the following example:

 <service name="Service1" ui:wsdlLocation="BPELProcess1.wsdl">
 <interface.wsdl interface="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.interface(BPELProcess1)"
 callbackInterface="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.interface(BPELProcess1Callback)"/>
 <binding.ws port="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.endpoint(Service1/BPELProcess1_pt)">
 <property name="weblogic.wsee.wsat.transaction.flowOption"
 type="xs:string" many="false">SUPPORTS</property>
 <property name="weblogic.wsee.wsat.transaction.version" type="xs:string"
 many="false">WSAT11</property>
 </binding.ws>

If you want to edit your changes, you can right-click the service and select Edit or
double-click the service in the SOA Composite Editor.

After deployment, you can modify the transaction participation and version values
through the System MBean Browser. For more information, see Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

Introduction to Binding Components

35-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For more information about WS-AT and WS-Coordination, see Developing Oracle
Infrastructure Web Services and the WS-AT and WS-Coordination specifications, which
are available at the following URL:

http://www.oasis-open.org

35.1.1.1.1 Ensuring Participation of BPEL Processes in WS-AT

In addition to setting the WS-AT participation property, if a client calls a web service
that is a BPEL process, for that web service to be enlisted in the caller's transaction, the
callee BPEL process must have the transaction property set in its composite.xml
file.

<property name="bpel.config.transaction">required</property>

This setting ensures that, if an error occurs (such as a database adapter invocation
failing due to an integrity constraint violation), a transaction rollback is successfully
completed.

For more information about setting the transaction property, see How to Add a
BPEL Process Service Component, How to Define Deployment Descriptor Properties
in the Property Inspector, and Transaction Semantics.

35.1.1.1.2 WS-AT Transactions are Not Supported When Optimization is Enabled

You can configure a web service binding component as either a service or reference to
support WS-AT transactions from the Transaction Participation dropdown list of the
Create Web Service dialog. WS-AT transactions are supported in composite-to-web
service environments, or vice-versa, with the
oracle.webservices.local.optimization property set to false.

WS-AT transactions are not supported in composite-to-composite calls, even with the
oracle.webservices.local.optimization property set to false.

For more information about the oracle.webservices.local.optimization
property, see Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

35.1.2 HTTP Binding Service
The HTTP binding service enables you to integrate SOA composite applications with
HTTP binding.

You drag the HTTP service from the Components window into a swimlane of the
SOA Composite Editor to invoke the HTTP Binding Wizard. This addition enables you
to configure HTTP binding as follows:

• As a service binding component in the Exposed Services swimlane to invoke SOA
composite applications through HTTP POST and GET operations

• As a reference binding component in the External References swimlane to invoke
HTTP endpoints through HTTP POST and GET operations

Introduction to Binding Components

Getting Started with Binding Components 35-5

http://www.oasis-open.org

Note:

Note the following details about using HTTP binding in a SOA composite
application.

• An outbound HTTP binding reference supports only XML as a response
from an external HTTP endpoint. The response should contain the correct
XML part name according to outbound expectations.

• You cannot change the httpBinding property for the HTTP binding
component during runtime in Oracle Enterprise Manager Fusion
Middleware Control.

35.1.2.1 Supported Interactions

Table 35-2 shows the supported verbs, payloads, and operations for the inbound and
outbound directions.

Table 35-2 Supported Verbs, Payloads, and Operations

Direction Verb Payload Type Operation Supported?

Inbound GET URL-encoded One-way Yes

Inbound GET URL-encoded Request-
response

Yes

Inbound GET XML One-way No

Inbound GET XML Request-
response

No

Inbound POST URL-encoded One-way Yes

Inbound POST URL-encoded Request-
response

Yes

Inbound POST XML One-way Yes

Inbound POST XML Request-
response

Yes

Outbound GET URL-encoded One-way No

Outbound GET URL-encoded Request-
response

Yes

Outbound GET XML One-way No

Outbound GET XML Request-
response

Yes

Outbound POST URL-encoded One-way No

Outbound POST URL-encoded Request-
response

Yes

Outbound POST XML One-way No

Introduction to Binding Components

35-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 35-2 (Cont.) Supported Verbs, Payloads, and Operations

Direction Verb Payload Type Operation Supported?

Outbound POST XML Request-
response

Yes

Table 35-3 shows the supported XSD types for the inbound and outbound directions.

Table 35-3 Supported XSDs

Direction XSD Type Supported?

Inbound Simple Yes

Inbound Complex No

Inbound Native No

Outbound Simple Yes

Outbound Complex No

Outbound Native No

The following HTTP headers are not supported in either the inbound or outbound
direction (that is, you cannot access HTTP headers in the composite and set them in
the composite):

• User-agent

• Content-type

• Content-length

• Server

• Server-port

• Referrer

• Authorization

• MIME-Version

• Location

35.1.2.2 How to Configure the HTTP Binding Service

To configure the HTTP binding service:

1. Invoke the HTTP Binding Wizard to configure HTTP binding by dragging the
HTTP icon from the Components window.

2. Provide appropriate responses on the Welcome, Service Name, and Adapter
Interface pages.

The HTTP Binding Component page of the wizard enables you to specify the
operation type, verb, and payload type. Figure 35-3 provides details.

Introduction to Binding Components

Getting Started with Binding Components 35-7

Figure 35-3 Create HTTP Binding Wizard - HTTP Binding Configuration Page

3. Select the following operation types for inbound HTTP binding:

• A one-way operation that sends or receives messages to or from an HTTP
endpoint

• A synchronous request-response operation that sends and receives input and
output messages to and from an HTTP endpoint

For HTTP POST request methods, you can select a payload type of either URL-
encoded (ampersand-separated name-value pairs) or XML.

For HTTP GET request methods, the payload type is URL-encoded.

For HTTP GET or POST request methods of reference binding components, you are
also prompted to specify the endpoint URL. Support for HTTP authentication and
secure socket layer (SSL) is also provided.

Note:

Secure HTTP (HTTPS) is supported in both the inbound and outbound
directions.

4. Click OK.

5. Browse for an existing request message schema or define your own schema with
the links to the right of the URL field on the Messages page. Figure 35-4 provides
details.

Introduction to Binding Components

35-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 35-4 Create HTTP Binding Wizard - Messages Page

6. Click OK.

7. If you select to define your own schema, you are prompted to specify the element
names, data types, minimum occurrence value, and maximum occurrence value in
the Create Schema dialog. Figure 35-5 provides details.

Figure 35-5 Create HTTP Binding Wizard - Create Schema Page

8. Click OK.

At runtime, the concrete WSDL is generated with an HTTP binding and a SOAP
binding. This is because the SOAP endpoint is used to provide HTTP support.

35.1.2.3 How to Enable Basic Authentication for HTTP Binding

Inbound and outbound HTTP binding supports basic authentication. If you want to
enable basic authentication for inbound HTTP binding, you must attach a security
policy. Inbound HTTP binding can also be used without enabling basic authentication.

To enable basic authentication:

1. Right-click the created HTTP binding service in the Exposed Services swimlane
and select Configure WS Policies.

Introduction to Binding Components

Getting Started with Binding Components 35-9

2. In the Configure SOA WS Policies dialog, click the Add icon in the Security
section.

3. Select the oracle/wss_http_token_service_policy policy, and click OK.

4. In the Configure SOA WS Policies dialog, click OK.

35.1.3 JCA Adapters
JCA adapters enable you to integrate services and references with the following
technologies:

• Databases

• File systems

• FTP servers

• Message systems such as Advanced Queueing (AQ) and Java Messaging Systems
(JMS)

• IBM WebSphere MQ

• TCP/IP sockets

• Third-party adapters (SAP, JDE World, and others)

• Oracle User Messaging Service

• Lightweight Directory Access Protocol (LDAP) server

• Coherence cache

Dragging a JCA adapter into a swimlane of the SOA Composite Editor invokes the
Adapter Configuration Wizard for specifying configuration properties.

35.1.3.1 Database Adapter

The database adapter enables a BPEL process, Oracle Mediator, or Oracle Service Bus
to communicate with Oracle databases or third-party databases through JDBC.

For more information, see "Oracle JCA Adapter for Database" of Understanding
Technology Adapters.

35.1.3.2 File Adapter

The file adapter enables a BPEL process or an Oracle Mediator to exchange (read and
write) files on local file systems. The file contents can be in both XML and non-XML
data formats.

Note:

When calling the file adapter, Oracle BPEL Process Manager may process the
same file twice when run against Oracle Real Application Clusters planned
outages. This is because a file adapter is a non-XA compliant adapter.
Therefore, when it participates in a global transaction, it may not follow the
XA interface specification of processing each file only once.

Introduction to Binding Components

35-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For more information, see "Oracle JCA Adapter for Files/FTP" of Understanding
Technology Adapters.

35.1.3.3 FTP Adapter

The FTP adapter enables a BPEL process or Oracle Mediator to exchange (read and
write) files on remote file systems through use of the file transfer protocol (FTP). The
file contents can be in both XML and non-XML data formats.

For more information, see "Oracle JCA Adapter for Files/FTP" of Understanding
Technology Adapters.

35.1.3.4 AQ Adapter

The AQ adapter enables you to interact with a single consumer or multiconsumer
queue.

Oracle Streams AQ provides a flexible mechanism for bidirectional, asynchronous
communication between participating applications. Advanced queues are an Oracle
database feature, and are therefore scalable and reliable. Multiple queues can also
service a single application, partitioning messages in a variety of ways and providing
another level of scalability through load balancing.

For more information, see "Oracle JCA Adapter for AQ" of Understanding Technology
Adapters.

35.1.3.5 JMS Adapter

The JMS adapter enables an Oracle BPEL process or Oracle Mediator to interact with a
Java Messaging System (JMS).

The JMS architecture uses one client interface to many messaging servers. The JMS
model has two messaging domains:

• Point-to-point: Messages are exchanged through a queue and each message is
delivered to only one receiver.

• Publish-subscribe: Messages are sent to a topic and can be read by many
subscribed clients.

For more information, see "Oracle JCA Adapter for JMS" of Understanding Technology
Adapters.

35.1.3.6 MQ Adapter

The MQ adapter provides message exchange capabilities between BPEL processes and
Oracle Mediator and the WebSphere MQ queuing systems.

The Messaging and Queuing Series (MQ Series) is a set of products and standards
developed by IBM. The MQ Series provides a queuing infrastructure that provides
guaranteed message delivery, security, and priority-based messaging.

For more information, see "Oracle JCA Adapter for MQ Series" of Understanding
Technology Adapters.

35.1.3.7 Socket Adapter

The socket adapter enables you to create a client or a server socket, and establish a
connection. This adapter enables you to model standard or nonstandard protocols for
communication over TCP/IP sockets. The transported data can be text or binary in
format.

Introduction to Binding Components

Getting Started with Binding Components 35-11

For more information, see "Oracle JCA Adapter for Sockets" of Understanding
Technology Adapters.

35.1.3.8 Third-Party Adapter

The third-party adapter enables you to integrate third-party adapters such as
PeopleSoft, SAP, and others into a SOA composite application. These third-party
adapters produce artifacts (WSDLs and JCA files) that can configure a JCA adapter.

For more information, see Understanding Technology Adapters.

35.1.3.9 Oracle User Messaging Service Adapter

The Oracle User Messaging Service supports messaging channels such as email, secure
messaging service (SMS), instant messaging, and voice. The Oracle User Messaging
Service provides a messaging proxy between the BPEL processes or Oracle Mediator
service component and the external world. The Oracle User Messaging Service
provides two-way messaging (inbound and outbound).

For more information, see "Oracle JCA Adapter for UMS" of Understanding Technology
Adapters.

35.1.3.10 LDAP Adapter

The LDAP adapter defines both asynchronous and synchronous interfaces to send
requests to and receive responses from LDAP directory servers. The LDAP adapter
enables processes to search, compare, and modify LDAP directories using the LDAP
protocol.

For more information, see "Oracle JCA Adapter for LDAP" of Understanding Technology
Adapters.

35.1.3.11 Coherence Adapter

A Coherence cache is a collection of data objects that serves as an intermediary
between the database and client applications. Database data can be loaded into a cache
and made available to different applications. A Coherence cache reduces load on the
database and provides faster access to database data. Objects in the cache can be either
XML or Plain Old Java Objects (POJOs). The Coherence adapter enables you to
perform the following operations against a Coherence cache.

• Add an item

• Obtain an item

• Remove an item

• Query for an item

For more information, see "Oracle JCA Adapter for Coherence" of Understanding
Technology Adapters and Section "Reading the Shipping Provider from Cache with the
Coherence Adapter" of Understanding Oracle SOA Suite.

35.1.4 Oracle E-Business Suite Adapter
The Oracle applications adapter provides connectivity to Oracle Applications. The
adapter supports all modules of Oracle Applications in Release 12 and Release 11i,
including selecting custom integration interface types based on the version of Oracle
E-Business Suite.

Introduction to Binding Components

35-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

35.1.5 Oracle BAM 11g Adapter
The Oracle BAM 11g adapter enables you to integrate Java EE applications with an
Oracle BAM 11g server to send data. This adapter can only connect to an Oracle BAM
11g server.

Dragging a BAM 11g icon into a swimlane of the SOA Composite Editor invokes the
Adapter Configuration Wizard for specifying configuration properties.

35.1.6 Oracle B2B
The Oracle B2B service enables you to browse B2B metadata in the MDS repository
and select document definitions.

Oracle B2B is an e-commerce gateway that provides for the secure and reliable
exchange of transactions between an organization and its external trading partners.
Oracle B2B and Oracle SOA Suite are designed for e-commerce business processes that
require process orchestration, error mitigation, and data translation and
transformation within an infrastructure that addresses the issues of security,
compliance, visibility, and management.

Dragging a B2B icon into a swimlane of the SOA Composite Editor invokes the B2B
Configuration Wizard for specifying configuration properties.

35.1.7 Oracle Healthcare Adapter
The Oracle Healthcare adapter enables you to create an end-to-end health care
integration process in a SOA composite application. The Healthcare adapter
establishes the connection between a SOA composite application and the external
health care applications with which data is shared or with an internal topic or queue,
where data can be made available internally or to other systems. You can use other
Oracle SOA Suite components in your composite application, including BPEL
processes, Oracle Mediator components, a variety of adapters, and so on.

The Healthcare Configuration Wizard in Oracle JDeveloper lets you add health care
integration binding components to a SOA composite application as follows:

• The component is used as a service (inbound) to receive messages from external
systems and deliver them to SOA composite applications. Oracle SOA Suite for
health care integration is the entry point to the SOA composite application.

• The component is used as a reference (outbound) to send messages from the SOA
composite application to external applications.

As you follow the steps in the Healthcare Configuration Wizard, you are prompted to
select a document definition created in Oracle SOA Suite for health care integration.

You can launch Oracle SOA Suite for health care integration from the wizard to create
a document definition if the right one does not already exist. This is the payload, or
message, that you are receiving from or sending to external systems.

35.1.8 Oracle MFT
Oracle MFT enables you to transfer files to and from many endpoint types, such as the
following:

• Embedded FTP or sFTP server

Introduction to Binding Components

Getting Started with Binding Components 35-13

• Remote FTP or sFTP server

• Directories

• SOAP web service endpoints

• Oracle SOA Suite SOAP web service endpoints

• Oracle Service Bus web service endpoints

• Oracle B2B partners and Oracle Healthcare endpoints

• Oracle Data Integrator web service endpoints

35.1.9 ADF-BC Services
The ADF-BC service enables you to integrate Oracle Application Development
Framework (ADF) applications using service data objects (SDOs) with SOA composite
applications.

Dragging an ADF-BC icon into a swimlane of the SOA Composite Editor invokes the
Create ADF-BC Service dialog for specifying configuration properties.

For more information about Oracle ADF, see the following:

• Delegating XML Data Operations to Data Provider Services

• Using Standalone SDO-based Variables

• Developing Fusion Web Applications with Oracle Application Development Framework

• Developing Web User Interfaces with Oracle ADF Faces

35.1.10 EJB Adapter
The EJB adapter enables Enterprise JavaBeans and SOA composite applications to
interact by passing Java interfaces (does not use a WSDL file to define the interface) or
SDO parameters (uses a WSDL file to define the interface).

SDOs enable you to modify business data regardless of how it is physically accessed.
Knowledge is not required about how to access a particular back-end data source to
use SDO in a SOA composite application. Consequently, you can use static or dynamic
programming styles and obtain connected and disconnected access.

Enterprise JavaBeans are server-side domain objects that fit into a standard
component-based architecture for building enterprise applications with Java. These
objects become distributed, transactional, and secure components.

Java interfaces eliminate the need for WSDL file definitions. This type of integration
provides support with the following objects:

• Native Java objects

• Java Architecture for XML Binding (JAXB)

Dragging an EJB icon into a swimlane of the SOA Composite Editor invokes the
Create EJB Service dialog for specifying configuration properties.

For more information, see Integrating Enterprise JavaBeans with Composite
Applications .

Introduction to Binding Components

35-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

35.1.11 Direct Binding Adapter
The direct binding adapter uses the Direct Binding Invocation API to invoke a SOA
composite application in the inbound direction and exchange messages over a remote
method invocation (RMI). This option supports the propagation of both identities and
transactions across JVMs and uses the T3-optimized path. Both synchronous and
asynchronous invocation patterns are supported.

You can also invoke an Oracle Service Bus (OSB) flow or another SOA composite
application in the outbound direction.

Dragging a Direct icon into a swimlane of the SOA Composite Editor invokes the
Create Direct Binding dialog for specifying configuration properties.

For more information about direct binding, see Using Direct Binding to Invoke
Composite Services .

For information about the Direct Binding Invocation API, see .

For more information about OSB, see Developing Services with Oracle Service Bus.

35.1.12 REST Binding
REST is an architecture for designing network applications. RESTful applications use
HTTP requests to post data (create and update), get data (for example, make queries),
and delete data. REST provides an alternative to using web services. A SOA composite
can be REST-enabled or invoke an existing REST service through the REST adapter.

For more information, see Integrating REST Operations in SOA Composite
Applications.

35.1.13 Cloud Adapters
The cloud adapters, such as the SalesForce adapter, enable you to send and receive
messages from a cloud server.

35.2 Introduction to Integrating a Binding Component in a SOA
Composite Application

You integrate a binding component with a SOA composite application by dragging it
from the Components window.

35.2.1 How to Integrate a Binding Component in a SOA Composite Application

To integrate a binding component in a SOA composite application:

1. From the Technology section of the Components window, drag a binding
component to the appropriate swimlane. The swimlane in which to drag the
component is based on the action you want to perform. Not all adapters can be
dropped in both swimlanes. If an adapter is only available for references, then you
cannot drop it into the services swimlane.

• If you want to provide the outside world with an entry point to the SOA
composite application, drag the binding component to the Exposed Services
swimlane.

Introduction to Integrating a Binding Component in a SOA Composite Application

Getting Started with Binding Components 35-15

• If you want to enable messages to be sent from the SOA composite application
to external services in the outside world, drag the binding component to the
External References swimlane.

Figure 35-6 shows a SOAP web service being dragged into the composite. This
action invokes a dialog for specifying various configuration properties.

Figure 35-6 Integration of a Web Service Binding Component into a Composite

For more information about adding binding components, see Adding Service Binding
Components and Adding Reference Binding Components.

35.2.2 How to Use ADF Binding to Invoke a Composite Application from a JSP/Java
Class

If a SOA composite application uses a web service binding to define an endpoint
reference, the composite cannot be invoked from a JSP/Java class. Web services
binding is defined with the binding.ws port="" location="" tag in the
composite.xml file. The following example provides details:

<service name="client_ep" ui:wsdlLocation="BPEL.wsdl">
 <interface.wsdl interface="http://xmlns.oracle.com/Application/Project/
 BPEL#wsdl.interface(BPEL)"/>
 <binding.ws port="http://xmlns.oracle.com/App/BPELProj/
 BPELProcess#wsdl.endpoint(bpel_client_ep/BPELProcess_pt)"/>
 </service>

Instead, use ADF binding for SOA composite interaction with ADF-BC Web
Application. After deployment of a composite with ADF binding, invocation from a
JSP/Java class is successful. The following example provides details:

<reference name="ADFWebService"
 ui:wsdlLocation="ADFWebService.wsdl">
 <interface.wsdl interface="http://example.com/hr/#wsdl.interface(HRAppService)"/>
 <binding.adf serviceName="{http://example.com/hr/}HRAppService"
 registryName="hrapp_JBOServiceRegistry"/>
 </reference>

For this example, hrapp is the ADF-BC web application name.

Introduction to Integrating a Binding Component in a SOA Composite Application

35-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

35.3 Creating Tokens for Use in the Binding URLs of External References
You can create tokens in Oracle JDeveloper for the HTTP protocol, host, and port
values in the binding URLs of external references. The values that you assign to the
tokens are then substituted in place of the hardcoded HTTP host and port values in
the location attribute of the binding.ws element of the composite.xml file.

For example, the following code shows the location attribute with hardcoded
values for protocol (http), host (host.us.example), and port (80).

<binding.ws
port="http://www.globalcompany.example.com/ns/CreditAuthorizationService#wsdl.
endpoint(CreditAuthorizationService/CreditAuthorizationPort)"
location="http://host.us.example:80/apps/FusionOrderDemoShared/services/
creditAuthorization/CreditAuthorizationService.wsdl">

The following example shows the location attribute after the creation of tokens.

<binding.ws
port="http://www.globalcompany.example.com/ns/CreditAuthorizationService#wsdl.
endpoint(CreditAuthorizationService/CreditAuthorizationPort)"
location="${protocol}://${host1}:${port1}/apps/FusionOrderDemoShared/services/
creditAuthorization/CreditAuthorizationService.wsdl">

Note:

• You can only use tokens in the location attribute of the binding.ws
element of the composite.xml file.

• You cannot use tokens for the protocol, host, and port values in other
files, such as WSDL files, schema files, and so on.

• Oracle JDeveloper only updates token files on the local file system that
include the token values. If you use a local token file at design time, you
must move the tokens to the SOA server at runtime. For information
about creating tokens during runtime, see Administering Oracle SOA Suite
and Oracle Business Process Management Suite.

35.3.1 How to Create Tokens for Use in the Binding URLs of External References
Follow the steps in this section to create tokens for use in the binding URLs of external
references.

To create tokens for use in the binding URLs of external references:

1. In Oracle JDeveloper, access the SOA composite application in which to create
tokens.

2. Above the SOA Composite Editor, click the Binding URL Tokenizer icon.
Figure 35-7 provides details.

Figure 35-7 Binding URL Tokenizer Icon

Creating Tokens for Use in the Binding URLs of External References

Getting Started with Binding Components 35-17

The Binding URLs dialog appears, as shown in Figure 35-8.

• Binding URLs of each external reference that has a binding.ws element with
a location attribute in the composite.xml file that starts with the
following entries are automatically displayed:

– http

– https

– ${ (for a URL that uses tokens in place of the hardcoded HTTP protocol,
host, or port values)

– callbackServerURL

• Binding URLs for REST references with the location attribute of the
binding.rest element are automatically displayed.

Figure 35-8 Binding URLs Dialog

The Service2 reference in Figure 35-8 also includes an override of the callback
location using a reference property such as callbackServerURL:

<property name="callbackServerURL" type="xs:string" many="false">
${protocol}://${myhost1}:${myport1}/soa-infra/services/default/service/
bpelprocess1_client_ep</property>

The callbackServerURL property can be tokenized as shown in Figure 35-8.

3. Double-click a row or select the row and click the Edit icon to create tokens for the
HTTP protocol, host, and port values in the binding URLs of external references.

The Binding URL Tokenization dialog appears, as shown in Figure 35-9.

Creating Tokens for Use in the Binding URLs of External References

35-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 35-9 Binding URL Tokenization Dialog

4. Provide values appropriate to your environment, as described in Table 35-4, and
click OK.

Table 35-4 Binding URL Tokenization Dialog

Field Description

Token File Perform either of the following options:

• Click the Browse button to access a dialog for selecting the token file
that includes the token names and values. The file can be on the local
file system. The names and values specified in this file replace the
hardcoded names and values for protocol, host, and port in the
binding.ws element. This field is automatically populated with
your file selection on subsequent invocations of this dialog. If you
specify a token file from the file system, it must be an XML file that
follows this format:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM
 "http://java.sun.com/dtd/properties.dtd">
<properties>
 <comment>
 URL Resolver file used by the Metadata
 manager to resolve $<variable> in URLs
 </comment>
 <entry key="protocol">oramds</entry>
 <entry key="host">MyHost</entry>
 <entry key="port">80</entry>
</properties>

• Skip this field entirely if you want to manually enter new token
names and values in the Token and Current Values fields,
respectively.

Tokens that are not saved to a file are only placed in the location
attribute of the binding.ws element in the composite. It is expected
that you supply a token file at runtime that has tokens matching
those manually entered at design time.

Reference Displays the external reference you selected in Step 3.

Creating Tokens for Use in the Binding URLs of External References

Getting Started with Binding Components 35-19

Table 35-4 (Cont.) Binding URL Tokenization Dialog

Field Description

Protocol Displays the field in which to specify the protocol token name.

• Click the Browse icon to select the token name to use from the Token
Picker dialog. The Token Picker dialog is populated with the token
names that appear in the token file you imported in the Token File
field. The token name you select (for example, port1) and its default
value (for example, 80) are added to the Token and Current Value
fields, respectively. If the token file is writable (meaning an
unprotected file in the file system), you can change the current value
of the token name. See Step 5 for details about accessing the Token
Picker dialog. If the file is read-only, you are warned with a message
and allowed to cancel the operation and continue.

• Manually enter the token name and value to use. You can manually
enter information in these fields regardless of whether you imported
a file in the Token File field. If you imported a file that is writable in
the Token File field and manually enter a token name, it is added to
the file if it does not already exist. The current value for the new
token name defaults to the value in the URL that is being tokenized.

Host Displays the field in which to specify the host token name. See the
description of the Protocol field for details about how to specify
information.

Port Displays the field in which to specify the port token name. See the
description of the Protocol field for details about how to specify
information.

Apply these
tokens to
other
References
which have
the same
Current
Values

Deselect this check box if you do not want other external references with
the same protocol, host, and port values to be replaced with the same
tokens.

If this check box is selected and you tokenize just one or two of the URL
objects, then the references for only those objects are modified. For
example, if you only tokenize the host (with a current value of
host1.us.oracle), all references that have that same host value are updated.

5. If you selected the Browse button in the Protocol, Host, or Port fields, the Token
Picker is displayed, as shown in Figure 35-10. This dialog lists all the tokens that
you have defined in the file imported in the Token File field of the Binding URL
Tokenization dialog.

Creating Tokens for Use in the Binding URLs of External References

35-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 35-10 Token Picker Dialog

6. Select the token name to use through one of the following options:

• Scroll through the list and select the token.

• Begin entering the name in the Token field until the name is automatically
completed and the token is selected in the list.

7. Click OK.

You are returned to the Binding URL Tokenization dialog with the selected token
name and value displayed in the Token and Current Value fields, respectively.

Creating Tokens for Use in the Binding URLs of External References

Getting Started with Binding Components 35-21

Creating Tokens for Use in the Binding URLs of External References

35-22 Developing SOA Applications with Oracle SOA Suite

36
Integrating REST Operations in SOA

Composite Applications

This chapter describes how to integrate Representational State Transfer (REST)
operations as service binding components and reference binding components in SOA
composite applications. It also describes how to use a Web Application Description
Language (WADL) file during binding component configuration.

This chapter includes the following sections:

• Introduction to REST Support

• Creating REST Support in Service and Reference Binding Components

• Using JavaScript and JSON in BPEL Components

• Testing the REST Adapter with the HTTP Analyzer

• Testing and Configuring REST Reference Binding Components in Oracle
Enterprise Manager Fusion Middleware Control

For more information about using a REST adapter, see "Defining a Shipping Resource
with a REST Service" of Understanding Oracle SOA Suite.

36.1 Introduction to REST Support
REST is an architecture for designing network applications. RESTful applications use
HTTP requests to post data (create and update), get data (for example, make queries),
update data, and delete data. REST provides an alternative to using web services.

Starting in 12.2.1, your SOA composites can use end-to-end JSON. This means that the
REST service can receive the REST request and route it to the BPEL engine without
translating it to XML. The BPEL component can use the JavaScript action, and also use
JavaScript in conditional and iterative constructs, to work on JSON objects directly.
The REST reference can receive the REST message from the BPEL engine and route it
to an external REST endpoint without translation.

Note: The REST interfaces and BPEL component support end-to-end JSON.
However, if you are using other service components, like the Mediator, you
need to use the 12.1.3–style composite that internally maps REST resources
and verbs to WSDL operations and XML schemas, and translates the incoming
payload into XML.

Oracle SOA Suite provides the following REST support:

• Support in SOA composite applications:

Integrating REST Operations in SOA Composite Applications 36-1

– Enable End-to-End JSON

– Enable REST support in new or existing services.

– Integrate with external REST APIs.

– Orchestrate a set of RESTful state transitions (RPC/Hypermedia as the
Engine of Application State (HATEOAS) approach).

– Support for XML, JavaScript Object Notation (JSON) (with automatic
translation to and from XML), text, opaque (binary), and URL-encoded
payload data.

– Generation of sample URI for REST service operations.

– Support for WADL services. The WADL can be provided by a deployed
Oracle SOA Suite or Oracle Service Bus service or a non-Oracle SOA Suite or
Oracle Service Bus service such as a Jersey REST service.

• Ease of development:

– Oracle JDeveloper wizard provides several options for modeling REST
interfaces and WSDL operation bindings:

* Manually define resource paths and REST operations to generate an
underlying WSDL that contains the mapping from the REST definition to
the WSDL.

* Select the WSDL of the service component or external reference from
which to map WSDL operations to resource paths and HTTP verbs.

* Select a WSDL from many sources (for example, the application server or
SOA-MDS) from which to automatically populate the REST adapter with
operation mappings.

– Readable API that publishes each method used upon deployment.

– Ability to browse and consume Oracle REST endpoints (including Oracle
Service Bus) from within Oracle JDeveloper.

• Oracle Web Service Manager (OWSM) policy support for REST security.

• Support for the following use cases:

– Get a list of customers

– Create a new customer

– Get customer details

– Update customer details

– Delete a customer

– Create a new address for a customer

– Get an address of a customer

– Update the address of a customer

Introduction to REST Support

36-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

36.2 Creating REST Support in Service and Reference Binding
Components

Oracle SOA Suite components, services, and reference can be selected and exposed as
a REST service. This section describes how to perform the following tasks:

• Add REST support as a service binding component in an existing SOA composite
application

• Add REST support as a reference binding component that can be invoked from a
SOA composite application

• Configure REST support through shortcuts

• Generate REST schemas

• Use global token variables for host, port, and protocol values

Note:

• You cannot attach a REST binding to an asynchronous component (for
example, an asynchronous BPEL process). If you attempt this attachment,
a message is displayed that indicates this is not supported and suggests a
workaround of placing an Oracle Mediator between the REST adapter
and the service that has a one-way interface and routing the service
callback to another (outbound) REST adapter service.

• You cannot connect a REST service binding component to a REST
reference binding component.

36.2.1 How to Configure the REST Binding Component in a SOA Composite Application
This section describes how to add a REST binding component to a SOA composite
application. You can add the REST binding component as a service or reference
binding component.

To configure the REST adapter as a service or reference binding component in a
SOA composite application:

1. Add a REST service or reference component to the appropriate swimlane of your
composite view in JDeveloper. You can also drag a REST component from the
Components window.

• To add a REST service component, right-click the Exposed Services swimlane
in the SOA Composite Editor, and select Insert > REST. This action adds
REST support as a service binding component to interact with the appropriate
service component.

• To add a REST reference component, right-click the External References
swimlane in the SOA Composite Editor, and select Insert > REST. This action
adds REST support as a reference binding component to interact with the
external REST endpoint.

The REST Binding Configuration Wizard appears.

Creating REST Support in Service and Reference Binding Components

Integrating REST Operations in SOA Composite Applications 36-3

2. Enter a Name for your REST service or reference.

The Type field displays the type of your REST binding. This is Service for a REST
service and Reference for a REST reference.

3. Optionally select the Service will invoke components using WSDL interfaces or
Reference will be invoked by components using WSDL interfaces option.

• For REST service, select Service will invoke components using WSDL
interfaces if your composite will internally use XML schemas and WSDL
operations.

• For REST reference, select Reference will be invoked by components using
WSDL interfaces if your composite will internally use XML schemas and
WSDL operations.

Starting in 12.2.1, your SOA composites can use end-to-end JSON. This means that
the REST service can receive the REST request and route it to the BPEL engine
without translating it to XML. The BPEL component can use the JavaScript action,
and also use JavaScript in conditional and iterative constructs, to work on JSON
objects directly. The REST reference can receive the REST message from the BPEL
engine and route it to an external REST endpoint without translation.

By default, the new REST service/reference binding uses WADL. However, select
this option if you need to use the 12.1.3–style composite that internally maps
REST resources and verbs to WSDL operations and XML schemas, and translates
the incoming payload into XML. You would also want to select this checkbox if
your composite uses components like the Mediator, which supports only WSDL-
based operations.

Creating REST Support in Service and Reference Binding Components

36-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• If you select this option, then the Enforce XML Schema Ordering option
appears.

Select Enforce XML Schema Ordering to enforce the ordering of the XML
schema.

When selected, this reorders JSON payloads to match the order of elements in
the XML schema. This includes inbound request payloads and responses
from outbound requests. This option may add a performance overload.

Selecting this check box sets the REST service binding property
reorderJsonAsPerXmlSchema to true in the composite.xml file.

4. Click Next.

The Resources page appears.

5. Table 36-1 describes the fields on this page.

Table 36-1 Resources Page

Field Description

Configuration Shortcut Provides configuration shortcuts based on the context.
• For REST Service interfaces:

– If you are creating a WADL-based REST service, you can choose to Add
resources and methods from a WADL service. This enables you to use
an existing WADL service to add resources and methods to your REST
service.

– If your service will invoke components using WSDL interfaces, you get
options to REST enable a component or service and REST enable
external web service.This means that the fault bindings for the selected
component or service is automatically generated based on faults defined
in the WSDL file.

The selected WSDL is read and the WSDL operations are mapped to
resource paths and HTTP verbs in the Operation Bindings section of the
Resources page. If an operation binding requires additional configuration
mapping, this is indicated by the value of no in the Complete column.

• For REST Reference interfaces:

Add resources and operation mappings based on WADL Service enables
you to add resources and operation mappings from a WADL resource. The
WADL resource can be in your local file system or project, in the design-time
Oracle Metadata Services Repository (MDS Repository), or on an application
server.

Description This field appears for REST services.

Enter a description for the REST service. The description is published as part of the
readable API used during deployment.

Base URI This field appears for REST references.

Base URI connection information for all resources supported by the interface. For
example: http://search.mydomain.com/search.format

Creating REST Support in Service and Reference Binding Components

Integrating REST Operations in SOA Composite Applications 36-5

Table 36-1 (Cont.) Resources Page

Field Description

Resource Path Double-click the default resources path (/) to update the resource path or click
Add to add a new resource path.

In the Relative Path field, enter the resource path (for example, /orders), and
click OK.

Operation Bindings This section appears if you are creating a 12.1.3–style composite that internally
maps REST resources and verbs to WSDL operations and XML schemas, and
translates the incoming payload into XML.

Click Add to add a new operation binding.

You can also select an existing operation binding and click Edit.

When you click Add or Edit, the The REST Operation Binding dialog appears. See
REST Operation Binding Dialog for detailed information on configuring the fields
that appear in the REST Operation Binding dialog.

Methods This section appears if you are creating a WADL-based service or reference that
uses untyped payload without schemas.
Click Add to add a new method.

You can also select an existing method and click Edit.

When you click Add or Edit, the REST Method Definition dialog appears. See
REST Method Definition Dialog for detailed information on the fields that appear
in the REST Method Definition dialog.

6. Click Finish to complete your REST binding configuration.

36.2.1.1 REST Method Definition Dialog
Use the REST Method Definition dialog to define REST methods for a SOA REST
service or reference that uses WADL and untyped payloads without schemas.

Table 36-2 REST Method Definition Dialog

Field Description

Method Enter a name for the REST method being defined.

Resource Select an existing URL resource path from the list or click the Add icon to add a new
resource path.

HTTP Verb Select the verb to be bound to the WSDL operation (for example, GET, PUT, POST, or
DELETE).

Description Enter an optional description. This is the description text to be published for the method.

Creating REST Support in Service and Reference Binding Components

36-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 36-2 (Cont.) REST Method Definition Dialog

Field Description

Request The Payload section enables you to specify the format of the request payload: JSON
(default selection), XML, URL-encoded, Text, Opaque, or No payload. Click Generate
Sample URL for Method to view a sample URL for the method operation.

The URI Parameters section enables you to specify the mapping from the REST query or
template parameters to the corresponding runtime property.

1. Click the Generate Sample URL for Method icon (first icon) to generate a sample
URL based on all previously entered binding information. This option is typically
selected after all parameters are configured.

2. Click the Add parameter icon (second icon) to manually add a mapping parameter.

3. Under Style, select query or template. Template variables are typically used for
POST and PUT operations. Query parameters are typically used for GET and
Delete operations.

4. Under Type, select the data type of the parameter. All XSD primitive types are
supported.

5. Under Default Value, you can set a default value at design time for a parameter. If a
URI parameter is missing in the REST request, the corresponding default value is
used by the REST service.

6. The Runtime Property displays the name of the runtime property to which the
method parameter gets mapped.

Response The Success and Failure sections enable you to select the response Payload and Status for
the method.

The default response payload is No Payload. The default HTTP status code for a
successful operation is 204 and that for a failed operation is 500.

36.2.1.2 REST Operation Binding Dialog
Use the REST Operation Binding dialog to define REST operations for a REST service
that invokes components using WSDL interfaces. You can define resource paths and
REST operations. An underlying WSDL is generated that contains the mapping from
the REST definition to the WSDL.

Table 36-3 REST Operation Binding Dialog

Field Description

Operation Displays the WSDL operation name that is being mapped. You can specify the name that
is used in the generated WSDL.

Resource Select an existing URL resource path from the list or click the Add icon to add a new
resource path.

The selected resource path is added to the URI Parameters table of the Request section at
the bottom of this dialog. If the selected resource contains a template variable, such as
{var}, the variable is added to the URI parameters.

Creating REST Support in Service and Reference Binding Components

Integrating REST Operations in SOA Composite Applications 36-7

Table 36-3 (Cont.) REST Operation Binding Dialog

Field Description

HTTP Verb Select the verb to be bound to the WSDL operation (for example, GET, PUT, POST, or
DELETE).

This selection populates the URI Parameters table with mappings from the incoming
REST query parameters to the WSDL schema.

The HTTP verb for the operation is also added to the Operation Bindings section of the
Create REST Binding dialog after clicking OK.

Description Enter an optional description. Reference binding components have the Base URI field.

Request The Schema section displays the request schema being used.

• Schema URL: Displays the request schema to use. If you selected REST enable
component or reference in the Create REST Binding dialog, this field is read-only
because the schema is obtained from the service's operation WSDL. If you selected
Add operation binding in the Create REST Binding dialog, you must browse for a
schema or create a new schema from a sample using the Native Format Builder
wizard.

• Element: Displays the element to use.
The Payload section enables you to specify the format of the request payload: XML
(default selection), JSON, URL-encoded, or no payload. Click Generate Sample Payload
to view a sample of the selected request payload.

The URI Parameters section enables you to specify the mapping from the REST query
parameters to the WSDL schema. This section is automatically populated when a schema
is specified (depending on the verb) in the HTTP Verb list. For GET and DELETE verbs,
the parameters are bound to the WSDL schema. For POST and PUT verbs, the inbound
payload is mapped to the WSDL schema.

1. Click the Generate Sample URL for operation icon (first icon) to generate a sample
URL based on all previously entered binding information. This option is typically
selected after all parameters are configured.

2. Click the Add parameter icon (second icon) to manually add a mapping parameter.

3. In the Style column, click a specific row to invoke a list that enables you to select
query or template. Template variables are typically used for POST and PUT
operations. Query parameters are typically used for GET and Delete operations.

4. In the Type column, select the data type of the parameter. All XSD primitive types
are supported. In most case, when the parameter is automatically generated from a
schema, the type is already set for you. If you create a new parameter, the Type
column enables you to select the type from the list.

5. In the Default Value column, you can set a default value at design time for a
parameter. If a URI parameter is missing in the REST request, the corresponding
default value is used by the REST service.

6. In the Expression column, click a specific row to invoke the Expression Builder
dialog for adding an XPath expression function. If there is no schema defined for an
operation, the Expression Builder parameter only shows property variables and no
message variables. The expression binds a parameter to a field in the WSDL schema.
In all cases in which the parameter has been automatically generated (based on an
existing or generated schema), this expression is already generated for you. You
only add an expression if you want to add a new parameter and bind it to
something else, such as a runtime property. The XPath expression specifies the
location in which to insert the particular URI parameter in the normalized message.

Creating REST Support in Service and Reference Binding Components

36-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 36-3 (Cont.) REST Operation Binding Dialog

Field Description

Response The HTTP Statuses section enables you to specify the HTTP status code. You can enter
multiple statuses, separated by spaces. For a reference, these are the possible statuses that
are interpreted as successful. For a service, these are the possible successful statuses that
can be returned (as set by a service component such as BPEL).

The Payload section enables you to specify the possible response payloads: XML
(default), JSON, or no payload. The output returned at runtime depends on the incoming
requests. Click Generate Sample Payload to view a sample of the selected response
payload.

The Schema section displays the response schema being used if a possible payload type
has been selected. If no payload has been selected, this field is not displayed.

• Schema URL: Displays the response schema to use. If you have not specified a
schema, you can select to browse for an existing schema or create a new schema
from a sample with the Native Format Builder wizard. This wizard enables you to
create a schema from a JSON interchange format, XML sample, URI-encoded
format, or URI sample. For more information, see How to Generate Schemas from
Samples.

• Element: Displays the element to use.
The Fault Bindings section displays the response fault name, type, status, and schema. If
fault details are defined in the WSDL file, a fault binding is automatically created in this
section. You can also manually define fault bindings.by clicking the Add icon. For more
information about faults, see What You May Need to Know About REST Fault Binding.

36.2.2 Example: REST Enable an Existing Service Component
You can REST enable an existing service component by using the REST enable
component or service option from the Configuration Shortcut found in the REST
Binding Configuration Wizard.

1. Right-click the Exposed Services swimlane in the SOA Composite Editor, and
select Insert > REST

The REST Binding Configuration Wizard appears.

2. Select Service will invoke components using WSDL interfaces.

3. Click Next.

4. Under Configuration Shortcut, select REST enable component or service.

The Service Explorer dialog appears.

5. Expand the navigator to select the WSDL of the service component (for this
example, a BPEL process), and click OK. This action enables you to map WSDL
operations to resource paths and HTTP verbs. Figure 36-1 provides details.

Creating REST Support in Service and Reference Binding Components

Integrating REST Operations in SOA Composite Applications 36-9

Figure 36-1 WSDL Selected to Map REST Operations to Resource Paths and
HTTP Verbs

The REST Binding Configuration Wizard Resources page is updated to appear as
shown in Figure 36-2.

The selected WSDL is read and the WSDL operation is mapped to resource paths
and HTTP verbs in the Operation Bindings section. Note that the Resource Path
and HTTP Verb sections require additional configuration mapping. This is also
indicated by the value of no in the Complete column.

Figure 36-2 Resources Page of the REST Binding Configuration Wizard

Creating REST Support in Service and Reference Binding Components

36-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The resource path and HTTP verb for each of the operations now require
configuration. For this example, there is only one operation. Depending upon
your WSDL, multiple operations can be displayed in the Operation column.

6. In the Resource Path table of the Resources section, double-click the default path
entry of /. You can also define the resource path before starting the operation
bindings. In this case, the selected resource is used for the new bindings.

This invokes the Update REST Resource dialog.

7. In the Relative Path field, enter the resource path (for this example, /orders),
and click OK. Figure 36-3 provides details.

Figure 36-3 Update REST Resource Dialog

Operation mappings that have the old resource path are updated with the new
resource path in the Resources section and Operation Bindings section (for this
example, /orders). If you are updating an existing component, all operations are
typically updated.

You can create additional resource paths as needed by clicking the Add icon in the
Resources section to display the Create REST Resource dialog.

The HTTP Verb column of the Operation Bindings section now requires
configuration.

8. In the Operation Bindings section, select an operation and click Edit.

The REST Operation Binding dialog is displayed.

This dialog enables you to select the HTTP verb for the operation and populate
the URI Parameters section in order to bind an HTTP verb and resource to a
WSDL operation and map REST parameters to the WSDL schema of the
component service. REST Operation Binding Dialog describes the fields of this
dialog.

9. From the Resource list, select the new resource, as needed.

The URI Parameters section is updated with your selection.

10. From the HTTP Verb list, select the operation (for this example, GET).

The URI Parameters section is updated with your selection.

The style (query or template) is automatically selected in the Style column of the
URI Parameters section.

If you select or create a new REST resource that contains a template variable,
Oracle JDeveloper attempts to create the template parameter with the same name.
If a parameter with that name already exists, it is reused (and made into a
template parameter if it was a query parameter). Duplicate parameter names are
never created. You receive an error if a duplicate parameter is manually created.

Creating REST Support in Service and Reference Binding Components

Integrating REST Operations in SOA Composite Applications 36-11

11. Click the Response tab to view HTTP status code, payload output type, schema,
and fault binding details. Since the schema was already defined in this example,
those sections are disabled from editing.

12. Double-click the fault name to invoke the REST Fault Binding dialog. For more
details about this dialog, click the Help icon or see What You May Need to Know
About REST Fault Binding.

13. Edit as necessary, and click OK.

14. Click OK to return to the Resources page. The HTTP verb you added is displayed.

15. In the Operation Bindings section, select an operation and click Edit to define
resources and HTTP verbs for any remaining operations.

16. Click OK to return to the SOA Composite Editor.

The REST service is wired to the BPEL process service component.

36.2.3 Example: Adding Resources and Operations from a WADL Service to a REST
Reference

You can add resources and operations to a REST reference from a WADL service using
the Configuration Shortcut found in the REST Binding Configuration Wizard.

1. Right-click the External References swimlane in the SOA Composite Editor, and
select Insert > REST.

The REST Binding Configuration Wizard appears.

2. Enter a Name for your REST service or reference.

The Type field displays Reference.

3. Select Service will be invoked by components using WSDL interfaces.

4. Click Next.

5. Under Configuration Shortcut, select Add resources and operation mappings
based on WADL Service.

The WADL Location dialog appears.

6. Specify a WADL file through one of the following methods:

a. In the WADL URL field, specify the URL of the WADL file, then go to Step 7.

or

b. Click the Search icon to invoke the WADL Chooser dialog for selecting the
WADL file. Options are provided for finding WADLs in the local file system
or project, in the design-time Oracle Metadata Services Repository (MDS
Repository), or by connecting to an application server to find WADLs
associated with deployed Oracle SOA Suite or Oracle Service Bus services.
Figure 36-4 provides details.

Creating REST Support in Service and Reference Binding Components

36-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 36-4 WADL Chooser Dialog

c. Select the WADL file, and click OK.

d. Go to Step 7.

7. Click OK.

8. Select copy schema artifacts into the project to copy schemas referenced in the
WADL file to the local project because they are used by the new REST adapter
reference. This is the recommended method.

9. See the step based on the type of WADL file selected. Table 36-4 provides details.

Table 36-4 WADL File Status

If the Selected WADL File Was
Provided By...

Then... See
Step...

An Oracle SOA Suite or Oracle
Service Bus REST service

The Resources page is completely
configured with information from the
WADL file. All operations, resource
paths, and verbs are displayed in the
Operation Bindings section. A
complete configuration is indicated by
a value of yes in the Complete column
of the Operation Bindings section.

9.a

A non-Oracle SOA Suite or Oracle
Service Bus REST service such as a
Jersey service.

The WADL Parsing Issues dialog
indicates that additional configuration
is required.

9.b

a. View the Resources page and its contents, and click OK.

Creating REST Support in Service and Reference Binding Components

Integrating REST Operations in SOA Composite Applications 36-13

b. Review the list of recommended corrective actions in the WADL Parsing
Issues dialog shown in Figure 36-5, then click OK. The same information is
written to the Oracle JDeveloper Log window for later reference.

A WADL file for a non-Oracle SOA Suite or Oracle Service Bus service
typically does not include all required information. You must manually
complete configurations. In many cases, such as in Figure 36-5, the WADL file
used does not supply the schemas required to bind the REST reference to a
WSDL operation. The schemas can often be generated using the Native
Format Builder wizard using a sample payload provided by the REST service
provider.

Figure 36-5 WADL Parsing Issues

The Resources page is displayed.

For a REST binding that requires further configuration, a value of no is
displayed in the Complete column of the Operation Bindings section. Tool
tips in the Complete column for each no value identify what is missing so
that you can perform corrective actions. The OK button is disabled as long as
at least one operation has a value of no in the Complete column.

Note:

All error and warnings are also displayed in more detail in the Log window in
Oracle JDeveloper. For example, the Log window contains entries such as the
following:

ERROR at [resource path: containers/{container}, method name: PUT,
request/response: response, representation mediaType:
application/xml] - No schema information is available for
containers/{container}.PUT response. Please specify a schema.

c. Perform the corrective actions indicated by the tool tips. When configuration
has been successfully completed, a value of yes is displayed for all operations
in the Complete column of the Operation Bindings section.

Creating REST Support in Service and Reference Binding Components

36-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For more information about the SOA design-time MDS Repository, see
Managing Shared Data with the Design-Time .

36.2.4 How to Configure the REST Adapter Through Shortcuts
You can configure the REST adapter through several shortcuts based on WSDL or
WADL files.

36.2.4.1 To generate a REST service based on a web service deployed on an
application server:

1. From the Oracle JDeveloper main menu, select Window > Application Servers.

2. Right-click a WSDL service and select SOA > Expose as REST. Figure 36-6
provides details.

Figure 36-6 Automatic REST Adapter Service Binding Component
Configuration

The Create REST Binding dialog is invoked and prepopulated with operation
mappings from the selected WSDL file.

3. Complete any necessary configuration by following the procedures in How to
Configure the REST Adapter as a Service Binding Component in a SOA
Composite Application.

Note:

You are prompted to make a local copy of the selected WSDL and its
dependent artifacts. If you select to make a local copy, the binding.ws
section for the SOAP reference binding component contains the original
concrete WSDL/endpoint location that was selected and the copied WSDL is
used as the abstract WSDL (in the composite import, and so on).

When configuration is complete, a REST service binding component is wired to a
SOAP reference binding component. Figure 36-7 provides details.

Creating REST Support in Service and Reference Binding Components

Integrating REST Operations in SOA Composite Applications 36-15

Figure 36-7 REST Service Binding Component and SOAP Reference Binding
Component Configuration

36.2.4.2 To generate a REST reference based on a REST service deployed on an
application server:

1. From the Oracle JDeveloper main menu, select Window > Application Servers.

2. Right-click a REST/WADL service and select SOA > Generate REST Reference.
Figure 36-8 provides details.

Figure 36-8 Automatic REST Adapter Reference Binding Component
Configuration

The Create REST Binding dialog is invoked and prepopulated with information
from the selected WADL file.

3. Complete any necessary configuration by following the procedures in How to
Configure the REST Adapter as a Reference Binding Component in a SOA
Composite Application.

When configuration is complete, a REST reference binding component is
displayed, as shown in Figure 36-9.

Creating REST Support in Service and Reference Binding Components

36-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 36-9 REST Adapter Reference Component

36.2.4.3 To generate a REST service based on a SOA component's WSDL service:

1. In the SOA Composite Editor, right-click a SOA component service or an external
reference, and select the Expose as REST option. Figure 36-10 provides details.

Figure 36-10 Expose as REST Option

The Create REST Binding dialog is invoked and prepopulated with information
from the selected WADL file.

2. Complete any necessary REST adapter configuration.

When configuration is complete, REST support (for this example, a service
binding component) is created and automatically wired to the interface on which
you clicked. Figure 36-11 provides details.

Figure 36-11 REST Adapter Service Binding Component

36.2.5 How to Generate Schemas Manually
If you do not have a schema or sample data to generate a schema, you can manually
enter the parameters for which to generate a schema. To manually define a schema,
click the Add icon, and select Add operation binding in the Operation Bindings
section of the Create REST Binding dialog.

Note the following guidelines:

• In the URI Parameters section of the REST Operation Binding page, enter the
necessary query or template parameters. You can select a data type for each
parameter, but you do not need to enter an expression. If there is no schema and
payload specified, when you click OK, the parameter schema is automatically
generated (embedded in the WSDL). Parameters that have an expression that is
mapped to a runtime property are not included in the generated schema.

• If there is no schema defined for an operation, the Expression Builder dialog that
is accessible from the Expression column only shows property variables and no
message variables.

Creating REST Support in Service and Reference Binding Components

Integrating REST Operations in SOA Composite Applications 36-17

For complete instructions about creating REST support, see How to Configure the
REST Adapter as a Service Binding Component in a SOA Composite Application and
How to Configure the REST Adapter as a Reference Binding Component in a SOA
Composite Application.

36.2.6 How to Generate Schemas from Samples
You can generate schemas from sample files, including JSON interchange format.

1. In the Request section of the REST Operation Binding dialog, click the Define
Schema for Native Format icon to the right of the Schema URL field. Figure 36-12
provides details.

Figure 36-12 Define Schema for Native Format Icon

The Native Format Builder wizard is displayed.

2. Proceed through the initial pages of the wizard until you access the Choose Type
page.

This page enables you to select to generate schemas from different format types.
Figure 36-13 provides details.

Figure 36-13 Types From Which to Generate Schemas

3. Select an appropriate type.

Each type provides an area in which to paste a JSON, XML, or URL sample or
select a sample file to import.

For more information about JSON interchange formats, see What You May Need to
Know About Converting a JSON Interchange Format to a REST Schema.

For complete instructions about creating REST support, see How to Configure the
REST Adapter as a Service Binding Component in a SOA Composite Application and
How to Configure the REST Adapter as a Reference Binding Component in a SOA
Composite Application.

36.2.7 How to Use Global Token Variables
You can assign global token variables for the host name, port number, and protocol in
the Base URI field of the Create REST Binding dialog.

Creating REST Support in Service and Reference Binding Components

36-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To use global token variables:

1. Above the SOA Composite Editor, click the Binding URL Tokenizer icon.

2. Select the REST external reference, and click the Edit icon.

3. Specify the mdm-url-resolver.xml file or manually enter values for host, port,
and protocol (http or https), and click OK.

The values that you assign to the tokens are then substituted in place of the hard-
coded HTTP host and port values in the location attribute of the binding.ws
element of the composite.xml file. For more information, see Creating Tokens
for Use in the Binding URLs of External References.

36.2.8 How to Set REST Header Properties
Normalized message properties are available for certain standard HTTP headers.
These properties are displayed for selection in the Properties tab of receive and reply
activities in a BPEL process in Oracle JDeveloper, as shown in Figure 36-14. These
header properties are not propagated by default across the service engines. You must
manually propagate them by providing the appropriate assignment logic.

Figure 36-14 Normalized Message Properties in Receive and Reply Activities

36.2.8.1 Inbound and Outbound Headers

For inbound cases in which an external client is interacting with a SOA REST service,
you can configure the service to send a hyperlink to the next resource with which the
client interacts. This hyperlink can be sent in the payload of the response or the HTTP
link response header. The following normalized message properties build and return
the next link:

• rest.binding.requestBaseURI

This property is available on the request message. It holds the base URI of the
REST service. In the SOA composite application, this can be combined with the
path of another resource in the same REST service to build an absolute URL
linking back to that resource.

• rest.binding.http.Link

When this property is set on the response message, a link header is added to the
HTTP response. The value of this header is the value of the normalized message
property.

For outbound cases in which the SOA composite application is invoking an external
REST service, the service may return a response with the next link either in the link
header or the payload. The following normalized message properties are available to
help get the next link and invoke the resource located at that link:

Creating REST Support in Service and Reference Binding Components

Integrating REST Operations in SOA Composite Applications 36-19

• rest.binding.http.Link

If the HTTP response from the external REST service contains a link header, a
rest.binding.http.Link property is added to the response message. The value of
this property is the value in the link header.

• rest.binding.requestURI

The resource located at the next link can be invoked by setting the
rest.binding.requestURI property on the request message. If set, the URL in this
property overrides the URL provided at design time. It invokes the external REST
service.

There are several preconditions that must be satisfied when a SOA composite
application is invoking REST resources based on the next link it receives from the
external REST service:

• The potential resources that can be invoked must be designed in the REST
reference binding component at design time.

• The structure of the request and response must be known and modeled at design
time.

For information about setting normalized message properties in the Properties tab, see
Propagating Normalized Message Properties Through Message Headers.

36.2.8.2 Custom Header Support

REST services and references are capable of handling custom HTTP headers.
Table 36-5 provides details.

Table 36-5 Custom Header Support

Direction Service Side Reference Side

Request Any HTTP headers that come in the
request are propagated as normalized
message properties. The headers are
appended with
rest.binding.http.header-name. These
headers are available in the service
engine as part of normalized message
properties. For example, any
individual header can be obtained
with the BPEL process in the receive
and reply activity properties.

All normalized message properties
prefixed with rest.binding.http.* are
added as HTTP headers to the HTTP
request. The REST service removes the
prefix rest.binding.http. from the
header name. before attaching the
headers to the HTTP request.

Response All normalized message properties
prefixed with rest.binding.http.* are
added as HTTP headers to the HTTP
response. The REST service removes
the prefix rest.binding.http. from the
header name before attaching the
headers to the HTTP response.

Any HTTP headers coming in the
response are propagated as
normalized message properties. The
headers are appended with
rest.binding.http.header-name. These
headers are available in the service
engine as part of normalized message
properties. For example, any
individual header can be obtained
with the BPEL process in the receive
and reply activity properties.

Creating REST Support in Service and Reference Binding Components

36-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

36.2.9 What You May Need to Know About REST Fault Binding
You define REST fault binding response details in the REST Fault Binding dialog, as
shown in Figure 36-15. If fault details are already defined in the WSDL file, a fault
binding is automatically created in the Fault Bindings section of the REST Operation
Binding dialog. You can also manually define fault bindings.by clicking the Add fault
binding icon in the Fault Bindings section.

Figure 36-15 REST Fault Binding Dialog

By default, the fault status is 400 when there is a fault payload and 404 when there is
no fault payload.

Fault binding details are based on your selection in the Create REST Binding dialog:

• If you selected REST enable component or reference, fault bindings are
automatically generated based on faults defined in the WSDL file.

• If you selected Add operation binding, you must configure the fault bindings to
be supported, which are added to the WSDL being generated.

The Fault Bindings section of the REST Operation Binding dialogs shows the response
fault name, type, status, and schema. Figure 36-16 provides details.

Figure 36-16 Fault Bindings Definition

36.2.10 What You May Need to Know About Converting a JSON Interchange Format to a
REST Schema

You can select to create a REST schema from a JSON interchange format sample in the
Choose Type dialog of the Native Format Builder wizard, as shown in Figure 36-13.
During schema generation, the wizard attempts to do the following:

• Generate a REST schema with no namespace information

• Consume a JSON interchange format sample with no namespace information and
generate an XML with the correct namespaces

However, there are several cases in which the conversion cannot be handled.

Creating REST Support in Service and Reference Binding Components

Integrating REST Operations in SOA Composite Applications 36-21

• Namespace information is retained to enable the JSON interchange format
sample, shown in the following example, to be converted. This is because the
underlying schema has elements and attributes from multiple namespaces.

<schema xmlns:us="http://xmlns.oracle.com/addresses/us"
xmlns:india="http://xmlns.oracle.com/addresses/india"
targetNamespace="http://xmlns.oracle.com"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <import ...>
 <element name="Person">
 <complexType>
 <choice>
 <element ref="us:Address"/>
 <element ref="india:Address"/>
 </choice>
 </complexType>
 </element>
</schema>
<schema targetNamespace="http://xmlns.oracle.com/addresses/us"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <element name="Address">
 <complexType>
 <sequence>
 <element name="Street" type="xsd:string"/>
 <element name="City" type="xsd:string"/>
 <element name="State" type="xsd:string"/>
 <element name="ZipCode" type="xsd:integer" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
</schema>
<schema targetNamespace="http://xmlns.oracle.com/addresses/india"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <element name="Address">
 <complexType>
 <sequence>
 <element name="Street" type="xsd:string"/>
 <element name="City" type="xsd:string"/>
 <element name="District" type="xsd:string" minOccurs="0"/>
 <element name="State" type="xsd:string"/>
 <element name="PinCode" type="xsd:integer" minOccurs="0"/>
 </sequence>
 </complexType>
 </element>
</schema>

• Sibling elements with duplicate names under a sequence group element cannot be
converted because this translates to an object with duplicate keys in JSON, which
is not valid.

36.2.11 What You May Need to Know About REST References Calling REST Services in
the Same Node

The SOAIncomingRequests_maxThreads property by default is configured based in
the SOADataSource data source in Oracle WebLogic Server Administration Console.
This setting may be not enough for REST services under a heavy load (for example, if
you have 200 concurrent users in a scenario in which a REST reference is calling a
REST service within the same node). You must increase the
SOAIncomingRequests_maxThreads value to 400 to avoid the exception error
shown in the following example:

Creating REST Support in Service and Reference Binding Components

36-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<May 2, 2014 10:16:11 AM PDT> <Error> <oracle.soa.bpel.system> <BEA-000000>
<cube engineJTA transaction is not in active state.
The transaction became inactive when executing activity "" for instance
"30,023", bpel engine can not proceed further without an active transaction.
please debug the invoked subsystem on why the transaction is not in active
status. the transaction status is "MARKED_ROLLBACK".
The reason was The execution of this instance "30023" for process
"BuyCoffeeBPELProcess" is supposed to be in an active jta transaction, the
current transaction status is "MARKED_ROLLBACK", the underlying exception is
"Service Unavailable" .
Consult the system administrator regarding this error.
, Cikey=30023, FlowId=20014, Current Activity Key=30023-BpInv0-BpSeq0.3-3,
Current Activity Label=InvokeCreateOrder,
ComponentDN=default/CoffeeShopClient!1.0*soa_19d4a881-115b-42c5-824d-1af3fa766
62d/BuyCoffeeBPELProcess
oracle.fabric.common.FabricInvocationException: Service Unavailable
 at
. . .
. . .

36.3 Using JavaScript and JSON in BPEL Components
The BPEL component can work both with XML and JSON variables. You can use
JavaScript at all places where you can use XPath expressions. JavaScript can be used
for predicates, expressions, and within the JavaScript BPEL activity.

Using JSON Variables

You can choose to create a BPEL process based on an existing REST Service and add
the methods from the REST service. This is illustrated in the following image.

Using JavaScript and JSON in BPEL Components

Integrating REST Operations in SOA Composite Applications 36-23

The Receive activity of the BPEL process is automatically configured to use a JSON
object variable in order to receive the input payload data.

Using JavaScript and JSON in BPEL Components

36-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

You can create additional schema-less JSON variables for your BPEL process, as
required.

Setting the Expression Language for Your BPEL Process

In BPEL Designer, right-click a blank area in the BPEL process area. The Edit Process
dialog appears. Set the Query Language and Expression Language fields, as required.
To use JavaScript you can use js.

Using JavaScript and JSON in BPEL Components

Integrating REST Operations in SOA Composite Applications 36-25

Using JavaScript Expressions

You can use JavaScript at all places where you can use XPath expressions. You can use
these expressions in BPEL activities and conditional and iterative constructs. This
section provides some examples.

The following example shows a JavaScript expression used in an Assert activity. The
expression checks to see if the type of process input is an object.

Using JavaScript and JSON in BPEL Components

36-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The process variable is a global variable that is accessible to the JavaScript context
during execution.

The following code shows a JavaScript condition that might be used in a While
activity:

process.counter < 10

The following code shows a JavaScipt expression that might appear in a Wait activity:

bpel.until(process.counter + 3)

The following code shows a JavaScript expression that might appear in a branch of the
Switch activity, and helps to test for odd numbers:

process.counter % 2 == 1

Using the JavaScript Activity

You can use the JavaScript activity in a BPEL process to add JavaScript code snippets
or blocks of code. To add a JavaScript activity, drag the JavaScript icon from the
Components window to the appropriate place in your BPEL process. You can double-
click the added JavaScript activity to edit it. The following image shows JavaScript
code that calls xpath and bpel object functions.

Using JavaScript and JSON in BPEL Components

Integrating REST Operations in SOA Composite Applications 36-27

xpath is a global object that binds to all XPath functions. So, for example, var o =
process.output.xpath creates a new xpath object, and o.refid =
xpath.ora.getECID() calls the getECID function for the ora namespace prefix.

The following JavaScript code might appear in a JavaScript activity to write output to
the server console and BPEL audit log:

console.log("input: ", process.input)
console.log("output: ", process.output)
audit.log("output: ", process.output)

Importing JavaScript Files in Your BPEL Process

You can import external JavaScript files, containing JavaScript functions, into your
BPEL process. The JavaScript functions contained in these files then become available
to be used within your BPEL process. The following lines use the import and
include statements to fetch the main.js and one.js files into a BPEL process:

<bpelx:js include="jslib/main.js"/>
<bpelx:js import="jslib/one.js"/>
<import location="jslib/lib.js" importType="javascript"/>

The difference between include and import is that the import statement ensures
that the file is included only once irrespective of the number of imports.

The following image shows the source window of a BPEL process with the include/
import statements. Notice where the JavaScript files appear under the project folder.

Using JavaScript and JSON in BPEL Components

36-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

36.4 Testing the REST Adapter with the HTTP Analyzer
You can test the REST adapter with the HTTP Analyzer.

To test the REST adapter with the HTTP Analyzer:

1. Copy the WADL file URL from the home page of the SOA composite application in
Oracle Enterprise Manager Fusion Middleware Control, as shown in Figure 36-17.

Figure 36-17 WADL File URL in Oracle Enterprise Manager Fusion Middleware
Control

2. In the HTTP Analyzer, click the Open URL icon, enter the WADL URL copied
from Oracle Enterprise Manager Fusion Middleware Control, and press Return.

The WADL file is included with the POST method. Figure 36-18 provides details.

Figure 36-18 WADL File and POST Method

Testing the REST Adapter with the HTTP Analyzer

Integrating REST Operations in SOA Composite Applications 36-29

3. Click Test.

4. Copy and paste a sample request XML payload into the Request HTTP Headers
section and click Send Request. You can also specify JSON formats. Figure 36-19
provides details.

Figure 36-19 Request Message

After processing completes, a response message is displayed. For this example, a
message with an order status of Shipped is displayed. Figure 36-20 provides
details.

Figure 36-20 Response Message

Testing the REST Adapter with the HTTP Analyzer

36-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

36.5 Testing and Configuring REST Reference Binding Components in
Oracle Enterprise Manager Fusion Middleware Control

You can initiate instances of SOA composite applications that include REST binding
components from the Test Instances page in Oracle Enterprise Manager Fusion
Middleware Control. This page enables you to test any WSDL or WADL. For more
information, see Section "Initiating a SOA Composite Application Test Instance" of
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

You can configure properties for REST reference binding components in Oracle
Enterprise Manager Fusion Middleware Control. For more information, see Section
"Configuring Properties for REST Adapters" of Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

Testing and Configuring REST Reference Binding Components in Oracle Enterprise Manager Fusion Middleware Control

Integrating REST Operations in SOA Composite Applications 36-31

Testing and Configuring REST Reference Binding Components in Oracle Enterprise Manager Fusion Middleware Control

36-32 Developing SOA Applications with Oracle SOA Suite

37
Integrating Enterprise JavaBeans with

Composite Applications

This chapter describes how to integrate Enterprise JavaBeans with SOA composite
applications through use of Java interfaces or service data object (SDO) parameters. It
describes how to design an SDO-based Enterprise JavaBeans application, create an
Enterprise JavaBeans service in Oracle JDeveloper, design an Enterprise JavaBeans
client to invoke Oracle SOA Suite, specify Enterprise JavaBeans roles, and configure
JNDI access.

This chapter includes the following sections:

• Introduction to Enterprise JavaBeans Binding Integration with SOA Composite
Applications

• Designing an SDO-Based Enterprise JavaBeans Application

• Creating an Enterprise JavaBeans Service in Oracle JDeveloper

• Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite

• Specifying Enterprise JavaBeans Roles

• Configuring Enterprise JavaBeans Binding Support in the Credential Store
Framework

Note:

Support is provided for Enterprise JavaBeans 3.0 and Enterprise JavaBeans 2.0
references (that is, when calling Enterprise JavaBeans 2.0 beans). Support is
not provided for Enterprise JavaBeans 2.0 services (that is, when being called
with Enterprise JavaBeans 2.0 beans).

37.1 Introduction to Enterprise JavaBeans Binding Integration with SOA
Composite Applications

There are two options for integrating Enterprise JavaBeans with SOA composite
applications:

• Through use of Java interfaces (does not use a WSDL file to define the interface)

• Through use of SDO-based EJBs (uses a WSDL file to define the interface)

This chapter describes both options.

Integrating Enterprise JavaBeans with Composite Applications 37-1

You can also use the spring service component to integrate Java interfaces with SOA
composite applications. For information about using the spring service component, see
Integrating the Spring Framework in SOA Composite Applications.

37.1.1 Integration Through Java Interfaces
You can integrate Enterprise JavaBeans with Oracle SOA Suite through Java interfaces,
therefore eliminating the need for WSDL file definitions. This type of integration
provides support with the following objects:

• Native Java objects

• Java Architecture for XML Binding (JAXB)

Java interfaces differ from SDO interfaces, which are defined in a WSDL file because of
the XML-centric nature of service components such as Oracle BPEL Process Manager,
Oracle Mediator, and others. No SDO parameters are required when using Java
interfaces.

You use the Create EJB Service dialog in Oracle JDeveloper to define this integration,
as described in How to Integrate Java Interface-based Enterprise JavaBeans with SOA
Composite Applications. This option does not require the use of a WSDL file. Once
complete, the interaction is defined in the composite.xml file through the
interface.java entry, as shown in the example that follows. The Java interface
classes must be compatible with the WSDL file used by the connecting components
(that is, if a message is sent to a BPEL component). BPEL services are defined with a
WSDL, and the Java interface classes must be compatible with that WSDL.

<service name="PortfolioService">
 <interface.java interface="com.bigbank.services.MyService" />
 binding.ejb uri="MyJNDI" ejb-version="EJB3"/>

The Java class must be in the project's loader to be available to the user interface. The
class must be in SCA-INF to be deployed (not all JAR files in the project class path are
deployed). This typically means that the class must be in the SCA-INF/classes
directory or in a JAR in the SCA-INF/lib directory. However, it can also be an
interface from the system class path.

For information about JAXB, see Solutions Guide for Oracle TopLink and Integrating the
Spring Framework in SOA Composite Applications.

37.1.2 Integration Through SDO-Based EJBs
SDOs enable you to modify business data regardless of how it is physically accessed.
Knowledge is not required about how to access a particular back-end data source to
use SDOs in a SOA composite application. Consequently, you can use static or
dynamic programming styles and obtain connected and disconnected access.

Enterprise JavaBeans are server-side domain objects that fit into a standard
component-based architecture for building enterprise applications with Java. These
objects become distributed, transactional, and secure components.

Many Oracle SOA Suite interfaces are described by WSDL files. Enterprise JavaBeans
interfaces are described by Java interfaces. Invocations between the two are made
possible in Oracle SOA Suite by an Enterprise JavaBeans Java interface that
corresponds to an Oracle SOA Suite WSDL interface.

Through this interface, Oracle SOA Suite provides support for the following:

Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications

37-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Invoking Enterprise JavaBeans with SDO parameters through an Enterprise
JavaBeans reference binding component. In this scenario, a SOA composite
application passes SDO parameters to an external Enterprise JavaBeans
application.

• Invoking an Enterprise JavaBeans service binding component through Enterprise
JavaBeans with SDO parameters. In this scenario, an Enterprise JavaBeans
application passes SDO parameters into a SOA composite application.

Figure 37-1 provides an overview.

Figure 37-1 SDO and Enterprise JavaBeans Binding Integration

You use the Create EJB Service dialog in Oracle JDeveloper to define this integration,
as described in How to Integrate SDO-based Enterprise JavaBeans with SOA
Composite Applications. This option requires the use of a WSDL file. Once complete,
the WSDL interaction is defined in the composite.xml file through the
interface.wsdl entry, as shown in the following example:

<service name="PortfolioService">
 <interface.wsdl
 interface="http://bigbank.com/#wsdl.interface(PortfolioService)" />
 <binding.ejb javaInterface="java.class.ejb.com" serviceId="PortfolioService"
 jarLocation="soaejb.jar"/>

37.2 Designing an SDO-Based Enterprise JavaBeans Application
This section provides a high-level overview of the steps for designing an Enterprise
JavaBeans application. For more information, see the following documentation:

• Developing Enterprise JavaBeans for Oracle WebLogic Server

• Developing Fusion Web Applications with Oracle Application Development Framework

• Oracle JDeveloper online help table of contents for the following topics:

– Enterprise JavaBeans

– SDO for Enterprise JavaBeans/Java Persistence API (JPA)

Access the help by selecting Help > Table of Contents in Oracle JDeveloper.

37.2.1 How to Create SDO Objects Using the SDO Compiler
Select one of the following options for creating SDO objects:

• EclipseLink is an open source, object-relational mapping package for Java
developers. EclipseLink provides a framework for storing Java objects in a
relational database or converting Java objects to XML documents.

Use EclipseLink to create SDO objects. For instructions on installing, configuring,
and using EclipseLink to create SDO objects, visit the following URL:

Designing an SDO-Based Enterprise JavaBeans Application

Integrating Enterprise JavaBeans with Composite Applications 37-3

http://wiki.eclipse.org/EclipseLink/
Installing_and_Configuring_EclipseLink

• Oracle JDeveloper enables you to create an SDO service interface for JPA entities.
While this feature is more tailored for use with the Oracle Application
Development Framework (ADF) service binding in a SOA composite application,
you can also use this feature with the Enterprise JavaBeans service binding in
SOA composite applications. The SDO service interface feature generates the
necessary WSDL and XSD files. If you use this feature, you must perform the
following tasks to work with the Enterprise JavaBeans service binding:

– Browse for and select this WSDL file in the WSDL Chooser dialog, which is
accessible from the WSDL URL field of the Create EJB Service dialog
(described in Creating an Enterprise JavaBeans Service in).

– Add the BC4J Service Runtime library to the SOA project. To add this
library, double-click the project and select Libraries and Classpath to add the
library in the Project Properties dialog. You are now ready to design the
business logic.

For more information, see the SDO for Enterprise JavaBeans/JPA topic in the
Oracle JDeveloper online help (this includes instructions on how create to an SDO
service interface).

37.2.2 How to Create a Session Bean and Import the SDO Objects

To create a session bean and import the SDO objects:

1. Create a simple session bean with the Create Session Bean wizard. For details on
using this wizard, see the Creating a Session Bean topic in the Oracle JDeveloper
online help.

2. Import the SDO objects into your project through the Project Properties dialog.

3. Add logic and necessary import and library files. In particular, you must import
the Commonj.sdo.jar file. JAR files can be added in the Libraries and Classpath
dialog. This dialog is accessible by double-clicking the project and selecting
Libraries and Classpath in the Project Properties dialog. You are now ready to
design the logic.

4. Expose the method to the remote interface.

37.2.3 How to Create a Profile and an EAR File

To create a profile and an EAR file:

1. Create an Enterprise JavaBeans JAR profile in the Project Properties dialog.

2. Create an application level EAR file in the Application Properties dialog.

37.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean
An Enterprise JavaBeans bean must define the SDO types. The example that follows
provides details.

Designing an SDO-Based Enterprise JavaBeans Application

37-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

http://wiki.eclipse.org/EclipseLink/Installing_and_Configuring_EclipseLink
http://wiki.eclipse.org/EclipseLink/Installing_and_Configuring_EclipseLink

Caution:

Where to call define can be nontrivial. You must force the types to be
defined before remote method invocation (RMI) marshalling must occur and
in the right helper context. The EclipseLink SDO implementation indexes the
helper instance with the application name or class loader.

When you invoke the Enterprise JavaBeans method, an application name is
available to the EclipseLink SDO runtime. The EclipseLink SDO looks up the
context using the application name as the key. Ensure that the types are
defined when the application name is visible. When an Enterprise JavaBeans
static block is initialized, the application name is not created. Therefore,
putting the define in the static block does not work if you are using the
default application name-based context. One way to get the application name
initialized is to allocate more than two instance beans using the weblogic-
ejb-jar.xml file.

InputStreamReader reader = new InputStreamReader(url.openStream());
StreamSource source = new StreamSource(reader);
List<SDOType> list = ((SDOXSDHelper) XSDHelper.INSTANCE).define(source, null);

The weblogic-ejb-jar.xml file is the descriptor file that must be added in the
deployment jar. The weblogic-ejb-jar.xml file is automatically created when you
create a session bean. This file must be modified by adding the entries shown in the
following example:

<?xml version = '1.0' encoding = 'windows-1252'?>
<weblogic-ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-ejb-jar
 http://www.bea.com/ns/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-jar.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-ejb-jar">

 <weblogic-enterprise-bean>
 <ejb-name>HelloEJB</ejb-name>
 <stateless-session-descriptor>
 <pool>
 <initial-beans-in-free-pool>2</initial-beans-in-free-pool>
 </pool>
 </stateless-session-descriptor>
 </weblogic-enterprise-bean>

 </weblogic-ejb-jar>

Figure 37-2 provides a code example of a session bean with SDO logic defined.

Designing an SDO-Based Enterprise JavaBeans Application

Integrating Enterprise JavaBeans with Composite Applications 37-5

Figure 37-2 Session Bean with Defined SDO Logic

37.2.5 How to Use Web Service Annotations
To generate the WSDL file, the Enterprise JavaBeans interface must use the following
web service annotations. Use of these annotations is described in JSR 224: Java API for
XML-Based Web Services (JAX-WS) 2.0. Visit the following URL for details:

http://www.jcp.org/en/jsr/detail?id=224

In addition, only a document/literal WSDL is currently supported by the Enterprise
JavaBeans binding layer.

Table 37-1 describes the annotations to use.

Table 37-1 Annotations

Name Description

@javax.jws.WebResult

;

@javax.jws.WebParam;

Customizes the mapping of an individual parameter to a web
service message part and XML element. Both annotations are
used to map SDO parameters to the correct XML element from
the normalized message payload.

Designing an SDO-Based Enterprise JavaBeans Application

37-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

http://www.jcp.org/en/jsr/detail?id=224

Table 37-1 (Cont.) Annotations

Name Description

@javax.jws.Oneway; Denotes a method as a web service one-way operation that has
only an input message and no output message. The Enterprise
JavaBeans binding component does not expect any reply in this
case.

@javax.xml.ws.Reques

tWrapper;

@javax.xml.ws.Respon

seWrapper;

Tells the Enterprise JavaBeans binding components whether the
deserialized object must be unwrapped or whether a wrapper
must be created before serialization.

An Enterprise JavaBeans interface can be generated from an
existing WSDL or obtained by some other means. If the WSDL
does not exist, it can be generated.

@javax.xml.ws.WebFau

lt;

Maps WSDL faults to Java exceptions. This annotation captures
the fault element name used when marshalling the JAXB type
generated from the global element referenced by the WSDL
fault message.

@oracle.webservices.

PortableWebService

Specifies the targetNamespace and serviceName used for
the WSDL. For example:

@PortableWebService(
targetNamespace = "http://hello.demo.oracle/",
serviceName = "HelloService")

The serviceName is used as the WSDL file name. If it is not
specified in the annotations, the service endpoint interface (SEI)
class name is used instead.

Add appropriate method
parameter annotations

Controls how message elements and types are mapped to the
WSDL. For example, if your interface is in doc/lit/bare
style, add the following annotations to the methods.

@WebMethod
@SOAPBinding(parameterStyle =
SOAPBinding.ParameterStyle.BARE)

@SDODatabinding Adds to the interface class to use the existing schema instead of
a generated one. For example:

@SDODatabinding(schemaLocation = "etc/HelloService.xsd")

The following example provides an example of an Enterprise JavaBeans interface with
annotations.

@Remote
@PortableWebService(targetNamespace = "http://www.example.org/customer-example",
 serviceName = "CustomerSessionEJBService")
@SDODatabinding(schemaLocation = "customer.xsd")
public interface CustomerSessionEJB {
 @WebMethod(operationName="createCustomer")
 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(targetNamespace = "http://www.example.org/customer-example",

Designing an SDO-Based Enterprise JavaBeans Application

Integrating Enterprise JavaBeans with Composite Applications 37-7

 partName = "parameters", name = "customer")
 CustomerType createCustomer();
 @WebMethod(operationName="addPhoneNumber")
 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(targetNamespace = "http://www.example.org/customer-example",
 partName = "parameters", name = "customer")
 CustomerType addPhoneNumber(@WebParam(targetNamespace =
 "http://www.example.org/customer-example", partName = "parameters", name =
 "phone-number")PhoneNumber phNumber);
}

37.2.6 How to Deploy the Enterprise JavaBeans EAR File

To deploy the EAR file from Oracle JDeveloper:

1. Select the Application context menu to the right of the application name.

2. Select Deploy and deploy the EAR file to a previously created application server
connection.

37.3 Creating an Enterprise JavaBeans Service in Oracle JDeveloper
This section describes how to create an Enterprise JavaBeans reference binding
component or Enterprise JavaBeans service binding component in Oracle JDeveloper.
The Enterprise JavaBeans service enables the Enterprise JavaBeans application to
communicate with Oracle SOA Suite and Oracle SOA Suite to communicate with
remote Enterprise JavaBeans.

This section describes how to create the following types of integrations:

• Integration through a Java interface

• Integration through an SDO interface

37.3.1 How to Integrate Java Interface-based Enterprise JavaBeans with SOA
Composite Applications

You can create the following types of Java interface-based Enterprise JavaBeans
integrations with SOA composite applications:

• Invoke Java interface-based Enterprise JavaBeans from a SOA composite
application

• Invoke a SOA composite application from Enterprise JavaBeans using a Java
interface

To integrate Java interface-based Enterprise JavaBeans with SOA composite
applications:

1. Go to the SOA composite application in the SOA Composite Editor.

2. In the Technology section of the Components window, drag the EJB icon into the
appropriate swimlane:

• To invoke an Enterprise JavaBeans reference binding component from a SOA
composite application, drag the icon to the External References swimlane.

Creating an Enterprise JavaBeans Service in Oracle JDeveloper

37-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• To invoke a SOA composite application from an Enterprise JavaBeans service
binding component, drag the icon to the Exposed Services swimlane.

3. In the Interface section, click Java (if it is not already selected).

4. The Create EJB Service dialog displays the fields shown in Figure 37-3.

Figure 37-3 Create EJB Service for Java Interface

5. Enter the details shown in Table 37-2. The fields are the same regardless of the
swimlane in which you dragged the EJB icon.

Table 37-2 Create EJB Service Dialog

Field Value

Name Accept the default value or enter a different name.

Type Displays the following value:

• Displays Reference if you dragged this icon into the
External References swimlane.

• Displays Service if you dragged this icon into the
Exposed Services swimlane.

Version Select the version of EJB to support: EJB2 or EJB3 (the default
selection).

Note: This field only displays if you dragged the EJB Service
icon into the External References swimlane.

Interface Select Java.

JNDI Name Enter the JNDI name of your Enterprise JavaBeans.

Creating an Enterprise JavaBeans Service in Oracle JDeveloper

Integrating Enterprise JavaBeans with Composite Applications 37-9

Table 37-2 (Cont.) Create EJB Service Dialog

Field Value

Jar File Click the Search icon to select the EJB JAR file created in
Designing an SDO-Based Enterprise JavaBeans Application.
The JAR Chooser dialog searches for and displays JAR files
starting in the SCA-INF/lib subdirectory of the current
project directory. The JAR file includes the interface class and
any supporting classes.

Note: If you select a JAR file outside of the current project,
Oracle JDeveloper creates a copy of the JAR file in the SCA-
INF/lib directory of the current project. When prompted,
click OK to accept.

Java Interface Select one of the following options.

• Enter the Java interface manually.
• Click the Browse for Class File icon to invoke the Class

Browser dialog for selecting the Java interface.

The class must be available in the runtime classpath.
There are several ways to make the class available in the
runtime classpath. One method is to put the class in the
SCA-INF/classes directory or in a JAR file in the SCA-
INF/lib directory at design time to ensure that it gets
deployed. However, it can also be an interface from the
system class path.

There are several ways to make the class available at
runtime, but one way is to put the class or JAR into
SCA-INF at design time so that it gets deployed.

Note: If you use the Jar File field, you do not need to
add a new JAR file to the project by selecting Project
Properties > Libraries and Classpath > Add JAR/
Directory from the Application main menu.

• Click the Generate Java Interface from a WSDL icon to
select the WSDL file from which to generate the Java
interface. This option is the same as described in How to
Integrate SDO-based Enterprise JavaBeans with SOA
Composite Applications.

6. Click OK.

37.3.2 How to Integrate SDO-based Enterprise JavaBeans with SOA Composite
Applications

You can create the following types of SDO-based Enterprise JavaBeans integrations
with SOA composite applications:

• Invoke SDO-based Enterprise JavaBeans from a SOA composite application

• Invoke a SOA composite application from Enterprise JavaBeans using SDO
parameters

To integrate SDO-based Enterprise JavaBeans with SOA composite
applications:

1. Go to the SOA composite application in the SOA Composite Editor.

Creating an Enterprise JavaBeans Service in Oracle JDeveloper

37-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

2. In the Technology section of the Components window, drag the EJB icon into the
appropriate swimlane, as described in Table 37-3.

Table 37-3 Swimlane for EJB Service

To Invoke... Drag the EJB Service to this Swimlane...

SDO-based Enterprise JavaBeans from a
SOA composite application

External References

A SOA composite application from
Enterprise JavaBeans using SDO
parameters

Exposed Services

The Create EJB Service dialog is displayed.

3. In the Interface section, click WSDL.

4. See the step in Table 37-4 based on the swimlane in which you dragged the EJB
service.

Table 37-4 Swimlane Location

If You Dragged the EJB Service to this Swimlane... Then Go To...

External References 44.a

Exposed Services 44.b

a. View the Create EJB Service dialog that displays in the External References
swimlane, as shown in Figure 37-4.

Figure 37-4 Create EJB Service in External References Swimlane

Creating an Enterprise JavaBeans Service in Oracle JDeveloper

Integrating Enterprise JavaBeans with Composite Applications 37-11

b. View the Create EJB Service dialog that displays in the Exposed Services
swimlane, as shown in Figure 37-5.

Figure 37-5 Create EJB Service in Exposed Services Swimlane

5. Enter values appropriate to your environment. The fields that display differ based
on the swimlane in which you dragged the EJB Service icon. Table 37-5 provides
details.

Table 37-5 Create EJB Service Dialog

Field Value

Name Accept the default value or enter a different name.

Type Displays the following value:

• Displays Reference if you dragged this icon into the
External References swimlane.

• Displays Service if you dragged this icon into the
Exposed Services swimlane.

Version Note: This field only displays if you dragged the EJB
Service icon into the External References swimlane.

Select the version of EJB to support: EJB2 or EJB3 (the
default selection). If you select WSDL from the Interface
list, only EJB3 is available for selection.

Interface Select WSDL.

JNDI Name Note: This field only displays if you dragged the EJB
Service icon into the External References swimlane.

Enter the JNDI name of your Enterprise JavaBeans.

Creating an Enterprise JavaBeans Service in Oracle JDeveloper

37-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 37-5 (Cont.) Create EJB Service Dialog

Field Value

Jar File Click the Search icon to select the EJB JAR file created in
Designing an SDO-Based Enterprise JavaBeans Application.
The JAR Chooser dialog searches for and displays JAR files
starting in the SCA-INF/lib subdirectory of the current
project directory. The JAR file includes the interface class
and any supporting classes.

Note: If you select a JAR file outside of the current project,
Oracle JDeveloper creates a copy of the JAR file in the SCA-
INF/lib directory of the current project. When prompted,
click OK to accept.

Java Interface Click the Browse icon to invoke the Class Browser dialog for
selecting the fully qualified Java class name of the
previously created Enterprise JavaBeans interface. This class
must exist in the selected JAR file. If a JAR file is not
specified, it is assumed that the class is in the /SCA-INF/
classes subdirectory of the current project directory.

Note: If you use the Jar File field, you do not need to add a
new JAR file to the project by selecting Project Properties >
Libraries and Classpath > Add JAR/Directory from the
Application main menu.

WSDL URL Note: Ensure that you have created the annotations for the
Enterprise JavaBeans interface before generating the WSDL
file, as described in How to Use Web Service Annotations.

Click the second icon to the right to generate a WSDL file
that represents the Enterprise JavaBeans interface.

If you created SDO objects through Oracle JDeveloper, as
described in How to Create SDO Objects Using the SDO
Compiler, ensure that you select the WSDL file that was
automatically generated with this option.

Port Type Select the port type.

Callback Port Type Select the callback port type (for asynchronous services).

6. Click OK.

37.4 Designing an Enterprise JavaBeans Client to Invoke Oracle SOA
Suite

This section describes how to design an Enterprise JavaBeans client to invoke Oracle
SOA Suite.

37.4.1 How to Create a Java Interface-Based Client to Invoke Oracle SOA Suite
Use the standard Enterprise JavaBeans client. The following example provides details:

InitialContext ic = new InitialContext(jndiProps);
SimpleEjb svc = (SimpleEjb) ic.lookup("PassthroughRef");
String result = svc.addBreadCrumb("RemoteTest");

Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite

Integrating Enterprise JavaBeans with Composite Applications 37-13

37.4.2 How to Invoke an SDO-Enterprise JavaBeans Service
To invoke an SDO - Enterprise JavaBeans service from Enterprise JavaBeans, you must
use the client library. Follow these guidelines to design an Enterprise JavaBeans client.

• Look up the SOAServiceInvokerBean from the JNDI tree.

• Get an instance of SOAServiceFactory and ask the factory to return a proxy for
the Enterprise JavaBeans service interface.

• You can include a client side Enterprise JavaBeans invocation library
($FMW_HOME/soa/soa/modules/oracle.soa.fabric_11.1.1/fabric-
client.jar or the fabric-runtime.jar file located in the Oracle JDeveloper
home directory or Oracle WebLogic Server) in the Enterprise JavaBeans client
application. For example, the fabric-runtime.jar file can be located in the
JDev_Home\jdeveloper\soa\modules\oracle.soa.fabric_11.1.1
directory.

If the Enterprise JavaBeans application is running in a different JVM than Oracle
SOA Suite, the Enterprise JavaBeans application must reference the ejbClient
library. The code that follows provides an example.

You must specify the complete path of the service ID with the
MyTestEJBService parameter of serviceFactory.createService (for
example, "default/MyTestProject!1.0/MyTestEJBService"). If the
complete path is not specified, you receive an EJBException- Could not
locate the service error.

Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, "t3://" + HOSTNAME + ":" + PORT);
 InitialContext ctx = new InitialContext(props);
 SOAServiceInvokerBean invoker =
 (SOAServiceInvokerBean)
 ctx.lookup("SOAServiceInvokerBean#oracle.integration.platform.blocks.sdox.ejb.api.
SOAServiceInvokerBean");

 //-- Create a SOAServiceFactory instance
 SOAServiceFactory serviceFactory = SOAServiceFactory.newInstance(invoker);

 //-- Get a dynamice proxy that is essentially a remote reference
 HelloInterface ejbRemote =
 serviceFactory.createService("complete_path/MyTestEJBService",
HelloInterface.class);

 //-- Invoke methods
 Item item = (Item) DataFactory.INSTANCE.create(Item.class);
 item.setNumber(new BigInteger("32"));
 SayHello sayHello = (SayHello)
 DataFactory.INSTANCE.create(SayHello.class);
 sayHello.setItem(item);

 SayHelloResponse response = ejbRemote.sayHello(sayHello);
 Item reply = response.getResult();

Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite

37-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

37.5 Specifying Enterprise JavaBeans Roles
To specify role names required to invoke SOA composite applications from any Java
EE application, you add the roles names in the Enterprise JavaBeans service
configuration. The Enterprise JavaBeans service checks to see if the caller principal has
the security role. The following example provides details:

<service name="EJBService" ui:wsdlLocation="BPELEJBProcess.wsdl">
 <interface.wsdl
interface="http://xmlns.oracle.com/EJBApplication/EJBProject/BPELEJBProcess#wsdl.int
erface(BPELProcess1)"callbackInterface="http://xmlns.oracle.com/EJBApplication/
EJBProject/BPELEJBProcess#
wsdl.interface(BPELEJBProcessCallback)"/>
<property name="rolesAllowed">Superuser, Admin</property>
 <binding.ejb javaInterface="java.class.ejb.com" serviceId="EJBService"
 jarLocation="soaejb.jar"/>
</service>

37.6 Configuring Enterprise JavaBeans Binding Support in the Credential
Store Framework

This section describes how to configure Enterprise JavaBeans binding support in the
credential store framework.

37.6.1 How to Configure Enterprise JavaBeans Binding Support in the Credential Store
Framework

All Enterprise JavaBeans bindings support using the Credential Store Framework
(CSF) to store JNDI user access credentials, and not just service data object (SDO)
Enterprise JavaBeans bindings.

You can edit the following Enterprise JavaBeans binding JNDI properties in Oracle
Enterprise Manager Fusion Middleware Control:

• java.naming.factory.initial

• java.naming.provider.url

• java.naming.dns.url

• java.naming.factory.url.pkgs

• java.naming.factory.url.pkgs

• java.naming.security.authentication

• java.naming.security.protocol

• java.naming.security.principal

• java.naming.security.crendentials

• oracle.jps.credstore.map

• oracle.jps.credstore.key

Specifying Enterprise JavaBeans Roles

Integrating Enterprise JavaBeans with Composite Applications 37-15

37.6.1.1 To configure Enterprise JavaBeans binding support in the credential store
framework:

To edit these properties, perform the following steps in Oracle Enterprise Manager
Fusion Middleware Control:

1. Right-click the SOA composite application that includes the Enterprise JavaBeans
binding component.

2. Select Service/Reference Properties.

3. Select the Enterprise JavaBeans binding component.

4. Click the Properties tab.

5. Set the appropriate properties.

37.6.1.2 To specify the oracle.jps.credstore.map and oracle.jps.credstore.key
properties

Oracle recommends that you store the JNDI lookup principal/credentials in the CSF
map by specifying the properties oracle.jps.credstore.map and
oracle.jps.credstore.key. Storing the user name/password directly as
properties is not secure.

1. In Oracle Enterprise Manager Fusion Middleware Control, navigate to one of the
following to display the Credentials page.

a. Domain > Security > Credentials (if the application is deployed on Oracle
WebLogic Server).

or

b. Cell > Security > Application Policies (if it is deployed on WebSphere
Application Server).

2. To add a new map, select Create Map.

3. Click the map to add a key entry for oracle.jps.credstore.map.

4. Repeat Steps 2 and 3 to add oracle.jps.credstore.key.

37.6.1.3 To grant SOA infrastructure runtime access to the CSF map store

After completing these steps, you must grant SOA Infrastructure runtime access to the
CSF map store.

1. Expand the WebLogic Domain.

2. Right-click soa-infra, and select Security > System Policies.

3. Search for type CodeBase, which includes the name fabric-runtime.

4. Select the entry and edit it to add a credential store access permission.

5. Grant at least the read action to the map.

Configuring Enterprise JavaBeans Binding Support in the Credential Store Framework

37-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

38
Using Direct Binding to Invoke Composite

Services

This chapter describes the Direct Binding Invocation API and how to invoke a SOA
composite application. It describes how to create an inbound direct binding service,
how to create an outbound direct binding reference, and how to set an identity for
Java 2 Platform, Standard Edition (J2SE) clients invoking direct binding. Samples of
using the Direct Binding Invocation API are also provided.

This chapter includes the following sections:

• Introduction to Direct Binding

• Introduction to the Direct Binding Invocation API

• Invoking a SOA Composite Application in with the Invocation API

• Samples Using the Direct Binding Invocation API

38.1 Introduction to Direct Binding
A common way to invoke a composite is to use SOAP over HTTP. This is enabled by
creating a SOAP service for your composite using web service binding. However, you
can also use direct binding, which provides a tighter integration alternative. Direct
binding enables Java clients to directly invoke composite services, bypassing the
intermediate conversion to XML required with web service binding.

Direct binding provides two types of invocation styles:

• Inbound direct binding

The direct service binding component allows an external client to send messages
using the Direct Binding Invocation API, where the Direct Binding Invocation API
takes the JNDI connection parameters and creates a connection object on behalf of
the client.

• Outbound direct binding (or direct reference binding)

The direct reference binding component provides support for sending SOA
messages directly to external services over a remote method invocation (RMI).
These external services must implement the SOA invocation API (the same as the
direct inbound invocation API).

In the case of direct outbound binding, the connection object is created with the
JNDI name of the external service bean configured for the binding.

Direct binding must be associated with the interface.wsdl, providing the interface
clause and, optionally, the callbackInterface clause. The associated WSDL must
be imported into the composite.

Using Direct Binding to Invoke Composite Services 38-1

The service binding component also publishes a modified version of the WSDL that
advertises the direct binding.

38.1.1 Direct Service Binding Component
A sample configuration using the direct service binding component is shown in the
following example:

<service name="direct2">
 <interface.wsdl
interface="http://xmlns.oracle.com/asyncNonConvDocLit#wsdl.interface(asyncNonConvD
ocLit)"
callbackInterface="http://xmlns.oracle.com/asyncNonConvDocLit#wsdl.interface(async
NonConvDocLitCallback)" xmlns:ns="http://xmlns.oracle.com/sca/1.0"/>
 <binding.direct/>
</service>

38.1.2 Direct Reference Binding Component
The direct reference binding component requires the following information to connect
to a user-provided SOA invoker:

• Properties:

A set of properties that defines the DirectConnection for the end service (see
oracle.soa.management.facade.Locator).

• ConnectionFactory class name (see
oracle.soa.management.facade.Locator).

The ConnectionFactory class must implement the
oracle.soa.api.invocation.DirectConnectFactory interface.

If the ConnectionFactory class name is not specified, the default
oracle.soa.api.JNDIDirectConnectionFactory is used. To use the
default connection factory, you must supply the lookup name for the EJB.

• Address used by the external service:

This address value is not processed by the binding component, but is passed on to
the service bean during invocation.

• addressingVersion (optional):

The default addressing version used is 2005/08.

• useSSLForCallback:

Use a secure socket layer (SSL) for the callback JNDI connection. If this flag is set
to true, then the WS-Addressing replyTo header instructs the service to call
back at an SSL JNDI port.

A sample configuration is shown in the following example:

<reference name="HelloReference" ui:wsdlLocation="HelloService.wsdl">
 <interface.wsdl
 interface="http://hello.demo.oracle/#wsdl.interface(HelloInterface)"/>
 <binding.direct connection-factory="oracle.soa.api.JNDIDirectConnectionFactory"
 addressingVersion="http://www.w3.org/2005/08/addressing"
 address="soadirect://syncOut"
 useSSLForCallback="false">
 <property

Introduction to Direct Binding

38-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 name="oracle.soa.api.invocation.direct.bean">MyDirectTestServiceBean#directEjb.Tes
tInvoker</property>
 <property
 name="java.naming.factory.initial">weblogic.jndi.WLInitialContextFactory</property
>
 <property name="java.naming.provider.url">t3://@host:@port</property>
 </binding.direct>
</reference>

The direct binding components support both synchronous and asynchronous
invocation patterns. Figure 38-1 describes a sample synchronous invocation pattern
and Figure 38-2 describes a sample asynchronous invocation pattern.

Figure 38-1 Sample Synchronous Invocation Patterns

Introduction to Direct Binding

Using Direct Binding to Invoke Composite Services 38-3

Figure 38-2 Sample Asynchronous Invocation Pattern

38.2 Introduction to the Direct Binding Invocation API
The different packages used in the Direct Binding Invocation API are as follows:

• oracle.soa.management.facade.Locator

The oracle.soa.management.facade.Locator interface exposes a method,
createConnection, which returns a direct connection. The Locator exposes
the method shown in the following example for returning the
DirectConnection.

import java.util.Map;
public interface DirectConnectionFactory {
 DirectConnection createDirectConnection(CompositeDN compositeDN,
 String serviceName) throws Exception;

You can use the LocatorFactory implementation to obtain the
DirectConnection, as shown in the following example:

Hashtable jndiProps = new Hashtable();
jndiProps.put(Context.PROVIDER_URL, "t3://" + hostname + ':' + portname + "/soa-
infra");
jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,"weblogic.jndi.WLInitialContextFact
ory");
jndiProps.put(Context.SECURITY_PRINCIPAL,"weblogic");
jndiProps.put(Context.SECURITY_CREDENTIALS,"welcome1");
jndiProps.put("dedicated.connection","true");
Locator locator = LocatorFactory.createLocator(jndiProps);
CompositeDN compositedn = new CompositeDN(domainName, compositename, version);
String serviceName = "HelloEntry";
return locator.createDirectConnection(compositedn, serviceName);

• oracle.soa.api.invocation.DirectConnection

Introduction to the Direct Binding Invocation API

38-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The DirectConnection interface invokes a composite service using direct
binding. For more information, see .

• oracle.soa.api.message.Message

The Message interface encapsulates the data exchanged. For more information,
see .

38.2.1 Synchronous Direct Binding Invocation
Direct binding also supports the synchronous direct invocation with use of the method
shown in the following example:

<T> Message<T> request(String operationName, Message<T> message)
 throws InvocationException, FaultException

38.2.2 Asynchronous Direct Binding Invocation
Asynchronous invocation relies on the WS-Addressing headers set on the message
instance. All headers must adhere to the WS-Addressing specification.

The Direct Binding Invocation API allows the clients to specify the WS-Addressing
ReplyTo SOAP header to communicate a destination by which they can receive
responses.

Note:

The supported addressing version includes:

• http://www.w3.org/2005/08/addressing

• http://schemas.xmlsoap.org/ws/2004/08/addressing

• http://schemas.xmlsoap.org/ws/2003/03/addressing

An example of the WS-Addressing header used for asynchronous invocation is shown
below:

<wsa:MessageID>D6202742-D9D9-4023-8167-EF0AB81042EC</wsa:MessageID>
 <wsa:ReplyTo xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsa:Address>sb://testserver:9001/callback</wsa:Address>
 <wsa:ReferenceParameters>
 <soa:callback xmlns:soa="http://xmlns.oracle.com/soa/direct"
 connection-factory="mytest.MyDirectionConnectionFactory">
 <soa:property name="oracle.soa.api.invocation.direct.bean"
 value="myTest.MyDirectConnectionBean"/>
 <soa:property name="java.naming.provider.url" value="t3://test:8001"/>
 <soa:property name="java.naming.factory.initial"
 value="weblogic.jndi.WLInitialContextFactory"/>
 </soa:callback>
 </wsa:ReferenceParameters>
 </wsa:ReplyTo>

Note:

You must qualify the callback and its property elements properly with the
SOA direct namespace.

Introduction to the Direct Binding Invocation API

Using Direct Binding to Invoke Composite Services 38-5

http://www.w3.org/2005/08/addressing
http://schemas.xmlsoap.org/ws/2004/08/addressing
http://schemas.xmlsoap.org/ws/2003/03/addressing

The direct binding component is responsible for parsing the addressing headers set on
the message instance. In this example, there are two headers: wsa:MessageID and
wsa:ReplyTo. The service binding component makes the following properties
available for the internal SOA components:

• replyToAddress = sb://testserver:9001/callback

• replyToReferenceParameter: element of WSA:ReferenceParameters

38.2.3 Required JAR Files for Compiling and Running the Direct Binding Java Client
Code

The following JAR file is required for compiling the direct binding Java client code:

• $FMWHOME/soa/soa/modules/oracle.soa.mgmt_11.1.1/soa-infra-
mgmt.jar

The following JAR files are required for running the direct binding Java client code:

• $FMWHOME/wlserver/server/lib/wlthint3client.jar

• $FMWHOME/soa/soa/modules/oracle.soa.fabric_11.1.1/oracle-
soa-client-api.jar

38.2.4 SOA Direct Address Syntax
The service paths used with the Direct Binding Invocation API follow the SOA direct
address pattern:

• soadirect:/CompositeDN/serviceName, where CompositeDN stands for
composite distinguished name

In the SOA direct address, the CompositeDN has the following form (label is
optional):

domainName/compositeName[!compositeVersion[*label]]

38.2.5 SOA Transaction Propagation
Direct binding supports the SOA transaction propagation feature. You can invoke this
feature from the client in the following ways:

• Begin the Java transaction from the client and, after performing all the database
operations, perform a commit. You should commit the database operations after a
successful commit from the client side.

• Begin the Java transaction from the client side. If a fault is thrown during any
operation in the SOA composite, then roll back the transaction from the client
side. This rolls back all the database operations.

38.3 Exception Handling with SOA Direct Transport
For Oracle BPEL to be able to catch SOAP faults thrown using the SOA-Direct binding,
the SOAP Fault has to follow some guidelines. Suppose your service is defined by the
following WSDL port and has a namespace of http://www.example.org/MyService:

<wsdl:portType name="MyServicePortType">
<wsdl:operation name="Execute">

Exception Handling with SOA Direct Transport

38-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<wsdl:input message="exp:ExecuteRequestMsg"/>
<wsdl:output message="exp:ExecuteResponseMsg"/>
<wsdl:fault name="executeFault" message="exp:ExecuteFaultMsg"/>
<wsdl:fault name="genericFault" message="exp:GenericFaultMsg"/>
</wsdl:operation>
</wsdl:portType>

When throwing a SOAP Fault, you must include the qualified name of the fault as
declared in the WSDL port. For SOAP 1.1 messages, the QName of the WSDL port
fault should be included in the faultcode element as seen bellow:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <soapenv:Fault xmlns:ns0="http://www.example.org/MyService">
 <faultcode>ns0:genericFault</faultcode>
 <faultstring/>
 <faultactor/>
 <detail>
 <GenericFault xmlns="http://www.example.org/FaultInfo">
 <FaultInfo>
 <ErrorDescription>Error - soap1.1</ErrorDescription>
 </FaultInfo>
 </GenericFault>
 </detail>
 </soapenv:Fault>
 </soapenv:Body>
</soapenv:Envelope>

For SOAP 1.2 messages, the QName of the WSDL port fault should be included in the
Code/Subcode/Value element as seen below:

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Header xmlns:exem="http://www.example.org/MyService"/>
 <soap:Body xmlns:exem="http://www.example.org/MyService">
 <soap:Fault>
 <soap:Fault>
 <soap:Value>soap:Receiver</soap:Value>
 <soap:Subcode>
 <soap:Value xmlns:ns1=" soap:value>"="" target="_blank">http://
www.example.org/MyService">ns1:genericFault</soap:Value>
 </soap:Subcode>
 </soap:Code>
 <soap:Reason>
 <soap:Text xml:lang="pt">Failure calling partner.</soap:Text>
 </soap:Reason>
 <soap:Node>...</soap:Node>
 <soap:Detail>
 <err:GenericFault xmlns:err="http://www.example.org/FaultInfo">
 <err:FaultInfo>
 <err:ErrorDescription>Error Desc</err:ErrorDescription>
 </err:FaultInfo>
 </err:GenericFault>
 </soap:Detail>
 </soap:Fault>

 </soap:Body>
</soap:Envelope>

Exception Handling with SOA Direct Transport

Using Direct Binding to Invoke Composite Services 38-7

http://schemas.xmlsoap.org/soap/envelope/
http://www.example.org/MyService
http://www.example.org/FaultInfo
http://www.w3.org/2003/05/soap-envelope
http://www.example.org/MyService
http://www.example.org/MyService
http://www.example.org/MyService
http://www.example.org/MyService
http://www.example.org/FaultInfo

38.4 Invoking a SOA Composite Application in Oracle JDeveloper with the
Invocation API

The Direct icon in the Components window in Oracle JDeveloper, as shown in
Figure 38-3, provides support for exchanging SOA messages with SOA over RMI.

Figure 38-3 Direct Binding Option

Oracle JDeveloper supports creating a direct service binding and a direct reference
binding that invokes either an Oracle Service Bus or another SOA composite.

Note:

For a client to invoke composite services over direct binding, its class path
must include both soa-infra-mgmt.jar, wlthint3client.jar, and
oracle-soa-client-api.jar.

For more information about the Direct Binding Invocation API, see Introduction to the
Direct Binding Invocation API.

38.4.1 How to Create an Inbound Direct Binding Service
You can invoke a SOA composite application using the Direct icon in the Components
window in Oracle JDeveloper.

To create an inbound direct binding service:

1. Open Oracle JDeveloper.

2. From the Components window, select SOA.

3. From the Technology list, drag the Direct icon into the Exposed Services
swimlane. The Create Direct Binding dialog appears.

4. Enter the details shown in Table 38-1.

Table 38-1 Create Direct Binding Dialog Fields and Values

Field Value

Name Enter a name.

Type Select Service from the list.

Reference Target This field is disabled when defining this service in the
Exposed Services swimlane.

Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

38-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 38-1 (Cont.) Create Direct Binding Dialog Fields and Values

Field Value

WSDL URL The URL location of the WSDL file. If you have an existing
WSDL, then click the Find Existing WSDLs option.
Otherwise, click Generate WSDL from schema(s).

Port Type The port type of the WSDL file. You must select a port from
the list.

Callback Port Type The callback port type for asynchronous processes.

Use SSL For Callback Select to use SSL for the callback.

Address This field is automatically populated when the WSDL is
concrete and it has at least one binding that is direct.

Provider URL This field is automatically populated when the WSDL is
concrete and it has at least one binding that is direct.

Use local JNDI Provider Select to use the local JNDI provider.

copy wsdl and its
dependent artifacts into
the project

Deselect this check box. If you select this check box, the local
copies of the WSDL file may result in synchronization issues
if a remote WSDL is updated.

When complete, the Create Direct Binding dialog appears as shown in Figure 38-4.

Figure 38-4 Create Direct Binding Dialog

5. Click OK.

Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

Using Direct Binding to Invoke Composite Services 38-9

The direct binding service displays in the SOA Composite Editor shown in
Figure 38-5. The single arrow in a circle indicates that this is a synchronous, one-
way, direct binding component.

Figure 38-5 Direct Binding Service

38.4.2 How to Create an Outbound Direct Binding Reference
You can create an outbound direct binding reference using the Direct icon in the
Components window in Oracle JDeveloper to either invoke a SOA composite
application or an Oracle Service Bus.

Note:

When Oracle SOA Suite and Oracle Service Bus are in different domains, you
must enable trust between the domains.

To create an outbound direct binding reference:

1. Open Oracle JDeveloper.

2. From the Components window, select SOA.

3. From the Technology list, drag the Direct icon into the External References
swimlane. The Create Direct Binding dialog appears.

4. Enter the details shown in Table 38-2.

Table 38-2 Create Direct Binding Dialog Fields and Values

Field Value

Name Enter a name.

Type Select Reference from the list.

Reference Target Select the reference target on which you want the direct
binding service to operate:

• Oracle SOA Composite: Creates a direct binding with a
SOA composite application as a reference target.

• Oracle Service Bus: Creates a direct binding with an
Oracle Service Bus as a reference target.

Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

38-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 38-2 (Cont.) Create Direct Binding Dialog Fields and Values

Field Value

WSDL URL The URL location of the WSDL file. If you have an existing
WSDL, then click the Find Existing WSDLs option.

Port Type The port type of the WSDL file. You must select a port from
the list.

Callback Port Type The callback port type for asynchronous processes.

Use SSL For Callback Select to use SSL for the callback.

Address This field is automatically populated when you select a
concrete WSDL URL and port type. However, you must
manually populate this field if a nonconcrete WSDL is
provided.

Provider URL This field is automatically populated when you select a
concrete WSDL URL and port type. However, you must
manually populate this field if a nonconcrete WSDL is
provided.

Use local JNDI Provider Select to use the local JNDI provider.

copy wsdl and its
dependent artifacts into
the project

Deselect this check box. If you select this check box, the local
copies of the WSDL file may result in synchronization issues
if a remote WSDL is updated.

When complete, the Create Direct Binding dialog appears as shown in Figure 38-6.
For more information about using the Oracle SOA Suite services with Oracle
Service Bus, see Chapter "Oracle SOA Suite Transport (SOA-DIRECT)" of
Developing Services with Oracle Service Bus.

Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

Using Direct Binding to Invoke Composite Services 38-11

Figure 38-6 Create Direct Binding Dialog

5. Click OK.

The direct binding reference displays in the designer shown in Figure 38-7. The
single arrow in a circle indicates that this is a synchronous, one-way direct binding
reference component.

Figure 38-7 Direct Binding Reference

38.4.3 How to Set an Identity for J2SE Clients Invoking Direct Binding
A user identity can be established when authenticating to the server during the
process of JNDI lookup by passing the JNDI security credential, as shown in the
following example:

Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

38-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

public static void main(String[] args) throws Exception {
 String operation = "process";

 // This is the request message XML
 String ns = "http://xmlns.oracle.com/DirectBinding_jws/EchoBPEL/BPELProcess1";
 String payloadXML = "<ns1:process xmlns:ns1=\"" + ns + "\">\n" +
 " <ns1:input>wew</ns1:input>\n" +
 "</ns1:process>";

 String serviceAddress = "soadirect:/default/EchoBPEL!1.0/DService1";

 // Specify the direct binding connection properties
 Map<String, Object> props = new HashMap<String, Object>();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, "t3://" + hostname + ':' + portname);
 props.put(Context.SECURITY_PRINCIPAL,username);
 props.put(Context.SECURITY_CREDENTIALS, password);

 // Create the direct binding connection, using those context properties
 DirectConnectionFactory factory = JNDIDirectConnectionFactory.newInstance();

 try {
 DirectConnection dc = factory.createConnection(serviceAddress, props);

 // Parse the XML request message
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 Document doc =
 dbf.newDocumentBuilder().parse(new InputSource(new
StringReader(payloadXML)));

 // Prepare the payload for inclusion in the Message object
 Map<String, Element> payload = new HashMap<String, Element>();
 payload.put("payload", doc.getDocumentElement());

 Message<Element> request =
XMLMessageFactory.getInstance().createMessage(payload);

 Message<Element> response = dc.request(operation, request);
 } finally {
 dc.close();
 }
}

38.4.4 What You May Need to Know About Invoking SOA Composites on Hosts with the
Same Server and Domain Names

If one SOA composite application invokes another SOA composite application on
another host through direct binding, and both composites are on hosts with the same
server name and domain name, the invocation fails.

This is because the Oracle WebLogic Server transaction subsystem requires the
domain names and server names to be different for transaction management to work
properly. The transaction subsystem uses these names to track the location of a server
related to a transaction. If the two servers in the invocation have the same name, the
transaction subsystem can mistakenly confuse the two servers.

Ensure that you use hosts with separate server names and domain names.

Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API

Using Direct Binding to Invoke Composite Services 38-13

38.5 Samples Using the Direct Binding Invocation API
This section provides some examples of how the API is used. It describes how the
connection parameter can invoke SOA composite applications over direct binding and
how message objects can be modified to invoke a direct binding invocation.

// The JNDIDirectConnectionFactory can be used to establish SOA instance
// connections for exchanging messages over the direct binding.
DirectConnectionFactory dcFactory = JNDIDirectConnectionFactory.newInstance();

// Connections are created based on the configuration, which is a map of standard
// naming properties, which will be used for the underlying connection lookup.
Map<String, Object> properties = new HashMap<String, Object>();
properties.put(Context.INITIAL_CONTEXT_FACTORY, jndi.WLInitialContextFactory");
properties.put(Context.PROVIDER_URL, "t3://HOST:PORT");
properties.put(Context.SECURITY_PRINCIPAL, USERNAME);
properties.put(Context.SECURITY_CREDENTIALS, PASSWORD);
DirectConnection conn =
 dcFactory.createConnection("soadirect:/default/MyComposite!1.0/MyService",
 properties);

// Messages are created using the MessageFactory
// Message objects are subsequently modified to be used for an invocation.
Message<Element> request = XMLMessageFactory.getInstance().createMessage();

// Define a Map of WSDL part names to matching XML Element objects
Map<String, Element> partData;

Payload<Element> payload = PayloadFactory.createXMLPayload(partData);
request.setPayload(payload);

// One-way invocation
conn.post("onewayoperation", request);

// Request-reply invocation
Message<Element> response = conn.request("requestreplyoperation", request);

Hashtable jndiProps = new Hashtable();
jndiProps.put(Context.PROVIDER_URL, "t3://" + HOST + ':' + PORT);
jndiProps.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
jndiProps.put(Context.SECURITY_PRINCIPAL,USERNAME);
jndiProps.put(Context.SECURITY_CREDENTIALS, PASSWORD);
Locator locator = LocatorFactory.createLocator(jndiProps);
CompositeDN compositedn = new CompositeDN(domainName, compositename, version);
String serviceName = "HelloEntry";
DirectConnection conn = locator.createDirectConnection(compositedn, serviceName);

Samples Using the Direct Binding Invocation API

38-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Part VII
Sharing Functionality Across Service

Components

This part describes functionality that can be used by multiple service components.

This part contains the following chapters:

• Oracle SOA Suite Templates and Reusable Subprocesses

• Creating Transformations with the XSLT Map Editor

• Creating Transformations with the XQuery Mapper

• Using Business Events and the Event Delivery Network

• Working with Cross References

• Working with Domain Value Maps

• Using with Domain Value Maps

39
Oracle SOA Suite Templates and Reusable

Subprocesses

This chapter describes how to create and use Oracle SOA Suite templates in SOA
projects, service components, and BPEL scope activities and how to create and reuse
standalone and inline BPEL subprocesses within other processes.

This chapter includes the following sections:

• Introduction to Templates

• Introduction to Standalone and Inline BPEL Subprocess Invocations

• Differences Between Oracle SOA Suite Templates and Reusable Subprocesses

• Creating Templates

• Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39.1 Introduction to Oracle SOA Suite Templates
A template is a reusable part of an Oracle SOA Suite project that you can use to create
new projects. There are three types of templates, as described in Table 39-1.

Table 39-1 Template Types

Template Type Description

SOA project A complete SOA project packaged and used to start new
projects. You can create new SOA composite applications using
this template.

Service component A service component, such as a BPEL 2.0 process (including
sensors) packaged for import into other projects. All dependent
components and wires are also packaged. It appears as a
custom service component in the SOA composite application's
Components window.

Custom BPEL scope
activity

A scope activity of a BPEL process packaged as a custom
activity in the Components window and ready for import into
other BPEL projects. This custom activity can potentially
surface in the BPEL activity palette of the Components window.

Oracle SOA Suite templates provide the following benefits:

• Share common code (subpart of a process or a scope) between applications,
composites, and processes. You create once, then share with others. The template
can be reused multiple times.

Oracle SOA Suite Templates and Reusable Subprocesses 39-1

• Store and reuse templates from the Oracle Metadata Services Repository (MDS
Repository).

• Fully editable upon consumption.

• Automatically discover templates in Oracle JDeveloper. Once the template is
saved, it is displayed in the Components window.

• No inheritance, meaning that future changes to source templates are not visible to
applications. If you make changes to the source template, a current user of the
template does not see the change.

• Custom icons are provided for component scope templates.

• No versioning in templates. To differentiate between versions, you specify the
version number in the template name.

• Support for templates in both the BPEL versions 1.1 and 2.0.

Changes made to a specific template are not propagated to projects previously created
using this template. This functionality is achievable through layered customization.

A new annotation is added to the composites/BPEL processes to identify the
relationship to a template.

For information about using templates, see Creating and Using a SOA Project
Template, Creating and Using a Service Component Template, and Creating and
Using a BPEL Scope Activity Template.

39.2 Introduction to Standalone and Inline BPEL Subprocess Invocations
BPEL provides limited support for modularizing business process logic for reusability.
The only method is to package reusable process logic as completely separate
processes, which are utilized by the parent process (the process utilizing the reusable
process logic) in a method identical to using a web service (through the invoke
activity).

To address this challenge, Oracle SOA Suite provides a subprocess extension to BPEL.
A subprocess is a fragment of BPEL code that can be reused within a particular
processor by separate processes. The subprocess extension provides the following
benefits:

• BPEL process code reusability, which reduces the need to create the same
activities multiple times to perform the same tasks.

• Code modularity.

• Code maintenance (changes are propagated, which eliminates the need to
implement updates in multiple places every time a change is necessary).

• Less overhead than invoke activities.

• Memory footprint reduction, which can be considerable in a complex process.

Introduction to Standalone and Inline BPEL Subprocess Invocations

39-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

• Subprocesses are only supported with BPEL version 2.0. There is no
support with BPEL version 1.1.

• Correlation sets are not supported in subprocesses. If you create a
correlation set in an inline or standalone subprocess, it fails during
runtime.

• Subprocesses cannot be shared between multiple composites.

• Monitor view is not supported from inside a subprocess. Monitor view is
accessible from a BPEL process by selecting the Change to Monitor view
icon above Oracle BPEL Designer.

Oracle SOA Suite provides support for two types of subprocesses, as described in
Table 39-2.

Table 39-2 Subprocess Types

Standalone Subprocess Inline Subprocess

• A BPEL call activity invokes the
subprocess.

• A BPEL call activity invokes the
subprocess.

• Supports subprocesses in the same
composite only.

• Part of the parent BPEL process code
and not visible in the composite view.

• Visible in the Components window. • Visible in the Components window.

• Does not have an interface and can only
be called from another BPEL process. It
can include partner links.

• Subprocess code is re-entrant and
reusable at runtime:. Only one copy is
stored in memory, even if called many
times.

• A fragment of a BPEL process that
includes a number of activities that are
reused across other BPEL processes.

• For groups of activities that are reused
within one BPEL process.

• In the composite view, the wire to a
subprocess is shown as a dotted line to
indicate that this is not a wire between
actual components.

• Can either define parameters to set or
can use the process parameters.

Not Applicable. • Activities must be in a scope activity to
be converted into a subprocess.

For information about creating a standalone
subprocess, see How to Create a Standalone
BPEL Subprocess.

For information about creating an inline
subprocess, see How to Create an Inline
Subprocess.

39.2.1 Introduction to a Standalone Subprocess
A standalone subprocess is defined, as shown in the following example, in a file with
the extension .sbpel (subprocess BPEL extension).

<!-- A subprocess is defined in a SBPEL file, containing a bpelx:subProcess
 ! document
 ! The bpelx:subProcess is similar to a standard bpel:process, with

Introduction to Standalone and Inline BPEL Subprocess Invocations

Oracle SOA Suite Templates and Reusable Subprocesses 39-3

 ! differences asnoted below.
-->

<bpelx:subProcess name="NCName" targetNamespace="anyURI"
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
 xmlns:bpelx="http://schemas.oracle.com/bpel/extension" ...>

 <!-- Partner links and variables serve as sub-process arguments -->
 <partnerLinks>?
 <partnerLink name="NCName" partnerLinkType="QName" myRole="NCName"?
 partnerRole="NCName"?
 bpelx:argumentRequired=["yes"|"no"]? />
 <partnerLinks>
 <variables>?
 <variable name="BPELVariableName" messageType="QName"? type="QName"?
 element="QName"?
 bpelx:argumentRequired=["yes"|"no"]?>
 from-spec?
 </variable>
 </variables>

 <!-- Standard process definition here, except no <receive> or <pick> with -->
 <!-- createInstance="yes" -->
 /activity/
</bpelx:subProcess>

The <subProcess> element is an extension of the WS-BPEL 2.0 language. The
<subProcess> element is the root element for a subprocess definition. The
namespace for this element is as follows:

http://schemas.oracle.com/bpel/extension

The <subProcess> activity must be embedded in an <extensionActivity>, as
specified in section 10.9 of the .

A subprocess is of type tProcess, as defined in the following WS-BPEL target
namespace:

http://docs.oasis-open.org/wsbpel/2.0/process/executable

It differs from tProcess in the following ways:

• Variables and partner links immediately under the <subProcess> element can
serve as arguments for the subprocess. Required arguments are marked by setting
the attribute argumentRequired to yes (the default value is no). The
subprocess's required arguments are the minimum set of arguments the caller
must pass to it.

• A variable defined with an inline from-spec initializer serves as an optional
argument with a default value. If the caller passes this argument, the caller-
supplied value for the argument overrides the default value.

• Validation reports an error if a variable is referenced prior to setting the value if it
is not a required argument.

• The first activity in the subprocess cannot be a receive or pick activity with
createInstance set to yes. This is because no instance of a given subprocess
type is created; the subprocess is logically part of an existing process instance.

The subprocess /@name attribute defines the name of the subprocess that is unique
within the composite in which it is deployed.

Introduction to Standalone and Inline BPEL Subprocess Invocations

39-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The subprocess is self-contained. That is, all the variable and partner link references in
the process snippet resolve to local definitions or arguments. This contrasts with the
<inlineSubProcess> element, which allows unresolved references to variables and
partner links that are in-scope at the call activity.

In a typical scenario, more than one variable is exchanged between the parent and a
subprocess. If they are large documents, copying them is expensive. Because of this,
passing by reference is an option.

A subprocess can converse with partners synchronously (InOut) or asynchronously
(InOnly). The partner link for these interactions can be passed as an argument from a
parent process or configured within the subprocess. For asynchronous requests, the
conversation ID for WS-Addressing/normalized messages is set with the parent
process instance ID. This enables routing of callback messages to the correct process
instance.

Subprocesses in a SOA composite application are enumerated in the composite.xml
file. The component element definition associates a subprocess's name with the sbpel
file in which it is defined. During deployment, the subprocess components are
delegated to the BPEL process service engine. The BPEL process service engine
validates the process definition and builds a map with the subprocess target name as
the key and the subprocess definition as the value. At most, only one instance of a
subprocess exists in the service engine independent of consumer count. For optimizing
memory, it may lazily load the process or unload the process if it is not actively used.

For information about creating a standalone subprocess, see How to Create a
Standalone BPEL Subprocess.

39.2.2 Introduction to an Inline Subprocess
An inline subprocess can be defined as part of a BPEL 2.0 process at the <process>
level. The syntax is shown in the following example:

<process name="NCName" targetNamespace="anyURI"
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable" ...>
 <!--
 ! All sub-process definitions must appear prior to the WS-BPEL artifacts of
 ! the process definition.
 -->

 <!-- Inline sub-process definition at process scope -->
 <bpelx:inlineSubProcess xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="NCName">*
 ...
 <!-- Partner links and variables serve as sub-process arguments -->
 <partnerLinks>?
 <partnerLink name="NCName" partnerLinkType="QName" myRole="NCName"?
 partnerRole="NCName"?
 bpelx:argumentRequired=["yes"|"no"]? />+
 <partnerLinks>
 ...
 <variables>?
 <variable name="BPELVariableName" messageType="QName"? type="QName"?
 element="QName"?
 bpelx:argumentRequired=["yes"|"no"]?>+
 from-spec?
 </variable>
 </variables>
 ...
 <!--

Introduction to Standalone and Inline BPEL Subprocess Invocations

Oracle SOA Suite Templates and Reusable Subprocesses 39-5

 ! Standard process activity graph here, except that no <receive> or <pick>
 ! activities with createInstance = "yes" are allowed.
 -->
 activity
 </bpelx:inlineSubprocess>

 <!--
 ! BPEL code stripped for brevity
 -->
</process>

When a BPEL process instance is first created, all subprocess references are resolved.
When the process executes a particular call activity, it uses the subprocess resolved at
instance creation time. Therefore, two different instances of the same process may use
different versions of subprocesses referenced if, for example, the default composite
revision for a subprocess changes.

When the BPEL process instance executes the call activity, it is executed within the
process's execution space, sharing its state. The call activity transfers control to the
subprocess, at which time the subprocess scope is initialized with the argument
variables:

• Each parameter is copied (by reference or value, as specified) from the call activity
to the subprocess's scope.

• Optional parameters (those with default values) that are not referred to in the call
activity's parameter list are initialized with their default values.

• All required parameters must be supplied by the call activity.

• All values supplied by the call activity's parameters must be type-compatible with
the corresponding variable (or partner link) defined in the subprocess.

• Each variable (or partner link) in the subprocess can be set only once in a call
activity's parameter list.

On completion of the subprocess, control is returned to the parent process. In the
normal case, execution continues with the next activity after the call activity. In the
case of abnormal subprocess completion, the parent process evolves the process
according to the standard life cycle rules of WS-BPEL.

From the monitoring and management view, there is no new process instance for the
subprocess created. It is represented by a call activity in the parent process instance.
Expanding the activity (navigate) shows subprocess execution details.

To minimize linking errors during runtime, upon deployment of the process and
subprocess, references are resolved. Parameter lists are validated as a postdeployment
activity. Preprocessing for creating a new process instance validates all subprocess
references in the process. If any reference is not resolved, the instance is not created.
Instead, an error message is returned, meaning essentially the following:

HTTP Status Code 503, "service not available

Upon a linking error, if the service consumer is waiting, an error message is sent to the
consumer that is inline with exit activity handling. Otherwise, the instance is
suspended with the reason set as linkage error. If a suitable subprocess is
deployed and the reference is resolvable, suspended instances can then be recovered
and resume normal execution by automatic recovery.

Introduction to Standalone and Inline BPEL Subprocess Invocations

39-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For information about creating an inline subprocess, see How to Create an Inline
Subprocess.

39.3 Differences Between Oracle SOA Suite Templates and Reusable
Subprocesses

When determining whether templates or reusable subprocesses are the best solution
for your business use case, it is important to understand the differences:

• Templates

A template is a customizable, skeletal project, service component, or scope
activity. You can drag and drop a template into a SOA composite application or a
BPEL process and make additional changes. You essentially are copying and
pasting a template. For example, if there are 50 lines of code in a template and you
copy it twice to use, the code increases by 100 lines.

• Reusable subprocesses

A subprocess is a BPEL code snippet intended for a specific purpose. A
subprocess that is defined earlier can be called and used as it is. An inline
subprocess of 50 lines can be called twice and the parent process code remains at
50 lines, and not 100. Subprocesses perform better and have a smaller memory
foot print than templates.

39.4 Creating Oracle SOA Suite Templates
You can create the following types of templates:

• SOA project

• Service component

• Custom BPEL scope activity

For conceptual information about templates, see Introduction to Templates and
Differences Between Oracle SOA Suite Templates and Reusable Subprocesses.

39.4.1 Creating and Using a SOA Project Template
This section describes how to create and use a SOA project as a template.

Note:

Use of templates is not supported in the Oracle JDeveloper Customization
role.

39.4.1.1 How To Create a SOA Project Template

To create a SOA project template:

1. Open a SOA composite application.

2. In the Applications window, right-click either of the following:

• The composite_name

Differences Between Oracle SOA Suite Templates and Reusable Subprocesses

Oracle SOA Suite Templates and Reusable Subprocesses 39-7

• The project name

3. Select Create SOA Template.

This invokes the Create SOA Template wizard. Default names and the location for
saving the template based on the composite name are automatically included.
Figure 39-1 provides details.

Figure 39-1 Create SOA Template Wizard - Specify Template Information Page

4. Change the default values and enter a description, as necessary, and click Next.
The Browse icon for the Save in field enables you to save the template in the file
system or the Oracle SOA Suite design time section of the MDS Repository.

The Create SOA Template Wizard - Files to Bundle page is displayed. Figure 39-2
provides details. This page shows all the files packaged as part of this template.

You can also manually select measurements (business indicators) and test suites to
include. If your composite includes domain value maps (DVMs) (for example, a
DVM function is referenced in a BPEL scope activity), they are also included in the
template.

For information about business indicators, see Configuring BPEL Process
Analytics. For information about test suites, see Introduction to the Composite Test
Framework.

Creating Oracle SOA Suite Templates

39-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 39-2 Create SOA Template Wizard - Files to Bundle Page

5. View the files to package and select additional files, and click Finish.

6. Click OK when prompted to acknowledge that the template was successfully
created.

39.4.1.2 How to Use a Composite Template in Another SOA Composite

This section describes how to use the composite template created in How To Create a
SOA Project Template in another SOA composite application.

To use a composite template in another SOA composite

1. Create a new SOA composite application in Oracle JDeveloper.

2. On the Create SOA Application wizard - Configure SOA Settings page, select SOA
Template. Figure 39-3 provides details.

Creating Oracle SOA Suite Templates

Oracle SOA Suite Templates and Reusable Subprocesses 39-9

Figure 39-3 Custom Template Selection

The list of available templates is displayed. Figure 39-4 provides details.

Figure 39-4 SOA Templates Available for Selection

3. Select a template from the list, or click Add to select additional templates.

4. Click Finish.

The SOA Composite Editor is displayed with the custom template. The files of the
template are displayed in the Applications window.

Creating Oracle SOA Suite Templates

39-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

You can rename components as necessary, such as renaming the binding
components and process names.

5. Right-click and select Rename.

39.4.2 Creating and Using a Service Component Template
This section describes how to create and use a service component template.

39.4.2.1 How to Create a Service Component Template

To create a service component template:

1. From the Oracle JDeveloper main menu, select File > New.

2. Select SOA Project, and click OK.

3. Enter a project name, and click Next.

4. Select a BPEL project, and click Finish.

5. Design a SOA composite application.

6. In the SOA Composite Editor, right-click the service component from which to
create a template.

7. Select Create Component Template.

This launches the Create Component Template wizard.

8. Provide appropriate responses, including optionally selecting an icon for the
partner link, and click Next. Figure 39-5 provides details.

Figure 39-5 Create Component Template Wizard - Specify Template Information
Page

Creating Oracle SOA Suite Templates

Oracle SOA Suite Templates and Reusable Subprocesses 39-11

The Create Component Template wizard - Files to Bundle Page is displayed.

9. View the files packaged and select additional files (such as adapters and
measurements), as required, and click Finish.

10. Click OK when prompted to acknowledge that the template was successfully
created.

The service component template is added to the Component Templates section of
the Components window. Figure 39-6 provides details.

Figure 39-6 Service Component Template in Component Templates Section of
Components Window

39.4.2.2 How to Use a Service Component Template in Another SOA Composite

This section describes how to use the packaged service component template created in
How to Create a Service Component Template in another SOA composite application.

To use a service component template in another SOA composite:

1. Create an empty SOA composite application in Oracle JDeveloper.

2. In the SOA Composite Editor, select SOA Templates from the SOA list.
Figure 39-7 provides details.

Figure 39-7 SOA Templates Option in SOA Menu

Creating Oracle SOA Suite Templates

39-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. Drag the service component template into the SOA Composite Editor.

This invokes the Create SOA Component from Component Template dialog, as
shown in Figure 39-8. This dialog shows the template name, description, and files
included in the template.

Figure 39-8 Create SOA Component from Component Template Dialog

4. Click OK.

The service component template is displayed in the SOA composite application.

5. View the Applications window and note that files such as schemas and WSDLs are
displayed in the SOA composite application.

6. If you attempt to apply the service component template a second time to the same
SOA composite application, the Create SOA Component from Component
Template dialog is displayed and indicates that there is a conflict because schema
and BPEL files are already in the composite. Figure 39-9 provides details.

Creating Oracle SOA Suite Templates

Oracle SOA Suite Templates and Reusable Subprocesses 39-13

Figure 39-9 Create SOA Component from Component Template Dialog

7. Click Next.

8. In the Resolve Conflicts page, select to skip or overwrite all files or specific files that
are in conflict. Figure 39-10 provides details.

Figure 39-10 File Names in Conflict

9. When complete, click Finish.

Creating Oracle SOA Suite Templates

39-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

39.4.3 Creating and Using a BPEL Scope Activity Template
This section describes how to create and use a BPEL scope activity template.

39.4.3.1 How to Create a BPEL Scope Activity Template

To create a BPEL scope activity template:

1. In Oracle BPEL Designer, drag a scope activity into a BPEL process.

2. Design the contents of the scope activity to include activities, event handlers, and
catch and catch all branches that include fault variables, as necessary.

3. Create a template from the scope.

a. Right-click the scope and select Create Custom Activity Template.

or

a. Expand the scope and select Create Custom Activity Template, as shown in
Figure 39-11.

Figure 39-11 Scope Template Creation

The Create Custom Activity Template wizard - Specify Template Information
page is displayed, as shown in Figure 39-12.

Creating Oracle SOA Suite Templates

Oracle SOA Suite Templates and Reusable Subprocesses 39-15

Figure 39-12 Create Custom Activity Template Wizard - Specify Template
Information Page

4. Specify details, and click Next.

The Create Custom Activity Template wizard - Variables page is displayed.
Figure 39-13 provides details. This page is displayed if variables are used in the
scope. This page is not displayed if you have an empty scope or a scope that does
not use variables.

Figure 39-13 Create Custom Activity Template Wizard - Variable Page

Creating Oracle SOA Suite Templates

39-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

5. Select to convert your variables to local variables. This conversion is not
recommended if this variable is used outside of the scope activity in receive and
reply activities. If the variables are used only inside this scope, the check boxes are
selected by default.

6. Enter an optional description of the variables, and click Next.

The Create Custom Activity Template wizard - Files to Bundle page is displayed
as shown previously in Figure 39-2. This page shows all the files packaged as part
of this template. You can also manually select test suites to include.

7. Select files, and click Finish.

39.4.3.2 How to Use a BPEL Scope Activity Template in Another BPEL Process

This section describes how to use a BPEL scope activity template in another BPEL
process.

To use a BPEL scope activity template in another BPEL process

1. Create a new or open an existing BPEL process.

2. From the Custom Activity Templates section in the Components window, drag
the scope activity template created in How to Create a BPEL Scope Activity
Template into the BPEL process. Figure 39-14 provides details.

Note:

Only scope activity templates that are compatible with the BPEL service
component version are available. For example, if this is a BPEL 2.0 service
component, only scope activity templates for BPEL 2.0 are available for
selection. No BPEL version 1.1 scope activity templates are displayed.

Figure 39-14 Scope Activity Template

Any error handling you designed such as catch and catch all activities and any
scope variables you created are also copied into the BPEL process.

The Create Custom Activity from Template page is displayed, as shown in
Figure 39-15.

Creating Oracle SOA Suite Templates

Oracle SOA Suite Templates and Reusable Subprocesses 39-17

Figure 39-15 Create Custom Activity from Template Wizard

3. Click Next.

If there are conflicts, the Create Custom Activity from Template wizard - Resolve
Conflicts page is displayed, as shown in Figure 39-16.

Figure 39-16 Create Custom Activity from Template Wizard - Resolve Conflicts
Page

4. Select to skip all or individual file conflicts, and click Next.

Creating Oracle SOA Suite Templates

39-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The Create Custom Activity from Template wizard - Variables page is displayed,
as shown in Figure 39-17.

If you selected to convert your variables to local variables on the Create Custom
Activity Template Wizard - Variable Page in Step 5 of How to Create a BPEL
Scope Activity Template, they do not require special processing and are not
displayed on this page. Only variables that were not converted to local variables
are displayed on the Create Custom Activity from Template wizard - Variable
Bindings page.

Figure 39-17 Create Custom Activity from Template wizard - Variable Bindings
Page

5. If the template and the project both include this variable, you can choose to reuse
the variable or bind to a new variable from the list in the BPEL Variable column.

a. If you selected to bind to a new variable, enter a name and select whether to
create the variable locally for the template scope or globally for the BPEL
process, then click OK. Figure 39-18 provides details.

Figure 39-18 Bind to New Variable Dialog

If you drop an activity template inside of Scope A that is inside of Scope B,
then Scope A and Scope B also are in the list. This enables you to select among
all locations where variables can be declared.

6. Click Next.

7. If a scope uses partner links, the Create Custom Activity Template Wizard -
Partner Links Page is displayed.

Creating Oracle SOA Suite Templates

Oracle SOA Suite Templates and Reusable Subprocesses 39-19

8. Click Finish.

39.4.4 Managing Templates
You can manage all available template types from the Preferences dialog.

To manage templates:

1. From the Oracle JDeveloper main menu, select Tools > Preferences > SOA >
Templates.

The Preference dialog is displayed, as shown in Figure 39-19.

Figure 39-19 SOA Template Preferences

Templates can be stored in two locations:

• Folders: Templates are stored in the file system.

• SOA-MDS: Templates are stored in the MDS Repository and can be shared.

2. Right-click a folder to display a list of management tasks, as shown in Figure 39-20.

Creating Oracle SOA Suite Templates

39-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 39-20 Management Tasks

Table 39-3 describes the management tasks you can perform.

Table 39-3 Template Management Tasks

Element Description

Browse Browses for a specific template name.

The Browse option uses Windows Explorer on Windows or the file
browser on Linux for the storage folder. Templates are stored as
files, so you may want to operate with them as with files (that is,
upload with FTP, send by email, copy to another folder to back up,
and so on).

Refresh Refreshes the list of templates.

Add Storage Adds existing templates to the Preferences - SOA Templates dialog.

Remove Deletes the folder and its templates only from the Preferences - SOA
Templates dialog. The templates are not physically deleted from the
file system or MDS Repository. You can add them to this dialog
again by selecting Add Storage or clicking the Add icon. The
template context menu contains a Delete option that physically
deletes a template.

All Templates Displays all templates.

Project Templates Displays only SOA project templates.

Component
Templates

Displays only service component templates.

Activity Templates Displays only BPEL scope activity templates.

3. If you want to import a template to the jdeveloper/integration/templates
directory, select File > Import > SOA Template. The file can then be added to the
Preferences dialog by clicking the Add icon or right-clicking a folder and selecting
Add Storage.

Creating Oracle SOA Suite Templates

Oracle SOA Suite Templates and Reusable Subprocesses 39-21

39.5 Creating Standalone and Inline BPEL Subprocesses in a BPEL
Process

You can create standalone subprocesses in a SOA composite and inline BPEL
subprocesses in a BPEL process. A subprocess is a fragment of BPEL code that can be
reused within a particular processor by separate processes.

For conceptual information about subprocesses, see Introduction to Standalone and
Inline BPEL Subprocess Invocations and Differences Between Oracle SOA Suite
Templates and Reusable Subprocesses.

Note:

• There is no restriction on one BPEL subprocess calling itself recursively.
You must determine if you want to recursively call the same BPEL
subprocess and the number of times the subprocess calls occur.

• You can create and successfully deploy a SOA composite application that
contains only a standalone subprocess. For example, create a SOA
composite application and add a standalone subprocess in which you
define two parameters for the subprocess and define an assign activity in
the subprocess to swap the values of both parameters. However, while a
SOA composite application that contains only a standalone subprocess
and no other components can be deployed, it has no practical purpose.

• A standalone subprocess cannot be shared in the MDS Repository.
However, a BPEL process with call activities for calling the subprocess
can be shared in the MDS Repository

39.5.1 How to Create a Standalone BPEL Subprocess
This section provides an example of how to create a simple application that uses a
standalone subprocess.

Note:

A standalone subprocess can include an inline subprocess.

To create a standalone BPEL subprocess:

1. Create a SOA composite application that includes a BPEL 2.0 process. For this
example, a synchronous BPEL 2.0 process is created.

2. Design a BPEL 2.0 process. For this example, the following process is designed:

• A variable of type string is created (for this example, named variable1) to
pass in as a parameter.

• An assign activity is created in which the client input string is mapped to
variable1.

Figure 39-21 shows the BPEL process design.

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 39-21 BPEL 2.0 Process Design

3. Click the composite_name link above Oracle BPEL Designer to access the SOA
Composite Editor.

4. Right-click inside the SOA Composite Editor, and select Insert > Subprocess or
drag a Subprocess icon from Components window into the composite.

The Create Subprocess dialog is displayed.

5. Enter appropriate values or accept the default values, and click OK to create the
standalone subprocess. Figure 39-22 provides details. For this example, the
subprocess name provided is Subprocess1.

Figure 39-22 Create Subprocess Dialog

6. Right-click the subprocess in the SOA Composite Editor, and select Edit.

7. Create a variable of type string in the subprocess (for this example, the variable is
named p1), and click OK,

You now design simple process logic in the standalone subprocess.

8. From the Components window, drag an Assign activity into the process.

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

Oracle SOA Suite Templates and Reusable Subprocesses 39-23

9. In the Target section of the Copy Rules tab of the assign activity, drag the
Expression Builder icon onto the p1 variable.

10. Create a concat expression to read the value out of the parameter in the subprocess
and update variable p1 with that value.

concat($p1,",from subprocess")

11. Save the composite or select Save All, and exit the BPEL 2.0 process.

12. In the SOA Composite Editor, right-click the BPEL process and select Edit.

13. From the Oracle Extensions subsection, drag a call activity below the assign
activity in Oracle BPEL Designer.

14. Right-click the call activity and select Edit.

This invokes the Edit Call dialog. Note that variable p1 is displayed in the Name
column after the selected Subprocess1.

15. Click inside the Value column to invoke the Variable Chooser dialog.

16. Select variable1, and click OK. This maps variable p1 from the standalone
subprocess to variable variable1 of the initial BPEL 2.0 process that you created.

17. Leave the Copy By Value check box deselected.

Leaving this check box deselected copies the variable by reference. Only variables
or partner links are accepted for variables, not XPath function queries. Copy by
reference supports both input and output variables. Copy by value supports only
input values.

18. From the Components window, drag a second Assign activity below the call
activity.

19. In the Copy Rules tab of the assign activity, update the output message with
variable1, and click OK. Figure 39-23 provides details.

Figure 39-23 Edit Assign Dialog

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 39-24 shows the BPEL 2.0 process with the subprocess. In this BPEL 2.0
process, the following logic is designed:

• The string value in the input message in Assign1 is taken and assigned to
variable1 in the call activity, to be passed by reference.

• assign2 takes variable1 and creates the response. The variable1 value is
updated by the subprocess.

Figure 39-24 BPEL 2.0 Process

20. Go to the SOA Composite Editor and note that the BPEL subprocess is now
connected to the BPEL 2.0 process because of the call activity.

You are now ready to deploy the SOA composite application and create a business
flow instance in Oracle Enterprise Manager Fusion Middleware Control.

When you access the audit trail for the created business flow instance in Oracle
Enterprise Manager Fusion Middleware Control, note that the call activity and its
contents are displayed.

For more information about standalone BPEL subprocesses, see Section "Using
Templates and Standalone Subprocesses to Update the Order Status in the
Database" of Understanding Oracle SOA Suite.

39.5.2 How to Create an Inline Subprocess
An inline subprocess is similar to a standalone subprocess, except that the inline
subprocess is embedded in the parent process. For example, you may have a BPEL 2.0
process that includes assign and invoke activities within a scope activity that update
the status of a customer order. You may have a business need for repeating these same
activities later in the same process. One method is to physically repeat the same assign

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

Oracle SOA Suite Templates and Reusable Subprocesses 39-25

and invoke activities of the scope activity later in the process, but this can be error
prone. In addition, every time a change is necessary, it must be implemented in both
scopes. As an alternative to repeating the activities, you can use an inline subprocess.

Note:

Creating an inline subprocess within an existing inline subprocess is not
supported.

To create an inline subprocess:

1. Go to the scope activity in the BPEL 2.0 process that includes the assign and invoke
activities that update the status of a customer order.

Note:

Inline subprocesses can also be created in a BPEL process by selecting Inline
Subprocesses from the Property Structure menu above Oracle BPEL
Designer, selecting the Inline Subprocesses folder, and clicking Add.

2. Collapse the scope activity. Figure 39-25 provides details.

Figure 39-25 Scope Activity

3. Right-click the scope activity, and select Convert to a Subprocess.

The Create Inline Subprocess dialog is displayed, as shown in Figure 39-26.

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 39-26 Create Inline Subprocess Dialog

4. Enter values appropriate to your environment, then click OK.

Table 39-4 Create Inline Subprocess Dialog

Element Description

Name Enter a name or accept the default value, which defaults to the
scope name.

Replace scope with
subprocess call

Select to automatically replace the scope with a BPEL call activity
(the default selection). If you want to create an inline subprocess
and keep the selected scope in the process, you can deselect this
check box.

Label Optionally enter a description.

Comment Optimally enter a comment.

Image Select to replace the standard call activity icon with a unique
image.

The scope activity is converted to a call activity in the BPEL 2.0 process, as shown
in Figure 39-27.

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

Oracle SOA Suite Templates and Reusable Subprocesses 39-27

Figure 39-27 Call Activity

The new inline subprocess is also displayed in the Subprocess section of the
Components window. Figure 39-28 provides details.

Figure 39-28 Inline Subprocess in Components Window

5. Above Oracle BPEL Designer, select Subprocess - updateOrderStatusSP to display
the contents of the subprocess (the same contents as the initial scope activity).
Figure 39-29 provides details.

Figure 39-29 Subprocess Selection Above Oracle BPEL Designer

The contents of the inline subprocess are displayed. Figure 39-30 provides details.

Figure 39-30 Inline Subprocess Contents

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

6. Make changes to the subprocess, if required, such as adding additional invoke
activities.

You can add the subprocess to the same BPEL 2.0 process, as necessary.

7. From the Subprocess section of the Components window, drag the inline
subprocess into an appropriate section of the BPEL 2.0 process. Figure 39-31
provides details.

Figure 39-31 Subprocess Added to Same BPEL 2.0 Process

The subprocess name is automatically changed to Callnumber as shown in
Figure 39-32.

Figure 39-32 Subprocess Name Changed

For more information about using inline BPEL subprocesses, see Section "Updating
Order Status with an Inline BPEL Subprocess" of Understanding Oracle SOA Suite.

39.5.3 How to Create a Standalone Subprocess that Takes a Partner Link as a
Parameter

This section describes how a subprocess takes a partner link as a parameter and uses it
to call the partner and return the result. You are essentially using a partner link from
subprocess to subprocess.

To create a standalone subprocess that takes a partner link as a parameter:

1. Create a SOA composite application that includes a BPEL 2.0 process. For this
example, a synchronous BPEL 2.0 process is created.

2. Go to the SOA composite application in the SOA Composite Editor.

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

Oracle SOA Suite Templates and Reusable Subprocesses 39-29

3. Right-click and select Insert > Subprocess.

The Create Subprocess dialog is displayed.

4. Accept the default values (for this example, the default name is Subprocess1),
and click OK.

You now create a second process to use as the partner link.

5. Create a second synchronous BPEL 2.0 process in the SOA composite application
for this example, named BPELProcess2). This is the process to call.

6. From the Components window, drag an Assign activity into the second BPEL 2.0
process.

7. In the Target section of the Copy Rules tab, drag the Expression Builder icon onto
the result variable. Figure 39-33 provides details.

Figure 39-33 Edit Assign Dialog

8. Build an XPath expression, and click OK.

string("hello from process2")

9. Save the second BPEL 2.0 process, and return to the subprocess.

10. Click the Partner Links icon, as shown in Figure 39-34.

Figure 39-34 Partner Link Creation

The Partner Links dialog is displayed.

11. Click the Add icon.

The Create Partner Link dialog is displayed. You now define this partner link as a
parameter.

12. Design the partner link (for this example, named PartnerLink1), and click OK.
Figure 39-35 provides details. The role of the partner link is as the provider.

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 39-35 Partner Link Creation

The Partner Links dialog looks as shown in Figure 39-36.

Figure 39-36 Partner Links Dialog

Figure 39-37 shows the contents of the subprocess.

Figure 39-37 Subprocess Contents

13. Drag a Scope activity into the subprocess.

14. Click the Variables icon in the scope activity, and create request and response
message type variables. Figure 39-38 provides details.

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

Oracle SOA Suite Templates and Reusable Subprocesses 39-31

Figure 39-38 Request and Response Message Type Variable Creation

15. Drag a Sequence activity into the subprocess.

16. Drag an Invoke activity into the subprocess for invoking the partner link.

17. Design the invoke activity to invoke the partner link in the subprocess, as shown in
Figure 39-39. The design includes the output variable (Variable2).

Figure 39-39 Edit Invoke Dialog

Figure 39-40 shows the subprocess.

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 39-40 BPEL Subprocess

18. Click the Variables icon in the subprocess to create a string variable to return the
result.

The Variables dialog is displayed.

19. Click the Add icon to invoke the Create Variable dialog.

20. Create a string variable (for this example, named result).

21. Drag an assign activity into the subprocess.

22. Map the result of the partner link invocation to the result variable, and click OK, as
shown in Figure 39-41.

Figure 39-41 Edit Assign Activity

Subprocess design is now complete.

23. Return to the main BPEL 2.0 process in Oracle BPEL Designer (BPELProcess1).

24. Click the Variables icon in the process.

25. Click the Add icon to create a string variable to contain the result configured in
Step 22 and passed back (for this example, named Variable1). Figure 39-42
provides details.

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

Oracle SOA Suite Templates and Reusable Subprocesses 39-33

Figure 39-42 Variables Dialog

26. Add an assign activity to assign the string value to Variable1.

27. Drag a call activity below the assign activity in Oracle BPEL Designer. Figure 39-43
provides details.

Figure 39-43 Subprocess Added to Main BPEL 2.0 Process

28. Right-click the Partner Links swimlane, and select Create Partner Link.

29. Design a partner link to invoke BPELProcess2, as shown in Figure 39-44.

Figure 39-44 Create Partner Link Dialog

30. Right-click the Call activity, and click Edit.

The Edit Call dialog shows the partner link created earlier in the subprocess.

31. In the result row, click the Value column to invoke the Variable Chooser dialog.

32. Select Variable1, and click OK.

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

33. In the PartnerLink1 row, click the Value column to invoke the Partner Link
Chooser dialog.

34. Select PartnerLink1, and click OK. Figure 39-45 shows the Edit Call dialog with
design complete. Since the variables are sent by reference, if the subprocess does
something to change the partner link (such as copying in another partner link), that
impacts the calling process's partner link. This is the same process as with
variables.

Figure 39-45 Edit Call Dialog

35. Drag an Assign activity below the Call activity to return the result.

36. In the Copy Rules tab, map Variable1 to result to return the result to the caller.
Figure 39-46 provides details.

Figure 39-46 Edit Assign Dialog

37. Deploy the SOA composite application.

39.5.4 What You May Need to Know About Renaming a Subprocess
When you rename a subprocess, it is not updated in the invoking call activity. You
must manually update the subprocess name in the call activity.

Assume you perform the following steps:

1. Create an asynchronous BPEL 2.0 process.

2. Right-click the SOA Composite Editor, and select Insert > Subprocess.

3. Create a subprocess named SubProcessNew.

4. Right-click SubProcessNew, and click Edit.

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

Oracle SOA Suite Templates and Reusable Subprocesses 39-35

5. From the Components window, drag an Empty activity into the subprocess.

6. Open the asynchronous BPEL 2.0 process.

7. From the Components window, drag a Call activity into the process.

8. Invoke the SubProcessNew subprocess from the call activity.

9. Return to the SOA Composite Editor, and rename the SubProcessNew subprocess
to SubProcessRenamed.

10. Open the call activity in the asynchronous BPEL 2.0 process, and note that the
Subprocess field is now empty.

11. In the Subprocess field, manually enter the updated name of
SubProcessRenamed.

Creating Standalone and Inline BPEL Subprocesses in a BPEL Process

39-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

40
Creating Transformations with the XSLT

Map Editor

This chapter describes how to use the XSLT Map Editor to create, design, and test data
transformations between source schema elements and target schema elements.

This chapter includes the following sections:

• Introduction to the XSLT Map Editor

• Creating an XSLT Map

• Editing an XSLT Map in Map View

• Editing an XSLT Map in XSLT View

• Using XPath Expressions

• Using Auto Map to Map Complex Nodes

• Checking the Completion Status of the Map

• Testing the Map

• Importing an External XSLT Map

• Using Variables and Parameters

• Substituting Elements and Types

• Using Named Templates

• Using Template Rules

• Using the Execution View

• Debugging the XSLT Map

• Troubleshooting Memory Issues

• Setting XSL Map Preferences

40.1 Introduction to the XSLT Map Editor
The XSLT Map Editor enables you to edit XSLT stylesheets using a graphical editor. It
also provides the feature to directly edit the XSLT source.

Figure 40-1 shows the XSLT Map Editor. You can switch between the graphical editor
and the source view using the tabs at the bottom of the editor. Click Design to edit
using the graphical editor. Click Source to edit using the source editor.

Creating Transformations with the XSLT Map Editor 40-1

Figure 40-1 XSLT Map Editor

You can move back and forth between the Source and Design tabs. Any change made
under one tab is reflected in the other tab. A History tab is also available to enable you
to view the revision history, and revert to any point in the edit history.

The XSLT Map Editor fully supports XSLT 1.0 and XPath 1.0.

If you want to use XSLT 2.0, then you can change the XSLT version in the source view
and restart JDeveloper.

All XSLT 2.0-specific constructs must be added in the source view. You can then
choose to switch to the design view, and continue to edit the map. XSLT 2.0-specific
constructs are shown in design view, but can be modified only in the source view.
XPath 2.0 constructs can also be added in the design view. However, XPath 2.0
constructs are not parsed into separate graphical elements in the design view. You
must edit the full XPath statement in text form. XPath 2.0 functions will be displayed
in the Components Window when the XSLT Version is set to 2.0 in the source and
JDeveloper is restarted.

The XSLT Map Editor provides the following edit views under the design view:

• Map View

• XSLT View

You can switch between the two views using the buttons at the top right hand corner
of the XSLT editor. Click Map to use the traditional Map View of the XSLT editor.
Click XSLT to use the XSLT View for more complex XSLT maps.

40.1.1 Using the Map View
Figure 40-1 shows the Map View of the XSLT Map Editor. The left pane contains the
source tree representing the incoming source XML document. The source tree can be
created from an XSD schema file or a sample XML file.

Introduction to the XSLT Map Editor

40-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The center pane, or the canvas, is the place where you drop XPath expressions and
functions that can be mapped to XSLT elements.

The right pane is the target pane representing a merged view of the XSLT being
created, and the target tree that represents the target schema. The target tree can be
created from an XSD schema file or a sample XML file.

The grayed nodes, in italics, in the target tree represent nodes that haven't been
mapped yet. These nodes are not part of the XSLT, and are displayed for convenience.
Once a grayed node is mapped, it appears in regular font, and gets represented in the
XSLT map.

Map View supports drag-and-drop mappings from source tree to target tree. Map
View also supports XPath function calls and XSLT statements such as xsl:if and
xsl:for-each.

As Map View does not separate the XSLT statements from the target tree, it is limited
to the following:

• Only one XSLT template rule with the match='/' attribute is supported.

• The following XSLT statements are supported: xsl:for-each, xsl:value-
of, xsl:text, xsl:if, xsl:choose/when, xsl:variable and
xsl:param.

Use the XSLT View for complex XSLT statements that require separating the XSLT
statements from the target tree.

40.1.2 Using the XSLT View
The XSLT View is a more advanced mode that enables you to separate the XSLT
statements from the target tree document. This enables you to create complex XSLT
statements without leaving the design view. Source and target schemas are optional in
the XSLT View.

The XSLT View includes the same panes as the Map View, except that the right target
pane is divided into two panes. The top pane is called the XSLT pane and the lower
pane is called the target pane. If no target schema is defined, then the lower pane is not
shown. If no source schema is defined, the source pane is still displayed to enable you
to add parameters and variables, whose values can be referenced by the XSLT.

In XSLT View, you can create any series of XSLT statements without having to
intersperse these statements around target tree nodes. For instance, in the 11g mapper,
all xsl:if statements had to contain a single target output node. In XSLT View, the
xsl:if statement can be used anywhere, and can contain any other XSLT statement.

The XSLT View supports all XSLT 1.0 statements. The XSLT View also supports
multiple template rules with or without source and target schemas. The XSLT View
enables you to graphically display and edit any XSLT stylesheet, irrespective of the
complexity involved.

40.1.3 Using the Components Window
The Components window contains all the XPath functions and XSLT elements and
templates that you can use in your XSLT map.

The Components window is located at the upper right-hand corner of Oracle
JDeveloper, by default. If the Components window does not appear, click
Components under the Window menu to display the Components window. You can

Introduction to the XSLT Map Editor

Creating Transformations with the XSLT Map Editor 40-3

optionally choose to drag the Components window to any convenient location in the
JDeveloper window. You can also resize the Components window, as desired.

The Components window organizes these functions, elements, and templates under
the following categories:

• Advanced XPath:

• General XPath:

• XML:

• XSLT Elements:

• XSLT Templates:

• All Pages:

• User Defined:

• My Components:

40.1.4 Using the Properties Window
The Properties window shows the content and properties of the item selected in the
XSLT Map Editor. Some of these properties can also be edited.

The Properties window is located below the XSLT Map Editor, by default. If the
Properties window does not appear, click Properties under the Window menu to
display the Properties window. You can optionally choose to drag the Properties
window to any convenient location within the JDeveloper window. You can also
resize the Properties window, as desired.

The Properties window, in general, can be used to display and edit the properties of
the following items:

Selected Element in
Editor

What is Shown in Properties Window Whether
Editable
(Yes/No)

Source tree node Schema Information for the selected element or
attribute.

No

Target tree node Schema information for the selected element or
attribute.

No

XSLT tree node: XSLT
element

XSLT element attributes and their values Yes

XSLT tree node: literal
element or attribute

Literal element or attribute name and namespace Yes

XPath expression folder in
Canvas pane

Full text XPath expression Yes

Function icon within
expression folder in
Canvas pane

XPath field for each parameter of the function Yes

Line connecting source
and target node

Full text XPath expression Yes

Introduction to the XSLT Map Editor

40-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

40.2 Creating an XSLT Map
XSLT maps can be created from scratch, or from other editors such as BPEL, BPM, and
Mediator.

40.2.1 How to Create an XSLT Map

To create an XSLT Map:

1. From the File main menu, select New > XSL Map. Alternatively, right-click the
project folder and select New > XSL Map.

The Create XSL Map File dialog appears.

2. Under File Name, specify a name for your .xsl map file.

3. Under Directory name, select the destination directory for the .xsl file.

4. Under Sources, select Use Source Schema(s) to specify a source schema for the
map.

5. Under Primary Source, click Browse to select the source schema. The Select Schema
dialog box appears.

6. Choose Select Schema if you want to use an XSD schema file or WSDL file for the
source schema.

Note:

You can alternatively use a sample XML file as the schema source.

Select Generate from XML to generate the schema from an XML file. Select
the sample file and click Open. Go to Step 9.

7. Click Browse to select a schema file and element for the source schema. The Type
Chooser dialog appears.

8. Select the schema file and the corresponding element from the project schema files
or project WSDL files tree. Click OK.

If the schema or wsdl file that you need is not available in the tree, you may import
a schema or wsdl file by clicking the Import Schema File or Import WSDL File
button at the top right corner of the dialog.

9. Click OK in the Select Schema dialog.

Note:

Under Additional Sources, you can click the Add Schema button identified by
the green plus icon (+) to add any additional sources in the form of
parameters.

10. Select Use target schema to specify a target schema for your XSL map.

Creating an XSLT Map

Creating Transformations with the XSLT Map Editor 40-5

11. Click Browse to select the target schema. The Select Schema dialog appears.

12. After selecting the target schema, click OK in the Select Schema dialog.

Note:

When a Target Schema is used, initial element and attribute nodes may be
generated in the XSLT pane depending upon the current Preferences setting.

The default setting is to generate a root template with a match=''/''
attribute followed by all required elements and attributes in the target schema.

13. Click OK to create the XSL map file.

Note:

• Once the XSLT map is created you may add or replace source and target
schemas by selecting the appropriate option from the context menu in the
canvas pane.

For example, you may add additional sources as parameters by selecting
Add Parameter from the context menu on the source pane.

• You may edit a source or target schema file that is being used by an XSLT
Map, using JDeveloper. Upon saving the schema file, the source or target
tree in the XSLT editor is automatically updated.

40.2.2 How to Create an XSL Map File in Oracle BPEL Process Manager
An XSLT Transform activity enables you to create a transformation using the XSLT
Map Editor in Oracle BPEL Process Manager. This tool enables you to map one or
more source elements to target elements. For example, you can map incoming source
purchase order schema data to outgoing invoice schema data.

To create an XSL map file in Oracle BPEL Process Manager:

1. From the Components window, drag an XSLT Transform activity into your BPEL
process diagram. Figure 40-2 provides an example.

Creating an XSLT Map

40-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 40-2 Transform Activity

2. Double-click the XSLT Transform activity.

The Transform dialog shown in Figure 40-3 appears.

Figure 40-3 Transform Dialog

3. Specify the following information:

a. Add source variables from which to map elements by clicking the Add icon
and selecting the variable and part of the variable as needed (for example, a
payload schema consisting of a purchase order request).

Note:

You can select multiple input variables. The first variable defined represents
the main XML input to the XSL map. Additional variables that are added here
are defined in the XSL map as input parameters.

Creating an XSLT Map

Creating Transformations with the XSLT Map Editor 40-7

b. Add target variables to which to map elements.

Note:

Figure 40-3 shows the Edit Transformation dialog for BPEL 2.0. The Edit
Transformation dialog for BPEL 1.1 is slightly different. In the Edit
Transformation dialog for BPEL 1.1, you can select the Target Variable from
the list of variables.

c. Add the target part of the variable (for example, a payload schema consisting
of an invoice) to which to map.

4. In the Mapper File field, specify a map file name or accept the default name. You
create your mappings in the map file using the XSLT Map Editor.

5. Click the Add icon (second icon to the right of the Mapper File field) to create a
mapping. If the file exists, click the Edit icon (third icon) to edit the mapping.

The XSLT Map Editor appears.

Note:

If you select a file with a.xslt extension such as xform.xslt, it opens the
XSLT Map Editor to create an XSL file named xform.xslt.xsl, even though
your intention was to use the existing xform.xslt file. A .xsl extension is
appended to any file that does not have a .xsl extension, and you must create
the mappings in the new file. As a work around, ensure that your files first
have an extension of .xsl. If the XSL file has an extension of .xslt, then
rename it to .xsl.

6. Go to Introduction to the XSLT Map Editor for an overview of using the XSLT
Map Editor.

40.2.3 How to Create an XSL Map File from Imported Source and Target Schema Files in
Oracle BPEL Process Manager

The following steps provide a high level overview of how to create an XSL map in
Oracle BPEL Process Manager using a po.xsd file and invoice.xsd file.

To create an XSL map file from imported source and target schema files in
Oracle BPEL Process Manager:

1. In Oracle JDeveloper, select the application project in which you want to create
the new XSL map.

2. Import the po.xsd and invoice.xsd files into the project. For example:

a. In the Structure window of Oracle JDeveloper, right-click Schemas.

b. Select Import Schemas.

3. Right-click the selected project and select New.

The New Gallery dialog appears.

4. In the Categories tree, expand SOA Tier and select Transformations.

Creating an XSLT Map

40-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

5. In the Items list, double-click XSL Map.

The Create XSL Map File dialog appears. This dialog enables you to create an XSL
map file that maps a root element of a source schema file or Web Services
Description Language (WSDL) file to a root element of a target schema file or
WSDL file. Note the following details:

• – WSDL files that have been added to the project appear under Project
WSDL Files.

– Schema files that have been added to the project appear under Project
Schema Files.

– Schema files that are not part of the project can be imported using the
Import Schema File facility. Click the Import Schema File icon (first icon
to the right and above the list of schema files).

– WSDL files that are not part of the project can be imported using the
Import WSDL File facility. Click the Import WSDL File icon (second icon
to the right and above the list of schema files).

6. In the File Name field, enter a name for the XSL map file.

7. Select the root element for the source and target trees. In the example in
Figure 40-4, the PurchaseOrder element is selected for the source root element
and the Invoice element is selected for the target root element.

Figure 40-4 Expanded Target Section

8. Click OK.

A new XSL map is created, as shown in Figure 40-5.

Creating an XSLT Map

Creating Transformations with the XSLT Map Editor 40-9

Figure 40-5 New XSL Map

9. Save and close the file now or begin to design your transformation. Information
on using the XSLT Map Editor is provided in Introduction to the XSLT Map
Editor.

10. From the Components window, drag a transform activity into your BPEL process.

11. Double-click the transform activity.

12. Specify the following information:

a. Add source variables from which to map elements by clicking the Add icon
and selecting the variable and part of the variable as needed (for example, a
payload schema consisting of a purchase order request).

Note:

You can select multiple input variables. The first variable defined represents
the main XML input to the XSL map. Additional variables that are added here
are defined in the XSL map as input parameters.

b. Add target variables to which to map elements.

c. Add the target part of the variable (for example, a payload schema consisting
of an invoice) to which to map.

13. To the right of the Mapper File field, click the Search icon (first icon) to browse
for the map file name you specified in Step 6.

14. Click Open.

15. Click OK.

The XSLT Map Editor displays your XSL map file.

16. Go to Introduction to the XSLT Map Editor for an overview of using the XSLT
Map Editor.

40.2.4 How to Create an XSL Map File in Oracle Mediator
The XSLT Map Editor enables you to create an XSL file to transform data from one
XML schema to another in Oracle Mediator. After you define an XSL file, you can
reuse it in multiple routing rule specifications. This section provides an overview of
creating a transformation map XSL file with the XSLT Map Editor.

The XSLT Map Editor is available from the Applications window in Oracle JDeveloper
by clicking an XSL file or from the Mediator Editor by clicking the transformation

Creating an XSLT Map

40-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

icon, as described in the following steps. You can either create a new transformation
map or update an existing one.

To launch the XSLT Map Editor from the Mediator Editor and create or update a data
transformation XSL file, follow these steps.

To create an XSL map file in the Mediator Editor:

1. Open the Mediator Editor.

2. To the left of Routing Rules, click the + icon to open the Routing Rules panel.

The transformation map icon is visible in the routing rules panel.

3. To the right of the Transform Using field shown in Figure 40-6, click the
appropriate transformation map icon to open the Transformation Map dialog.

Figure 40-6 Routing Rules

The appropriate Transformation Map dialog displays with options for selecting an
existing transformation map (XSL) file or creating a new map file. For example, if
you select the transformation map icon in the Synchronous Reply section, the
dialog shown in Figure 40-7 appears.

Figure 40-7 Reply Transformation Map Dialog

If the routing rule includes a synchronous reply or fault, the Reply Transformation
Map dialog or Fault Transformation Map dialog contains the Include Request in

Creating an XSLT Map

Creating Transformations with the XSLT Map Editor 40-11

the Reply Payload option. When you enable this option, you can obtain
information from the request message. The request message and the reply and fault
message can consist of multiple parts, meaning you can have multiple source
schemas. Callback and callback time-out transformations can also consist of
multiple parts.

Each message part includes a variable. For a reply transformation, the reply
message includes a schema for the main part (the first part encountered) and an
in.partname variable for each subsequent part. The include request message
includes an initial.partname variable for each part.

For example, assume the main reply part is the out1.HoustonStoreProduct schema
and the reply also includes two other parts that are handled as variables,
in.HoustonStoreProduct and in.HoustonStoreProduct2. The request message
includes three parts that are handled as the variables initial.expense,
initial.expense2, and initial.expense3. Figure 40-8 provides an example.

Figure 40-8 Reply Part

4. Choose one of the following options:

• Click the Search icon to browse for an existing XSLT map file (or accept the
default value).

• Click the Add icon, to create a new XSLT map file, and then enter a name for
the file (or accept the default value).

If the source message in the WSDL file has multiple parts, variables are used
for each part, as mentioned in Step 3. When the target of a transformation has
multiple parts, multiple transformation files map to these targets. In this case,
Oracle Mediator's transformation dialog has a separate panel for each target
part. For example, Figure 40-9 shows a request in which the target has three
parts:

Creating an XSLT Map

40-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 40-9 Request Transformation Map Dialog

5. Click OK.

If you chose to create a new XSLT map, the XSLT Map Editor opens to enable you
to correlate source schema elements to target schema elements.

6. Go to Introduction to the XSLT Map Editor for an overview of using the XSLT Map
Editor.

40.2.5 What You May Need to Know About Creating an XSL Map File
XSL file errors do not display during a transformation at runtime if you manually
remove all existing mapping entries from an XSL file except for the basic format data.
Ensure that you always specify mapping entries. For example, assume you perform
the following actions:

1. Create a transformation mapping of input data to output data in the XSLT Map
Editor.

2. Design the application to write the output data to a file using the file adapter.

3. Manually modify the XSL file and remove all mapping entries except the basic
format data. For example:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.fu
nctions.Xpath20"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:ns0="http://xmlns.oracle.com/pcbpel/adapter/file/MediaterDemo/Validation
UsingSchematron/WriteAccounInfoToFile/"
xmlns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.fu
nctions.ExtFunc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue
"
xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.mediator.servi
ce.common.functions.GetRequestHeaderExtnFunction"
xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
xmlns:imp1="http://www.mycompany.com/MyExample/NewAccount"
xmlns:tns="http://oracle.com/sca/soapservice/MediaterDemo/ValidationUsingSchem

Creating an XSLT Map

Creating Transformations with the XSLT Map Editor 40-13

atron/CreateNewCustomerService"
xmlns:xref="http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRe
fXPathFunctions"
xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:inp1="http://www.mycompany.com/MyExample/NewCustomer"
exclude-result-prefixes="xsi xsl tns xsd inp1 ns0 imp1 plt xp20 bpws orcl dvm
hwf mhdr ids xref ora">
</xsl:stylesheet>

While the file can still be compiled, the XSL mapping is now invalid.

4. Deploy and create an instance of the SOA composite application.

During instance creation, an exception error occurs when the write operation fails
because it did not receive any input. However, no errors are displayed during XSL
transformation.

40.2.6 What Happens at Runtime If You Pass a Payload Through Oracle Mediator
Without Creating an XSL Map File

If you design a SOA composite application to pass a payload through Oracle Mediator
without defining any transformation mapping or assigning any values, Oracle
Mediator passes the payload through.

However, for the payload to be passed through successfully, the source and target
message part names must be the same, and of the same type. Otherwise, the SOA
project fails to compile. For projects that have been upgraded from 11g, the project
compiles, but the target reference may fail to execute with error messages such as
Input source like Null or Part not found.

40.2.7 What Happens If You Receive an Empty Namespace Tag in an Output Message
The XML representation from an XSL file may differ from that used in a scenario in
which a message is passed through with a transformation being performed or in
which an assign activity is used, even though the XMLs are syntactically and
semantically the same. For example, if you use an Oracle Mediator service component
to map an inbound payload that includes an element without a namespace to an
outbound payload, you may receive an empty namespace tag in the output message.

<Country xmlns="">US</Country>

This is the correct behavior. A blank namespace, xmlns="", is automatically added.

40.3 Editing an XSLT Map in Map View
This section discusses basic functionality available in Map View. The remaining
sections discuss editing in the XSLT View with notes on restrictions that might apply
to Map View for the specific activity being discussed.

40.3.1 How to Perform a Value Copy by Linking Nodes
To copy the value of an attribute or leaf-element in the source to an attribute or leaf-
element in the target, drag a line from the source node to the target node. A green
highlighted line appears as you are dragging and dropping. When you complete the
drop, a line is drawn connecting the source and target nodes.

Editing an XSLT Map in Map View

40-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 40-10 shows the map view where the PurchaseOrder/ID source element is
mapped to the Invoice/ID target element. Notice that a line connects the source and
target nodes. Also, the ID element in the target tree is no longer grayed, and appears
in normal font. This means that the ID element has been added to the XSLT map.

Figure 40-10 Copying a Leaf Node in Map View

40.3.2 How to Create an Empty Node in the Output Document

To create an empty node in the output document:

1. Select the grayed node in the target pane.

2. Right-click the node, and select Create Node in XSLT from the context menu.

40.3.3 How to Set a Literal Text Value for a Target Node

To set a literal text value on an output/target node:

1. Right-click the node in the target pane. Select Edit Text Value from the context
menu that appears.

The Set Text dialog appears.

2. Enter the text value to be assigned to the node. Do not enclose the text in quotation
marks.

3. Click OK.

A yellow T icon appears next to the node indicating that a text value has been set
for the item. If you move the mouse cursor over the node, the corresponding text
appears. If the node was grayed earlier, it no longer appears gray, as the node has
been added to the XSLT map.

40.3.4 How to Add an XSLT Statement
You can add XSLT statements to handle constructs such as conditional statements (if-
then-else) and iterations (for-each).

40.3.4.1 To Add an XSLT Statement:

1. Right-click the target node, and select Add XSL Instruction from the context
menu that appears. A submenu appears with the various XSL statements that you
can add.

2. Select the desired XSL statement, such as if, choose, or for-each, from the
submenu.

Editing an XSLT Map in Map View

Creating Transformations with the XSLT Map Editor 40-15

The xsl:text and xsl:variable XSLT statements can only be added for existing
nodes.

40.3.4.2 To Add an xsl:text or xsl:variable Statement:

1. Make sure that the target node exists in the XSLT.

If the target node appears gray, right-click the target node and select Create Node
in XSLT from the context menu that appears. The node no longer appears gray,
and is added to the XSLT map.

2. Right-click the target node, and select Add XSL Instruction from the context
menu that appears. A submenu appears with the various XSL statements that you
can add.

3. Select text or variable from the submenu.

Note:

The xsl:copy-of statement is not supported in Map View. It is supported in
XSLT View.

You can also choose to drag and drop XSLT statements from the Components
window.

40.3.4.3 To Drag and Drop an XSLT statement to a Target Node:

1. Select the XSLT Elements page from the Components Window. A list of statement
categories appear.

2. Locate a supported statement, for Map View, from a category. For example, the
for-each statement appears under the Flow Control category.

The Map View supports only a subset of XSLT statements. These statements are
discussed individually in the sections that follow.

3. Drag the statement to the desired target node until green highlighting appears
over the node, indicating that the statement can be dropped.

4. Drop the statement to insert it into the XSLT map.

The following sections enumerate the different XSLT statements that you can add
using the map view:

• How to Add Conditional Processing Using xsl:if

• How to Add Conditional Processing Using xsl:choose

• How to Add Loops Using xsl:for-each

• How to Add xsl:sort for an xsl:for-each Statement

• How to Duplicate XSLT Instructions

40.3.4.4 How to Add Conditional Processing Using xsl:if

If a source and target node are optional in their respective schemas, the xsl:if
statement is often used to test for the existence of the source node before creating the
corresponding target node.

Editing an XSLT Map in Map View

40-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

In Figure 40-11, the Comment node is optional for both the source and the target. The
square brackets around the Comment nodes indicate that they are optional nodes.

Figure 40-11 Optional Nodes in Source and Target Trees

If the source Comment node does not exist in the source document at runtime, its
value is empty. This creates a Comment node in the target document and sets its value
to empty.

To prevent creating an empty node when the source node is not there, add an xsl:if
statement above the target Comment node. The xsl:if statement tests for the
existence of the source node before creating the target node.

40.3.4.4.1 To add an xsl:if statement using the context menu:

1. Right-click the target node and select Add XSL Instruction -> if from the context
menu that appears. An xsl:if node is added as the parent node of the target
node.

2. To set the condition for the xsl:if node, drag and drop the source node to the
xsl:if node.

Figure 40-12 Dragging the Source Node to the xsl:if Node

Editing an XSLT Map in Map View

Creating Transformations with the XSLT Map Editor 40-17

40.3.4.4.2 To add an xsl:if statement using drag and drop:

1. In the Components window, select the XSLT Elements page.

2. Expand the Flow Control section. You can click the plus sign (+) next to Flow
Control to expand the section.

3. Drag the if icon to the right side of the target node until you can see the green
highlighting, as shown in Figure 40-13.

Figure 40-13 Adding an xsl:if Statement

4. Drop the if icon while the green highlighting is visible. An xsl:if node is
added as the parent node of the target node.

5. To set the condition for the xsl:if node, drag and drop the source node to the
xsl:if node.

When viewed in source view, the xsl:if statement looks similar to the following:

<xsl:if test="/ns0:PurchaseOrder/ns0:Comment">
 <tns1:Comment>
 <xsl:value-of select="/ns0:PurchaseOrder/ns0:Comment"/>
 </tns1:Comment>
</xsl:if>

The preceding xsl:if statement ensures that the target node is created only if the
source node exists.

40.3.4.5 How to Add Conditional Processing Using xsl:choose

The xsl:choose statement is similar to the xsl:if construct. You can use the
xsl:choose XSLT statement if there are multiple conditions to evaluate.

Figure 40-14 shows the XSLT Map Editor containing sample source and target
schemas. The source schema has an xsd:choice construct defined. The source schema
can contain either an HQAccount or a BranchAccount node, but not both. The target
schema has a BilledToAccount/AccountNumber node that must be defined.

If the HQAccount node exists, you must copy its AccountNumber to
BilledToAccount/AccountNumber in the target. If the HQAccount node does not
exist, you must copy the AccountNumber from the BranchAccount node. You can use
the xsl:choose statement to accomplish this task.

Editing an XSLT Map in Map View

40-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 40-14 XSLT Map Editor Containing Sample Source and Target Schemas

40.3.4.5.1 To add an xsl:choose statement using the context menu:

1. Right-click the target node and select Add XSL Instruction -> choose from the
context menu that appears.

A choose statement is added as the parent node of the target node along with an
xsl:when statement. Figure 40-15 shows the result of adding the xsl:choose
statement to the AccountNumber node.

Figure 40-15 Adding an xsl:choose Statement

An xsl:choose statement can contain multiple xsl:when statements followed
by an optional xsl:otherwise statement.

2. To add an xsl:otherwise node to the xsl:choose node, right-click xsl:choose in
the target tree and select Add XSL Instruction -> otherwise from the context
menu that appears.

Figure 40-16 shows the result of adding the xsl:otherwise statement to the
xsl:choose statement. Note that the AccountNumber node is copied to each
section of the xsl:choose statement.

Figure 40-16 Adding an xsl:otherwise Statement to an xsl:choose Statement

3. Map the xsl:when node to the source node whose existence is to be tested. In our
current example, you drag a line from the HQAccount node in the source to the
xsl:when node in the target.

4. Map the xsl:when and xsl:otherwise cases. In the current example, you drag a line
from the HQAccount/AccountNumber node to the xsl:choose/xsl:when/
AccountNumber node. Similarly, you drag a line from the BranchAccount/
AccountNumber node to the xsl:choose/xsl:otherwise/AccountNumber node.

Editing an XSLT Map in Map View

Creating Transformations with the XSLT Map Editor 40-19

Figure 40-17 shows the completed xsl:choose construct.

Figure 40-17 Sample xsl:choose Construct

40.3.4.5.2 To add an xsl:choose statement using drag and drop:

1. In the Components window, select the XSLT Elements page.

2. Expand the Flow Control section. You can click the plus sign (+) next to Flow
Control to expand the section.

3. Drag the choose icon to the right side of the target node until you can see the
green highlighting, as shown in Figure 40-18.

Figure 40-18 Dragging the choose Icon to the Target Node

4. Drop the choose icon while the green highlighting is visible. An xsl:choose
node is added as the parent node of the target node. The xsl:choose node
contains a child xsl:when node.

5. To create the otherwise clause, drag the otherwise icon from the Components
Window to the left of the xsl:choose node until you can see the green highlighting,
as shown in Figure 40-19.

Figure 40-19 Dragging the otherwise Icon to the xsl:choose Node

6. Drop the otherwise icon while the green highlighting is visible. An
xsl:otherwise node is added as the child node of the xsl:choose node.

7. Map the xsl:when node to the source node whose existence is to be tested. In our
current example, you drag a line from the HQAccount node in the source to the
xsl:when node in the target.

Editing an XSLT Map in Map View

40-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

8. Map the xsl:when and xsl:otherwise cases. In our current example, you drag a line
from the HQAccount/AccountNumber node to the xsl:choose/xsl:when/
AccountNumber node. Similarly, you drag a line from the BranchAccount/
AccountNumber node to the xsl:choose/xsl:otherwise/AccountNumber node.

Figure 40-17 shows the completed xsl:choose construct.

When viewed in source view, the xsl:choose statement looks similar to the
following:

<BilledToAccount>
 <xsl:choose>
 <xsl:when test="/ns0:PurchaseOrder/HQAccount">
 <AccountNumber>
 <xsl:value-of select="/ns0:PurchaseOrder/HQAccount/AccountNumber"/>
 </AccountNumber>
 </xsl:when>
 <xsl:otherwise>
 <AccountNumber>
 <xsl:value-of select="/ns0:PurchaseOrder/BranchAccount/AccountNumber"/>
 </AccountNumber>
 </xsl:otherwise>
 </xsl:choose>
</BilledToAccount>

40.3.4.6 How to Add Loops Using xsl:for-each

The xsl:for-each statement can be used to loop over a source node-set, or set of
nodes, and to create output nodes for each node in the source node-set.

40.3.4.6.1 To add an xsl:for-each statement using the context menu:

1. Right-click the target node and select Add XSL Instruction -> for-each from the
context menu that appears. An xsl:for-each statement is added as the parent
node of the target node.

2. To set the source node-set to loop over, drag and drop the source node to the
xsl:for-each statement.

Figure 40-20 shows an example of creating the xsl:for-each statement. The
source PurchaseOrder document contains the Item node. The Item node is a
repeating node, as represented by its icon. For each Item node in the source
document, an Item node is created in the target document using the xsl:for-
each statement.

Editing an XSLT Map in Map View

Creating Transformations with the XSLT Map Editor 40-21

Figure 40-20 Creating an xsl:for-each Statement

40.3.4.6.2 To add an xsl:for-each statement using drag and drop:

1. In the Components window, select the XSLT Elements page.

2. Expand the Flow Control section. You can click the plus sign (+) next to Flow
Control to expand the section.

3. Drag the for-each icon to the right side of the target node until you can see the
green highlighting, as shown in Figure 40-21.

Figure 40-21 Dragging the for-each Icon to the Target Node

4. Drop the for-each icon while the green highlighting is visible. An xsl:for-each
node is added as the parent node of the target node.

5. To set the source node-set to loop over, drag and drop the source node to the
xsl:for-each statement, as shown in Figure 40-20.

When viewed in the source view, the xsl:for-each statement looks similar to the
following:

<ShippedItems>
 <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <Item/>
 </xsl:for-each>
</ShippedItems>

Editing an XSLT Map in Map View

40-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note that the Item node, created inside the xsl:for-each statement, is an empty node.
You can map elements under the target Item node to set values for them.

For example, as shown in Figure 40-22, if you drag and drop Qty to Quantity, the
value of the Qty element is copied to the Quantity element in the output.

Figure 40-22 Mapping Qty to Quantity

The following example shows the resulting code in source view. It also shows a
sample source document and output document snippet.

<ShippedItems>
 <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <Item>
 <Quantity>
 <xsl:value-of select="Qty"/>
 </Quantity>
 </Item>
 </xsl:for-each>
</ShippedItems>

The following snippet shows some sample values for the source document:

<HighPriorityItems>
 <Item PartNum="000-AA">
 <Qty>20</Qty>
 </Item>
 <Item PartNum="000-AB">
 <Qty>24</Qty>
 </Item>
</HighPriorityItems>

The following snippet shows the output values corresponding to the preceding source
document:

<ShippedItems>
 <Item>
 <Quantity>20</Quantity>
 </Item>
 <Item>
 <Quantity>24</Quantity>
 </Item>
</ShippedItems>

Within an xsl:for-each statement, XPath expressions are usually relative to the
node selected by the xsl:for-each statement. For instance, in the preceding
example Qty is relative to the current Item node /ns0:PurchaseOrder/Items/
HighPriorityItems/Item:

 <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <Item>
 <Quantity>
 <xsl:value-of select="Qty"/>
 </Quantity>

Editing an XSLT Map in Map View

Creating Transformations with the XSLT Map Editor 40-23

 </Item>
 </xsl:for-each>

Using absolute paths within the xsl:for-each statement can result in unintended
results. For example, if were to use absolute path in the preceding example instead of
relative path, the code looks as follows:

<ShippedItems>
 <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <Item>
 <Quantity>
 <xsl:value-of
 select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item/Qty"/>
 </Quantity>
 </Item>
 </xsl:for-each>
</ShippedItems>

The resultant output document looks like the following:

<ShippedItems>
 <Item>
 <Quantity>20</Quantity>
 </Item>
 <Item>
 <Quantity>20</Quantity> <!-- repeating incorrect value! -->
 </Item>
</ShippedItems>

The absolute path always selects the first Qty element in the Item node-set and you
see a repeating value placed into each output Item element.

The XSLT Map Editor creates relative paths when mapping nodes under a for-each
statement, if possible. It is recommended that you create the xsl:for-each
statement before mapping the nodes that appear under the for-each. If you map nodes
such as Quantity before adding the for-each, the editor shows a warning and
attempts to refactor the absolute XPath expressions to relative path expressions when
you map the node-set to the for-each.

Note:

• Executing an auto map automatically inserts the xsl:for-each
statement, where required.

• Ensure that your design does not include infinite loops. Infinite loops can
result in errors similar to the following during deployment and
invocation of your application:

ORAMED-04001:
. . .
oracle.tip.mediator.service.BaseActionHandler requestProcess
SEVERE:
failed reference BPELProcess1.bpelprocess1_client operation = process

Editing an XSLT Map in Map View

40-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

40.3.4.7 How to Add xsl:sort for an xsl:for-each Statement

The xsl:sort statement can be added to an xsl:for-each statement to specify a field
based on which sorting is performed. The xsl:sort instruction causes xsl:for-
each to loop over the defined node-set in a particular order.

40.3.4.7.1 To add an xsl:sort statement using the context menu:

1. Right-click the xsl:for-each node and select Add XSL Instruction -> sort from the
context menu that appears.

The Set Attributes dialog appears.

2. Optionally specify attributes for the xsl:sort statement. Click OK.

The Set Attributes dialog enables you to set attributes for the xsl:sort
statement. Attributes control the way in which the sort is executed. For example, if
you select the 'order' Attribute, you can then select ascending or descending for
the sort order. Select the attributes desired for the sort.

Note:

The default values for attributes are pre-selected in the Set Attributes dialog.
These values are used in the absence of any selected attribute.

For instance, the default for sort order is ascending. You do not have to
explicitly select 'order' Attribute to turn on ascending order.

The xsl:sort statement is added just below the xsl:for-each statement and
before any other nodes under the for-each.

3. To set the element to sort with, drag and drop a node from under the source node-
set to the xsl:sort node. For instance, to sort on USPrice, drag the USPrice node
from under the node-set element Item to the xsl:sort node, as shown in
Figure 40-23.

Figure 40-23 Connecting the Source Node-Set to the xsl:sort Node

40.3.4.7.2 To add an xsl:sort statement using drag and drop:

1. In the Components window, select the XSLT Elements page.

2. Expand the Flow Control section. You can click the plus sign (+) next to Flow
Control to expand the section.

3. Drag the sort icon to the top of the element below the for-each node until you can
see the green highlighting, as shown in Figure 40-24.

Editing an XSLT Map in Map View

Creating Transformations with the XSLT Map Editor 40-25

Figure 40-24 Adding sort to for-each

4. Drop the sort icon while the green highlighting is visible. An xsl:sort node is
added as the sibling node of the highlighted node. In the example shown in
Figure 40-24, the xsl:sort node is added as a sibling of the Item element.

5. To set the element to sort with, drag and drop a node from under the source node-
set to the xsl:sort node. For instance, to sort on USPrice, drag the USPrice node
from under the node-set element Item to the xsl:sort node, as shown in
Figure 40-23.

When viewed in the source view, the xsl:sort statement looks similar to the
following:

<xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <xsl:sort select="USPrice"/>
 <Item>
 <Quantity>
 <xsl:value-of select="Qty"/>
 </Quantity>
 </Item>
</xsl:for-each>

40.3.4.8 How to Duplicate XSLT Instructions

Sometimes, you must duplicate XSLT instructions in the target tree. For example, you
may create two for-each statements next to one another to loop over two node-sets in
the source document, or possibly to loop over the same node-set twice.

Other XSLT instructions, such as xsl:if and xsl:sort, can also be duplicated. This
section illustrates creating duplicate instructions using the xsl:for-each statement.
The same process applies to other XSLT instructions.

To duplicate an xsl:for-each statement:

1. Right-click the xsl:for-each node in the target tree and select Duplicate from the
context menu that appears.

The node is duplicated together with its children and mappings. Figure 40-25
shows the duplicate nodes.

Editing an XSLT Map in Map View

40-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 40-25 Duplicating the xsl:for-each Statement

2. Optionally modify the mapping for the xsl:for-each node or change mappings
for nodes below the xsl:for-each node.

40.3.4.8.1 Example: Modifying the Mapping by Changing the XPath Expression

In this example, you modify the duplicate xsl:for-each statement to loop over the
Item nodes under the LowPriorityItems node in the source document. There are
several ways to modify the mappings. The following example discusses one way to
modify the mappings.

If you edit the XPath expression associated with a for-each statement, all relative
mappings under the for-each are automatically updated. Use the following steps to
modify the XPath expression associated with the duplicate for-each statement:

1. To edit the XPath expression, double-click the line connected to the second for-
each. This is the blue line in Figure 40-25.

The Edit XPath dialog appears. The XPath Expression field displays the XPath
expression corresponding to the map.

2. Change HighPriorityItems to LowPriorityItems in the XPath Expression. Click
OK.

The xsl:for-each statement and all its children now reference the
LowPriorityItems/Item node-set.

Editing an XSLT Map in Map View

Creating Transformations with the XSLT Map Editor 40-27

40.3.4.8.2 Example: Modifying the Mapping by Deleting and Re-Creating It

To modify the mapping for the for-each statement, you can also choose to remove the
mapping and re-create it. The following steps illustrate the process to modify the
mappings for the duplicate for-each statement:

1. Right-click the duplicate xsl:for-each node and select Delete Mapping from the
context menu that appears.

The Refactor XPaths dialog appears asking if you want to refactor the XPath
expressions under the for-each statement.

2. Click No to refactoring. This keeps the relative paths, as you plan to apply these
relative paths to a different loop. After you click No, the lines underneath the for-
each statement become temporarily disconnected from the source tree.

Editing an XSLT Map in Map View

40-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

In the preceding figure, the relative XPath expression assigned to the Quantity
field is Qty. Without the XPath expression on the for-each statement, the relative
path has no Item node to be relative to, and consequently, no reference is found
in the source tree.

Note:

In general, XPath expressions that cannot be resolved to nodes in the source
tree are represented in the center panel. This can sometimes indicate an issue,
as in the preceding case. There is a relative path that cannot be resolved
because of a missing for-each expression above it.

An XPath expression can also be represented in the center pane if the
expression is too complex to determine a source reference node at design time.

3. Drag and drop a line from the LowPriorityItems/Item node in the source tree to
the duplicate xsl:for-each statement.

The mapping to the Quantity field automatically reconnects to the Qty field
under the LowPriorityItems/Item node, as shown in the following figure.

40.3.5 How to Duplicate an Element
In order to duplicate a target node in Map view, the node must have been defined as a
repeating node in the target schema. For certain cases, you can create repeating nodes
using for-each loops, as discussed in the preceding section. In other cases, you may
need to create several independent instances of a node and map data to them through
different areas of the source document.

To duplicate a repeating target node:

1. If the target node text is grayed, and in italics, right-click the node and select Create
Node in XSLT from the context menu that appears.

Editing an XSLT Map in Map View

Creating Transformations with the XSLT Map Editor 40-29

Figure 40-26 Creating Node in XSLT

2. Right-click the node again and select Duplicate from the context menu that
appears. The node is duplicated.

Figure 40-27 Duplicate Contact Nodes

3. Map the appropriate fields from the source document to the two duplicate
elements.

In the following figure, the duplicate Contact nodes in the target tree are mapped
to different areas of the source document. The first Contact node is mapped to the
ShipTo data. The second Contact node is mapped to the BillTo data.

Editing an XSLT Map in Map View

40-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

40.3.6 How to Delete an Element or Attribute
To delete an element or attribute from the current XSLT Map, the element or attribute
must first exist in the XSLT. Nodes in the target tree that are not grayed, and not in
italics, are nodes that exist in the XSLT. Nodes that are grayed, and in italics, are not
part of the XSLT. Such grayed nodes represent candidate elements and attributes from
the target schema, and cannot be deleted from the display.

To delete a target node that exists in the XSLT, do one of the following:

• Click the target node to select it. Press the Delete key.

• Right-click the target node and select Delete from the context menu that appears.

The node is removed from the XSLT and any mapping to the node is also removed.
The deleted node is not removed from the display. The deleted node becomes gray
and italicized indicating that it is now just a possible target node from the target
schema, and is no longer part of the XSLT. However, if the deleted node was a
duplicate node, or was in a position non-compliant with the target schema, then the
node is removed from the display.

The following figure shows two comment nodes that are part of the XSLT map.

If you right-click the second Comment node and select Delete from the context menu,
the duplicate node is removed from the XSLT and the display, as shown in the figure
below.

Editing an XSLT Map in Map View

Creating Transformations with the XSLT Map Editor 40-31

Next, you right-click and remove the remaining Comment node. The node is not
removed from the display, but is removed from the XSLT and its appearance changes
to gray and italicized, as shown in the following figure.

40.3.7 How to Remove Mappings from an Element or Attribute
To remove the mapping to any target node, right-click the node in the target tree and
select Delete Mapping from the context menu that appears. Alternatively, you can
select the line representing the mapping, and press the Delete key.

When you remove a mapping in Map View, the node that was mapped to is not
removed from the XSLT. To remove the node, right-click and select Delete from the
context menu that appears. If only the mappings are removed and the node is not, the
XSLT generates an empty node when executed.

40.4 Editing an XSLT Map in XSLT View
This section discusses basic editing using the XSLT pane in XSLT View. The following
list includes the major differences between editing in XSLT View and editing in Map
View:

• XSLT View does not provide a merged view of the XSLT nodes and the target
schema. The right target pane is divided into two panes. The top pane is called the
XSLT pane and the lower pane is called the target pane. If no target schema is
defined, then the lower pane is not shown.

• In order to map to target nodes, these nodes must be explicitly added to the XSLT
pane before they can be mapped. The editor provides several ways to do this.
These are discussed in the subsequent sections.

• The complete range of XSLT 1.0 instructions is available in XSLT View. These
instructions can be added anywhere within the XSLT panel, so long as their
position is consistent with the XSLT specification.

Editing an XSLT Map in XSLT View

40-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• A number of advanced features are available in XSLT View, such as template
rules (matched templates), named templates, import/include, and so on. These
advanced features are discussed later in this chapter.

40.4.1 How to Add a Target Element or Attribute Before Mapping
Before mapping to target elements and attributes, the element or attribute must be
explicitly added to the XSLT pane. This section contains the following topics:

• How to Add Elements and Attributes from the Target Schema

• How to Add Literal Elements and Attributes When No Target Schema Is Present

• How to Create an Empty Node in the Output Document

40.4.1.1 How to Add Elements and Attributes from the Target Schema

If the target schema is present, you can add elements and attributes from the target
tree to the XSLT pane.

You can either use the context menu for an XSLT element or attribute to add a related
element/attribute, or drag and drop the desired element/attribute from the target tree
to the XSLT tree.

If elements are placed in positions that are inconsistent with the target schema, or if
the editor cannot yet determine if the element is valid at the location due to an
incomplete XSLT map, then a question mark is shown over the element's icon. The
following figure shows an XSLT tree where the Item element is marked with a
question mark.

40.4.1.1.1 To add elements and attributes when target schema is present:

1. Right-click the element, in the XSLT pane, that is to contain the child element(s) or
attribute(s). A context menu appears.

Note:

This action can also be executed from Map View if the selected node exists in
the XSLT.

In Map View, you can also add an empty XSLT node by choosing Create
Node in XSLT. See How to Create an Empty Node in the Output Document
for more details.

Editing an XSLT Map in XSLT View

Creating Transformations with the XSLT Map Editor 40-33

2. Select Add Children From Schema. A submenu appears with choices that are
consistent with the target schema. Figure 40-28 shows the Add Children From
Schema submenu.

Figure 40-28 Selecting Child Elements/Attributes to Add

3. Select the element name or attribute name to add. To add all child elements or
attributes, select All Elements or All Attributes. Select All Required to add all
required child elements or attributes.

40.4.1.1.2 To drag and drop elements and attributes from the target schema tree:

• To insert an element as a child of an existing element:

Drag the target element, or a selected range of elements, from the target pane to
the left of the desired element in the XSLT tree. A green highlight appears to
indicate that the element is being inserted as a child. Upon drop, the child is
appended to the list of children.

If the green highlight does not appear at a particular position, then it means it is
invalid to insert the element at that position.

• To insert an element as a sibling after an existing element:

Drag the target element, or a selected range of elements, from the target pane to
the bottom of the existing element in the XSLT tree. A green highlight appears to
indicate that the element is being inserted as a sibling. Upon drop, the sibling is
appended after the existing element.

Editing an XSLT Map in XSLT View

40-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• To insert an element as a sibling before an existing element:

Drag the target element, or a selected range of elements, from the target pane to
the top of the existing element in the XSLT tree. A green highlight appears to
indicate that the element is being inserted as a sibling. Upon drop, the sibling is
appended before the existing element.

• To insert an element as a parent of an existing element:

Drag the target element, or a selected range of elements, from the target pane to
the right of the existing element in the XSLT tree. A green highlight appears to
indicate that the element is being inserted as a parent. Upon drop, the element is
inserted as the parent of the existing element.

40.4.1.2 How to Add Literal Elements and Attributes When No Target Schema Is
Present

This section applies to both XSLT and Map views.

40.4.1.2.1 To add a literal element when there is no target schema:

1. Right-click an element in the XSLT pane. The context menu for the element
appears.

2. Select the relative position of the new literal element relative to the existing
element. You can create the literal element as the child, sibling, or parent of the
existing element. Figure 40-29 shows the available options (Append Child, Insert
Parent, Insert Sibling Before, Insert Sibling After).

Editing an XSLT Map in XSLT View

Creating Transformations with the XSLT Map Editor 40-35

Figure 40-29 Adding a Literal Element to the XSLT Pane

3. Select Literal Element from the submenu. The Define Element dialog appears.

4. Under Local Name, enter a name for the literal element. You can optionally
specify a namespace for the element.

5. Click OK to close the Define Element dialog.

40.4.1.2.2 To add a literal attribute when there is no target schema:

1. Right-click an existing literal element in the XSLT pane. The context menu for the
literal element appears.

2. Select Append Child > Literal Attribute. The Define Element dialog appears.

3. Under Local Name, enter a name for the literal attribute. You can optionally
specify a namespace for the attribute.

4. Click OK to close the Define Attribute dialog.

40.4.1.3 How to Create an Empty Node in the Output Document

When you use the methods discussed under the preceding sections (How to Add
Elements and Attributes from the Target Schema and How to Add Literal Elements
and Attributes When No Target Schema Is Present) to add nodes to the XSLT pane,
these nodes are created as empty nodes unless you map them to source nodes. Also,
when you add a complex node to the XSLT pane, all required nodes under the
complex node are created automatically.

You can also set the XSL Map Initialization Options in the XSL Maps: XSL Editor
preferences page to generate empty nodes when a map is created. See How to Set the
XSL Editor Preferences for more information.

40.4.2 How to Perform a Value Copy by Linking Nodes
To copy the value of an attribute or leaf-element in the source to an attribute or leaf-
element in the XSLT pane, drag a line from the source node to the XSLT node. A green
highlighted line appears as you are dragging and dropping. When you complete the
drop, a line is drawn connecting the source and target nodes.

Editing an XSLT Map in XSLT View

40-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 40-30 shows the XSLT view where the PurchaseOrder/ID source element is
mapped to the Invoice/ID XSLT element. A line connects the source and XSLT
node.

Figure 40-30 Performing a Value Copy

40.4.3 How to Insert an xsl:valueof Statement
When you map a source element to an XSLT element, as described in the preceding
section, an implicit xsl:valueof statement is created in the XSLT.

In XSLT View, you can explicitly create multiple xsl:valueof elements for an XSLT
element. The resultant value of the XSLT element is the concatenation of the
individual xsl:valueof values.

To create an xsl:valueof element for an XSLT element:

1. Right-click the literal element in the XSLT pane. The context menu appears.

2. Select Append Child > XSL > value-of from the context menu. The Set Attributes
dialog box appears.

3. Optionally select 'disable output escaping' Attribute. Click OK.

The xsl:value-of element is inserted.

4. Map the xsl:value-of element to a source element just as you map a literal
element. This is described in the preceding section.

If an xsl:value-of element is added to a literal element that has no mapping, the
xsl:value-of statement appears under the literal element until it is mapped. After
you map the xsl:value-of element, the editor hides the xsl:value-of statement
under the literal element and shows only the line indicating the mapping.

If you add multiple xsl:value-of statements to the literal element, then all
xsl:value-of statements are explicitly shown under the literal element, and
mapping lines can be separately drawn to each xsl:value-of element.

Editing an XSLT Map in XSLT View

Creating Transformations with the XSLT Map Editor 40-37

40.4.4 How to Set a Literal Text Value for an XSLT Node

To set a literal text value for an XSLT node:

1. Right-click the node in the XSLT pane. Select Edit Text Value from the context
menu that appears.

The Set Text dialog appears.

2. Enter the text value to be assigned to the node. Do not enclose the text in quotation
marks.

3. Click OK.

A yellow T icon appears next to the node indicating that a text value has been set
for the item. If you move the mouse cursor over the node, the corresponding text
appears.

40.4.5 How to Set a Literal Text Value Using an xsl:text Instruction

To set the value for a literal element using the xsl:text instruction:

1. Right-click the literal element in the XSLT pane. The context menu appears.

2. Select Append Child > XSL > text from the context menu. The Set Attributes
dialog box appears.

3. Optionally select 'disable output escaping' Attribute. Click OK.

The xsl:text element is inserted.

4. Right-click the newly inserted xsl:text element and select Edit Text Value from the
context menu that appears.

The Set Text dialog box appears.

5. Enter the text value to be assigned Do not enclose the text in quotation marks.

6. Click OK.

A yellow T icon appears next to the xsl:text node indicating that a text value
has been set for the element. If you move the mouse cursor over the node, the
corresponding text appears.

7. To change the text value at any time, right-click the xsl:text element again and
select Edit Text Value from the context menu that appears.

40.4.6 How to Add XSLT Statements
This procedure applies to XSLT View only. XSLT statements can be added using the
Components window or context menu.

40.4.6.1 To add an XSLT element using the context menu:

1. Right-click an element in the XSLT pane. The context menu for the element
appears.

Editing an XSLT Map in XSLT View

40-38 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

2. Select the relative position of the new element relative to the existing element. You
can create the literal element as the child, sibling, or parent of the existing element.
The available options are Append Child, Insert Parent, Insert Sibling Before,
and Insert Sibling After.

3. Select XSL from the submenu. A list of available XSLT elements valid for the
position is displayed. Figure 40-31 shows a sample XSL selection.

Figure 40-31 Inserting an XSLT Element

4. Select the desired XSLT element.

Depending on the element selected, a dialog may prompt you for attribute values.
If so, then enter the attribute values, and click OK.

5. The XSLT element gets added to the tree.

The attributes of the added element are not explicitly shown in the XSLT tree.
Hover your mouse over the element to see its attributes in the tooltip text.
Alternatively, select the XSLT element to view and edit the element properties in
the Properties window.

40.4.6.2 To add XSLT elements from the Components window:

1. Make sure that the Components window is visible. The default location is the top
right hand corner of Oracle JDeveloper.

2. If the Components window is not visible, select Components from the Window
menu.

3. Select the XSLT Elements page.

4. Select the desired section under XSLT Elements. Drag the desired XSLT element
to the XSLT pane.

Editing an XSLT Map in XSLT View

Creating Transformations with the XSLT Map Editor 40-39

• To insert the XSLT element as a child of an existing element:

Drag the XSLT element from the Components window to the left of the
existing element in the XSLT tree. A green highlight appears to indicate that
the XSLT element is being inserted as a child. Upon drop, the XSLT element is
appended to the end of any existing children.

If the green highlight does not appear at a particular position, then it means it
is invalid to insert the element at that position.

• To insert the XSLT element as a sibling after an existing element:

Drag the XSLT element from the Components window to the bottom of the
existing element in the XSLT tree. A green highlight appears to indicate that
the XSLT element is being inserted as a sibling. Upon drop, the XSLT element
is appended after the existing element.

• To insert the XSLT element as a sibling before an existing element:

Drag the XSLT element from the Components window to the top of the
existing element in the XSLT tree. A green highlight appears to indicate that
the XSLT element is being inserted as a sibling. Upon drop, the XSLT element
is appended before the existing element.

• To insert the XSLT element as a parent of an existing element:

Drag the XSLT element from the Components window to the right of the
existing element in the XSLT tree. A green highlight appears to indicate that
the XSLT element is being inserted as a parent. Upon drop, the XSLT element
is added as the parent of the existing element.

Depending on the XSLT element selected, a dialog may prompt you for attribute
values. If so, then enter the attribute values, and click OK.

5. The XSLT element gets added to the tree.

Editing an XSLT Map in XSLT View

40-40 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The attributes of the added element are not explicitly shown in the XSLT tree.
Hover your mouse over the element to see its attributes in the tooltip text.
Alternatively, select the XSLT element to view and edit the element properties in
the Properties window.

40.4.7 How to Set the Value of an XSLT Expression Attribute
Many XSLT instructions contain special attributes that are interpreted as XPath
expressions. These expression attributes are generally named select or test. For
example, the xsl:for-each element contains a select attribute and the xsl:if
element contains the test attribute.

Such attributes can be defined by XPath expressions. You can set the values for these
attributes using drag and drop to the XSLT element in the XSLT pane (in XSLT View)
or target pane (in Map View).

To set the value of an XSLT expression attribute using drag and drop from the source
tree, drag a line from the desired node in the source tree to the desired XSLT element
in the XSLT pane. A line appears connecting the source tree node to the XSLT element.

The appropriate expression attribute is inserted for the XSLT instruction in the source
view. For example:

<xsl:if test="/ns0:PurchaseOrder/BillTo/Address/@country">

The preceding example code is formed by dragging the country attribute in the
source schema to the xsl:if statement in the XSLT tree. The code causes the if
condition to test for the presence of the country attribute in the source schema.

40.4.8 How to Duplicate an Element
To duplicate a literal element in the XSLT pane that is defined as a repeating node in
the target schema, use the instructions under How to Duplicate an Element. The
instructions are same as those for the Map View.

If no target schema is defined, you can duplicate any node in XSLT View, except the
root node.

If a node needs to be duplicated, but the node is not defined as a repeating node in the
target schema, you can create a duplicate node by explicitly creating a literal element
as follows:

To duplicate a literal element that is not defined as a repeating node in the target
schema:

1. In the XSLT pane, right-click the element to be duplicated. The context menu
appears.

2. Select Insert Sibling After -> Literal Element from the context menu. The Define
Element dialog appears.

3. Enter the element name and namespace of the node to be duplicated. Click OK.

40.4.9 How to Delete an Element or Attribute
This feature is available in both the XSLT and Map views. When using Map View, the
action is to be performed in the target pane.

To delete a target node that exists in the XSLT, do one of the following:

Editing an XSLT Map in XSLT View

Creating Transformations with the XSLT Map Editor 40-41

• Right-click the node in the XSLT pane. Select Delete from the context menu that
appears.

• Click the node in the XSLT pane to select it. Press the Delete key.

The node is removed from the XSLT pane together with any mappings to the node.

40.4.10 How to Move an Element
You can move an element by dragging it from one position and dropping it to another
position in the XSLT pane. The element can be moved to become a sibling, parent, or
child of another element. You cannot move an element in Map View.

In Figure 40-32, the AccountNumber element is at an incorrect location in the XSLT
pane. To make it consistent with the target schema, you must move the
AccountNumber element under the BilledToAccount element.

Figure 40-32 AccountNumber Element

Drag the AccountNumber node in the XSLT pane to the left of the
BilledToAccount node until the green highlight appears, as shown in Figure 40-33.
The green highlight indicates that the AccountNumber element is dropped as a child
of BilledToAccount.

Figure 40-33 Dragging the AccountNumber Node

Drop the element while the green highlight is visible. The AccountNumber node is
repositioned under the BilledToAccount node, as shown in Figure 40-34.

Editing an XSLT Map in XSLT View

40-42 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 40-34 Repositioned AccountNumber Node

40.4.11 How to Remove Mappings from an Element or Attribute
To remove the mapping to any XSLT node, right-click the node and select Delete
Mapping from the context menu. Alternatively, you can select the line representing
the mapping, and press the Delete key. You can use the preceding methods in both the
Map and XSLT views.

40.5 Using XPath Expressions
How to Perform a Value Copy by Linking Nodes and How to Perform a Value Copy
by Linking Nodes discussed how to use the drag and drop action to create a mapping
between a source and target element or attribute. The drag and drop action creates an
XPath expression in the XSLT that references specific nodes in the source document.

For example, the following XSLT code is generated by mapping a source element to a
target element:

<ID>
 <xsl:value-of select="/ns0:PurchaseOrder/ID"/>
</ID>

The preceding code contains an xsl:value-of statement. The select attribute for
this statement contains an XPath expression (/ns0:PurchaseOrder/ID)that references
the source node being mapped.

This XPath expression represents a location path expression. XPath expressions can
also be complex and include XPath functions and operators.

For example, the following code concatenates the value of the source element /
PurchaseOrder/ID to the value of the attribute, /PurchaseOrder/@PONumber. It
then assigns the result to the target element, <ID>.

<ID>
 <xsl:value-of select="concat(/ns0:PurchaseOrder/ID,/ns0:PurchaseOrder/@PONumber)"/>
</ID>

In the preceding code, the value in the select attribute is the XPath expression. The
XPath expression uses the concat function to concatenate two source node values.

The XSLT Map Editor provides a number of ways to enter more complex XPath
expressions than those that are created by simple drag and drop actions. The following
methods for creating XPath expressions are available in both Map and XSLT View.

40.5.1 How to Modify an Existing Source to Target Mapping
You can modify the XPath expression for a mapping created from a drag and drop
action between a source and target node.

Using XPath Expressions

Creating Transformations with the XSLT Map Editor 40-43

40.5.1.1 To edit an XPath expression using the Edit XPath dialog

1. Double-click the line representing the source to target mapping. The Edit XPath
dialog appears.

2. Edit the XPath Expression, as needed.

For example, if you want the Description field to contain the first Comment that
occurs in the source, you add a predicate to the expression with the index of the
first Comment.

Click Help if you need more information on editing the XPath expression.

3. Click OK in the Edit XPath dialog.

40.5.1.2 To edit an existing XPath expression using the Properties window

1. If the Properties window is not visible, select Window > Properties from the
Oracle JDeveloper menu bar.

The default location of the Properties window is below the XSLT Map Editor.

2. Click to select the line representing the source to target mapping. The Properties
window shows the XPath expression corresponding to the selected map line.

Using XPath Expressions

40-44 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. Edit the XPath Expression, as needed.

For example, if you want the Description field to contain the first Comment that
occurs in the source, you add a predicate to the expression with the index of the
first Comment.

Click the Help icon in the Properties window, if you need more information on
editing the XPath expression.

4. To update the XSLT with the changes, click the Apply Changes icon in the upper
left corner of the Properties window. Alternatively, click anywhere in the XSLT
Map Editor.

40.5.1.3 How to Add an XPath Function to an Existing XPath Expression

You can drag and drop a function onto an existing source to target mapping. When
you drop a function on a map, the existing location path expression is used to
populate the first parameter of the function that is dropped.

In the following steps, you change the expression you edited in the preceding section
(How to Modify an Existing Source to Target Mapping). You use the concat function
to concatenate the first Comment in the source with the Description in the source.

To add an XPath function to an existing XPath expression

1. If the Components window is not visible, select Window > Components from the
Oracle JDeveloper menu bar.

2. In the Components window, select General XPath. Expand the String Functions
section by clicking the plus sign (+) next to it.

Using XPath Expressions

Creating Transformations with the XSLT Map Editor 40-45

3. Drag the concat function icon from the String Functions section to the line
representing the existing map that you want to modify. The line turns green,
indicating that you can drop the function.

4. Drop the concat function on the line. The function is inserted into the map, and the
first parameter of the concat function is set to the value of the existing XPath
expression.

Note:

If a function does not get added to the map, the function may not have any
parameters. For example, if you drag and drop the xp20:current-date function
onto the existing line, it has no effect because the xp20:current-date
function takes no parameters.

40.5.2 How to Modify an Existing Function XPath Expression in the Canvas Pane
XPath functions are shown in the canvas panel and can be edited in several ways.
Continuing our example from the previous section (How to Add an XPath Function to
an Existing XPath Expression), you set the value of the second parameter of the concat
function in several ways.

40.5.2.1 To set a function parameter using drag and drop:

1. Drag a line from the Description element in the source tree to the left side of the
concat function icon in the canvas pane. A pop-up panel appears with connectors
for each possible parameter in the function.

Using XPath Expressions

40-46 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

2. Drop the line on the desired connector. In the preceding figure, you drop the line
on the second connector, which represents the second required parameter. You
can also choose to drop the line on the third optional parameter, and fill in the
second parameter value later.

The parameter is added to the function. The warning icon disappears after all
required parameters have been added.

40.5.2.2 To delete a function parameter:

To delete a function parameter, select the line representing the input to the function
parameter and press the Delete key. Alternatively, you can right-click the line and
select Delete from the context menu.

40.5.2.3 How to Edit a Function as a Full XPath Expression

You can edit an XPath function as a textual XPath Expression using the XPath Edit
dialog or the XPath Edit panel in the Properties Window.

40.5.2.3.1 To edit a function as a textual XPath expression using the XPath Edit dialog:

1. Double-click the expression folder in the canvas pane, in the area bordering the
function icon. The Edit XPath dialog appears.

Using XPath Expressions

Creating Transformations with the XSLT Map Editor 40-47

If you double-click the center icon instead, it brings up the Edit Function dialog.

2. Edit the XPath Expression, as desired. To add the XPath location path for the
Description node, for example, place the cursor after the first parameter. Press
Ctrl + Space and double-click /ns0:PurchaseOrder to select it.

/ns0:PurchaseOrder is inserted in the expression and the drop-down menu is
populated with the possible children of the /ns0:PurchaseOrder node.

3. Double-click the Description entry to select it. You can also put the mouse cursor
on an entry, and press the Enter key to select it.

Using XPath Expressions

40-48 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

4. Click OK in the Edit XPath dialog.

40.5.2.3.2 To edit a function as a textual XPath expression using the Properties Window:

1. If the Properties window is not visible, select Window > Properties from the
Oracle JDeveloper menu bar.

The default location of the Properties window is below the XSLT Map Editor.

2. Click the expression folder in the canvas pane, in the area bordering the function
icon. The full XPath Expression for the function appears in the right pane of the
Properties window.

3. Edit the XPath Expression, as desired. You can also refer to Steps 2 to 3 in the
preceding procedure.

4. To update the XSLT with the changes, click the Apply Changes icon in the upper
left corner of the Properties window. Alternatively, click anywhere in the XSLT
Map Editor.

40.5.2.4 How to Edit Individual Function Parameters

The XSLT Map Editor can parse a function into its corresponding parameters, so that
the XPath for each parameter can be edited in a separate XPath Expression field.

40.5.2.4.1 To edit the parameters of a function using the Edit Function dialog:

1. Double-click the function icon in the canvas pane. The Edit Function dialog
appears.

Make sure you double-click the center function icon. Double-clicking the area
bordering the function icon brings up the Edit XPath dialog.

2. Edit the function parameters individually, as desired. Optionally click Help for
more information about editing the parameters.

3. Click the Add icon, represented by the green plus sign (+), to optionally add a
new parameter.

4. Click OK after you finish editing the parameters.

Using XPath Expressions

Creating Transformations with the XSLT Map Editor 40-49

40.5.2.4.2 To edit the parameters of a function using the Properties window:

1. If the Properties window is not visible, select Window > Properties from the
Oracle JDeveloper menu bar.

The default location of the Properties window is below the XSLT Map Editor.

2. Click the center area of the function icon in the canvas pane. The function
parameters appear in the right pane of the Properties window.

3. Edit the function parameters, as desired. Optionally click the Help icon for more
information about editing the parameters.

4. Click the Add icon, represented by the green plus sign (+), to optionally add a
new parameter.

5. To update the XSLT with the changes, click the Apply Changes icon in the upper
left corner of the Properties window. Alternatively, click anywhere in the XSLT
Map Editor.

40.5.3 How to Create a New Function in the Canvas Pane
There are several ways to create a new function in the XSLT canvas pane. These are
described in the sections that follow.

40.5.3.1 To create an XPath Function using the canvas context menu

1. Right-click a blank area in the center canvas pane. Select Create XPath from the
context menu that appears.

2. Select the desired function from the Create XPath submenu. For example, select
the current-date function from the Date Functions category.

An Information dialog may appear, prompting you to connect the function to a
target node. Click OK.

The function icon appears on the canvas pane.

Using XPath Expressions

40-50 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. Map the function to a target node by dragging a line from the function to the
target node.

4. If the function requires parameters, edit the parameters using one of the methods
discussed in How to Modify an Existing Function XPath Expression in the Canvas
Pane.

40.5.3.2 To create an XPath function using the Components window

1. If the Components window is not visible, select Window > Components from the
Oracle JDeveloper menu bar.

2. In the Components window, select General XPath or Advanced XPath. Select a
category of functions, for example, String Functions.

3. Drag the desired function from the Components window to the center canvas
pane of the XSLT Map Editor.

4. Map the function to a target node by dragging a line from the function to the
target node.

5. If the function requires parameters, edit the parameters using one of the methods
discussed in How to Modify an Existing Function XPath Expression in the Canvas
Pane.

40.5.3.3 To create an XPath function using the target tree context menu

1. Right-click the target tree node (Map View) or the XSLT tree node (XSLT View) to
which the XPath function needs to be assigned. The context menu appears.

2. Select Create XPath. Select the desired XPath function from the submenu that
appears.

Using XPath Expressions

Creating Transformations with the XSLT Map Editor 40-51

The function is created in the canvas pane and linked to the target/XSLT node for
which it was created.

3. If the function requires parameters, edit the parameters using one of the methods
discussed in How to Modify an Existing Function XPath Expression in the Canvas
Pane.

40.5.3.4 To create an XPath function by dragging it to the target tree

1. If the Components window is not visible, select Window > Components from the
Oracle JDeveloper menu bar.

2. In the Components window, select General XPath or Advanced XPath. Select a
category of functions, for example, String Functions.

3. Drag the desired function from the Components window to the target tree node
(Map View), or XSLT tree node (XSLT View), to which the function is to be
assigned. A green highlight appears to the left of the target/XSLT tree node.

4. Drop the function while the green highlight is visible.

The function is created in the canvas pane and linked to the target/XSLT node
where the function was dropped.

5. If the function requires parameters, edit the parameters using one of the methods
discussed in How to Modify an Existing Function XPath Expression in the Canvas
Pane.

40.5.4 How to Chain Functions Together

To chain one function to another:

Complex expressions can be built by chaining functions (that is, mapping the output
of one function to the input of another). For example, to remove all leading and
trailing spaces from the output of the concat function, perform the following steps:

1. Drag the left-trim and right-trim functions into the border area of the concat
function.

2. Chain them as shown in Figure 40-35 by dragging lines from the output side of one
function to the input side of the next function.

Chaining can also be performed by dragging and dropping a function onto a
connecting link.

Using XPath Expressions

40-52 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 40-35 Chaining Functions

40.5.5 How to Remove an XPath Expression

To remove an XPath Expression:

1. Select the XPath expression/function icon in the Canvas pane.

2. Right-click the icon and select Delete from the context menu.

40.5.6 How to Import User-Defined Functions
You can create and import a user-defined Java function if you have complex
functionality that cannot be performed in XSLT or with XPath expressions.

Follow these steps to create and use your own functions. External, user-defined
functions can be necessary when logic is too complex to perform within the XSL map.

To import user-defined functions:

1. Code and build your functions.

The XSLT Map Editor extension functions are coded differently than the Oracle
BPEL Process Manager extension functions. Two examples are provided in the
SampleExtensionFunctions.java file of the mapper-107-extension-
functions sample scenario. To download these and other samples, see the Oracle
SOA Suite samples.

Each function must be declared as a static function. Input parameters and the
returned value must be declared as one of the following types:

• java.lang.String

• int

• float

• double

• boolean

• oracle.xml.parser.v2.XMLNodeList

• oracle.xml.parser.v2.XMLDocumentFragment

The text for these functions is as follows:

// SampleExtensionFunctions.java
package oracle.sample;
/*
This is a sample XSLT Map Editor User Defined Extension Functions implementation
class.
*/
public class SampleExtensionFunctions

Using XPath Expressions

Creating Transformations with the XSLT Map Editor 40-53

{
 public static Double toKilograms(Double lb)
 {
 return new Double(lb.doubleValue()*0.45359237);
 }
 public static String replaceChar(String inputString, String oldChar, String
 newChar)
 {
 return inputString.replace(oldChar.charAt(0), newChar.charAt(0));
 }
}

2. Create an XML extension function configuration file. This file defines the functions
and their parameters.

This file must have the name ext-mapper-xpath-functions-config.xml.
See Creating User-Defined XPath Extension Functions for more information on the
format of this file. The following syntax represents the functions toKilograms
and replaceChar as they are coded in Step 1.

<?xml version="1.0" encoding="UTF-8"?>
<soa-xpath-functions version="11.1.1"
 xmlns="http://xmlns.oracle.com/soa/config/xpath" xmlns:sample=
"http://www.oracle.com/XSL/Transform/java/oracle.sample.SampleExtensionFunctions"
 >
 <function name="sample:toKilograms">
 <className>oracle.sample.SampleExtensionFunctions</className>
 <return type="number"/>
 <params>
 <param name="pounds" type="number"/>
 </params>
 <desc>Converts a value in pounds to kilograms</desc>
 </function>
 <function name="sample:replaceChar">
 <className>oracle.sample.SampleExtensionFunctions</className>
 <return type="string"/>
 <params>
 <param name="inputString" type="string"/>
 <param name="oldChar" type="string"/>
 <param name="newChar" type="string"/>
 </params>
 <desc>Returns a new string resulting from replacing all occurrences
 of oldChar in this string with newChar</desc>
 </function>
</soa-xpath-functions>

Some additional rules apply to the definitions of XSLT extension functions:

• The functions need a namespace prefix and a namespace. In this sample, they
are sample and http://www.oracle.com/XSL/Transform/java/
oracle.sample.Sam pleExtensionFunctions.

• The function namespace must start with http://www.oracle.com/XSL/
Transform/java/ for extension functions to work with the Oracle XSLT
processor.

• The last portion of the namespace, in this sample
oracle.sample.SampleExtensionFunctions, must be the fully qualified
name of the Java class that implements the extension functions.

Using XPath Expressions

40-54 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• The types and their equivalent Java types shown in Table 40-1 can be used for
parameter and return values:

Table 40-1 Types and Equivalent Java Types

XML Configuration File Type Name Java Type

string java.lang.String

boolean boolean

number int, float, double

node-set oracle.xml.parser.v2.XMLNodeList

tree oracle.xml.parser.v2.XMLDocumentFr
agment

3. Create a JAR file containing both the XML configuration file and the compiled
classes. The configuration file must be contained in the META-INF directory for the
JAR file. For the example in this section, the directory structure is as follows with
the oracle and META-INF directories added to a JAR file:

• oracle

– sample (contains the class file)

• META-INF

– ext-mapper-xpath-functions-config.xml

The JAR file must then be registered with Oracle JDeveloper.

4. Go to Tools > Preferences > SOA.

5. Click the Add button and navigate to and select your JAR file.

6. Restart Oracle JDeveloper.

New functions appear in the Components window under the User Defined page in
the User Defined Extension Functions group.

7. To make the functions available in the runtime environment, see How to Deploy
User-Defined Functions to Runtime for details.

40.6 Using Auto Map to Map Complex Nodes
When you map a non-leaf source element to a non-leaf target element, the Auto Map
feature assists you by automatically matching the child source elements to their
corresponding target elements. Auto Map looks at the element names, types, and
paths to come up with the correct mappings. Auto map can also insert xsl:if
statements for optional nodes, depending on your preferences.

The Auto Map feature is available only when a target schema is used. You can use
Auto Map in both Map View and XSLT View.

Using Auto Map to Map Complex Nodes

Creating Transformations with the XSLT Map Editor 40-55

40.6.1 How to Set Auto Map Preferences
You can specify the behavior of the Auto Map feature using the Preferences dialog.
Select Preferences from the Tool menu. In the navigation tree on the left, select Auto
Map under XSL Maps. Figure 40-36 shows the default settings for the Auto Map
preferences.

Figure 40-36 Auto Map Preferences

The following list describes the various Auto Map Preference settings that you can
configure:

• Confirm Auto Map Results: If you select this option, Auto Map displays a list of
matching source and target elements prior to automatically mapping these
elements. You can choose the matches that you'd like to be applied.

• Prompt for Preferences before Auto Map: If you select this option, the Auto Map
Preferences dialog appears every time you try to map two complex nodes.

• Mode: Determines whether the Auto Map executes in Basic or Advanced mode.
The mode selection determines the rest of the options that appear in this dialog.

The following are the rest of the options available when Basic Mode is selected:

• Match Elements with Similar Names: Elements with similar names are matched.

• Match Elements with Exact Names: Elements with exactly same names are
matched.

• Match Elements with Exact Types: Only elements with exactly same data types
are matched.

• Match Elements Considering Their Ancestor Names: Element path is considered
along with the element name when matching.

• Insert xsl:if: Determines if xsl:if statements are automatically inserted. The
following settings are used:

Using Auto Map to Map Complex Nodes

40-56 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

– Never: xsl:if statements are not inserted automatically.

– Check source node exists: An xsl:if statement is inserted to check for the
existence of the source node before the node is created in the output.

– Check source node is not empty: An xsl:if statement is inserted to check that
the source node is not empty before creating the node in the output.

The following are the rest of the options available when Advanced Mode is selected:

• Ancestor Weight: A number between 0 and 5 indicating the emphasis to be placed
on matching of ancestors. The number 0 corresponds to turning the Match
Elements Considering Their Ancestor Names option off in Basic mode. The
number 5 corresponds to turning the Match Elements Considering Their
Ancestor Names option on in Basic mode.

• Linguistic Weight: A number between 0 and 5 indicating the emphasis to be
placed on matching of element names. The number 0 indicates that the element
names need not match. The number 5 indicates that the element names must be an
exact match.

• Type Weight: A number between 0 and 5 indicating the emphasis to be placed on
matching of element names. The number 0 indicates that the element types need
not match. The number 5 indicates that the element types must be an exact match.

• Match Threshold (%): The Auto Map computes a percentage match for each map
(Ancestor, Linguistic, Type), and selects the highest percentage amongst these. If
the highest match is above the threshold percentage, then a match is made.

• Dictionaries: Enables you to add existing dictionaries to the Auto Map.
Dictionaries can be defined from existing maps and used in subsequent maps.

40.6.2 How to Execute an Auto Map

To execute an Auto Map:

1. Drag and drop a complex source node to the target element in the XSLT pane. If
you are using Map View, then you'd drop the source node to a node in the target
pane.

2. Depending on your Auto Map Preferences, the Preferences dialog might appear.
Select your Auto Map preferences, and click OK.

3. Depending on your Auto Map Preferences, the Auto Map dialog might appear.
Verify the matches created by the Auto Map, and click OK.

40.7 Checking the Completion Status of the Map
If you are using a target schema for your map, you can check the completion status of
the map at any time. You can do this in both Map View and XSLT View. The
completion status check flags the following:

• All unmapped target elements and attributes. A flag indicates if the target element
is a required element in the target schema.

• Target elements mapped with incomplete XPath expressions. For instance, an
XPath function, mapped to a target node, might be missing a parameter.

Checking the Completion Status of the Map

Creating Transformations with the XSLT Map Editor 40-57

• All missing target elements and attributes. A flag indicates if the missing target
element is a required element in the target schema.

To check the completion status of a map, right-click the Canvas (center) pane, and
select Completion Status from the context menu. The Completion Status dialog
appears showing all incomplete target nodes. Clicking a row in the Completion Dialog
status selects the corresponding node location in the XSLT/target tree. Figure 40-37
shows the Completion Status dialog with a missing node highlighted.

Figure 40-37 Completion Status Dialog

40.8 Testing the Map
The XSLT Map Editor provides a tool to test the map. To invoke the test tool, right-
click the Canvas pane, and select Test from the context menu. You can use the test tool
in both Map View and XSLT View.

Figure 40-38 demonstrates launching the Test XSL Map dialog.

Testing the Map

40-58 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 40-38 Invoking the Test Dialog

40.8.1 How to Test the Transformation Mapping Logic
The Test XSL Map dialog shown in Figure 40-39 enables you to test the transformation
mapping logic you designed with the XSLT Map Editor. The test settings you specify
are stored and do not need to be entered again the next time you test. Test settings
must be entered again if you close and reopen Oracle JDeveloper.

Testing the Map

Creating Transformations with the XSLT Map Editor 40-59

Figure 40-39 Test XSL Map Dialog

To test the transformation mapping logic:

1. In the Source XML File field, choose to allow a sample source XML file to be
generated for testing or click Browse to specify a different source XML file.

When you click OK, the source XML file is validated. If validation passes,
transformation occurs, and the target XML file is created.

If validation fails, no transformation occurs and a message displays on-screen.

2. Select the Generate Source XML File check box to create a sample XML file based
on the map source XSD schema.

3. Select the Show Source XML File check box to display the source XML files for
the test. The source XML files display in an Oracle JDeveloper XML editor.

If the map has defined parameters, the Parameters With Schema or Parameters
Without Schema table can appear.

a. If the Parameters With Schema table appears, you can specify an input XML
file for the parameter using the Browse button. Select the Generate File check
box to generate a file.

b. If the Parameters Without Schema table appears, you can specify a value by
selecting the Specify Value check box and making appropriate edits to the
Type and Value columns.

4. In the Target XML File field, enter a file name or browse for a file name in which
to store the resulting XML document from the transformation.

Testing the Map

40-60 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

5. Select the Show Target XML File check box to display the target XML file for the
test. The target XML file displays in an Oracle JDeveloper XML editor.

6. If you select to show both the source and target XML, you can customize the
layout of your XML editors. Select Enable Auto Layout in the upper right corner
and click one of the patterns.

7. Click OK.

The test results shown in Figure 40-40 appear.

For this example, the source XML and target XML display side-by-side with the
XSL map underneath (the default setting). Additional source XML files
corresponding to the Parameters With Schema table are displayed as tabs in the
same area as the main source file. You can right-click an editor and select Validate
XML to validate the source or target XML against the map source or target XSD
schema.

Figure 40-40 Test Results

40.8.1.1 How to Test XSLT Maps that Use DVM Lookup Functions

You can test an XSLT map that contains DVM lookup functions. If your map uses
DVM lookup functions that reference local files or files in the MDS, and these files are
accessible from your JDeveloper environment, then you need not perform any
additional steps.

If your map uses DVM lookup functions that reference files not accessible in your
JDeveloper environment, then you can create local DVM files for testing without
requiring to modify the DVM references in your XSLT. Use the following steps:

Testing the Map

Creating Transformations with the XSLT Map Editor 40-61

1. If you have not already run the XSLT test, execute the test tool once. The test tool
generates the file UnitTestURLs.dvm in the XSLNonDeployedFiles folder, located
in the same folder as your XSLT file.

The UnitTestURLs.dvm file contains mappings between the DVM references in
your XSLT file and DVM references to local test files. For example, if the XSLT file
that you are testing has a reference to the file, oramds:/apps/
AIAMetaData/dvm/CUSTOMERPARTY_STATUSCODE.dvm, but you do not have
access to this file in JDeveloper, then you can create a local DVM lookup file against
which the test is performed.

2. Open the UnitTestURLs.dvm file, located in the XSLNonDeployedFiles folder, in
JDeveloper.

3. Under the serverURL column, add the reference for the DVM file that you
reference in your XSLT.

4. Under the testURL column, add the reference to a local file to be used for testing.

5. Save the UnitTestURLs.dvm file.

6. Populate your test DVM file with test data.

7. Execute the test tool. The lookup is performed against the local file. You do not
need to modify your XSLT to point to the local file. The test uses the
UnitTestURLs.dvm file to look up the correct test file for the reference defined in
the serverURL column.

40.8.1.2 How to Test XSLT Maps that Use XREF Functions

You can use the local dvm lookup file, called UnitTestXrefFunctionReturn.dvm to
emulate the test. This file is automatically generated when you run the XSLT test for
the first time.

The UnitTestXrefFunctionReturn.dvm file includes default responses for all the XREF
functions. This simulates the expected responses when the functions execute correctly.
You may modify the default responses. You can also create different return values for
different calls of the same function when the parameter values are different.

The following figure shows the initial DVM file.

Testing the Map

40-62 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 40-41 The UnitTestXrefFunctionReturn.dvm File

The functionName column specifies the name of the function. To start with, there is
only one entry for each function with the default behavior defined. All XREF functions
execute with this default information. You can optionally create more entries for a
given function, and enter different return values for the function based on the input
parameters.

The returnValue column specifies the return value from the function. This defines
what you would like to see returned from the function.

The other columns define qualifiers that you can use to differentiate one function call
from another, based on the value of a given parameter. Each of these columns define a
parameter available in a given function call. Not all parameters are available in all
functions. When a parameter is not available, it is marked as NA (Not Available) in the
original table.

40.8.1.2.1 Working with returnValue:

The returnValue column can either be defined as a text value, such as SBL_001, or
may be defined by a parameter name. For instance, if we look at the first function,
lookupXRef, this function has a return value of RefColumnValue. As this is the name
of a parameter (RefColumnValue), the value of this parameter is the return value of
the function to the XSLT.

For example, if the call to the lookupXRef function looks like the following:

lookupXRef(oramds:/apps/AIAMetaData/xref/CUSTOMERPARTY_PARTYLOCATIONID.xref",
"COMMON_ID", "COMMON_001", "SBL_ID", false())

Then the value COMMON_001 is returned, as this is the value of the RefColumnValue
parameter that was passed.

For the markForDelete function, the value true is returned, converted to Boolean.

For the lookupXRef1M and lookupPopulatedColumns functions, a node-set is
returned by the function. This node-set contains elements of the following form:

<column name="columnNameHere">columnValueHere</column>

As shown in Figure 40-41, the default value for the lookupXRef1M function is:

:RefColumnName:RefColumnValue:ColumnName:RefColumnValue

This encodes the column names and values for two column nodes that are returned in
a node-set from the function. The first character defines the delimiter to be used in
parsing the information. If your data contains a colon (:), you can use any character as

Testing the Map

Creating Transformations with the XSLT Map Editor 40-63

the delimiter that is not in your test data, by putting that character as the first character
and using it to delimit the data (say, #abc:def#abc:ghi).

For example, if we have the following function call to lookupXRef1M:

lookupXRef1M ("oramds:/mydata", "COMMON_ID", "COMMON_001", "SAP_ID", false())

Then using the default definition, for a return value
of :RefColumnName:RefColumnValue:ColumnName:RefColumnValue, you
would receive back two column elements:

<column name="COMMON_ID">COMMON_001</column>
<column name="SAP_ID">COMMON_001</column>

If you change the line in the DVM to have a returnValue
of :SAP_ID:SAP_001:SBL_ID:SBL_001:ORCL_ID:ORCL_001, then the function
returns three column nodes:

<column name="SAP_ID">SAP_001</column>
<column name="SBL_ID">SBL_001</column>
<column name="ORCL_ID">ORCL_001</column>

40.8.1.2.2 Adding Additional Rows:

You can also add additional rows to the DVM file. You can add additional rows for a
function by providing different input values for the parameters resulting in different
return values.

For example, if we have several lookups against the same XREF file, but want to get
different values back from each lookup, we could add the following lines for
lookupXRef to the DVM file:

In determining the correct return value, the design time emulator finds the first
matching set of parameter values by starting at the bottom of the DVM table. The
return value corresponding to the first matching row is returned.

As illustrated in the preceding figure, a call to lookupXRef("oramds:/apps/
AIAMetaData/xref/CUSTOMERPARTY_PARTYLOCATIONID.xref",
"COMMON_ID", "COMMON_001", "SBL_ID", false()), for example, would
return the value, SBL_001.

A call to lookupXRef("oramds:/apps/AIAMetaData/xref/
CUSTOMERPARTY_PARTYLOCATIONID.xref", "COMMON_ID", "COMMON_002",
"SBL_ID", false()), on the other hand, does not match any of the last three
rows, and returns the default value COMMON_002 (the value of the parameter,
RefColumnValue).

Testing the Map

40-64 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

40.8.2 How to Generate Reports
You can generate an HTML report with the following information:

• XSL map file name, source and target schema file names, their root element
names, and their root element namespaces

• Target document mappings

• Target fields not mapped (including mandatory fields)

• Sample transformation map execution

Follow these instructions to generate a report.

1. In the Canvas (center) pane, right-click and select Generate Report for XSLT Map.

The Generate Report dialog appears, as shown in Figure 40-42. If the map has
defined parameters, the appropriate parameter tables appear.

Figure 40-42 The Generate Report Dialog

For more information about the fields, see the online Help for the Generate Report
dialog.

40.8.3 How to Customize Sample XML Generation
You can customize sample XML generation by specifying the following parameters.
Select Preferences > XSL Maps in the Tools main menu of Oracle JDeveloper to
display the Preferences dialog. You can modify the following settings under Sample
XML Generation:

Testing the Map

Creating Transformations with the XSLT Map Editor 40-65

• Number of repeating elements

Specifies how many occurrences of an element are created if the element has the
attribute maxOccurs set to a value greater than 1. If the specified value is greater
than the value of the maxOccurs attribute for a particular element, the number of
occurrences created for that particular element is the maxOccurs value, not the
specified number.

• Generate optional elements

If selected, any optional element (its attribute minOccurs set to a value of 0) is
generated the same way as any required element (its attribute minOccurs set to a
value greater than 0).

• Maximum depth

To avoid the occurrence of recursion in sample XML generation caused by
optional elements, specify a maximum depth in the XML document hierarchy tree
beyond which no optional elements are generated.

40.9 Importing an External XSLT Map
If you have an XSLT map that has been developed with an editor other than
JDeveloper, you can import it into JDeveloper.

To import an external map:

1. From the File main menu, select New > From Gallery.

2. Under Categories, select General > XML. Under Items, select XSL Map from XSL
Stylesheet. Click OK. The XSLT Chooser dialog appears.

3. Select the XSLT file to be imported. Click OK. The file is opened and a default
header is inserted with no source or target schema definition.

4. To create source and target schema definitions, right-click the Canvas (center) pane,
and select Replace/Add Source Schema to set the source schema. Select
Replace/Add Target Schema to set the target schema.

Note:

Imported maps can use Map View only if both the source and target schemas
are defined and there are no XSLT features not supported in Map View.

All maps can use the XSLT View.

40.10 Using Variables and Parameters
You can add variables and parameters to the XSLT map. These are available in both
Map View and XSLT View.

40.10.1 How to Add Global Variables
Global variables can be used in both Map View and XSLT View.

Importing an External XSLT Map

40-66 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To create a global variable:

1. Right-click any node in the source pane and select Add Global Variable from the
context menu. Alternatively, click the Add icon, identified by the green plus sign in
the XSLT toolbar and select Add Global Variable. This option is also available on
the canvas context menu under the Create option.

The Variable dialog appears.

2. Enter a name for the variable, and an optional namespace and prefix if desired.

3. Click OK.

The variable node appears at the top of the XSLT pane or target pane depending on
whether you are using the XSLT View or Map View.

The variable also appears in the source tree within the Variables folder. This
enables you to map from the variable to XPath expressions or nodes in the target
tree.

Note:

You cannot define a structure for the variable in the current release. If the
variable you are referencing represents a complex structure, you can reference
nodes within the structure by entering the appropriate XPath expression
manually.

40.10.2 How to Add Local Variables in Map View

To add a local variable in Map View:

1. Right-click an existing node in the target tree (not grayed/italicized) and select
Add XSL Instruction > variable from the context menu that appears.

The Variable dialog appears.

2. Enter a name for the variable, and an optional namespace and prefix if desired.

3. Click OK.

The variable is added to the target tree, just above the node that you selected.

The variable also appears in the source tree within the Variables folder. This
enables you to map from the variable to XPath expressions or nodes in the target
tree.

To determine if the variable is in scope for a particular XSLT node or XPath
expression, select the target tree node or XPath expression. If the variable is in
scope for the target tree node or XPath expression, then the variable appears in
bold in the source tree. If the variable is not in scope for the selected target tree
node or XPath expression, then the variable appears disabled in the source tree.

Only scalar variables can be defined. You cannot define the structure of a variable.
If the variable you are referencing represents a complex structure, you can
reference nodes within the structure by entering the appropriate XPath expression
manually.

Using Variables and Parameters

Creating Transformations with the XSLT Map Editor 40-67

40.10.3 How to Add Local Variables in XSLT View
In XSLT View, local variables are added in the same manner as other XSLT elements.
See How to Add XSLT Statements for details about adding XSLT elements using the
context menu or Components window.

So, for example, if you select Insert Sibling Before > XSL > Variable from the context
menu of an XSLT node, you get the Variable dialog box. Enter the name of the
variable, optionally specify a namespace, and click OK.

The variable appears at the appropriate place in the XSLT/target pane. You can choose
to map XPath expressions to the variable to set the value of the variable.

The variable also appears in the source tree under the Variables folder. This enables
you to map from the variable to other XPath expressions or XSLT nodes.

To determine if the variable is in scope for a particular XSLT node or XPath
expression, select the XSLT node or XPath expression. If the variable is in scope for the
XSLT node or XPath expression, then the variable appears in bold in the source tree. If
the variable is not in scope for the selected XSLT node or XPath expression, then the
variable appears disabled in the source tree.

Only scalar variables can be defined. You cannot define the structure of a variable. If
the variable you are referencing represents a complex structure, you can reference
nodes within the structure by entering the appropriate XPath expression manually.

Note:

If you are using XSLT 1.0, and using a complex variable, it might be necessary
to wrap the variable in the ora:node-set function before an XPath
expression can be used to access nodes within the variable.

For example, say the myVar variable has the following structure:

<xsl:variable name="myVar">
 <A>
 sometext

</xsl:variable>

The text in B can be referenced as ora:node-set($myVar)/A/B. The node-
set function is not necessary in XSLT 2.0.

40.10.4 How to Add Global Parameters
Parameters can be added to the XSLT map editor both as global parameters and
named template parameters.

You can add global parameters when creating an XSLT map. See How to Create an
XSLT Map for more details. You can also add global parameters to an existing map.

To add a global parameter to an existing map:

1. Right-click any node in the source pane, and select Add Global Parameter from the
context menu.

Using Variables and Parameters

40-68 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Alternatively, click the Add icon, identified by the green plus sign, in the XSLT
toolbar, and select Add Global Parameter. Figure 40-43 shows the XSLT toolbar,
which resides at the top of the XSLT Map Editor.

Figure 40-43 Adding Global Parameter from the XSLT Toolbar

You can also right-click anywhere on the canvas (center) pane, and select Create >
Add Global Parameter from the context menu.

The Add Parameter dialog appears. Figure 40-44 shows the Add Parameter dialog.

Figure 40-44 Add Parameter Dialog

2. Enter a Local Name for the parameter and optionally specify a namespace.

If the parameter is a complex parameter, you can specify a schema and an element
definition for the parameter. Click the Help button in the dialog to get more
information on the individual fields.

3. Click OK in the Add Parameter dialog to create the parameter.

The parameter node appears at the appropriate place in the target pane (for Map
View) or XSLT pane (for the XSLT View). This enables you to map XPath expressions
to the parameter to set the parameter's default value.

The parameter also appears in the source tree. This enables you to map the parameter
to XPath expressions or nodes in the XSLT tree.

Using Variables and Parameters

Creating Transformations with the XSLT Map Editor 40-69

Note:

You can also add parameters like other XSLT elements. See How to Add XSLT
Statements for details about adding XSLT elements using the context menu or
Components window.

40.11 Substituting Elements and Types
You can substitute elements and types in the source and target trees.

Use element substitution when:

• An element is defined as the head of a substitution group in the underlying
schema. The element may or may not be abstract. Any element from the
substitution group can be substituted for the original element.

• An element is defined as an any element. Any global element defined in the
schema can be substituted.

Use type substitution when:

• A global type is available in the underlying schema that is derived from the type
of an element in the source or target tree. The global type can then be substituted
for the original type of the element. Any type derived from an abstract type can be
substituted for that abstract type.

• An element in the source or target tree is defined to be of the type anyType. Any
global type defined in the schema can then be substituted.

Type substitution is supported by use of the xsi:type attribute in XML.

To substitute an element or type in the source and target trees:

1. In the source or target tree, right-click the element for which substitution applies. If
you are working in the XSLT pane, the element you select must exist in the XSLT
before substitution.

2. From the context menu, select Substitute Element or Type. If this option is
disabled, no possible substitutions exist for the element or its type in the
underlying schema.

The Substitute Element or Type dialog shown in Figure 40-45 appears.

Figure 40-45 Substitute Element or Type Dialog

Substituting Elements and Types

40-70 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. Select either Substitute an element or Substitute a type (only one may be available
depending upon the underlying schema).

A list of global types or elements that can be substituted displays in the dialog.

4. Select the type or element to substitute.

5. Click OK.

The element or type is substituted for the originally selected element. This selection
displays differently depending upon the type of substitution and where the
substitution is done, as described in the following sections:

• For Type Substitutions

– Type substitutions in the source tree

The xsi:type attribute is added beneath the original element, as shown in
the preceding figure. An S icon is displayed against the element to indicate
that the node was substituted. You can map from any structural elements
in the substituted type, including the xsi:type attribute.

Note:

Unlike element substitution, only one type substitution at a time can be
displayed in the source tree. However, this does not prevent you from writing
a map that allows the source to switch between the original type and the
substituted type.

If a node is not visible in the source tree, and the node is mapped to an XPath
expression, the XPath expression mapped to the node is still displayed in the
center canvas pane.

– Type substitutions in the Map View target tree

The xsi:type attribute is added beneath the original element, as shown in
the preceding figure. The attribute is disabled in Map View, and set to the
type value that was selected. An S icon is displayed against the element to
indicate that the node was substituted. You can map to any structural
elements in the substituted type, except the xsi:type attribute.

– Type substitutions in the XSLT pane of the XSLT View

Substituting Elements and Types

Creating Transformations with the XSLT Map Editor 40-71

The xsi:type attribute is added beneath the original element. It's value is
set to the type value that was selected, but may be mapped to. An S icon is
displayed against the element to indicate that the node was substituted.
You can add any structural elements through the Add Children From
Schema context menu option.

In some cases, it may be necessary to set the value of the xsi:type field
dynamically using an XPath statement. If you need to dynamically set the
value of the xsi:type, you can use type substitution to temporarily provide
access to the structural elements that are needed for the expected value at
runtime.

Add the elements that are needed, then map the desired XPath statement
to the xsi:type attribute to set the value dynamically. As the runtime value
for xsi:type is not available at design time, question-mark icons (?)are
displayed on elements that depend upon the type value, if it is set
dynamically.

– Type substitutions in the target pane of the XSLT View

You can also make substitutions in the target pane of the XSLT View. This
pane represents the target schema document. After you make a type
substitution in the target pane, the xsi:type attribute is added beneath the
original element along with any structural elements associated with that
type, as shown in the following figure.

Substituting Elements and Types

40-72 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

You can select these elements and drop them into the XSLT pane, as
needed. These elements also show up in the Add Children From Schema
context menu option available in the XSLT pane.

For example, in the following figure, we select all children of a substituted
element (Item).

We then drop the new Item node as a child of the Items node in the XSLT
pane, as shown in the following figure.

The Item node and its children are added as children of the Items node.
You can similarly create different structures from different substitutions in
the target pane.

• For Element Substitutions

– Element substitutions in the source tree

Substituting Elements and Types

Creating Transformations with the XSLT Map Editor 40-73

Both the original element and the substituted element are displayed in the
source tree, and are connected by a blue bracket. An S icon is displayed
against the node that is substituted. You can map from any structural
elements in the substituted element.

In the preceding figure, the ns1:ShipFutureDate is substituted for the any
element.

You can also substitute multiple elements at the same time, as shown in
the following figure.

– Element substitutions in the Map View target tree

As shown in the preceding figure, both the original element and the
substituted element are connected with a blue bracket. An S icon is
displayed against the node that was substituted. You may map to any
structural elements in the substituted element.

– Element substitutions in the XSLT pane of the XSLT View

In order to substitute an element in the XSLT pane, the original element
must be one that can appear in the XSLT. Any elements cannot appear in
the XSLT pane, and must be substituted in the XSLT View target pane, as
discussed in the next section. Abstract elements can be added to the XSLT
pane temporarily, but should not be used as final output. Elements that
are the head of a substitution group and are not abstract can be used as
normal elements, and also be substituted.

In the following figure, the ns0:attachment element is an abstract element
that is also the head of a substitution group. When a substitution is made
for this in the XSLT pane, the element is replaced with the substitution.

Substituting Elements and Types

40-74 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

After substitution, the abstract element is replaced with the selected
element. The S icon indicates the substitution. You can add child elements
to the substituted element using the Add Children From Schema context
menu. This is depicted in the following figure.

– Element substitutions in the target pane of the XSLT View

You can also make substitutions in the target pane of the XSLT View. The
target pane represents the target schema document. After making an
element substitution in the target pane, the elements substituted are added
beneath the original element along with any structural elements associated
with that type, as shown in the following figure.

You can select these elements and drop them into the XSLT pane, as
needed. These elements also show up in the Add Children From Schema
context menu option available in the XSLT pane.

6. To remove a substituted node, right-click any node with an S icon and select
Remove Substitution from the context menu.

7. To see all possible nodes where substitution is allowed, right-click the source or
target tree and select Show Substitution Node Icons.

All nodes where substitution is possible are marked with an * icon, as shown in
Figure 40-46.

Substituting Elements and Types

Creating Transformations with the XSLT Map Editor 40-75

Figure 40-46 All Possible Substitutions

8. To hide the icons, right-click and select Hide Substitution Node Icons.

40.12 Using Named Templates
You can add named templates to the XSLT map. These templates can be edited within
the XSLT Map Editor. You can invoke named templates by using the xsl:call-
template instruction.

Named templates can only be used with the XSLT View. Once you add a named
template in an XSLT map, the map can only be opened in XSLT View.

40.12.1 How to Create a Named Template

To create a new named template:

1. Right-click a blank area in the XSLT pane, and select New Named Template from
the context menu. Alternatively:

• Right-click a blank area in the canvas (center) pane, and select Create >New
Named Template from the context menu.

• Right-click any source node in the source pane, and select New Named
Template from the context menu.

• Select the Add button, identified by the green plus (+) icon, in the XSLT
toolbar, and select New Named Template.

The Add Named Template dialog appears.

2. Enter a name for the template. Optionally, set a namespace.

You can click Help to display help on the available options in the dialog.

3. Optionally click the Add button, identified by the green plus (+) icon, to add a
parameter. The Add Parameter dialog appears.

4. Enter a name for the parameter. Optionally, set a namespace.

If the parameter is a complex parameter, you can specify a schema and an element
definition for the parameter. Click the Help button in the dialog to get more
information on the individual fields.

5. Click OK in the Add Parameter dialog to add the parameter.

6. Add any more parameters required for the named template.

7. Click OK in the Add Named Template dialog to create the named template.

Using Named Templates

40-76 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

40.12.2 How to Edit a Named Template
When a named template is first created, it is opened for editing in the XSLT Map
Editor. You can switch between editing the named template and editing the XSLT map
by using the drop-down list in the XSLT toolbar.

Figure 40-47 shows a named template being edited in the XSLT Map Editor. The top-
left hand corner has a drop-down list that lets you choose between the XSLT map and
the named template (createStreet).

The source tree, any global parameters, and the named template parameters appear in
the source pane on the left. The XSLT pane on the upper right represents the XSLT
associated with the named template. If a target schema is used, then the target tree
appears at the bottom-right corner of the editor.

Figure 40-47 Editing a Named Template

40.12.3 How to Add Parameters to an Existing Named Template

To add parameters to an existing named template:

1. Ensure that the named template appears in the XSLT Map Editor. To switch to the
named template, select the name of the named template from the drop-down list in
the XSLT toolbar. See Figure 40-47 for an example.

2. Right-click a source node and select Add Parameter from the context menu.
Alternatively:

• Right-click in a blank area on the canvas (center) pane, and select Create > Add
Parameter from the context menu.

• Click the Add button, identified by the green plus (+) icon, on the XSLT
toolbar. Select Add Parameter from the drop-down list that appears.

3. Specify a name for the parameter, and other details, in the Add Parameter dialog.
Click the Help button in the dialog to get more information on the individual
fields.

4. Click OK in the Add Parameter dialog to add the parameter.

Using Named Templates

Creating Transformations with the XSLT Map Editor 40-77

40.12.4 How to Invoke a Named Template
A named template is invoked using the xsl:call-template instruction. You can
add the xsl:call-template instruction as a node in the XSLT pane.

To invoke a named template:

1. Add the xsl:call-template instruction as an XSLT node. You can add the
xsl:call-template instruction from the context menu or the Component
window. See How to Add XSLT Statements for details about adding XSLT
elements.

The Set Attribute dialog appears.

2. Select the named template to be invoked. Click OK.

The xsl:call-template instruction is added to the XSLT tree.The parameters
(xsl:use-param instructions) are added as child nodes.

3. Map values to the xsl:with-param XSLT nodes to set the values for the
parameters.

40.13 Using Template Rules
Template rules are xsl:template statements with match attributes. Template rules
are supported by the XSLT Map Editor. You can use template rules in the XSLT View
only. Template rules are not supported in the Map View.

The XSLT Map Editor enables you to add template rules in various ways. You can
insert the template rule manually, or refactor an existing mapping to create a template
rule.

When adding the template rule manually, you also need to insert an apply-
templates statement to invoke the template at the appropriate place in the XSLT.
When refactoring an existing map to create a template rule, the apply-templates
statement is inserted automatically.

40.13.1 How to Create a Template Rule

1. Use one of the following methods to invoke the New Template Rule dialog:

• Right-click the node in the source pane that is to serve as the match node.
Select New Template Rule from the context menu that appears.

• Right-click a node in the target pane. Select New Template Rule from the
context menu that appears.

• Right-click a node in the XSLT pane. Select New Template Rule from the
context menu that appears.

• Right-click a blank area in the canvas (center) pane. Select Create > New
Template Rule from the context menu that appears.

• Click the Add icon, identified by the green plus (+) sign, on the XSLT toolbar.
Select New Template Rule from the list of options that appears.

The New Template Rule dialog appears. Figure 40-48 shows the New Template
Rule dialog.

Using Template Rules

40-78 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 40-48 New Template Rule Dialog

The New Template Rule dialog contains the following fields:

• Match Node: Specifies the value for the match attribute in the xsl:template
definition.

The match attribute contains a pattern used to match a node in the input XML
document. The XSLT processor executes the instructions within a template
when the node it is processing matches the pattern defined in the template
match attribute.

• Initialization Section: Used to determine the content of the new template rule.

You can choose to select Create empty template to create an xsl:template
instruction with no content. Alternatively, you can select Select nodes to
generate in template to view and select target schema nodes that you would
like to create when the template is executed.

The Select nodes to generate in template option is available only if a target
schema is being used.

• Search by local name: If the Select nodes to generate in template option is
selected, a tree representing the target schema is displayed. This option enables
you to search for a node in the target schema tree using its local name.

The New Template Rule dialog box may have automatically populated fields,
depending on the mode you choose to invoke the dialog. Table 40-2 lists the pre-
populated fields corresponding to each choice. If the method of invocation is not
listed, then no fields are pre-populated.

Using Template Rules

Creating Transformations with the XSLT Map Editor 40-79

Table 40-2 Methods of Invoking the New Template Rule Dialog

Invoked From Automatically Populated Information

A node in the source pane The Match Node is populated with the absolute path to the
source node. You can edit this value, if required.

The Create Emty Template option is pre-selected in the
Initialization section. You may change this selection, if
required.

A node in the target pane The Select nodes to generate in template option is pre-
selected in the Initialization section and the target schema
tree is displayed. The target schema node used to invoke the
New Template Rule dialog is pre-selected in the target tree.
You may change this selection, if desired.

The Match Node field must be populated with the desired
match pattern for the template.

2. Set the Match Node as desired. Here are some common examples:

• /ns0:PurchaseOrder/ns0:ShipToContact/ns0:Region: The template
executes when the processor is processing the node with this path.

• Item: The template executes when the processor is processing any node with
the name Item.

• HighPriorityItems/Items/Item: The template executes when the
processor is processing any Item node that is a child of an Items node that in
turn is a child of a HighPriorityItems node.

3. Select the content desired in the Initialization section. If you know the output nodes
that you would like the template to create, select the Select nodes to generate in
template option, and select the output nodes from the target schema tree that is
displayed. You can use the Search by local name field to search within the target
schema tree. You can select multiple nodes in the target tree by clicking each
desired node while holding down the Shift key.

4. Click OK in the New Template Rule dialog to create the template. A new
xsl:template statement is inserted at the end of the XSLT.

5. If you do not have pre-existing apply-templates statement that invokes the
template rule, then insert an appropriate apply-templates statement to invoke
the template rule.

If an apply-templates statement is not present, you can see a warning icon
against the xsl:template statement and question-mark (?) icons against any
nodes within the template. The following figure shows an example:

Using Template Rules

40-80 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

In general, the apply-templates statement is inserted at the position where you
would like to generate the nodes contained in the template. For example, in the
preceding figure, the apply-templates statement needs to be inserted at the
point where the Address node and its children need to be created.

After you insert the apply-templates statement to invoke the template rule, the
warning icon and the question mark (?) icons disappear.

40.13.1.1 Example: Creating a Template Rule

As an example, let us create a template rule for an existing map, as shown below:

This example seeks to create a single template that processes the Address information
in the source ShipTo and BillTo elements to create the Address in the ShippedTo and
BilledTo elements in the target. The following steps illustrate the process:

1. Right-click the Address node under the ShipTo or BillTo node in the source pane,
and select New Template Rule from the context menu that appears.

The New Template Rule dialog appears. The Match Node is pre-populated with
the path to the Address node that you selected in the source pane. This match
string is specific to the Address element under ShipTo, but we need to create a
template that will process any Address field in the source document.

Using Template Rules

Creating Transformations with the XSLT Map Editor 40-81

2. Modify the Match Node string to contain only the name Address. This will match
all Address nodes in the source document irrespective of where they appear in the
document.

3. Select the Select nodes to generate in template option. The target schema tree
appears.

When the template rule is invoked, we would like to create the Address element
in the target, along with its children.

4. Select the Address node under the ShippedTo or the BilledTo element, as both
elements have identical structures.

5. To select the children of the Address node, press and hold down the Shift key, and
click the Zip element, which is the last child of the Address element. This selects
the Address element and all its children.

Using Template Rules

40-82 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

6. Click OK to create the template rule.

As the rule is not yet invoked anywhere in the map, a warning icon appears
against the template, and the nodes that the template creates have question mark
(?) icons against them.

40.13.1.1.1 Invoking the Template

Next, we need to invoke the template for both the ShipTo and BillTo Address
elements in the source to create the ShippedTo and BilledTo Address elements in the
target. We need to create apply-templates statements in the XSLT at the places
where we would like to create these Address elements. The following steps describe
the process.

1. Right-click the Invoice node in the XSLT pane, and select Add Children From
Schema > BilledTo from the context menu that appears. The BilledTo node is
inserted along with its required child nodes.

2. Right-click the Invoice node in the XSLT pane, and select Add Children From
Schema > ShippedTo from the context menu that appears. The ShippedTo node
is inserted along with its required child nodes.

Using Template Rules

Creating Transformations with the XSLT Map Editor 40-83

3. Right-click the ShippedTo/Address node and select Delete. Repeat the same for
the BilledTo/Address node. We would create the Address nodes using the
template rule that we created.

4. Right-click the ShippedTo node and select Append Child > XSL > apply-
templates from the context menu that appears. The xsl:apply-templates
statement is added.

5. Right-click the BilledTo node and select Append Child > XSL > apply-templates
from the context menu that appears. The xsl:apply-templates statement is added.

6. Drag a line from the ShipTo/Address node in the source pane to the ShippedTo/
apply-templates node in the XSLT pane. This sets the select attribute of the
apply-templates statement, so that only the ShipTo/Address node is
processed by the xsl:apply-templates statement.

7. Drag a line from the BillTo/Address node in the source pane to the BilledTo/
apply-templates node in the XSLT pane. This sets the select attribute of the
apply-templates statement, so that only the BillTo/Address node is processed
by the xsl:apply-templates statement.

At this point, the warning icon on the template rule disappears, as we have
defined the template invocation. If you click the template rule, the two source
Address nodes processed by the template are highlighted, as illustrated in the
following figure.

Using Template Rules

40-84 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Next, the nodes below the template rule can be mapped.

8. Drag and drop lines from the elements under the BillTo/Address node, or the
ShipTo/Address node, to the appropriate elements under the Address template
rule.

As you drag from either source Address (BillTo or ShipTo), lines are drawn to
both source addresses. This is because both BillTo/Address and ShipTo/Address
are context nodes for the template.

The source code for the template now appears as follows:

 <xsl:template match="Address">
 <Address country="{@country}">
 <Street>
 <xsl:value-of select="concat (Street1, ', ' , Street2)"/>
 </Street>
 <City>
 <xsl:value-of select="City"/>
 </City>
 <State>
 <xsl:value-of select="State"/>
 </State>
 <Zip>
 <xsl:value-of select="Zipcode"/>
 </Zip>
 </Address>
 </xsl:template>

40.13.2 How to Refactor an Existing Map to Create a Template Rule
You can refactor code from an existing template to create a new template rule. This is
useful if the template rule that is created can be reused in multiple places, as was the
case with the Address template rule created in the previous section.

The Create in Template option enables you to refactor a section of XSLT instructions
into a separate template that can be invoked from multiple places.

In the following example, we refactor an existing mapping to create a template rule.

In the following map, the XSLT that processes each Address element in the source is
repeated for each Address node. For easier maintenance, you may want to consolidate
redundant code into reusable templates. This way, if the code is later updated, you
would not have to update multiple copies.

Using Template Rules

Creating Transformations with the XSLT Map Editor 40-85

In the preceding map, if the XPath concat expression that creates Street from Street1
and Street2 needs to be modified, there are two copies that would have to be
modified. However, if the concat function exists in a single template that is reused to
produce both Address elements, then only one concat statement needs to be
modified in future.

In the following steps, we refactor the existing mapping to create a single template
that processes the Address elements:

1. Make sure that you are in the XSLT View. You can click XSLT in the top right
corner of the XSLT Map Editor to switch to the XSLT View.

2. Right-click the ShippedTo/Address element in the XSLT pane and select Create in
Template from the context menu that appears.

The New Template Rule dialog appears.

Using Template Rules

40-86 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The Match Node is pre-populated with a suggested match pattern derived from
XPath expressions contained under the selected node in the XSLT pane. The
elements selected in the target schema tree are the Address node and its children.
These elements would be moved to a new template rule.

3. Click OK.

A new template rule is created and an apply-templates statement is inserted in
place of the Address node. The XPath expressions defined for the elements under
the Address node in the XSLT pane are updated to contain relative paths to the
Address node (context node) for the new template.

Next, we use this template for both the ShipTo and BillTo Address elements.

Using Template Rules

Creating Transformations with the XSLT Map Editor 40-87

4. Double-click the new template node. The Set Attributes dialog appears.

5. Under Enter Pattern, enter Address.

6. Click OK.

7. Delete the BilledTo/Address element in the XSLT pane.

8. Right-click the BilledTo node and select Add Child > XSL > apply-templates. This
creates an xsl:apply-templates statement in place of the Address node.

9. Drag a line from the BillTo/Address node in the source pane to the new BilledTo/
apply-templates node in the XSLT pane.

Both BilledTo and ShippedTo Address elements are now created using a single
template rule.

40.14 Using the Execution View
The Execution View displays the order of execution of your XSLT statements. When
creating complex XSLT that uses named templates and template rules, it can get
difficult to determine the order of execution of XSLT templates. The Execution View
helps you troubleshoot issues by creating an execution tree for your XSLT.

The execution tree shows when the output nodes are created, and shows exactly which
templates are invoked at various points during the XSLT execution.

Using the Execution View

40-88 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

40.14.1 How to Use Execution View to Prevent or Troubleshoot Runtime Errors
To launch the Execution View dialog, right-click the canvas (center) pane, and select
Execution View. Alternatively, click the Execution View for XSLT Map button on the
XSLT toolbar.

The Execution View is available in both the Map and XSLT views. However, it is most
useful when the map contains multiple templates and the user needs to figure out as
to where the templates are being invoked.

Figure 40-49 shows the Execution View dialog for an XSLT map that contains multiple
templates. As per the execution view, the root template with match='/' executes
first. This is followed by the creation of the Invoice, Description, and ID nodes.
An apply-templates statement then invokes the ShipTo template followed by an
apply-templates statement that invokes the BillTo template. Other nodes and
templates are then created.

Figure 40-49 Execution View Dialog and Corresponding XSLT Tree

If you click an element in the Execution View tree, the corresponding element is
highlighted in the XSLT tree. For example, as shown in Figure 40-49, if you want to
locate the apply-templates node that invokes the BillTo template, select the
apply-templates node in the Execution View and the corresponding apply-
templates statement is highlighted in the XSLT pane.

Execution View also shows calls to named templates. When you select a node inside a
named template call in the Execution View tree, the XSLT editor view is refreshed to
show the selected node in the named template implementation.

Execution View helps you understand the overall flow of an XSLT stylesheet. Using
the Execution View, you can locate issues related to templates that are not invoked, or
apply-templates statements that are invoking incorrect templates.

When using imported named templates or template rules, Execution View shows the
corresponding calls, and you can use Execution View to troubleshoot problems like
import precedence. However, Execution View cannot navigate to the external XSLT
files.

Using the Execution View

Creating Transformations with the XSLT Map Editor 40-89

40.14.1.1 Searching for Nodes

The Execution View dialog has a search facility that enables you to search for specific
nodes in the Execution View tree. Click in the Search local names field, and type a
name to search.

40.14.1.2 Setting Display Options

You can choose to show or hide certain XSLT elements in the execution tree. Click
Options to bring up the Execution View Options dialog. Figure 40-50 shows the
default selections in Execution View Options.

Figure 40-50 Default Execution View Options

40.15 Debugging the XSLT Map
Starting in 12.2.1, you can debug your XSLT maps using the SOA Debugger. You can
add breakpoints at strategic locations in the XSLT map. When debugging, the
debugger halts execution at the breakpoints, enabling you to verify the data and
output.

XSLT maps can be complex, making them difficult to debug. For example, you may
have a Java function, or other functionality, that is best tested in the application server.
Also, you might find it easier to debug in the application environment, as the XSLT
may be invoked from many different applications in the server. The SOA debugger
provides remote debugging capability for XSLT maps that have been deployed in the
application server.

You can debug any XSLT transformation used in a BPEL process or Mediator. When
the BPEL process or Mediator is invoked in the composite, the debugger pauses at the
breakpoints defined in the map. The XSLT map opens in JDeveloper and user data
corresponding to the XSLT processing appears in the Data window.

You can also use the debugger with your Oracle Service Bus projects. For more details
on using the debugger with Service Bus projects, refer to:

Debugging Oracle Service Bus Applications

40.15.1 Setting Breakpoints in the XSLT Map Editor
You can set breakpoints in the Design view of the XSLT Map Editor. This enables you
to debug your XSLT map at runtime, using test data or payload.

Breakpoints may be set in either the Map or XSLT View. Breakpoints are marked with
red dots in the breakpoint bar, which is to the right of the target or XSLT pane.

Before you can set breakpoints, make sure that the XSLT map is open and the Design
tab is selected.

Debugging the XSLT Map

40-90 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Use one of the following methods to set a breakpoint:

• Click the breakpoint bar to the right of an XSLT element or node.

• Right-click the breakpoint bar to the right of an XSLT element, or node, and select
Toggle Breakpoint from the context menu that appears.

• Right-click an XSLT element, and select Debug > Toggle Breakpoint from the
context menu that appears.

Note: You can also use the preceding steps to remove existing breakpoints.

You can also choose to disable a breakpoint by selecting Disable Breakpoint
from the context menus mentioned above. Disabled breakpoints show as gray
icons in the breakpoint bar.

The following image shows a breakpoint set against the ponumber node.

40.15.2 Running the Debugger on the XSLT Map

Initiating a Debugging Session

After setting the breakpoints for your XSLT map, follow these instructions to start the
SOA debugger:

Debugging a SOA Composite Application

Note: For the debugger to step into the XSLT map, the map must be invoked
by a mediator or BPEL process in your SOA composite.

Working with the Debugger in the XSLT Map Editor

After you run the debugger, and when the debugger comes across a breakpoint in the
XSLT map, the debugger stops execution at the breakpoint. A blue arrow to the left of
the breakpoint bar indicates the current position of the debugger. Also, a flashing blue
icon appears against the corresponding XSLT element or node.

Debugging the XSLT Map

Creating Transformations with the XSLT Map Editor 40-91

When the debugger is stepping through the XSLT map, all valid breakpoints in the
XSLT editor change to red and green dots. Breakpoints that remain a solid red are
currently invalid and are ignored by the debugger.

Note: Some processes that invoke the XSLT map have time-out limits. If the
debugger ends unexpectedly after exiting an XSLT map, the invoking process
may have a time-out value defined. This time-out value may need to be
redefined to support debugging the full process. Check server log files for
information in the event of the debugger unexpectedly aborting.

The following example image shows breakpoints, as they appear during runtime. The
breakpoints appear against the tID and Item elements. The debugger is currently at
the Item node, as indicated by the blue arrow and flashing icon.

You can use the Step Over button in the main JDeveloper toolbar to step through the
execution. The Step In button can be used to step into loops, call-template,
apply-template, and apply-imports.The Step Out button can be used to step
out of call-template, apply-template and apply-imports to the next XSLT
statement.

At any point during the execution, you can look at the current values of parameters
and variables in the Debugger Data window. The Data window also shows you the
Context Node, Context Position, Context Size, and the Output Document being built
by the XSLT processing. You can also choose to add any item visible in the Debugger
Data window to the Watches window.

Debugging the XSLT Map

40-92 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The following image shows sample debugger data, as it appears in the Data window
on the right.

You can choose to edit the XSLT when debugging. You would need to redeploy the
project before you can debug again.

40.15.3 Viewing Breakpoints
Breakpoints appear on the breakpoint bar along the right edge of the XSLT Map
Editor. You can choose to see a list of all breakpoints in the XSLT map or the SOA
project.

Viewing a List of All Breakpoints in the XSLT Map

Use one of the following methods to see all breakpoints in the current XSLT map:

• Right-click anywhere in the center canvas pane and select Breakpoints from the
context menu that appears.

• Right-click anywhere on the breakpoint bar and select Breakpoints from the
context menu that appears.

• Click Breakpoints in the XSLT toolbar.

The Breakpoints dialog appears, listing all breakpoints in the XSLT map. If a
breakpoint is currently hidden in the XSLT pane, you can navigate to it by clicking the
breakpoint in the Breakpoints dialog.

Debugging the XSLT Map

Creating Transformations with the XSLT Map Editor 40-93

You can also use the Breakpoints dialog to disable or delete one or more breakpoints.
A disabled breakpoint would appear as a grey dot on the breakpoint bar.

The Valid column indicates if a breakpoint is currently valid. Breakpoints can become
invalid if edits to the XSLT map makes them invalid. You can choose to delete invalid
breakpoints. Alternatively, invalid breakpoints can become valid again if you undo
the changes made to the XSLT map.

Viewing all Breakpoints in the Current Project

The JDeveloper Breakpoints window shows all breakpoints in the current project.
Select Breakpoints from the Window menu to see the Breakpoints window. You can
double-click a breakpoint in the Breakpoints Window to navigate to that breakpoint in
the project. You can also edit or delete breakpoints from the Breakpoints window.
However, you cannot add a breakpoint from the Breakpoints window.

40.15.4 Setting Conditions for XSLT Breakpoints
You can set conditions for breakpoints, so that the execution is halted only when the
breakpoint condition evaluates to true.

Use the following steps to set conditions for an XSLT breakpoint:

If the Breakpoints window is not visible, you can select Breakpoints from the
JDeveloper Window menu.

1. Right-click the breakpoint in the Breakpoints window. Select Edit from the context
menu that appears.

The Edit XSLT Breakpoint dialog appears.

2. Under the Conditions tab, enter a conditional expression using javascript syntax.

For example, the breakpoint below will break when the PartNum attribute in the
$Part variable equals p1.

3. You can also choose to set a Pass Count for the condition. The pass count tells the
debugger to ignore the breakpoint until it has been passed a certain number of
times. After the pass count is met, the debugger breaks execution at the breakpoint.

Debugging the XSLT Map

40-94 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

4. Click OK to set the conditions.

40.16 Troubleshooting Memory Issues
If you work with large schema documents, you may sometimes encounter an out-of-
memory error during auto-mapping, or during test and report generation. If you
receive an out-of-memory error when using the XSLT Map Editor, you must increase
the heap size of the JVM to resolve the problem.

To increase the JVM heap size:

1. Locate the config file for your application installation.

Locate the shared Oracle JDeveloper product.conf file or the optional tool-
specific .conf file located in the user's home directory. The location of these files
depends on the host platform.

• For Windows Platforms:

The location of user/product files is often configured during installation, but
may be found here:

%APPDATA%\JDeveloper\product-version\product.conf

%APPDATA%\JDeveloper\product-version\jdev.conf

• For UNIX Platforms:

$HOME/.jdeveloper/product-version/product.conf

$HOME/.jdeveloper/product-version/jdev.conf

2. Edit the file to change the AddVMOption to the desired value. For example:

AddVMOption -Xmx1024M

Note:

The AddVMOption value can be large for 64-bit machines. Setting it close to
the amount of RAM provided by the machine provides better performance.

40.17 Setting XSL Map Preferences
Use the Preferences dialog to set preferences related to XSLT maps, such as expansion
depth, and the XSLT Map Editor, such as initialization options.

40.17.1 How to Set XSLT Map Preferences
To set XSLT map preferences, select Preferences from the Tools menu. Click XSL
Maps in the navigation tree that appears in the left pane of the Preferences dialog.
Figure 40-51 shows the XSL Maps dialog that appears.

Troubleshooting Memory Issues

Creating Transformations with the XSLT Map Editor 40-95

Figure 40-51 XSL Maps Preferences

You can set various options such as the expansion depth of the source and target trees.
You can click the Help button for more information on each field.

40.17.2 How to Set the XSL Editor Preferences
To set XSLT map preferences, select Preferences from the Tools menu. In the
navigation tree that appears in the left pane of the Preferences dialog, click the plus
sign (+) next to XSL Maps. This expands the XSL Maps node. Select XSL Editor.
Figure 40-52 shows the XSL Editor Preferences dialog.

Setting XSL Map Preferences

40-96 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 40-52 XSL Editor Preferences

You can set various preferences for the XSLT Map Editors, such as the initialization
mode. Click Help for more information on each field.

40.17.3 How to Import a Customization File to Specify Display Preferences in the XSLT
Map Editor

You can specify a customization file containing display preferences for the XSLT Map
Editor. In the XSL Editor Preferences dialog (Figure 40-52), click the Browse button to
the right of the Custom Display Options Config File field. Select the file to import.

The customization file is an XML file that must conform to the
XSLTEditorOptions.xsd schema located in the bpm-ide-common.jar file at:

oracle/tip/tools/ide/common/resource/XSLTEditorOptions.xsd

The following example shows a sample customization file. The important elements in
the file are described following the example.

<?xml version="1.0" encoding="UTF-8" ?>
 <customizeXSLTeditor>
 <selectedArea>HL7</selectedArea>
 <abbreviationLists>
 <abbreviationList name="Siebel">
 <abbreviation long="Account" short="Acct"/>
 </abbreviationList>
 <abbreviationList name="SalesGeneral">
 <abbreviation long="SalesOrder" short="SO"/>
 <abbreviation long="PurchaseOrder" short="PO"/>
 <abbreviation long="BillOfMaterial" short="BOM"/>
 <abbreviation long="CreateEngineeringChangeOrderList" short="CECOL"/>
 </abbreviationList>
 </abbreviationLists>
 <customization area="HL7">
 <showFixedValueInElementName>

Setting XSL Map Preferences

Creating Transformations with the XSLT Map Editor 40-97

 <path>@LongName</path>
 <path>@LongName2</path>
 <path>@Name</path>
 </showFixedValueInElementName>
 <abbreviations>
 <apply display="treeLabels">
 <hideText part="matchValue" maxLength="13" hide="left"/>
 <hideText part="namedTemplateName" maxLength="15" hide="left"/>
 <hideText part="importHref" maxLength="20" hide="left"/>
 </apply>
 <apply display="dropDownLists">
 <hideText part="namedTemplateName" maxLength="40" hide="center"/>
 </apply>
 </abbreviations>
 </customization>
 <customization area="AIA">
 <abbreviations>
 <applyAbbreviations list="Siebel"/>
 <applyAbbreviations list="SalesGeneral"/>
 <apply display="treeLabels">
 <hideText part="matchValue" maxLength="13" hide="left"/>
 <hideText part="namedTemplateName" maxLength="15" hide="left"/>
 <hideText part="importHref" maxLength="20" hide="left"/>
 </apply>
 <apply display="dropDownLists">
 <hideText part="namedTemplateName" maxLength="40" hide="center"/>
 </apply>
 </abbreviations>
 </customization>
 </customizeXSLTeditor>

The following list describes the important elements in the preceding example:

• <selectedArea>: Selects the customization area to be used by the editor. A list
of customization areas may be defined in the file.

• <abbreviationList name="listName">: Defines an abbreviation list that
can be referenced by a customization area.

• <abbreviation name="Account" short="Acct">: Defines a specific
abbreviation to use in an abbreviation list.

• <abbreviations>: Used within a customization area to define abbreviations
and cut-off lengths for text in the editor.

• <applyAbbreviations>: Selects an abbreviation list or lists to use in this
customization area.

• <apply display="treeLabels" | "dropDownLists">: Selects an area
where text cut-offs occur.

• <hideText>: Selects specific text fields to cut-off when they are too long.

• @part: Either "matchValue", "namedTemplateName", or "importHref".

• @maxLength: Text value length limit.

• @hide: Specifies portion of the text to hide, "left" truncates the text on the left
side, "right" truncates the text on the right side, "center" removes text in the
center replacing it with '…'.

Setting XSL Map Preferences

40-98 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• <showFixedValueInElementName>: Used within a customization area. This
element selects fixed value attributes that contain the long name or other text that
the user wants to see displayed as part of the element name in the editor source or
target tree.

For example:

<showFixedValueInElementName>
 <path>@LongName</path>
 <path>@LongName2</path>
 <path>@Name</path>
</showFixedValueInElementName>

In the preceding example, the first fixed attribute found on any element in the
XSLT Map Editor trees with the name LongName, LongName2, or Name is
shown as part of the element tree name.

The fixed attribute value is shown in parentheses to the right of the actual element
name in the tree. This is particularly useful for HL7 schemas where descriptive
names are added as fixed attribute values in the schema.

Setting XSL Map Preferences

Creating Transformations with the XSLT Map Editor 40-99

Setting XSL Map Preferences

40-100 Developing SOA Applications with Oracle SOA Suite

41
Creating Transformations with the XQuery

Mapper

This chapter describes how to create, edit, and test XQuery transformations using the
XQuery Mapper. The XQuery Mapper enables you to transform data between various
XML and non-XML types, enabling you to integrate heterogeneous applications
rapidly. You can use the XQuery (.xqy) files created using XQuery Mapper as
resources in Oracle BPEL Process Manager, Oracle Mediator, or Oracle Service Bus.

This chapter includes the following sections:

• Introduction to the XQuery Mapper

• Creating an XQuery Map File

• Using the XQuery Mapper

• Using XQuery Functions

• Using Library Modules

• Working with Zones and FLWOR Constructs

• Using Type Annotations to Improve XQuery Performance

• Testing Your XQuery Map

41.1 Introduction to the XQuery Mapper
The XQuery Mapper supports XQuery 1.0. The older XQuery 2004 is also supported.

The XQuery Mapper includes the following views:

• XQuery Mapper Graphical View

• XQuery Mapper Source Editor

Note:

The XQuery Mapper graphical view is not supported for XQuery 2004 files.
Only the source view is supported for this older XQuery version.

When you create a new XQuery file, it opens in the graphical view by default. The
graphical view can also be accessed by clicking the XQuery Mapper tab at the bottom
of the XQuery map.

Figure 41-1 shows the graphical view of the XQuery mapper.

Creating Transformations with the XQuery Mapper 41-1

Figure 41-1 XQuery Mapper

The left pane of the XQuery Mapper includes the input sources or parameters for the
XQuery function. If your XQuery file has multiple functions, you can choose the
function to display using the toolbar over the mapper panes.

The right pane includes the target schema tree, which corresponds to the XQuery
function's result type. The center pane helps you map the source and the target
schema elements using XQuery functions.

41.1.1 About the Source and Target Trees
The left pane of the XQuery Mapper shows the source tree, and the right pane shows
the target tree. Tree nodes can be XML elements, attributes, and some other XQuery
constructs.

XML elements are identified by the <> icon. Attributes use a different icon, and
attribute names are prefixed with the @ symbol, as they appear in an XPath
expression. The element or attribute multiplicity is shown using the following
standard suffixes:

• ?: Zero or one occurrence of an element/attribute.

• +: One or more occurrences of an element/attribute.

• *: Zero or more occurrences of an element/attribute.

The source tree shows the input sources or parameters for the selected XQuery
function. The root level elements represent the input parameters for the function. If a
root node is a complex element, then its child elements and attributes appear under
the root node.

The target tree can include XML elements, attributes, and some programming control
structures. The elements and attributes can appear in the following forms:

Introduction to the XQuery Mapper

41-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Grayed Font: An element that is part of the target schema, but not defined yet.
Once you map a grayed element to a source element, it appears in normal font.

• Normal Font: An element that either corresponds to an element constructor in the
source, or copied implicitly from the source data.

• Underlined Font: An element that is incompatible with the specified target
schema. This element may appear because of an incorrect element name used in
an element constructor, or because of a sequence assignment with an incorrect
schema type.

The target tree can also contain programming control structures like If-Then-Else,
Union operator, and comma operator:

• If-Then-Else Operator: The If-Then-Else operator shows up as a node called
Conditional. The Conditional node has nested branches for If Then and Else. You
can choose the Make Conditional option from the context menu of a node to
make it conditional.

• Union Operator (and other sequence combining operators): These cannot be
created in the graphical view of the XQuery Mapper. However, if the source view
contains such an operator, it is represented in the target tree with a node called
All, and the operands are represented as subnodes of the all node.

• Comma Operator: The comma operator shows up as a node called List. The
subnodes represent the comma-limited operands of the comma operator. You can
choose the Clone option from the context menu of target tree node to apply a
comma operator.

41.1.2 Using the XQuery Mapper Toolbar
The XQuery Mapper toolbar is located above the XQuery Mapper panes. The toolbar
contains various tools to work with the graphical mapper. Figure shows the XQuery
Mapper toolbar.

Figure 41-2 XQuery Mapper Toolbar

The XQuery Mapper toolbar contains the following tools:

• Function Selector: The function selector box is identified by a green icon with the
letter f on it. You can use the Function Selector to select the function to display in
the source pane. This is useful if your XQuery map contains multiple functions.

• Add New Function: The Add New Function button is identified by the green plus
(+) sign. Use Add New Function to add a new function to the XQuery map file.

• Rename Function: The Rename Function button is to the right of the Add New
Function button. Use the Rename Function button to rename a function in the
XQuery map file.

• Delete Function: The Delete Function is identified by a red cross (X) sign. Use
Delete Function to delete a function from the XQuery map file.

Introduction to the XQuery Mapper

Creating Transformations with the XQuery Mapper 41-3

• Import Library Module: The Import Library Module button is to the right of the
Delete Function button. Use Import Library Module to import a library XQuery
function into the map. You must specify the library module files to be imported.

• Mapping Mode: The XQuery mapper can use different mapping modes. These
modes affect the XQuery expressions created when the user drags and drops a
line from a source node to a target node. The next three buttons are used to select
the corresponding mapping mode:

– Value Mapping: Constructs target XML elements and attributes from the
input source, and copies the input source values, using XML constructors. For
example:

<ID>{fn:data($pParam1/ID)}</ID>

The above code creates the ID element in the target from the ID element in
the input source parameter.

Value mapping is the default mapping mode.

– Overwrite Mapping: The XML elements from the input source parameters
are copied to the result sequence. Any existing mapping are replaced with the
new mapping. For example:

{

$pParam1/Items

}

The above code copies the Items subtree, together with its child elements and
attributes, to the target tree.

– Append Mapping: This mode works like overwrite mapping, except that any
existing mappings are not overwritten. New additional mapping are created.

See Using the XQuery Mapper for more information on using the mapping
modes.

• Show/Hide Target Type Differences: Use the Show/Hide Target Type
Differences button to manage the visibility of XML elements and attributes in the
right target tree. You can choose to hide elements and attributes that haven't been
mapped yet.

• Search: Use the Search field to search for elements, attributes, data types, and so
on in the source and target trees. Use the Up and down arrows to look for the next
and previous items respectively.

41.1.3 Using the Properties Window
The Properties window displays the XQuery expression for the node selected in the
target tree. XQuery expressions created using drag and drop can be edited in the
Properties window. The Properties window can also be used to create more complex
XQuery expressions.

The Properties window is located below the XQuery Mapper, by default. If the
Properties window is not visible, click Properties under the JDeveloper Window
menu to display the Properties window.

Introduction to the XQuery Mapper

41-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Tip:

When working with the XQuery Mapper, you might want to move the
Properties window from the bottom right hand corner of the screen to the
bottom of the screen, directly below the mapper window. A larger Properties
window makes it easy to edit XQuery expressions and view the variable tree.

You can directly edit the XQuery expression, for the selected target node, in the
Properties window. You can also drag XQuery functions, constructs, and operators
from the Components window into your XQuery expression in the Properties
window. The Components window is located to the right of the XQuery Mapper, by
default. If you cannot see the Components window, select Window > Components
from the Oracle JDeveloper menu bar.

To save the changes, click the Commit button in the top left corner of the Properties
window. The XQuery is recompiled, and the XQuery Mapper view is updated.

If you make an error when editing the XQuery expression, click Revert to mapper
sources, in the top left area of the Properties window, to undo the changes and start
again.

The Properties window also includes a variable tree on the left hand side. The variable
tree shows all variables, both local variables and XQuery function parameters, that are
visible in the current scope. The scope is determined by the node highlighted in the
target tree pane. You can drag and drop nodes from the variable tree into your
XQuery expression in the right pane.

Figure 41-3 shows the Properties window. The Properties window is highlighted in
red. The comment node is shown selected in the target tree. The corresponding
variable tree and XQuery expression (fn:data($pParam1/Comment)) appears in
the Properties window.

Figure 41-3 Properties Window

41.1.4 Using the Components Window
The Components window contains all the XQuery functions and operators that you
can use in your XQuery maps. These functions and operators can be dragged and

Introduction to the XQuery Mapper

Creating Transformations with the XQuery Mapper 41-5

dropped to the center pane of the XQuery Mapper. You can also drag and drop a
function onto a target tree node, if the target tree node has already been created using
the Insert context menu option.

Note:

You can also drag functions and operators to an XQuery expression in the
Properties window, as described in the preceding section.

When a function is dragged and dropped on an existing link between a source and
target node, for example, it becomes a part of the expression corresponding to that
link. Some functions without parameters must be dragged to an empty area of the
center pane, and associated with a target node. Functions can also be chained together.

The Components window organizes the XQuery function and operators into the
following categories:

• XQuery Functions: Includes various categories of XQuery functions, like
aggregate functions, date functions, mathematical functions, string functions, and
so on.

• XQuery Constructs: Includes standard XQuery constructs like If-Then-Else and
FLWOR constructs.

• XQuery Operators: Includes various categories of XQuery operators, like logical
operators, node comparison operators, and so on.

• User-Defined Functions: Includes all the functions that you have defined in the
current XQuery map file, and any functions from imported library modules.

• My Components: Includes your favorite components that you can add to this
category. It also includes the recently used functions.

41.1.5 Source Editor
The source editor enables you to edit the XQuery map directly, and also allows you to
perform tasks that cannot be directly performed in the graphical view.

Click the XQuery Source tab at the bottom left of the XQuery Mapper graphical view
to display the source editor. Figure 41-4 shows the XQuery Mapper source editor.

Introduction to the XQuery Mapper

41-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 41-4 XQuery Mapper Source Editor

The XQuery source view provides code editing features like code highlighting, code
completion, error highlighting, and code folding. You can also use Ctrl + click (click
the left mouse button while holding down the Ctrl key) on a function name, variable
name, schema, or schema element to navigate to the corresponding declaration for the
function, variable, schema, or schema element respectively.

41.2 Creating an XQuery Map File
Use Oracle JDeveloper to create XQuery maps. XQuery maps are included in the
project as .xqy files.

XQuery maps can be created as main modules and library modules. A main module is
an executable XQuery file. A library module is used to group and store XQuery
functions. When you import a library module into a main module, all functions in the
library module become available in the main module.

41.2.1 How to Create an XQuery Main/Library Module

To create an XQuery Main/Library Module:

1. Click the File menu. Select one of the following:

• To create an XQuery main module, select New > XQuery File ver 1.0. The
Create XQuery Map Main Module dialog box appears.

Creating an XQuery Map File

Creating Transformations with the XQuery Mapper 41-7

Figure 41-5 Create Main Module Dialog

• To create an XQuery library module, select New > XQuery Library ver 1.0. The
Create XQuery Map Library Module dialog box appears.

Creating an XQuery Map File

41-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 41-6 Create Library Module Dialog

2. Under File Name, enter the name for the XQuery map file to be created. The file
must have a .xqy extension.

3. Under Directory Name, specify the directory in which the map file should be
created. This is usually the Transformations directory in your project folder. You
can click the tree icon on the right to browse and select the directory of your choice.

4. If you are creating a library module, select the target namespace for the library
module under Target Namespace URI. Optionally edit the Prefix for the
namespace.

Every function defined in a library module automatically uses the library's target
namespace.

5. Select Generate Function to create a function in the XQuery file. If you do not
select this, an empty XQuery file is created, and you can add functions later.

6. Under Function Name, enter the name of the function to be created in the XQuery
file.

7. If you are creating a main module, select these additional fields for the function:

• NS URI specifies the namespace for the function. NS URI is automatically
populated. You can also select a different namespace.

• Prefix specifies the namespace prefix of the function. Prefix is populated
automatically. You can also edit the suggested namespace prefix.

Creating an XQuery Map File

Creating Transformations with the XQuery Mapper 41-9

8. Add parameters for the function under the Sources section. To add a parameter,
click the Add Source button identified by the green plus sign (+). The Function
Parameter dialog box appears.

Figure 41-7 Function Parameter Dialog

9. Under Name, enter the name of the function parameter.

10. Select Set a Namespace to specify a namespace for the function parameter:

Under NS URI, select the namespace for the function parameter. The namespace
prefix appears in the Prefix field. You can optionally edit this.

11. Under Sequence Type, click the button identified by the pencil icon to specify the
data type for the parameter. The Function Parameter Type dialog box appears.

Figure 41-8 Function Parameter Type Dialog

Use the XML Schema tab to specify an XML schema type as the data type for the
function parameter. The Untyped tab can be used to specify an untyped (non-XML

Creating an XQuery Map File

41-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

schema based) form of the parameter. You use an XML schema type in this
procedure.

12. In the Function Parameter Type dialog, click the button to the right of Schema
Object Reference (identified by the tree icon) to select a schema object as the data
type.

This brings up the Type Chooser dialog box. You can choose from Project Schema
Files, XML Schema Simple Types, and schemas embedded in Project WSDL Files.
Navigate to the desired XML type and click OK to close the Type Chooser dialog
box.

13. In the Function Parameter Type dialog, the Possible Sequence Type Form, Schema
Location, and Prefix are automatically populated depending on your choice of
Schema Object Reference. Optionally change any values if required.

14. Under Occurrence, optionally change the multiplicity of the parameter. The
resultant XQuery expression appears under Result XQuery Expression.

15. Click OK to close the Function Parameter Type dialog box.

16. Click OK to close the Function Parameter dialog box.

17. In the Create XQuery Map Main Module/Library Module dialog, specify the
function's result data type under the Target section. Click the button, with the
pencil icon, to the right of the Target field.

The Function Result Type dialog box appears. This dialog box is identical to the
Function Parameter Type dialog box. Use instructions under Steps 12 to 14 to
specify the function's result data type.

18. Click OK to close the Function Result Type dialog box.

19. In the Create XQuery Map Main Module/Library Module dialog box, under the
Options section, select Generate XQuery version line to generate a standard line at
the beginning of the XQuery file.

For example, the following line might be generated at the beginning of the file:

xquery version "1.0" encoding "utf-8";

20. Select Use schema type annotations to create a weak-typed XQuery file that uses
type annotations in place of schema object references. This may improve the
XQuery performance for certain scenarios.

If you deselect this option, XQuery generates a strong-typed XQuery file that can
contain references to schema objects.

See Using Type Annotations to Improve XQuery Performance for more
information on type annotations.

21. Click OK. The newly created XQuery map opens up in the XQuery Mapper
graphical view. If you want to see the XQuery source editor, click XQuery Source.

41.3 Using the XQuery Mapper
This section contains the following topics:

Using the XQuery Mapper

Creating Transformations with the XQuery Mapper 41-11

• How to Use Value Mapping to Copy a Leaf Element Value to a Target Leaf
Element

• How to Use Overwrite Mapping to Copy an Element Subtree to the Target Tree

• How to Use Append Mapping to Copy an Element Subtree to the Target Tree

• How to Perform Multiple Value Mappings with One Drag and Drop Action

41.3.1 How to Use Value Mapping to Copy a Leaf Element Value to a Target Leaf
Element

To create a value map for a leaf element:

1. Make sure that Value Mapping mode is selected in the XQuery toolbar.

2. Select the source leaf element whose value needs to be copied.

3. Hold down the left mouse button, and drag the mouse pointer to the target leaf
element. Release the left mouse button.

A solid line connecting the source and target leaf node appears. The source leaf
element is now value-mapped to the target leaf element.

41.3.2 How to Use Overwrite Mapping to Copy an Element Subtree to the Target Tree

To create an overwrite map for an element subtree

1. Make sure that Overwrite Mapping mode is selected in the XQuery toolbar.

2. Select the source element. The element can have child elements, or can also be a leaf
element.

3. Hold down the left mouse button, and drag the mouse pointer to the target
element. Release the left mouse button.

The source element subtree gets copied to the specified location in the target tree. A
solid line connects the root of the copied source subtree to the target subtree. If
there are no type mismatches with the target schema, then the copied element and
its child elements appear in normal font. If there is a mismatch, the elements show
up in underlined font.

41.3.3 How to Use Append Mapping to Copy an Element Subtree to the Target Tree

To create an append map for an element subtree

1. Make sure that Append Mapping mode is selected in the XQuery toolbar.

2. Select the source element. The element can have child elements, or can also be a leaf
element.

3. Hold down the left mouse button, and drag the mouse pointer to the target
element. Release the left mouse button.

The source element subtree gets appended as the child of the selected element in
the target tree. A solid line connects the root of the source subtree to the root of the
appended subtree in the target. If there are no type mismatches with the target

Using the XQuery Mapper

41-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

schema, then the copied element and its child elements appear in normal font. If
there is a mismatch, the elements show up in underlined font.

41.3.4 How to Perform Multiple Value Mappings with One Drag and Drop Action

To create multiple value mapping with one drag and drop action

1. Make sure that Value Mapping mode is selected in the XQuery toolbar.

2. Select the non-leaf source element.

3. Hold down the left mouse button, and drag the mouse pointer to the target
element. Release the left mouse button.

If the source and target elements have the same schema types, individual
mappings are created for all the child elements of the source element and target
element. A mapping is also created between the source and target element.

If an element has multiple occurrences, then a FLOWR cycle is automatically
created for the element. For example, the code segment below copies each Item
iteratively:

for $Item in $pParam1/Items/Item
 return <Item PartNum="{fn:data($Item/@PartNum)}">
 <ProductName>{fn:data($Item/ProductName)}</ProductName>
 <Quantity>{fn:data($Item/Quantity)}</Quantity>
 <Price>{fn:data($Item/Price)}</Price>
 <Currency>{fn:data($Item/Currency)}</Currency>
 </Item>

41.4 Using XQuery Functions
You can add XQuery functions to your existing XQuery map. The Components
window contains a list of XQuery functions that you can drag and drop into the source
editor or the center pane of the XQuery mapper.

The Components window also includes a set of XQuery constructs, like FLWOR, and
XQuery operators, like logical AND. These constructs and operators can only be
dragged and dropped into the source editor.

41.4.1 How to Add an XQuery Function in the XQuery Mapper
You can drag and drop an XQuery function from the Components window to the
center pane of the XQuery mapper.

41.4.1.1 To add an XQuery function:

1. Make sure that the Components Window is visible. The default location is the top
right hand corner of Oracle JDeveloper.

If the Components Window is not visible, select Components from the Window
menu.

2. In the Component Window, select the XQuery Functions page.

3. Click the Category that contains your function. For example, to add the concat
function, click String Functions.

Using XQuery Functions

Creating Transformations with the XQuery Mapper 41-13

4. Drag the desired function from the Components window to the center pane of the
XQuery mapper. When you drag the function to the center pane, the output of the
function connects to different target nodes, as you move along.

Figure 41-9 shows a function being dragged to the center pane of the XQuery
Mapper.

Figure 41-9 Dragging a Function to the Center Pane of the XQuery Mapper

5. Drop the function on the center pane when the function output is shown
connected to the desired target node.

Note:

You can also drop a function to an existing map line in the center pane of the
XQuery mapper.

The function gets connected to both the source (input) and target (output)
nodes.

6. If the function requires additional input parameters, then a Warning icon appears
on the function icon. Drag a line from a source node to the left end of the function
to specify an input parameter.

7. Repeat the previous step for any more source nodes that you must add as input
parameters.

41.4.1.2 To edit a function's parameters:

1. Click the function icon in the center pane. The expression corresponding to the
function appears in the Properties window.

The Properties window is located at the lower right-hand corner of Oracle
JDeveloper, by default. If the Properties window does not appear, click Properties
under the Window menu to display the Properties window. You can optionally
choose to drag the Properties window to any convenient location within the
JDeveloper window. You can also resize the Properties window, as desired.

2. Edit the expression that appears in the right pane of the Properties window.

The left pane of the Properties window shows the variable tree that includes all
variables visible in the current scope. You can drag and drop variables to the
expression on the right to help build your function definition.

Using XQuery Functions

41-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. Click Commit at the top left corner of the Properties window to save the changes.
Alternatively, click Revert to mapper sources to revert changes made in the
Properties window.

41.5 Using Library Modules
How to Create an XQuery Main/Library Module discusses the process of creating a
library module file. To use a library module, you can import the library module into
the main module. This makes all the library module functions available in the main
module.

41.5.1 How to Import a Library Module
You can import a library module from the source editor of your main module.

To import a library module:

1. Make sure that your XQuery main module map file is open in the XQuery Mapper.

2. Click the XQuery Source tab at the bottom left of the XQuery Mapper window to
switch to the source editor.

3. Right-click anywhere in the source editor window. A context menu appears.

4. Select Import library module from the context menu. The Select XQuery Library
Files dialog appears.

5. Browse and select the XQuery library module file to be imported. Click OK.

An import statement, corresponding to the library module, is added to the main
module source view.

41.6 Working with Zones and FLWOR Constructs
You can create FLWOR (For, Let, Where, Order By, Return) expressions in the Source
View. FLWOR expressions are represented as zones in the XQuery Mapper target tree.

Zones identify areas in the target tree that are associated with FLOWR constructs or If-
Then-Else conditional constructs. Zones are represented by yellow brackets to the left
of the target tree.

If you move the mouse over a yellow line representing a zone, the line turns blue. For
FLWOR zones, additional buttons appear, corresponding to the For-Let, Where, and
Order By clauses. Figure 41-10 shows a sample XQuery with zones.

Using Library Modules

Creating Transformations with the XQuery Mapper 41-15

Figure 41-10 Zones and FLWOR Zones in XQuery Mapper

41.6.1 How to Edit a FLWOR Construct
You can edit a FLWOR construct directly in the source view. You can also perform
limited editing of a FLOWR construct in the XQuery Mapper.

To edit a FLWOR construct in XQuery Mapper:

1. Click on the yellow bracket representing the FLWOR zone to select the zone. The
yellow bracket turns blue, and additional buttons appear. These buttons
correspond to the different clauses of the FLWOR construct.

2. Click the FL button to edit the For-Let properties for the FLWOR construct. The
Properties window shows the For-Let clause properties.

Click the Help icon in the Properties window to display help on editing the For-Let
properties.

3. Click the W button to edit the Where properties for the FLWOR construct.

The Properties window enables you to directly edit the Where expression. You can
also drag and drop variables from the left pane of the Properties window.

4. Click the O button to edit the Order By properties for the FLWOR construct.

The Properties window enables you to directly edit the Order By expression. You
can also drag and drop variables from the left pane of the Properties window.

41.7 Using Type Annotations to Improve XQuery Performance
When an XQuery is run, the XQuery engine performs schema type validations in the
XQuery file before running the XQuery. This may cause performance overheads for
certain applications.

If you must optimize your XQuery for performance, you can use type annotations to
specify schema information in the XQuery file. Type annotations enable you to hide

Using Type Annotations to Improve XQuery Performance

41-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

the schema type definitions from the XQuery execution engine. The schema
definitions are still visible to the Xquery Mapper, which enables you to edit your
XQuery map in the usual fashion.

To use type annotations in your XQuery file, select Use Schema Type Annotations in
the Create XQuery Map Main/Library Module dialog when creating a new XQuery
file. See How to Create an XQuery Main/Library Module for more information on
creating an XQuery file.

Type annotations, in an XQuery file, look similar to standard XQuery comments.
While standard XQuery comments are delimited by the parentheses and colon, type
annotations use parentheses and double colons. So, for example:

(: This is an XQuery comment :)
(:: This is a type annotation ::)

An XQuery file that uses type annotations has the following version annotation at the
beginning of the file, immediately following the version declaration:

(:: OracleAnnotationVersion "1.0" ::)

The following example compares a few XQuery constructs with and without the type
annotations.

• Schema import (without type annotation):

import schema namespace ns1="http://www.oracle.com/pcbpel/po" at "../Schemas/
PurchaseOrder.xsd";

Schema import (with type annotation):

declare namespace ns1="http://www.oracle.com/pcbpel/po";
(:: import schema at "../Schemas/PurchaseOrder.xsd" ::)

• Variable declaration (without type annotation):

declare variable $test_param as schema-element(ns1:PurchaseOrder) external;

Variable declaration (with type annotation):

declare variable $test_param as element()
(:: schema-element(ns1:PurchaseOrder) ::) external;

41.8 Testing Your XQuery Map
You can test run your XQuery map from within Oracle JDeveloper. Testing the
XQuery at design time helps prevent runtime errors.

41.8.1 How to Test an XQuery Map
You must be in the Source Editor view to test the XQuery map.

To Test an XQuery Map:

1. Make sure that the XQuery main module is open in the XQuery Mapper.

2. If you are not in the Source Editor view, click the XQuery Source tab at the bottom
of the XQuery Mapper window to switch to the source editor.

3. Right-click anywhere in the source editor. Select Run XQuery from the context
menu that appears.

Testing Your XQuery Map

Creating Transformations with the XQuery Mapper 41-17

The Run XQuery dialog appears. Figure 41-11 shows the Run XQuery dialog.

Figure 41-11 Run XQuery Dialog

4. Specify values for all source variables that appear in the Source variables section.

For simple data types, you can specify a value directly under the Value field. If
your source variable uses a complex schema, click the ellipses (. . .) button to bring
up the Edit Variable dialog. You can use an existing XML file to specify test data
for the variable, or create an XML file with test data. Click Help for additional help
with completing the Edit Variable dialog.

5. Select Open result in a new tab in JDeveloper if you want to use a new tab to
display test results. Select Save target file to save the result file. You must select
one, or both, of these options.

6. Click the Save icon to the right of Target filename to specify a result file into which
the result data is saved.

You must specify a Target filename even if you haven't selected Save target file in
the preceding step.

7. Optionally select Autosave configuration to automatically save the configuration
settings when the XQuery is run. The next time you try to run the XQuery, the
configuration settings are retrieved.

8. If you want to save the settings made in the Run XQuery dialog, click Save
Configuration.

9. If you want to delete any previously saved configuration settings, click Delete
Configuration.

10. Click Run to run the XQuery.

Testing Your XQuery Map

41-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

42
Using Business Events and the Event

Delivery Network

This chapter describes how to subscribe to or publish business events from Oracle
Mediator or a BPEL process in a SOA composite application. Business events are
published to the Event Delivery Network (EDN) and consist of message data sent as
the result of an occurrence in a business environment. When a business event is
published, other service components can subscribe to it.

This chapter includes the following sections:

• Introduction to Business Events

• Creating Business Events in Oracle JDeveloper

• Subscribing to or Publishing a Business Event from an Service Component

• Subscribing to or Publishing a Business Event from a BPEL Process Service
Component

• How to Integrate Oracle ADF Business Component Business Events with Oracle
Mediator

For information about creating composite sensors on service components that
subscribe to business events, see Defining Composite Sensors .

For information about troubleshooting business events, including specifying the
number of threads, stopping event delivery, and specifying the maximum number of
deliveries, see Appendix "Troubleshooting Oracle SOA Suite and Oracle BPM Suite" of
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

For information about managing business events from Oracle Enterprise Manager
Fusion Middleware Control, see Chapter "Managing Business Events" of Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

For information about business event tuning, see Tuning Performance.

42.1 Introduction to Business Events
You can raise business events when a situation of interest occurs. For example, in a
loan flow scenario, a BPEL process service component executing a loan process can
raise a loan completed event at the completion of the process. Other systems within the
infrastructure of this application can listen for these events and, upon receipt of one
instance of an event:

• Use the event context to derive business intelligence or dashboard data.

• Signal to a mail department that a loan package must be sent to a customer.

• Invoke another business process.

Using Business Events and the Event Delivery Network 42-1

• Send information to Oracle Business Activity Monitoring (BAM).

Business events are typically a one-way, fire-and-forget, asynchronous way to send a
notification of a business occurrence. The business process does not:

• Rely on any service component receiving the business event to complete.

• Care if any other service components receive the business event.

• Need to know where subscribers (if any) are and what they do with the data.

These are important distinctions between business events and direct service
invocations that rely on the Web Services Description Language (WSDL) file contract
(for example, a SOAP service client). If the author of the event depends on the receiver
of the event, then messaging typically must be accomplished through service
invocation rather than through a business event. Unlike direct service invocation, the
business event separates the client from the server.

A business event is defined using the event definition language (EDL). The EDL is a
schema used to build business event definitions. Applications work with instances of
the business event definition.

The EDL consists of the following:

• Defined events

One or more event definitions (event-definition element) with the same
namespace (targetNamespace attribute of definitions root element), each
having a local name (name attribute of the event-definition element). The
namespace and local name constitute an event name (QName).

• Payload definition

The most common use for a definition is an XML Schema (XSD). The payload of a
business event is defined in an XSD that is imported (through the schema-
import element) into the EDL. Each defined event (that is, event-definition
element) can have a reference to an imported payload XSD element (the element
attribute of the content element). The schema URI is contained in the root
element of the payload.

The following example shows an EDL file with two business events in the BugReport
event definition: bugUpdated and bugCreated. The namespace (/model/
events/edl/BugReport) and associated schema file (BugReport.xsd) are
referenced.

<?xml version = '1.0' encoding = 'UTF-8'?>
<definitions targetNamespace="/model/events/edl/BugReport"
 xmlns:ns0="/model/events/schema/BugReport"
 xmlns="http://schemas.oracle.com/events/edl">
 <schema-import namespace="/model/events/schema/BugReport"
 location="BugReport.xsd"/>

 <event-definition name="bugCreated">
 <content element="ns0:bugCreatedInfo"/>
 </event-definition>

 <event-definition name="bugUpdated">
 <content element="ns0:bugUpdatedInfo"/>
 </event-definition>
</definitions>

Introduction to Business Events

42-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

These two events are available for subscription in Oracle Mediator and a BPEL
process.

Business events are deployed to the Oracle Metadata Services Repository (MDS
Repository). Deploying a business event to the MDS Repository along with its artifacts
(for example, the XSDs) is known as publishing the EDL (or event definition). This
action transfers the EDL and its artifacts to a shared area in the MDS Repository. An
object in an MDS Repository shared area is visible to all applications in the Resources
window of Oracle JDeveloper. After an EDL is published, it can be subscribed to by
SOA components such as Oracle Mediator or a BPEL process.

A subscription is for a specific qualified name (QName) (for example, x.y.z/
newOrders). A QName is a tuple (URI, localName) that may be derived from a
string prefix:localName with a namespace declaration such as
xmlns:prefix=URI or a namespace context. In addition, subscriptions can be
further narrowed down by using content-based filters.

Business events are published to the EDN. The EDN runs within every Oracle SOA
Suite instance. Raised events are delivered by EDN to the subscribing service
components. Oracle Mediator service components and BPEL process service
components can subscribe to and publish events.

The EDN is based on a standard JMS messaging infrastructure that supports business
event-based interactions among Oracle SOA Suite components and non-Oracle SOA
Suite components. The EDN provides two JMS-based types:

• Oracle WebLogic Server JMS: By default, all business events use a single, default
Oracle WebLogic Server JMS topic.

• Oracle Advanced Queueing (AQ) JMS

You can create additional JMS topics (Oracle WebLogic Server JMS or AQ JMS) and
map different event types to these additional JMS topics in Oracle Enterprise Manager
Fusion Middleware Control.

Note:

• The EDN does not support durable subscriptions (whether they are
backed by native AQ or Oracle WebLogic Server JMS). The subscribing
service component must be running to receive events.

42.1.1 EDN Integration with Oracle SOA Suite
Oracle SOA Suite EDN provides the following features:

• A standard JMS-based messaging infrastructure that provides the following:

– A JMS-based event publish and subscribe architecture for Oracle SOA Suite
and non-Oracle SOA Suite clients.

– Support for bidirectional interactions (can both publish to and subscribe from
Oracle SOA Suite and non-Oracle SOA Suite clients).

– Support for both the Oracle AQ JMS and Oracle WebLogic Server JMS
providers. An Oracle WebLogic Server JMS topic (default) and an AQ JMS
topic are automatically configured for EDN use after installation. The default
JMS type can be switched from Oracle WebLogic Server JMS (default) to AQ

Introduction to Business Events

Using Business Events and the Event Delivery Network 42-3

JMS in Oracle Enterprise Manager Fusion Middleware Control. For more
information, see "Mapping Business Events to JMS Topic Destinations on the
Business Events Page" of Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

– EDN support as a lightweight manager above both JMS providers.

– A plain JMS API and an Oracle SOA Suite, value-added EDN API for remote,
non-Oracle SOA Suite clients to use for integrating with Oracle SOA Suite.
For more information, see .

– JMS transactions to guarantee EDN delivery (for both the one-and-only-one
(OAOO) and guaranteed consistency methods).

– Durable and persistent publishing delivery options to prevent message loss.
These default options are beneficial for interactions with remote, non-Oracle
SOA Suite clients.

– A JMS adapter used internally for implementing many JMS features. For
information about the JMS adapter, see the "Oracle JCA Adapter for JMS"
chapter of Understanding Technology Adapters.

– No duplicate event processing in a multinode cluster.

• Scalability at a fine-grained level. This enables different events to map to different
JMS topic destinations, thereby eliminating the need for a single location to handle
all events. This reduces potential bottlenecks. Mapping is performed by an
administrator in Oracle Enterprise Manager Fusion Middleware Control. For
more information, see the "Mapping Business Events to JMS Topic Destinations"
section of Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

• Support for the following publish and subscribe scenarios:

– Publish and subscribe to events across the same composite or different
composites.

* Use the default EDN Oracle WebLogic Server JMS topic automatically
provided.

* Use the custom event-to-JMS-topic mapping provided in Oracle
Enterprise Manager Fusion Middleware Control.

– Publish and subscribe to events with remote, non-Oracle SOA Suite
participants through one of the following APIs:

* Plain JMS API (for J2SE client environments)

* EDI API EdnJmsConnection (for J2SE and J2EE client environments)

• Instance tracking and fault recovery support in the Error Hospital. For more
information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

• The storage of EDL files in the MDS Repository. This makes the files available for
browsing in the Resources window in Oracle JDeveloper. For more information,
see Managing Shared Data with the Design-Time .

Introduction to Business Events

42-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

For memory recommendations on sending large payloads in the event
delivery network (EDN) with Oracle AQ JMS, see JVM Memory Sizing
Recommendations for SOA Composite Applications.

42.1.2 Business Event API Support for Remote Clients
For remote clients to publish and subscribe to events in Oracle SOA Suite, there are
several API options. Table 42-1 provides details.

Table 42-1 Remote API Options

Option Description Supported By Advantages/Disadvantages

Plain JMS API Use to directly interact with EDN
JMS topics. This is typically a
J2SE client with raw JMS access.

The remote client must configure
JNDI properties to point to the
SOA server.

• Oracle WebLogic
Server JMS

• AQ JMS

The advantages are:

• Supports the standard JMS
API, meaning you can use
many JMS software tools.

The disadvantages are:

• Service level degradation.
• Requires manual discovery

of mapped JMS and
configuration of JNDI.

• Requires extra coding,
including handling of the
internal EDN event
structure, filter translation,
subject propagation,
transaction, error handling,
and so on.

EDN API -
EdnJmsConne
ction

For a J2SE client, such as Oracle
Event Processing. This option
provides all standard publish and
subscribe options.

The remote client must perform
the following tasks:

• Configure JNDI properties to
point to the SOA server.

• Invoke the EDN helper
method
findRelevantBEConnFac
tory to return an
appropriate connection
factory. This enables you to
use a JMS connection for
publishing and subscribing
to events.

• Oracle WebLogic
Server JMS

• AQ JMS

The advantages are:

• No client JNDI configuration
or JMS adapter deployment

• Handles JMS mapping,
conversion, and translation.

The disadvantages are:

• Based on the plain JMS
connection factory and topic.

For information about the JMS
adapter, see the "Oracle JCA
Adapter for JMS" chapter of
Understanding Technology
Adapters.

For more information about the EDN APIs, see .

Introduction to Business Events

Using Business Events and the Event Delivery Network 42-5

42.1.2.1 Guidelines for Manually Setting Event Delivery Network Properties When
Invoking the BusinessEvent.setProperty API

When publishing an event delivery network (EDN) business event, most properties
cannot be manually set by invoking the BusinessEvent.setProperty(String
name, Object value) API.

42.1.2.1.1 Properties That Cannot Be Manually Set

Do not set the following EDN business event properties. The values for these
properties are internally set and used by EDN.

• General properties:

– BusinessEvent.EVENT_ID ("id")

– BusinessEvent.PARENT_ID ("parent-id")

– BusinessEvent.PUBLISHED_TIME ("published-time")

– BusinessEvent.OWNER ("owner")

– BusinessEvent.SOURCE ("source")

– BusinessEvent.MODE ("mode")

• All tracking properties, for example:

– BusinessEvent.PROPERTY_ECID ("tracking.ecid")

– BusinessEvent.PROPERTY_COMPOSITE_INSTANCE_ID
("tracking.compositeInstanceId")

– BusinessEvent.PROPERTY_PARENT_COMPONENT_INSTANCE_ID
("tracking.parentComponentInstanceId")

– BusinessEvent.PROPERTY_CONVERSATION_ID
("tracking.conversationId")

– tracking.compositeInstanceCreatedTime"

42.1.2.1.2 Properties That Can Be Manually Set

You can set the following properties:

• BusinessEvent.PRIORITY ("priority")

• BusinessEvent.CONTEXT ("context")

42.1.3 Local and Remote Event Connections
A single SOA composite application instance can reside in a single container or can be
clustered across multiple containers. Another application (for example, an Oracle
Application Development Framework (ADF) Business Component application) can be
configured to run in the same container as the SOA composite application instance or
in a different container.

Raising an event from a Java EE application can be done through a local event
connection or a remote event connection:

Introduction to Business Events

42-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Local event connection

If the publisher resides on the same Oracle WebLogic Server as the application
and the publisher uses a local business event connection factory, the event is
raised through a local event connection.

• Remote event connection

If the caller resides in a different container (different JVM) then the application,
the event is raised through a remote event connection.

If another application (for example, an Oracle ADF Business Component application)
is configured to run in the same container as the SOA composite application, it is
optimized to use local event connections.

42.2 Creating Business Events in Oracle JDeveloper
This section provides a high-level overview of how to create and subscribe to a
business event.

42.2.1 How to Create a Business Event

To create a business event:

1. Create a SOA project as an empty composite.

2. Launch the Create Event Definition wizard in either of the following ways:

a. From the File main menu, select New > Event Definition.

b. From the File main menu, select New > Application > SOA Tier > Service
Components > Event Definition.

The Create Event Definition dialog appears.

3. Enter the details described in Table 42-2.

Table 42-2 Create Event Definition Dialog Fields and Values

Field Value

Name Enter a name or accept the default name of
EventDefinitionnumber. The name you enter here
becomes the EDL file name in the Applications window.

Note: Do not enter a forward slash (/) as the event name.
This creates an event definition file consisting of only an
extension for a name (.edn).

Directory Displays the directory path in which to create the event
definition file.

Namespace Accept the default namespace or enter a value for the
namespace in which to place the event. This enables the
subscriber to receives events of the indicated namespace.

4. Click the Add icon to add an event.

The Create Event dialog appears.

Creating Business Events in Oracle JDeveloper

Using Business Events and the Event Delivery Network 42-7

5. Click the Search icon to select the payload, and click OK. Figure 42-1 provides
details.

Figure 42-1 Select the Payload

You are returned to the Create Event dialog.

6. In the Name field, enter a name.

7. Click OK.

The added event now appears in the Events section. Figure 42-2 provides details.

Figure 42-2 Create Event Definition

8. Above the editor, click the cross icon (x) next to event_definition_name.edl
to close the editor.

Creating Business Events in Oracle JDeveloper

42-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

9. Click Yes when prompted to save your changes. If you do not save your changes,
the event is not created and cannot be selected in the Event Chooser window.

The business event is published to the MDS Repository and you are returned to
the . The business event displays for browsing in the Resources window.

42.3 Subscribing to or Publishing a Business Event from an Oracle
Mediator Service Component

This section describes how to subscribe to a business event or publish a business event
from an Oracle Mediator service component.

42.3.1 How to Subscribe to a Business Event

To subscribe to a business event:

1. From the Components window, drag a Mediator service component into the . This
service component enables you to subscribe to the business event.

2. In the Name field, enter a name.

3. From the Template list, select Subscribe to Events.

The dialog is refreshed to display an events table.

4. Click the Add icon to select an event.

The Event Chooser dialog appears.

5. Select an existing event or click the Add icon to create a new event, and click OK.

You are returned to the Create Mediator dialog.

6. Complete the remaining fields of the dialog. Table 42-3 provides details.

Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

Using Business Events and the Event Delivery Network 42-9

Table 42-3 Events Table of Create Mediator Dialog

Element Description

Consistency Click inside the Consistency column to select a level of delivery
consistency for the event.

• one and only one

Events are delivered to the subscriber in its own global (that is,
JTA) transaction. Any changes made by the subscriber within that
transaction are committed after the event processing is complete.
If the subscriber fails, the transaction is rolled back. Failed events
with retriable exceptions are automatically retried a configured
number of times before they are moved to the Error Hospital for
recovery (that is, subject to manual retries). Failed events with
nonretriable exceptions are moved to the Error Hospital without
automatic retries, and are not recoverable.

• guaranteed

Events are delivered to the subscriber in a local JMS transaction.
The subscriber can choose to create its own local transaction for
processing, but it is committed independently of the rest of event
processing. The guaranteed consistency level is a lower quality of
service option than one and only one, because a local transaction
is used instead of a global transaction. Failed events with retriable
exceptions are automatically retried a configured number of times
before they are moved to the Error Hospital where they are
recoverable, (that is, subject to manual retries. Failed events with
nonretriable exceptions are moved to the Error Hospital without
automatic retries, and are not recoverable.

For information about the Error Hospital, see Section "Recovering
From Faults in the Error Hospital" of Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

Durable Durable subscriptions prevent against message loss caused by different
life cycles of publishers, subscribers, and the framework. Select an
option:

• yes: Events are retained if the subscriber is not running. This is the
default selection.

• no: Events are dropped if the subscriber is not running.

Run as
Publisher

Select a security publishing option:

• yes: The subscriber has the event publisher's security identity.
This is the default selection.

• no: The subscriber does not have the event publisher's security
identity.

Filter If you want to filter the event, double-click the Filter column of the
selected event or select the event and click the filter icon (first icon)
above the table. This displays the Expression Builder dialog. This
dialog enables you to specify an XPath filter expression. A filter
expression specifies that the contents (payload or headers) of a
message be analyzed before any service is invoked. For example, you
can apply a filter expression that specifies that a service be invoked
only if the message includes a customer ID.

When the expression logic is satisfied, the event is accepted for
delivery.

For more information about filters, see How to Specify an Expression
for Filtering Messages.

Figure 42-3 shows the Create Mediator dialog.

Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

42-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 42-3 Create Mediator Dialog

7. Click OK.

Figure 42-4 shows an icon on the left side that indicates that Oracle Mediator is
configured for an event subscription.

Figure 42-4 Configuration for Event Subscription

42.3.2 How to Publish a Business Event
You can create a second Oracle Mediator to publish the event that you subscribed to in
How to Subscribe to a Business Event. While not shown here, you can also create a
BPEL component to publish the event.

To publish a business event:

1. Create a second Oracle Mediator service component that publishes the event to
which the first Oracle Mediator subscribes.

2. Return to the first Oracle Mediator service component.

3. In the Routing Rules section, click the Add icon.

4. Click Service when prompted by the Target Type window.

5. Select the second Oracle Mediator service component.

6. From the File main menu, select Save All.

Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

Using Business Events and the Event Delivery Network 42-11

42.3.3 What Happens When You Create and Subscribe to a Business Event
The source code in the following example provides details about the subscribed event
of the Oracle Mediator service component.

<component name="OrderPendingEvent">
 <implementation.mediator src="OrderPendingEvent.mplan"/>
 <business-events>
 <subscribe
 xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="sub1:NewOrderSubmitted" consistency="oneAndOnlyOne"
 durable="true" runAsRoles="$publisher"/>
</business-events>
</component>

While not explicitly demonstrated in this example, you can define XPath filters on
events. In the following example, the event is accepted for delivery only if the initial
deposit is greater than 50000:

 <business-events>
 . . .
 . . .
 <filter>
 <xpath xmlns:be="http://oracle.com/fabric/businessEvent"
 xmlns:ns1="http://xmlns.oracle.com/singleString"
 <xpath expression= "/be:business-event/be:content/
 sub1:AccountInfo/Details[@initialDeposit > 50000]" />
 </filter>
 . . .
 . . .
 </business-events>

42.3.4 What Happens When You Publish a Business Event
Two Oracle Mediator service components appear in the following example. One
service component (OrderPendingEvent) subscribes to the event and the other
service component (PublishOrderPendingEvent) publishes the event.

<component name="PublishOrderPendingEvent">
 <implementation.mediator src="PublishOrderPendingEvent.mplan"/>
 <business-events>
 <publishes xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="pub1:NewOrderSubmitted" persistent="true" priority="7"
 timeToLive="36000000"/>
 </business-events>
 </component>

<component name="OrderPendingEvent">
 <implementation.mediator src="OrderPendingEvent.mplan"/>
 <business-events>
 <subscribe
 xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="sub1:NewOrderSubmitted" consistency="oneAndOnlyOne"
 durable="true" runAsRoles="$publisher"/>
</business-events>
</component>

Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

42-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

42.3.5 What You May Need to Know About Subscribing to a Business Event
Only subscribers in default revisions of the SOA composite applications can receive
business events. For example, note the following behavior.

To subscribe to a business event:

1. Create a composite application with an initial Oracle Mediator service component
named M1 that publishes an event and a second Oracle Mediator service
component named M2 that subscribes to the event. The output is written to a
directory.

2. Deploy the composite application as revision 1.

3. Modify the composite application by adding a third Oracle Mediator service
component named M3 that subscribes to the same event and writes the output to a
different directory.

4. Deploy the composite application as revision 2 (the default).

5. Invoke revision 2 of the composite application.

Oracle Mediator M2 writes the output to one file in the directory. As expected,
Oracle Mediator M3 picks up the event and writes the output successfully to
another directory. However, Oracle Mediator M2 (from revision 1) is not picking
up the published event from revision 2 of the composite application.

42.3.6 What You May Need to Know About Publishing Events Across Domains Using
SAF

When publishing events across domains using Store-and-Forward (SAF), local
subscribers cannot subscribe to the event. For example, assume you have the following
subscribers:

• Local subscriber (deployed on the same domain as the event publisher)

• Remote subscriber (deployed on a domain external to the event publisher)

Both subscribe to the same event (for this example, named E), which has been
configured to listen to the SAF topic. In this environment, only the remote subscriber
can subscribe to the event. The local subscriber cannot subscribe to the event.

The JMS topic for EDN must be provisioned as a physical JMS topic instead of as an
imported SAF topic. This is because an imported SAF topic has its own rules of context
lookup and security checking that EDN does not natively support.

42.3.6.1 Workaround for Local Subscribers

As a workaround, you must perform the following procedures:

1. Create a local JMS topic that the publisher can locate. For example, in local
domain A, which the event publisher can locate, you provision a regular Oracle
WebLogic Server JMS topic (for example, named Ta) to which to publish events,
and a subscriber (local in domain A) to listen for this topic.

2. In remote domain B, which a remote subscriber can locate, you create an imported
SAF topic (for example, named safTb) that maps to topic Ta from domain A, and
have the remote subscriber listen to safTb.

Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

Using Business Events and the Event Delivery Network 42-13

As an alternative to Step 2, you can provision another JMS topic (for example, named
Tb) in domain B to which a remote subscriber listens, and create a JMS bridge that
bridges source topic Ta to destination topic Tb.

42.3.7 How to Configure a Foreign JNDI Provider to Enable Administration Server
Applications to Publish Events to the SOA Server

This section describes how to configure a foreign JNDI provider when the publishing
application (for example, an ADF EAR file) is deployed on the administration server
instead of the SOA server.

To configure a foreign JNDI provider to enable administration server
applications to publish events to the SOA Server:

1. Log in to the Oracle WebLogic Server Administration Console.

http://host:port/console

2. In the Domain Structure section, expand Services > Foreign JNDI Providers.

3. Click Lock & Edit.

4. Click New.

5. In the Name field, enter a name (for example, SOA_JNDI), and click Next.

6. Select the AdminServer check box, and click Finish.

7. In the Name column, click the provider name you entered in Step 5.

8. Enter the details shown in Table 42-4, and click Save.

Table 42-4 Configuration Details

Field Description

Initial Context Factory Enter weblogic.jndi.WLInitialContextFactory.

Provider URL Enter t3://hostname:soa_server_port.

User Enter the Oracle WebLogic Server user name.

Password and Confirm
Password

Enter the password for the Oracle WebLogic Server user
name.

9. Click Links > New.

10. Enter the details shown in Table 42-5, and click OK.

Table 42-5 Configuration Details

Field Description

Name Enter SOA_EDNDataSource.

Local Name Enter jdbc/EDNDataSource.

Remote Name Enter jdbc/EDNDataSource.

Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

42-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

11. Click New.

12. Enter the details shown in Table 42-6, and click OK.

Table 42-6 Configuration Details

Field Description

Name Enter SOA_EDNLocalTxDataSource.

Local Name Enter jdbc/EDNLocalTxDataSource.

Remote Name Enter jdbc/EDNLocalTxDataSource.

13. Click OK.

14. Click Activate Changes.

15. Modify the FMW_Home/user_projects/domains/domain_name/bin/
setDomainEnv.sh file for Linux (or setDomainEnv.bat file for Windows) as
follows:

WLS_JDBC_REMOTE_ENABLED="-Dweblogic.jdbc.remoteEnabled=true"

16. Restart the server.

42.3.8 How to Configure the Connection Factory When the Oracle WebLogic Server
JMS Runs in the Same Local JVM as the JMS Adapter

If Oracle WebLogic Server JMS is running in the local JVM (the same JVM as the JMS
adapter), you must correctly configure the isTransacted connector factory
property. For your servlet client, which is locally colocated with the Oracle WebLogic
Server JMS server to work, perform the following steps:

1. Log in to Oracle WebLogic Server Administration Console, and select
Deployments > JmsAdapter > Configuration -> Outbound Connection Pools.

2. Expand groups and instances, and select both eis/wls/EDNLocalTxDurableTopic
and eis/wls/EDNLocalTxTopic.

3. Set isTransacted to false.

4. Save and restart the SOA server.

For more information, see Section "Synchronous/Asynchronous Request Reply
Interaction Pattern" of Understanding Technology Adapters.

42.4 Subscribing to or Publishing a Business Event from a BPEL Process
Service Component

This section describes how to subscribe to a business event or publish a business event
from a BPEL process service component.

Subscribing to or Publishing a Business Event from a BPEL Process Service Component

Using Business Events and the Event Delivery Network 42-15

42.4.1 How to Subscribe to a Business Event

To subscribe to a business event:

1. From the Components window, drag a BPEL Process service component into the .

2. In the Name field, enter a name. Do not change any other default option and click
OK.

The BPEL process service component is created.

3. Double-click the BPEL process service component. Oracle BPEL Designer is
opened. Alternatively, you can also right-click the BPEL process service component
and click Edit.

4. Drag a Receive activity from the Components window into the SOA Composite
Editor, below the receiveInput activity.

Note:

The onMessage branch of a pick activity can also be set up to receive events
from the EDN. For more information about the onMessage branch, see
Selecting Between Continuing or Waiting on a Process with a Pick Activity.

5. Double-click the Receive activity. The Receive dialog opens. Alternatively, you can
also right-click the Receive activity and click Edit.

6. In the Name field, enter a name.

7. From the Interaction Type list, select Event. The layout of the Receive dialog
changes.

8. Click the Browse Events icon to the right of the Event field. The Subscribed Events
dialog appears, as shown in Figure 42-5.

Figure 42-5 Subscribed Events Dialog

9. Click the Add icon to select an event.

The Event Chooser dialog appears, as shown in Figure 42-6.

Subscribing to or Publishing a Business Event from a BPEL Process Service Component

42-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 42-6 Event Chooser Dialog

10. Select the event you created and click OK.

You are returned to the Subscribed Events dialog.

11. Select a level of delivery consistency for the event. Table 42-7 provides details.

Table 42-7 Events Table of Subscribed Events Dialog

Element Description

Consistency Click inside the Consistency column to select a level of delivery
consistency for the event.

• one and only one

Events are delivered to the subscriber in its own global (that is,
JTA) transaction. Any changes made by the subscriber within that
transaction are committed after the event processing is complete.
If the subscriber fails, the transaction is rolled back. Failed events
with retriable exceptions are automatically retried a configured
number of times before they are moved to the Error Hospital for
recovery (that is, subject to manual retries). Failed events with
nonretriable exceptions are moved to the Error Hospital without
automatic retries, and are not recoverable.

• guaranteed

Events are delivered to the subscriber in a local JMS transaction.
The subscriber can choose to create its own local transaction for
processing, but it is committed independently of the rest of event
processing. The guaranteed consistency level is a lower quality of
service option than one and only one, because a local transaction
is used instead of a global transaction. Failed events with retriable
exceptions are automatically retried a configured number of times
before they are moved to the Error Hospital where they are
recoverable, (that is, subject to manual retries. Failed events with
nonretriable exceptions are moved to the Error Hospital without
automatic retries, and are not recoverable.

For information about the Error Hospital, see Section "Recovering
From Faults in the Error Hospital" of Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

Subscribing to or Publishing a Business Event from a BPEL Process Service Component

Using Business Events and the Event Delivery Network 42-17

Table 42-7 (Cont.) Events Table of Subscribed Events Dialog

Element Description

Durable Durable subscriptions prevent against message loss caused by different
life cycles of publishers, subscribers, and the framework. Select an
option:

• yes: Events are retained if the subscriber is not running. This is the
default selection.

• no: Events are dropped if the subscriber is not running.

Run as
Publisher

Select a security publishing option:

• yes: The subscriber has the event publisher's security identity.
This is the default selection.

• no: The subscriber does not have the event publisher's security
identity.

Filter If you want to filter the event, double-click the Filter column of the
selected event or select the event and click the filter icon (first icon)
above the table. This displays the Expression Builder dialog. This
dialog enables you to specify an XPath filter expression. A filter
expression specifies that the contents (payload or headers) of a
message be analyzed before any service is invoked. For example, you
can apply a filter expression that specifies that a service be invoked
only if the message includes a customer ID.

When the expression logic is satisfied, the event is accepted for
delivery.

For more information about filters, see How to Specify an Expression
for Filtering Messages.

12. Click OK to close the Subscribed Events dialog.

You are returned to the Receive dialog.

Note:

Optionally, you can select the Create Instance check box, if this receive
activity is the initiating receive activity that starts the BPEL process service
component instance. This action enables creation of a new BPEL process
service component instance for every invocation.

If this receive activity is a midprocess receive activity in which the BPEL
instance is already started, then this receive activity waits for another event to
continue the execution of this BPEL instance.

13. Click OK.

Figure 42-7 shows a BPEL process service component that is configured for event
subscription.

Subscribing to or Publishing a Business Event from a BPEL Process Service Component

42-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 42-7 BPEL Process Service Component Configuration for Event
Subscription

42.4.2 How to Publish a Business Event

To publish a business event:

1. Drag an Invoke activity from the Components window into the SOA Composite
Editor, below the Receive activity created in How to Subscribe to a Business Event.

2. Double-click the Invoke activity. The Invoke dialog opens. Alternatively, you can
also right-click the Invoke activity and click Edit.

3. In the Name field, enter a name.

4. From Interaction Type list, select Event. The layout of the Invoke dialog changes.

5. To the right of the Event field, click the Browse Events icon. The Event Chooser
dialog appears.

6. Select the event you created and click OK.

You are returned to the Invoke dialog.

7. Click OK.

Figure 42-8 shows a BPEL process service component that is configured for an
event subscription and publication. The blue lightning bolt in the circle on the left
side indicates event subscription. The yellow lightning bolt in the circle on the right
side indicates event publication. Clicking the blue arrow inside the title changes it
to display the title of the published event.

Figure 42-8 BPEL Process Service Component Configuration for Event
Subscription and Publishing

42.4.3 What Happens When You Subscribe to and Publish a Business Event
The source code in the following example shows how the composite.xml source
changes for the subscribed and published events of a BPEL process service
component.

<component name="EventBPELProcess">
 <implementation.bpel src="EventBPELProcess.bpel"/>

Subscribing to or Publishing a Business Event from a BPEL Process Service Component

Using Business Events and the Event Delivery Network 42-19

 <property name="configuration.monitorLocation" type="xs:string"
 many="false">EventBPELProcess.monitor</property>
 <business-events>
 <subscribe xmlns:sub1="http://mycompany.com/events/orders"
 name="sub1:OrderReceivedEvent" consistency="oneAndOnlyOne"
 durable="true" runAsRoles="$publisher"/>
 <publishes xmlns:pub1="http://mycompany.com/events/orders"
 name="pub1:ProductSoldAlert" persistent="true" priority="7"
 timeToLive="36000000"/>/>
 </business-events>
</component>

 <business-events>
 <publishes xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="pub1:NewOrderSubmitted" persistent="true" priority="7"
 timeToLive="36000000"/>
 </business-events>
 </component>

While not explicitly demonstrated in this example, you can define XPath filters on
events. A filter is typically present in event subscriptions. The subscribe element
limits the type of event to which this service component is subscribed, and the filter
section further limits the event to specific content in which the component is
interested. In the following example, the event is accepted for delivery only if the
initial deposit is greater than 50000.

 <business-events>
 . . .
 . . .
 <filter>
 <xpath xmlns:be="http://oracle.com/fabric/businessEvent"
 xmlns:ns1="http://xmlns.oracle.com/singleString"
 <xpath expression= "/be:business-event/be:content/
 sub1:AccountInfo/Details[@initialDeposit > 50000]" />
 </filter>
 . . .
 . . .
 </business-events>

The standard BPEL activities such as receive, invoke, onMessage, and onEvent (in
BPEL 2.0) are extended with an extra attribute bpelx:eventName, so that the BPEL
process service component can receive events from the EDN event bus. The schema
for the eventName attribute is shown in the following example:

<xs:attribute name="eventName" type="xs:QName">
 <xs:annotation>
 <xs:appinfo>
 <tns:parent>
 <bpel11:onMessage/>
 <bpel11:receive/>
 <bpel11:invoke/>
 </tns:parent>
 </xs:appinfo>
 </xs:annotation>
 </xs:attribute>

The following example shows how the eventName attribute is used in the BPEL
source file:

Subscribing to or Publishing a Business Event from a BPEL Process Service Component

42-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<receive name="OrderPendingEvent" createInstance="yes"
 bpelx:eventName="ns1:OrderReceivedEvent"/>
<invoke name="Invoke_1" bpelx:eventName="ns1:ProductSoldAlert"/>

If the bpelx:eventName attribute is used in a receive, invoke, onMessage, or
onEvent (in BPEL 2.0) activity, then the standard attributes such as partnerLink,
operation, or portType are not present. This is because the existence of the
bpelx:eventName attribute shows that the activity is only interested in receiving
events from the EDN event bus or publishing events to the EDN event bus.

The XSD file for the BPEL process service component is slightly modified, so that the
partnerLink, operation, and portType attributes are no longer mandatory. The
Oracle JDeveloper validation logic enforces the presence of either the
bpelx:eventName attribute or the partnerLink, operation, and portType
attributes, but not both. The following example shows the modified schema definition
of a BPEL receive activity:

<complexType name="tReceive">
 <complexContent>
 <extension base="bpws:tExtensibleElements">
 <sequence>
 <element name="correlations" type="bpws:tCorrelations"
minOccurs="0"/>
 <group ref="bpws:activity"/>
 </sequence>
 <!- BPEL mandatory attributes relaxed to optional for supporting
BPEL-EDN ->
 <attribute name="partnerLink" type="NCName" use="optional"/>
 <attribute name="portType" type="QName" use="optional"/>
 <attribute name="operation" type="NCName" use="optional"/>
 <attribute name="variable" type="NCName" use="optional"/>
 </extension>
 </complexContent>
 </complexType>

The schema definition for the invoke and onMessage activities are modified similarly.

42.5 How to Integrate Oracle ADF Business Component Business Events
with Oracle Mediator

This section provides a high-level overview of how to integrate Oracle ADF Business
Component event conditions with SOA components. The SOA components include
Oracle Mediator service components and BPEL process service components.

To integrate Oracle ADF Business Component business events with SOA
components:

1. Create a business component project.

2. Add a business event definition to the project. This action generates an EDL file
and an XSD file. The XSD file contains the definition of the payload. Ensure also
that you specify that the event be raised by the Oracle ADF Business Component
upon creation.

For more information about creating and publishing Oracle ADF Business
Component business events, see Developing Fusion Web Applications with Oracle
Application Development Framework.

How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

Using Business Events and the Event Delivery Network 42-21

3. Create a SOA composite application and manually copy the EDL and XSD schema
files to the root directory of the SOA project. For example:

JDeveloper/mywork/SOA_application_name/SOA_project_name

4. Place schema files at the proper relative location from the EDL file based on the
import.

5. Create an Oracle Mediator service component as described in How to Subscribe to
a Business Event.

6. In the Event Chooser window, select the EDL file of the event, as described in How
to Subscribe to a Business Event.

7. Create a BPEL process service component in the same SOA composite application
for Oracle Mediator to invoke. Ensure that you select the payload of the Business
Component business event XSD created in Step 2.

8. Double-click the BPEL process service component.

9. Drag an Email activity into the BPEL process service component.

10. Use the payload of the business event XSD to complete the Subject and Body
fields.

11. Return to the Oracle Mediator service component in the .

12. Design a second service component to publish the event, such as a BPEL process
service component or a second Oracle Mediator service component.

SOA composite application design is now complete.

How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

42-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

43
Working with Cross References

This chapter describes how to use the cross referencing feature of Oracle SOA Suite to
associate identifiers for equivalent entities created in different applications. It includes
a reference of the XRef functions you can use to populate, view, and maintain entries
in the cross reference tables.

This chapter includes the following sections:

• Introduction to Cross References

• Introduction to Cross Reference Tables

• Creating and Modifying Cross Reference Tables

• Populating Cross Reference Tables

• Looking Up Cross Reference Tables

• Deleting a Cross Reference Table Value

• Creating and Running the Cross Reference Use Case

• Creating and Running Cross Reference for 1M Functions

43.1 Introduction to Cross References
Cross references enable you to dynamically map values for equivalent entities created
in different applications.

Note:

The cross referencing feature enables you to dynamically integrate values
between applications, whereas domain value maps enable you to specify
values at design time and edit values at runtime. For more information about
domain value maps, see Working with Domain Value Maps and Using with
Domain Value Maps .

When you create or update objects in one application, you may also want to propagate
the changes to other applications. For example, when a new customer is created in an
SAP application, you may want to create an entry for the same customer in your
Oracle E-Business Suite application named EBS. However, the applications that you
are integrating may be using different entities to represent the same information. For
example, for each new customer in an SAP application, a new row is inserted in its
Customer database with a unique identifier such as SAP_001. When the same
information is propagated to an Oracle E-Business Suite application and a Siebel
application, the new row should be inserted with different identifiers such as

Working with Cross References 43-1

EBS_1001 and SBL001. In such cases, you need some type of functionality to map
these identifiers with each other so that they can be interpreted by different
applications to be referring to the same entity. This can be done by using cross
references.

43.2 Introduction to Cross Reference Tables
Cross references are stored in the form of tables. Table 43-1 shows a cross reference
table containing information about customer identifiers in different applications.

Table 43-1 Cross Reference Table Sample

SAP EBS SBL

SAP_001 EBS_1001 SBL001

SAP_002 EBS_1002 SBL002

The identifier mapping is also required when information about a customer is updated
in one application and the changes must be propagated to other applications. You can
integrate different identifiers by using a common value integration pattern, which
maps to all identifiers in a cross reference table. For example, you can add one more
column named Common to the cross reference table shown in Table 43-1. The updated
cross reference table then appears, as shown in Table 43-2.

Table 43-2 Cross Reference Table with Common Column

SAP EBS SBL Common

SAP_001 EBS_1001 SBL001 CM001

SAP_002 EBS_1002 SBL002 CM002

Figure 43-1 shows how you can use common value integration patterns to map
identifiers in different applications.

Introduction to Cross Reference Tables

43-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-1 Common Value Integration Pattern Example

A cross reference table consists of two parts: metadata and actual data. The metadata
is saved as the .xref file created in Oracle JDeveloper, and is stored in the Metadata
Services (MDS) repository as an XML file. By default, the actual data is stored in the
XREF_DATA table of the database in the SOA Infrastructure database schema. You can
also generate a custom database table for each cross reference entity. The database
table depends on the metadata of the cross reference entity.

Consider the following two cross reference entities:

• ORDER with cross reference columns SIEBEL, COMMON, and EBS, as shown in
Table 43-3

• CUSTOMER with cross reference columns EBS, COMMON, and PORTAL, as shown in
Table 43-4

Table 43-3 ORDER Table

Column Name SIEBEL COMMON EBS

Column Value SBL_101 COM_100 EBS_002

Column Value COM_110 EBS_012

Table 43-4 CUSTOMER Table

Column Name EBS COMMON PORTAL

Column Value EBS_201 COM_200 P2002

If you chose to save all the runtime data in one generic table, then the data is stored in
the XREF_DATA table, as shown in Table 43-5.

Introduction to Cross Reference Tables

Working with Cross References 43-3

Table 43-5 XREF_DATA Table

XREF_TABLE_N
AME

XREF_COLUMN
_NAME

ROW_NUMBER VALUE IS_DELETED

ORDER SIEBEL 100012345 SBL_101 N

ORDER COMMON 100012345 COM_100 N

ORDER EBS 100012345 EBS_002 N

ORDER COMMON 110012345 COM_110 N

ORDER EBS 110012345 EBS_012 N

CUSTOMER EBS 200212345 EBS_201 N

CUSTOMER COMMON 200212345 COM_200 N

CUSTOMER PORTAL 200212345 P2002 N

This approach has the following advantages:

• The process of adding, removing, and modifying the columns of the cross
reference entities is simple.

• The process of creating and deleting cross reference entities from an application is
straightforward.

However, this approach has the following disadvantages:

• A large number of rows are generated in the database because each cross
reference cell is mapped to a different row in the database. This reduces the
performance of the queries.

• In the generic table, the data for the columns XREF_TABLE_NAME and
XREF_COLUMN_NAME is repeated across a large number of rows.

To overcome these problems, you can generate a custom database table for each cross
reference entity. The custom database tables depend on the metadata of the cross
reference entities. For example, for the XREF_ORDER table and XREF_CUSTOMER table,
you can generate the custom database tables shown in Table 43-6 and Table 43-7.

Table 43-6 XREF_ORDER Table

ROW_ID SIEBEL COMMON EBS

100012345 SBL_101 COM_100 EBS_002

110012345 COM_110 EBS_012

Table 43-7 XREF_CUSTOMER Table

ROW_ID EBS COMMON PORTAL

200212345 EBS_201 COM_200 P2002

Introduction to Cross Reference Tables

43-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

This approach requires you to execute Data Definition Language (DDL) scripts to
generate the custom database tables. For more information about custom database
tables, see How to Create Custom Database Tables.

43.3 Oracle Data Integrator Support for Cross Referencing
Oracle Data Integrator (ODI) achieves data integration through an E-LT (extract, load,
transform) model. You can use ODI to help with your cross-referencing needs. ODI
provides three Knowledge Modules for handling SOA cross references that perform
the following functions: Populate the cross-reference table, create a common ID for the
target table, push the common ID and the source primary key to the cross-reference
table, and create and push a unique row number that creates the cross reference
between the source primary key and the common ID. With the modules, you can
create an integration interface that both loads a target table from several source tables
and handles cross-references between one of the sources and the target.

For more information about ODI and cross referencing, see "Oracle SOA Suite Cross
References" in Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for
Oracle Data Integrator.

43.4 Creating and Modifying Cross Reference Tables
You can create cross references tables in a SOA composite application and then use it
with a BPEL process service component or an Oracle Mediator service component
during transformations.

Note:

You can also create cross-reference tables in Service Bus projects and use them
in message flows during transformations.

43.4.1 How to Create Cross Reference Metadata

To create cross reference metadata:

1. In Oracle JDeveloper, select the SOA project in which you want to create the cross
reference.

2. Right-click the project and select New.

The New Gallery dialog is displayed.

3. Select SOA Tier from the Categories section, and then select Transformations.

4. Select Cross Reference(XREF) from the Items section.

5. Click OK.

The Create Cross Reference(XREF) File dialog is displayed.

6. In the File Name field, specify the name of the cross reference file. For example,
specify Customer.

A cross reference name is used to uniquely identify a cross reference table. Two
cross reference tables cannot have same name in the cross reference repository. The

Oracle Data Integrator Support for Cross Referencing

Working with Cross References 43-5

cross reference file name is the name of the cross reference table with an extension
of .xref.

7. In the Description field, enter a description for the cross reference. For example:

Cross reference of Customer identifiers.

8. In the End System fields, enter the end system names.

The end systems map to the cross reference columns in a cross reference table. For
example, you can change the first end system name to SAP and the second end
system name to EBS. Each end system name must be unique within a cross
reference

A sample Create Cross Reference(XREF) File dialog is displayed in Figure 43-2.

Figure 43-2 Create Cross Reference(XREF) File Dialog

9. Click OK.

The Cross Reference Editor is displayed, as shown in Figure 43-3. You can use this
editor to modify the cross reference.

Creating and Modifying Cross Reference Tables

43-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-3 Cross Reference Editor

43.4.2 What Happens When You Create a Cross Reference
A file with extension .xref gets created and appears in the Applications window.
All .xref files are based on the schema definition (XSD) file shown in the following
example:

<?xml version="1.0" encoding="UTF-8" ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/xref"
 xmlns:tns="http://xmlns.oracle.com/xref" elementFormDefault="qualified">
 <element name="xref" type="tns:xrefType"/>
 <complexType name="xrefType">
 <sequence>
 <element name="table">
 <complexType>
 <sequence>
 <element name="description" type="string" minOccurs="0"
 maxOccurs="1"/>
 <element name="columns" type="tns:columnsType" minOccurs="0"
 maxOccurs="1"/>
 <element name="rows" type="tns:rowsType" maxOccurs="1"
 minOccurs="0"/>
 </sequence>
 <attribute name="name" type="string" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="columnsType">
 <sequence>
 <element name="column" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="name" type="string" use="required"/>
 </complexType>

Creating and Modifying Cross Reference Tables

Working with Cross References 43-7

 </element>
 </sequence>
 </complexType>

 <complexType name="rowsType">
 <sequence>
 <element name="row" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="cell" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="colName" type="string" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</schema>

43.4.3 How to Create Custom Database Tables
As mentioned previously, all the runtime data by default gets stored in the
XREF_DATA table. If you want to create custom database tables, then perform the
following steps.

To create custom database tables:

1. From the Optimize list, select Yes in the Cross Reference Editor.

The name of the custom database table to be generated is displayed in the Table
Name field, as shown in Figure 43-4.

Creating and Modifying Cross Reference Tables

43-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-4 Generating Custom Database Tables

The Table Name field is editable and you can change the name of the custom table.
The custom database table name should be prefixed with xref_. If you do not
prefix your table name with xref_, then while generating the table, you receive
the following error message:

Table name should begin with 'xref_' and cannot be 'xref_data' or
'xref_deleted_data' which are reserved table names for XREF runtime.

2. Click Generate Table DDL. The Optimize XREF dialog is displayed.

3. Select the Generate Drop DDL check box to drop the table and associated indexes,
if a table with the same name already exists. If you select this option and click Run,
then the Running Drop DDL Warning dialog is displayed with the following
message:

Running the Drop DDL will remove the table and indexes, do you want to
continue?

4. Click Run. The Run Table DDL dialog is displayed.

5. From the Connection list, select the database connection to use.

If there is no available connection, then click Create a new database connection to
open the Create Database Connection dialog, as shown in Figure 43-5. If you want
to edit an existing connection, then select the connection and click Edit selected
database connection to open the Edit Database Connection dialog.

Creating and Modifying Cross Reference Tables

Working with Cross References 43-9

Figure 43-5 Create Database Connection Dialog

6. Enter all the required details and click OK. The Connection list of the Run Table
DDL dialog is now populated.

Note:

Create the database table in the soainfra schema of the database.

7. Click OK on the Run Table DDL dialog to run the DDL script.

The Table DDL Run Results dialog displays the execution status of your DDL
scripts.

For custom database tables, two additional attributes, namely mode and dbtable, are
added to the schema definition mentioned in What Happens When You Create a Cross
Reference. They are added for the table element in the following way:

 <attribute name="mode" type="string" default="generic" />
 <attribute name="dbtable" type="string" default="xref_data"/>

43.4.4 How to Add an End System to a Cross Reference Table

To add an end system to a cross reference table:

1. Click Add.

A new row is added.

2. Double-click the newly-added row.

Creating and Modifying Cross Reference Tables

43-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. Enter the end system name. For example, SBL.

43.5 Populating Cross Reference Tables
You can create a cross reference table in a SOA composite application in Oracle
JDeveloper and then use it to look up column values at runtime. However, before
using a cross reference to look up a particular value, you must populate it at runtime.
You can use the cross reference XPath functions to populate the cross-reference tables.
The XPath functions enable you to populate a cross reference column, perform
lookups, and delete a column value. These XPath functions can be used in the
Expression Builder dialog to create an expression or in the XSLT Mapper to create
transformations. For example, you can use the xref:populateXRefRow function to
populate a cross reference column with a single value and the
xref:populateXRefRow1M function to populate a cross reference column with
multiple values.

You can access the Expression Builder dialog through an assign activity, an XSL
transformation, or the filtering functionality of a BPEL process service component or
an Oracle Mediator service component. Figure 43-6 shows how you can select the
cross reference functions in the Expression Builder dialog.

Figure 43-6 Expression Builder Dialog with Cross Reference Functions

The XSLT Mapper is displayed when you create an XSL file to transform data from
one XML schema to another. Figure 43-7 shows how you can select the cross reference
functions in the XSLT Mapper.

Populating Cross Reference Tables

Working with Cross References 43-11

Figure 43-7 XSLT Mapper Dialog with Cross Reference Functions

A cross reference table must be populated at runtime before using it. By default, the
data is stored in the XREF_DATA table under the SOA Infrastructure database schema.
You can use the xref:populateXRefRow function to populate a cross reference
column with a single value and the xref:populateXRefRow1M function to populate
a cross reference column with multiple values.

Note:

You can also store the data in a different database schema by configuring a
data source in the following way:

• The JNDI name of the data source should be jdbc/xref.

• The ORACLE_HOME/rcu/integration/soainfra/sql/xref/
createschema_xref_oracle.sql file should be loaded to create the
XREF_DATA table in this data source.

43.5.1 About the xref:populateXRefRow Function
The xref:populateXRefRow function populates a cross reference column with a
single value. The xref:populateXRefRow function returns a string value, which is
the cross reference value being populated. For example, as shown in Table 43-8, the
Order table has the following columns: EBS, Common, and SBL with values E100,
100, and SBL_001 respectively.

Table 43-8 Cross Reference Table with Single Column Values

EBS Common SBL

E100 100 SBL_001

Populating Cross Reference Tables

43-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

If you find you have concurrency issues when using this function, you can
also use the populateLookupXRefRow function. The
populateLookupXRefRow function should only be used in cases where
simultaneous updates are being made, resulting in unique constraint
violations. This function is described under About the
xref:populateLookupXRefRow Function.

The syntax of the xref:populateXRefRow function is shown in the following
example:

xref:populateXRefRow(xrefLocation as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, xrefValue as string, mode
 as string) as string

Parameters

• xrefLocation: The cross reference table URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be populated.

• xrefValue: The value to be populated in the column.

• mode: The mode in which the xref:populateXRefRow function populates the
column. You can specify any of the following values: ADD, LINK, or UPDATE.
Table 43-9 describes these modes.

Table 43-9 xref:populateXRefRow Function Modes

Mode Description Exception Reasons

ADD Adds the reference value and the value to
be added.

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"EBS","EBS100", "Common","CM001",
"ADD")

Adds the reference value EBS100 in the
ESB reference column and the value
CM001 in the Common column.

Exceptions can occur for the
following reasons:

• The specified cross reference
table is not found.

• The specified columns are not
found.

• The values provided are
empty.

• The value being added is not
unique across that column for
that table.

• The column for that row
already contains a value.

• The reference value exists.

Populating Cross Reference Tables

Working with Cross References 43-13

Table 43-9 (Cont.) xref:populateXRefRow Function Modes

Mode Description Exception Reasons

LINK Adds the cross reference value
corresponding to the existing reference
value.

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"Common","CM001","SBL","SBL_
001","LINK")

Links the value CM001 in the Common
column to the SBL_001 value in the SBL
column.

Exceptions can occur for the
following reasons:

• The specified cross reference
table is not found.

• The specified columns are not
found.

• The values provided are
empty.

• The reference value is not
found.

• The value being linked exists
in that column for that table.

UPDATE Updates the cross reference value
corresponding to an existing reference
column-value pair.

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"SBL","SBL_001", "SBL","SBL_
1001","UPDATE")

Updates the value SBL_001 in the SBL
column to the value SBL_1001.

Exceptions can occur for the
following reasons:

• The specified cross reference
table is not found.

• The specified columns are not
found.

• The values provided are
empty.

• Multiple values are found for
the column being updated.

• The reference value is not
found.

• The column for that row does
not have a value.

Note:

The mode parameter values are case-sensitive and should be specified in
upper case only, as shown in Table 43-9.

Table 43-10 describes the xref:populateXRefRow function modes and exception
conditions for these modes.

Table 43-10 xref:populateXRefRow Function Results with Different Modes

Mode Reference Value Value to be Added Result

ADD Absent

Present

Present

Absent

Absent

Present

Success

Exception

Exception

LINK Absent

Present

Present

Absent

Absent

Present

Exception

Success

Exception

Populating Cross Reference Tables

43-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 43-10 (Cont.) xref:populateXRefRow Function Results with Different Modes

Mode Reference Value Value to be Added Result

UPDATE Absent

Present

Present

Absent

Absent

Present

Exception

Exception

Success

43.5.2 About the xref:populateLookupXRefRow Function
Like the xref:populateXRefRow function, the xref:populateLookupXRefRow
function populates a cross reference column with a single value. Unlike the
xref:populateXRefRow function, the xref:populateLookupXRefRow function
does not throw a unique constraint violation error when records with the same ID are
added simultaneously. Instead, it behaves as a lookup and returns the existing source
value that caused the error and does not stop the processing flow. Use this function to
resolve any concurrency issues that could arise when using the
xref:populateXRefRow function.

The xref:populateLookupXRefRow function returns a string value, which is the
cross reference value being populated or, with a unique constraint violation, the cross
reference value that was already populated by the first committed thread. For
example, as shown in Table 43-8, the XREF_CUSTOMER_DATA table has the following
columns: EBS, Common, and SBL. The xref:populateLookupXRefRow function is
invoked by two threads in parallel with following values:

• Thread One: xref: populateLookupXRefRow ("default/xref/
example.xref", "EBS", "EBS100", "Common" "CM001", "ADD")

• Thread Two: xref: populateLookupXRefRow ("default/xref/
example.xref", "EBS", "EBS100", "Common" "CM002", "ADD")

The table is populated as shown in Table 43-11. Since thread one is committed first,
thread two returns "CM001" to the caller.

Table 43-11 Cross Reference Table Populated by xref:populateLookupXRefRow

EBS Common SBL

EBS100 CM001

The syntax of the xref:populateLookupXRefRow function is shown in the
following example:

xref:populateLookupXRefRow(xrefMetadataURI as string, xrefReferenceColumnName as
 string, xrefReferenceValue as string, xrefColumnName as string, xrefValue as
 string, mode as string) as string

Parameters

• xrefMetadataURI: The cross reference table URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be populated.

Populating Cross Reference Tables

Working with Cross References 43-15

• xrefValue: The value to be populated in the column.

• mode: The mode in which the xref:populateXRefRow function populates the
column. You can specify ADD or LINK. Table 43-10 describes these modes and
exception conditions for the modes.

Note:

The mode parameter values are case-sensitive and should be specified in
upper case only.

Table 43-12 xref:populateLookupXRefRow Function Results with Different Modes

Mode Reference Value Value to be Added Result

ADD Absent

Present

Present

Absent

Absent

Present

Success

Exception (Success
only when Exception
is Unique constraint
violation)

Exception (Success
only when Exception
is Unique constraint
violation)

LINK Absent

Present

Present

Absent

Absent

Present

Exception

Success

Exception

Usage Notes

• When using a custom table approach, you must add the primary constraint on the
columns that must be unique in the cross-reference table. Using Table 43-11 as an
example, the SQL statement is similar to the following:

alter table xref_customer_data add constraint xref_vnx_data_pk
 primary key (common, ebs);

Populate the primary constraint columns first and then populate the remaining
columns in subsequent calls.

• This function should not be used for inserting cross references for primary objects,
since this could mask data inconsistency issues. Only use the function for
secondary objects to a main dependent object. For example, do not use the
function to determine whether an account already exists when creating customer
accounts; but do use it if the addresses in those customer accounts are being
synchronized.

43.5.3 About the xref:populateXRefRow1M Function
Two values in an end system can correspond to a single value in another system. In
such a scenario, you should use the xref:populateXRefRow1M function to populate
a cross reference column with a value. For example, as shown in Table 43-13, the
SAP_001 and SAP_0011 values refer to one value of the EBS and SBL applications.

Populating Cross Reference Tables

43-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To populate columns such as SAP, you can use the xref:populateXRefRow1M
function.

Table 43-13 Cross Reference Table with Multiple Column Values

SAP EBS SBL

SAP_001

SAP_0011

EBS_1001 SBL001

SAP_002 EBS_1002 SBL002

The syntax of the xref:populateXRefRow1M function is shown in the following
example:

xref:populateXRefRow1M(xrefLocation as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, xrefValue as string, mode
 as string) as string

Parameters

• xrefLocation: The cross reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be populated.

• xrefValue: The value to be populated in the column.

• mode: The mode in which the xref:populateXRefRow function populates the
column. You can specify either of the following values: ADD or LINK. Table 43-14
describes these modes:

Table 43-14 xref:populateXRefRow1M Function Modes

Mode Description Exception Reasons

ADD Adds the reference value and the value to be
added.

For example, the following mode:

xref:populateXRefRow1M("customers.xref","
EBS","EBS_1002", "SAP","SAP_0011","ADD")

Adds the reference value EBS_1002 in the
reference column EBS and the value
SAP_0011 in the SAP column.

Exceptions can occur for the
following reasons:

• The specified cross
reference table is not
found.

• The specified columns are
not found.

• The values provided are
empty.

• The value being added is
not unique across that
column for that table.

• The reference value
exists.

Populating Cross Reference Tables

Working with Cross References 43-17

Table 43-14 (Cont.) xref:populateXRefRow1M Function Modes

Mode Description Exception Reasons

LINK Adds the cross reference value corresponding
to the existing reference value.

For example, the following mode:

xref:populateXRefRow1M("customers.xref","
EBS","EBS_1002", "SAP","SAP_002","LINK")

Links the value SAP_002 in the SAP column to
the EBS_1002 value in the EBS column.

Exceptions can occur for the
following reasons:

• The specified cross
reference table is not
found.

• The specified columns are
not found.

• The values provided are
empty.

• The reference value is not
found.

• The value being added is
not unique across the
column for that table.

Table 43-15 describes the xref:populateXRefRow1M function modes and exception
conditions for these modes.

Table 43-15 xref:populateXRefRow1M Function Results with Different Modes

Mode Reference Value Value to be Added Result

ADD Absent

Present

Present

Absent

Absent

Present

Success

Exception

Exception

LINK Absent

Present

Present

Absent

Absent

Present

Exception

Success

Exception

43.5.4 How to Populate a Column of a Cross Reference Table

To populate a column of a cross reference table:

1. In the XSLT Mapper, expand the trees in the Source and Target panes.

2. Drag and drop a source element to a target element.

3. In the Components window, select Advanced.

4. Select XREF Functions.

5. Drag and drop the populateXRefRow function to the line that connects the source
object to the target object.

A populateXRefRow icon appears on the connecting line.

6. Double-click the populateXRefRow icon.

The Edit Function – populateXRefRow dialog is displayed, as shown in
Figure 43-8.

Populating Cross Reference Tables

43-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-8 Edit Function – populateXRefRow Dialog

7. Specify the following values for the fields in the Edit Function –
populateXRefRow dialog:

a. In the xrefLocation field, enter the location URI of the cross reference file.

Click Browse to the right of the xrefLocation field to select the cross reference
file. You can select an already-deployed cross reference from MDS and also
from a shared location in MDS using the Resource Palette.

b. In the referenceColumnName field, enter the name of the cross reference
column.

Click Browse to the right of the referenceColumnName field to select a
column name from the columns defined for the cross reference you
previously selected.

c. In the referenceValue field, you can manually enter a value or press Ctrl-
Space to launch the XPath Building Assistant. Press the up and down keys to
locate an object in the list and press Enter to select that object.

d. In the columnName field, enter the name of the cross reference column.

Click the Browse icon to the right of the columnName field to select a column
name from the columns defined for the cross reference you previously
selected.

e. In the value field, you can manually enter a value or press Ctrl-Space to
launch the XPath Building Assistant.

f. In the mode field, enter a mode in which you want to populate the cross
reference table column. For example, enter ADD.

You can also click Browse to select a mode. The Select Populate Mode dialog
is displayed from which you can select a mode.

8. Click OK.

A populated Edit Function – populateXRefRow dialog is shown in Figure 43-9.

Populating Cross Reference Tables

Working with Cross References 43-19

Figure 43-9 Populated Edit Function – populateXRefRow Dialog

43.6 Looking Up Cross Reference Tables
After populating the cross reference table, you can use it to look up a value. The
xref:lookupXRef and xref:lookupXRef1M functions enable you to look up a
cross reference for single and multiple values, respectively.

43.6.1 About the xref:lookupXRef Function
You can use the xref:lookupXRef function to look up a cross reference column for a
value that corresponds to a value in a reference column. For example, the following
function looks up the Common column of the cross reference tables described in
Table 43-2 for a value corresponding to the SAP_001 value in the SAP column.

xref:lookupXRef("customers.xref","SAP","SAP_001","Common",true())

The syntax of the xref:lookupXRef function is shown in the following example:

xref:lookupXRef(xrefLocation as string, xrefReferenceColumnName as string,
xrefReferenceValue as string, xrefColumnName as string, needAnException as
boolean) as string

Parameters

• xrefLocation: The cross reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• needAnException: When the value is set to true, an exception is thrown if the
value is not found. Otherwise, an empty value is returned.

Exception Reasons

At runtime, an exception can occur for the following reasons:

• The cross reference table with the given name is not found.

Looking Up Cross Reference Tables

43-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• The specified column names are not found.

• The specified reference value is empty.

• Multiple values are found.

43.6.2 About the xref:lookupXRef1M Function
You can use the xref:lookupXRef1M function to look up a cross reference column
for multiple values corresponding to a value in a reference column. The
xref:lookupXRef1M function returns a node-set containing multiple nodes. Each
node in the node-set contains a value.

For example, the following function looks up the SAP column of Table 43-13 for
multiple values corresponding to the EBS_1001 value in the EBS column:

xref:lookupXRef1M("customers.xref","EBS","EBS_1001","SAP",true())

The syntax of the xref:lookupXRefRow1M function is shown in the following
example:

xref:lookupXRef1M(xrefLocation as String, xrefReferenceColumnName as String,
 xrefReferenceValue as String, xrefColumnName as String, needAnException as
 boolean) as node-set

Parameters

• xrefLocation: The cross reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• needAnException: If this value is set to true, an exception is thrown when the
referenced value is not found. Otherwise, an empty node-set is returned.

Example of the xref:lookupXRefRow1M Function

Consider the Order table shown in Table 43-16 with the following three columns:
Siebel, Billing1, and Billing2.

Table 43-16 Order Table

Siebel Billing1 Billing2

100 101 102

110 111

112

For 1:1 mapping, the
xref:lookupPopulatedColumns("Order","Siebel","100","false")
method returns the values shown in the following example:

<column name="BILLING1">101</column>
<column name="BILLING2">102</column>

In this case, both the columns, Billing1 and Billing2, are populated.

Looking Up Cross Reference Tables

Working with Cross References 43-21

For 1:M mapping, the
xref:lookupPopulatedColumns("Order","Siebel","110","false")
method returns the values shown in the following example:

<column name="BILLING2">111</column>
<column name="BILLING2">112</column>

In this case, Billing1 is not populated.

Exception Reasons

An exception can occur for the following reasons:

• The cross reference table with the given name is not found.

• The specified column names are not found.

• The specified reference value is empty.

43.6.3 About the xref:lookupPopulatedColumns Function
You can use the xref:lookupPopulatedColumns function to look up all the
populated columns for a given cross reference table, a cross reference column, and a
value. The xref:lookupPopulatedColumns function returns a node-set with each
node containing a column name and the corresponding value.

The syntax of the xref:LookupPopulatedColumns function is shown in the
following example:

xref:LookupPopulatedColumns(xrefTableName as String,xrefColumnName as
 String,xrefValue as String,needAnException as boolean)as node-set

Parameters

• xrefTableName: The name of the reference table.

• xrefColumnName: The name of the reference column.

• xrefValue: The value corresponding to the reference column name.

• needAnException: If this value is set to true, then an exception is thrown when
no value is found in the referenced column. Otherwise, an empty node-set is
returned.

Exception Reasons

An exception can occur for the following reasons:

• The cross reference table with the given name is not found.

• The specified column names are not found.

• The specified reference value is empty.

43.6.4 How to Look Up a Cross Reference Table for a Value

To look up a cross reference table column:

1. In the XSLT Mapper, expand the trees in the Source and Target panes.

2. Drag and drop the source element to the target element.

Looking Up Cross Reference Tables

43-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. In the Components window, select Advanced.

4. Select XREF Functions.

5. Drag and drop the lookupXRef function to the line that connects the source object
to the target object.

A lookupXRef icon appears on the connecting line.

6. Double-click the lookupXRef icon.

The Edit Function – lookupXRef dialog is displayed, as shown in Figure 43-10.

Figure 43-10 Edit Function – lookupXRef Dialog

7. Specify the following values for the fields in the Edit Function – lookupXRef
dialog:

a. In the xrefLocation field, enter the location URI of the cross reference file.

Click Browse to the right of the xrefLocation field to select the cross reference
file. You can select an already deployed cross reference from MDS and also
from a shared location in MDS by using the Resource Palette.

b. In the referenceColumnName field, enter the name of the cross reference
column.

Click Browse to the right of the referenceColumnName field to select a
column name from the columns defined for the cross reference you
previously selected.

c. In the referenceValue field, you can manually enter a value or press Ctrl-
Space to use the XPath Building Assistant. Press the up and down keys to
locate an object in the list and press Enter to select that object.

d. In the columnName field, enter the name of the cross reference column.

Click Browse to the right of the columnName field to select a column name
from the columns defined for the cross reference you previously selected.

e. Click Browse to the right of needException field. The Need Exception dialog
is displayed. Select Yes to raise an exception if no value is found. Otherwise,
select No.

Looking Up Cross Reference Tables

Working with Cross References 43-23

8. Click OK.

A populated Edit Function – lookupXRef dialog is shown in Figure 43-11.

Figure 43-11 Populated Edit Function – lookupXRef Dialog

43.7 Deleting a Cross Reference Table Value
You can use the xref:markForDelete function to delete a value in a cross reference
table. The row, containing the column value passed to the function, is deleted from the
XREF_DATA table and moved to the XREF_DELETED_DATA table. This function
returns true if the deletion is successful. Otherwise, it returns false.

A cross reference table row should have at least two mappings. If you have only two
mappings in a row and you mark one value for deletion, then the value in another
column is also deleted.

The syntax for the xref:markForDelete function is shown in the following
example:

xref:markForDelete(xrefTableName as string, xrefColumnName as string,
xrefValueToDelete as string) return as boolean

Parameters

• xrefTableName: The cross reference table name.

• xrefColumnName: The name of the column that contains the value to be deleted.

• xrefValueToDelete: The value to be deleted.

Exception Reasons

An exception can occur for the following reasons:

• The cross reference table with the given name is not found.

• The specified column name is not found.

• The specified value is empty.

• The specified value is not found in the column.

Deleting a Cross Reference Table Value

43-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Multiple values are found.

43.7.1 How to Delete a Cross Reference Table Value

To delete a cross reference table value:

1. In the XSLT Mapper, expand the trees in the Source and Target panes.

2. Drag and drop the source element to the target element.

3. In the Components window, select Advanced.

4. Select XREF Functions.

5. Drag and drop the markForDelete function to the line that connects the source
object to the target object.

A markForDelete icon appears on the connecting line.

6. Double-click the markForDelete icon.

The Edit Function – markForDelete dialog is displayed, as shown in Figure 43-12.

Figure 43-12 Edit Function – markForDelete Dialog

7. Specify the following values for the fields in the Edit Function – markForDelete
dialog:

a. In the xrefLocation field, enter the location URI of the cross reference file.

Click the Search icon to the right of the xrefLocation field to select the cross
reference file. You can select an already deployed cross reference from MDS
and also from a shared location in MDS by using the Resource Palette.

b. In the columnName field, enter the name of cross reference table column.

Click the Search icon to the right of the columnName field to select a column
name from the columns defined for the cross reference you previously
selected.

c. In the Value field, manually enter a value or press Ctrl-Space to launch the
XPath Building Assistant. Press the up and down keys to locate an object in
the list and press Enter to select that object.

Deleting a Cross Reference Table Value

Working with Cross References 43-25

A populated Edit Function – markForDelete dialog is shown in Figure 43-13.

Figure 43-13 Populated Edit Function – markForDelete Dialog

8. Click OK.

43.8 Creating and Running the Cross Reference Use Case
This cross reference use case implements an integration scenario between Oracle EBS,
SAP, and Siebel instances. In this use case, when an insert, update, or delete operation
is performed on the SAP_01 table, the corresponding data is inserted or updated in
the EBS and SBL tables. Figure 43-14 provides an overview of this use case.

Figure 43-14 XrefCustApp Use Case in

To download the sample files mentioned in this section, see the Oracle SOA Suite
samples page.

Creating and Running the Cross Reference Use Case

43-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

43.8.1 How to Create the Use Case
This section provides the design-time tasks for creating, building, and deploying your
SOA Composite application. These tasks should be performed in the order in which
they are presented.

43.8.1.1 Task 1: How to Configure the Oracle Database and Database Adapter

To configure the Oracle database and database adapter:

1. You need the SCOTT database account with password TIGER for this use case. You
must ensure that the SCOTT account is unlocked.

You can log in as SYSDBA and then run the setup_user.sql script available in
the XrefOrderApp1M/sql directory to unlock the account.

2. Run the create_schema.sql script available in the XrefOrderApp1M/sql
directory to create the tables required for this use case.

3. Run the create_app_procedure.sql script available in the
XrefOrderApp1M/sql directory to create a procedure that simulates the various
applications participating in this integration.

4. Run the createschema_xref_oracle.sql script available in the OH/rcu/
integration/soainfra/sql/xref/ directory to create a cross reference table
to store runtime cross reference data.

5. Copy the ra.xml and weblogic-ra.xml files from $BEAHOME/META-INF to the
newly created directory called META-INF on your computer.

6. Edit the weblogic-ra.xml file available in the $BEAHOME/META-INF directory
as follows:

• Modify the property to xADataSourceName as follows:

<property>
 <name>xADataSourceName</name>
 <value>jdbc/DBConnection1</value>
</property>

• Modify the jndi-name as follows:

<jndi-name> eis/DB/DBConnection1</jndi-name>

This sample uses eis/DB/DBConnection1 to poll the SAP table for new
messages and to connect to the procedure that simulates Oracle EBS and Siebel
instances.

7. Package the ra.xml and weblogic-ra.xml files as a RAR file and deploy the
RAR file by using Oracle WebLogic Server Administration Console.

8. Create a data source using the Oracle WebLogic Server Administration Console
with the following values:

• jndi-name=jdbc/DBConnection1

• user=scott

Creating and Running the Cross Reference Use Case

Working with Cross References 43-27

• password=tiger

• url=jdbc:oracle:thin:@host:port:service

• connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

9. Create a data source using the Oracle WebLogic Server Administration Console
with the following values:

• jndi-name=jdbc/xref

• user=scott

• password=tiger

• url=jdbc:oracle:thin:@host:port:service

• connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

43.8.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:

1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter XrefCustApp, and then click Next.

The Name your SOA project page appears.

5. In the Project Name field, enter XrefCustApp and click Next.

The Configure SOA settings page appears.

6. From the Composite Template list, select Empty Composite and then click Finish.

The Applications window of Oracle JDeveloper is updated with the new
application and project and the SOA Composite Editor contains a blank composite.

7. From the File menu, select Save All.

43.8.1.3 Task 3: How to Create a Cross Reference

After creating an application and a project for the use case, you must create a cross
reference table.

To create a cross reference table:

1. In the Applications window, right-click the XrefCustApp project and select New.

Creating and Running the Cross Reference Use Case

43-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Cross Reference(XREF) and click OK.

The Create Cross Reference(XREF) File dialog is displayed.

4. In the File Name field, enter customer.xref.

5. In the End System fields, enter SAP_01 and EBS_i76.

6. Click OK.

The Cross Reference Editor is displayed.

7. Click Add.

A new row is added.

8. Enter SBL_78 as the end system name in the newly added row.

9. Click Add and enter Common as the end system name.

The Cross Reference Editor appears, as shown in Figure 43-15.

Figure 43-15 Customer Cross Reference

10. From the File menu, select Save All and close the Cross Reference Editor.

43.8.1.4 Task 4: How to Create a Database Adapter Service

To create a database adapter service:

1. In the Oracle JDeveloper Components window, select SOA.

2. Select Database and drag it to the Exposed Services swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

Creating and Running the Cross Reference Use Case

Working with Cross References 43-29

The Service Name page is displayed.

4. In the Service Name field, enter SAP.

5. Click Next.

The Service Connection page is displayed.

6. In the Application Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Poll for New or Changed Records in a Table and click Next.

The Select Table page is displayed.

10. Click Import Tables.

The Import Tables dialog is displayed.

11. Select Scott from Schema.

12. In the Name Filter field, enter %SAP% and click Query.

The Available field is populated with SAP_01 table name.

13. Double-click SAP_01.

The selected field is populated with SAP_01.

14. Click OK.

The Select Table page now contains the SAP_01 table.

15. Select SAP_01 and click Next.

The Define Primary Key page is displayed.

16. Select ID as the primary key and click Next.

The Relationships page is displayed.

17. Click Next.

The Attribute Filtering page is displayed.

18. Click Next.

The After Read page is displayed.

19. Select Update a Field in the [SAP_01] Table (Logical Delete) and click Next.

The Logical Delete page is displayed.

20. In the Logical Delete field, select LOGICAL_DEL.

21. In the Read Value field, enter Y.

22. In the Unread Value field, enter N.

Creating and Running the Cross Reference Use Case

43-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-16 shows the Logical Delete page of the Adapter Configuration wizard.

Figure 43-16 Logical Delete Page: Adapter Configuration Wizard

23. Click Next.

The Polling Options page is displayed.

24. Click Next.

The Define Selection Criteria page is displayed.

25. Click Next.

The Finish page is displayed.

26. Click Finish.

A database adapter service named SAP is created, as shown in Figure 43-17.

Figure 43-17 SAP Database Adapter Service in

Creating and Running the Cross Reference Use Case

Working with Cross References 43-31

27. From the File menu, select Save All.

43.8.1.5 Task 5: How to Create EBS and SBL External References

To create EBS and SBL external references:

1. In the Components window, select SOA.

2. Select Database Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter EBS.

5. Click Next.

The Service Connection page is displayed.

6. In the Application Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Call a Stored Procedure or Function and click Next.

The Specify Stored Procedure page is displayed.

10. Select Scott from Schema.

11. Click Browse.

The Stored Procedures dialog is displayed.

12. Select POPULATE_APP_INSTANCE, as shown in Figure 43-18.

Creating and Running the Cross Reference Use Case

43-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-18 Stored Procedure Dialog

13. Click OK.

The Specify Stored Procedure page appears, as shown in Figure 43-19.

Figure 43-19 Specify Stored Procedure Page of Adapter Configuration Wizard

14. Click Next.

The Finish page is displayed.

15. Click Finish.

Creating and Running the Cross Reference Use Case

Working with Cross References 43-33

Figure 43-20 shows the EBS reference in the .

Figure 43-20 EBS Reference in

16. From the File menu, select Save All.

17. Repeat Step 2 through Step 16 to create another external reference named SBL.

After completing this task, the appears, as shown in Figure 43-21.

Figure 43-21 SBL Reference in

43.8.1.6 Task 6: How to Create the Logger File Adapter External Reference

To create the Logger file adapter external reference:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

Creating and Running the Cross Reference Use Case

43-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

4. In the Service Name field, enter Logger.

5. Click Next.

The Operation page is displayed.

6. In the Operation Type field, select Write File.

7. Click Next.

The File Configuration page is displayed.

8. In the Directory for Outgoing Files (physical path) field, enter the name of the
directory in which you want to write the files.

9. In the File Naming Convention field, enter output.xml and click Next.

The Messages page is displayed.

10. Click Search.

The Type Chooser dialog is displayed.

11. Navigate to Type Explorer > Project Schema Files >
SCOTT_POPULATE_APP_INSTANCE.xsd, and then select OutputParameters.

12. Click OK.

13. Click Next.

The Finish page is displayed.

14. Click Finish.

Figure 43-22 shows the Logger reference in the .

Figure 43-22 Logger Reference in

15. From the File menu. select Save All.

Creating and Running the Cross Reference Use Case

Working with Cross References 43-35

43.8.1.7 Task 7: How to Create an Oracle Mediator Service Component

To create an Oracle Mediator service component:

1. Drag and drop a Mediator icon from the Components window to the Components
section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

2. From the Template list, select Define Interface Later.

3. Click OK.

An Oracle Mediator with name Mediator1 is created.

4. Connect the SAP service to the Mediator1, as shown in Figure 43-23.

Figure 43-23 SAP Service Connected to Mediator1

5. From the File menu, select Save All.

6. Drag and drop another Mediator icon from the Components window to the
Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

7. From the Template list, select Interface Definition From WSDL.

8. Deselect Create Composite Service with SOAP Bindings.

9. To the right of the WSDL File field, click Find Existing WSDLs.

10. Navigate to and then select the Common.wsdl file. The Common.wsdl file is
available in the Samples folder.

11. Click OK.

Creating and Running the Cross Reference Use Case

43-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

12. Click OK.

An Oracle Mediator with name Common is created.

43.8.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Service
Component

You must specify routing rules for the following operations:

• Insert

• Update

• UpdateID

• Delete

43.8.1.8.1 To create routing rules for an insert operation:

1. Double-click the Mediator1 Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefCustApp > Mediators > Common, Services > Common.

5. Select Insert and click OK.

6. Click the Filter icon.

The Expression Builder dialog is displayed.

7. In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation='INSERT'

8. Click OK.

9. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

10. Select Create New Mapper File and enter SAP_TO_COMMON_INSERT.xsl.

11. Click OK.

An SAP_TO_COMMON_INSERT.xsl file is displayed in the XSLT Mapper.

12. Drag and drop the top:SAP01 source element to the inp1:Customer target
element.

The Auto Map Preferences dialog is displayed.

13. From the During Auto Map options, deselect Match Elements Considering their
Ancestor Names.

Creating and Running the Cross Reference Use Case

Working with Cross References 43-37

14. Click OK.

The transformation is created, as shown in Figure 43-24.

Figure 43-24 SAP_TO_COMMON_INSERT.xsl Transformation

15. From the Components window, select Advanced.

16. Select XREF Functions.

17. Drag and drop the populateXRefRow function from the Components window to
the line connecting the top:id and inp1:id elements.

18. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

19. Click Search to the right of the xrefLocation field.

The SOA Resource Lookup dialog is displayed.

20. Select customer.xref and click OK.

21. In the referenceColumnName field, enter "SAP_01" or click Search to select the
column name.

22. In the referenceValue column, enter /top:Sap01Collection/top:Sap01/
top:id.

23. In the columnName field, enter "Common" or click Search to select the column
name.

24. In the value field, enter oraext:generate-guid().

25. In the mode field, enter "Add" or click Search to select this mode.

Figure 43-25 shows the populated Edit Function – populateXRefRow dialog.

Creating and Running the Cross Reference Use Case

43-38 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-25 Edit Function – populateXRefRow Dialog: XrefCustApp Use Case

26. Click OK.

27. From the File menu, select Save All and close the
SAP_TO_COMMON_INSERT.xsl file.

The Routing Rules section appears, as shown in Figure 43-26.

Figure 43-26 Routing Rules Section with Insert Operation

43.8.1.8.2 To create routing rules for an update operation:

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > Mediators > Common, Services > Common.

4. Select Update and click OK.

5. Click the Filter icon.

The Expression Builder dialog is displayed.

Creating and Running the Cross Reference Use Case

Working with Cross References 43-39

6. In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation='UPDATE'

7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATE.xsl.

10. Click OK.

An SAP_TO_COMMON_UPDATE.xsl file is displayed.

11. Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Components window, select Advanced.

14. Select XREF Functions.

15. Drag and drop the lookupXRef function from the Components window to the
line connecting the top:id and inp1:id elements.

16. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

17. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_01" or click Search to select the
column name.

20. In the referenceValue column, enter /top:Sap01Collection/top:Sap01/
top:id.

21. In the columnName field, enter "COMMON" or click Search to select the column
name.

22. In the needException field, enter true() or click Search to select this mode.

Figure 43-27 shows the populated Edit Function – looupXRef dialog.

Creating and Running the Cross Reference Use Case

43-40 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-27 Edit Function – lookupXRef Dialog: XrefCustApp Use Case

23. Click OK.

24. From the File menu, select Save All and close the
SAP_TO_COMMON_UPDATE.xsl file.

The Routing Rules section appears, as shown in Figure 43-28.

Figure 43-28 Insert Operation and Update Operation

43.8.1.8.3 To create routing rules for an updateID operation:

Perform the following tasks to create routing rules for an updateID operation:

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > Mediators > Common, Services > Common.

4. Select updateid and click OK.

5. Click the Filter icon.

The Expression Builder dialog is displayed.

Creating and Running the Cross Reference Use Case

Working with Cross References 43-41

6. In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation = 'UPDATEID'

7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATEID.xsl.

10. Click OK.

An SAP_TO_COMMON_UPDATEID.xsl file is displayed.

11. Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Components window, select Advanced.

14. Select XREF Functions.

15. Drag and drop the populateXRefRow function from the Components window to
the line connecting the top:id and inp1:id elements.

16. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

17. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_01" or click Search to select the
column name.

20. In the referenceValue column, enter /top:Sap01Collection/top:Sap01/
top:refId.

21. In the columnName field, enter "SAP_01" or click Search to select the column
name.

22. In the value field, enter /top:Sap01Collection/top:Sap01/top:Id.

23. In the mode field, enter "UPDATE" or click Search to select this mode.

Figure 43-29 shows a populated Edit Function – populateXRefRow dialog.

Creating and Running the Cross Reference Use Case

43-42 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-29 Edit Function – populateXRefRow Dialog: XrefCustApp Use Case

24. Drag and drop the lookupXRef function from the Components window to the
line connecting the top:id and inp1:id elements.

25. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

26. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

27. Select customer.xref and click OK.

28. In the referenceColumnName field, enter "SAP_01" or click Search to select the
column name.

29. In the referenceValue column, enter the following:

xref:populateXRefRow("customer.xref","SAP_
01",/top:Sap01Collection/top:Sap01/top:refId,"SAP_
01",/top:Sap01Collection/top:Sap01/top:id,"UPDATE").

30. In the columnName field, enter "COMMON" or click Search to select the column
name.

31. In the needException field, enter false() or click Search to select this mode.

Figure 43-30 shows a populated Edit Function – lookupXRef dialog.

Creating and Running the Cross Reference Use Case

Working with Cross References 43-43

Figure 43-30 Edit Function – lookupXRef Dialog: XrefCustApp Use Case

32. Click OK.

33. From the File menu, select Save All and close the
SAP_TO_COMMON_UPDATEID.xsl file.

The Routing Rules section appears, as shown in Figure 43-31.

Figure 43-31 Insert, Update, and UpdateID Operations

43.8.1.8.4 To create routing rules for a delete operation:

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > Mediators > Common, Services > Common.

4. Select delete and click OK.

Creating and Running the Cross Reference Use Case

43-44 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

5. Click the Filter icon.

The Expression Builder dialog is displayed.

6. In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation = 'DELETE'

7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_DELETE.xsl.

10. Click OK.

A SAP_TO_COMMON_DELETE.xsl file is displayed.

11. Right-click <sources> and select Add Parameter.

The Add Parameter dialog is displayed.

12. In the Local Name field, enter COMMONID.

13. Select Set Default Value.

14. Select Expression.

15. In the XPath Expression field, enter

xref:lookupXRef("customer.xref","SAP_
01",/top:Sap01Collection/top:Sap01/top:id,"COMMON",false()).

16. Click OK.

17. Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

18. Click OK.

19. Delete the line connecting top:id and inp1:id.

20. Connect COMMONID to inp1:id.

21. Right-click inp1:id and select Add XSL node and then if.

A new node if is inserted between inp1:customer and inp1:id.

22. Connect top:id to the if node.

23. From the Components window, select Advanced.

24. Select XREF Functions.

25. Drag and drop the markForDelete function from the Components window to the
line connecting top:id and the if node.

26. Double-click the markForDelete icon.

The Edit Function-markForDelete dialog is displayed.

27. Click Search to the right of the xrefLocation field.

Creating and Running the Cross Reference Use Case

Working with Cross References 43-45

The SOA Resource Lookup dialog is displayed.

28. Select customer.xref and click OK.

29. In the columnName field, enter "SAP_01" or click Search to select the column
name.

30. In the value field, enter /top:Sap01Collection/top:Sap01/top:Id.

Figure 43-32 shows a populated Edit Function – markForDelete dialog.

Figure 43-32 Edit Function – markForDelete Dialog: XrefCustApp Use Case

31. Click OK.

The SAP_TO_COMMON_DELETE.xsl file appears, as shown in Figure 43-33.

Figure 43-33 SAP_TO_COMMON_DELETE.xsl

32. From the File menu, select Save All and close the
SAP_TO_COMMON_DELETE.xsl file.

The Routing Rules section appears, as shown in Figure 43-34.

Creating and Running the Cross Reference Use Case

43-46 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-34 Insert, Update, UpdateID, and Delete Operations

43.8.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator

You must specify routing rules for the following operations of the Common Oracle
Mediator:

• Insert

• Delete

• Update

• UpdateID

43.8.1.9.1 To create routing rules for the insert operation:

1. Double-click the Common Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefCustApp > References > SBL.

5. Select SBL and click OK.

6. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

7. Select Create New Mapper File and enter COMMON_TO_SBL_INSERT.xsl.

Creating and Running the Cross Reference Use Case

Working with Cross References 43-47

8. Click OK.

A COMMON_TO_SBL_INSERT.xsl file is displayed.

9. Drag and drop the inp1:Customers source element to the db:InputParameters
target element.

The Auto Map Preferences dialog is displayed.

10. Click OK.

The transformation is created, as shown in Figure 43-35.

Figure 43-35 COMMON_TO_SBL_INSERT.xsl Transformation

11. From the File menu, select Save All and close the
COMMON_TO_SBL_INSERT.xsl file.

12. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

13. Select Service.

The Target Services dialog is displayed.

14. Navigate to XrefCustApp > References > Logger.

15. Select Write and click OK.

16. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

17. Select Create New Mapper File and enter SBL_TO_COMMON_INSERT.xsl.

18. Select Include Request in the Reply Payload.

19. Click OK.

A SBL_TO_COMMON_INSERT.xsl file is displayed.

20. Connect the inp1:Customers source element to db:X:APP_ID.

21. Drag and drop the populateXRefRow function from the Components window to
the connecting line.

22. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

23. Enter this information in the following fields:

• xrefLocation: "customer.xref"

Creating and Running the Cross Reference Use Case

43-48 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• referenceColumnName: "Common"

• referenceValue: $initial.Customers/inp1:Customers/
inp1:Customer/inp1:Id

• columnName: "SBL_78"

• value: /db:OutputParameters/db:X_APP_ID

• mode: "LINK"

24. Click OK.

The SBL_TO_COMMON_INSERT.xsl file appears, as shown in Figure 43-36.

Figure 43-36 SBL_TO_COMMON_INSERT.xsl Transformation

25. From the File menu, select Save All and close the
SBL_TO_COMMON_INSERT.xsl file.

26. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

27. Click Add.

The Assign Value dialog is displayed.

28. In the From section, select Expression.

29. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

30. In the Expression field, enter the following expression and click OK.

concat('INSERT-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

31. In the To section, select Property.

32. Select the jca.file.FileName property and click OK.

33. Click OK.

The insert operation section appears, as shown in Figure 43-37.

Creating and Running the Cross Reference Use Case

Working with Cross References 43-49

Figure 43-37 Insert Operation with SBL Target Service

34. From the File menu, select Save All.

35. Repeat Step 2 through Step 34 to specify another target service named EBS and its
routing rules.

Figure 43-38 shows the insert operation section with SBL and EBS target services.

Figure 43-38 Insert Operation with SBL and EBS Target Services

43.8.1.9.2 To create routing rules for a delete operation:

Perform the following tasks to create the routing rules for a delete operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > References > SBL.

Creating and Running the Cross Reference Use Case

43-50 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

4. Select SBL and click OK.

5. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_DELETE.xsl.

7. Click OK.

A COMMON_TO_SBL_DELETE.xsl file is displayed.

8. Drag and drop the inp1:Customers source element to the db:InputParameters
target element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 43-39.

Figure 43-39 COMMON_TO_SBL_DELETE.xsl Transformation

10. Drag and drop the lookupXRef function from the Components window to the
line connecting inp1:id and db:XCUSTOMER_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

• xrefLocation: "customer.xref"

• referenceColumnName: "Common"

• referenceValue: /inp1:Customers/inp1:Customer/inp1:Id

• columnName: "SBL_78"

• needException: false()

13. Click OK.

14. From the File menu, select Save All and close the
COMMON_TO_SBL_DELETE.xsl file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp > References > Logger.

Creating and Running the Cross Reference Use Case

Working with Cross References 43-51

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter SBL_TO_COMMON_DELETE.xsl.

21. Click OK.

The SBL_TO_COMMON_DELETE.xsl file is displayed.

22. Connect the db:X_APP_ID source element to the db:X:APP_ID target.

23. Drag and drop the markForDelete function from the Components window to the
connecting line.

24. Double-click the markForDelete icon.

The Edit Function-markForDelete dialog is displayed.

25. Enter this information in the following fields:

• xrefLocation: "customer.xref"

• columnName: "SBL_78"

• value: /db:OutputParameters/db:X_APP_ID

26. Click OK.

27. From the File menu, select Save All and close the
SBL_TO_COMMON_DELETE.xsl file.

28. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

29. Click Add.

The Assign Value dialog is displayed.

30. In the From section, select Expression.

31. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

32. In the Expression field, enter the following expression, and click OK.

concat('DELETE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

33. In the To section, select Property.

34. Select the jca.file.FileName property and click OK.

35. Click OK.

The delete operation section appears, as shown in Figure 43-40.

Creating and Running the Cross Reference Use Case

43-52 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-40 Delete Operation with SBL Target Service

36. From the File menu, select Save All.

37. Repeat Step 1 through Step 36 to specify another target service named EBS and
specify the routing rules.

Figure 43-41 shows the delete operation section with SBL and EBS target services.

Figure 43-41 Delete Operation with SBL and EBS Target Service

43.8.1.9.3 To create routing rules for the update operation:

Perform the following tasks to create routing rules for the update operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp, References > SBL.

Creating and Running the Cross Reference Use Case

Working with Cross References 43-53

4. Select SBL and click OK.

5. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_UPDATE.xsl.

7. Click OK.

A COMMON_TO_SBL_UPDATE.xsl file is displayed.

8. Drag and drop the inp1:Customers source element to the db:InputParameters
target element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 43-39.

10. Drag and drop the lookupXRef function from the Components window to the
line connecting inp1:id and db:XCUSTOMER_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

• xrefLocation: "customer.xref"

• referenceColumnName: "Common"

• referenceValue: /inp1:Customers/inp1:Customer/inp1:Id

• columnName: "SBL_78"

• needException: true()

13. Click OK.

14. From the File menu, select Save All and close the
COMMON_TO_SBL_UPDATE.xsl file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter SBL_TO_COMMON_UPDATE.xsl.

21. Click OK.

Creating and Running the Cross Reference Use Case

43-54 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

A SBL_TO_COMMON_UPDATE.xsl file is displayed.

22. Connect the db:X:APP_ID source element to db:X:APP_ID.

23. From the File menu, select Save All and close the
SBL_TO_COMMON_UPDATE.xsl file.

24. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

25. Click Add.

The Assign Value dialog is displayed.

26. In the From section, select Expression.

27. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

28. In the Expression field, enter the following expression and click OK.

concat('UPDATE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

29. In the To section, select Property.

30. Select the jca.file.FileName property and click OK.

31. Click OK.

The update operation section appears, as shown in Figure 43-42.

Figure 43-42 Update Operation with SBL Target Service

32. From the File menu, select Save All.

33. Repeat Step 1 through Step 32 to specify another target service named EBS and its
routing rules.

Figure 43-43 shows the update operation section with SBL and EBS target
services.

Creating and Running the Cross Reference Use Case

Working with Cross References 43-55

Figure 43-43 Update Operation with SBL and EBS Target Service

43.8.1.9.4 To create routing rules for the UpdateID operation:

Perform the following tasks to create routing rules for the UpdateID operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > References > SBL.

4. Select SBL and click OK.

5. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_UPDATEID.xsl.

7. Click OK.

The COMMON_TO_SBL_UPDATEID.xsl file is displayed.

8. Drag and drop the inp1:Customers source element to the db:InputParameters
target element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 43-39.

10. Drag and drop the lookupXRef function from the Components window to the
line connecting inp1:id and db:X_CUSTOMER_ID.

Creating and Running the Cross Reference Use Case

43-56 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

• xrefLocation: customer.xref

• referenceColumnName: Common

• referenceValue: /inp1:Customers/inp1:Customer/inp1:Id

• columnName: SBL_78

• needException: false()

13. Click OK.

14. From the File menu, select Save All and close the
COMMON_TO_SBL_UPDATEID.xsl file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Include Request in the Reply Payload.

21. Click OK.

The SBL_TO_COMMON_UPDATEID.xsl file is displayed.

22. Connect inp1:Customers source element to the db:X:APP_ID.

23. Drag and drop the populateXRefRow function from the Components window to
the connecting line.

24. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

25. Enter this information in the following fields:

• xrefLocation: customer.xref

• referenceColumnName: Common

• referenceValue: $initial.Customers/inp1:Customers/
inp1:Customer/inp1:Id

• columnName: SBL_78

• value: /db:OutputParameters/db:X_APP_ID

Creating and Running the Cross Reference Use Case

Working with Cross References 43-57

• mode: UPDATE

26. Click OK.

27. From the File menu, select Save All and close the
SBL_TO_COMMON_UPDATEID.xsl file.

28. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

29. Click Add.

The Assign Value dialog is displayed.

30. In the From section, select Expression.

31. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

32. In the Expression field, enter the following expression and click OK.

concat('UPDATEID-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

33. In the To section, select Property.

34. Select the jca.file.FileName property and click OK.

35. Click OK.

The updateid operation section appears, as shown in Figure 43-44.

Figure 43-44 Updateid Operation with SBL Target Service

36. From the File menu, select Save All.

37. Repeat Step 1 through Step 36 to specify another target service named EBS and
specify the routing rules.

Figure 43-45 shows the updateid operation section with the SBL and EBS target
services.

Creating and Running the Cross Reference Use Case

43-58 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-45 Updateid Operation with SBL and EBS Target Service

43.8.1.10 Task 10: How to Configure an Application Server Connection

An application server connection is required for deploying your SOA composite
application. For information on creating an application server connection, see Creating
an Application Server Connection.

43.8.1.11 Task 11: How to Deploy the Composite Application

Deploying the XrefCustApp composite application consists of the following steps:

• Creating an application deployment profile

• Deploying the application to the application server

For detailed information about these steps, see How to Deploy a Single SOA
Composite in .

43.8.2 How to Run and Monitor the XrefCustApp Application
After deploying the XrefCustApp application, you can run it by using any command
from the insert_sap_record.sql file present in the XrefCustApp/sql folder.
On successful completion, the records are inserted or updated in the EBS and SBL
tables and the Logger reference writes the output to the output.xml file.

For monitoring the running instance, you can use the Oracle Enterprise Manager
Fusion Middleware Control at the following URL:

http://hostname:port_number/em

where hostname is the host on which you installed the Oracle SOA Suite
infrastructure and port_number is the port running the service.

Creating and Running the Cross Reference Use Case

Working with Cross References 43-59

43.9 Creating and Running Cross Reference for 1M Functions
The cross reference use case implements an integration scenario between two end-
system Oracle EBS and SAP instances. In this use case, the order passes from SAP to
EBS. SAP represents the orders with a unique ID, whereas EBS splits the order into
two orders: ID1 and ID2. This scenario is created using database adapters. When you
poll the SAP table for updated or created records, an SAP instance is created. In EBS,
the instance is simulated by a procedure and the table is populated. Figure 43-46
provides an overview of this use case.

Figure 43-46 XrefOrderApp Use Case in

To download the sample files mentioned in this section, see the Oracle SOA Suite
samples page.

43.9.1 How to Create the Use Case
This section provides the design-time tasks for creating, building, and deploying your
SOA composite application. These tasks should be performed in the order in which
they are presented.

43.9.1.1 Task 1: How to Configure the Oracle Database and Database Adapter

To configure the Oracle database and database adapter:

1. You need the SCOTT database account with password TIGER for this use case. You
must ensure that the SCOTT account is unlocked.

You can log in as SYSDBA and then run the setup_user.sql script available in
the XrefOrderApp1M/sql folder to unlock the account.

2. Run the create_schema.sql script available in the XrefOrderApp1M/sql
folder to create the tables required for this use case.

3. Run the create_app_procedure.sql script available in the
XrefOrderApp1M/sql folder to create a procedure that simulates the various
applications participating in this integration.

Creating and Running Cross Reference for 1M Functions

43-60 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

4. Run the createschema_xref_oracle.sql script available in the
Oracle_Home/rcu/integration/soainfra/sql/xref/ folder to create a
cross reference table to store runtime cross reference data.

5. Copy the ra.xml and weblogic-ra.xml files from $BEAHOME/META-INF to the
newly created directory called META-INF on your computer.

6. Edit the weblogic-ra.xml file, which is available in the $BEAHOME/src/
oracle/tip/adapter/db/test/deploy/weblogic/META-INF folder for
your SOA application, as follows:

• Modify the property to xADataSourceName as follows:

<property>
 <name>xADataSourceName</name>
 <value>jdbc/DBConnection1</value>
</property>

• Modify the jndi-name as follows:

<jndi-name> eis/DB/DBConnection1</jndi-name>

This sample uses eis/DB/DBConnection1 to poll the SAP table for new
messages and to connect to the procedure that simulates Oracle EBS and Siebel
instances.

7. Package the ra.xml and weblogic-ra.xml files as a RAR file and deploy the
RAR file by using Oracle WebLogic Server Administration Console.

8. Create a data source using the Oracle WebLogic Server Administration Console
with the following values:

• jndi-name=jdbc/DBConnection1

• user=scott

• password=tiger

• url=jdbc:oracle:thin:@host:port:service

• connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

9. Create a data source using the Oracle WebLogic Server Administration Console
with the following values:

• jndi-name=jdbc/xref

• user=scott

• password=tiger

• url=jdbc:oracle:thin:@host:port:service

• connection-factory factory-class=oracle.jdbc.pool.OracleDataSource

43.9.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:

1. In Oracle JDeveloper, click File and select New.

Creating and Running Cross Reference for 1M Functions

Working with Cross References 43-61

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter XRefOrderApp, and then click Next.

The Name your project page appears.

5. In the Project Name field, enter XRefOrderApp and click Next.

The Configure SOA Settings page appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Applications window of Oracle JDeveloper is updated with the new
application and project and the SOA Composite Editor contains a blank project.

7. From the File menu, select Save All.

43.9.1.3 Task 3: How to Create a Cross Reference

After creating an application and a project for the use case, you must create a cross
reference table.

To create a cross reference table:

1. In the Applications window, right-click the XRefOrderApp project and select New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Cross Reference(XREF) and click OK.

The Create Cross Reference(XREF) File dialog is displayed.

4. In the File Name field, enter order.xref.

5. In the End System fields, enter SAP_05 and EBS_i75.

6. Click OK.

The Cross Reference Editor is displayed.

7. Click Add.

A new row is added.

8. Enter COMMON as the End System name.

The Cross Reference Editor appears, as shown in Figure 43-47.

Creating and Running Cross Reference for 1M Functions

43-62 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-47 Customer Cross Reference

9. From the File menu, select Save All and close the Cross Reference Editor.

43.9.1.4 Task 4: How to Create a Database Adapter Service

To create a database adapter service:

1. In the Components window, select SOA.

2. Select Database Adapter and drag it to the Exposed Services swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter SAP.

5. Click Next.

The Service Connection page is displayed.

6. In the Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Poll for New or Changed Records in a Table and click Next.

The Select Table page is displayed.

10. Click Import Tables.

The Import Tables dialog is displayed.

11. Select Scott from the Schema.

12. In the Name Filter field, enter %SAP% and click Query.

Creating and Running Cross Reference for 1M Functions

Working with Cross References 43-63

The Available field is populated with the SAP_05 table name.

13. Double-click SAP_05.

The selected field is populated with SAP_05.

14. Click OK.

The Select Table page now contains the SAP_05 table.

15. Select SAP_05 and click Next.

The Define Primary Key page is displayed.

16. Select ID as the primary key and click Next.

The Relationships page is displayed.

17. Click Next.

The Attribute Filtering page is displayed.

18. Click Next.

The After Read page is displayed.

19. Select Update a Field in the [SAP_05] Table (Logical Delete) and click Next.

The Logical Delete page is displayed.

20. In the Logical Delete field, select LOGICAL_DEL.

21. In the Read Value field, enter Y.

22. In the Unread Value field, enter N.

Figure 43-16 shows the Logical Delete page of the Adapter Configuration wizard.

23. Click Next.

The Polling Options page is displayed.

24. Click Next.

The Define Selection Criteria page is displayed.

25. Click Next.

The Advanced Options page is displayed.

26. Click Next.

The Finish page is displayed.

27. Click Finish.

A database adapter service named SAP is created, as shown in Figure 43-48.

Creating and Running Cross Reference for 1M Functions

43-64 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-48 SAP Database Adapter Service in

28. From the File menu, select Save All.

43.9.1.5 Task 5: How to Create an EBS External Reference

To create an EBS external reference:

1. In the Components window, select SOA.

2. Select Database Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter EBS.

5. Click Next.

The Service Connection page is displayed.

6. In the Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Call a Stored Procedure or Function and click Next.

The Specify Stored Procedure page is displayed.

10. Select Scott from the Schema.

11. Click Browse.

The Stored Procedures dialog is displayed.

12. Select POPULATE_APP_INSTANCE_IM, as shown in Figure 43-49.

Creating and Running Cross Reference for 1M Functions

Working with Cross References 43-65

Figure 43-49 Stored Procedure Dialog

13. Click OK.

The Specify Stored Procedure page appears, as shown in Figure 43-50.

Figure 43-50 Specify Stored Procedure Page of Adapter Configuration Wizard

14. Click Next.

The Advanced Options page is displayed.

15. Click Next.The Finish page is displayed.

Creating and Running Cross Reference for 1M Functions

43-66 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

16. Click Finish.

Figure 43-51 shows the EBS reference in the .

Figure 43-51 EBS Reference in

17. From the File menu, select Save All.

43.9.1.6 Task 6: How to Create a Logger File Adapter External Reference

To create a Logger file adapter external reference:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter Logger.

5. Click Next.

The Adapter Interface page is displayed.

6. Click Define from operation and schema (specified later).

The Operation page is displayed.

7. In the Operation Type field, select Write File.

8. Click Next.

The File Configuration page is displayed.

9. In the Directory for Outgoing Files (physical path) field, enter the name of the
directory in which you want to write the files.

10. In the File Naming Convention field, enter output.xml and click Next.

The Messages page is displayed.

Creating and Running Cross Reference for 1M Functions

Working with Cross References 43-67

11. Click Search.

The Type Chooser dialog is displayed.

12. Navigate to Type Explorer > Project Schema Files >
SCOTT_POPULATE_APP_INSTANCE_1M.xsd, and then select
OutputParameters.

13. Click OK.

14. Click Next.

The Finish page is displayed.

15. Click Finish.

Figure 43-52 shows the Logger reference in the .

Figure 43-52 Logger Reference in

16. From the File menu. select Save All.

43.9.1.7 Task 7: How to Create an Oracle Mediator Service Component

To create an service component:

1. Drag and drop a Mediator icon from the Components window to the Components
swimlane.

The Create Mediator dialog is displayed.

2. From the Template list, select Define Interface Later.

3. Click OK.

An Oracle Mediator with name Mediator2 is created.

4. Connect the SAP service to Mediator2, as shown in Figure 43-53.

Creating and Running Cross Reference for 1M Functions

43-68 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 43-53 SAP Service Connected to Mediator2

5. From the File menu. select Save All.

6. Drag and drop a Mediator icon from the Components window to the Components
section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

7. From the Template list, select Interface Definition From WSDL.

8. Deselect Create Composite Service with SOAP Bindings.

9. To the right of the WSDL File field, click Find Existing WSDLs.

10. Navigate to and then select the Common.wsdl file. The Common.wsdl file is
available in the Samples folder.

11. Click OK.

12. Click OK.

An Oracle Mediator named Common is created.

43.9.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Component

You must specify routing rules for following operations:

• Insert

• Update

43.9.1.8.1 To create routing rules for the insert operation:

1. Double-click the Mediator2 Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefOrderApp > Mediators > Common, Services > Common.

Creating and Running Cross Reference for 1M Functions

Working with Cross References 43-69

5. Select Insert and click OK.

6. Click the Filter icon.

The Expression Builder dialog is displayed.

7. In the Expression field, enter the following expression:

$in.Sap05Collection/top:Sap05Collection/top:Sap05/top:operation='INSERT'

8. Click OK.

9. Next to the Using Transformation field, click the Transformation icon.

The Request Transformation map dialog is displayed.

10. Select Create New Mapper File and enter SAP_TO_COMMON_INSERT.xsl.

11. Click OK.

An SAP_TO_COMMON_INSERT.xsl file is displayed.

12. Drag and drop the top:SAP05 source element to the inp1:Order target element.

The Auto Map Preferences dialog is displayed.

13. From the During Auto Map options list, deselect Match Elements Considering
their Ancestor Names.

14. Click OK.

The transformation is created, as shown in Figure 43-54.

Figure 43-54 SAP_TO_COMMON_INSERT.xsl Transformation

15. From the Components window, select Advanced.

16. Select XREF Functions.

17. Drag and drop the populateXRefRow1M function from the Components window
to the line connecting the top:id and inp1:id elements.

18. Double-click the populateXRefRow1M icon.

The Edit Function-populateXRefRow dialog is displayed.

19. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

20. Select Order.xref and click OK.

21. In the referenceColumnName field, enter "SAP_05" or click Search to select the
column name.

Creating and Running Cross Reference for 1M Functions

43-70 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

22. In the referenceValue column, enter /top:Sap05Collection/top:Sap05/
top:id.

23. In the columnName field, enter "Common" or click Search to select the column
name.

24. In the value field, enter orcl:generate-guid().

25. In the mode field, enter "Add" or click Search to select this mode.

Figure 43-55 shows the populated Edit Function – populateXRefRow1M dialog.

Figure 43-55 Edit Function – populateXRefRow1M Dialog: XrefOrderApp Use
Case

26. Click OK.

27. From the File menu, select Save All and close the
SAP_TO_COMMON_INSERT.xsl file.

The Routing Rules section appears, as shown in Figure 43-56.

Figure 43-56 Routing Rules Section with Insert Operation

43.9.1.8.2 To create routing rules for the update operation:

Creating and Running Cross Reference for 1M Functions

Working with Cross References 43-71

Perform the following tasks to create routing rules for the update operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefOrderApp > Mediators > Common, Services > Common.

4. Select Update and click OK.

5. Click the Filter icon.

The Expression Builder dialog is displayed.

6. In the Expression field, enter the following expression:

$in.Sap05Collection/top:Sap05Collection/top:Sap05/top:operation='UPDATE'

7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATE.xsl.

10. Click OK.

An SAP_TO_COMMON_UPDATE.xsl file is displayed.

11. Drag and drop the top:Sap05 source element to the inp1:Order target element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Components window, select Advanced.

14. Select XREF Functions.

15. Drag and drop the lookupXRef function from the Components window to the
line connecting the top:id and inp1:id elements.

16. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

17. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_05" or click Search to select the
column name.

20. In the referenceValue column, enter /top:Sap05Collection/top:Sap05/
top:id.

21. In the columnName field, enter "COMMON" or click Search to select the column
name.

Creating and Running Cross Reference for 1M Functions

43-72 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

22. In the needException field, enter true() or click Search to select this mode.

Figure 43-57 shows the populated Edit Function – looupXRef dialog.

Figure 43-57 Edit Function – looupXRef Dialog: XRefOrderApp Use Case

23. Click OK.

24. From the File menu, select Save All and close the
SAP_TO_COMMON_UPDATE.xsl file.

The Routing Rules section appears, as shown in Figure 43-58.

Figure 43-58 Insert Operation and Update Operation

43.9.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator

You must specify routing rules for the following operations of the Common Oracle
Mediator:

• Insert

Creating and Running Cross Reference for 1M Functions

Working with Cross References 43-73

• Update

43.9.1.9.1 To create routing rules for the insert operation:

1. Double-click the Common Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefOrderApp > References > EBS.

5. Select EBS and click OK.

6. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

7. Select Create New Mapper File and enter COMMON_TO_EBS_INSERT.xsl.

8. Click OK.

A COMMON_TO_EBS_INSERT.xsl file is displayed.

9. Drag and drop the inp1:Order source element to the db:InputParameters target
element.

The Auto Map Preferences dialog is displayed.

10. Set the value of the db:X_APP_INSTANCE node on the right side to EBS_i75.

Click OK.

The transformation is created, as shown in Figure 43-59.

Figure 43-59 COMMON_TO_EBS_INSERT.xsl Transformation

11. From the File menu, select Save All and close the
COMMON_TO_EBS_INSERT.xsl file.

12. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

13. Select Service.

The Target Services dialog is displayed.

14. Navigate to XrefOrderApp > References > Logger.

Creating and Running Cross Reference for 1M Functions

43-74 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

15. Select Write and click OK.

16. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

17. Select Create New Mapper File and enter EBS_TO_COMMON_INSERT.xsl.

18. Select Include Request in the Reply Payload.

19. Click OK.

An EBS_TO_COMMON_INSERT.xsl file is displayed.

20. Connect the inp1:Order source element to db:X:APP_ID.

21. Drag and drop the populateXRefRow function from the Components window to
the connecting line.

22. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

23. Enter this information in the following fields:

• xrefLocation: order.xref

• referenceColumnName: Common

• referenceValue: $initial.Customers/inp1:Customers/inp1:Order/
inp1:Id

• columnName: EBS_75

• value: /db:OutputParameters/db:X_APP_ID

• mode: LINK

24. Click OK.

The EBS_TO_COMMON_INSERT.xsl file appears, as shown in Figure 43-60.

Figure 43-60 EBS_TO_COMMON_INSERT.xsl Transformation

25. From the File menu, select Save All and close the
EBS_TO_COMMON_INSERT.xsl file.

26. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

27. Click Add.

The Assign Value dialog is displayed.

Creating and Running Cross Reference for 1M Functions

Working with Cross References 43-75

28. In the From section, select Expression.

29. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

30. In the Expression field, enter the following expression and click OK.

concat('INSERT-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

31. In the To section, select Property.

32. Select the jca.file.FileName property and click OK.

33. Click OK.

The insert operation section appears, as shown in Figure 43-61.

Figure 43-61 Insert Operation with EBS Target Service

34. From the File menu, select Save All.

43.9.1.9.2 To create routing rules for the update operation:

Perform the following tasks to create routing rules for the update operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefOrderApp > References > EBS.

4. Select EBS and click OK.

5. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_EBS_UPDATE.xsl.

Creating and Running Cross Reference for 1M Functions

43-76 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

7. Click OK.

The COMMON_TO_EBS_UPDATE.xsl file is displayed.

8. Drag and drop the inp1:Orders source element to the db:InputParameters target
element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 43-39.

10. Drag and drop the lookupXRef function from the Components window to the
line connecting inp1:id and db:X_APP_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

• xrefLocation: order.xref

• referenceColumnName: Common

• referenceValue: /inp1:Customers/inp1:Order/inp1:Id

• columnName: EBS_i75

• needException: true()

13. Click OK.

14. From the File menu, select Save All and close the
COMMON_TO_EBS_UPDATE.xsl file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefOrderApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter EBS_TO_COMMON_UPDATE.xsl.

21. Click OK.

The EBS_TO_COMMON_UPDATE.xsl file is displayed.

22. Connect the db:X:APP_ID source element to db:X:APP_ID.

23. From the File menu, select Save All and close the
EBS_TO_COMMON_UPDATE.xsl file.

Creating and Running Cross Reference for 1M Functions

Working with Cross References 43-77

24. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

25. Click Add.

The Assign Value dialog is displayed.

26. In the From section, select Expression.

27. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

28. In the Expression field, enter the following expression, and click OK.

concat('UPDATE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

29. In the To section, select Property.

30. Select the jca.file.FileName property and click OK.

31. Click OK.

The update operation section appears, as shown in Figure 43-62.

Figure 43-62 Update Operation with EBS Target Service

32. From the File menu, select Save All.

43.9.1.10 Task 10: How to Configure an Application Server Connection

An application server connection is required for deploying your SOA composite
application. For information about creating an application server connection, see
olink:TKADP212Creating an Application Server Connection.

43.9.1.11 Task 11: How to Deploy the Composite Application

Deploying the XrefOrderApp composite application to the application server consists
of the following steps:

• Creating an application deployment profile

• Deploying the application to the application server

For detailed information about these steps, see How to Deploy a Single SOA
Composite in .

Creating and Running Cross Reference for 1M Functions

43-78 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

44
Working with Domain Value Maps

This chapter describes how to create and use domain value maps to map the terms
used by different domains to describe the same entity, allowing you to map values
used by one domain for specific fields to the values used by other domains for the
same fields. This chapter also describes the XPath functions used for domain value
lookups.

This chapter includes the following sections:

• Introduction to Domain Value Maps

• Creating Domain Value Maps

• Editing a Domain Value Map

• Using Domain Value Map Functions

• Creating a Domain Value Map Use Case for a Hierarchical Lookup

• Creating a Domain Value Map Use Case For Multiple Values

44.1 Introduction to Domain Value Maps
When information is transmitted between different domains, each domain might use
different terminology or processing codes to describe the same entity. For example,
one domain might use complete city names in its messages (Boston), while another
domain uses a code to indicate the city (BO). Rather than requiring each domain to
standardize their data to one set of terminology, you can use domain value maps to
map the terms used in one domain to the terms used in other domains. Domain value
maps operate on the actual data values in the messages that are transmitted through
an application at runtime.

While each domain value map typically defines the mapping for only one field or
category, a single SOA composite can require mappings for multiple categories. Thus,
one SOA composite might contain several domain value maps. For example, you
might have one domain value map that defines city name mapping, one that defines
state name mapping, and one that defines country name mapping.

A direct mapping of values between two or more domains is known as point-to-point
mapping. Table 44-1 shows a point-to-point mapping for cities between two domains:

Table 44-1 Point-to-Point Mapping

CityCode CityName

BELG_MN_STLouis BelgradeStLouis

BELG_NC BelgradeNorthCarolina

Working with Domain Value Maps 44-1

Table 44-1 (Cont.) Point-to-Point Mapping

CityCode CityName

BO Boston

NP Northport

KN_USA KensingtonUSA

KN_CAN KensingtonCanada

Domain value map values are static. You specify the domain value map values at
design time using Oracle JDeveloper, and then at runtime the application performs a
lookup for the values in the domain value maps. For information about editing
domain value maps at runtime with Oracle SOA Composer, see Using with Domain
Value Maps .

Note:

To dynamically integrate values between applications, you can use the cross
referencing feature of Oracle SOA Suite. For information about cross
references, see Working with Cross References .

44.1.1 Domain Value Map Features
Oracle SOA Suite domain value maps let you further refine the performance and
results of the domain value map lookups that are performed at runtime. For example,
you can specify qualifying information that provides additional information to assist
with mapping. Domain value maps also support one-to-many mappings.

44.1.1.1 Qualifier Domains

Qualifier domains contain information solely to clarify the mapping. A mapping
might be ambiguous unless this additional information is defined. For example, a
domain value map that defines a city name mapping could have multiple mappings
from KN to Kensington because Kensington is a city in both Canada and the USA.
Therefore, this mapping requires a qualifier (USA or Canada) to indicate which
mapping to use. An example of this is shown in Table 44-2.

Table 44-2 Qualifier Support Example

Country (Qualifier) CityCode CityName

USA BO Boston

USA BELG_NC Belgrade

USA BELG_MN_Streams Belgrade

USA NP Northport

USA KN Kensington

Canada KN Kensington

Introduction to Domain Value Maps

44-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

A domain value map can contain multiple qualifier domains. For example, as shown
in Table 44-3, the mappings are also qualified with a state name.

Table 44-3 Multiple Qualifier Support Example

Country (Qualifier) State (Qualifier) CityCode CityName

USA Massachusetts BO Boston

USA North Carolina BELG Belgrade

USA Minnesota BELG Belgrade

USA Alabama NP Northport

USA Kansas KN Kensington

Canada Prince Edward
Island

KN Kensington

Qualifiers are used only to qualify the mappings. Therefore, the qualifier values
cannot be looked up.

44.1.1.2 Qualifier Hierarchies

When there are multiple qualifier domains, you can specify a qualifier order to
indicate how they are used during runtime lookups. The order of a qualifier varies
from highest to lowest depending on the role of the qualifier in defining a more exact
match. In Table 44-3, the state qualifier is probably given a higher order than the
country qualifier because a matching state indicates a more precise match.

Domain value maps support hierarchical lookup. If you specify a qualifier value
during a lookup and no exact match is found, then the lookup mechanism tries to find
a more generalized match by setting the higher order qualifiers to empty quotes ("").
It proceeds until a match is found, or until a the lookup is exhausted and no match is
found. Figure 44-1 describes the steps of a hierarchical lookup performed for the
following lookup (based on the values in Table 44-3):

State=Arkansas, Country=Canada, CityCode=KN_USA

In this example, the State qualifier has a qualifier order of 1 and the Country
qualifier has a qualifier order of 2. As shown in Figure 44-1, the lookup mechanism
sets the higher order qualifier State to the exact lookup value Arkansas and uses
Canada|"" for the lower order qualifier Country.

Figure 44-1 Hierarchical Lookup Example

If no match is found, the lookup mechanism sets the higher order qualifier State to a
value of "" and sets the next higher qualifier Country to an exact value of Canada. If

Introduction to Domain Value Maps

Working with Domain Value Maps 44-3

no match is found, the lookup mechanism sets the value of the previous higher order
qualifier Country to a value of "". One matching row is found where CityCode is
KN_USA and Kensington is returned as a value.

Table 44-4 provides a summary of these steps.

Table 44-4 Domain Value Map Lookup Result

State Country Short Value Lookup Result

Arkansas CANADA|" " KN_USA No Match

" " CANADA KN_USA No Match

" " " " KN_USA Kensington

44.1.1.3 One-to-Many Mappings

One value can be mapped to multiple values in a domain value map. For example, a
domain value map for payment terms can contain a mapping of payment terms to
multiple values, such as discount percentage, discount period, and net credit period,
as shown in Table 44-5.

Table 44-5 One-to-Many Mapping Support

Payment Term Discount
Percentage

Discount Period Net Credit
Period

GoldCustomerPaymentTerm 10 20 30

SilverCustomerPaymentTerm 5 20 30

RegularPaymentTerm 2 20 30

44.2 Creating Domain Value Maps
You can create one or more domain value maps in a SOA composite application in
Oracle JDeveloper, and then use the maps to look up the mapped values at runtime.
Creating a domain value map creates a file with a .dvm extension in the application
file structure.

44.2.1 How to Create Domain Value Maps
Create and configure domain value maps using the Create Domain Value Map(DVM)
File dialog in Oracle JDeveloper. This dialog lets you define two domains, each with
one value. Upon completion, the Domain Value Map Editor appears so you can define
additional domains and corresponding values.

To create a domain value map:

1. In the Applications window, right-click the project in which you want to create a
domain value map and select New.

The New Gallery dialog appears.

2. Expand the SOA Tier node, and then select the Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.

Creating Domain Value Maps

44-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The Create Domain Value Map(DVM) File dialog appears.

4. In the File Name field, enter a unique and descriptive name for the domain value
map file. The file name must have an extension of .dvm.

5. In the Description field, enter a description for the domain value map. This field is
optional.

6. In the Domain Name field, enter a name for each domain. These names are the
column names for the domain value map, and each represents a fields in a different
domain.

Note:

Domain names must be of the type NCName (non-colonized name), which is
a valid XML element name with no colons. Each domain name must be
unique in a domain value map. You can add more domains later.

7. In the Domain Value field, enter a value corresponding to each domain. For
example, enter BO for a CityCode domain and Boston for a CityName domain,
as shown in Figure 44-2.

Figure 44-2 Populated Create Domain Value Map File Dialog

8. Click OK.

The Domain Value Map Editor appears with the new domain value map displayed.

44.2.2 What Happens When You Create a Domain Value Map
A file with the extension .dvm is created in the project file structure and appears in the
Applications window, as shown in Figure 44-3.

Creating Domain Value Maps

Working with Domain Value Maps 44-5

Figure 44-3 A Domain Value Map File in Applications Window

All .dvm files are based on the schema definition (XSD) file shown in the following
example:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Copyright (c) 2006, Oracle. All rights reserved. -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/dvm"
 xmlns:tns="http://xmlns.oracle.com/dvm"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

<xsd:element name="dvm">
 <xsd:annotation>
 <xsd:documentation>The Top Level Element
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="description" minOccurs="0" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>The DVM Description. This is optional
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="columns">
 <xsd:annotation>
 <xsd:documentation>This element holds DVM's column List.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="column" minOccurs="2" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>This represents a DVM Column
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 <xsd:attribute name="qualifier" default="false" type="xsd:boolean"
 use="optional"/>
 <xsd:attribute name="order" use="optional"

Creating Domain Value Maps

44-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

type="xsd:positiveInteger"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="rows" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>This represents all the DVM Rows.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="row" minOccurs="1" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>
 Each DVM row of values
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="cell" minOccurs="2" maxOccurs="unbounded"
 type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>This is the value for this row and for
 each column in the same order as defined in Columns.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:annotation>
 <xsd:documentation>This Schema is used to validate the DVM Document got for
 creation and
 update of a DVM.
 </xsd:documentation>
 </xsd:annotation>
</xsd:schema>

44.3 Editing a Domain Value Map
After you create the framework for a domain value map, you can add domains and
corresponding domain values to the map using the Domain Value Map Editor.

44.3.1 How to Add Domains to a Domain Value Map
You can define additional domains to map, which are represented as columns in the
domain value map. You can also specify whether each new domain contains values to
be included in the lookups at runtime or if it is only used to qualify the mapping. Note
that domain (column) names must be of the type NCName (non-colonized name),
which is a valid XML element name with no colons.

Editing a Domain Value Map

Working with Domain Value Maps 44-7

To add a domain to a domain value map:

1. If the map file is not open in the Domain Value Map Editor, double-click the DVM
file in the Applications window.

2. In the Map Table, click Add and then select Add Domain.

The Create Domain dialog appears.

3. In the Name field, enter a column name.

4. In the Qualifier field, select True to set this column as a qualifier. Otherwise, select
False.

Tip:

For more information about qualifier domains and qualifier order, see
Qualifier Domains and Qualifier Hierarchies..

5. In the Qualifier Order field, enter a number indicating the priority of the qualifier
domain.

This field is enabled only if you selected True in the Qualifier field.

Figure 44-4 Domain Value Map - Create Domain Dialog

6. Click OK.

A new column appears in the Map Table.

44.3.2 How to Edit a Domain
Once you add a domain to a domain value map, you can change the name, change
whether it is a qualifier domain, and change the qualifier order.

To edit a domain

1. In the Domain Value Map Editor, select the name of the domain you want to
modify.

2. Click Edit Domain/Values.

The Edit Domain dialog appears.

Editing a Domain Value Map

44-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 44-5 Domain Value Map - Edit Domain Dialog

3. Change any of the fields on the dialog, and then click OK.

Note:

Domain names must be of the type NCName (non-colonized name), which is
a valid XML element name with no colons.

44.3.3 How to Add Domain Values to a Domain Value Map
Domain values are displayed in rows in the domain value map, with each row
containing the values to be mapped for each domain. You can add as many domain
values as required to fully define the mapping between domains.

To add domain values to a domain value map:

1. In the Domain Value Map Editor, click Add and then select Add Domain Values.

A new row appears beneath the existing rows in the Map Table.

2. Enter the values for each domain in the new row.

3. Repeat the above steps to create additional rows. When you are done making
changes, click Save All on the Oracle JDeveloper toolbar.

44.3.4 How to Edit Domain Values
Once you add domain values to a domain value map, you can modify the values if
needed.

To modify domain values

1. In the Domain Value Map Editor, select the row containing the values you want to
modify.

2. Click Edit Domain/Values.

The Edit Domain Values dialog appears.

Editing a Domain Value Map

Working with Domain Value Maps 44-9

Figure 44-6 Domain Value Map - Edit Domain Values

3. Modify any of the fields on the dialog, and then click OK.

44.4 Using Domain Value Map Functions
After creating a domain value map, you can use the XPath functions of the domain
value map to look up appropriate values and populate the targets for the applications
at runtime.

44.4.1 Understanding Domain Value Map Functions
The dvm:lookupValue and dvm:lookupValue1M XPath functions look up a
domain value map for a single value or multiple values at runtime.

44.4.1.1 dvm:lookupValue

The dvm:lookupValue function returns a string by looking up the value for the
target column in a domain value map, where the source column contains the given
source value.

• The following code shows an example of dvm:lookupValue function syntax.

dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string, TargetColumnName as string, DefaultValue as string) as
 string

The following code provides an example of dvm:lookupValue function use.

dvm:lookupValue('cityMap.dvm','CityCodes','BO', 'CityNames',
'CouldNotBeFound')

• The following code shows another example of dvm:lookupValue function
syntax:

dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,
SourceValue as string, TargetColumnName as string, DefaultValue as string,
(QualifierSourceColumn as string, QualifierSourceValue as string)*) as string

The following code provides another example of dvm:lookupValue function
use:

dvm:lookupValue ('cityMap.dvm','CityCodes','BO','CityNames',
 'CouldNotBeFound', 'State', 'Massachusetts')

Using Domain Value Map Functions

44-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Arguments

• dvmMetadataURI - The domain value map URI.

• SourceColumnName - The source column name.

• SourceValue - The source value (an XPath expression bound to the source
document of the XSLT transformation).

• TargetColumnName - The target column name.

• DefaultValue - If the value is not found, then the default value is returned.

• QualifierSourceColumn: The name of the qualifier column.

• QualifierSourceValue: The value of the qualifier.

44.4.1.2 dvm:lookupValue1M

The dvm:lookupValue1M function returns an XML document fragment containing
values for multiple target columns of a domain value map, where the value for the
source column is equal to the source value. The following example provides details:

dvm:lookupValue1M(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string,(TargetColumnName as string)?)as nodeset

Arguments

• dvmMetadataURI - The domain value map URI.

• SourceColumnName - The source column name.

• SourceValue - The source value (an XPath expression bound to the source
document of the XSLT transformation).

• TargetColumnName - The name of the target columns. At least one column name
should be specified. The question mark symbol (?) indicates that you can specify
multiple target column names.

The following code shows an example of dvm:lookupValue1M function use.

dvm:lookupValue1M ('cityMap.dvm','CityCode','BO','CityName',
'CityNickName')

The result is shown in the following example:

<CityName>Boston</CityName>
<CityNickName>BeanTown</CityNickName>

44.4.2 How to Use Domain Value Map Functions in Transformations
The domain value map functions can be used for transformations with a BPEL process
service component or a Mediator service component. Transformations are performed
by using the XSLT Mapper, which appears when you create an XSL file to transform
the data from one XML schema to another.

For information about the XSLT Mapper, see Creating Transformations with the XSLT
Map Editor .

Using Domain Value Map Functions

Working with Domain Value Maps 44-11

To use the lookupValue1M function in a transformation:

1. In the Applications window, double-click an XSL file to open the XSLT Mapper.

2. In the XSLT Mapper, expand the trees in the Source and Target panes.

3. In the Components window, click the down arrow, and then select Advanced.

4. Select DVM Functions, as shown in Figure 44-7.

Figure 44-7 Domain Value Map Functions in the Components Window

5. Drag and drop lookupValue1M onto the line that connects the source to the
target.

A dvm:lookupValue1M icon appears on the connecting line.

6. Double-click the lookupValue1M icon.

The Edit Function – lookupValue1M dialog appears, as shown in Figure 44-8.

Using Domain Value Map Functions

44-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 44-8 Edit Function – lookupValue1M Dialog

7. Specify values for the following fields in the Edit Function – lookupValue1M
dialog:

a. In the dvmLocation field, enter the location URI of the domain value map file
or click Browse to the right of the dvmLocation field to select a domain value
map file. You can select an already deployed domain value map from the
metadata service (MDS) and also from the shared location in MDS. This can
be done by selecting the Resource Palette.

b. In the sourceColumnName field, enter the name of the domain value map
column that is associated with the source element value, or click Browse to
select a column name from the columns defined for the domain value map
you previously selected.

c. In the sourceValue field, enter a value or press Ctrl-Space to use the XPath
Building Assistant. Press the up and down arrow keys to locate an object in
the list, and press Enter to select an item.

d. In the targetColumnName field, enter the name of the domain value map
column that is associated with the target element value, or click Browse to
select the name from the columns defined for the domain value map you
previously selected.

e. Click Add to add another column as the target column and then enter the
name of the column.

A populated Edit Function - lookupValue1M dialog is shown in Figure 44-9.

Using Domain Value Map Functions

Working with Domain Value Maps 44-13

Figure 44-9 Populated Edit Function – lookupValue1M Dialog

8. Click OK.

The XSLT Mapper appears with the lookupValue1M function icon.

9. From the File menu, select Save All.

For more information about selecting deployed domain value maps, see How to
Deploy and Use Shared Data Across Multiple SOA Composite Applications in .

44.4.3 How to Use Domain Value Map Functions in XPath Expressions
You can use the domain value map functions to create XPath expressions in the
Expression Builder dialog. You can access the Expression Builder dialog through the
Filter Expressions or the Assign Values functionality of an Oracle Mediator service
component.

For information about the Assign Values functionality, see How to Assign Values.

To use the lookupValue function in the Expression Builder dialog:

1. In the Functions list, select DVM Functions.

2. Double-click the dvm:lookupValue function to add it to the expression field.

3. Specify the various arguments of the lookupValue function. For example:

dvm:lookupValue('citymap.dvm','CityCodes',$in.Customer/inp1:Customer/Address/Ci
ty,'CityNames','NotFound')

This expression, also shown in Figure 44-10, looks up a domain value map for the
city name equivalent of a city code. The value of the city code depends on the value
specified at runtime.

Using Domain Value Map Functions

44-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 44-10 Domain Value Map Functions in the Expression Builder Dialog

44.4.4 What Happens at Runtime
At runtime, a BPEL process service component or a Mediator service component uses
the domain value map to look up appropriate values.

44.5 Creating a Domain Value Map Use Case for a Hierarchical Lookup
This section provides a tutorial for using domain value maps in a SOA composite. This
use case demonstrates the hierarchical lookup feature of domain value maps. The
hierarchical lookup use case consists of the following steps:

1. Files are retrieved from a directory by an adapter service named ReadOrders.

2. The ReadOrders adapter service sends the file data to a Mediator named
ProcessOrders.

3. The ProcessOrders Mediator then transforms the message to the structure required
by the adapter reference. During transformation, Mediator looks up the
UnitsOfMeasure domain value map for an equivalent value of the Common
domain.

4. The ProcessOrders Mediator sends the message to an external reference named
WriteOrders.

5. The WriteOrders reference writes the message to a specified output directory.

To download the sample files mentioned in this section, see the Oracle SOA Suite
samples page.

Creating a Domain Value Map Use Case for a Hierarchical Lookup

Working with Domain Value Maps 44-15

44.5.1 How to Create the HierarchicalValue Use Case
This section provides the design-time tasks for creating, building, and deploying your
SOA composite application. These tasks must be performed in the order in which they
are presented.

44.5.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:

1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter Hierarchical and then click Next.

The Name your project page appears.

5. In the Project Name field, enter HierarchicalValue and click Next.

The Configure SOA settings page appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Applications window of Oracle JDeveloper is populated with the new
application and the project, and the SOA Composite Editor contains a blank
composite.

7. From the File menu, select Save All.

44.5.1.2 Task 2: How to Create a Domain Value Map

After creating an application and a project for the use case, create a domain value map.

To create a domain value map:

1. In the Applications window, right-click the HierarchicalValue project and select
New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog appears.

4. In the File Name field, enter UnitsOfMeasure.dvm.

5. In the Domain Name fields, enter Siebel and Common.

6. In the Domain Value field corresponding to the Siebel domain, enter Ea.

Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

7. In the Domain Value field corresponding to the Common domain, enter Each.

8. Click OK.

The Domain Value Map Editor appears.

9. Click Add and then select Add Column.

The Create DVM Column dialog appears.

10. In the Name field, enter TradingPartner.

11. In the Qualifier list, select true.

12. In the QualifierOrder field, enter 1 and click OK.

13. Repeat Step 9 through Step 12 to create another qualifier named StandardCode
with a qualifier order value of 2.

14. Click Add and then select Add Domain Values.

Repeat this step to add two more rows.

15. Enter the information shown in Table 44-6 in the newly added rows of the domain
value map table.

Table 44-6 Information for Rows of Domain Value Map Table

Siebel Common TradingPartner StandardCode

EC Each OAG

E-RN Each A.C.Networks RN

EO Each ABC Inc RN

The Domain Value Map Editor appears, as shown in Figure 44-11.

Figure 44-11 UnitsOfMeasure Domain Value Map

Creating a Domain Value Map Use Case for a Hierarchical Lookup

Working with Domain Value Maps 44-17

16. From the File menu, select Save All and close the Domain Value Map Editor.

44.5.1.3 Task 3: How to Create a File Adapter Service

After creating the domain value map, create a file adapter service named ReadOrders
to read the XML files from a directory.

Note:

Oracle Mediator may process the same file twice when run against Oracle Real
Application Clusters (Oracle RAC) planned outages. This is because a file
adapter is a non-XA compliant adapter. Therefore, when it participates in a
global transaction, it may not follow the XA interface specification of
processing each file only once.

To create a file adapter service:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the Exposed Services swimlane.

3. If the Adapter Configuration wizard Welcome page appears, click Next.

The Service Name page appears.

4. In the Service Name field, enter ReadOrders and then click Next.

The Operation page appears.

5. In the Operation Type field, select Read File and then click Next.

The File Directories page appears.

6. In the Directory for Incoming Files (physical path) field, enter the directory from
which you want to read the files.

7. Click Next.

The File Filtering page appears.

8. In the Include Files with Name Pattern field, enter *.xml and then click Next.

The File Polling page appears.

9. Change the Polling Frequency field value to 10 seconds and then click Next.

The Messages page appears.

10. Click Search.

The Type Chooser dialog appears.

11. Click Import Schema File.

The Import Schema File dialog appears.

12. Click Search and select the Order.xsd file in the Samples folder.

Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

13. Click OK.

14. Expand the navigation tree to Type Explorer > Imported Schemas > Order.xsd.

15. Select listOfOrder and click OK.

16. Click Next.

The Finish page appears.

17. Click Finish.

18. From the File menu, click Save All.

Figure 44-12 shows the ReadOrders service in the .

Figure 44-12 ReadOrders Service in the

44.5.1.4 Task 4: How to Create ProcessOrders Mediator Component

To create a Mediator named ProcessOrders:

1. Drag and drop a Mediator icon from the Components window to the Components
section of the SOA Composite Editor.

The Create Mediator dialog appears.

2. In the Name field, enter ProcessOrders.

3. From the Template list, select Define Interface Later.

4. Click OK.

A Mediator with name ProcessOrders is created.

5. In the , connect the ReadOrders service to the ProcessOrders Oracle Mediator, as
shown in Figure 44-13.

This specifies the file adapter service to invoke the ProcessOrders Mediator while
reading a file from the input directory.

Creating a Domain Value Map Use Case for a Hierarchical Lookup

Working with Domain Value Maps 44-19

Figure 44-13 ReadOrders Service Connected to the ProcessOrders Mediator

6. From the File menu, select Save All.

44.5.1.5 Task 5: How to Create a File Adapter Reference

To create a file adapter reference:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page appears.

3. Click Next.

The Service Name page appears.

4. In the Service Name field, enter WriteCommonOrder.

5. Click Next.

The Operation page appears.

6. In the Operation Type field, select Write File.

7. Click Next.

The File Configuration page appears.

8. In the Directory for Outgoing Files (physical path) field, enter the name of the
directory in which you want to write the files.

9. In the File Naming Convention field, enter common_order_%SEQ%.xml and click
Next.

The Messages page appears.

10. Click Search.

The Type Chooser dialog appears.

11. Navigate to Type Explorer > Project Schema Files > Order.xsd, and then select
listOfOrder.

12. Click OK.

Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

13. Click Next.

The Finish page appears.

14. Click Finish.

Figure 44-14 shows the WriteCommonOrder reference in the .

Figure 44-14 WriteCommonOrder Reference in the

15. From the File menu, select Save All.

44.5.1.6 Task 6: How to Specify Routing Rules

You must specify the path that messages take from the ReadOrders adapter service to
the external reference.

To specify routing rules:

1. Connect the ProcessOrders Oracle Mediator to the WriteCommonOrder reference,
as shown in Figure 44-15.

Figure 44-15 ProcessOrders Mediator Connected to the WriteCommonOrder
Reference

2. Double-click the ProcessOrders Oracle Mediator.

3. To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog appears.

4. Select Create New Mapper File and click OK.

Creating a Domain Value Map Use Case for a Hierarchical Lookup

Working with Domain Value Maps 44-21

A listOfOrder_To_listOfOrder.xsl file appears in the XSLT Mapper.

5. Drag and drop the imp1:listOfOrder source element onto the imp1:listOfOrder
target element.

The Auto Map Preferences dialog appears.

6. From the During Auto Map options, deselect Match Elements Considering their
Ancestor Names.

7. Click OK.

The listOfOrder_To_listOfOrder.xsl file appears, as shown in Figure 44-16.

Figure 44-16 imp1:listOfOrder To imp1:listOfOrder Transformation

8. In the Components window, select Advanced.

9. Click DVM Functions.

10. Drag and drop lookupValue on the line connecting the unitsOfMeasure elements,
as shown in Figure 44-17.

Figure 44-17 Adding lookupValue Function to imp1:listOfOrder To
imp1:listOfOrder.xsl

11. Double-click the lookupvalue icon.

The Edit Function-lookupValue dialog appears.

12. To the right of the dvmLocation field, click Search.

Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The SOA Resource Lookup dialog appears.

13. Select UnitsofMeasure.dvm and click OK.

14. To the right of the sourceColumnName field, click Search.

The Select DVM Column dialog appears.

15. Select Siebel and click OK.

16. In the sourceValue column, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:unitOfMeasure

17. To the right of the targetColumnName field, click Search.

The Select DVM Column dialog appears.

18. Select Common and click OK.

19. In the defaultValue field, enter "No_Value_Found".

20. Click Add.

A qualifierColumnName row is added.

21. In the qualifierColumnName field, enter "StandardCode".

22. Click Add.

A qualifierValue row is added.

23. In the qualifierValue field, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:standard.

24. Click Add to insert another qualifierColumnName row.

25. In the qualifierColumnName field, enter "TradingPartner".

26. Click Add to insert another qualifierValue row.

27. In the qualifierValue field, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:tp.

The Edit Function-lookupValue dialog appears, as shown in Figure 44-18.

Creating a Domain Value Map Use Case for a Hierarchical Lookup

Working with Domain Value Maps 44-23

Figure 44-18 Edit Function-lookupValue Function Dialog: Hierarchical Lookup
Use Case

28. Click OK.

The transformation appears, as shown in Figure 44-19.

Figure 44-19 Complete imp1:listOfOrder To imp1:listOfOrder Transformation

29. From the File menu, select Save All and close the listOfOrder_To_listOfOrder.xsl
file at the top.

44.5.1.7 Task 7: How to Configure an Application Server Connection

An application server connection is required for deploying your SOA composite
application. For information on creating an application server connection, see Creating
an Application Server Connection.

Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

44.5.1.8 Task 8: How to Deploy the Composite Application

Deploying the HierarchicalValue composite application to an application server
consists of the following steps:

• Creating an application deployment profile.

• Deploying the application to the application server.

For detailed information about these steps, see How to Deploy a Single SOA
Composite in .

44.5.2 How to Run and Monitor the HierarchicalValue Application
After deploying the HierarchicalValue application, you can run it by copying the
input XML file sampleorder.xml to the input folder. This file is available in the
samples folder. On successful completion, a file named common_order_1.xml is
written to the specified output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion
Middleware Control at the following URL:

http://hostname:port/em

where hostname is the host on which you installed the Oracle SOA Suite
infrastructure.

For detailed information about these steps, see How to Deploy a Single SOA
Composite in .

44.6 Creating a Domain Value Map Use Case For Multiple Values
This section provides a tutorial demonstrating how to create a domain value map with
multiple values to look up. This use case demonstrates the integration scenario for
using a domain value map lookup between two endpoints to look up multiple values.
For example, if the inbound value is State, then the outbound values are Shortname of
State, Language, and Capital. The multivalue lookup use case consists of the following
steps:

1. Files are retrieved from a directory by an adapter service named readFile.

2. The readFile adapter service sends the file data to an Oracle Mediator named
LookupMultiplevaluesMediator.

3. The LookupMultiplevaluesMediator Oracle Mediator then transforms the
message to the structure required by the adapter reference. During
transformation, Oracle Mediator looks up the multivalue domain value map for
an equivalent value of the Longname and Shortname domains.

4. The LookupMultiplevaluesMediator Oracle Mediator sends the message to an
external reference named writeFile.

5. The writeFile reference writes the message to a specified output directory.

To download the sample files mentioned in this section, see Oracle SOA Suite
samples page.

Creating a Domain Value Map Use Case For Multiple Values

Working with Domain Value Maps 44-25

44.6.1 How to Create the Multivalue Use Case
This section provides the design-time tasks for creating, building, and deploying your
SOA composite application. Perform these tasks in the order in which they are
presented.

44.6.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project

To create an Oracle JDeveloper application and project:

1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter Multivalue and then click Next.

The Name your project page appears.

5. In the Project Name field, enter Multivalue and click Next.

The Configure SOA settings page appears.

6. From the Composite Template list, select Empty Composite and then click Finish.

The Applications window of Oracle JDeveloper is populated with the new
application and project, and the SOA Composite Editor contains a blank composite.

7. From the File menu, select Save All.

44.6.1.2 Task 2: How to Create a Domain Value Map

After creating an application and a project for the use case, create the domain value
map.

To create a domain value map:

1. In the Applications window, right-click the Multivalue project and select New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog appears.

4. In the File Name field, enter multivalue.dvm.

5. In the Domain Name fields, enter Longname, Shortname, Language, and
Capital.

Creating a Domain Value Map Use Case For Multiple Values

44-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

6. In the Domain Value field corresponding to the Longname domain, enter
Karnataka.

7. In the Domain Value field corresponding to the Shortname domain, enter KA.

8. In the Domain Value field corresponding to the Language domain, enter
Kannada.

9. In the Domain Value field corresponding to the Capital domain, enter
Bangalore.

10. Click OK.

The Domain Value Map Editor appears.

11. Click Add and then select Add Row.

Repeat this step to add two more rows.

12. Enter the information shown in Table 44-7 in the newly added rows of the domain
value map table:

Table 44-7 Information for Rows of Domain Value Map Table

Longname Shortname Language Capital

Karnataka KA Kannada Bangalore

Tamilnadu TN Tamil Chennai

Andhrapradesh AP Telugu Hyderbad

Kerala KL Malayalam Trivandram

The Domain Value Map Editor appears, as shown in Figure 44-20.

Figure 44-20 Multivalue Domain Value Map

13. From the File menu, select Save All and close the Domain Value Map Editor.

44.6.1.3 Task 3: How to Create a File Adapter Service

After creating the domain value map, create a file adapter service named readFile to
read the XML files from a directory.

Creating a Domain Value Map Use Case For Multiple Values

Working with Domain Value Maps 44-27

Note:

Mediator may process the same file twice when run against Oracle RAC
planned outages. This is because a file adapter is a non-XA compliant adapter.
Therefore, when it participates in a global transaction, it may not follow the
XA interface specification of processing each file only once.

To create a file adapter service:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the Exposed Services swimlane.

3. If the Adapter Configuration wizard Welcome page appears, click Next.

The Service Name page appears.

4. In the Service Name field, enter readFile and then click Next.

The Adapter Interface page appears.

5. Click Define from operation and schema (specified later) and then click Next.

The Operation page appears.

6. In the Operation Type field, select Read File and then click Next.

The File Directories page appears.

7. In the Directory for Incoming Files (physical path) field, enter the directory from
which you want to read the files.

8. Click Next.

The File Filtering page appears.

9. In the Include Files with Name Pattern field, enter *.xml and then click Next.

The File Polling page appears.

10. Change the Polling Frequency field value to 1 second and then click Next.

The Messages page appears.

11. Click Search.

The Type Chooser dialog appears.

12. Click Import Schema File.

The Import Schema File dialog appears.

13. Click Search and select the input.xsd file in the Samples folder.

14. Click OK.

15. Expand the navigation tree to Type Explorer > Imported Schemas > input.xsd.

16. Select Root-Element and click OK.

Creating a Domain Value Map Use Case For Multiple Values

44-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

17. Click Next.

The Finish page appears.

18. Click Finish.

19. From the File menu, select Save All.

Figure 44-21 shows the readFile service in the .

Figure 44-21 readFile Service in the

44.6.1.4 Task 4: How to Create the LookupMultiplevaluesMediator Mediator

To create the LookupMultiplevaluesMediator Mediator:

1. Drag and drop a Mediator icon from the Components window to the Components
section of the SOA Composite Editor.

The Create Mediator dialog appears.

2. In the Name field, enter LookupMultiplevaluesMediator.

3. From the Template list, select Define Interface Later.

4. Click OK.

An Oracle Mediator with the name LookupMultiplevaluesMediator is created.

5. In the , connect the readFile service to the LookupMultiplevaluesMediator Oracle
Mediator, as shown in Figure 44-22.

This specifies the file adapter service to invoke the
LookupMultiplevaluesMediator Oracle Mediator while reading a file from the
input directory.

Creating a Domain Value Map Use Case For Multiple Values

Working with Domain Value Maps 44-29

Figure 44-22 readFile Service Connected to the LookupMultiplevaluesMediator
Mediator

6. From the File menu, select Save All.

44.6.1.5 Task 5: How to Create a File Adapter Reference

To create a file adapter reference:

1. From the Components window, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page appears.

3. Click Next.

The Service Name page appears.

4. In the Service Name field, enter writeFile and then click Next.

The Adapter Interface page appears.

5. Click Define from operation and schema (specified later) and then click Next.

The Operation page appears.

6. Click Next.

The Operation page appears.

7. In the Operation Type field, select Write File.

8. Click Next.

The File Configuration page appears.

9. In the Directory for Outgoing Files (physical path) field, enter the name of the
directory where you want to write the files.

10. In the File Naming Convention field, enter multivalue_%SEQ%.xml and click
Next.

The Messages page appears.

11. Click Search.

Creating a Domain Value Map Use Case For Multiple Values

44-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The Type Chooser dialog appears.

12. Navigate to Type Explorer > Project Schema Files > output.xsd, and then select
Root-Element.

13. Click OK.

14. Click Next.

The Finish page appears.

15. Click Finish.

Figure 44-23 shows the writeFile reference in the .

Figure 44-23 writeFile Reference in

16. From the File menu, select Save All.

44.6.1.6 Task 6: How to Specify Routing Rules

You must specify the path that messages take from the readFile adapter service to the
external reference.

To specify routing rules

1. Connect the LookupMultiplevaluesMediator Mediator to the writeFile reference,
as shown in Figure 44-24.

Figure 44-24 LookupMultiplevaluesMediator Mediator Connected to the writeFile
Reference

Creating a Domain Value Map Use Case For Multiple Values

Working with Domain Value Maps 44-31

2. Double-click the LookupMultiplevaluesMediator Mediator.

3. To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog appears.

4. Select Create New Mapper File and click OK.

An Input_To_Output_with_multiple_values_lookup.xsl file appears in the XSLT
Mapper.

5. Drag and drop the imp1:Root-Element source element to the ns2:Root-Element
target element.

The Auto Map Preferences dialog appears.

6. From the During Auto Map options list, deselect Match Elements Considering
their Ancestor Names.

7. Click OK.

The Input_To_Output_with_multiple_values_lookup.xsl file appears in the XSLT
Mapper, as shown in Figure 44-25.

Figure 44-25 imp1:Root-Element To ns2:Root-Element Transformation

8. In the Components window, select Advanced.

9. Click DVM Functions.

10. Drag and drop lookupValue1M in the center panel, as shown in Figure 44-26.

Figure 44-26 Adding lookupValue Function to imp1:Root-Element to ns2:Root-
Element

11. Double-click the lookupvalue1M icon.

The Edit Function-lookupValue1M dialog appears.

12. To the right of the dvmLocation field, click Search.

The SOA Resource Lookup dialog appears.

Creating a Domain Value Map Use Case For Multiple Values

44-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

13. Select multivalue.dvm and click OK.

14. To the right of the sourceColumnName field, click Search.

The Select DVM Column dialog appears.

15. Select Longname and click OK.

16. In the sourceValue column, enter the following:

/imp1:Root-Element/imp1:Details/imp1:Longname.

17. To the right of the targetColumnName field, click Search.

The Select DVM Column dialog appears.

18. Select Shortname and click OK.

19. Click Add.

A targetColumnName row is added.

20. In the targetColumnName field, enter "Language".

21. Click Add to insert another targetColumnName row.

22. In the targetColumnName field, enter "Capital".

The Edit Function-lookupValue dialog appears, as shown in Figure 44-27.

Figure 44-27 Edit Function-lookupValue Function Dialog: Multiple Value Lookup
Use Case

23. Click OK.

The Transformation appears, as shown in Figure 44-28.

Creating a Domain Value Map Use Case For Multiple Values

Working with Domain Value Maps 44-33

Figure 44-28 Complete imp1:Root-Element To ns2:Root-Element
Transformation

24. From the File menu, select Save All and close the
Input_To_Output_with_multiple_values_lookup.xsl file.

44.6.1.7 Task 7: How to Configure an Application Server Connection

An application server connection is required for deploying your SOA composite
application. For information on creating an application server connection, see Creating
an Application Server Connection.

44.6.1.8 Task 8: How to Deploy the Composite Application

Deploying the Multivalue composite application to an application server consists of
the following steps:

• Creating an application deployment profile.

• Deploying the application to the application server.

For detailed information about these steps, see How to Deploy a Single SOA
Composite in .

44.6.2 How to Run and Monitor the Multivalue Application
After deploying the Multivalue application, you can run it by copying the input XML
file sampleinput.xml to the input folder. This file is available in the samples
folder. On successful completion, a file with name multivalue_1.xml is written to
the specified output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion
Middleware Control at the following URL:

http://hostname:port/em

where hostname is the host on which you installed the Oracle SOA Suite
infrastructure.

In Oracle Enterprise Manager Fusion Middleware Control, you can click Multivalue
to see the project dashboard.

To view the detailed execution trail, click the instance ID in the instance column. The
Flow Trace page appears.

44.7 Preloading DVM Cache for Faster First-Use
When a DVM is first called into use, the DVM gets loaded into the cache from the
MDS. Subsequent lookups are faster, as the DVM is picked from the cache.

Preloading DVM Cache for Faster First-Use

44-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

If you have a lot of records in your DVMs, you may want to preload the DVMs into
the cache during server startup, so that the DVMs are readily available for first use.

You can choose to preload the DVM cache at server startup using the MBean property
LoadDVMsAtStartup in the System MBean Browser of Oracle Enterprise Manager
Fusion Middleware Control. Setting LoadDVMsAtStartup to true loads all the DVMs
into the cache at server startup. The default value for LoadDVMsAtStartup is false.

44.7.1 How to Preload DVM Cache at Server Startup

To preload DVM cache at server startup:

1. Log in to Oracle Enterprise Manager Fusion Middleware Control.

2. From the SOA Infrastructure menu, select SOA Administration > Common
Properties.

3. At the bottom of the SOA Infrastructure Common Properties page, click More SOA
Infra Advanced Configuration Properties.

4. Click LoadDVMsAtStartup.

5. In the Value field, select true.

6. Click Apply.

7. Click Return.

Preloading DVM Cache for Faster First-Use

Working with Domain Value Maps 44-35

Preloading DVM Cache for Faster First-Use

44-36 Developing SOA Applications with Oracle SOA Suite

45
Using Oracle SOA Composer with Domain

Value Maps

This chapter describes how to modify domain value maps for an Oracle SOA Suite
project at runtime using Oracle SOA Composer. Domain value maps let you map
values from one vocabulary used in a given domain to another vocabulary used in a
different domain.

In earlier releases, for editing a domain value map at runtime, you first had to make
the changes in Oracle JDeveloper, and then redeploy the domain value map in the
application server. Oracle SOA Composer now offers support for editing domain
value maps at runtime.

This chapter includes the following sections:

• Introduction to Oracle SOA Composer

• Viewing Domain Value Maps at Runtime

• Editing Domain Value Maps at Runtime

• Publishing Changes at Runtime

• Detecting Conflicts

For more information about domain value maps, see Working with Domain Value
Maps .

45.1 Introduction to Oracle SOA Composer
Oracle SOA Composer is an EAR file that is installed as part of the Oracle SOA Suite
installation. Oracle SOA Composer enables you to manage deployed domain value
maps during runtime without needing to redeploy the project that uses the domain
value maps. Domain value map metadata can be associated either with a SOA
composite application, or it can be shared across different composite applications.
Figure 45-1 shows how Oracle SOA Composer lets you access a domain value map
from the Metadata Service (MDS) repository.

Using Oracle SOA Composer with Domain Value Maps 45-1

Figure 45-1 Oracle SOA Composer High-Level Deployment Topology

45.1.1 How to Log in to Oracle SOA Composer

To log in to Oracle SOA Composer:

1. Enter the following URL in your web browser:

http://hostname:port/soa/composer

The Oracle SOA Composer Login page appears, as shown in Figure 45-2.

Figure 45-2 Oracle SOA Composer Login Page

2. In the Username field, enter your user name.

3. In the Password field, enter your password.

Introduction to Oracle SOA Composer

45-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

4. Click Login.

After you log in to Oracle SOA Composer, the Oracle SOA Composer home page
appears, as shown in Figure 45-3:

Figure 45-3 Oracle SOA Composer Home Page

You must have the SOADesigner application role to access Oracle SOA Composer
metadata. By default, all users with Oracle Enterprise Manager Fusion Middleware
Control administrator privileges have this role. If you log in to Oracle SOA Composer
without this role, you see the following message:

Currently logged in user is not authorized to modify SOA metadata.

For information about adding the SOADesigner application role to users without
administrator privileges, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

45.2 Viewing Domain Value Maps at Runtime
You can view domain value maps at runtime. Perform the following steps to open and
view a domain value map.

45.2.1 How To View Domain Value Maps at Runtime

To view domain value maps at runtime:

1. Select Types View in the Applications window panel on the left.

Viewing Domain Value Maps at Runtime

Using Oracle SOA Composer with Domain Value Maps 45-3

2. Expand Domain Value Maps folder by clicking the right arrow icon before it.

3. Select the domain value map file (.dvm) that you want to view or edit.

4. Click the Open icon to open the domain value map.

5. From the Open menu, select Open DVM. The DVM details appear in view mode.

Figure 45-4 shows a sample domain value map in SOA Composer.

Figure 45-4 Viewing a Domain Value Map in SOA Composer

Note:

To get a direct link to the selected domain value map, click Bookmark.

45.3 Editing Domain Value Maps at Runtime
You can edit domain value maps while the applications using the domain value map
are running.

Note:

When you update a DVM using SOA Composer, the DVM cache also gets
updated with the updated DVM.

Editing Domain Value Maps at Runtime

45-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

45.3.1 How to Edit Domain Value Maps at Runtime
By default, domain value maps open in view mode. Once you change to edit mode,
you can modify row information. When you finish making changes, be sure to save
and commit them as described in Publishing Changes at Runtime.

45.3.1.1 Changing to Edit Mode

To change to edit mode:

1. Open the domain value map for viewing, as described in How To View Domain
Value Maps at Runtime.

2. Click Create Session in the top right section of the SOA Composer window. If you
have a previously active session, you must click Edit Session.

The domain value map opens in edit mode.

45.3.1.2 Adding Rows

To add rows:

You can add rows by performing the following steps:

1. Click Add Domain Values.

The Add Domain Values dialog appears.

2. Enter values and click OK.

The entered values are added to the domain value map.

3. Click Save in the top right section of the SOA Composer.

45.3.1.3 Editing Rows

To edit rows:

You can edit rows by performing the following steps:

1. Select the row to edit.

2. Click Edit Domain Values.

The Edit Domain Values dialog appears.

3. Edit the values as required and click OK.

4. Click Save in the top right section of SOA Composer.

45.3.1.4 Deleting Rows

To delete rows:

You can delete rows by performing the following steps:

Editing Domain Value Maps at Runtime

Using Oracle SOA Composer with Domain Value Maps 45-5

1. Select the rows to delete.

2. Click Delete Domain Values.

3. Click Save in the top right section of SOA Composer.

45.4 Publishing Changes at Runtime
Every time a domain value map is opened in an edit session, a sandbox is created per
domain value map, per user. If you save your changes, then the changes are saved in
your sandbox.

You must publish the changes you make to have them picked up by the runtime and
be saved permanently to the MDS repository. In a session, you can also save your
changes without publishing them. In such a case, the domain value map remains in
the saved state. You can reopen the domain value map and publish the changes later.

45.4.1 How to Publish Changes at Runtime

To publish changes at runtime:

1. Click Publish in the top right section of SOA Composer. A confirmation dialog
appears.

2. Enter an optional description for the changes made in the session. Click OK.

45.4.2 How to Discard Changes at Runtime
You can also choose to discard any changes made to the DVM in the session.

To discard changes at runtime:

1. Click Discard in the top right section of SOA Composer. A confirmation dialog
appears.

2. Click OK to discard changes made in the session. This includes any changes that
you might have saved to the sandbox.

45.5 Detecting Conflicts
Oracle SOA Composer detects conflicts that can occur among concurrent users. If you
open a domain value map that is being edited by another user, then you see a dialog
asking you to confirm whether you want to go ahead with the edit.

If you still want to edit the domain value map, you can click Yes and make the
modifications.

If the other user makes changes to the domain value map and commits the changes,
you receive a notification message while trying to commit your changes.

If you click Yes and commit your changes, then the changes made by the other user
are overwritten by your changes.

Publishing Changes at Runtime

45-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Part VIII
Completing Your Application

This part describes how to complete design of your application.

This part contains the following chapters:

• Enabling Security with Policies and Message Encryption

• Deploying SOA Composite Applications

• Using the Development Maven Plug-In

• Debugging and Auditing SOA Composite Applications

• Automating Testing of SOA Composite Applications

46
Enabling Security with Policies and

Message Encryption

This chapter describes how to attach policies to binding components and service
components during design-time in SOA composite applications and encrypt and
decrypt specific fields of messages. Policies apply security to the delivery of messages.
This chapter also describes how to override policy configuration property values.

This chapter includes the following sections:

• Introduction to Policies

• Attaching Policies to Binding Components and Service Components

• Encrypting and Decrypting Specific Fields of Messages

46.1 Introduction to Policies
Oracle Fusion Middleware uses a policy-based model to manage and secure Web
services across an organization. Policies apply security to the delivery of messages.
Policies can be managed by both developers in a design-time environment and system
administrators in a runtime environment.

Policies are comprised of one or more assertions. A policy assertion is the smallest unit
of a policy that performs a specific action. Policy assertions are executed on the request
message and the response message, and the same set of assertions is executed on both
types of messages. The assertions are executed in the order in which they appear in the
policy.

Table 46-1 describes the supported policy categories.

Table 46-1 Supported Policy Categories

Category Description

Message Transmission
Optimization
Mechanism (MTOM)

Ensures that attachments are in MTOM format. This format enables
binary data to be sent to and from web services. This reduces the
transmission size on the wire.

Reliability Supports the WS-Reliable Messaging protocol. This guarantees the
end-to-end delivery of messages.

Addressing Verifies that simple object access protocol (SOAP) messages include
WS-Addressing headers in conformance with the WS-Addressing
specification. Transport-level data is included in the XML message
rather than relying on the network-level transport to convey this
information.

Enabling Security with Policies and Message Encryption 46-1

Table 46-1 (Cont.) Supported Policy Categories

Category Description

Security Implements the WS-Security 1.0 and 1.1 standards. They enforce
authentication and authorization of users. identity propagation, and
message protection (message integrity and message confidentiality).

Management Logs request, response, and fault messages to a message log.
Management policies can also include custom policies.

Within each category there are one or more policy types that you can attach. For
example, if you select the reliability category, the following types are available for
selection:

• oracle/no_reliable_messaging_policy

Supports the disabling of reliable messaging configured at a higher scope

• oracle/no_wsrm_policy

Supports the disabling of a globally attached Web Services Reliable Messaging
policy

• oracle/reliable_messaging_policy

Supports the enabling of Web services reliable messaging

• oracle/wsrm10_policy

Supports version 1.0 of the Web Services Reliable Messaging protocol

• oracle/wsrm11_policy

Supports version 1.1 of the Web Services Reliable Messaging protocol

For more information about available policies, details about which ones to use in your
environment, and global policies, see Securing Web Services and Managing Policies with
Oracle Web Services Manager.

46.2 Attaching Policies to Binding Components and Service Components
You can attach or detach policies to and from service binding components, service
components, and reference binding components in a SOA composite application. Use
Oracle JDeveloper to attach policies for testing security in a design-time environment.
When your application is ready for deployment to a production environment, you can
attach or detach runtime policies in Oracle Enterprise Manager Fusion Middleware
Control.

For more information about runtime management of policies, see Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

46.2.1 How to Attach Policies to Binding Components and Service Components

To attach policies to binding components and service components:

1. In the SOA Composite Editor, right-click a service binding component or reference
binding component.

Attaching Policies to Binding Components and Service Components

46-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

2. Select Configure SOA WS Policies.

Depending upon the interface definition of your SOA composite application, you
may be prompted with an additional menu of options.

• If the selected service or reference is interfacing with a synchronous BPEL
process or Oracle Mediator service component, a single policy is used for both
request and response messages. The Configure SOA WS Policies dialog
immediately appears. Go to Step 4.

• If the service or reference is interfacing with an asynchronous BPEL process or
Oracle Mediator service component, the policies must be configured separately
for request and response messages. The policy at the callback is used for the
response sent from service to client. An additional menu is displayed. Go to
Step 3.

3. Select the type of binding to use:

• For Request:

Select the request binding for the service component with which to bind. You
can only select a single request binding. This action enables communication
between the binding component and the service component.

When request binding is configured for a service in the Exposed Services
swimlane, the service acts as the server. When request binding is configured
for a reference in the External References swimlane, the reference acts as the
client.

• For Callback: (only for interactions with asynchronous processes)

Select the callback binding for the service component with which to bind. This
action enables message communication between the binding component and
the service component. You can only select a single callback binding.

When callback binding is configured for a service in the Exposed Services
swimlane, the service acts as the client. When callback binding is configured
for a reference in the External References swimlane, the reference acts as the
server.

The Configure SOA WS Policies dialog shown in Figure 46-1 appears. For this
example, the For Request option was selected for a service binding component.
The same types of policy categories are also available if you select For Callback.

Attaching Policies to Binding Components and Service Components

Enabling Security with Policies and Message Encryption 46-3

Figure 46-1 Configure SOA WS Policies Dialog

4. Click the Add icon next to the type of policy to attach:

• MTOM

• Reliability

• Addressing

• Security

• Management

For this example, Security is selected. The dialog shown in Figure 46-2 is
displayed.

Attaching Policies to Binding Components and Service Components

46-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 46-2 Security Policies

5. Click the icon to the right of the policy name to display a description of policy
capabilities.

6. Select the type of policy to attach.

7. Click OK.

You are returned to the Configure SOA WS Policies dialog shown in Figure 46-3.
The attached security policy displays in the Security section.

Figure 46-3 Attached Security Policy

Attaching Policies to Binding Components and Service Components

Enabling Security with Policies and Message Encryption 46-5

8. If necessary, add additional policies.

You can temporarily disable a policy by clicking the Disable selected policies icon.
Figure 46-4 provides details. This action does not detach the policy.

Figure 46-4 Disable Selected Policies Icon

9. To enable the policy again, click the Enable selected policies icon to the left.

10. To detach a policy, click the Delete icon.

11. When complete, click OK in the Configure SOA WS Policies dialog.

You are returned to the SOA Composite Editor.

12. Place your cursor over the icon on the service binding component to display details
about the attached policy. Figure 46-5 provides details.

Figure 46-5 Policy Description Icon

46.2.1.1 To attach a policy to a service component:

1. Right-click a service component.

2. Select Configure SOA WS Policies.

The Configure SOA WS Policies dialog shown in Figure 46-6 appears.

Figure 46-6 Configure SOA WS Policies Dialog

3. Click the Add icon next to the type of policy to attach.

Attaching Policies to Binding Components and Service Components

46-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Security

• Management

The dialog for your selection appears.

4. Select the type of policy to attach.

5. Click OK.

6. If necessary, add additional policies.

7. When complete, click OK in the Configure SOA WS Policies dialog.

For information about attaching policies during runtime in Oracle Enterprise Manager
Fusion Middleware Control, see Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

46.2.2 How to Override Policy Configuration Property Values
Your environment may include multiple clients or servers with the same policies.
However, each client or server may have their own specific policy requirements. You
can override the policy property values based on your runtime requirements.

46.2.2.1 Overriding Client Configuration Property Values

You can override the default values of client policy configuration properties on a per
client basis without creating new policies for each client. In this way, you can override
client policies that define default configuration values and customize those values
based on your runtime requirements.

1. Right-click one of the following binding components:

• A service binding component in the Exposed Services swimlane, and select
For Callback.

• A reference binding component in the External References swimlane, and
select For Request.

2. Go to the Security and Management sections. These instructions assume you
previously attached policies in these sections.

The Edit icon is enabled for both sections. Figure 46-7 provides details.

Figure 46-7 Client Policy Selection

3. Click the Edit icon.

Attaching Policies to Binding Components and Service Components

Enabling Security with Policies and Message Encryption 46-7

4. In the Override Value column, enter a value to override the default value shown in
the Value column. Figure 46-8 provides details.

Figure 46-8 Client Policy Override Value

5. Click OK to exit the Config Override Properties dialog.

6. Click OK to exit the Configure SOA WS Policies dialog.

For more information about overriding policy settings, see Securing Web Services and
Managing Policies with Oracle Web Services Manager.

46.2.2.2 Overriding Server Configuration Property Values

You can override the default values of server policy configuration properties on a per
server basis without creating new policies for each server. In this way, you can
override server policies that define default configuration values and customize those
values based on your runtime requirements.

To override server configuration property values:

1. Right-click one of the following binding components:

• A service binding component in the Exposed Services swimlane, and select
For Request.

• A reference binding component in the External References swimlane, and
select For Callback.

2. Go to the Security or Management section. These instructions assume you
previously attached policies in these sections.

The Edit icon is not enabled by default for both sections. You must explicitly select
a policy to enable this icon. This is because you can override fewer property values
for the server. Figure 46-9 provides details.

Attaching Policies to Binding Components and Service Components

46-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 46-9 Server Policy Selection

3. Select an attached policy that permits you to override its value, and click the Edit
icon.

4. In the Override Value column, enter a value to override the default value shown in
the Value column. Figure 46-10 provides details. If the policy store is unavailable,
the words no property store found in the store display in red in the Value
column.

Figure 46-10 Server Policy Override Value

5. Click OK to exit the Config Override Properties dialog.

6. Click OK to exit the Configure SOA WS Policies dialog.

For more information about overriding policy settings, see Securing Web Services
and Managing Policies with Oracle Web Services Manager.

46.3 Encrypting and Decrypting Specific Fields of Messages
You can encrypt and decrypt fields of a message to protect sensitive data (known as
personally identifiable information (PII)) flowing in web services and JCA adapters in
Oracle SOA Suite and Oracle Service Bus. This feature provides for the obfuscation of
certain fields (for example, SSNs) to prevent this data from appearing in
administration consoles in clear text.

Figure 46-11 shows an incoming message being encrypted when entering the SOA
composite application in a service binding component and an outgoing message being
decrypted when exiting the SOA composite application in a reference binding
component. Messages outside the composite can be protected with other message
protection policies (WS-Security/SSL).

Encrypting and Decrypting Specific Fields of Messages

Enabling Security with Policies and Message Encryption 46-9

Figure 46-11 Message Encryption and Decryption in a SOA Composite Application

The following code shows an example of an unencrypted message. The PII fields are
name and driversLicense.

<person>
 <name>John</name>
 <driversLicense>B1234</driversLicense>
 <ssn>123-456-789</ssn>
</person>

The following code shows an example of the encrypted message with the name and
driversLicense fields in encrypted format.

<person>
 <name>John</name>
 <driversLicense>encrypted:fdslj[lmsfwer09fsn;keyname=pii-csf-key</driversLicense>
 <ssn>encrypted:gdf45md%mfsd103k;keyname=pii-csf-key</ssn>
</person>

The encryption format is as follows:

encrypted:<CIPHER_TEXT>;keyname:<CSF_KEY_NAME>

Note:

If both a PII policy and authorization policy are attached to a SOA composite
application, the authorization policy is executed before the PII policy. This is
because the PII policy may encrypt the field used for authorization.

If the authorization policy is attached to a component and it requires an
already-encrypted field, authorization fails.

46.3.1 How to Encrypt and Decrypt Specific Fields of Messages

Note:

• You must decrypt PIIs when an encrypted message leaves the composite.
If you attach a PII policy to a service binding component and do not
attach a PII policy to a reference binding component, PIIs in the outbound
message are not decrypted. This is not a recommended practice, and you
receive a runtime error.

• PIIs encrypted in one SOA composite application cannot be decrypted in
another SOA composite application.

Encrypting and Decrypting Specific Fields of Messages

46-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To encrypt and decrypt specific fields of messages:

1. Right-click a service binding component, and select Protect Sensitive Data >
Encrypt Request Data.

The PII Configuration dialog is displayed, as shown in Figure 46-12.

You must now perform the initial encryption on the incoming message.

Figure 46-12 PII Configuration Dialog for Encryption

2. Click the Edit icon to identify the elements in the schema to encrypt.

The Input tab of the Select fields to encrypt dialog is displayed.

3. Click the Add icon to create an XPath expression that identifies the fields of the
request message to encrypt (for example, a user's name, credit card number, or
social security number).

4. Click the CSF tab.

5. Select the credential store framework (CSF) key to use. The credential store is used
for the secure storage of credential keys.

After encryption is complete, the message proceeds through the service
components of the SOA composite application.

When the message reaches a reference binding component and is ready to exit the
SOA composite application, you must decrypt the encrypted message.

6. Right-click the reference binding component, and select Decrypt Sensitive Data.
Figure 46-13 provides details.

Encrypting and Decrypting Specific Fields of Messages

Enabling Security with Policies and Message Encryption 46-11

Figure 46-13 PII Configuration Dialog for Decryption

7. Click the Edit icon.

The Input tab of the Select fields to decrypt dialog is displayed. For asynchronous
processes, there are two steps: one for the input message and one for the output
message.

8. Click the Add icon to invoke the Expression Builder dialog for creating an XPath
expression that identifies the fields to decrypt (for example, a credit card number or
driver's license field).

9. Click OK when complete.

After configuring composites with oracle/pii_security_policy, you must add keys
and user credentials to the credential store.

10. Use the createCred WLST command to create entries in the
oracle.wsm.security credential map for any csf-key user credentials.

connect("weblogic","password","t3://myAdminServer.example.com:7001")

wls:/DefaultDomain/serverConfig> createCred(map="oracle.wsm.security",
key="pii-csf-key", user="weblogic", password="password", desc="Key for
pii_security_policy")

If you do not perform this task, the following error occurs:

oracle.wsm.security.SecurityException: WSM-00016 : The
username/password credentials or certificates pii-csf-key are missing.

Encrypting and Decrypting Specific Fields of Messages

46-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

47
Deploying SOA Composite Applications

This chapter describes the deployment life cycle of SOA composite applications. It
describes how to deploy single composites, multiple composites, and composites
using shared data such as WSDLs, XSDs, and other file types with Oracle JDeveloper
and the ant scripting tool, and create configuration plans for moving SOA composite
applications to and from different environments. Deployment prerequisite, packaging,
preparation, and configuration tasks are also described. A reference to documentation
for deploying with the Oracle WebLogic Scripting Tool (WLST) utility is also
provided.

This chapter includes the following sections:

• Introduction to Deployment

• Deployment Prerequisites

• Understanding the Packaging Impact

• Anatomy of a Composite

• Preparing the Target Environment

• Customizing Your Application for the Target Environment Before Deployment

• Deploying SOA Composite Applications in

• Deploying and Managing SOA Composite Applications with the WLST Utility

• Deploying and Managing SOA Composite Applications with ant Scripts

• Deploying SOA Composite Applications from

• Deploying SOA Composite Applications to a Cluster

• Deploying SOA Composite Applications with No Servers Running

• Postdeployment Configuration

• Testing and Troubleshooting

• Patching Running Instances of a SOA Composite

See Administering Oracle SOA Suite and Oracle Business Process Management Suite for
instructions about deploying SOA composite applications from Oracle Enterprise
Manager Fusion Middleware Control and WLST Command Reference for SOA Suite for
instructions about deploying SOA composite applications with the WLST utility.

47.1 Introduction to Deployment
This chapter describes the following deployment life cycle topics:

Deploying SOA Composite Applications 47-1

• Deployment prerequisites

• Packaging details

• Anatomy of a composite

• Target environment preparation

• Target environment configuration tasks

• Composite deployment

• Postdeployment configuration tasks

• Testing and troubleshooting composite applications

For more information about the deployment life cycle, see Administering Oracle Fusion
Middleware.

47.2 Deployment Prerequisites
This section describes the basic prerequisites required for creating and deploying a
SOA composite application.

47.2.1 Creating the Oracle SOA Suite Schema
Oracle SOA Suite components require schemas that must be installed in the Oracle or
Microsoft SQL Server database. You create and load these schemas in your database
with the Repository Creation Utility (RCU). For information about installing and
configuring your schemas, see Installing and Configuring Oracle SOA Suite and Business
Process Management and Creating Schemas with the Repository Creation Utility.

If you use the Oracle SOA Suite Quick Start installation in a development
environment, the schema is automatically created in the Java database for you. For
more information, see Installing SOA Suite and Business Process Management Suite Quick
Start for Developers.

47.2.2 Creating a SOA Domain
After installation, you use the Oracle Fusion Middleware Configuration Wizard to
create and configure a new Oracle WebLogic Server domain, and choose products
such as Oracle SOA Suite to configure in that domain. This new domain contains the
administration server and other managed servers, depending on the products you
choose to configure.

For more information, see Installing and Configuring Oracle SOA Suite and Business
Process Management.

If you install the Oracle SOA Suite Quick Start, you can configure the Integrated
WebLogic Server's default domain in Oracle JDeveloper. For information, see Section
"Configuring a Domain" of Installing SOA Suite and Business Process Management Suite
Quick Start for Developers.

47.2.3 Configuring a SOA Cluster
You can deploy a SOA composite application into a clustered environment. For more
information on creating and configuring a clustered environment, see High Availability
Guide.

Deployment Prerequisites

47-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

47.3 Understanding the Packaging Impact
You can separately package all required artifact files within the project of a SOA
composite application into a SOA archive (SAR) JAR file though use of the following
tools:

• Oracle JDeveloper

During deployment on the Deployment Action page, you select the Generate
SAR File option. For more information, see Deploying the Profile.

• ant scripts

Use the ant-sca-package script to package your artifacts. For more
information, see How to Use ant to Package a SOA Composite Application into a
Composite SAR File.

• WLST commands

Use the sca_package script to package your artifacts. For more information, see
WLST Command Reference for SOA Suite.

• Maven plug-in

Use the Maven plug-in to compile, package, deploy, test, and undeploy a SOA
composite application in a Maven environment. For more information, see Using
the Development Maven Plug-In.

A SAR file is a special JAR file that requires a prefix of sca_ (for example,
sca_HelloWorld_rev1.0.jar).

In addition, when you deploy a SOA composite application with the Deploy to
Application Server option on the Deployment Action page in Oracle JDeveloper, all
required artifact files within a project are automatically packaged into one of the
following files:

• A self-contained JAR file (for single SOA composite applications)

For more information about self-contained composites, see How to Deploy a
Single SOA Composite in and How to Deploy Multiple SOA Composite
Applications in .

• A ZIP file of multiple SOA composite applications that share metadata with one
another

You can deploy and use shared data across SOA composite applications. Shared
data is deployed to the SOA Infrastructure on the application server as an Oracle
Metadata Services (MDS) Repository archive JAR file. The archive file contains all
shared resources. For more information, see How to Deploy and Use Shared Data
Across Multiple SOA Composite Applications in .

47.4 Anatomy of a Composite
When you deploy a SOA composite application in Oracle JDeveloper, the composite is
packaged in a JAR file (for a single composite application) or a ZIP file (for multiple
SOA composite applications). These files can include the following artifacts:

• Binding components and service components.

Understanding the Packaging Impact

Deploying SOA Composite Applications 47-3

• References to Oracle B2B agreements, Oracle Web Service Manager (OWSM)
policies, and human workflow task flows.

• Shared data such as WSDL and XSD files. All shared data is deployed to an
existing SOA Infrastructure partition on the server. This data is deployed under
the /apps namespace. When you refer to this artifact in Oracle JDeveloper using
a SOA-MDS connection, the URL is prefixed with oramds.

47.5 Preparing the Target Environment
The target environment is the SOA Infrastructure environment to which you want to
deploy your SOA composite application. This is typically a development, test, or
production environment. Depending upon the components, identity service provider,
and security policies you are using in your composite application, additional
configuration steps may be required as you move your application from one target
environment to another. This section describes these tasks.

47.5.1 How to Create Data Sources and Queues
A Java Database Connectivity (JDBC) data source is an object bound to the Java
Naming and Directory Interface (JNDI) tree that includes a pool of JDBC connections.
Applications can look up a data source in the JNDI tree and then reserve a database
connection from the data source. You create queues in which to enqueue outgoing
messages or dequeue incoming messages. The Oracle JCA adapters listed in Table 47-1
require JDBC data sources and queues to be configured before deployment.

Table 47-1 Oracle JCA Adapter Tasks

Adapter Configuration Task See Section...

Database adapter JDBC data source “Deployment" of Understanding Technology
Adapters

AQ adapter JDBC data source “Configuring the Data Sources in the Oracle
WebLogic Server Administration Console" of
Understanding Technology Adapters

JMS adapter Queue “Using the Adapter Configuration Wizard to
Configure Oracle JMS Adapter" of Understanding
Technology Adapters

47.5.1.1 Script for Creation of JMS Resource and Redeployment of JMS Adapter

The following example provides a script for creating the JMS resource and
redeploying the JMS adapter:

Note:

This script is for demonstration purposes. You may need to modify this script
based on your environment.

lookup the JMSModule
 jmsSOASystemResource = lookup("SOAJMSModule","JMSSystemResource")

 jmsResource = jmsSOASystemResource.getJMSResource()

Preparing the Target Environment

47-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 cfbean = jmsResource.lookupConnectionFactory('DemoSupplierTopicCF')
 if cfbean is None:
 print "Creating DemoSupplierTopicCF connection factory"
 demoConnectionFactory =
 jmsResource.createConnectionFactory('DemoSupplierTopicCF')
 demoConnectionFactory.setJNDIName('jms/DemoSupplierTopicCF')
 demoConnectionFactory.setSubDeploymentName('SOASubDeployment')

 topicbean = jmsResource.lookupTopic('DemoSupplierTopic')
 if topicbean is None:
 print "Creating DemoSupplierTopic jms topic"
 demoJMSTopic = jmsResource.createTopic("DemoSupplierTopic")
 demoJMSTopic.setJNDIName('jms/DemoSupplierTopic')
 demoJMSTopic.setSubDeploymentName('SOASubDeployment')

try:
 save()
 # activate the changes
 activate(block="true")
 print "jms topic and factory for SOA Fusion Order Demo successfully created"
except:
 print "Error while trying to save and/or activate!!!"
 dumpStack()

print "Creating jms adapter connection factory information"
try:
 redeploy('JmsAdapter', '@deployment.plan@', upload='true', stageMode='stage')

except:
 print "Error while modifying jms adapter connection factory"

For information about JMS queues and topics and connection factories, see Section
"Configuring Basic JMS System Resources" of Administering JMS Resources for Oracle
WebLogic Server.

47.5.1.2 Script for Creation of the Database Resource and Redeployment of the
Database Adapter

The following example provides a script for creating the database resource and
redeploying the database adapter.

Note:

This script is for demonstration purposes. You may need to modify this script
based on your environment.

import os
connect(userName,passWord,'t3://'+wlsHost+':'+adminServerListenPort)
edit()
startEdit()

soaJDBCSystemResource1 = create('DBAdapterTestDataSource',"JDBCSystemResource")
soaJDBCResource1 = soaJDBCSystemResource1.getJDBCResource()
soaJDBCResource1.setName('DBAdapterDataSource')

soaConnectionPoolParams1 = soaJDBCResource1.getJDBCConnectionPoolParams()
soaConnectionPoolParams1.setTestTableName("SQL SELECT 1 FROM DUAL")

soaConnectionPoolParams1.setInitialCapacity(10)

Preparing the Target Environment

Deploying SOA Composite Applications 47-5

soaConnectionPoolParams1.setMaxCapacity(100)

soaDataSourceParams1 = soaJDBCResource1.getJDBCDataSourceParams()
soaDataSourceParams1.addJNDIName('jdbc/dbSample')
soaDriverParams1 = soaJDBCResource1.getJDBCDriverParams()
soaDriverParams1.setUrl('jdbc:oracle:thin:@'+db_host_name+':'+db_port+':'+db_sid)
soaDriverParams1.setDriverName('oracle.jdbc.xa.client.OracleXADataSource')
soaDriverParams1.setPassword('my_password')

soaDriverProperties1 = soaDriverParams1.getProperties()
soaProperty1 = soaDriverProperties1.createProperty("user")
soaProperty1.setValue('scott')

varSOAServerTarget = '/Servers/'+serverName
soaServerTarget = getMBean(varSOAServerTarget)

soaJDBCSystemResource1.addTarget(soaServerTarget)

dumpStack()

try :

save()

activate(block="true")

except:
 print "Error while trying to save and/or activate!!!"
 dumpStack()

print "Creating DB adapter resource information"
try:
 redeploy('DBAdapter', '@deployment.plan@', upload='true', stageMode='stage')

except:
 print "Error while modifying db adapter connection factory"

For information about JDBC data sources, see Section "Configuring JDBC Data
Sources" of Administering JDBC Data Sources for Oracle WebLogic Server.

47.5.2 How to Create Connection Factories and Connection Pooling
The Oracle JCA adapters are deployed as JCA 1.5 resource adapters in an Oracle
WebLogic Server container. Adapters are packaged as Resource Adapter Archive
(RAR) files using a JAR format. When adapters are deployed, the RAR files are used
and the adapters are registered as connectors with the Oracle WebLogic Server or
middle-tier platform. The RAR file contains the following:

• The ra.xml file, which is the deployment descriptor XML file containing
deployment-specific information about the resource adapter

• Declarative information about the contract between Oracle WebLogic Server and
the resource adapter

Adapters also package the weblogic-ra.xml template file, which defines the
endpoints for connection factories.

For information about creating connection factories and connection pools, see
Understanding Technology Adapters.

Preparing the Target Environment

47-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

47.5.3 How to Enable Security
If you are using an identity service provider with human workflow or attaching
authentication and authorization policies, you must perform additional setup tasks.

• Identity service provider for human workflow

By default, the identity service uses the embedded LDAP server in Oracle
WebLogic Server as the default authentication provider. If you are using human
workflow, you can configure Oracle WebLogic Server to use an alternative
identity service provider, such as Oracle Internet Directory, Microsoft Active
Directory, or Oracle iPlanet. For more information, see Administering Oracle SOA
Suite and Oracle Business Process Management Suite. The embedded LDAP server is
not supported in clustered environments.

• Authentication provider (OWSM policies)

Policies that use certain types of tokens (for example, the username, X.509, and
SAML tokens) require an authentication provider. For information about selecting
and configuring an authentication provider, see Administering Web Services.

• Authorization provider (OWSM policies)

After a user is authenticated, you must verify that the user is authorized to access
a web service with an authorization policy. You can create an authorization policy
with several types of assertion templates. For information about authorization
policies and which resources to protect, see Administering Web Services.

47.5.4 How to Set the Business Flow Instance Name or Composite Instance Name at
Design Time

You can set the business flow instance name or composite instance name of a SOA
composite application during design time for Oracle Mediator and Oracle BPEL
Process Manager. The name appears in the Name column on the Flow Instances page
of a SOA composite application in Oracle Enterprise Manager Fusion Middleware
Control. When you specify a search criteria on the Flow Instances page of a SOA
composite application, a partition, or the SOA Infrastructure in Oracle Enterprise
Manager Fusion Middleware Control, you can specify this name in the Name field.

47.5.4.1 Setting the Business Flow Instance Name in Oracle Mediator

To set the business flow instance name in Oracle Mediator:

Use the XPath expression function oraext:setFlowInstanceTitle() in an assign
activity. For example:

<assign>
 <copy
 target="$out.property.tracking.setFlowInstanceTitle"
 expression="oraext:setFlowInstanceTitle("sample")"
 xmlns:med="http://schemas.oracle.com/mediator/xpath"/>
</assign>

47.5.4.2 Setting the Business Flow Instance Name in a BPEL Process

A business flow instance corresponds to an end-to-end business transaction. Business
flows consist of a single SOA composite application or multiple SOA composite
applications connected together to fulfill a specific business process.

Preparing the Target Environment

Deploying SOA Composite Applications 47-7

To set the business flow instance name in a BPEL process:

1. Use the Java BPEL exec extension bpelx:exec. This extension includes the built-
in method setFlowInstanceTitle(String title)for setting the business
flow instance name.

For more information about business flow instances, see Chapter "Tracking
Business Flow Instances" of Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

47.5.4.3 Setting the Composite Instance Name in a BPEL Process

The setCompositeInstanceTitle method is provided for backward
compatibility. The composite instance name is different from the business flow
instance name. More than one composite instance can participate in a single business
flow instance. There is a one-to-many relationship between the flow instance name
and the composite instance name.

To set the composite instance name in a BPEL process:

1. Use the Java BPEL exec extension bpelx:exec. This extension includes the built-
in method setCompositeInstanceTitle(String title)for setting the
instance name.

For more information, see Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

47.5.5 How to Deploy Trading Partner Agreements and Task Flows
If you are using Oracle B2B or a human task, you must perform additional setup tasks.

To deploy trading partner agreements and task flows:

• Deploying trading partner agreements

A trading partner agreement defines the terms that enable two trading partners,
the initiator and the responder, to exchange business documents. It identifies the
trading partners, trading partner identifiers, document definitions, and channels.
You must deploy the agreement from the design-time repository to the run-time
repository. For more information, see User's Guide for Oracle B2B.

• Deploying the task flow

You must deploy the task flow to use it in Oracle BPM Worklist. For more
information, see Deploying the Profile.

47.5.6 How to Create an Application Server Connection
To deploy a SOA composite application that does not share data with another
composite, use the Create Application Server Connection wizard to create an
application server connection. For more information, see Creating an Application
Server Connection.

47.5.7 How to Create a SOA-MDS Connection
To deploy a SOA composite application that shares data with other composites, use
the Create SOA-MDS Connection wizard to create a connection to a database-based

Preparing the Target Environment

47-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Oracle MDS Repository server. For more information, see Creating a SOA-MDS
Connection.

47.5.7.1 What You May Need to Know About Opening the composite.xml File Through
a SOA-MDS Connection

If you create a SOA-MDS connection in Oracle JDeveloper, expand the connection, and
attempt to open the composite.xml file of a composite from the Resources window,
the file may not load correctly. Only open a composite from the Applications window.

For information about the Oracle MDS Repository, see Administering Oracle Fusion
Middleware.

47.6 Customizing Your Application for the Target Environment Before
Deployment

Not all customization tasks must be manually performed as you move to and from
development, test, and production environments. This section describes how to use a
configuration plan to automatically configure your SOA composite application for the
next target environment.

47.6.1 How to Use Configuration Plans to Customize SOA Composite Applications for
the Target Environment

As you move projects from one environment to another (for example, from testing to
production), you typically must modify several environment-specific values, such as
JDBC connection strings, hostnames of various servers, and so on. Configuration plans
enable you to modify these values using a single text (XML) file. The configuration
plan is created in either Oracle JDeveloper or with WLST commands. During process
deployment, the configuration plan searches the SOA project for values that must be
replaced to adapt the project to the next target environment.

47.6.1.1 Introduction to Configuration Plans

This section provides an overview of creating and attaching a configuration plan:

• You create and edit a configuration plan file in which you can replace the
following attributes and properties:

– Any composite, service component, reference, service, and binding properties
in the SOA composite application file (composite.xml)

– Attribute values for bindings (for example, the location for binding.ws)

– schemaLocation attribute of an import in a WSDL file

– location attribute of an include in a WSDL file

– schemaLocation attribute of an include, import, and redefine in an XSD file

– Any properties in JCA adapter files

– Policy references for the following:

* Service component

* Service and reference binding components

Customizing Your Application for the Target Environment Before Deployment

Deploying SOA Composite Applications 47-9

Note:

The configuration plan does not alter XSLT artifacts in the SOA composite
application. To modify any XSL, use the XSLT Map Editor. Using a
configuration plan is not useful. For example, you cannot change references in
XSL using the configuration plan file. Instead, they must be changed manually
in the XSLT Map Editor in Oracle JDeveloper when moving to and from test,
development, and production environments. This ensures that the XSLT Map
Editor opens without any issues in design time. However, leaving the
references unchanged does not impact runtime behavior. For more
information about transformations and the XSLT Map Editor, see Creating
Transformations with the XSLT Map Editor .

• You attach the configuration plan file to a SOA composite application JAR file or
ZIP file (if deploying a SOA bundle) during deployment with one of the following
tools:

– Oracle JDeveloper

For more information, see Deploying the Profile.

– ant scripts

For more information, see How to Use ant to Deploy a SOA Composite
Application.

– WLST commands

For more information, see WLST Command Reference for SOA Suite.

• During deployment, the configuration plan file searches the composite.xml,
WSDL, and XSD files in the SOA composite application JAR or ZIP file for values
that must be replaced to adapt the project to the next target environment.

47.6.1.2 Introduction to a Configuration Plan File

The following example shows a configuration plan in which you modify the
following:

• An inFileFolder property for composite FileAdaptorComposite is
replaced with mytestserver/newinFileFolder.

• A hostname (myserver17) is replaced with test-server and port 8888 is
replaced with 8198 in the following locations:

– All import WSDLs

– All reference binding.ws locations

The composite.xml file looks as shown in the following example:

<composite>
 <import namespace="http://example.com/hr/"
 location="http://myserver17.us.example.com:8888/hrapp/HRAppService?WSDL"
 importType="wsdl"/>
 <service name="readPO">
 <interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/file/readPO/#wsdl.interface(Read
_ptt)"/>
 <binding.jca config="readPO_file.jca"/>

Customizing Your Application for the Target Environment Before Deployment

47-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <property name="inFileFolder" type="xs:string" many="false"
 override="may">/tmp/inFile</property>
 </service>
 <reference name="HRApp">
 <interface.wsdl
 interface="http://example.com/hr/#wsdl.interface(HRAppService)"/>
 <binding.ws
port="http://example.com/hr/#wsdl.endpoint(HRAppService/HRAppServiceSoapHttpPort)"
 location="http://myserver17.us.example.com:8888/hrapp/HRAppService?WSDL"/>
 <binding.java serviceName="{http://example.com/hr/}HRAppService"
 registryName="HRAppCodeGen_JBOServiceRegistry"/>
 </reference>
</composite>

The configuration plan file looks as shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<SOAConfigPlan
 xmlns:jca="http://platform.integration.oracle/blocks/adapter/fw/metadata"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
 xmlns:edl="http://schemas.oracle.com/events/edl"
 xmlns="http://schemas.oracle.com/soa/configplan">
 <composite name="FileAdaptorComposite">
 <service name="readPO">
 <binding type="*">
 <property name="inFileFolder">
 <replace>/mytestserver/newinFileFolder</replace>
 </property>
 </binding>
 </service>
 </composite>
 <!-- For all composite replace host and port in all imports wsdls -->
 <composite name="*">
 <import>
 <searchReplace>
 <search>myserver17</search>
 <replace>test-server</replace>
 </searchReplace>
 <searchReplace>
 <search>8888</search>
 <replace>8198</replace>
 </searchReplace>
 </import>
 <reference name="*">
 <binding type="ws">
 <attribute name="location">
 <searchReplace>
 <search>myserver17</search>
 <replace>test-server</replace>
 </searchReplace>
 <searchReplace>
 <search>8888</search>
 <replace>8198</replace>
 </searchReplace>
 </attribute>
 </binding>
 </reference>
 </composite>
</SOAConfigPlan>

Customizing Your Application for the Target Environment Before Deployment

Deploying SOA Composite Applications 47-11

A policy is replaced if a policy for the same URI is available. Otherwise, it is added.
This is different from properties, which are modified, but not added.

47.6.1.3 Introduction to Use Cases for a Configuration Plan

The following steps provide an overview of how to use a configuration plan when
moving from development to testing environments:

1. User A creates SOA composite application Foo.

2. User A deploys Foo to a development server, fixes bugs, and refines the process
until it is ready to test in the staging area.

3. User A creates and edits a configuration plan for Foo, which enables the URLs and
properties in the application to be modified to match the testing environment.

4. User A deploys Foo to the testing server using Oracle JDeveloper or a series of
command-line scripts (can be WLST-based). The configuration plan created in
Step 3 modifies the URLs and properties in Foo.

5. User A deploys SOA composite application Bar in the future and applies the same
plan during deployment. The URLs and properties are also modified.

47.6.1.3.1 How to Use a Configuration Plan when Creating Environment-Independent Processes

The following steps provide an overview of how to use a configuration plan when
creating environment-independent processes:

Note:

This use case is useful for users that have their own development server and a
common development and testing server if they share development of the
same process. Users that share the same deployment environment (that is, the
same development server) may not find this use case as useful.

1. User A creates SOA composite application Foo.

2. User A deploys Foo to their development server, fixes bugs, and refines the
process until it is ready to test in the staging area.

3. User A creates a configuration plan for Foo, which enables the URLs and
properties in the process to be modified to match the settings for User A's
environment.

4. User A checks in Foo and the configuration plan created in Step 3 to a source
control system.

5. User B checks out Foo from source control.

6. User B makes a copy of the configuration plan to match their environment and
applies the new configuration plan onto Foo's artifacts.

7. User B imports the application into Oracle JDeveloper and makes several changes.

8. User B checks in both Foo and configuration plan B (which matches user B's
environment).

9. User A checks out Foo again, along with both configuration plans.

Customizing Your Application for the Target Environment Before Deployment

47-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

47.6.1.4 How to Create a Configuration Plan in Oracle JDeveloper

This section describes how to create and use a configuration plan. In particular, this
section describes the following:

• Creating and editing a configuration plan

• Attaching the configuration plan to a SOA composite application JAR file

• Validating the configuration plan

• Deploying the SOA composite application JAR or ZIP file in which the
configuration plan is included

To create a configuration plan in Oracle JDeveloper:

1. Open Oracle JDeveloper.

2. In the Applications window, right-click the composite_name file (also known as the
composite.xml file) of the project in which to create a configuration plan, and select
Generate Config Plan. Figure 47-1 provides details.

Figure 47-1 Generate a Configuration Plan

The Composite Configuration Plan Generator dialog appears, as shown in
Figure 47-2.

Customizing Your Application for the Target Environment Before Deployment

Deploying SOA Composite Applications 47-13

Figure 47-2 Composite Configuration Plan Generator Dialog

3. Create a configuration plan file for editing, as shown in Table 47-2.

Table 47-2 Generate a Configuration Plan

Field Description

Specify the file name
(.xml) for the
configuration plan

Enter a specific name or accept the default name for the
configuration plan. The file is created in the directory of the
project and packaged with the SOA composite application
JAR or ZIP file.

Note: During deployment, you can specify a different
configuration file when prompted in the Deploy
Configuration page of the deployment wizard. For more
information, see Deploying the Profile.

Overwrite existing file Click to overwrite an existing configuration plan file with a
different file in the project directory.

4. Click OK.

This creates and opens a single configuration plan file for editing. You can modify
URLs and properties for the composite.xml, WSDL, and schema files of the SOA
composite application. Figure 47-3 provides details.

Customizing Your Application for the Target Environment Before Deployment

47-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 47-3 Configuration Plan Editor

5. Add values for server names, port numbers, and so on to the existing syntax. You
can also add replacement-only syntax when providing a new value. You can add
multiple search and replacement commands in each section.

6. From the File menu, select Save All.

7. Above the editor, click the x to the right of the file name to close the configuration
plan file.

8. In the Applications window, right-click the composite_name file again, and select
Validate Config Plan.

The Composite Configuration Plan Validator appears, as shown in Figure 47-4.

Figure 47-4 Validate the Configuration Plan

9. Select the configuration plan to validate. This step identifies all search and
replacement changes to be made during deployment. Use this option for
debugging only.

Customizing Your Application for the Target Environment Before Deployment

Deploying SOA Composite Applications 47-15

10. Note the directory in which a report describing validation results is created, and
click OK.

The Log window in Oracle JDeveloper indicates if validation succeeded and lists all
search and replacement commands to perform during SOA composite application
deployment. This information is also written to the validation report.

Note:

The old composite.xml, WSDL, and XSD files are not replaced with files
containing the new values for the URLs and properties appropriate to the next
environment. Replacement occurs only when the SOA composite application
is deployed.

11. Deploy the SOA composite application by following the instructions in one of the
following sections:

• How to Deploy a Single SOA Composite in

• How to Deploy Multiple SOA Composite Applications in

• How to Deploy and Use Shared Data Across Multiple SOA Composite
Applications in

During deployment in Oracle JDeveloper, the Deploy Configuration page shown in
Step 4 of Deploying the Profile prompts you to select the configuration plan to
include in the SOA composite application archive.

12. Select the configuration plan to include with the SOA composite application.

13. Click OK.

47.6.1.5 How to Create a Configuration Plan with the WLST Utility

As an alternative to using Oracle JDeveloper, you can use the WLST command line
utility to perform the following configuration plan management tasks:

• Generate a configuration plan for editing:

sca_generatePlan(configPlan, sar, composite, overwrite, verbose)

• Attach the configuration plan file to the SOA composite application JAR file:

sca_attachPlan(sar, configPlan, overwrite, verbose)

• Validate the configuration plan:

sca_validatePlan(reportFile, configPlan, sar, composite, overwrite, verbose)

• Extract a configuration plan packaged with the JAR file for editing:

sca_extractPlan(sar, configPlan, overwrite, verbose)

For information about using these commands, see WLST Command Reference for SOA
Suite.

47.6.1.6 How to Attach a Configuration Plan with ant Scripts

As an alternative to using Oracle JDeveloper, you can use ant scripts to attach the
configuration plan file to the SOA composite application JAR or ZIP file during

Customizing Your Application for the Target Environment Before Deployment

47-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

deployment. For instructions, see How to Use ant to Deploy a SOA Composite
Application.

47.6.1.7 How to Create Global Token Variables

You can define global token variables for specific URIs in SOA composite applications.
For example, instead of updating the SOA composite application name in ten different
configuration plans, you can set the name globally. The value is retrieved and replaces
the value of the global token variable for the composite name in the composite.xml
file of the deployed SOA composite application.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

47.7 Deploying SOA Composite Applications in Oracle JDeveloper
This section describes how to deploy the following types of SOA composite
applications.

• Deploying a single composite in Oracle JDeveloper

• Deploying multiple composites in Oracle JDeveloper

• Deploying and using shared data in Oracle JDeveloper

• Deploying an existing SOA archive in Oracle JDeveloper

• Managing SOA composite applications with WLST and ant scripts

• Deploying from Oracle Enterprise Manager Fusion Middleware Control

• Deploying SOA composite applications to a cluster

• Deploying SOA composite applications with no server running

47.7.1 How to Deploy a Single SOA Composite in Oracle JDeveloper
Oracle JDeveloper requires the use of profiles for SOA projects and applications to be
deployed to Oracle WebLogic Server.

47.7.1.1 Creating an Application Server Connection

You must create a connection to the application server to which to deploy a SOA
composite application. The following instructions describe how to create a connection
to Oracle WebLogic Server. For information about using the
IntegratedWebLogicServer connection available with the Oracle SOA Suite Quick
Start installation, see Installing SOA Suite and Business Process Management Suite Quick
Start for Developers.

Note:

You can also create an application server connection by selecting Window >
Application Servers, then right-clicking the Application Servers node in the
Applications window and selecting New Application Server. This option
prompts you to create a standalone server connection or Integrated WebLogic
Server connection.

Deploying SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 47-17

To create an application server connection:

1. From the File main menu, select New.

2. In the General list, select Connections.

3. Select Application Server Connection, and click OK.

The Name and Type page appears.

4. In the Connection Name field, enter a name for the connection.

5. In the Connection Type list, select WebLogic 12.x to create a connection to Oracle
WebLogic Server.

6. Click Next.

The Authentication page appears.

7. In the Username field, enter the user authorized for access to the application
server.

8. In the Password field, enter the password for this user.

9. Click Next.

The Configuration page appears.

10. In the Weblogic Hostname (Administration Server) field, enter the host on which
the Oracle WebLogic Server is installed.

11. In the Port and SSL Port fields, enter appropriate port values or accept the default
values.

12. If you want to use secure socket layer (SSL), select the Always use SSL check box.
Table 47-3 describes what occurs when you select this check box.

Table 47-3 Deployment to HTTPS and HTTP Servers

If This Check Box
Is...

Then...

Selected An HTTPS server URL must exist to deploy the composite with
SSL. Otherwise, deployment fails.

If the server has only an HTTP URL, deployment also fails. This
option enables you to ensure that SSL deployment must not go
through a non-SSL HTTP URL, and must only go through an
HTTPS URL.

Not selected An HTTP server URL must exist to deploy to a non-SSL
environment. Otherwise, deployment fails.

If the server has both HTTPS and HTTP URLs, deployment occurs
through a non-SSL connection. This option enables you to force a
non-SSL deployment from Oracle JDeveloper, even though the
server is SSL-enabled.

13. In the WebLogic Domain field, enter the Oracle SOA Suite domain. For additional
details about specifying domains, click Help. Figure 47-5 provides details.

Deploying SOA Composite Applications in Oracle JDeveloper

47-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 47-5 Server Name and Domain Selection

14. Click Next.

15. Click Test Connection to test your server connection.

16. If the connection is successful, click Finish. Otherwise, click Back to make
corrections in the previous dialogs. Even if the connection test is unsuccessful, a
connection is created. Figure 47-6 provides details.

Figure 47-6 Application Server Connection Test

Deploying SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 47-19

47.7.1.2 Optionally Creating a Project Deployment Profile

A required deployment profile is automatically created for your project. The
application profile includes the JAR files of your SOA projects. If you want, you can
create additional profiles.

To create a project deployment profile:

1. In the Applications window, right-click the SOA project.

2. Select Project Properties.

The Project Properties dialog appears.

3. Click Deployment.

4. Click the New Profile icon.

The Create Deployment Profile dialog appears.

5. Enter the values shown in Table 47-4.

Table 47-4 Create Deployment Profile Dialog Fields and Values

Field Description

Profile Type Select SOA-SAR File.

A SAR is a deployment unit that describes the SOA
composite application. The SAR packages service
components such as BPEL processes, business rules, human
tasks, and Oracle Mediator routing services into a single
application. The SAR file is analogous to the BPEL suitcase
archive of previous releases, but at the higher composite level
and with any additional service components that your
application includes (for example, human tasks, business
rules, and Oracle Mediator routing services).

Deployment Profile
Name

Enter a deployment profile name.

Description Enter a description for the profile name.

6. Click OK.

The SAR Deployment Profile Properties dialog appears, as shown in Figure 47-7.

Deploying SOA Composite Applications in Oracle JDeveloper

47-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 47-7 SAR Deployment Profile Properties

7. Optionally specify the target folder in which to save the SAR file.

8. Click OK to close the SAR Deployment Profile Properties dialog.

The deployment profile shown in Figure 47-8 displays in the Project Properties
dialog.

Figure 47-8 Project Profile

Deploying SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 47-21

47.7.1.3 Deploying the Profile

You now deploy the project profile to Oracle WebLogic Server. Deployment requires
the creation of an application server connection. You can create a connection during
deployment by clicking the Add icon in Step 10 or before deployment by following the
instructions in Creating an Application Server Connection.

To deploy the profile:

1. In the Applications window, right-click the SOA project.

2. Select Deploy > project_name.

The value for project_name is the SOA project name.

The Deployment Action page of the Deploy Project_Name wizard appears.
Figure 47-9 provides an example.

Figure 47-9 Deployment Action Page

3. Select one of the following deployment options:

• Deploy to Application Server

Creates a JAR file for the selected SOA project and deploys it to an application
server such as Oracle WebLogic Server.

• Generate SAR File

Creates a SAR (JAR) file of the selected SOA project, but does not deploy it to
an application server such as Oracle WebLogic Server. This option is useful
for environments in which:

– Oracle WebLogic Server may not be running, but you want to create the
artifact JAR file.

Deploying SOA Composite Applications in Oracle JDeveloper

47-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

– You want to deploy multiple JAR files to Oracle WebLogic Server from a
batch script. This option offers an alternative to opening all project
profiles (which you may not have) and deploying them from Oracle
JDeveloper.

The page that displays differs based on your selection.

4. Select the deployment option appropriate for your environment. Table 47-5
provides details.

Table 47-5 Deployment Target

If You Select... Go to...

Deploy to Application
Server

Step 44.a

Generate SAR File Step 44.b

a. View the Deploy Configuration page shown in Figure 47-10.

Figure 47-10 Deploy Configuration Page for Application Server
Deployment

b. View the Deploy Configuration page shown in Figure 47-11.

Deploying SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 47-23

Figure 47-11 Deploy Configuration Page for Generate SAR File
Deployment

5. Provide values appropriate to the deployment option you selected in Step 4, as
described in Table 47-6. If you selected to deploy to an application server,
additional fields are displayed.

Table 47-6 SOA Deployment Configuration Dialog

Field Description

Composite Revision ID Expand to display details about the project.

• Project Displays the project name.

• Current Revision ID Displays the current revision ID of the project.

• New Revision ID Optionally change the revision ID of the SOA composite
application. You can specify a new value or continue to use
the current value. This revision ID becomes the value for the
${composite.revision_id} variable in the application
name. For example, if you enter 2.0 as the new revision ID
for a composite named OrderBooking, $
{composite.revision_id} is replaced with _rev2.0
(sca_OrderBooking_rev2.0.jar).

SOA Configuration Plan Expand to display details about the configuration plan.

The configuration plan enables you to define the URL and
property values to use in different environments. During
process deployment, the configuration plan is used to search
the SOA project for values that must be replaced to adapt
the project to the next target environment.

Deploying SOA Composite Applications in Oracle JDeveloper

47-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 47-6 (Cont.) SOA Deployment Configuration Dialog

Field Description

• Do not attach Select to not include a configuration plan with the SOA
composite application JAR file. If you have not created a
configuration plan, this field is disabled. This is the default
selection.

• Configuration_plan.
xml

Select the specific plan. A configuration plan must already
exist in the SOA project for this selection to be available.

See How to Use Configuration Plans to Customize SOA
Composite Applications for the Target Environment for
instructions on creating a configuration plan.

BPEL Monitor Expand to display details about BPEL monitors.

• Ignore BPEL
Monitor
deployment errors

Note: This check box only
appears if there is at least
one .monitor file in the
application.

Deselect this check box to display BPEL Monitor
deployment errors. This check box corresponds to the
ignoreErrors property in the monitor.config BPEL
project file. This file defines runtime and deployment
properties needed to connect with Oracle BAM Server to
create the Oracle BAM data objects and dashboards.If Oracle
BAM Server is unreachable, and ignoreErrors is set to
true, deployment of the composite does not stop. If set to
false and Oracle BAM Server is unavailable, deployment
fails.

Mark composite revision
as default

If you do not want the new revision to be the default, you
can deselect this box. By default, a newly deployed
composite revision is the default. This revision is
instantiated when a new request comes in.

This option only displays if you selected Deploy to
Application Server on the Deployment Action page.

Overwrite any existing
composites with the
same revision ID

Select to overwrite any existing SOA composite application
of the same revision value.

This option only displays if you selected Deploy to
Application Server on the Deployment Action page.

Deploying SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 47-25

Table 47-6 (Cont.) SOA Deployment Configuration Dialog

Field Description

Keep running instances
on after redeployment

Note: This option is displayed if Oracle BPM Suite is
installed in Oracle JDeveloper, and only supported for the
deployment of Oracle BPM composites. Do not select this
option if you are deploying:

• A SOA composite application from an Oracle
JDeveloper environment in which Oracle BPM Suite is
also installed.

• An Oracle BPM composite that includes a durable
BPEL process, regardless of whether that process has
been modified. Durable BPEL processes are those that
take time to complete execution. Examples of durable
BPEL processes are asynchronous processes (which are
always durable) and synchronous processes that
include a durable activity such as a wait activity.

If you select this option and attempt to redeploy a
durable BPEL process, then deployment fails.

Select to enable existing instances of the overwritten
revision to continue running instead of being aborted. These
instances run side by side with any new instances that you
create with the new revision of the Oracle BPM composite
application.

Force deployment of
incompatible processes

This option is only displayed for Oracle BPM Suite
composites.

If Keep running instances on after redeployment is
checked, this option is displayed. Select this check box to
force deployment of incompatible BPM processes. When a
composite with BPM processes is overwritten, the system
checks to see if the BPM processes being overwritten are
compatible with the processes being deployed. If they are
compatible, running instances of these processes are not
marked as aborted and deployment is successful. If they are
incompatible, deployment fails unless you select this check
box.

Use the following SOA
configuration plan for all
composites

Click Browse to select the same configuration plan to use for
all composite applications. This option is used when
deploying multiple composite applications.

6. When finished, click Next.

7. If the SOA project you selected for deployment includes a task flow project
defined for a human task, you are prompted with the Task Flow Deployment
dialog, as shown in Figure 47-12.

Otherwise, go to Step 10.

You create or configure an Enterprise Resource Archive (EAR) file for the task
flow forms of human tasks. The EAR file consists of a Web Resource Archive
(WAR) profile that you select in the Deployable Taskflow Projects table of this
dialog.

Deploying SOA Composite Applications in Oracle JDeveloper

47-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 47-12 Task Flow Deployment Page

8. Provide values appropriate to your environment, as described in Table 47-7.

Table 47-7 Task Flow Deployment Dialog

Field Description

Application Name Select the EAR file to include in the deployment. This list
displays all available EAR profiles in the current Oracle
JDeveloper application. These EAR profiles are used as a
template to create an EAR profile to deploy based on the
WAR profiles selected in the Deployable Taskflow Projects
table. You can also enter any EAR profile name to deploy.

Deploy to specific
composite revision &
partition

Select to append the revision number of the composite to the
EAR file name. If selected, this check box includes the
composite revision in the EAR name, WAR profile, and
context root. This option enables you to deploy an
application specific to a composite revision.

Add generated profiles
to application

Select to add the generated EAR profile to the current SOA
composite application's EAR deployment profile list. The
application may have to be saved to persist the generated
EAR profile. Once the deployment profile is available, you
can deploy the EAR profile by selecting Application >
Deploy. This option enables you to avoid using the SOA
deployment wizard, if only task flow application
deployment is necessary.

Overwrite Existing
Application

Select to overwrite the existing version of the EAR file on the
server.

Deploying SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 47-27

Table 47-7 (Cont.) Task Flow Deployment Dialog

Field Description

Deployable Taskflow
Projects

Select the task flow project WAR profiles to include in the
EAR file. The task flow project WAR profiles are grouped in
accordance with the composites that include the human task
related to the task flow project. The context root of the WAR
changes if the Add generated profiles to application check
box is selected.

Note: If you do not select a WAR profile, no task flows are
deployed.

• Projects Select from the list of deployable task flow projects or select
the Projects check box to choose all available task flows. The
task flows that display are based on the composites included
in the SOA project or bundle selected for deployment.

• WAR Profiles Select the task flow project WAR files. Only the most
recently created or modified task flow of the human task is
available for selection.

• App Context Root Displays the application context root directory based on
your selection for the WAR profile.

When you deploy a task form for a human task, as part of notification, the task
form details are included in an email. For dynamic payloads, this email includes
the content of the payload as it appears at that particular time.

For information about deploying SOA composite applications with task flows to
multiple partition environments, see What You May Need to Know About
Deploying Human Task Composites with Task Flows to Partitions.

9. Click Next.

10. If you selected to deploy to an application server in Step 3, the Select Server page
appears for selecting an existing connection to an application server such as
Oracle WebLogic Server from the list or clicking the Add icon to create a
connection to a server. Figure 47-13 provides details.

If you selected to generate a SAR file in Step 3, go to Step 15.

Deploying SOA Composite Applications in Oracle JDeveloper

47-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 47-13 Select Server Page

11. Click Next.

12. Select the target SOA servers to which to deploy this archive. If there are multiple
servers or cluster nodes, select to deploy to one or more servers or nodes.
Figure 47-14 provides details.

13. Select the partition in which to deploy this archive. If the server contains no
partitions, you cannot deploy this archive. Also, if the server is not in a running
state, you cannot deploy this archive. By default, a partition named default is
automatically included with Oracle SOA Suite. You create partitions in the
Manage Partitions page of Oracle Enterprise Manager Fusion Middleware
Control.

Note:

Human workflow artifacts such as task mapped attributes (previously known
as flex field mappings) and rules (such as vacation rules) are defined based on
the namespace of the task definition. Therefore, the following issues are true
when the same SOA composite application with a human workflow task is
deployed into multiple partitions:

• For the same task definition type, mapped attributes defined in one
partition are visible in another partition.

• Rules defined on a task definition in one partition can apply to the same
definition in another partition.

Deploying SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 47-29

Figure 47-14 SOA Servers Page

14. Click Next.

15. Review the archive details on the Summary page shown in Figure 47-15, and click
Finish.

Figure 47-15 Summary Page

16. If you selected to deploy to an application server in Step 3, view the messages that
display in the Deployment log window at the bottom of Oracle JDeveloper.

Deploying SOA Composite Applications in Oracle JDeveloper

47-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

17. Enter the user name and password, and click OK.

If deployment is successful, the following actions occur:

• A JAR file for the SOA project is created with a naming convention of
sca_composite_name_revrevision_number.jar.

• The project is displayed in the Resources window under
application_server_connection_name > SOA > SOA_server_name >
partition_name.

• The project is displayed in the Application Servers window under
application_server_connection_name > SOA > SOA_server_name >
partition_name.

You are now ready to monitor your application from Oracle Enterprise Manager
Fusion Middleware Control. See Administering Oracle SOA Suite and Oracle
Business Process Management Suite for details.

If deployment is unsuccessful, view the messages that display in the Deployment
log window and take corrective actions. For more information, see Testing and
Troubleshooting.

For information about creating partitions, see the following documentation:

• Deploying and Managing SOA Composite Applications with ant Scripts

• Administering Oracle SOA Suite and Oracle Business Process Management Suite

• WLST Command Reference for SOA Suite

Note:

If you want to redeploy the same version of a SOA composite application, you
cannot change the composite name. You can deploy with the same revision
number if you selected the Overwrite any existing composites with the same
revision ID check box on the Deploy Configuration page.

47.7.1.4 What You May Need to Know About Deploying Human Task Composites with
Task Flows to Partitions

To deploy a SOA composite application with a task flow from Oracle JDeveloper to a
multiple partition environment, select the task flows to be deployed to the same
partition in which the SOA composite application is being deployed.

When the task flow is deployed using only the EAR profile (deploying the task flow
using the EAR deployer), the task flow is not partition-aware. Therefore, you must
modify the hwtaskflow.xml file to include the partition name in the generated EAR
file (the project version of the file remains unchanged). This file is located under the
TaskForm project adfmsrc directory (for example, HelpDeskRequestTaskFlow
\adfmsrc\hwtaskflow.xml). The following example provides details:

<hwTaskFlows
 xmlns="http://xmlns.oracle.com/bpel/workflow/hwTaskFlowProperties">
 <ApplicationName>worklist</ApplicationName>
 <LookupType>LOCAL</LookupType>
 <TaskFlowDeploy>false</TaskFlowDeploy>
 <PartitionName>partition2</PartitionName>

Deploying SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 47-31

If you want to deploy the task flow for the SOA composite application on all
partitions, leave PartitionName blank. If you want to use different task flows for the
composites on different partitions, then PartitionName must be specified.

In addition, if you want to reuse the same task flow project for another partition, you
must change the web context root.

47.7.2 How to Deploy Multiple SOA Composite Applications in Oracle JDeveloper
You can deploy multiple SOA composite applications to an application server such as
Oracle WebLogic Server at the same time by using the SOA bundle profile. This profile
enables you to include one or more SAR profiles in the bundle and deploy the bundle
to an application server.

Note:

• This section assumes you have created an application server connection. If
not, see Creating an Application Server Connection for instructions.

• You cannot deploy multiple SOA applications that are dependent upon
one another in the same SOA bundle profile. For example, if application A
calls application B, then you must first deploy application B separately.

To deploy multiple SOA composite applications:

1. From the Application menu, select Application Properties, as shown in
Figure 47-16.

Figure 47-16 Application Properties

2. In the Application Properties dialog, click Deployment.

3. Click New.

The Create Deployment Profile dialog appears.

4. In the Archive Type list, select SOA Bundle.

5. In the Name field, enter a name.

Figure 47-17 provides details.

Deploying SOA Composite Applications in Oracle JDeveloper

47-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 47-17 Select the SOA Bundle

6. Click OK.

7. In the navigator on the left, select the Dependencies node.

8. Select the SARs you want to include in this bundle, as shown in Figure 47-18.

Figure 47-18 Select the SAR

9. Click OK.

10. Click OK to close the Application Properties dialog.

11. Select the Application menu again, then select Deploy > SOA_Bundle_Name.

This invokes the deployment wizard.

12. See Step 3 for details about responses to provide.

Deploying SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 47-33

47.7.3 How to Deploy and Use Shared Data Across Multiple SOA Composite
Applications in Oracle JDeveloper

This section describes how to deploy and use shared data such as WSDLs, XSDs, and
other file types across multiple SOA composite applications.

Shared data is deployed to the SOA Infrastructure on the application server as a JAR
file. The JAR file should contain all the resources to share. In Oracle JDeveloper, you
can create a JAR profile for creating a shared artifacts archive.

All shared data is deployed to an existing SOA Infrastructure partition on the server.
This data is deployed under the /apps namespace. For example, if you have a
MyProject/xsd/MySchema.xsd file in the JAR file, then this file is deployed under
the /apps namespace on the server. When you refer to this artifact in Oracle
JDeveloper using a SOA-MDS connection, the URL becomes oramds:/apps/
MyProject/xsd/MySchema.xsd.

Note:

• You always deploy to the /apps location. The directory hierarchy must
exist in the JAR file to deploy. Do not create the directory hierarchy in the
Oracle MDS Repository first and then deploy the JAR file to that location.
For example, to deploy to /apps/demo/credit card, the JAR file must
include the demo/credit card directory hierarchy inside it.

• Files that begin with a period (for example, .designer) cannot be shared
across SOA composite applications.

This section describes how to perform the following tasks:

• Create a JAR profile and include the artifacts to share

• Create a SOA bundle that includes the JAR profile

• Deploy the SOA bundle to the application server

47.7.3.1 Create a JAR Profile and Include the Artifacts to Share

To create a JAR profile and include the artifacts to share:

1. In the Applications window, right-click the SOA project.

2. Select Project Properties.

The Project Properties dialog appears.

3. Click Deployment in the navigational tree on the left.

4. Click New.

The Create Deployment Profile dialog appears.

5. From the Archive Type list, select JAR File.

6. In the Name field, enter a name (for this example, shared_archive is entered).

Deploying SOA Composite Applications in Oracle JDeveloper

47-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The Create Deployment Profile dialog looks as shown in Figure 47-19.

Figure 47-19 JAR File Selection

7. Click OK.

The JAR Deployment Profile Properties dialog appears.

8. Select JAR Options from the navigational tree on the left.

9. Deselect Include Manifest File (META-INF/MANIFEST.MF), as shown in
Figure 47-20.

This prevents the archive generator from adding the manifest file (META-INF/
MANIFEST.MF) into the JAR file.

Deploying SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 47-35

Figure 47-20 JAR File Options

10. Select File Groups > Project Output > Contributors from the navigational tree on
the left.

11. Deselect the Project Output Directory and Project Dependencies options, as
shown in Figure 47-21.

This prevents the archive generator from adding the contents of the project output
and project dependencies into the archive.

Deploying SOA Composite Applications in Oracle JDeveloper

47-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 47-21 Contributors

12. Click Add to add a new contributor.

The Add Contributor dialog appears. This dialog enables you to add artifacts to
your archive.

13. Click Browse.

14. Select the folder in which your artifacts reside, as shown in Figure 47-22. This
selection also determines the hierarchy of artifacts in the archive.

Figure 47-22 Artifact Selection

Deploying SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 47-37

15. Click Select to close the Choose Directory dialog.

16. Click OK to close the Add Contributor dialog.

17. Select File Groups > Project Output > Filters from the navigational tree on the left.

18. Select only the artifacts to include in the archive, as shown in Figure 47-23. For this
example, the archive contains the following XSD files:

• SOADemoComposite/xsd/DemoProcess.xsd

• SOADemoComposite/xsd/Quote.xsd

• SOADemoComposite/xsd/VacationRequest.xsd

Figure 47-23 Artifacts to Include in the Archive

19. Click OK to save changes to the JAR deployment profile.

20. Click OK to save the new deployment profile.

21. From the File main menu, select Save All.

47.7.3.2 Create a SOA Bundle that Includes the JAR Profile

To create a SOA bundle that includes the JAR profile:

1. From the Application Menu, select Application Properties > Deployment.

2. Click New to create a SOA bundle profile.

The Create Deployment Profile dialog appears.

3. From the Archive Type list, select SOA Bundle. A bundle is a collection of
multiple SOA composite applications.

Deploying SOA Composite Applications in Oracle JDeveloper

47-38 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

4. In the Name field, enter a name (for this example, sharedArtifactBundle is
entered). Figure 47-24 provides details.

Figure 47-24 SOA Bundle Creation

5. Click OK.

6. Select Dependencies from the navigational tree on the left.

7. Select the JAR file and SOA-SAR profiles you previously created (for this example,
named shared_archive and sharedArtifactBundle, respectively). You have the
option of a JAR, a SOA-SAR, or both. Figure 47-25 provides details.

Deploying SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 47-39

Figure 47-25 Deployment Profile Dependencies

8. Click OK to save the SOA bundle deployment profile changes.

9. Click OK to save the new deployment profile.

10. From the File main menu, select Save All.

47.7.3.3 Deploy the SOA Bundle with Oracle JDeveloper

To deploy the SOA bundle with Oracle JDeveloper:

1. Right-click the Application menu and select Deploy > SOA_Bundle_Name.

This invokes the deployment wizard.

2. See Step 3 of Deploying the Profile for details about responses to provide.

This deploys the SOA bundle to the application server (shared artifacts are
deployed to the Oracle MDS Repository database of Oracle SOA Suite).

47.7.3.3.1 To deploy the SOA bundle with ant:

See How to Use ant to Deploy a SOA Composite Application.

47.7.3.4 Use Shared Data

This section describes how to browse and select the shared data you created in How to
Deploy and Use Shared Data Across Multiple SOA Composite Applications in .

47.7.3.4.1 Creating a SOA-MDS Connection

Deploying SOA Composite Applications in Oracle JDeveloper

47-40 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To create a SOA-MDS connection:

1. From the File menu, select New > Application > Connections > SOA-MDS
Connection.

The Create SOA-MDS Connection dialog shown in Figure 47-26 is displayed.

Figure 47-26 Create SOA-MDS Connection Dialog

2. Provide values appropriate to your environment, as shown in Table 47-8.

Table 47-8 Create SOA-MDS Connection Dialog

Field Description

Create Connection In: Ensure that IDE Connection is selected. This option enables
the connection to display in the Resources window and be
available to multiple applications.

You cannot create a connection with the Application
Resources option. This selection is disabled.

Connection Name Enter a connection name. Upon successful completion of this
connection creation, this name displays under SOA-MDS in
the Resources window.

Deploying SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 47-41

Table 47-8 (Cont.) Create SOA-MDS Connection Dialog

Field Description

Connection Type Select a connection type. An Oracle MDS Repository can be
file-based or database-based. The dialog is refreshed based
on your selection.

• DB Based MDS

For most production environments, you use a database-
based repository. Most components, such as Oracle SOA
Suite, require that a schema be installed in a database,
necessitating the use of a database-based repository. To
use a database-based repository, you must first create it
with the Repository Creation Utility.

• File Based MDS

Choose a database
connection

Select an existing connection or create a new connection to
the Oracle SOA Suite database with the MDS schema.

Select MDS Partition Select the MDS partition (for example, soa-infra).

Test Connection Click to test the SOA-MDS connection.

Note: Even if the connection test fails, a connection is created.

Status Displays status of the connection test.

3. Click OK.

You can now browse the connection in the Resources window and view shared
artifacts under the /apps node.

47.7.3.4.2 Creating a BPEL Process

You can now browse and use the shared data from a different SOA composite
application. For this example, you create a BPEL process service component in a
different application.

To create a BPEL process:

1. Create a new BPEL process service component in a different application.

2. In the Create BPEL Process dialog, click the Browse icon to the right of the Input
field.

The Type Chooser dialog appears.

3. In the upper right corner, click the Import Schema File icon.

The Import Schema File dialog appears.

4. To the right of the URL field, click the Browse icon.

The SOA Resource Browser dialog appears.

5. At the top of the dialog, select SOA-MDS.

6. Select shared data. For this example, the Quote.xsd file that you selected to include
in the archive in Step 18 of "Create a JAR Profile and Include the Artifacts to Share
is selected.

Deploying SOA Composite Applications in Oracle JDeveloper

47-42 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

7. Click OK.

8. In the Import Schema File dialog, click OK.

9. In the Type Chooser dialog, select a node of Quote.xsd (for this example,
QuoteRequest), and click OK.

10. In the Create BPEL Process dialog, click OK to complete creation.

11. In the Applications window, select the WSDL file for the BPEL process.

12. Click Source.

The WSDL file includes the following definition.

<wsdl:types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.mycompany.com/ns/salesquote"
 schemaLocation="oramds:/apps/SOADemoComposite/xsd/Quote.xsd" />
 </schema>
</wsdl:types>

13. Continue modeling the BPEL process as necessary.

14. Deploy the SOA composite application that includes the BPEL process.

The Type Chooser dialog includes a Recent Files folder in which information is
kept for the duration of the Oracle JDeveloper session. For example, if you create a
new BPEL process and want to define the input variable from a schema in the SOA
Design-Time MDS Repository, you go there once. When you want to define the
output variable from the same schema, the schema remains visible in the Recent
Files folder.

47.7.4 How to Deploy an Existing SOA Archive in Oracle JDeveloper
You can deploy an existing SOA archive from the Application Servers window in
Oracle JDeveloper.

Note:

• The archive must exist. You cannot create an archive in the Deploy SOA
Archive dialog.

• These instructions assume you have created an application server
connection to an Oracle WebLogic Administration Server or another
supported application server on which the SOA Infrastructure is
deployed. Creating a connection to an Oracle WebLogic Administration
Server enables you to browse for SOA composite applications deployed in
the same domain. From the File main menu, select New > Application >
Connections > Application Server Connection to create a connection.

To deploy an existing SOA archive from Oracle JDeveloper:

1. From the Window menu, select Application Servers.

2. In the Applications window, expand your connection name.

Deploying SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 47-43

3. Right-click the SOA folder.

4. Select Deploy SOA Archive.

Figure 47-27 SOA Archive Deployment from the Applications Window

The Deploy SOA Archive dialog shown in Figure 47-28 appears.

Figure 47-28 Deploy SOA Archive Dialog

5. Provide responses appropriate to your environment, as described in Table 47-9.

Table 47-9 Deploy SOA Archive Dialog Fields and Values

Field Description

SOA Server Select the SOA server to which to deploy the archive.

Partition Select the partition in which to deploy the archive. If
the server contains no partitions, you cannot deploy
this archive. By default, a partition named default is
automatically included with Oracle SOA Suite.

Status Displays the status of the server. If the server is not
in a running state, you cannot deploy this archive.

Server URL Displays the URL of the server.

Deploying SOA Composite Applications in Oracle JDeveloper

47-44 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 47-9 (Cont.) Deploy SOA Archive Dialog Fields and Values

Field Description

Archive Location Click Browse to select a prebuilt SOA composite
application archive. The archive consists of a JAR file
of a single application or a SOA bundle ZIP file
containing multiple applications.

Configuration Plan (Optional) Click Browse to select a configuration plan to attach
to the SOA composite application archive. The
configuration plan enables you to define the URL
and property values to use in different
environments. During process deployment, the
configuration plan is used to search the SOA project
for values that must be replaced to adapt the project
to the next target environment.

For information about creating configuration plans,
see How to Create a Configuration Plan in or How to
Create a Configuration Plan with the WLST Utility.

Mark composite revision as
default

If you do not want the new revision to be the default,
you can deselect this box. By default, a newly
deployed composite revision is the default. This
revision is instantiated when a new request comes in.

Overwrite any existing
composites with the same
revision ID

Select to overwrite (redeploy) an existing SOA
composite application with the same revision ID.
The consequences of this action are as follows:

• A new version 1.0 of the SOA composite
application is redeployed, overwriting a
previously deployed 1.0 version.

• The older, currently-deployed version of this
revision is removed (overwritten).

• If the older, currently-deployed version of this
revision has running instances, the state of those
instances is changed to aborted.

6. Click OK.

For more information on deploying and testing SOA composite applications from the
Application Servers window, see Managing and Testing a SOA Composite
Application.

47.8 Deploying and Managing SOA Composite Applications with the
WLST Utility

You can manage SOA composite applications with the WLST utility. This utility is
well-suited for automation and can be easily integrated into existing release processes.
For instructions, see WLST Command Reference for SOA Suite.

47.9 Deploying and Managing SOA Composite Applications with ant
Scripts

You can manage SOA composite applications with the ant utility. ant is a Java-based
build tool used by Oracle SOA Suite for managing SOA composite applications. The
configuration files are XML-based and call out a target tree where various tasks are

Deploying and Managing SOA Composite Applications with the WLST Utility

Deploying SOA Composite Applications 47-45

executed. The ant utility is well-suited for automation and can be easily integrated
into existing release processes.

Note:

Before using the Oracle SOA Suite ant scripts, you must first run the
setDomainEnv.sh script (for Linux) or setDomainEnv.cmd script (for
Windows). This script adds the necessary JAR files for using ant to the
classpath.

Table 47-10 lists the ant scripts available in the Middleware_Home
\SOA_Suite_Home\bin directory.

Table 47-10 ant Management Scripts

Script Description

ant-sca-test.xml Automates the testing of SOA composite applications.

ant-sca-compile.xml Compiles a SOA composite application.

ant-sca-package.xml Packages a SOA composite application into a composite SAR
file.

ant-sca-deploy.xml Deploys a SOA composite application.

ant-sca-deploy.xml
undeploy

Undeploys a SOA composite application.

ant-sca-deploy.xml
exportComposite

Exports a composite into a SAR file.

ant-sca-deploy.xml
exportUpdates

Exports postdeployment changes of a composite into a JAR file.

ant-sca-deploy.xml
importUpdates

Imports postdeployment changes of a composite.

ant-sca-deploy.xml
exportSharedData

Exports shared data of a given pattern into a JAR file.

ant-sca-deploy.xml
removeSharedData

Removes a top-level shared data folder.

ant-sca-mgmt.xml
startComposite

Starts a SOA composite application.

ant-sca-mgmt.xml
stopComposite

Stops a SOA composite application.

ant-sca-mgmt.xml
activateComposite

Activates a SOA composite application.

ant-sca-mgmt.xml
retireComposite

Retires a SOA composite application.

ant-sca-mgmt.xml
assignDefaultComposi
te

Assigns a default revision version.

Deploying and Managing SOA Composite Applications with ant Scripts

47-46 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 47-10 (Cont.) ant Management Scripts

Script Description

ant-sca-mgmt.xml
listDeployedComposit
es

Lists deployed SOA composite applications.

ant-sca-mgmt.xml
listPartitions

Lists all available partitions in the SOA Infrastructure.

ant-sca-mgmt.xml
listCompositesInPart
ition

Lists all composites in a partition.

ant-sca-mgmt.xml
createPartition

Creates a partition in the SOA Infrastructure.

ant-sca-mgmt.xml
deletePartition

Undeploys all composites in a partition before deleting the
partition.

ant-sca-mgmt.xml
startCompositesInPar
tition

Starts all composites in a partition.

ant-sca-mgmt.xml
stopCompositesInPart
ition

Stops all composites in a partition.

ant-sca-mgmt.xml
activateCompositesIn
Partition

Activates all composites in a partition.

ant-sca-mgmt.xml
retireCompositesInPa
rtition

Retires all composites in a partition.

ant-sca-upgrade.xml Migrates BPEL and Oracle Enterprise Service Bus (ESB) release
10.1.3 metadata to release 11g.

Note: If any Java code is part of the project, you must manually
modify the code to pass compilation with an 11g compiler. For
BPEL process instance data, active data used by the 10.1.3
Oracle BPEL Server is not migrated.

For additional information about ant, visit the following URL:

http://ant.apache.org

47.9.1 How to Use ant to Automate the Testing of a SOA Composite Application
The following provides an example of executing a test case. Test cases enable you to
automate the testing of SOA composite applications:

ant -f ant-sca-test.xml -Dscatest.input=MyComposite
-Djndi.properties=/home/jdoe/jndi.properties

Table 47-11 describes the syntax.

Deploying and Managing SOA Composite Applications with ant Scripts

Deploying SOA Composite Applications 47-47

http://ant.apache.org

Table 47-11 ant Testing Commands

Argument Definition

scatest
Possible inputs are as follows:

• java.passed.home

The script picks this from the environment value of JAVA_HOME.
Provide this input to override.

• wl_home

This is the location of Oracle WebLogic Server home (defaults to
Oracle_Home/.../wlserver_10.3).

• scatest.input

The name of the composite to test.
• scatest.format

The format of the output file (defaults to native; the other
option is junit).

• scatest.result

The result directory in which to place the output files (defaults to
temp_dir/out).

• jndi.properties.input

The jndi.properties file to use.

jndi. properties
Absolute path to the JNDI property file. This is a property file that
contains JNDI properties for connecting to the server. For example:

java.naming.factory.initial=weblogic.jndi.WLInitialContextFact
ory
java.naming.provider.url=t3://myserver.us.example.com:8001/
soa-infra
java.naming.security.principal=weblogic
dedicated.connection=true
dedicated.rmicontext=true

Since a composite test (in a test suite) is executed on the SOA
Infrastructure, this properties file contains the connection information.
For this example, these properties create a connection to the SOA
Infrastructure hosted in myserver.us.example.com, port 8001
and use a user name of weblogic. You are prompted to specify the
password.

You typically create one jndi.properties file (for example, in /
home/myhome/jndi.properties) and use it for all test runs.

For more information on creating and running tests on SOA composite applications,
see Automating Testing of SOA Composite Applications and Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

47.9.2 How to Use ant to Compile a SOA Composite Application
The following provides an example of compiling a SOA composite application, which
validates it for structure and syntax:

ant -f ant-sca-compile.xml
-Dscac.input=/myApplication/myComposite/composite.xml

Table 47-12 describes the syntax.

Deploying and Managing SOA Composite Applications with ant Scripts

47-48 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 47-12 ant Compiling Commands

Argument Definition

scac
Possible inputs are as follows:

• java.passed.home

The script picks this from the environment value of JAVA_HOME.
Provide this input to override.

• wl_home

This is the location of Oracle WebLogic Server home.
• scac.input

The composite.xml file to compile.
• scac.output

The output file with scac results (defaults to temp_dir/
out.xml).

• scac.error

The file with scac errors (defaults to temp_dir/out.err).
• scac.application.home

The Oracle JDeveloper application home directory of the SOA
composite application being compiled that contains the .adf
directory in it.

• scac.displayLevel

Controls the level of logs written to scac.output file. The value
can be 1, 2, or 3 (this defaults to 1).

47.9.3 How to Use ant to Package a SOA Composite Application into a Composite SAR
File

The following provides an example of packaging a SOA composite application into a
composite SAR file. The outcome of this command is a SOA archive. Check the output
of the command for the exact location of the resulting file.

ant -f ant-sca-package.xml
-DcompositeDir=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POPr
ocessing
-DcompositeName=POProcessing
-Drevision=6-cmdline
-Dsca.application.home=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProces
sing

Table 47-13 describes the syntax.

Table 47-13 ant Packaging Commands

Argument Definition

compositeDir
Absolute path of a directory that contains composite artifacts.

compositeName
Name of the composite.

revision
Revision ID of the composite.

Deploying and Managing SOA Composite Applications with ant Scripts

Deploying SOA Composite Applications 47-49

Table 47-13 (Cont.) ant Packaging Commands

Argument Definition

sca.application.ho
me

Absolute path of the application home directory. This property is
required if your SOA composite application accesses shared artifacts
in the MDS Repository. If not, it is optional.

oracle.home
Optional. The oracle.home property.

47.9.4 How to Use ant to Deploy a SOA Composite Application
The following provides an example of deploying a SOA composite application. You
can also use this command to deploy shared data such as WSDLs, XSDs, and other file
types across SOA composite applications. For information about shared data, see How
to Deploy and Use Shared Data Across Multiple SOA Composite Applications in .

ant -f ant-sca-deploy.xml
-DserverURL=http://localhost:8001
-DsarLocation=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POPro
cessing\deploy\sca_POProcessing_rev6-cmdline.jar
-Doverwrite=true
-Duser=weblogic
-DforceDefault=true
-Dconfigplan=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POProc
 essing\demed_cfgplan.xml
-Dscac.user.classpath=C:\jarfolder\custom.jar
-Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-14 describes the syntax.

Table 47-14 ant Deployment Commands

Argument Definition

serverURL URL of the server that hosts the SOA Infrastructure application (for
example, http://myhost10:8001).

sarLocation Absolute path to one the following:

• SAR file.
• ZIP file that includes multiple SARs.

overwrite Optional. Indicates whether to overwrite an existing SOA composite
application on the server.

• false (default): Does not overwrite the file.
• true: Overwrites the file.

user Optional. User name to access the composite deployer servlet when
basic authentication is configured.

Deploying and Managing SOA Composite Applications with ant Scripts

47-50 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 47-14 (Cont.) ant Deployment Commands

Argument Definition

password Optional. Password to access the composite deployer servlet when
basic authentication is configured.

If you enter the user name, you are prompted to enter the password if
you do not provide it here.

forceDefault Optional. Indicates whether to set the version being deployed as the
default version for that composite application.

• true (default): Makes it the default composite.
• false: Does not make it the default composite.

configplan Absolute path of a configuration plan to be applied to a specified SAR
file or to all SAR files included in the ZIP file.

sysPropFile Passes in a system properties file that is useful for setting extra system
properties, for debugging, for SSL configuration, and so on.

If you specify a file name (for example, tmp-sys.properties), you
can define properties such as the following:

javax.net.debug=all

scac.user.class
path

Optional. The name of the external custom library. If you have a SOA
composite application with a BPEL process service component that
refers to a custom JAR file, set this property.

partition Optional. The name of the partition in which to deploy the SOA
composite application. The default value is default. If you do not
specify a partition, the composite is automatically deployed into the
default partition.

Note:

Human workflow artifacts such as task mapped attributes (previously known
as flex field mappings) and rules (such as vacation rules) are defined based on
the namespace of the task definition. Therefore, the following issues are true
when the same SOA composite application with a human workflow task is
deployed into multiple partitions:

• For the same task definition type, mapped attributes defined in one
partition are visible in another partition.

• Rules defined on a task definition in one partition can apply to the same
definition in another partition.

47.9.5 How to Use ant to Undeploy a SOA Composite Application
The following provides an example of undeploying a SOA composite application.

ant -f ant-sca-deploy.xml undeploy
-DserverURL=http://localhost:8001
-DcompositeName=POProcessing
-Drevision=rev6-cmdline

Deploying and Managing SOA Composite Applications with ant Scripts

Deploying SOA Composite Applications 47-51

-Duser=weblogic
-Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-15 describes the syntax.

Table 47-15 ant Undeployment Commands

Argument Definition

serverURL URL of the server that hosts the SOA Infrastructure application (for
example, http://myhost10:7001).

compositeName Name of the SOA composite application.

revision Revision ID of the SOA composite application.

user Optional. User name to access the composite deployer servlet when
basic authentication is configured.

If you enter the user name, you are prompted to enter the
corresponding password.

password Optional. Password to access the composite deployer servlet when
basic authentication is configured.

partition Optional. The name of the partition in which the SOA composite
application is located. The default value is default. If you do not
specify a partition, the default partition is searched for the SOA
composite application. However, no other partitions are searched.

47.9.6 How to Use ant to Export a Composite into a SAR File
The following provides an example of exporting a composite into a SAR file.

ant -f ant-sca-deploy.xml exportComposite -DserverURL=server.url
 -DupdateType=update.type -DsarFile=sar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 47-16 describes the syntax.

Table 47-16 ant Export Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application
(for example, http://myhost:8001).

Deploying and Managing SOA Composite Applications with ant Scripts

47-52 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 47-16 (Cont.) ant Export Commands

Argument Definition

updateType The type of postdeployment changes to be included:

• none: No postdeployment changes are included.
• all: All postdeployment changes are included.
• property: Property changes are included (binding component

properties, composite properties such as audit level settings and
payload validation status, and policy attachments).

• runtime: Postdeployment runtime changes are included (rules
dictionary and domain value maps (DVMs)).

sarFile The absolute path of the SAR file to be generated.

compositeName The name of the composite to be exported.

revision The revision of the composite to be exported.

user Optional. The user name for accessing the server when basic
configuration is configured.

password Optional. The password for accessing the server when basic
configuration is configured.

The following example shows how to export a composite without including any
postdeployment changes:

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://myhost:8001
 -DupdateType=none
 -DsarFile=/tmp/sca_HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

The following example shows how to export a composite with all postdeployment
changes:

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://myhost:8001
 -DupdateType=all
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-all.jar -DcompositeName=HelloWorld
 -Drevision=1.0

The following example shows how to export a composite with property
postdeployment updates:

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://myhost:8001
 -DupdateType=property
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-prop.jar -DcompositeName=HelloWorld
 -Drevision=1.0

The following example shows how to export a composite with runtime/metadata
postdeployment updates:

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://myhost:8001
 -DupdateType=runtime
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-runtime.jar
 -DcompositeName=HelloWorld -Drevision=1.0

Deploying and Managing SOA Composite Applications with ant Scripts

Deploying SOA Composite Applications 47-53

47.9.7 How to Use ant to Export Postdeployment Changes of a Composite into a JAR
File

The following provides an example of exporting postdeployment changes of a
composite into a JAR file.

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=server.url
 -DupdateType=update.type -DjarFile=jar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 47-17 describes the syntax.

Table 47-17 ant Postdeployment Export Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application
(for example, http://myhost:8001).

updateType The type of postdeployment changes to be exported.

• all: Includes all postdeployment changes.
• property: Includes only property postdeployment changes

(binding component properties, composite properties such as
audit level settings and payload validation status, and policy
attachments).

• runtime: Includes only runtime (rules dictionary and domain
value maps (DVMs)).

jarFile The absolute path of the JAR file to be generated.

compositeName The name of the composite to be exported.

revision The revision of the composite to be exported.

user Optional. The user name for accessing the server when basic
configuration is configured.

password Optional. The password for accessing the server when basic
configuration is configured.

The following example shows how to export all postdeployment updates:

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://myhost:8001
 -DupdateType=all
 -DjarFile=/tmp/all-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

The following example shows how to export property postdeployment updates:

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://myhost:8001
 -DupdateType=property
 -DjarFile=/tmp/prop-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

Deploying and Managing SOA Composite Applications with ant Scripts

47-54 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The following example shows how to export runtime/metadata postdeployment
updates.

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://myhost:8001
 -DupdateType=runtime
 -DjarFile=/tmp/runtime-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

47.9.8 How to Use ant to Import Postdeployment Changes of a Composite
The following provides an example of importing postdeployment changes of a
composite.

ant -f ant-sca-deploy.xml importUpdates -DserverURL=server.url -DjarFile=jar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 47-18 describes the syntax.

Table 47-18 ant Postdeployment Import Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application
(for example, http://myhost:8001).

jarFile The absolute path of the JAR file that contains postdeployment
changes.

compositeName The name of the composite into which the postdeployment changes
are imported.

revision The revision of the composite to which the postdeployment changes
are imported.

user Optional. The user name for accessing the server when basic
configuration is configured.

password Optional. The password for accessing the server when basic
configuration is configured.

The following example shows how to import postdeployment changes of a composite:

ant -f ant-sca-deploy.xml importUpdates -DserverURL=http://myhost:8001
 -DjarFile=/tmp/prop-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

47.9.9 How to Use ant to Export Shared Data of a Given Pattern into a JAR File
The following provides an example of exporting shared data of a given pattern into a
JAR file.

ant -f ant-sca-deploy.xml exportSharedData -DserverURL=server.url
 -DjarFile=jar.file -Dpattern=pattern -Duser=user

Deploying and Managing SOA Composite Applications with ant Scripts

Deploying SOA Composite Applications 47-55

Note:

After specifying the user name, enter the password when prompted.

Table 47-19 describes the syntax.

Table 47-19 ant Shared Data Export Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application
(for example, http://myhost:8001).

jarFile The absolute path of the JAR file to be generated.

pattern The file pattern supported by Oracle MDS Repository transfer APIs.
Use the semicolon delimiter (;) if multiple patterns are specified.
Exclude the shared data namespace /apps in the pattern. For
example:

/Project1/**;/Project2/**

This example exports all documents under /apps/Project1 and /
apps/Project2.

user Optional. The user name for accessing the server when basic
configuration is configured.

password The password for accessing the server when basic configuration is
configured. This parameter is optional.

The following example shows how to export shared data of a given pattern into a JAR
file.

ant -f ant-sca-deploy.xml exportSharedData -DserverURL=http://myhost:8001
 -DjarFile=/tmp/MySharedData.jar
 -Dpattern="/Project1/**"

47.9.10 How to Use ant to Remove a Top-level Shared Data Folder
The following provides an example of removing a top-level shared data folder, even if
there are composites deployed in the service engine:

ant -f ant-sca-deploy.xml removeSharedData -DserverURL=server.url
 -DfolderName=folder.name -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 47-20 describes the syntax.

Deploying and Managing SOA Composite Applications with ant Scripts

47-56 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 47-20 ant Shared Data Folder Removal Commands

Argument Definition

serverURL URL of the server that hosts the SOA Infrastructure application (for
example, http://myhost10:8001).

foldername The name of the top-level shared data folder to remove.

user Optional. The user name for accessing the server when basic
configuration is configured.

password Optional. The password for accessing the server when basic
configuration is configured.

The following example shows how to remove a top-level shared data folder named
Project1:

ant -f ant-sca-deploy.xml removeSharedData -DserverURL=http://myhost:8001
 -DfolderName=Project1

47.9.11 How to Use ant to Start a SOA Composite Application
The following provides an example of starting a SOA composite application:

ant -f ant-sca-mgmt.xml startComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
 -DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-21 describes the syntax.

Table 47-21 ant SOA Composite Application Startup Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies
the MDS artifacts associated with the application. If the label is not
specified, the system finds the latest one.

Deploying and Managing SOA Composite Applications with ant Scripts

Deploying SOA Composite Applications 47-57

Table 47-21 (Cont.) ant SOA Composite Application Startup Commands

Argument Definition

partition Optional. The name of the partition in which the SOA composite
application is located. The default value is default. If you do not
specify a partition, the default partition is searched for the SOA
composite application. However, no other partitions are searched.

47.9.12 How to Use ant to Stop a SOA Composite Application
The following provides an example of stopping a SOA composite application:

ant -f ant-sca-mgmt.xml stopComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
-DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-22 describes the syntax.

Table 47-22 ant SOA Composite Application Stop Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies
the MDS artifacts associated with the application. If the label is not
specified, the system finds the latest one.

partition Optional. The name of the partition in which the SOA composite
application is located. The default value is default. If you do not
specify a partition, the default partition is searched for the SOA
composite application. However, no other partitions are searched.

47.9.13 How to Use ant to Activate a SOA Composite Application
The following provides an example of activating a SOA composite application.

ant -f ant-sca-mgmt.xml activateComposite -Dhost=myhost -Dport=8001
-Duser=weblogic-DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Deploying and Managing SOA Composite Applications with ant Scripts

47-58 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

After specifying the user name, enter the password when prompted.

Table 47-23 describes the syntax.

Table 47-23 ant SOA Composite Application Activation Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies
the MDS artifacts associated with the application. If the label is not
specified, the system finds the latest one.

partition Optional. The name of the partition in which the SOA composite
application is located. The default value is default. If you do not
specify a partition, the default partition is searched for the SOA
composite application. However, no other partitions are searched.

47.9.14 How to Use ant to Retire a SOA Composite Application
The following provides an example of retiring a SOA composite application:

ant -f ant-sca-mgmt.xml retireComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
-DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-24 describes the syntax.

Table 47-24 ant SOA Composite Application Retirement Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

Deploying and Managing SOA Composite Applications with ant Scripts

Deploying SOA Composite Applications 47-59

Table 47-24 (Cont.) ant SOA Composite Application Retirement Commands

Argument Definition

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies
the MDS artifacts associated with the application. If the label is not
specified, the system finds the latest one.

partition Optional. The name of the partition in which the SOA composite
application is located. The default value is default. If you do not
specify a partition, the default partition is searched for the SOA
composite application. However, no other partitions are searched.

47.9.15 How to Use ant to Assign the Default Version to a SOA Composite Application
The following provides an example of assigning the default version to a SOA
composite application.

ant -f ant-sca-mgmt.xml assignDefaultComposite -Dhost=myhost -Dport=8001
-Duser=weblogic -DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-25 describes the syntax.

Table 47-25 ant SOA Composite Application Default Version Assignment
Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

partition Optional. The name of the partition in which the SOA composite
application is located. The default value is default. If you do not
specify a partition, the default partition is searched for the SOA
composite application. However, no other partitions are searched.

Deploying and Managing SOA Composite Applications with ant Scripts

47-60 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

47.9.16 How to Use ant to List the Deployed SOA Composite Applications
The following provides an example of listing the deployed SOA composite
applications.

ant -f ant-sca-mgmt.xml listDeployedComposites -Dhost=myhost -Dport=8001
-Duser=weblogic

Note:

After specifying the user name, enter the password when prompted.

Table 47-26 describes the syntax.

Table 47-26 ant SOA Composite Application Deployment List Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

47.9.17 How to Use ant to List All Available Partitions in the SOA Infrastructure
The following provides the syntax for listing all available partitions in the SOA
Infrastructure.

ant -f ant-sca-mgmt.xml listPartitions -Dhost=host -Dport=port -Duser=user

Note:

After specifying the user name, enter the password when prompted.

Table 47-27 describes the syntax.

Table 47-27 ant SOA Infrastructure Partitioning List Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

The following provides an example of listing all available partitions in the SOA
Infrastructure:

Deploying and Managing SOA Composite Applications with ant Scripts

Deploying SOA Composite Applications 47-61

ant -f ant-sca-mgmt.xml listPartitions -Dhost=myhost10 -Dport=8001

47.9.18 How to Use ant to List All Composites in a Partition
The following provides the syntax for listing all composites in a partition.

ant -f ant-sca-mgmt.xml listCompositesInPartition -Dhost=host -Dport=port -
Duser=user -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-28 describes the syntax.

Table 47-28 ant Composite Partitioning List Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

partition The name of the partition.

The following provides an example of listing all composites in a partition named
myPartition.

ant -f ant-sca-mgmt.xml listCompositesInPartition -Dhost=myhost10 -Dport=8001 -
Dpartition=myPartition

47.9.19 How to Use ant to Create a Partition in the SOA Infrastructure
The following provides the syntax for creating a partition in the SOA Infrastructure.

ant -f ant-sca-mgmt.xml createPartition -Dhost=host -Dport=port -Duser=user
-Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-29 describes the syntax.

Table 47-29 ant Partition Creation Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

Deploying and Managing SOA Composite Applications with ant Scripts

47-62 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 47-29 (Cont.) ant Partition Creation Commands

Argument Definition

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

partition The name of the partition to create.

The following provides an example of creating a partition in the SOA Infrastructure
named myPartition:

ant -f ant-sca-mgmt.xml createPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

47.9.20 How to Use ant to Delete a Partition in the SOA Infrastructure
The following provides the syntax for deleting a partition in the SOA Infrastructure.
This command undeploys all composites in the partition before deleting the partition.

ant -f ant-sca-mgmt.xml deletePartition -Dhost=host -Dport=port -Duser=user
-Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-30 describes the syntax.

Table 47-30 ant Partition Deletion Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

partition The name of the partition to delete.

The following provides an example of deleting a partition in the SOA Infrastructure
named myPartition:

ant -f ant-sca-mgmt.xml deletePartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

47.9.21 How to Use ant to Start All Composites in the Partition
The following provides the syntax for starting all composites in the partition:

ant -f ant-sca-mgmt.xml startCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

Deploying and Managing SOA Composite Applications with ant Scripts

Deploying SOA Composite Applications 47-63

Note:

After specifying the user name, enter the password when prompted.

Table 47-31 describes the syntax.

Table 47-31 ant Partition Startup Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

partition The name of the partition.

The following provides an example of starting all composites in the partition named
myPartition:

ant -f ant-sca-mgmt.xml startCompositesInPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

47.9.22 How to Use ant to Stop All Composites in the Partition
The following provides the syntax for stopping all composites in the partition:

ant -f ant-sca-mgmt.xml stopCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-32 describes the syntax.

Table 47-32 ant Partition Composite Stop Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

partition The name of the partition.

The following provides an example of stopping all composites in the partition named
myPartition:

Deploying and Managing SOA Composite Applications with ant Scripts

47-64 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

ant -f ant-sca-mgmt.xml stopCompositesInPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

47.9.23 How to Use ant to Activate All Composites in the Partition
The following provides the syntax for activating all composites in the partition.

ant -f ant-sca-mgmt.xml activateCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-33 describes the syntax.

Table 47-33 ant Partition Composite Activation Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

partition The name of the partition.

The following provides an example of activating all composites in the partition named
myPartition:

ant -f ant-sca-mgmt.xml activateCompositesInPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

47.9.24 How to Use ant to Retire All Composites in the Partition
The following provides the syntax for retiring all composites in the partition:

ant -f ant-sca-mgmt.xml retireCompositesInPartition -Dhost=host -Dport=port
 -Duser=user -Dpartition=partition.name

Note:

After specifying the user name, enter the password when prompted.

Table 47-34 describes the syntax.

Table 47-34 ant Partition Composite Retirement Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

Deploying and Managing SOA Composite Applications with ant Scripts

Deploying SOA Composite Applications 47-65

Table 47-34 (Cont.) ant Partition Composite Retirement Commands

Argument Definition

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

partition The name of the partition.

The following provides an example of retiring all composites in the partition named
myPartition:

ant -f ant-sca-mgmt.xml retireCompositesInPartition -Dhost=myhost10 -Dport=8001
-Dpartition=myPartition

47.9.25 How to Use ant to Manage SOA Composite Applications
You can use ant scripts to compile, package, and deploy the application. You can
create the initial ant build files by selecting New > Application > Ant > Buildfile
from Project from the File main menu.

Figure 47-29 shows the build.properties and build.xml files that display in the
Applications window after creation.

Figure 47-29 ant Build Files

• build.properties

A file that you edit to reflect your environment (for example, specifying Oracle
home and Java home directories, setting server properties such as hostname and
port number to use for deployment, specifying the application to deploy, and so
on).

• build.xml

Used by ant to compile, build, and deploy composite applications to the server
specified in the build.properties file.

1. Modify the build.properties file to reflect your environment.

2. From the Build menu, select Run Ant on project_name.

This builds targets defined in the current project's build file.

Deploying and Managing SOA Composite Applications with ant Scripts

47-66 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

47.10 Deploying SOA Composite Applications from Oracle Enterprise
Manager Fusion Middleware Control

You can deploy SOA composite applications from Oracle Enterprise Manager Fusion
Middleware Control. You must first create a deployable archive in Oracle JDeveloper
or through the ant or WLST command line tools. The archive can consist of a single
SOA composite application revision in a JAR file or multiple composite application
revisions (known as a SOA bundle) in a ZIP file. For more information, see
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

47.11 Deploying SOA Composite Applications to a Cluster
You can deploy a SOA composite application into a clustered environment. For more
information, see chapter "Configuring High Availability for Oracle Fusion
Middleware SOA Suite" of the High Availability Guide.

47.12 Deploying SOA Composite Applications with No Servers Running
You can deploy SOA composite applications and shared data (for example, WSDL and
XSD files) with no managed SOA servers or administration servers running (known as
offline deployment mode). When the servers are restarted, the SOA composite
applications and shared data are deployed.

Offline deployment is beneficial for the following use cases:

• Shared data and new SOA composite applications (for example, the system is new
and does not have any deployed composites).

• One-off patches that may contain a single SOA composite application (new or
patched) or a resource bundle of shared data.

Note the following guidelines when using offline deployment:

• The SOA composite applications and shared data are available in read-only
format in the Oracle home directory. You cannot delete or update the composites.

• The same SOA composite application or shared data file can be included in one or
all of the supported use cases when offline deployment occurs. However, for a
particular SOA composite application, only one composite SAR or shared data file
is in the data location relative to the product data root directory. All cases must
point to the same root product data directory. The same composite data is
overwritten by the order of applied use cases.

• You cannot redeploy or undeploy the SOA composite application through offline
deployment.

• Shared data (resource bundle) redeployment is supported since there is no
revision concept with shared data.

• WLST commands are provided for adding and removing individual SOA
composite applications and shared data to and from offline deployments. For
information, see Section "SOA Composite Application Offline Management
Deployment" of WLST Command Reference for SOA Suite.

• Configuration plans are not supported with offline deployments.

Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion Middleware Control

Deploying SOA Composite Applications 47-67

For information about SAR file naming conventions, see Deployed Service Archives.

For information about shared data, see How to Deploy and Use Shared Data Across
Multiple SOA Composite Applications in .

Note:

• You cannot deploy ZIP files in offline mode. This is because ZIP files
contain other archives.

• You can only deploy a particular composite SAR file into one partition
through offline deployment.

47.12.1 Offline Deployment Configuration Files
Two configuration files control offline deployment:

• soa-configuration.xml (offline deployment configuration list file).

• composite-offline-deployments-version_number.xml (offline
deployment configuration file). The version_number can be any value, but the
composite-offline-deployments- part is fixed and required.

47.12.1.1 Offline Deployment Configuration List File

The offline deployment configuration list file identifies the location from which to read
the offline deployment configuration files. The file is named soa-
configuration.xml and appears in the $DOMAIN/config/fmwconfig directory.
The offline deployment process uses this configuration file to generate a consolidated
configuration list to use in offline deployment. The following example shows a soa-
configuration.xml file in which two directory locations are listed:

<?xml version="1.0" encoding="UTF-8"?>
<soa-configuration xmlns="http://xmlns.oracle.com/config/soa">
 <soa-directories>
<soa-directory>/scratch/aime/appTop/common/soa-composiste/soa1</soa-directory>
<soa-directory>/scratch/aime/appTop/common/soa-composiste/soa2</soa-directory>
 </soa-directories>
</soa-configuration>

47.12.1.2 Offline Deployment Configuration File

The offline deployment configuration file specifies the following elements for offline
deployments.

• Partitions are created, as necessary, before the SOA composite applications and
shared resources are deployed. Note the following order of precedence for
partition use:

– The partition specified in the <partition> element is created.

– If a partition used in <composite-deployment> is not specified in the
<partition> element, it is created implicitly.

– If the partition attribute is not specified in the <composite-
deployment> element, the composite is deployed into the default
partition.

Deploying SOA Composite Applications with No Servers Running

47-68 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Shared resources

Shared resources are deployed before the SOA composite applications.

• SOA composite applications

You can list multiple SOA composite applications in the file. However, they are
not deployed in the order in which they are listed in the file.

The file naming convention is composite-offline-deployments-
version_number.xml, where version_number can be any value, but the
composite-offline-deployments- part is fixed and required.

The following example shows the structure of the offline deployment file. The file is
divided into the three sections to represent partitions, SOA composite applications,
and shared data.

<offline-configuration>
 <partitions>?
 <partition name="partition_name"/>*
 </partitions>
 <composite-deployments>?
 <composite-deployment location="/some/path" partition="partition_name"?>*
 </composite-deployments>
 <shared-resources>?
 <shared-resource location="/some/path"/>*
 </shared-resources>
</offline-configuration>

The following example shows an offline deployment configuration file in which the
following is defined:

• Partition one and two are created.

• The composite SAR file /some/path/sca_composite1.jar is deployed into
partition one.

• The composite SAR file /another/path/sca_composite2.jar is deployed
into partition two.

• The composite SAR file /yet/another/path/sca_composite3.jar is
deployed into the default partition.

• The shared data JAR files /some/path/shareddata1.jar and /another/
path/shareddata2.jar are deployed into the shared data location.

<offline-configuration>
 <composite-deployments>
 <composite-deployment location="/some/path/sca_composite1.jar"
 partition="one">
 <composite-deployment location="/another/path/sca_composite2.jar"/
 partition="two">
 <composite-deployment location="/yet/another/path/sca_composite3.jar"/>
 </composite-deployments>
 <shared-resources>
 <shared-resource location="/some/path/shareddata1.jar"/>
 <shared-resource location="/another/path/shareddata2.jar"/>
 </shared-resources>
</offline-configuration>

The following example shows an offline configuration deployment file in which the
following occurs:

Deploying SOA Composite Applications with No Servers Running

Deploying SOA Composite Applications 47-69

• The shared data JAR file named shareddata.jar is deployed.

• The composite SAR file named sca_soaApp1.jar is deployed into the
myPartition partition.

• The composite SAR file named sca_soaApp2.jar is deployed by default into
the default partition because no partition is explicitly defined.

<offline-configuration>
 <composite-deployments>
 <composite-deployment
 location="/scratch/aime/appTop/soa1/sca_soaApp1.jar“
 partition=“myPartition“/>
 <composite-deployment
 location="/scratch/aime/appTop/soa1/sca_soaApp2.jar“/>
 </composite-deployments>
 <shared-resources>
 <shared-resource location="/scratch/aime/appTop/soa1/shareddata.jar"/>
 </shared-resources>
</offline-configuration>

The following example shows an offline deployment configuration file in which only
shared data located in the two defined directories is deployed:

<offline-configuration>
 <shared-resources>
 <shared-resource location="/some/path/shareddata1.jar"/>
 <shared-resource location= "/another/path/shareddata2.jar"/>
 </shared-resources>
</offline-configuration>

The following example shows an offline deployment file in which partition one and
two are created. No SOA composite applications or shared data are deployed:

<offline-configuration>
 <partitions>
 <partition name="one"/>
 <partition name="two"/>
 </partitions>
</offline-configuration>

47.12.1.3 Relative Configuration File Paths

Relative paths are also supported in the offline deployment configuration file. The
following example shows the soa-configuration.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<soa-configuration xmlns="http://xmlns.oracle.com/config/soa">
 <soa-directories>
<soa-directory>/scratch/aime/appTop/common/soa-composiste/soa1</soa-directory>
 </soa-directories>
</soa-configuration>

The following example shows the offline deployment composite-offline-
deployments-1.0.xml file. The two composite SAR files and one shared data JAR
file are all located in the soa1 directory shown in the preceding example.

<offline-configuration>
 <composite-deployments>
 <composite-deployment location="sca_soaApproval.jar" >
 <composite-deployment location="sca_soaNotification.jar">
 </composite-deployments>

Deploying SOA Composite Applications with No Servers Running

47-70 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <shared-resources>
 <shared-resource location="soashareddata.jar"/>
 </shared-resources>
</offline-configuration>

47.12.1.4 Order of Deployment

Offline deployments are processed in the following order:

• The soa-configuration.xml offline deployment configuration list file is read
to identify the location of the offline deployment configuration files (composite-
offline-deployments-version.xml).

• The composite-offline-deployments-version.xml files are read and a
consolidated list is created based on the file location. The consolidated list
contains the partitions, shared data files, and SOA composite application files.

• The consolidated list is processed in the following order:

– Partitions

– Shared data files

– SOA composite application files

47.12.2 How to Deploy SOA Composite Applications and Shared Data with No Server
Running

This section provides an overview of the procedures for deploying SOA composite
applications and shared data with no server running.

To deploy SOA composite applications and shared data with no server running:

1. Create an offline deployment configuration list file. This file identifies the location
from which to read the offline deployment configuration files. For examples of the
contents of this file, see Offline Deployment Configuration List File.

2. Create offline deployment configuration files. This file specifies the elements to
include in the offline deployment (partitions, shared data, or SOA composite
applications). For examples of the contents of this file, see Offline Deployment
Configuration File.

3. Restart the SOA servers.

The composites are deployed and displayed in the Deployed Composites tab of
the SOA Infrastructure in Oracle Enterprise Manager Fusion Middleware Control.
For more information, see "Managing the State of All Applications at the SOA
Infrastructure Level" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

If troubleshooting is required, you can view deployment results in the SOA server
diagnostic log file.

47.12.3 What You May Need to Know About Offline Composite Deployment in a Cluster
Environment

When the server starts up during offline composite deployment, the SOA composite
application is deployed to all nodes in the cluster. The registration files are supported

Deploying SOA Composite Applications with No Servers Running

Deploying SOA Composite Applications 47-71

in one physical domain location, rather than synchronizing the files across all physical
domain locations in the cluster. If the cluster is configured where the domain location
is present on different physical hosts, select the domain directory on one host and use
that as the offline registration location.

47.12.4 What You May Need to Know About Deploying SOA Composite Applications
that Reference Shared Data That is Not in the MDS Repository

Offline deployment enables a SOA composite application that references shared
artifacts in the MDS Repository to be deployed when the shared data is not present in
the MDS Repository.

This is the expected behavior. To save time during server startup, offline deployment
uses lazy loading by default. With lazy loading, you do not see a deployment error
when the composite is deployed during server startup if the composite is referencing
nonexistent shared data. However, you do see the failure when you invoke the
composite for the first time. The composite fails if it references non-existent, shared
data. With lazy loading, the failure point is different; it is not in the deployment, but in
the first invocation.

47.13 Postdeployment Configuration
This section describes postdeployment configuration tasks.

47.13.1 Security
For information about securing SOA composite applications, see Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

47.13.2 Updating Connections
Ensure that any connections that you created to the application server or MDS
Repository are recreated to point to servers applicable to the next target environment.
For more information, see Creating an Application Server Connection and Creating a
SOA-MDS Connection.

47.13.3 Updating Data Sources and Queues
Ensure that all JDBC data source, queue, and connection factory locations that you
previously configured are applicable to the next target environment. For more
information, see How to Create Data Sources and Queues and How to Create
Connection Factories and Connection Pooling.

47.13.4 Attaching Policies
You can attach policies to a deployed SOA composite application during runtime in
Oracle Enterprise Manager Fusion Middleware Control. For more information, see
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

47.14 Testing and Troubleshooting
This section describes how to test and troubleshoot your SOA composite application.

Postdeployment Configuration

47-72 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

47.14.1 Verifying Deployment
You can verify that you have successfully deployed your SOA composite application
to the SOA Infrastructure. If successful, the deployed composite displays in the
Deployed Composites tab of the SOA Infrastructure page of Oracle Enterprise
Manager Fusion Middleware Control. For more information, see Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

47.14.2 Initiating an Instance of a Deployed Composite
You can initiate an instance of a deployed SOA composite application from the Test
Web Service page in Oracle Enterprise Manager Fusion Middleware Control. For more
information, see Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

47.14.3 Automating the Testing of Deployed Composites
You can create, deploy, and run test cases that automate the testing of SOA composite
applications. Test cases enable you to simulate the interaction between a SOA
composite application and its web service partners before deployment in a production
environment. You create test cases in Oracle JDeveloper and include them in a SOA
composite application that is then deployed and run from either Oracle JDeveloper or
Oracle Enterprise Manager Fusion Middleware Control.

For information about creating and running test cases from Oracle JDeveloper, see
Automating Testing of SOA Composite Applications.

For information about running test cases from Oracle Enterprise Manager Fusion
Middleware Control, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

47.14.4 Recompiling a Project After Receiving a Deployment Error
If you receive the error shown in the following example when deploying a SOA
composite application from Oracle JDeveloper, recompile the project and redeploy the
composite. This error is intermittent and should not occur again.

Error deploying BPEL suitcase.
error while attempting to deploy the BPEL component file
"/scratch/aime1/work/mw9507/user_projects/domains/WLS_SOAWC/deployed-composites
/ManagementChainParticipantRuleComposite_rev1.0/sca_ManagementChainParticipantR
uleComposite_rev1.0/soa_59d10d76-08a5-41f0-ba89-32dcc2250002";
the exception reported is: java.lang.Exception: BPEL 1.1 compilation failed

This error contained an exception thrown by the underlying deployment module.
Verify the exception trace in the log (with logging level set to debug mode).

at
com.collaxa.cube.engine.deployment.DeploymentManager.deployComponent(Deployment
Manager.java:197)
at
com.collaxa.cube.ejb.impl.CubeServerManagerBean._deployOrLoadComponent(CubeServ
erManagerBean.java:820)
at
com.collaxa.cube.ejb.impl.CubeServerManagerBean.deployComponent(CubeServerManag
erBean.java:119)

Testing and Troubleshooting

Deploying SOA Composite Applications 47-73

47.14.5 Reducing Java Code Size to Resolve Java Compilation Errors
If you receive the Java compilation error shown in the following example in your
server log files, you may have too much code in your Java classes.

Failed to compile bpel generated classes.
failure to compile the generated BPEL classes for BPEL process
"Review_Supply_Plan_ProcessProcess" of composite "default/Review_Supp
ly_Plan_Process!1.0*a9ca2907-8540-4375-b672-ceb560d7b826"
The class path setting is incorrect.
Ensure that the class path is set correctly. If this happens on the server
side, verify that the custom classes or jars which this BPEL process is
depending on are deployed correctly. Also verify that the runtime is using
the same release/version.
. . .
. . .
 at
com.collaxa.cube.lang.compiler.template.CubeProcessGenerator.compile(CubeProce
ssGenerator.java:304)
 at
com.collaxa.cube.lang.compiler.template.CubeProcessGenerator.generate(CubeProc
essGenerator.java:164)
 at
com.collaxa.cube.lang.compiler.BPEL1Processor.transform(BPEL1Processor.java:25
7)
 at
com.collaxa.cube.lang.compiler.BPEL1Processor.process(BPEL1Processor.java:161)

To reduce Java code size to resolve Java compilation errors:

1. Open the $MIDDLEWARE_HOME/user_projects/domains/
domain_name/bin/SetDomainEnv.sh file (for Linux) or SetDomainEnv.bat
file (for Windows).

2. Locate the EXTRA_JAVA_PROPERTIES="-Dorabpel.codegen.density"
property in this file. If this property is not explicitly set, it defaults to values of
64,32.

3. Reduce the values:

EXTRA_JAVA_PROPERTIES="-Dorabpel.codegen.density=32,16"

By reducing these two values, you increase the number of classes and methods that
are generated for the compiled process map. As a best practice, if the process fails
to compile using the default settings, set the property with smaller values. The
following values are good combinations to try:

32,16
16,8
8,4
4,2

4. Save your changes.

5. Restart the server.

6. Recompile your SOA composite application.

Testing and Troubleshooting

47-74 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

47.14.6 Troubleshooting Common Deployment Errors
This section describes how to troubleshoot common deployment errors.

For information about general composite application troubleshooting issues, see
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

47.14.6.1 Common Oracle JDeveloper Deployment Issues

This section provides a list of common deployment issues to check.

• If you are deploying a single composite application, ensure that you are deploying
from the Project menu. Right-click the project name in the Applications window,
and select Deploy > SOA_profile_name.

• If you are deploying multiple composite applications, ensure that you are
deploying from the Application menu. (Right-click the application name in the
Applications window, and select Deploy > SOA_bundle_profile_name).

• Once you click Deploy and select the profile name, ensure that the Deployment
Action page of the deployment wizard is displayed.

• Optionally enter a new revision ID (optional) and select the configuration plan (if
any).

• If the composite application you are deploying is already located on the server
with the same revision ID, then check the Overwrite any existing composites
with the same revision ID check box in the Deploy Configuration page of the
deployment wizard. Without selecting this option, deployment fails.

• If compilation fails, a compiler error occurred, and not a deployment error. You
only see this error when you compile your project.

• If compiler messages are not obvious, check the compiler log. A link to this log file
(scac.log) is displayed in the Messages tab. The message looks similar to that
shown in the following example.

Compilation of project 'FirstComposite.jpr' finished. Check '/scratch/myhome/
jdevWorkarea/mywork/Application11/FirstComposite/SCA-INF/classes/scac.log' for
details.

• After compilation is successful, a SAR/SOA bundle archive is built for the
composite. For a SAR archive, the message shown in the following example is
displayed in the Deployment tab.

Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar

For a SOA bundle archive, the message shown in the following example is
displayed in the Deployment tab.

Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/SecondComposite/deploy/sca_
SecondComposite_rev1.0.jar
Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar
Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/deploy/soabundle1.zip

Testing and Troubleshooting

Deploying SOA Composite Applications 47-75

• Ensure that all SAR file URLs look as follows:

sca_CompositeName_revRevisionID.jar

For example, sca_FirstComposite_rev1.0.jar.

• After this occurs, Oracle JDeveloper sends the archive binaries to the server. The
following message is displayed in the Deployment tab. At this point, Oracle
JDeveloper's deployment role ends and the server (SOA Infrastructure) takes
control of deployment.

Deploying sca_FirstComposite_rev1.0.jar to myhost19:7001

• Upon successful deployment, you see the message shown in the following
example in the Deployment tab.

Received HTTP response from the server, response code=200 Successfully deployed
archive soa_bundle_name.zip to soa_server_name

• If deployment fails, the message shown in the following example is displayed in
the Deployment tab with an error message (if any) from the server.

Error deploying the archive. Check server log for more details.
Connection refused.
Elapsed time for deployment: 8 seconds

• In most cases, the server provides some information about the error that occurred
on the server. If you do not receive any error message from the server, then check
soa_server1-diagnostic.log on the server to find additional information
(where soa_server1 is the name of the managed server). This file is located on
the server in domain_home/servers/soa_server1/logs.

47.14.6.2 Common Configuration Plan Issues

This section provides a list of common configuration plan issues to check.

• If you selected a configuration plan to deploy, and it is not taking effect on the
server, open the SAR file containing the configuration plan. You can find the file
location from the Deployment tab in Oracle JDeveloper. The following example
provides details.

Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar

• Open the JAR file and ensure that it contains the soaconfigplan.xml file. This
file is generated during deployment based on the configuration plan you selected.

• If this file is not present, try deploying the composite application again to ensure
that you have correctly selected the configuration plan in the Deploy
Configuration page of the deployment wizard.

47.14.6.3 Deploying to a Managed Oracle WebLogic Server

If you start a managed Oracle WebLogic Server without starting an Oracle WebLogic
Administration Server (known as running in independence mode) and attempt to
deploy a SOA composite application from Oracle JDeveloper, you receive the
following error:

Deployment cannot continue! No SOA Configured target servers found

Testing and Troubleshooting

47-76 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The Oracle WebLogic Administration Server must be running. Deployment uses the
Oracle WebLogic Administration Server connection to identify the servers running
Oracle SOA Suite. In addition, do not create an application server connection to a
Managed Server; only create connections to an Oracle WebLogic Administration
Server.

You can also receive a similar error if the condition of the SOA-configured Oracle
WebLogic Server is not healthy. This condition displays in the Health column of the
Servers page of Oracle WebLogic Server Administration Console.

You can use WLST to deploy SOA composite applications to a managed Oracle
WebLogic Server without starting an Oracle WebLogic Administration Server. See
Deploying and Managing SOA Composite Applications with the WLST Utility for
details.

47.14.6.4 Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server

Deployment from Oracle JDeveloper to a two-way, SSL-enabled Oracle WebLogic
Server is not supported.

47.14.6.5 Deploying with an Unreachable Proxy Server

You can receive an error similar to that shown in Figure 47-30 during SOA composite
application deployment if you have a proxy server set in Oracle JDeveloper that is not
reachable from your host.

Figure 47-30 Deployment Error Message

A valid proxy setting is necessary for accessing a SOA Infrastructure (for example,
soa_server1) outside the network. If the SOA Infrastructure is within the network,
perform one of the following actions:

To change the proxy setting:

1. From the Tools menu, select Preferences > Web Browser and Proxy.

2. Perform one of the following tasks if the SOA server is within the network:

a. Deselect Use HTTP Proxy Server if you can directly access the SOA
Infrastructure without any proxy.

b. In the Exceptions field, enter the hostname of the unreachable SOA server.

47.14.6.6 Releasing Locks to Resolve ADF Task Form EAR File Deployment Errors

If you deploy a SOA composite application JAR file and ADF task form EAR file, and
the SOA JAR file is deployed successfully, but while deploying the EAR file, the
following errors are displayed:

[wldeploy] weblogic.management.ManagementException: [Deployer:149163]The
domain edit lock is owned by another session in non-exclusive mode - this
deployment operation requires exclusive access to the edit lock and hence
cannot proceed. If you are using "Automatically Aquire Lock and Activate

Testing and Troubleshooting

Deploying SOA Composite Applications 47-77

Changes" in the console, then the lock will expire shortly so retry this
operation.

This error means you must first release the lock from Oracle WebLogic Server
Administration Console to successfully deploy the EAR file.

To release locks to resolve ADF task form EAR file deployment errors:

1. Log in to the Oracle WebLogic Server Administration Console.

2. Below the console banner at the top of the page, click Preferences > User
Preferences.

3. Deselect Automatically Acquire Lock and Activate Changes.

4. Click Save and note that buttons such as Lock and Edit and Release Configuration
are visible.

Note the following description that is displayed in the Oracle WebLogic Server
Administration Console:

Automatically acquire the lock that enables configuration editing and
automatically activate changes as the user modifies, adds and deletes items
 (for example, when the user clicks the 'Save' button). This feature is not
 available in production mode.

This error can occur regardless of the deployment method you are using (for example,
deploying through Oracle JDeveloper or through ant scripts).

47.14.6.7 Increasing Memory to Recover from Compilation Errors

If you receive out-of-memory errors during compilation of a SOA composite
application, perform the following step to increase memory.

1. Open the ant-sca-compile.xml file in the $ORACLE_HOME/bin directory.

2. Under the scac element, increase the memory setting. For example:

<jvmarg value="-Xmx512M"/>

47.14.6.8 Oracle JDeveloper Compilation Error When Property Alias Definition is
Missing for a Receive Activity with a Correlation Set

When a property alias definition is missing for a receive activity with a correlation set,
the Oracle JDeveloper compiler fails with SCAC-50012 error.

47.14.6.9 ADF Binding Service Names Must Be Unique Across All Deployed SOA
Composite Applications

All ADF bindings must have a unique service name across all deployed SOA
composite applications.

For example, assume you perform the following steps:

1. Build and successfully deploy a SOA composite application that includes multiple
composites to the SOA server.

2. Change one of the composites in the SOA composite application by adding new
components and an outbound external reference.

Testing and Troubleshooting

47-78 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. Compile and successfully build the updated SOA composite application as revision
2.0.

4. Deploy the updated SOA composite application to the same partition or a different
partition.

You can receive the following error:

<Oct 7, 2013 11:52:01 AM EDT> <Error> <ServletContext-/soa-infra>
<BEA-000000> <Error during deployment
oracle.fabric.common.FabricException: Deployment Failed: The serviceName
attribute "OrderProcessorService" has already been used. ServiceName must
be unique among all deployed composites. The new service will overwrite the
old one.
 at
oracle.integration.platform.blocks.deploy.StandaloneCompositeDeploymentCoordin
atorImpl.coordinateCompositeDeployment(StandaloneCompositeDeploymentCoordinato
rImpl.java:99)
. . .
. . .

This error occurred because all ADF bindings must have a unique service name
across all deployed SOA composite applications.

5. As a workaround, you must edit the composite.xml file and assign a different
name for the service in the.adf binding.adf section. For example:

<binding.adf serviceName="OrderProcessorService_v2" registryName=""/>
 <!-- exposed for using via direct binding api -->

47.15 Patching Running Instances of a SOA Composite
Oracle SOA Suite 12c (12.2.1) supports Composite Instance Patching, which enables
you to patch running instances of a composite and recover faulted instances after
patching the runtime. You can only include those fixes in the patch that are compatible
with Composite Instance Patching. Use the SOA Patch Developer role in Oracle
JDeveloper to make the fixes and create the patch.

Composite Instance Patching enables you to deliver urgent composite fixes that can be
picked up by long running instances. You can make compatible/allowed changes
without aborting in-flight instances. If a patched running instance comes across a
business process that has been fixed by the patch, say a BPEL transformation, then it
picks up the fixes applied to the business process.

Note: This SOA Suite feature is part of Oracle Integration Continuous
Availability. Please refer to the Oracle Fusion Middleware Licensing Information
for more details on Oracle SOA Suite for Middleware Options.

When designing the patch, the SOA Patch Developer mode in JDeveloper
automatically disables changes that cannot be made to the patch. Some of the
compatible changes that you can make include:

• Non-schema related XSLT changes, changes to fault policy, sensor data, and
analytics data.

• Compatible BPEL changes such as transformation activity, assign operations, etc.

• JCA Adapter configuration properties.

Patching Running Instances of a SOA Composite

Deploying SOA Composite Applications 47-79

You do not specify any composite version during deployment. The composite revision
that you create the patch for, in Oracle JDeveloper, is the composite revision to which
the patch is deployed.

You can validate the patch before deploying.

Use the following steps to create and deploy the patch to runtime.

1. Use the SOA Patch Developer role in Oracle JDeveloper to make changes to your
composite and create the patch.

See Using the SOA Patch Developer Mode in JDeveloper for details.

2. Validate and deploy the patch using the WLST command-line utility.

See Verifying and Deploying the Patch Using WLST for details.

If the patch contains fixes to your composite, you can recover faulted instances in
Enterprise Manager Fusion Middleware Control after deploying the patch.

47.15.1 Using the SOA Patch Developer Mode in JDeveloper
Use the SOA Patch Developer mode in Oracle JDeveloper to create a patch, containing
fixes, for your deployed composite. The patch created in this mode can be applied to
the currently deployed composite without changing the version number of the
deployed composite. You can apply the patch to runtime even if the composite has
running instances.

To use the SOA Patch Developer mode in JDeveloper:

• If you already have your project open in JDeveloper, you need to switch to the
SOA Patch Developer mode. Select Tools > Switch Roles > SOA Patch Developer
from the Oracle JDeveloper menu bar.

The Confirm Restart dialog appears.

Patching Running Instances of a SOA Composite

47-80 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The dialog reminds you of the fact that you can make only limited edits in the
SOA Patch Developer mode. Click OK to restart JDeveloper.

• If you do not have Oracle JDeveloper open, start JDeveloper and select the SOA
Patch Developer role in the Select Role dialog.

After JDeveloper starts in the SOA Patch Developer mode, you’d notice that the
composite editor has the SOA Patch mode label. This reminds you that you can only
make edits that are compatible with the patch mode.

Patching Running Instances of a SOA Composite

Deploying SOA Composite Applications 47-81

Also, when you are editing a BPEL component, for example, the BPEL editor has the
Patch mode label.

Only certain activities in the BPEL process are available for editing, the rest of them
appear in gray. Also, notice that the Components window shows only those
components that are available for use in the SOA Patch Developer mode. A number of
properties appear in read-only mode.

47.15.1.1 Generating the Patch XML File
When you make changes to your composite in the SOA Patch Developer mode of
Oracle JDeveloper, and save the changes, a patch.xml file is automatically
generated. The patch.xml file indicates the changes that you have made to the
composite.

Patching Running Instances of a SOA Composite

47-82 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The following steps discuss creating and viewing the patch.xml file in JDeveloper

Make sure that you are in the SOA Patch Developer mode and your SOA composite is
open for editing.

1. Affect the changes, or fixes, required to the composite.

Only limited changes are allowed in the SOA Patch Developer mode. These are
changes that can be deployed to the runtime without affecting running instances.

For example, you might want to make fixes to an XSLT map associated with a
BPEL transformation activity.

2. Save all your files in JDeveloper.

You can click on the Save All button in the JDeveloper main toolbar, for example.

A patch.xml file is automatically created under project_directory/SOA/
SCA-INF directory. The patch.xml file gets updated every time you make and
save changes to your composite in the SOA Patch Developer mode.

3. Optionally view the patch.xml file.

You can select Application > Overview from the main menu bar and select
patch.xml under XML Files. Click Edit to open the patch.xml file.

The following image shows a sample patch.xml file. You can see that an XSL
transformation and a BPEL process have been patched.

Note:

The patch also includes any sensor information. This ensures that any Design-
Time at Runtime (DT@RT) related changes are retained.

47.15.1.2 Creating a Sparse Deployment Profile
After creating a patch in the SOA Patch Developer mode, create a sparse deployment
profile for deploying the changes to runtime. This creates a patch jar file in the
deploy directory that you can deploy to runtime.

Use the following steps to create a sparse deployment profile using JDeveloper.

1. Right-click the project name in the Applications window, and select Deploy >
Your_Project_Name.

You can also choose to create a new deployment profile.

Patching Running Instances of a SOA Composite

Deploying SOA Composite Applications 47-83

The Deploy Project_Name wizard appears.

2. Complete the wizard steps, as you would do to deploy a project.

Notice that the Deploy Configuration screen does not allow you to create a new
version, or overwrite an existing version. This is because the patch would be
deployed to runtime without creating another version, and without affecting
running instances.

The Summary screen shows you the name and path of the
sca_projectname_patch.jar file that is created in the deploy directory.

3. Click Finish to create the patch jar file.

The project_name/deploy directory should now contain the patch jar in
addition to the original project jar.

You can open the patch jar to view the components included in it. The patch jar
contains only those components that you modified in the SOA Patch Developer
mode.

47.15.2 Verifying and Deploying the Patch Using WLST
You can validate and deploy the patch jar file using the WLST command-line tool. Use
the sca_validatePatch and sca_patchComposite commands to validate and
deploy the path file respectively.

Use the following steps to verify and deploy the packaged jar (composite SAR) to
runtime.

1. Use the sca_validatePatch command to validate your patch jar file.

You can use help(‘sca_validatePatch’) to get detailed information on the
sca_validatePatch command syntax and arguments.

Patching Running Instances of a SOA Composite

47-84 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For example:

sca_validatePatch('http://my_soa_server:8001', 'weblogic', 'welcome', '/home/
sca_HelloWorld_patch.jar')

The preceding command validates if the sca_HelloWorld_patch.jar patch file
can be successfully deployed to the my_soa_server SOA server runtime.

The following message indicates that the patch was successfully validated:

Composite patch has been validated successfully.

2. Use the sca_patchComposite command to deploy your patch jar file to runtime.

You can use help(‘sca_patchComposite’) to get detailed information on the
sca_patchComposite command syntax and arguments.

For example:

sca_patchComposite('http://my_soa_server:8001', 'weblogic', 'welcome', '/home/
sca_HelloWorld_patch.jar')

The preceding command uses the sca_HelloWorld_patch.jar patch file to
patch the HelloWorld composite on the my_soa_server runtime.

The following message indicates that the patch was successfully applied:

Composite has been patched successfully.

You have successfully patched the composite on runtime. If you had any previously
faulted flow instances in Enterprise Manager Fusion Middleware Control that can be
recovered after applying this patch, you may attempt to recover them now.

47.15.3 Deleting the Patch File
If you try to open a SOA project in JDeveloper using a role other than SOA Patch
Developer, and if the composite has a previously existing patch file, you get a warning
stating that you should delete the patch.xml file before you can edit the project.

If you have already applied the patch, you can safely choose the option to delete the
patch.xml file.

You can now continue to edit the SOA project.

Patching Running Instances of a SOA Composite

Deploying SOA Composite Applications 47-85

Patching Running Instances of a SOA Composite

47-86 Developing SOA Applications with Oracle SOA Suite

48
Using the Oracle SOA Suite Development

Maven Plug-In

This chapter describes how to use the Oracle SOA Suite development Maven plug-in
to build and manage SOA composite application projects. The Oracle SOA Suite
development Maven plug-in enables you to compile, package, deploy, test, and
undeploy a SOA composite application in a Maven environment.

This chapter includes the following sections:

• Introduction to the Maven Plug-in

• Installing the Maven Plug-in

• Using the Maven Archetype

For more information about using Maven with Oracle Fusion Middleware, see
Developing Applications Using Continuous Integration and Section "Using the WebLogic
Development Maven Plug-In" of Developing Applications for Oracle WebLogic Server.

For detailed information on using Maven to build applications and projects, see
http://maven.apache.org/users/index.html.

48.1 Introduction to the Oracle SOA Suite Maven Plug-in
Maven is a build automation tool that enables you to create and manage runtime
projects. Using the Oracle SOA Suite Maven plug-in, you can build and manage a SOA
composite application. Maven relies on an artifact repository for all of its
dependencies. All the installed Oracle libraries are propagated into the Maven
repository. This enables Maven to recognize them as artifacts and address them in the
Project Object Model (POM) file.

48.1.1 POM Files and Archetypes
Maven projects are configured using a POM file. The POM file describes dependencies
such as the SOA Infrastructure tools that are required to build the composites.

An archetype is a template for creating a project. Archetypes are provided to create a
new SOA application containing a single SOA project, or to add an additional SOA
project to an existing SOA application. These archetypes provide for the ability to
compile, package, deploy, test, and undeploy a SOA composite application.

The following shows a sample Maven POM file for Oracle SOA Suite:

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>

Using the Oracle SOA Suite Development Maven Plug-In 48-1

http://maven.apache.org/users/index.html

 <groupId>com.test</groupId>
 <artifactId>MyComposite</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>sar</packaging>

 <!--
 This POM was generated from the SOA Maven Archetype.
 Comments in this POM guide you how to use it with your project.
 This POM relates to this SOA Composite, i.e. the one in this same
 directory. There is another POM in the SOA Application directory (up
 one) which handles the whold SOA Application, which may contain
 additional projects.

 The parent points to the common SOA parent POM. That is a special POM
 that is shipped by Oracle as a point of customization (only). You can
 add default values for properties like serverUrl, etc. to the SOA
 common parent POM, so that you do not have to specify them over and
 over in every project POM.
 -->
 <parent>
 <groupId>com.oracle.soa</groupId>
 <artifactId>soa-project-common</artifactId>
 <version>12.1.3-0-0</version>
 </parent>

 <properties>
 <!-- these parameters are used by the compile goal -->
 <scac.input.dir>${project.basedir}/SOA/</scac.input.dir>
 <scac.output.dir>${project.basedir}/target</scac.output.dir>
 <scac.input>${scac.input.dir}/composite.xml</scac.input>
 <scac.output>${scac.output.dir}/out.xml</scac.output>
 <scac.error>${scac.output.dir}/error.txt</scac.error>
 <scac.displayLevel>1</scac.displayLevel>
 <!-- if you are using a config plan, uncomment the following line and
 update to point to your config plan -->
 <!--<configplan>${scac.input.dir}/configplan.xml</configplan>-->

 <!-- these parameters are used by the deploy and undeploy goals -->
 <composite.name>${project.artifactId}</composite.name>
 <composite.revision>${project.version}</composite.revision>
 <composite.partition>default</composite.partition>
 <serverUrl>serverUrl</serverUrl>
 <user>user</user>
 <password>password</password>
 <overwrite>true</overwrite>
 <forceDefault>true</forceDefault>
 <regenerateRulebase>false</regenerateRulebase>
 <keepInstancesOnRedeploy>false</keepInstancesOnRedeploy>

 <!-- these parameters are used by the test goal -->
 <!-- if you are using the sca-test (test) goal, you need to uncomment the
 following line and point it to your jndi.properties file. -->
 <jndi.properties.input>${basedir}/jndi.properties</jndi.properties.input>
 <scatest.result>${scac.output.dir}/testResult</scatest.result>
 <!-- input is the name of the composite to run test suties against -->
 <input>MyComposite</input>
 </properties>

 <!--
 These refer to the properties defined above. You should probably not
 need to make any changes beflow this point - these just point to the

Introduction to the Oracle SOA Suite Maven Plug-in

48-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 properties above.
 -->
 <build>
 <plugins>
 <plugin>
 <groupId>com.oracle.soa.plugin</groupId>
 <artifactId>oracle-soa-plugin</artifactId>
 <version>12.1.3-0-0</version>
 <configuration>
 <compositeName>MyComposite</compositeName>
 <composite>${scac.input}</composite>
 <sarLocation>${scac.output.dir}/sca_${project.artifactId}_
 rev${composite.revision}.jar</sarLocation>
 <serverUrl>${serverUrl}</serverUrl>
 <!-- note: compositeRevision is needed to package, revision is
 needed to undeploy -->
 <compositeRevision>${composite.revision}</compositeRevision>
 <revision>${composite.revision}</revision>
 <scacInputDir>${scac.input.dir}</scacInputDir>
 <!-- note: if this composite contains a component that depends
 on MDS to build, e.g. a Human Task or Business Rule, then
 you will need to uncomment the next line, and edit it to
 point to your application directory (which contains
 .adf/adf-config.xml file with MDS configuration in it -->
 <!--<appHome>${project.basedir}/..</appHome>-->
 <!-- If you have a composite which contains a component that
 depends on MDS (eg. Human Task, Business Rule) AND you
 want to use a file-based MDS repository, then you
 need to do either:
 1. update the .adf/META-INF/adf-config.xml to point to
 the correct location of the file based repository,
 i.e. remove the reference to ${oracle.home} in that
 file, or
 2. define oracleHome here and leave the adf-config.xml
 file as is. Note that the correct value is the path
 to your SOA Quickstart or JDeveloper install
 directory, with "/soa" appended to it.
 -->
 <!--<oracleHome>JDEV_HOME/soa</oracleHome>-->
 <user>${user}</user>
 <password>${password}</password>
 <input>${input}</input>
 </configuration>
 <!-- extensions=true is needed to use the custom sar packaging
 type -->
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

Introduction to the Oracle SOA Suite Maven Plug-in

Using the Oracle SOA Suite Development Maven Plug-In 48-3

Note:

If you are using a component in your composite that depends on MDS, such
as Human Tasks or Business rules, you must uncomment the <appHome>$
{project.basedir}/..</appHome> line and edit it to point to your
application directory.

If you are using a component that depends on MDS and you want to use a
file-based MDS, such as the one referenced in the default adf-config.xml
file, you must also uncomment the <oracleHome>JDEV_HOME/soa</
oracleHome> line and edit it to point to your SOA Quickstart or JDeveloper
install directory, with /soa appended to it.

The following shows the archetype coordinates in the POM file for creating an Oracle
SOA Suite Application:

<groupId>com.oracle.soa.archetype</groupId>
<artifactId>oracle-soa-application</artifactId>
<version>12.1.3-0-0</version>

48.1.2 Maven Plug-in Goals
Goals are associated with different phases of the composite life cycle.

When you invoke a goal associated with a life cycle phase, Maven executes all goals
mapped to all phases up to and including the goal you name. For example, if you
execute the test goal, the compile, package, and deploy goals are executed before the
test goal. The description of each goal in this section lists the actions performed when
each goal is invoked.

To support the life cycle of building and deploying a SOA composite application, the
following executable plug-in goals are provided.

• compile (scac)

• package (sar)

• deploy

• test (sca-test)

• undeploy

Before executing a goal, ensure that you have provided all of the necessary parameters
for that goal in the POM file. See POM Files and Archetypes for a sample POM file.

Note:

If you have changed the name of the project, composite, or project directory,
ensure that you update the POM file with the new names before executing any
of these goals.

The following example shows the groupId, artifactId, and version coordinates
for Oracle SOA Suite plug-ins in the POM file.

Introduction to the Oracle SOA Suite Maven Plug-in

48-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<groupId>com.oracle.soa.plugin</groupId>
<artifactId>oracle-soa-plugin</artifactId>
<version>12.1.3-0-0</version>

48.1.2.1 compile

The compile goal compiles a SOA composite application. Oracle SOA Suite provides a
native Maven implementation for this goal. The following command compiles the
SOA composite application:

mvn compile

48.1.2.2 package

The package goal packages the artifacts of a SOA composite application into a SOA
archive (SAR) file. The following command compiles and packages the SOA
composite application:

mvn package

48.1.2.3 deploy

The deploy goal deploys the SOA composite application. Oracle SOA Suite provides a
native Maven implementation for this goal. The following command compiles the
SOA composite application, packages the composite into a SAR file, and deploys the
SAR file to the server.

mvn pre-integration-test

48.1.2.4 test

The test goal performs a test of a SOA composite application. Oracle SOA Suite
provides a native Maven implementation for this goal.

You must first create tests in Oracle JDeveloper before running the test goal. For more
information about creating tests using JDeveloper, see Automating Testing of SOA
Composite Applications.

You must also include a jndi.properites file before running the test goal. Edit the
following line in the POM file to point to a jndi.properties file:
<jndi.properties.input>${basedir}/jndi.properties</jndi.properties.input>

The following shows a sample jndi.properties file:

 java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
 java.naming.provider.url=t3://servername:7103/soa-infra
 java.naming.security.principal=weblogic
 java.naming.security.credentials=welcome1
 dedicated.connection=true
 dedicated.rmicontext=true

The following command compiles the composite, packages the composite into a SAR
file, deploys the SAR file to the server, and tests the composite.

mvn verify

48.1.2.5 undeploy

The undeploy goal undeploys the SOA composite application. Oracle SOA Suite
provides a native Maven implementation for this goal. The following command
undeploys the composite.

Introduction to the Oracle SOA Suite Maven Plug-in

Using the Oracle SOA Suite Development Maven Plug-In 48-5

Note:

The undeploy goal is not mapped to a life cycle phase. You must explicitly
invoke it by name.

mvn com.oracle.soa.plugin:oracle-soa-plugin:undeploy

48.1.3 Using Maven Online Help
Maven online help provides you with a list of goals and their associated commands.
For example, enter the following command to obtain online help for the Maven test
goal:

mvn help:describe -Ddetail=true -Dplugin=com.oracle.soa.plugin:oracle-soa-plugin:
12.1.3-0-0 -Dgoal=test

This command displays the following help details:

oracle-soa:test
Description: Description: To execute SCA Test Suites.
Implementation: com.oracle.soa.plugin.SoaTest
Language: java
Bound to phase: verify
Goal Prefix: oracle-soa

Available parameters:

 format (Default: native)
 User property: format
 The format of the output - 'native' or 'junit'.

 input
 Required: true
 User property: input
 The name of the composite to execute tests against.

 jndiPropertiesInput
 Required: true
 User property: jndi.properties.input
 Path to JNDI properties file required for SCA Test execution.
 This file should contain contents similar to the following:
 java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
 java.naming.provider.url=t3://servername:7103/soa-infra
 java.naming.security.principal=weblogic
 java.naming.security.credentials=welcome1
 dedicated.connection=true
 dedicated.rmicontext=true

 partition (Default: default)
 User property: partition
 Which SOA partition the composite is deployed in.

 result (Default: ${java.io.tmpdir}/out)
 User property: result
 Where to place the results.

 timeout (Default: 300)
 User property: timeout
 How long to wait for tests to complete before timing out.

Introduction to the Oracle SOA Suite Maven Plug-in

48-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

48.2 Installing the Oracle SOA Suite Maven Plug-in
A distribution of Maven 3.0.5 is included with Oracle Fusion Middleware in the
following location:

Middleware_Home/Oracle_Home/oracle_common/modules/org.apache.maven_3.0.5

For information about installing Maven for Oracle Fusion Middleware, see "Installing
and Configuring Maven for Build Automation and Dependency Management" in
Developing Applications Using Continuous Integration. Be sure to follow the setup
instructions in Section 5.1, "Setting Up the Maven Distribution" and Section 5.2,
"Customizing Maven Settings."

48.2.1 How to Configure the Oracle SOA Suite Maven Plug-In
Before you can use the Oracle SOA Suite Maven plug-in you must populate the Maven
repository with Oracle artifacts. For more information about populating the
repository, see "Populating the Maven Repository Manager" in Developing Applications
Using Continuous Integration for more information. The steps below link to specific
sections of this guide.

To configure the Oracle SOA Suite development Maven plug-in:

1. Navigate to ORACLE_HOME/oracle_common/plugins/maven/com/oracle/
maven/oracle-maven-sync/12.1.3.

2. Run the following command to install the Maven sync plug-in:

mvn install:install-file -DpomFile=oracle-maven-sync-12.1.3.pom -Dfile=oracle-
maven-sync-12.1.3.jar

For more options, see "Installing Oracle Maven Synchronization Plug-In."

3. Run the following command to seed the Oracle SOA Suite development Maven
plug-in into the Maven repository:

mvn com.oracle.maven:oracle-maven-sync:push -DoracleHome=ORACLE_HOME

Where ORACLE_HOME is the full path to your Oracle Fusion Middleware
installation. For more options, see "Running the Oracle Maven Synchronization
Plug-In."

4. Validate whether you have successfully installed the plug-in using the Maven
help:describe goal.

mvn help:describe -DgroupId=com.oracle.soa.plugin
-DartifactId=oracle-soa-plugin -Dversion=12.1.3-0-0

The following is an excerpt of the information that confirms installation of the
Oracle SOA Suite plug-in:

Name: Oracle SOA Maven Plugin
Description: This plugin allows users to compile, package, deploy, test and
undeploy SOA composites.
Group Id: com.oracle.soa.plugin
Artifact Id: oracle-soa-plugin
Version: 12.1.3-0-0
Goal Prefix: oracle-soa

Installing the Oracle SOA Suite Maven Plug-in

Using the Oracle SOA Suite Development Maven Plug-In 48-7

This plugin has 6 goals:
oracle-soa:compile

48.3 Using the Oracle SOA Suite Maven Archetype
Use the Oracle SOA Suite archetype to generate a POM file for a SOA application. Run
the following command from the parent directory into which you want to add a SOA
application. The SOA application is created in a subdirectory named from the value of
the artifactId property.

Note:

SOA Applications created using the Oracle SOA Suite Maven archetype are
the same as those created in Oracle JDeveloper using the Create SOA
Application wizard.

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.soa.archetype
 -DarchetypeArtifactId=oracle-soa-application
 -DarchetypeVersion=12.1.3-0-0
 -DarchetypeRepository=local
 -DgroupId=org.my.test
 -DartifactId=test-soa-application
 -DprojectName=test-soa-project
 -Dversion=1.0-SNAPSHOT

Where:

Property Description

archetypeGroupId Enter the group ID of the archetype to use
(com.oracle.soa.archetype).

archetypeArtifactId Enter the artifact ID of the archetype to use (oracle-soa-
application).

archetypeVersion Enter the archetype version (12.1.3-0-0).

archetypeRepository Enter the Maven repository to use. (Optional)

groupId Enter the group ID of the project to build (for this example,
org.my.test).

artifactId Enter the artifact ID of the project to build. This becomes the
name of the subdirectory (for this example, test-soa-
project) in the current directory. The SOA application
and the first SOA project are created in this subdirectory.

projectName Enter the name for the SOA Project to be created inside the
SOA application This is also the name of the composite.

package Enter the name for the SOA Project to be created inside the
SOA application. (Optional)

Using the Oracle SOA Suite Maven Archetype

48-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Property Description

version Enter the version of the project to build (for this example,
1.0-SNAPSHOT)

Using the Oracle SOA Suite Maven Archetype

Using the Oracle SOA Suite Development Maven Plug-In 48-9

Using the Oracle SOA Suite Maven Archetype

48-10 Developing SOA Applications with Oracle SOA Suite

49
Debugging and Auditing SOA Composite

Applications

This chapter describes how to debug SOA composite applications with the SOA
debugger in Oracle JDeveloper, test HTTP requests and response messages in the
HTTP Analyzer, and configure auditing for BPEL process activities in a SOA
composite application.

This chapter includes the following sections:

• Introduction to the SOA Debugger

• Debugging a SOA Composite Application

• Testing SOA Composite Applications with the HTTP Analyzer

• Auditing SOA Composite Applications at the BPEL Activity Level

49.1 Introduction to the SOA Debugger
You can test and debug SOA composite applications with the SOA debugger in Oracle
JDeveloper. The SOA debugger reduces the development cycle for a SOA composite
application by providing a troubleshooting environment within Oracle JDeveloper.
This eliminates the lengthy process of building a SOA composite application in Oracle
JDeveloper, deploying it to the SOA Infrastructure, starting Oracle Enterprise Manager
Fusion Middleware Control to test or view audit trails and flow traces, and then
returning to Oracle JDeveloper to repeat the exercise. Instead, you can set breakpoints
in Oracle JDeveloper for troubleshooting on the following components:

• Binding components and service components in SOA composite applications

• Synchronous and asynchronous BPEL processes

• Oracle BPM processes

• Oracle Service Bus pipelines (See Section "Debugging Oracle Service Bus
Applications" of Developing Services with Oracle Service Bus)

Note the following guidelines when using the SOA debugger:

• The SOA composite application name and the Oracle JDeveloper project name
must be the same.

• Any SOA composite application encountered during a debugging session must
reside in the currently active workspace in Oracle JDeveloper.

• Debugging is limited to design view in Oracle JDeveloper. You cannot run the
SOA debugger in Oracle Enterprise Manager Fusion Middleware Control.

Debugging and Auditing SOA Composite Applications 49-1

• Debugging is a localized user experience. If you want to switch to other tasks (for
example, search for instances or initiate new instances of the same composite from
Oracle Enterprise Manager Fusion Middleware Control), close the debugging
session.

• You cannot set breakpoints on REST services.

• The breakpoints that you create for debugging in a SOA composite application in
one installation of Oracle JDeveloper are not available to other Oracle JDeveloper
installations. You must create the breakpoints again for debugging.

• During a debugging session in which you are using the embedded Integrated
WebLogic Server, you cannot use the version of Oracle Enterprise Manager
Fusion Middleware Control included with the embedded server to generate new
instances or query instances. For information about the Integrated WebLogic
Server, see Installing SOA Suite and Business Process Management Suite Quick Start
for Developers.

• You cannot debug cross-language features, such as a Java exec activity, XSLT and
XQuery transformations, and so on.

• You can debug SOA composite applications on servers on which Oracle SOA
Suite is installed. For example, if Oracle SOA Suite runs on managed servers,
clients must connect using the managed server host and port.

• Only one client at a time can connect to the SOA debugger.

• You cannot debug multiple instances of the same SOA composite application at a
given time even though Oracle JDeveloper does not restrict you from this action.
This is not the correct approach. The SOA debugger is a development tool. It is
your responsibility to ensure that only a single instance is debugged at any given
time.

• Adapter endpoint errors are not displayed in the SOA debugger in Oracle
JDeveloper. Those errors are logged in the log file.

• You can only debug if the server is in development mode. Debugging in
production mode is not supported.

• Oracle B2B and Oracle SOA for Healthcare service and reference binding
components cannot be debugged with the SOA debugger even though you can set
debugging points on both components.

• SOA composite application-to-SOA composite application debugging is not
supported.

49.2 Debugging a SOA Composite Application
This section describes how to create breakpoints and debug SOA composite
applications in Oracle JDeveloper.

Note:

Do not attempt to debug SOA composite applications with very large
payloads. Attempting to do so results in the SOA debugger breakpoints
hanging in the outbound direction.

Debugging a SOA Composite Application

49-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

49.2.1 How to Start the SOA Debugger

To start the SOA debugger:

1. Start the Integrated WebLogic Server. For information about starting the
Integrated WebLogic Server with the Start Server Instance option, see Section
"Installing Oracle SOA Suite Quick Start for Developers" of Installing SOA Suite
and Business Process Management Suite Quick Start for Developers.

2. Start the SOA debugger in either of the following ways. This is limited to single
composite debugging.

a. Click the debugger icon above the SOA Composite Editor, as shown in
Figure 49-1.

Figure 49-1 Debugger Icon in SOA Composite Editor

b. Right-click the SOA composite application in the Applications window, and
select Debug. Figure 49-2 provides details.

Figure 49-2 Debug Menu Option for a SOA Composite Application in the
Applications Window

The SOA Debugger Connection Settings dialog is displayed, as shown in
Figure 49-3. This dialog enables you to define the SOA debugging server to use.

Debugging a SOA Composite Application

Debugging and Auditing SOA Composite Applications 49-3

Figure 49-3 SOA Debugger Connection Settings Dialog

3. Enter values appropriate to your environment, and click OK. Table 49-1 provides
details.

Table 49-1 SOA Debugger Connection Setting Dialog

Field Description

Host Select the debugging server to which to connect. By default, the name
of the local host is displayed. This is the embedded Integrated
WebLogic Server in Oracle JDeveloper. You can also enter a remote
server. When a project is imported from a different host, the host that
was used there is displayed here.

Port Enter the port on which the debugging agent listens. The default value
is 5004. Debugging is automatically enabled in development
environments when you install the Oracle SOA Suite Developer Quick
Install. The debugger cannot be enabled in production mode or when
the server is part of a cluster. For development environments, the
debugger can be overridden by adding the following property settings
in the setDomainEnv.sh file.

export SOA_DEBUG_FLAG="true"
export SOA_DEBUG_PORT="5004"

Timeout Specify in minutes how long the client should wait while attempting to
establish a debugging session before stopping. The default value is 5
minutes. For synchronous processes, you can increase the default
value:

• Increase the SyncMaxWaitTime property in Oracle Enterprise
Manager Fusion Middleware Control. For more information, see
How To Specify Transaction Timeout Values.

• Increase the Idle Timeout and Transaction Timeout values for the
Enterprise JavaBeans property BPELDeliveryBean in Oracle
WebLogic Server Administration Console. For information about
accessing these properties, see the "Long Running, Synchronous
Calls To Remote Web Services Error Out or Asynchronous
Transactions Return with an Error after a Long Time" section of
Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

• Increase the Java Transaction API (JTA) timeout value located
under the JTA link on the Oracle WebLogic Server Administration
Console home page.

Debugging a SOA Composite Application

49-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 49-1 (Cont.) SOA Debugger Connection Setting Dialog

Field Description

Skip this
dialog next
time

Select to skip this dialog the next time you begin a debugger session.
The settings you previously defined are used.

You can display this dialog again by right-clicking the project in the
Applications window. Select Project Properties > Run/Debug > Edit >
Tool Settings > Debugger > Remote, and select the Show Dialog Box
Before Connecting Debugger check box.

Note:

You can also edit these properties by right-clicking the project in the
Applications window, and selecting Project Properties > Run/Debug > Edit >
Tool Settings > Debugger > Remote.

A check is made to determine if the SOA composite application selected for
debugging is deployed. Table 49-2 provides details.

Table 49-2 Check to Determine if the SOA Composite Application is Deployed

If the SOA Composite Application
Is...

Then...

Deployed The following message is displayed on the right
handle of the service binding component:

Use context menu to initiate WS debugging

See Figure 49-5 for an example of this message.

You are ready to begin debugging. Go to How to
Set Breakpoints and Initiate Debugging.

Debugging a SOA Composite Application

Debugging and Auditing SOA Composite Applications 49-5

Table 49-2 (Cont.) Check to Determine if the SOA Composite Application is
Deployed

If the SOA Composite Application
Is...

Then...

• Not deployed
• Deployed, but there has been a

design change in the composite
since it was deployed.

Note: Composites deployed a
second time with the Overwrite
any existing composites with
the same revision ID check box
selected do not require an
additional redeployment.

• Deployed, but you removed the
Oracle JDeveloper system
folder. The system folder is
identified by selecting Help >
About > Properties, and
searching for ide.system.dir.

• Deployed in one Oracle
JDeveloper, but the ZIP file of
the SOA composite application
was opened in a different
installation of Oracle
JDeveloper.

The Deployment Action page of the Deploy
Project_Name wizard is displayed, and you must
deploy the composite.

a. Select Deploy to Application Server.

b. Follow the pages of the wizard to deploy the
SOA composite application to an application
server.

For information about deploying SOA
composite applications, see Deploying the
Profile.

c. When deployment is complete, go to How to
Set Breakpoints and Initiate Debugging.

You are ready to begin a debugging session when the following message is
displayed in the Log window:

Debugger attempting to connect to remote process at host_name 5004
Debugger connected to remote process at host_name 5004
Debugger process virtual machine is SOA Debugger.

49.2.2 How to Set Breakpoints and Initiate Debugging
Breakpoints are the intentional pausing locations in a SOA composite application that
you set for debugging purposes. You can set breakpoints on the following
components:

• Service binding components

• Inbound and outbound parts of BPEL process activities and BPM process service
components

• Reference binding components such as web services and JCA adapters

• Oracle Service Bus services (see "Debugging Oracle Service Bus Applications" of
Developing Services with Oracle Service Bus)

Components on which breakpoints are set are designated with red request (outbound)
icons, reply (inbound) icons, or request-reply (outbound-inbound) icons. Figure 49-4
provides an example of a SOA composite application in which breakpoint icons have
been set.

Debugging a SOA Composite Application

49-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 49-4 SOA Composite Application with Breakpoints Set

To set breakpoints and initiate debugging:

1. Select the component on which to set the breakpoint, as shown in Table 49-3.

Table 49-3 Components on Which to Set Breakpoints

To Set a Breakpoint on a... Go to Step...

Service binding component 2

Reference binding component 3

Service component such as a
BPEL process or BPM process

4

2. To set a breakpoint on a service binding component.

a. Right-click the right handle of the service on which the following message is
displayed.

Use context menu to initiate WS debugging

This action invokes the context menu shown in Figure 49-5.

Figure 49-5 SOA Debugger Breakpoint Menu Options

b. Select the appropriate breakpoint interaction option shown in Table 49-4.

Table 49-4 Breakpoint Interaction Options

Option Description

Create Breakpoints Pair Set for a request-reply (outbound-inbound) interaction.
This is useful for scenarios in which both the request and
reply are important.

Create Request
Breakpoint

Set for a request (outbound) interaction. This is useful for
scenarios in which only the request is important.

Debugging a SOA Composite Application

Debugging and Auditing SOA Composite Applications 49-7

Table 49-4 (Cont.) Breakpoint Interaction Options

Option Description

Create Reply
Breakpoint

Set for a reply (inbound) interaction. This is useful for
scenarios in which only the reply is important.

Initiate WS Debugging Initiate a debugging session. For example, the debugging
session encompasses an initiating SOAP request from a
web service to a BPEL process to an adapter reference
binding component.

Red icons representing your interaction choice are added.

For example, if you select Create Breakpoints Pair, request and reply
breakpoint icons are added. Figure 49-6 provides details.

Figure 49-6 Request and Reply Breakpoint Icons on a Service Binding
Component

c. Go to Step 5.

3. To set a breakpoint on a reference binding component.

a. Right-click the applicable reference binding component (for example, a web
service or a database adapter), and select one of the breakpoint options
described in Table 49-4.

For example, if you select Create Breakpoints Pair for several references,
request and reply breakpoint icons are added. Figure 49-7 provides details.

Figure 49-7 Breakpoints Set on Reference Binding Components

b. Go to Step 5.

Debugging a SOA Composite Application

49-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

4. To set a breakpoint on a service component (for this example, a BPEL process is
selected).

a. Select Edit, as shown in Figure 49-8.

Figure 49-8 Request and Reply Breakpoint Icons on a BPEL Process

This opens the BPEL process in Oracle BPEL Designer.

b. Right-click the BPEL activity on which to set a breakpoint, and select Toggle
Breakpoint. Figure 49-9 provides details.

Figure 49-9 Breakpoint Setting for a BPEL Process

An icon is added to the activity. These breakpoint icons are only red dots
because the flow is always in one direction. It is recommended that you
always set a breakpoint on the first activity within an asynchronous BPEL
process.

c. To disable the breakpoint, right-click and select Toggle Breakpoint again.
The red dot is removed. To display a list of all breakpoints set in the BPEL
process, right-click the activity and select Breakpoints. You can also enable
and disable breakpoints from this dialog.

d. Go to Step 5.

5. To begin debugging of the SOA composite application, right-click the right handle
of the service binding component shown in Figure 49-5, and select Initiate WS
Debugging from the menu.

This invokes the HTTP Analyzer.

6. Enter the request message data to send, and click Send Request or click HTTP
Content to copy and paste the contents from an XML file. You can either enter
data field-by-field or copy and paste an XML document. Figure 49-10 provides
details.

Debugging a SOA Composite Application

Debugging and Auditing SOA Composite Applications 49-9

Figure 49-10 SOA Debugger Message Data

The debugger stops at the first breakpoint you set (for this example, on the service
binding component).

7. In the Log window at the bottom of Oracle JDeveloper, click Data.

8. Expand the message contents. Figure 49-11 provides details. You can double-click
a value to change it. For non-XML variables, right-click and choose View value
(for example, the return message from a database adapter).

Figure 49-11 Message Contents After Debugger Invocation

49.2.3 How to Step Through a Debugging Session
When you create a breakpoint, a corresponding frame is created in the Structure
window, as shown in Figure 49-12. This frame was created for the request-reply entry
point on the service binding component.

Debugging a SOA Composite Application

49-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

A frame is a location. A stack of frames is a bread crumb trail of the locations that lead
you to your current location. This is equivalent to a stack trace. It shows you where
you are and how you got there. Frames are created independent of breakpoints. When
you stop at a breakpoint, all frames that have been created in the Structure window
are displayed. A stack frame also contains the data that existed at that point of time.
Clicking a different stack frame in the Structure pane also updates the Data tab.

For example, if you have a web service connected to a BPEL process connected to a
reference, if you set a breakpoint on the reference, you see a stack that generally looks
as follows:

• Reference

• BPEL invoke

• BPEL scope

• Web service

If you click the web service frame, the SOAP payload in the Data tab is displayed. If
you then click the BPEL invoke frame, the various BPEL variables and other details are
displayed in the Data tab.

You can step over the frame and begin debugging at a different location, such as a
different breakpoint (for this example, the LoanProcess BPEL process). As you proceed
with debugging, the following frames are created. Frames are where variables are
located.

• Scope frame: Contains scope variables.

• Process frame: Contains global variables.

Variables are visible to a process from the top frame through the bottom frame.
Frames are displayed in the Structure window.

Figure 49-12 Frames in Structure Window

Debugging a SOA Composite Application

Debugging and Auditing SOA Composite Applications 49-11

To step through a debugging session:

1. Go to the tool bar in Oracle JDeveloper. The step options are shown in Figure 49-13.

Figure 49-13 Step Options in Oracle JDeveloper

Table 49-5 describes each option.

Table 49-5 Step Options in Oracle JDeveloper Main Menu

Icon Description

Ends or detaches from a debugging session.

Steps over a frame.

This places you at the next breakpoint (for example, the receive activity in
the BPEL process on which a breakpoint was set in Figure 49-9). If there are
no breakpoints, it steps over all the frames and goes back to the first frame.

You can also press F8 to step over a frame.

Steps into the next valid location.

This can be a new frame or the same frame, but in a different location.

You can also press F7 to step into a frame.

Steps out of a frame.

This option is only used to process a BPEL scope or sequence activity. After
completion of scope processing, it pauses at the next scope or activity in the
process. You can also press Shift-F7.

Resumes a step operation.

You can also press F9 to resume.

2. If you selected the Step Over option, it stops at the receive activity.

3. In the Log window, click Data and expand the contents to view the variables
defined in the BPEL process, as shown in Figure 49-14. You can edit BPEL process
variables during debugging. The payload is empty for the example shown in
Figure 49-14.

Debugging a SOA Composite Application

49-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 49-14 Empty Payload

This is because the breakpoint on the receive activity has not been executed, as
shown in Figure 49-15.

Figure 49-15 Empty Payload Before Receive Activity Breakpoint Execution

4. Click the Step Into option, as described in Table 49-5.

This executes the receive activity shown in Figure 49-16.

Figure 49-16 Populated Payload After Receive Activity Breakpoint Execution

5. Expand the payload.

The payload is populated with the data you entered in Step 6 of How to Set
Breakpoints and Initiate Debugging. Figure 49-17 provides details.

Figure 49-17 Expanded Payload

Debugging a SOA Composite Application

Debugging and Auditing SOA Composite Applications 49-13

6. Select the Step Over option, as described in Table 49-5. This causes the debugger to
pause at the next breakpoint (for this example, a web service reference binding
component, as shown in Figure 49-7).

The contents of the request message to the web service call are shown in
Figure 49-18.

Figure 49-18 Request Message Payload Contents

7. Select the Step Over option.

8. Expand the payload to view the message reply. Figure 49-19 provides details.

Figure 49-19 Request Message Payload Contents

9. Proceed with debugging.

If you step through the copy rules of an assign activity, the SOA debugger displays
a window showing which copy rule it is on within the assign activity. The window
has a table showing all the copy rules and there is a breakpoint icon next to the
copy rule at which the debugger is stopped.

Note:

If you set a breakpoint on an adapter (for example, a database adapter), the
SOA debugger steps out of the BPEL process service component and goes to
the SOA Composite Editor.

49.2.4 How to End or Detach from a Debugging Session

To end or detach from a debugging session:

1. Click the button in the tools menu to end a debugging session. Figure 49-20
provides details.

Figure 49-20 End or Detach from a Debugging Session

The Terminate Debugger Process dialog is displayed.

Debugging a SOA Composite Application

49-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

2. Select an option. Table 49-6 provides details.

Table 49-6 Breakpoint Menu Options

Option Description

Detach Removes the debugger without ending the debugging
process.

Terminate Ends the debugging process.

3. If you selected Detach, click the debugger icon above the SOA Composite Editor
shown in Figure 49-1 to resume debugging.

4. If you selected Terminate, right-click and select Initiate WS Debugging to
reinitiate the debugger and start a new debugging session.

49.2.5 How to Remove Breakpoints
You can remove individual breakpoints or all breakpoints.

To remove breakpoints:

1. To remove an individual breakpoint, perform the following:

• Right-click an activity on which a breakpoint has been set and select Toggle
Breakpoint.

• Click the Breakpoints icon above Oracle BPEL Designer and select the activity
on which to remove a breakpoint in the Breakpoints dialog.

2. To remove all breakpoints, right-click in the SOA composite application, and select
Remove All Breakpoints.

3. Click the icon above the BPEL process in Oracle BPEL Designer, as shown in
Figure 49-21.

Figure 49-21 Breakpoints Icon in Oracle BPEL Designer

This invokes the Breakpoints dialog, as shown in Figure 49-22.

Debugging a SOA Composite Application

Debugging and Auditing SOA Composite Applications 49-15

Figure 49-22 Breakpoints Dialog

4. In the Enable check boxes, select BPEL process breakpoints to disable.

49.2.6 How to View Adapter Properties
You can view adapter properties under the Data tab in the Log window.

To view adapter properties:

1. Click the Step Over icon until you stop at a breakpoint on a reference binding
component such as a database adapter. Figure 49-23 provides details.

Figure 49-23 JCA Adapter Properties

The process is stopped to check on the existence of the customer. Adapter endpoint
properties are displayed. Figure 49-24 provides details. The SQL syntax to be
executed is also displayed.

Figure 49-24 Adapter Output

2. Right-click a property and select View Whole Value to view the data being passed
to the customer (for this example, nativePayload is selected). Figure 49-25 shows

Debugging a SOA Composite Application

49-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

the customer ID being passed. View Whole Value is also useful for non-XML BPEL
variables.

Figure 49-25 Request Message Contents Being Passed

3. Click the Step Over icon to execute the database adapter.

4. Right-click a property and select View Whole Value to view the customer reply
message data. For this example, the value of 1 indicates that the customer exists.
Figure 49-26 provides details.

Figure 49-26 Reply Message Contents Being Returned

5. To change a value, right-click a property and select Modify Value.

49.2.7 How to View Threads
A process instance is always run by a single logical thread, whether it is a synchronous
or asynchronous process (the process ID can be thought of as the thread). The SOA
debugger sees and uses the logical thread. If a process has a flow or flowN activity,
then several logical threads run the flow or flowN activity.

To view threads:

1. From the main menu, select Window > Debugger > Threads.

The Threads tab is displayed in the Structure window.

Debugging a SOA Composite Application

Debugging and Auditing SOA Composite Applications 49-17

2. Step into the service binding component of the BPEL process to begin debugging.

The thread value for the request is 40, as shown in the Structure window in
Figure 49-27.

Figure 49-27 Request Thread Value

3. Step into the receive activity of the asynchronous BPEL process.

The thread value for the reply is 41, as shown in Figure 49-28.

Figure 49-28 Reply Thread Value

49.3 Testing SOA Composite Applications with the HTTP Analyzer
You can test HTTP requests and responses in a SOA composite application with the
HTTP Analyzer in Oracle JDeveloper. The HTTP Analyzer enables you to examine the
content of HTTP request/response package pairs. You can edit the content of a request
package, resend it, and observe the response packet returned. For more information
about the HTTP Analyzer, see the "Auditing and Monitoring Java Projects" chapter of
Developing Applications with Oracle JDeveloper.

To test the SOA composite application with the HTTP Analyzer:

1. From the Window main menu, select Application Servers.

2. In the Application Servers window, expand the SOA composite application.

3. Right-click the component to test (for this example, a web service binding
component), and select Test Web Service. Figure 49-29 provides details.

Testing SOA Composite Applications with the HTTP Analyzer

49-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 49-29 Component to Test in the Application Servers Window

The HTTP Analyzer is displayed.

4. Enter the request message data to send, and click Send Request or click HTTP
Content to copy and paste the contents from an XML file. Figure 49-30 provides
details.

Figure 49-30 HTTP Analyzer

Testing SOA Composite Applications with the HTTP Analyzer

Debugging and Auditing SOA Composite Applications 49-19

If successful, output similar to that shown in Figure 49-31 is displayed in the right
pane.

Figure 49-31 Response HTTP Headers

You can also use the Test Web Service page to perform testing. For more information,
see Section "Initiating a Test Instance of a Business Flow" of Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

49.4 Auditing SOA Composite Applications at the BPEL Activity Level
Audit trail data often accounts for a large percentage of the state data persisted to the
database. To reduce the amount of persisted state data, you can specify finer-grained
levels of auditing at the BPEL process activity level. These settings take precedence
over the audit trail settings configured at the service component, SOA composite
application, BPEL process service engine, and SOA Infrastructure levels.

You perform the following procedures:

• Create and configure an audit policy XML file that defines the level of auditing to
perform on BPEL activities in the SOA composite application.

• Create and configure an audit policy binding XML file that binds the audit policy
to the BPEL process.

• Place the files in the same directory location as the composite.xml file or in a
separate directory that you identify with properties in the composite.xml file.

• Deploy the SOA composite application to the SOA Infrastructure.

Auditing SOA Composite Applications at the BPEL Activity Level

49-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• View the audit trail of the BPEL process activities in the flow trace of the SOA
composite application in Oracle Enterprise Manager Fusion Middleware Control.

Note the following guidelines:

• The audit policy supports the auditing of both standard BPEL 1.1 and 2.0 activities
and scopes and BPEL extension activities, such as emails, notifications, and all
others. Within a parent scope, you can configure specific child scopes to be
audited, and other child scopes to not be audited.

• The supported auditing levels are shown in Table 49-7.

Table 49-7 Auditing Levels

Level Description

Inherit Logging matches the SOA Infrastructure audit level that you set on the
SOA Infrastructure Common Properties page in Oracle Enterprise
Manager Fusion Middleware Control. This is the default setting.

Productio
n

Minimal information for business flow instances is collected. For example,
the BPEL process service engine does not capture the payload. Therefore,
the payload details are not available in the flow audit trails. This level is
optimal for most standard operations and testing.

Developme
nt

Complete information for BPEL process activities is collected. This option
allows both composite instance tracking and payload tracking. This
setting may have an impact on performance because the payload is stored
at each step in the message flow. This setting is useful for debugging
purposes.

Off No logging is performed. Composite instance tracking information and
payload tracking information are not collected.

• Support is provided for wild-card matching of process names and revision
numbers in the fault policy binding file. For example:

– Entering Order* applies to BPEL process service components included in the
composite named OrderProcess, OrderRejected, and
OrderConfirmed:

<process auditPolicy="noLoops" name="Order*"/>

– Entering 1* applies to composite revisions 1.0, 1.1, and 1.2:

<process auditPolicy="noAssign" name="*" revision="1.*"/>

The following example shows the audit policy schema to use:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/auditpolicy"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.oracle.com/bpel/auditpolicy"
 elementFormDefault="qualified">
 <!-- activity can have a type or a name as optional attribute.-->
 <!-- Audit rules apply to all activities if no specific type or name is -->
 <!-- provided -->
 <xs:complexType name="Activity">
 <xs:attribute name="type" type="xs:QName" use="optional"/>
 <xs:attribute name="name" type="tns:idType" use="optional"/>
 <xs:attribute name="auditLevel" type="tns:auditLevelType" use="required"/>
 </xs:complexType>

Auditing SOA Composite Applications at the BPEL Activity Level

Debugging and Auditing SOA Composite Applications 49-21

 <xs:simpleType name="idType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="auditLevelType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="off"/>
 <xs:enumeration value="minimal"/>
 <xs:enumeration value="production"/>
 <xs:enumeration value="development"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="auditPolicy">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="activity" type="tns:Activity" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="tns:idType" use="required"/>
 <xs:attribute name="version" type="xs:string" default="1.0"/>
 </xs:complexType>
 <!-- we restrict users to provide mulitple rules for same activity -->
 <xs:key name="UniqueActivity">
 <xs:selector xpath="tns:activity"/>
 <xs:field xpath="@type"/>
 <xs:field xpath="@name"/>
 </xs:key>
 </xs:element>
</xs:schema>

The following example shows the audit policy binding schema to use.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/auditpolicyBinding"
 xmlns:tns="http://schemas.oracle.com/bpel/auditpolicy"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <xs:complexType name="Process">
 <xs:attribute name="auditPolicyId" type="tns:idType" use="optional"/>
 <xs:attribute name="name" type="tns:idType" use="optional"/>
 <xs:attribute name="revision" type="tns:idType" use="optional"/>
 </xs:complexType>
 <xs:simpleType name="idType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="auditPolicyBinding">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="process" type="tns:Process"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string"
 default="1.0"/>
 </xs:complexType>
 <xs:key name="UniqueActivity">
 <xs:selector xpath="tns:process"/>
 <xs:field xpath="@name"/>
 <xs:field xpath="@revision"/>

Auditing SOA Composite Applications at the BPEL Activity Level

49-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 </xs:key>
 </xs:element>
</xs:schema>

49.4.1 How to Audit SOA Composite Applications at the BPEL Activity Level
This section describes how to create and configure the audit policy and audit policy
binding files.

To audit SOA composite applications at the BPEL activity level:

1. Create and configure an audit policy file (for example, named audit-
policy.xml) that defines the audit level settings for the BPEL activities. The file
can have any name and must follow the schema described in the preceding section.

<auditPolicies xmlns="http://schemas.oracle.com/bpel/auditpolicy"
xmlns:bpel="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:bpelx="http://schemas.oracle.com/bpel/extension" version="1.0">
 <auditPolicy name="whilePolicy">
 <!-- enabling this will cause all assign activities to not log -->
 <!-- anything to the audit trail -->
 <activity type="bpel:assign" auditLevel="production"/>

 <!-- enabling this will cause all scope activities and all -->
 <!-- enclosed activities to not log anything to the audit trail -->
 <activity type="bpel:scope" auditLevel="production"/>
 <!-- enabling this will cause all while activities to log with -->
 <!-- minimak level -->
 <activity type="bpel:while" auditLevel="production"/>
 <activity type="bpel:reply" auditLevel="production"/>
 <activity type="bpel:flow" auditLevel="production"/>
 <activity type="bpel:switch" auditLevel="off"/>
 <activity type="bpel:terminate" auditLevel="production"/>
 <activity type="bpel:empty" auditLevel="development"/>
 <activity type="bpel:wait" auditLevel="production"/>
 <activity type="bpel:throw" auditLevel="off"/>
 <activity type="bpel:catchAll" auditLevel="production"/>
 <activity type="bpel:sequence" auditLevel="off"/>
 <activity type="bpel:receive" auditLevel="production"/>
 </auditPolicy>
</auditPolicies>

Note:

To enable BPEL extensions to be audited, enter bpelx:exec with an
appropriate auditing level (for example, production).

<activity type="bpelx:exec" auditLevel="production"/>

2. Create and configure an audit policy binding XML file (for example, named
audit-binding.xml) that binds the audit policy to the BPEL process. The file
can have any name and must follow the schema described in the previous section.
This example uses the wildcard option to enable all BPEL processes that begin with
myProcess to be audited. Several other auditing options have been commented
out.

<auditPolicyBindings xmlns="http://schemas.oracle.com/bpel/auditpolicyBinding"
 version="1.0">

Auditing SOA Composite Applications at the BPEL Activity Level

Debugging and Auditing SOA Composite Applications 49-23

 <!-- enabling this will cause all processes in the domain to use this -->
 <!-- policy audit -->
 <!-- <process auditPolicyName="whilePolicy" name="BPELProcess*"/> -->
 <!-- enabling this will cause all processes that start with the name -->
 <!-- myProcess to use the audit policy 'noLoops' -->
 <process auditPolicyName="noLoops" name="myProcess*"/>
 <!-- enabling this will cause all processes -->
 <!-- process auditPolicyName="noAssign" name="*"/> -->
</auditPolicyBindings>

3. Place the XML file in the same directory as the composite.xml file.

4. Define the audit-policy.xml and audit-binding.xml files in the
composite.xml file.

<property name="oracle.composite.bpelAuditPolicyFile">audit-policy.xml</property>
<property
name="oracle.composite.bpelAuditBindingFile">audit-binding.xml</property>

5. Deploy the SOA composite application.

Auditing SOA Composite Applications at the BPEL Activity Level

49-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

50
Automating Testing of SOA Composite

Applications

This chapter describes how to create, deploy, and run test cases that automate the
testing of SOA composite applications. You can also create test cases for testing BPEL
process service components included in the SOA composite application. Test cases
enable you to simulate the interaction between a SOA composite application and its
web service partners before deployment in a production environment. This helps to
ensure that a process interacts with web service partners as expected when it is ready
for deployment to a production environment.

This chapter includes the following sections:

• Introduction to the Composite Test Framework

• Introduction to the Components of a Test Suite

• Creating Test Suites and Test Cases with the Create Composite Test Wizard

• Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

• Testing BPEL Process Service Components

• Deploying and Running a Test Suite

50.1 Introduction to the Composite Test Framework
Oracle SOA Suite provides an automated test suite framework for creating and
running repeatable tests on a SOA composite application.

The test suite framework provides the following features:

• Simulates web service partner interactions

• Validates process actions with test data

• Creates reports of test results

50.1.1 Test Cases Overview
The test framework supports testing at the SOA composite application level. In this
type of testing, wires, service binding components, service components (such as BPEL
processes and Oracle Mediator service components), and reference binding
components are tested.

For more information, see Creating Test Suites and Test Cases with the Create
Composite Test Wizard.

Automating Testing of SOA Composite Applications 50-1

50.1.2 Overview of Test Suites
Test suites consist of a logical collection of one or more test cases. Each test case
contains a set of commands to perform as the test instance is executed. The execution
of a test suite is known as a test run. Each test corresponds to a single SOA composite
application instance.

For more information, see the following:

• Creating Test Suites and Test Cases with the Create Composite Test Wizard

• Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50.1.3 Overview of Emulations
Emulations enable you to simulate the behavior of the following components with
which your SOA composite application interacts during execution:

• Internal service components inside the composite

• Binding components outside the composite

Instead of invoking another service component or binding component, you can specify
a response from the component or reference.

For more information, see the following:

• Emulations

• Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50.1.4 Overview of Assertions
Assertions enable you to verify variable data or process flow. You can perform the
following types of assertions:

• Entire XML document assertions:

Compare the element values of an entire XML document to the expected element
values. For example, compare the exact contents of an entire loan request XML
document to another document. The XMLTestCase class in the XMLUnit package
includes a collection of methods for performing assertions between XML files. For
more information about these methods, visit the following URL:

http://xmlunit.sourceforge.net

• Part section of message assertions:

Compare the values of a part section of a message to the expected values. An
example is a payload part of an entire XML document message.

• Nonleaf element assertions:

Compare the values of an XML fragment to the expected values. An example is a
loan application, which includes leaf elements SSN, email, customerName, and
loanAmount.

• Leaf element assertions:

Compare the value of a selected string or number element or a regular expression
pattern to an expected value. An example is the SSN of a loan application.

Introduction to the Composite Test Framework

50-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

http://xmlunit.sourceforge.net

For more information about asserts, see Assertions.

50.2 Introduction to the Components of a Test Suite
This section describes and provides examples of the test components that comprise a
test case. Methods for creating and importing these tests into your process are
described in subsequent sections of this chapter.

50.2.1 Process Initiation
You first define the operation of your process in a binding component service such as
a SOAP web service. The following example defines the operation of initiate to
initiate the TestFwk SOA composite application. The initiation payload is also
defined in this section:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [6/13/07 10:50 AM]. -->
<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <content>
 <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@example.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
 </loanApplication>
 </content>
 </part>
 </message>
 </initiate>
</compositeTest>

50.2.2 Emulations
You create emulations to simulate the message data that your SOA composite
application receives from web service partners.

In the test code in the following example, the loan request is initiated with an error. A
fault message is received in return from a web service partner:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:29 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="LoanBroker/CreditRatingService" operation="process">

Introduction to the Components of a Test Suite

Automating Testing of SOA Composite Applications 50-3

 <emulate duration="PT0S">
 <fault faultName="ser:NegativeCredit" xmlns:ser="http://services.otn.com">
 <message>
 <part partName="payload">
 <filePath>creditRatingFault.xml</filePath>
 </part>
 </message>
 </fault>
 </emulate>
 </wireActions>
</compositeTest>

Two message files, loanApplication.xml and creditRatingFault.xml, are
invoked in this emulation. If the loan application request in loanApplication.xml
contains a social security number beginning with 0, the creditRatingFault.xml
file returns the fault message shown in the following example:

<error xmlns="http://services.otn.com">
 Invalid SSN, SSN cannot start with digit '0'.
</error>

For more information, see Editing the Contents of Test Cases in Test Mode in the SOA
Composite Editor.

50.2.3 Assertions
You create assertions to validate an entire XML document, a part section of a message,
a nonleaf element, or a leaf element at a point during SOA composite application
execution. The following example instructs Oracle SOA Suite to ensure that the
content of the customerName variable matches the content specified.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [6/13/07 10:51 AM]. -->
<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <content>
 <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@example.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
 </loanApplication>
 </content>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="client" operation="initiate">
 <assert comparisonMethod="string">
 <expected>
 <location key="input" partName="payload"
 xpath="/s1:loanApplication/s1:customerName"
 xmlns:s1="http://www.autoloan.com/ns/autoloan"/>
 <simple>Joe Smith</simple>
 </expected>

Introduction to the Components of a Test Suite

50-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 </assert>
 </wireActions>
</compositeTest>

For more information, see Editing the Contents of Test Cases in Test Mode in the SOA
Composite Editor.

50.2.4 Message Files
Message instance files provide a method for simulating the message data received
back from web service partners. You can manually enter the received message data
into this XML file or load a file through the test mode of the SOA Composite Editor.
For example, the following message file simulates a credit rating result of 900
returned from a partner:

<rating xmlns="http://services.otn.com">900</rating>

For more information about loading message files into test mode, see Editing the
Contents of Test Cases in Test Mode in the SOA Composite Editor.

50.3 Creating Test Suites and Test Cases with the Create Composite Test
Wizard

This section describes how to create test suites and their test cases for a SOA
composite application. The test cases consist of sets of commands to perform as the
test instance is executed.

You can create test suites and test cases in either of two ways:

• In the Applications window

• From the Oracle JDeveloper main menu

Both options invoke the Create Composite Test wizard, which enables you to define
the initiating operation, callback operation, and input and output messages.

Note:

Do not enter a multibyte character string as a test suite name or test case name.
Doing so causes an error to occur when the test is executed from Oracle
Enterprise Manager Fusion Middleware Control.

1. Perform one of the following steps to create a new test suite or create a new
composite test in an existing test suite. Table 50-1 provides details.

Creating Test Suites and Test Cases with the Create Composite Test Wizard

Automating Testing of SOA Composite Applications 50-5

Table 50-1 Test Suite Creation or Selection

From the... Perform...

Oracle JDeveloper main menu
a. Select File > New > Application > SOA Tier >

Tests > Composite Test Suite.

The Create Test Suite dialog is displayed.

b. Enter a test suite name, and click OK.

or

a. Select File > From Gallery > SOA Tier > Tests >
Composite Test Suite.

The Create Test Suite dialog is displayed.

b. Enter a test suite name, and click OK.

Applications window
a. Right-click the testsuites folder and select Create

Test Suite.

The Create Test Suite dialog is displayed.

b. Enter a test suite name, and click OK.

Structure window
a. Right-click Test Suites and select Create Test

Suite.

The Create Test Suite dialog is displayed.

b. Enter a test suite name, and click OK.

Oracle JDeveloper main menu
a. Select File > New > Application > SOA Tier >

Tests > Composite Test.

or

a. Select File > New > Composite Test.

Note: Both selections provide the option of creating a
new test suite or selecting an existing test suite in which
to include the new composite test.

The Create Composite Test Wizard - Test Name and Suite page appears, as shown
in Figure 50-1.

Creating Test Suites and Test Cases with the Create Composite Test Wizard

50-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 50-1 Create Composite Test Wizard - Test Name and Suite Page

This wizard enables you to create simple tests without manually creating test
details in test mode in the SOA Composite Editor, as described in Editing the
Contents of Test Cases in Test Mode in the SOA Composite Editor. You only must
manually use this editor in test mode if you want to add additional test metadata
such as emulations.

2. Provide values appropriate to your environment, as described in Table 50-2, and
click Next.

Table 50-2 Create Composite Test Wizard - Test Name and Suite Page

Field Description

Test Name Enter a name for the test.

Description Enter an optional description of the test. The description is
displayed in the Description column of the Test Cases page of the
Unit Tests tab in Oracle Enterprise Manager Fusion Middleware
Control.

Test Suite Select an existing test suite to include this test or click the icon to
create a new test suite in the Create Test Suite dialog.

The Create Composite Test Wizard - Service and Operation page appears, as
shown in Figure 50-2.

Creating Test Suites and Test Cases with the Create Composite Test Wizard

Automating Testing of SOA Composite Applications 50-7

Figure 50-2 Create Composite Test Wizard - Service and Operation Page

3. Provide values appropriate to your environment, as described in Table 50-3, and
click Next.

Table 50-3 Create Composite Test Wizard - Service and Operation Page

Field Description

Service Select the SOA composite application to test.

Operator Select the operation.

Callback
Operation

Optionally select the callback (response) operation.

The Create Composite Test Wizard - Input Message page appears, as shown in
Figure 50-3. This page enables you to specify the input message to test the
operation.

Creating Test Suites and Test Cases with the Create Composite Test Wizard

50-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 50-3 Create Composite Test Wizard - Input Message Page

Provide values appropriate to your environment, as described in Table 50-4, and
click Next.

Table 50-4 Create Composite Test Wizard - Input Message Page

Field Description

Part Select the message part containing the input (for example,
payload). If the operation input message has multiple parts, then
specify each message part by changing the part name, one by one.

For each message part, you can either enter the XML document
contents manually or you can load the document from an XML file.

Value Create a simulated input message to send to a web service partner:

• Enter
Manually

Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate a
sample file from the message part schema for testing. Click Save As
to save the sample file for later use by the same test or other tests in
the same test suite.

• Load From
File

Click the Browse icon to load message data from a file. The file is
added to the messages folder in the Applications window.

The Create Composite Test Wizard - Output Message page appears, as shown in
Figure 50-4. This page specifies the output message expected from the operation
or callback operation.

Creating Test Suites and Test Cases with the Create Composite Test Wizard

Automating Testing of SOA Composite Applications 50-9

Figure 50-4 Create Composite Test Wizard - Output Message Page

Provide values appropriate to your environment, as described in Table 50-5, and
click Finish.

Table 50-5 Create Composite Test Wizard - Output Message Page

Field Description

From Select the external web service from which to receive the message.

Part Select the message part containing the output (for example,
payload). If the operation input message has multiple parts, then
specify each message part by changing the part name, one by one.

For each message part, you can either enter the XML document
contents manually or you can load the document from an XML file.

Value Create a simulated output message to return from a web service
partner:

• Enter
Manually

Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate a
sample file for testing. Click Save As to save the sample file.

• Load From
File

Click the Browse icon to load message data from a file. The file is
added to the messages folder in the Applications window.

The test suite is created, and the test mode of the SOA Composite Editor is
displayed to show the test. Figure 50-5 provides details. You can add additional
test metadata such as emulations, if necessary. If the current test is complete, you
can continue to create another test by clicking the test image button on the toolbar.
If you want to run the test, you can press the green arrow button.

Creating Test Suites and Test Cases with the Create Composite Test Wizard

50-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 50-5 Test Suite Creation

A test is created in the Applications window, along with the following subfolders:

• componenttests

• includes

• messages

Contains message test files that you load into this directory through the test
mode user interface.

• tests

Contains the XML file for the test suite.

A folder named after the test suite also displays in the Structure window. This
indicates that you are in the test mode of the . You can create test initiations,
assertions, and emulations in test mode. No other modifications, such as editing
the property dialogs of service components or dropping service components into
the editor, can be performed in test mode.

The following operating system test suite directory is also created:

C:\JDeveloper\mywork\application_name\project_name\testsuites\test_suite_name

4. If you want to exit test mode and return to design mode in the , click the last icon
above the designer. Figure 50-6 provides details.

Figure 50-6 Test Mode Exit

5. Save your changes when prompted.

6. Under the testsuites folder in the Applications window, double-click the XML file
name to return to test mode. Figure 50-7 provides details.

Creating Test Suites and Test Cases with the Create Composite Test Wizard

Automating Testing of SOA Composite Applications 50-11

Figure 50-7 Test Mode Access

Note:

• Do not edit the filelist.xml files that display under the subfolders of the
testsuites folder. These files are automatically created during design time
and used during runtime to calculate the number of test cases.

• You cannot create test suites within other test suites. However, you can
organize a test suite into subdirectories.

50.4 Editing the Contents of Test Cases in Test Mode in the SOA
Composite Editor

After creating the basic contents of test suites and test cases with the Create Composite
Test Wizard, you can make additional updates in the test mode of the SOA Composite
Editor.

Test cases consist of process initiations, emulations, and assertions. You create process
initiations to initiate client inbound messages into your SOA composite application.
You create emulations to simulate input or output message data, fault data, callback
data, or all of these types that your SOA composite application receives from web
service partners. You create assertions to validate entire XML documents, part sections
of messages, nonleaf elements, and leaf elements as a process is executed.

Note:

You can also edit test case contents in the Property Inspector. Single-click the
component or wire to edit to invoke the Property Inspector at the bottom of
the page for editing.

50.4.1 How to Initiate Inbound Messages

To initiate inbound messages:

You must first initiate the sending of inbound client messages to the SOA composite
application.

1. Go to the SOA Composite application in test mode.

2. Double-click the service binding component shown in Figure 50-8.

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 50-8 Service Binding Component Access

The Initiate Messages dialog appears.

3. Enter the details shown in Table 50-6:

Table 50-6 Initiate Messages Dialog Fields and Values

Field Value

Service Displays the name of the binding component service (client).

Operation Displays the operation type of the service binding
component (initiate).

Part Select the type of inbound message to send (for example,
payload).

Value Create a simulated message to send from a client:

• Enter Manually Click to manually enter message data in the Enter Value
field. A Generate Sample button enables you to
automatically generate a sample file for testing. Click Save
As to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The
file is added to the messages folder in the Applications
window.

Figure 50-9 shows this dialog:

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

Automating Testing of SOA Composite Applications 50-13

Figure 50-9 Initiate Messages Dialog

The inbound process initiation message from a client looks as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/12/07 8:36 AM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about/>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
. . .
. . .

The loanApplication.xml referenced in the process initiation file contains a
loan application payload:

<loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@example.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
</loanApplication>

4. Click OK.

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

50.4.2 How to Emulate Outbound Messages

To emulate outbound messages:

Note:

The creation of multiple emulations in an instance in a test case is supported
only if one emulation is for an output message and the other is for a callback
message.

You can simulate a message returned from a synchronous web service partner.

1. Go to the SOA composite application in test mode.

2. Beneath the testsuites folder in the Applications window, double-click a test case.
Figure 50-10 provides details.

Figure 50-10 Test Case Access

The SOA composite application in the is refreshed to display in test mode. This
mode enables you to define test information.

3. Double-click the wire of the SOA composite application area to test. For the
example shown in Figure 50-11, the wire between the LoanBroker process and the
synchronous CreditRating web service is selected.

Figure 50-11 Wire Access

This displays the Wire Actions dialog shown in Figure 50-12, from which you can
design emulations and assertions for the selected part of the SOA composite
application.

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

Automating Testing of SOA Composite Applications 50-15

Figure 50-12 Wire Actions Dialog

4. Click the Emulates tab.

5. Click the Add icon.

6. Click Emulate Output.

7. Enter the details described in Table 50-7:

Table 50-7 Emulate Output Message Dialog Fields and Values

Field Value

Part Select the message part containing the output (for example,
payload).

Value Create a simulated output message to return from a web
service partner:

• Enter Manually Click to manually enter message data in the Enter Value
field. A Generate Sample button enables you to
automatically generate a sample file for testing. Click Save
As to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The
file is added to the messages folder in the Applications
window.

Duration Enter the maximum amount of time to wait for the message
to be delivered from the web service partner.

Figure 50-13 shows this dialog:

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 50-13 Emulate Dialog with Emulate Output Selected

A simulated output message from a synchronous web service partner that you
enter manually or load from a file looks as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:26 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="LoanBroker/CreditRatingService" operation="process">
 <emulate duration="PT0S">
 <message>
 <part partName="payload">
 <filePath>creditRatingResult.xml</filePath>
 </part>
 </message>
 </emulate>
 </wireActions>
</compositeTest>

The creditRatingResult.xml message file referenced in the output message
provides details about the credit rating result.

<rating xmlns="http://services.otn.com">900</rating>

8. Click OK.

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

Automating Testing of SOA Composite Applications 50-17

50.4.3 How to Emulate Callback Messages

To emulate callback messages:

Note:

The creation of multiple emulations in an instance in a test case is supported
only if one emulation is for an output message and the other is for a callback
message.

You can simulate a callback message returned from an asynchronous web service
partner.

1. Access the Wire Actions dialog by following Step 1 through Step 3 of How to
Emulate Outbound Messages.

2. Click the Emulates tab.

3. Click the Add icon.

4. Click Emulate Callback. This field is only enabled for asynchronous processes.

5. Enter the details described in Table 50-8:

Table 50-8 Emulate Callback Message Fields

Field Value

Callback Operation Select the callback operation (for example, onResult).

Callback Message Displays the callback message name of the asynchronous
process.

Part Select the message part containing the callback (for example,
payload).

Value Create a simulated callback message to return from an
asynchronous web service partner:

• Enter Manually Click to manually enter message data in the Enter Value
field. A Generate Sample button enables you to
automatically generate a sample file for testing. Click Save
As to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The
file is added to the messages folder in the Applications
window.

Duration Enter the maximum amount of time to wait for the callback
message to be delivered from the web service partner.

Figure 50-14 shows this dialog:

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 50-14 Emulate Dialog with Emulate Callback Selected

The simulated callback message from a web service partner looks as follows. You
enter this message manually or load it from a file:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:27 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="LoanBroker/LoanService" operation="initiate">
 <emulate callbackOperation="onResult" duration="PT0S">
 <message>
 <part partName="payload">
 <filePath>loanOffer.xml</filePath>
 </part>
 </message>
 </emulate>
 </wireActions>
</compositeTest>

The loanOffer.xml message file referenced in the callback message provides
details about the credit rating approval.

<loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
 <providerName>Bank Of America</providerName>
 <selected>false</selected>

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

Automating Testing of SOA Composite Applications 50-19

 <approved>true</approved>
 <APR>1.9</APR>
</loanOffer>

6. Click OK.

50.4.4 How to Emulate Fault Messages

To emulate fault messages:

You can simulate a fault message returned from a web service partner. This simulation
enables you to test fault handling capabilities in your process.

1. Access the Wire Actions dialog by following Step 1 through Step 3 of How to
Emulate Outbound Messages.

2. Click the Emulates tab.

3. Click the Add icon.

4. Click Emulate Fault.

5. Enter the details described in Table 50-9:

Table 50-9 Emulate Fault Message Fields

Field Value

Fault Select the fault type to return from a partner (for example,
NegativeCredit).

Fault Message Displays the message name.

Part Select the message part containing the fault (for example,
payload).

Value Create a simulated fault message to return from a web
service partner:

• Enter Manually Click to manually enter message data in the Enter Value
field. A Generate Sample button enables you to
automatically generate a sample file for testing. Click Save
As to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The
file is added to the messages folder in the Applications
window.

Duration Enter the maximum amount of time to wait for the fault
message to be delivered from the web service partner.

Figure 50-15 shows this dialog:

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 50-15 Emulate Dialog with Emulate Fault Selected

An example of a simulated fault message from a web service partner that you enter
manually or load from a file is shown in Emulations.

6. Click OK.

50.4.5 How to Create Assertions

To create assertions:

You perform assertions to verify variable data or process flow. Assertions enable you
to validate test data in an entire XML document, a part section of a message, a nonleaf
element, or a leaf element as a process is executed. This is done by extracting a value
and comparing it to an expected value.

1. Access the Wire Actions dialog by following Step 1 through Step 3 of How to
Emulate Outbound Messages.

2. Click the Asserts tab.

Figure 50-16 shows this dialog:

Figure 50-16 Wire Actions Dialog with Asserts Tab Selected

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

Automating Testing of SOA Composite Applications 50-21

3. Click the Add icon.

The Create Assert dialog appears.

4. Select the type of assertion to perform at the top of the dialog, as shown in
Table 50-10. If the operation supports only input messages, the Assert Input button
is enabled. If the operation supports both input and output messages, the Assert
Input and Assert Output buttons are both enabled.

Table 50-10 Assertion Types

Type Description

Assert Input Select to create an assertion in the inbound direction.

Assert Output Select to create an assertion in the outbound direction.

Assert Callback Select to create an assertion on a callback.

Assert Fault Select to assert a fault into the application flow.

5. See the section shown in Table 50-11 based on the type of assertion you want to
perform.

Table 50-11 Assertion Types

For an Assertion on... See...

• A part section of a
document

• A nonleaf element
• An entire XML

document

Creating Assertions on a Part Section_ Nonleaf Element_ or
Entire XML Document

A leaf element Creating Assertions on a Leaf Element

50.4.5.1 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML
Document

To create assertions on a part section, nonleaf element, or entire XML
document:

This test compares the values to the expected values.

Note:

If the message contains multiple parts (for example, payload1, payload2, and
payload3), you must create separate assertions for each part.

1. Click Browse to select the target part section, nonleaf element, or entire XML
document to assert.

The Select Assert Target dialog appears.

2. Select a value, and click OK. For example, select a variable such as payload to
perform a part section assertion.

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 50-17 shows this dialog. While this example shows how to perform a part
section assertion, selecting LoanBrokerRequestMessage is an example of an entire
XML document assertion and selecting loanApplication is an example of a nonleaf
assertion.

Figure 50-17 Select a Part Section of a Message

The Create Assert dialog refreshes based on your selection of a variable.

3. Enter details in the remaining fields, as shown in Table 50-12:

Table 50-12 Create Assert Dialog Fields and Values

Field Value

Fault Select the type of fault to assert (for example,
NegativeCredit). This field only displays if you select Assert
Fault in Step 4.of How to Create Assertions.

Assert Target Displays the assert target you selected in Step 2.

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

Automating Testing of SOA Composite Applications 50-23

Table 50-12 (Cont.) Create Assert Dialog Fields and Values

Field Value

Compare By Specify the strictness of the comparison.

• xml-identical: Used when the comparison between the
elements and attributes of the XML documents must be
exact. If there is any difference between the two XML
documents, the comparison fails. For example, the
comparison fails if one document uses an element name
of purchaseOrder, while the other uses an element
name of invoice. The comparison also fails if the child
attributes of two elements are the same, but the
attributes are ordered differently in each element.

• xml-similar: Used when the comparison must be similar
in content, but does not need to exactly match. For
example, the comparison succeeds if both use the same
namespace URI, but have different namespace prefixes.
The comparison also succeeds if both contain the same
element with the same child attributes, but the attributes
are ordered differently in each element.

In both of these examples, the differences are considered
recoverable, and therefore similar.

For more information about comparing the contents of XML
files, see the XMLUnit web site:

http://xmlunit.sourceforge.net/userguide/html/
ar01s03.html#The%20Difference%20Engine

Part Select the message part containing the XML document (for
example, payload).

Value Create an XML document whose content is compared to the
assert target content:

• Enter Manually Click to manually enter message data in the Enter Value
field. A Generate Sample button enables you to
automatically generate a sample file for testing. Click Save
As to save the sample file.

• Load From File Click the Browse icon to load message data from a file. The
file is added to the messages folder in the Applications
window.

Description Enter an optional description.

Figure 50-18 shows this dialog with Assert Input selected:

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

http://xmlunit.sourceforge.net/userguide/html/ar01s03.html#The%20Difference%20Engine
http://xmlunit.sourceforge.net/userguide/html/ar01s03.html#The%20Difference%20Engine

Figure 50-18 Create Assert Dialog with Assert Input Selected

4. Click OK.

The Wire Actions dialog shown in Figure 50-19 displays your selection.

Figure 50-19 Wire Actions Dialog with Asserts Tab Selected

5. Click OK.

50.4.5.2 Creating Assertions on a Leaf Element

To create assertions on a leaf element:

This test compares the value to an expected value.

1. Click Browse to select the leaf element to assert.

The Select Assert Target dialog appears.

2. Select a leaf element, and click OK. For example, select loanAmount to perform an
assertion. Figure 50-20 provides details.

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

Automating Testing of SOA Composite Applications 50-25

Figure 50-20 Selection of a Leaf Element

The Create Assert dialog refreshes based on your selection of an entire XML
document.

3. Enter details in the remaining fields, as shown in Table 50-13:

Table 50-13 Create Assert Dialog Fields and Values

Field Value

Fault Select the type of fault to assert (for example,
NegativeCredit). This field only displays if you select Assert
Fault in Step 4 of How to Create Assertions.

Callback Operation Select the type of callback to assert (for example, onResult).
This field only displays if you select Assert Callback in Step
4 of How to Create Assertions.

Assert Target Displays the variable assert target you selected in Step 2.

Compare By Select the type of comparison:

• string: Compares string values.
• number: Compares numeric values.
• pattern-match: Compares a regular expression pattern

(for example, [0-9]*). Java Development Kit (JDK)
regular expression (regexp) constructs are supported.
For example, entering a pattern of ab[0-9]*cd means
that a value of ab123cd or ab456cd is correct. An
asterisk (*) indicates any number of occurrences.

Assert Value Enter the value you are expecting. This value is compared to
the value for the assert target.

Description Enter an optional description.

Figure 50-21 shows this dialog with Assert Input selected:

Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor

50-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 50-21 Create Assert Dialog

4. Click OK.

The Wire Actions dialog shown in Figure 50-22 displays your selection.

Figure 50-22 Wire Actions Dialog with Asserts Tab Selected

50.4.6 What You May Need to Know About Assertions
When a test is executed, and the response type returned is different from the type
expected, the assertion is skipped. For example, you are expecting a fault
(RemoteFault) to be returned for a specific message, but a response
(BpelResponseMessage) is instead returned.

As a best practice, always assert and emulate the expected behavior.

50.5 Testing BPEL Process Service Components
After creating the basic contents of test suites and test cases with the Create Composite
Test Wizard, you can automate the testing of an individual BPEL process service
component included in a new or existing SOA composite application test suite. These
test cases enable you to simulate the interaction between a BPEL process and its web

Testing BPEL Process Service Components

Automating Testing of SOA Composite Applications 50-27

service partners before deployment in a production environment. This helps to ensure
that a BPEL process interacts with web service partners as expected by the time it is
ready for deployment to a production environment.

The following provides an example of a SOA composite application test suite that
includes a component test for the LoanBroker BPEL process service component.

<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <content>
 <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@example.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
 </loanApplication>
 </content>
 </part>
 </message>
 </initiate>
 <componentTest componentName="LoanBroker" filePath="assert.xml"/>
</compositeTest>

The assert.xml test shown in the preceding example specifies assertions for
variables and faults.

Note:

You cannot automate the testing of business rule, human task, Oracle
Mediator, or spring service components.

50.5.1 Overview of Assertions on BPEL Process Activities
You can create variable and fault assertions on BPEL process activities. The following
example instructs the BPEL process to ensure that the contents of textVar and
crOutput match the contents specified:

 <bpelTest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/sca/2006/test"
 componentName="LoanBroker">
 <activityActions activityName="elementAssign">
 <assert comparisonMethod="number">
 <description>Some other assertion.</description>
 <expected>
 <location key="textVar"
 xmlns:loan="http://www.autoloan.com/ns/autoloan"/>
 <simple>111222333</simple>
 </expected>
 </assert>
 </activityActions>
 <activityActions activityName="invokeCR">
 <assert comparisonMethod="number">

Testing BPEL Process Service Components

50-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <description>Make sure we got the output.</description>
 <expected>
 <location key="crOutput" partName="payload" xpath="/tns:rating"
 xmlns:tns="http://services.otn.com"/>
 <simple>560</simple>
 </expected>
 </assert>
 </activityActions>
</bpelTest>

For more information about creating assertions on BPEL process activities, see How to
Create Assertions.

50.5.2 Overview of a Fast Forward Action on a Wait Activity
A wait activity allows a process to wait for a given time period or until a time limit has
been reached. When testing a BPEL process service component, you may want to
bypass the wait activity to continue with testing. A fast forward action enables you to
specify the amount of time for which to bypass a wait activity and move forward in
the test scenario. The following example instructs the BPEL process to bypass the wait
activity for 1 second.

<bpelTest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/sca/2006/test
 TestFwk.xsd"
 xmlns="http://xmlns.oracle.com/sca/2006/test"
 componentName="LoanBroker">
 <activityActions activityName="wait1">
 <fastForward duration="PT1S"/>
 </activityActions>
</bpelTest>

For more information about creating fast forward actions on wait activities, see How
to Bypass a Wait Activity.

50.5.3 Overview of Assert Activity Execution
You can specify and validate the number of times an activity is executed in a BPEL
process. The following example instructs the BPEL process to execute the invoke,
elementAssign, invokeCR, and replyOutput activities one time each.

<bpelTest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/sca/2006/test"
 componentName="LoanBroker">
 <assertActivityExecuted activityName="invoke" executionCount="1"/>
 <assertActivityExecuted activityName="elementAssign" executionCount="1"/>
 <assertActivityExecuted activityName="invokeCR" executionCount="1"/>
 <assertActivityExecuted activityName="replyOutput" executionCount="1"/>
</bpelTest>

For more information about creating assert activity executions, see How to Specify the
Number of Times to Execute an Activity.

50.5.4 How to Create BPEL Process Service Component Tests

To create BPEL process service component tests:

1. Double-click a BPEL process in a test suite (for this example, LoanBroker).

Testing BPEL Process Service Components

Automating Testing of SOA Composite Applications 50-29

If you have not yet created a test suite, see Creating Test Suites and Test Cases with
the Create Composite Test Wizard. The BPEL process service component test that
you create is included in the overall test suite for the SOA composite application.

The Create Component Test dialog is displayed, as shown in Figure 50-23.

Figure 50-23 Create Component Test Dialog

2. Accept the default name or enter a different name, as shown in Figure 50-23.

3. Click OK.

The BPEL process in test mode is displayed, as shown in Figure 50-24.

In the lower left section, the Structure window displays the Asserts, Fast Forwards,
and Assert Execution Counts folders. You can right-click these folders to create
assertions, fast forwards (to bypass executions of wait activities), and assertion
execution counts, respectively.

Above the designer, the following buttons are displayed:

• BPEL: Click to access the BPEL process service component in design mode of
Oracle BPEL Designer (that is, in nontest mode). This button is currently
enabled in Figure 50-24 because you are in test mode for the BPEL process.

• Monitor: Click to configure BPEL process monitors in Oracle BPEL Designer.
BPEL process monitors can send data to Oracle BAM for analysis and
graphical display through the Oracle BAM adapter.

• Test: This button is currently disabled because you are in test mode for the
BPEL process service component. This button is enabled when you click the
BPEL button to enter design mode in Oracle BPEL Designer.

• Analytics: Click to create a uniform measurement mechanism across Oracle
SOA Suite components such as Oracle BPMN, human workflow, and BPEL
processes for collecting disparate data.

Testing BPEL Process Service Components

50-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 50-24 BPEL Process Service Component in Test Mode

50.5.5 How to Create Assertions
You can create assertions for variables and faults in BPEL process activities.

To create assertions:

1. Select the activity on which to create an assertion through one of the following
methods:

a. In the Structure window, right-click the Asserts folder and select Create, or
select the Asserts folder and click the Add button.

The Assert dialog is displayed.

b. In the Activity Name field, click the Browse icon to select an activity.

or

a. Right-click a specific BPEL activity in the designer, and select Edit Activity
Test Data.

b. Click the Asserts tab.

c. Click the Add icon.

The activity you selected is displayed in the Activity Name field.

2. Enter details in the remaining fields, as shown in Table 50-14.

Table 50-14 Assertions on BPEL Activities

Field Value

Assert Variable Select to assert a variable.

Assert Fault Select to assert a fault.

Testing BPEL Process Service Components

Automating Testing of SOA Composite Applications 50-31

Table 50-14 (Cont.) Assertions on BPEL Activities

Field Value

Target Select a target to assert:

• If you selected Assert Variable, click the Browse icon to select
the type of variable to assert (for example, /
autoloan:loanApplication/autoloan:SSN).

• If you selected Assert Fault, click the Browse icon to select
the type of fault to assert (for example, NegativeCredit).

Compare By If comparing XML documents, specify the strictness of the
comparison:

• XML Identical: Use when the comparison between the
elements and attributes of the XML documents must be exact.
If there is any difference between the two XML documents,
the comparison fails. For example, the comparison fails if one
document uses an element name of purchaseOrder, while
the other uses an element name of invoice. The comparison
also fails if the child attributes of two elements are the same,
but the attributes are ordered differently in each element.

• XML Similar: Use when the comparison must be similar in
content, but does not need to exactly match. For example, the
comparison succeeds if both use the same namespace URI,
but have different namespace prefixes. The comparison also
succeeds if both contain the same element with the same child
attributes, but the attributes are ordered differently in each
element.

In both of these examples, the differences are considered
recoverable, and therefore similar.

If comparing variables, specify the type:

• String: Select to compare string values.
• Pattern Match Using Java Regular Expressions: Select to

compare a regular expression pattern (for example, [0-9]*).
Java Development Kit (JDK) regular expression (regexp)
constructs are supported. For example, entering a pattern of
ab[0-9]*cd means that a value of ab123cd or ab456cd is
correct. An asterisk (*) indicates any number of occurrences.

• Number: Select to compare numeric values.

Parts Select the message part containing the XML document (for
example, payload).

Value Create an XML document whose content is compared to the assert
target content:

• Enter
Manually

Click to manually enter message data in the Enter Value field. A
Generate Instance Sample icon enables you to automatically
generate a sample file for testing. Click the Save As icon to save
the sample file.

• Load From
File

Click the Browse icon to load message data from a file. The file is
added to the messages folder in the Applications window.

Testing BPEL Process Service Components

50-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 50-14 (Cont.) Assertions on BPEL Activities

Field Value

Description Enter an optional description.

3. Click OK.

Expand the Assert folder in the Structure window to view the activities on which
you have created asserts. Figure 50-25 provides details.

Figure 50-25 Assert Folder in Structure Window

50.5.6 How to Bypass a Wait Activity
You can specify the amount of time for which to bypass a wait activity and move
forward in the test scenario. Once the time limit expires, the wait activity is processed.

To bypass a wait activity:

1. Select the wait activity to bypass through one of the following methods:

a. In the Structure window, right-click the Fast Forwards folder and select
Create, or select the Fast Forwards folder and click the Add button.

The Fast Forward dialog is displayed.

b. In the Activity Name field, click the Browse icon to select the wait activity.

or

a. Right-click a specific wait activity in the designer, and select Edit Activity
Test Data.

Testing BPEL Process Service Components

Automating Testing of SOA Composite Applications 50-33

b. Click the Fast Forward tab. This tab is only displayed if there are wait
activities in the BPEL process.

c. Click the Add icon.

The wait activity you selected is displayed in the Activity Name field.

2. In the Duration list, specify a time period for which to bypass the wait activity
(for example, 1 second).

3. Click OK.

4. Expand the Fast Forwards folder in the Structure window to view the amount of
time for which to bypass the wait activity and move forward in the test scenario.
Figure 50-26 provides details.

Figure 50-26 Fast Forwards Folder in Structure Window

For more information about wait activities, see Setting an Expiration Time with a Wait
Activity .

50.5.7 How to Specify the Number of Times to Execute an Activity
You can specify to execute an activity a specified number of times. This provides a
method for verifying that an activity executes the correct number of times in a process
flow (for example, ensuring that a while activity executes the correct number of times).

To specify the number of times an activity is executed:

1. Select the activity to execute through one of the following methods:

a. In the Structure window, right-click the Assert Execution Counts folder and
select Create, or select the Assert Execution Counts folder and click the Add
button.

The Assert Execution Count dialog is displayed.

Testing BPEL Process Service Components

50-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

b. In the Activity Name field, click the Browse icon to select the activity to
execute.

or

a. Right-click a specific BPEL activity in the designer, and select Edit Activity
Test Data.

b. Click the Assert Execution Count tab.

c. Click the Add icon.

The activity you selected is displayed in the Activity Name field.

2. In the Count list, select a value.

3. Click OK.

The Activity Test Data dialog looks as shown in Figure 50-27.

Figure 50-27 Activity Test Data Dialog

4. Expand the Assert Execution Counts folder in the Structure window to view
execution counts assigned to activities. Figure 50-28 provides details.

Figure 50-28 Assert Execution Counts Folder in the Structure Window

Testing BPEL Process Service Components

Automating Testing of SOA Composite Applications 50-35

50.6 Deploying and Running a Test Suite
After creating a test suite of test cases, you deploy the suite as part of a SOA composite
application. You then run the test suites from Oracle JDeveloper, Oracle Enterprise
Manager Fusion Middleware Control, an Oracle WebLogic Scripting Tool (WLST)
script, or an ant command.

50.6.1 How to Deploy and Run a Test Suite from Oracle JDeveloper
You can run a test suite from Oracle JDeveloper. After test suites are created, you can
select multiple test suites to run, an individual test suite to run, or an individual test in
a test suite to run.

To deploy and run a test suite from Oracle JDeveloper:

1. Perform the appropriate task shown in Table 50-15.

Table 50-15 Test Suite Execution Options

To... In the Applications Window...

Run the test suite
currently open in test
mode in the SOA
Composite Editor.

a. Click the Run Test icon above the SOA Composite
Editor.

Run all test suites.
a. Right-click the testsuites folder, and select Run Test

Suites.

Run an individual test
suite. a. Right-click the test suite name, and select Run Test

Suite.

Deploying and Running a Test Suite

50-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 50-15 (Cont.) Test Suite Execution Options

To... In the Applications Window...

Run an individual test in
a test suite. a. Right-click the individual test in the tests folder, and

select Run Test.

If you have not configured the test server to use, the Specify Test Server dialog is
displayed.

2. Enter the test server host name and optionally select the Do not ask again, save it
in Tools-> Preferences-> SOA check box. This prevents this dialog from being
displayed again until you go to Tools > Preferences > SOA and change the
configuration.

3. Click OK.

The Test Run dialog is displayed.

4. Perform the following steps:

a. Specify the test run name.

b. Select or deselect tests to run.

c. Specify the timeout value in seconds for running tests on the test server.

d. Click OK.

Figure 50-29 provides details.

Deploying and Running a Test Suite

Automating Testing of SOA Composite Applications 50-37

Figure 50-29 Test Run Dialog

A check is made to see if the SOA composite application (including the tests) has
ever been deployed on the test server. You must first deploy the composite before
you can run tests on the test server.

5. Perform the steps shown in Table 50-16 based on the deployment status of the
SOA composite application.

Table 50-16 Check to Determine if the SOA Composite Application is Deployed

If the SOA Composite
Application ...

Then ...

Is deployed. Go to Step 6.

• Has never been deployed on the
test server.

• Has been deployed on the test
server, but the composite
(including the tests) has been
changed since the last
deployment.

The Confirm to Deploy Composite dialog is
displayed.

a. Click OK to deploy the SOA composite
application.

The Deployment Action page of the Deploy
Project_Name wizard is displayed.

b. Select Deploy to Application Server.

c. Follow the pages of the wizard to deploy the
SOA composite application to an application
server.

For information about deploying SOA
composite applications, see Deploying the
Profile.

d. When deployment is complete, go to Step 6.

After deployment has completed, the tests run on the test server.

Deploying and Running a Test Suite

50-38 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

6. View the test results. Figure 50-30 provides details. The Test Results dialog is per
test server and composite DN. The test server URL (the SOA server host name and
port number) and composite DN are displayed in the top right corner to indicate
the context. You can run tests as many times as you want, and can select different
test combinations to run on the same test server or different test servers.

Figure 50-30 Test Results Dialog

Test results are displayed in three collapsible tables, from master to details.
Table 50-17 provides details.

Deploying and Running a Test Suite

Automating Testing of SOA Composite Applications 50-39

Table 50-17 Test Results Tables

Test Runs Test Cases Assert Results

Shows the current test run
and its status summary if
you just submitted a test
run. If you just queried the
test server for test runs, the
table shows all test runs
matching your query
criteria.

• Name of the test run
that you entered in the
Test Run dialog.

• Status of the test run:
either passed or failed.
The status is passed if
all test cases in the test
run passed. Otherwise,
the status is failed,
which means at least
one test case failed.

• Success percentage of
the test run.

• Total number of test
cases.

• Number of passed,
failed, in error, and
running test cases.

• Start and end times for
a test run.

Shows all test cases and the
statuses of the selected test
run from the Test Runs
table. Click the Refresh
button to refresh the test
case statuses.

• Test file name of the
test case. Click to
access its test editor.

• Status of the test case,
either passed or failed.
The status is passed if
all assertions in the test
case passed.
Otherwise, the status is
failed, which means at
least one assertion
failed.

• Test suite of the test
case.

Shows all assertion results
of the selected test case
from the Test Cases table.

• Assertion location.
This is the wire source
(service or reference)
for a wire assert and
the component (BPEL
process) activity name
for a component assert.
This is a hyperlink to
the location of the
assert in its test editor.
Figure 50-31 provides
details.

• Assertion status:
Passed or failed. The
status is passed if the
actual value matches
the expected value.

• Expected and actual
values of the assert.
This is a simple value
if it is a simple value
assert and a hyperlink
to a popup to show the
XML value if it is an
XML value assert.

• Error message if the
status is failed.

• Assertion type: either
wire or component.
Wire means to assert
on a composite wire.
Component means to
assert within a
component (BPEL
process).

• Assertion description
that you entered for
the assertion when
created.

Deploying and Running a Test Suite

50-40 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 50-31 Assertion XML Results

7. Perform the following additional tasks in the Test Runs table in Figure 50-30:

a. Click the Search icon above the Test Runs table to query test runs from the
test server by specifying search criteria.

b. Click the Refresh icon above the Test Runs table to refresh the status of test
runs.

8. Perform the following additional tasks in the Test Cases table in Figure 50-30:

a. Click the Refresh icon above the Test Cases table to refresh the test case
statuses.

9. Perform the following additional tasks in the Asserts Results table in
Figure 50-30:

a. Select the Show Failures Only check box above the Asserts Results table to
show failed asserts only.

50.6.2 How to Deploy and Run a Test Suite from Oracle Enterprise Manager Fusion
Middleware Control

For information about deploying a SOA composite application and running a test suite
from Oracle Enterprise Manager Fusion Middleware Control, see Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

50.6.3 How to Deploy and Run a Test Suite with a WLST Command
For information about using the sca_test WLST command to execute a test suite, see
Section "sca_test" of WLST Command Reference for SOA Suite.

Deploying and Running a Test Suite

Automating Testing of SOA Composite Applications 50-41

50.6.4 How to Deploy and Run a Test Suite with an ant Script
For information about using the ant-sca-test.xml ant script to execute a test suite,
see How to Use ant to Automate the Testing of a SOA Composite Application.

Deploying and Running a Test Suite

50-42 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Part IX
Advanced Topics

This part describes advanced topics.

This part contains the following chapters:

• Managing Large Documents and Large Numbers of Instances

• Customizing SOA Composite Applications

• Defining Composite Sensors

• Creating Dynamic Business Processes

• Integrating the Spring Framework in SOA Composite Applications

51
Managing Large Documents and Large

Numbers of Instances

This chapter describes the best practices for managing large documents and metadata
and managing environments with large numbers of instances in Oracle SOA Suite. It
also describes use cases for handling large documents, limitations on concurrent
processing of large documents, and tuning recommendations.

This chapter includes the following sections:

• Best Practices for Handling Large Documents

• Best Practices for Handling Large Metadata

• Best Practices for Handling Large Numbers of Instances

For more information about Oracle SOA Suite tuning and performance, see Tuning
Performance.

For information about troubleshooting Oracle SOA Suite issues, see Chapter
"Troubleshooting Oracle SOA Suite and Oracle BPM Suite" of Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

For information about using Oracle Data Integrator to perform fast bulk data
movement and handle complex data transformations, visit the following URL:

http://www.oracle.com/technetwork/middleware/data-integrator

51.1 Best Practices for Handling Large Documents
This section describes the following scenarios for handling large documents and the
best practice approach for each scenario. Oracle recommends that you follow these
best practices before developing and executing large payloads.

51.1.1 Use Cases for Handling Large Documents
This section describes use cases for handling large documents.

51.1.1.1 Passing Binary Objects as Base64-Encoded Text in XML Payloads

This section describes use cases for passing binary objects as Base64-encoded text in
the XML payload.

51.1.1.1.1 SOAP Inline

In this use case, the binary attachments (for example, an image) are Base64-encoded as
text and then passed inline in the XML document. Table 51-1 provides details.

Managing Large Documents and Large Numbers of Instances 51-1

http://www.oracle.com/technetwork/middleware/data-integrator

Table 51-1 Capabilities

Capability Description

Security Supported.

Filter/Transformation/
Assign

Use of transformations may lead to slower performance, out-
of-memory errors, or both.

Fanout Supported.

Binding WS binding sends it as a document object model (DOM).

Oracle BPEL Process
Manager/Oracle Mediator

Can be decoded in a BPEL process using Java exec.

51.1.1.1.2 SOAP MTOM

In this use case, the binary attachments (for example, an image) are Base64-encoded as
text and then passed as a Message Transmission Optimization Mechanism (MTOM)
document. Table 51-2 provides details.

Table 51-2 Capabilities

Capability Description

Security Supported.

Filter/Transformation/
Assign

Assign activities are supported.

Fanout Supported.

Binding WS binding materializes the attachment sent as MTOM and
puts it inside in Base64-encoded format (streaming is not
supported).

Oracle BPEL Process
Manager/Oracle Mediator

No additional work is required.

51.1.1.1.3 Opaque Passed by File/FTP Adapters

In this use case, the binary attachments (for example, an image) are Base64-encoded as
text and then passed inline in the XML document. Table 51-3 provides details.

Table 51-3 Capabilities

Capability Description

Security Not supported.

Filter/Transformation/
Assign

Pass through.

Fanout Supported.

Binding Adapter encodes it to Base64 format.

Best Practices for Handling Large Documents

51-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 51-3 (Cont.) Capabilities

Capability Description

Oracle BPEL Process
Manager/Oracle Mediator

Supported. Opaque content cannot be manipulated in an
assign or a transform activity.

51.1.1.1.4 Opaque Passed by Oracle B2B

In this use case, the binary attachments (for example, an image) are Base64-encoded as
text encoded. Table 51-4 provides details.

Table 51-4 Capabilities

Capability Description

Security Not supported.

Filter/Transformation/
Assign

Pass through.

Fanout Supported.

Oracle B2B Oracle B2B encodes the native payload to Base64 format. For
this scenario, you must configure the Oracle B2B binding
document definition handling to be opaque.

51.1.1.2 End-to-End Streaming with Attachments

This section describes use cases for end-to-end streaming of attachments.

Note:

Direct Internet Message Encapsulation (DIME) attachments are not supported.

51.1.1.2.1 SOAP with Attachments

In this use case, the binary attachments (for instance, an image) are passed end-to-end
as a stream. Table 51-5 provides details.

Table 51-5 Capabilities

Capability Description

Security Not supported.

Filter/Transformation/
Assign

Pass through. You must use an XPath extension function in
Oracle BPEL Process Manager.

Binding WS binding creates stream iterators for the SOAP attachment.

Oracle BPEL Process
Manager/Oracle Mediator

Oracle Mediator can perform a pass through without
materializing it. Oracle BPEL Process Manager persists it.

Tuning Manage the database tablespace when using with Oracle
BPEL Process Manager.

Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 51-3

Table 51-5 (Cont.) Capabilities

Capability Description

WSDL code for defining
SOAP with attachments <mime:part>

 <mime:content part="bin" type=“image/jpeg"/>
</mime:part>

Note:

• You cannot stream attachments as part of a web service callback response.

• The spring service component does not support processing MIME
attachments. Only MTOM attachments are supported.

• You can use various binding components such as direct binding, web
services, and so on to process large attachments. However, processing
large attachments with direct binding is not recommended and results in
out-of-memory errors.

51.1.1.2.2 Working with Streaming Attachments

Oracle Fusion Middleware web services enable you to pass large attachments as a
stream. Unlike the JAX-RPC API, which treats attachments as if they are entirely in
memory, streams make the programming model more efficient to use. Streams also
enhance performance and scalability because there is no need to load the attachment
into memory before service execution.

As with embedded attachments, streamed attachments conform to the multipart
MIME binary format. Embedded attachments refer to inlined/encoded attachments.

On the wire, messages with streamed attachments are identical to any other SOAP
message with attachments.

The following example provides a sample message with a streamed attachment. The
first part in the message is the SOAP envelope (<SOAP-ENV:Envelope...). The
second part is the attachment (for this example, myImage.gif).

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: NotSure/DoesntMatter

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
. . .
<DocumentName>MyImage.gif</DocumentName>
. . .
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Best Practices for Handling Large Documents

51-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

--MIME_boundary
Content-Type: image/gif
Content-Transfer-Encoding: binary
Content-ID: AnythingYoudLike

...binary GIF image...
--MIME_boundary--

51.1.1.2.3 Creating Composites that Use MIME Attachments

Perform the following procedures to create composites that use MIME attachments.

To create composites that use MIME attachments:

1. Create a composite using a payload schema (for example, an inbound web service
wired to an Oracle Mediator wired to an outbound web service).

2. Within the WSDL file of Oracle Mediator, perform the following steps:

a. From the WSDL designer, open the Oracle Mediator WSDL file.

b. Drag and drop bindings into the middle swimlane.

c. Select the RPC binding.

d. Enter a name.

e. Go to Source view of the WSDL and modify the WSDL input and WSDL
output with MIME multiparts.

<wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="payload" use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="bin" type="application/octet-stream"/>
 </mime:part>
 </mime:multipartRelated>
</wsdl:input>

f. Add the MIME part in the request/response message.

<wsdl:message name="BPELProcess1RequestMessage">
 <wsdl:part name="payload" element="ns1:purchaseOrder" />
 <!--add below part-->
 <wsdl:part name="bin" type="xsd:base64Binary"/>
</wsdl:message>

g. Add a namespace in the WSDL definitions.

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/">

When complete, the WSDL that references a MIME attachment is displayed.

<wsdl:definitions
 name="PhotoCatalogService"
 targetNamespace="http://examples.com/PhotoCatalog"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 51-5

 xmlns:types="http://examples.com/PhotoCatalog/types"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:tns="http://examples.com/PhotoCatalog">
 <wsdl:message name="addPhotoRequest">
 <wsdl:part name="photo" type="xsd:hexBinary"/>
 </wsdl:message>
 <wsdl:message name="addPhotoResponse">
 <wsdl:part name="status" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="replacePhotoRequest">
 <wsdl:part name="oldPhoto" type="xsd:string"/>
 <wsdl:part name="newPhoto" type="xsd:hexBinary"/>
 </wsdl:message>
 <wsdl:message name="replacePhotoResponse">
 <wsdl:part name="status" type="xsd:string"/>
 </wsdl:message>
 <wsdl:portType name="PhotoCatalog">
 <wsdl:operation name="addPhoto">
 <wsdl:input message="tns:addPhotoRequest"/>
 <wsdl:output message="tns:addPhotoResponse"/>
 </wsdl:operation>
 <wsdl:operation name="replacePhoto">
 <wsdl:input message="tns:replacePhotoRequest"/>
 <wsdl:output message="tns:replacePhotoResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="PhotoCatalogBinding" type="tns:PhotoCatalog">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="addPhoto">
 <wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="photo"
 type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:input>
 <wsdl:output>
 <mime:multipartRelated>
 <mime:part>
 <soap:body use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="status" type="text/plain"/>
 <mime:content part="status" type="text/xml"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="replacePhoto">
 <wsdl:input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="oldPhoto" use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="newPhoto"

Best Practices for Handling Large Documents

51-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </wsdl:input>
 <wsdl:output>
 <soap:body parts="status" use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

51.1.1.2.4 Performance Overhead and Pass Through Attachments

Because Oracle Mediator is stateless, there is no performance overhead with pass
through attachments. However, Oracle BPEL Process Manager dehydrates
attachments and has performance overhead, even for pass through attachments. When
using Oracle BPEL Process Manager for attachments over a period, the SOA
Infrastructure schema can grow to its maximum size and encounter memory issues. It
is recommended that you extend the database tablespace appropriately for the SOA
Infrastructure schema to accommodate large attachments. Simultaneously, you can
use purge scripts to purge completed instances along with the attachments table.

For information about purge scripts, see Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

For information about extending tablespaces, see Section "Extending Tablespaces to
Avoid Problems at Runtime" of Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

In scenarios in which one BPEL process calls a second BPEL process within the same
composite, the second BPEL process does not dehydrate the same attachment again.

In scenarios in which one BPEL process from composite 1 invokes a second BPEL
process from composite 2 and optimization is disabled, composite 1 makes a SOAP
call to composite 2. The second BPEL process does dehydrate attachments.

51.1.1.2.5 Properties for Streaming Attachments

To stream attachments, add the following properties in the composite.xml file. If
optimization is enabled, then a native call is used instead of a SOAP call. The
following example provides details.

<binding.ws
port="http://services.otn.com#wsdl.endpoint(MIMEService/MIMEService)"
xmlns:ns="http://xmlns.oracle.com/sca/1.0"
streamIncomingAttachments="true" streamOutgoingAttachments="true">
<!--Add this prop to reference bindings to make a SOAP call. -->
<property name="oracle.webservices.local.optimization">false</property>
</binding.ws>

For information about the oracle.webservices.local.optimization property,
see Section "Policy Attachments and Local Optimization in Composite-to-Composite
Invocations" and Section "Configuring Local Optimization" in the Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 51-7

Note:

Oracle Web Services Manager (OWSM) does not inspect or enforce policies on
streamed attachments. For more information about OWSM, see Administering
Web Services.

51.1.1.2.6 Streaming Attachments from the SOA Web Service Binding Layer

You can receive the error shown in the following example when steaming attachments
from the SOA web service (WS) binding layer.

java.lang.OutOfMemoryError: Java heap space
 at java.util.Arrays.copyOf(Arrays.java:2271)
 at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:113)
 at
java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
 at
java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:140)
 at

To resolve this error, add the following properties in the composite.xml file for
service and reference binding components.

• streamIncomingAttachments="true"

• streamOutgoingAttachments="true"

See the preceding section for information about setting these properties.

51.1.1.2.7 Reading and Encoding SOAP Attachment Content

The ora:getAttachmentContent function reads SOAP attachment content and
encodes that data in Base64 format in a BPEL process by providing the BPEL variable
as an argument, which has an href of the SOAP attachment. The following example
shows how to use this function:

<copy>
 <from expression="ora:getAttachmentContent('input','bin')"/>
 <to variable="initiateTaskInput" part="payload"
 query="/taskservice:initiateTask/task:task/task:attachment/task:content"/>
</copy>

The preceding example copies the attachment content, which has its href stored in
the "input/bin" variable, to the content variable in Base64-encoded format.

51.1.1.2.8 Sending Attachment Streams

Oracle BPEL Process Manager supports sending the attachment stream to multiple
receivers. For Oracle BPEL Process Manager to send a stream to multiple receivers, it
must read the attachment stream from the database using the readBinaryFromFile
XPath function and pass the stream to the appropriate targets.

With the default configuration, Oracle Mediator can pass an attachment stream to only
one target receiver, which can be another component or a web service/adapter. The
second target cannot receive the attachment. When you define the
persistStreamAttachment property for the Oracle Mediator component, Oracle
Mediator can pass an attachment stream to multiple target receivers.

Oracle Mediator requires the persistStreamAttachment property for streaming
attachments where the source message that contains the attachment is shared by

Best Practices for Handling Large Documents

51-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

multiple target receivers. Set this property to true in composite.xml to enable the
streaming of attachments to multiple targets. The following example provides details.

component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>
 <property name="persistStreamAttachment">true</property>
</component>

51.1.1.2.9 Overriding Pass Through Settings for Attachments in Oracle Mediator

Oracle Mediator automatically propagates attachments to target receivers for Oracle
Mediator components that are pass through (that is, they do not contain a
transformation or assign rule), and it does not propagate attachments for Oracle
Mediator components that are not pass through. The passThroughAttachment
property lets you override the pass through settings just for attachments. Setting this
property to true copies all attachments to the target receiver implicitly.

Use this property to propagate attachments when the Oracle Mediator component is
not a pass through, or use it to block attachments when the Oracle Mediator
component is pass through. To implement the pass through attachment override, add
the property to the project's composite.xml file in the component element for the
Oracle Mediator component. Set the property to true to override an Oracle Mediator
component that is not pass through. Set it to false to override a pass through
component. The following example provides details:

<component name="Mediator">
 <implementation.mediator src="Mediator.mplan"/>
 <property name="passThroughAttachment">true</property>
</component>

51.1.1.2.10 Sharing Attachments Using Synchronous Flows

When Oracle BPEL Process Manager-based composites share attachments using
synchronous flows, it is necessary to use the same end-to-end transaction. This is
applicable to composites that are colocated and use local/optimized calls. This can be
achieved by setting the property shown in the following example on all the called
BPEL components (callees) in the call chain:

<property name="bpel.config.transaction" many="false"
type="xs:string">required</property>

If such composites do not execute as part of the same transaction context, the
attachment data saved by the first BPEL component in the call chain is not visible to
the other BPEL components in the call chain. In addition, they incur database locking
and timeout exceptions:

"ORA-02049: timeout: distributed transaction waiting for lock"

51.1.1.2.11 Attachment Options of File/FTP Adapters

In this use case, the adapter streams the binary data to a database store and publishes
an href to the service engine (Oracle BPEL Process Manager or Oracle Mediator).
Table 51-6 provides details.

Table 51-6 Capabilities

Capability Description

Security N/A.

Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 51-9

Table 51-6 (Cont.) Capabilities

Capability Description

Filter/Transformation/
Assign

Filters and transformations on the attachment are not
supported.

Fanout Supported.

Binding The adapter streams the non-XML to the database as a binary
large object (BLOB) and passes the key to the service engines.

Oracle BPEL Process
Manager/Oracle Mediator

Supported.

Tuning • Extend the database tablespace for the Oracle SOA Suite
schema.

• Delete the attachments after message processing
completion.

Documentation See Understanding Technology Adapters.

Writing Attachments Using an Outbound File Adapter

The following example shows a sample schema that can be used by the file adapter to
write attachments to disk:

<?xml version="1.0" encoding="windows-1252" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://xmlns.oracle.com/attachment"
 targetNamespace="http://xmlns.oracle.com/attachment"
 elementFormDefault="qualified">
 <xsd:element name="attach">
 <xsd:complexType>
 <xsd:attribute name="href" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Use Oracle Mediator in the flow to map the attachment part from the source (Oracle
Mediator) to the target (file adapter) using an Oracle Mediator assign.

If you use Oracle BPEL Process Manager, the attachment is written to the dehydration
store, which slows down the process.

Transforming Attachments with the ora:doStreamingTranslate XPath Function

Use of the ora:doStreamingTranslate XPath function is only recommended
while transforming attachments within an Oracle BPEL Process Manager or Oracle
Mediator service component. This function expects the attachment location to be a
relative path on the server. This function cannot translate incoming attachment
streams.

For more information about this function, see doStreamingTranslate.

51.1.1.2.12 Oracle B2B Attachment

In this use case, Oracle B2B stores the binary data to a database and publishes an href
to the service engine (Oracle BPEL Process Manager or Oracle Mediator) based on an

Best Practices for Handling Large Documents

51-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Oracle B2B-defined XSD. Oracle B2B protocols define the attachment. Table 51-7
provides details.

Table 51-7 Capabilities

Capability Description

Security N/A.

Filter/Transformation/
Assign

Filters and transformations on the attachment are not
supported.

Fanout Supported.

Binding Oracle B2B passes it as an href key to service engines.

Tuning Extend the database tablespace for the Oracle SOA Suite
schema.

51.1.1.3 Sending and Receiving MTOM-Optimized Messages to SOA Composite
Applications

Within a SOA composite application, you must attach the Oracle WS-MTOM policy to
service and reference binding components to receive and send MTOM (MIME binary)
optimized messages. When a service binding component (defined under binding.ws
in the composite.xml file) is configured with an Oracle WS-MTOM policy, Oracle
SOA Suite's MTOM message handling feature is used. When a reference binding
component (also defined under binding.ws in the composite.xml file) is
configured with an Oracle MTOM policy, Oracle SOA Suite sends MTOM-optimized
messages.

Note the following issues with MTOM attachments:

• When attachments are inline and encoded, Oracle recommends that you not use
the file adapter to write attachments to a file.

• The default mtomThreshold value is 1024 bytes and cannot be modified. If an
attachment is less than 1024 bytes, for outbound configurations, Oracle SOA Suite
sends it as an inline attachment. If the size is greater than 1024 bytes, then the
attachment is sent as an attachment part with an href attribute in the message,
and is sent as a WSDL-defined format on the wire. However, if the incoming
request (for example, from a different web services provider) has an xop href
node for small binary data (that is, size is less than 1024 bytes), Oracle SOA Suite
uses the same href attribute in the payload in the flow trace. For example:

<xop:Include xmlns:xop="http://www.w3.org/2004/08/xop/include"
 href="cid:e29caf23dc8045908451fdfaafa26dce" />

• If a service binding component of a composite does not include an Oracle WS-
MTOM policy reference, this indicates that the service can accept non-MTOM
messages. This indicates that the calling composite (the appropriate reference
binding) does not have an Oracle WS-MTOM policy reference and can send out
non-MTOM messages to that service.

• MTOM streaming of attachments is not supported by Oracle SOA Suite.

• MTOM attachments are supported only with web service bindings. Other
bindings (for example, HTTP bindings) are not supported.

Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 51-11

• Oracle Mediator pass through scenarios are supported. If Oracle Mediator does
not contain any transformation or assign statements, it is known as a pass through
Oracle Mediator. The message and attachment received are propagated to the
target without modifying the payload and attachment. Likewise, multiple MTOM
attachments in the same message can be sent and received by Oracle SOA Suite.

• Oracle recommends that you not use both streaming and the MTOM message
handling feature for sending and receiving attachments. Use either streaming or
the MTOM message handling feature.

Note:

If the input is of type text/xml, there is no significant decrease in file size
when sending files in MTOM format.

• As a best practice, Oracle recommends that you not use the XSLT Map Editor to
propagate binary data. Instead, use an assign activity. If you must use a style
sheet to propagate binary data, it is recommended that you use the xsl:copy-of
instruction (copy-of copies everything, including attributes) or use custom
functions to copy attributes from source to target.

• MTOM attachments should not be gigabytes in size. Instead, use the SOAP with
attachments streaming feature for very large attachments. For more information,
see SOAP with Attachments.

51.1.1.3.1 Scenarios for Storing SwA and MTOM-Optimized Attachments to the Database

When a SOA composite application with a BPEL process receives an MTOM-
optimized SOAP message, the attachment contents of each of the MTOM-optimized
elements (the ones with an <xop href="">) are stored in the dehydration store.
Similarly, when receiving a SOAP message with attachments (SwA) message with one
or more attachments, each attachment is stored in the dehydration store. These
attachments can then be passed around by reference using an href attribute that
identifies them in the database. In fact, all of the text content of these attachment
elements is removed and replaced by this href attribute. For MTOM-optimized
messages, the same value of the incoming href attribute from the <xop> element is
reused. Similarly, for SwA, the href attributes of the attachment elements are reused.

The attachments are stored in the dehydration store when the message is delivered to
the BPEL process service engine. (when the incoming message is saved into the
DLV_MESSAGE table). Therefore, it is applicable only for one-way and asynchronous
BPEL processes with bpel.config.oneWayDeliveryPolicy set to
async.persist (the default value) in the composite.xml file.

Attachments are not persisted in the following use cases:

• If the SOAP message was received by a synchronous BPEL process or a one-way/
asynchronous BPEL process with bpel.config.oneWayDeliveryPolicy set
to sync or async.cache.

• Contents of all elements within the SOAP request with inline binary content are
not persisted, but passed as-is. (That is, they do not have a child element
<xop:Include>, but do have a base64 encoded string as a child.) An MTOM-
optimized message can be a mix of one or more elements that have inline base64
data, and one or more elements that are XOP-packaged, at any level.

Best Practices for Handling Large Documents

51-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

Even if the service binding component is MTOM-enabled, it does not
automatically indicate that the service receives MTOM-optimized messages.
The calling service/application must send MTOM-optimized messages over
the wire to ensure the message is received. MTOM-enabled bindings can also
receive ordinary non-MTOM messages. Therefore, when it receives one, the
SOAP requests arriving into the service can have nonoptimized inline binary
data elements that are not be persisted into the database.

Even though the content of the MTOM-optimized elements or SwA attachments have
their value replaced by an href attribute at runtime, their design-time WSDLs still
remain unaltered. You do not see these changes in Oracle JDeveloper. Their element
type definitions do not change from hexBinary, base64Binary, and so on to that of an
empty content with an href attribute.

However, this is transparent to you. For instance, when you use an assign activity to
copy across their content, the href values are copied over at runtime. Similarly, when
invoking an outbound reference such as a web service or an adapter, Oracle SOA Suite
automatically resolves the href attribute to the actual data and executes the
invocation.

51.1.1.4 Processing Large XML with Repeating Constructs

This section describes use cases for processing large XML with repeating constructs.

51.1.1.4.1 Debatching with the File/FTP Adapter

In this use case, the inbound adapter splits a source document into multiple batches of
records, each of which initiates a composite instance. Table 51-8 provides details.

Table 51-8 Capabilities

Capability Description

Security N/A.

Filter/Transformation/
Assign

Supported.

Fanout Supported.

Binding The file/FTP adapter debatches it to a small chunk based on
the native XSD (NXSD) definition.

Oracle BPEL Process
Manager/Oracle Mediator

Supported.

Tuning For repeating structures, XSLT is supported for scenarios in
which the repeating structure is of smaller payloads
compared to the overall payload size. Substitution with assign
activities is preferred, as it performs a shadow copy.

Documentation See Understanding Technology Adapters.

51.1.1.4.2 Chunking with the File/FTP Adapters

Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 51-13

In this use case, a loop within a BPEL process reads a chunk of records at a time and
process (that is, cursor). Table 51-9 provides details.

Table 51-9 Capabilities

Capability Description

Security Supported.

Filter/Transformation/
Assign

Supported.

Fanout Supported.

Oracle BPEL Process
Manager/Oracle Mediator

Supported only from Oracle BPEL Process Manager.

Documentation See Understanding Technology Adapters.

51.1.1.5 Processing Large XML Documents with Complex Structures

This section describes use cases for processing very large XML documents with
complex structures.

51.1.1.5.1 Streaming with the File/FTP Adapters

In this use case, very large XML files are streamed through Oracle SOA Suite.
Table 51-10 provides details.

Table 51-10 Capabilities

Capability Description

Security N/A.

Filter/Transformation/
Assign

Supported, but must optimize to avoid issues.

Fanout Supported.

Binding The adapter streams the payload to a database as an SDOM
and passes the key to the service engines.

Documentation See Understanding Technology Adapters.

51.1.1.5.2 Oracle B2B Streaming

In this use case, large XML files are passed by Oracle B2B to Oracle SOA Suite as an
SDOM. This only occurs when a large payload size is defined in the Oracle B2B user
interface. Table 51-11 provides details.

Table 51-11 Capabilities

Capability Description

Security N/A.

Filter/Transformation/
Assign

Supported, but must optimize to avoid issues.

Best Practices for Handling Large Documents

51-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 51-11 (Cont.) Capabilities

Capability Description

Fanout Supported.

Binding Oracle B2B streams the payload to a database as SDOM and
passes the key to the service engines.

Oracle BPEL Process
Manager/Oracle Mediator

Can use an XPath extension function to manipulate the
payload.

51.1.2 Limitations on Concurrent Processing of Large Documents
This section describes the limitations on concurrent processing of large documents.

51.1.2.1 Opaque Schema for Processing Large Payloads

There is a limitation when you use an opaque schema for processing large payloads.
The entire data for the opaque translator is converted to a single Base64-encoded
string. An opaque schema is generally used for smaller data. For large data, use the
attachments feature instead of the opaque translator.

51.1.3 JVM Memory Sizing Recommendations for SOA Composite Applications
Sending messages with payloads that are 100 MB or larger in size can exceed JVM
heap size limits if not correctly tuned.

For example, when sending large payloads in the event delivery network (EDN) with
Oracle advanced queueing (AQ) JMS, ensure that you set the maximum memory value
by first testing with a typical message payload size and a maximum potential message
size. Using a lesser memory value can result in an ORACLE.JMS.AQJMSEXCEPTION
error. For example, to send a payload of 100 MB, it is recommended that you change
the JTA time out and maximum memory to 5 GB.

For more information about tuning the JVM heap size, see General Tuning
Recommendations and Section "Java HotSpot VM Heap Size Options" of Tuning
Performance of Oracle WebLogic Server.

51.1.4 General Tuning Recommendations
This section provides general tuning recommendations.

For more information about Oracle SOA Suite tuning and performance, see Tuning
Performance.

51.1.4.1 General Recommendations

This section provides general tuning recommendations.

• Increase the JTA transaction timeout to 500 seconds in Oracle WebLogic Server
Administration Console. For instructions, see section "Resolving Connection
Timeouts" of Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

• In Oracle Enterprise Manager Fusion Middleware Control, set the audit level to
Off or Production at the SOA composite application level. See Setting Audit
Levels from for Large Payload Processing for additional information.

Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 51-15

• Uncomment the following line in setDomainEnv.sh (for Linux) or
setDomainEnv.bat (for Windows) for JAVA_OPTIONS, and restart the server. If
this line does not exist, add it. Without this setting, large payload scenarios fail
with a ResourceDisabledException error for the dehydration data source.

-Dweblogic.resourcepool.max_test_wait_secs=30

• Update the heap size in setSOADomainEnv.sh or setDomainEnv.bat as
follows:

DEFAULT_MEM_ARGS="-Xms1024m -Xmx2048m"

• Use optimized translation functions, which are available while performing
transformations and translations of large payloads (for example,
ora:doTranslateFromNative, ora:doTranslateToNative,
ora:doStreamingTranslate, and so on).

For information about these functions, see XPath Extension Functions.

• Extend data files for handling large attachments.

• Increase the HTTP POST timeout for SocketException: Broken pipe errors
in Oracle WebLogic Server Administration Console. See Increasing the HTTP
POST Timeout

• If you are processing large documents and run into timeout errors, perform the
following tasks:

– Increase the timeout property value.

– Increase the Stuck Thread Max Time property value.

For more information, see Increasing the Timeout Value.

51.1.4.1.1 Increasing the HTTP POST Timeout

Increase the HTTP POST timeout for SocketException: Broken pipe errors in
Oracle WebLogic Server Administration Console.

1. From the Domain Structure, select soainfra > servers > server_name > Protocols
> HTTP.

2. In the Post Timeout field, enter 120 (maximum).

51.1.4.1.2 Increasing the Timeout Value

Increase the timeout property value as follows:

1. Log in to Oracle Web Services Manager Administration Console.

2. Navigate to Deployments > soa-infra > EJBs.

3. Click each of the following beans, select Configuration, and increase the timeout
value:

• BpelEngineBean

• BpelDeliveryBean

• CompositeMetaDataServiceBean

Best Practices for Handling Large Documents

51-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To increase the Stuck Thread Max Time property value:

Follow the instructions in Chapter "Using the WebLogic 8.1 Thread Pool Model" of
Tuning Performance of Oracle WebLogic Server.

51.1.4.2 Setting Audit Levels from Oracle Enterprise Manager for Large Payload
Processing

For large payload processing, turn off audit level logging for the specific composite.
You can set the composite audit level option to Off or Production in Oracle Enterprise
Manager Fusion Middleware Control. If you set the composite audit level option to
Development, it serializes the entire large payload into an in-memory string, which
can lead to an out-of-memory error.

For more information about setting audit levels, see Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

51.1.4.3 Using the Assign Activity in Oracle BPEL Process Manager and Oracle
Mediator

When using the assign activity in Oracle BPEL Process Manager or Oracle Mediator to
manipulate large payloads, do not assign the complete message. Instead, assign only
the part of the payload that you need.

In addition, when using the assign activity in Oracle BPEL Process Manager, Oracle
recommends using local variables instead of process variables, wherever possible.
Local variables are limited to the scope of the BPEL process. These get deleted from
memory and from the database after you close the scope. However, the life cycle of a
global variable is tied with the instance life cycle. These variables stay in memory or
remain on disk until the instance completes. Thus, local variables are preferred to
process or global variables.

51.1.4.4 Using XSLT Transformations on Large Payloads (For Oracle BPEL Process
Manager)

Until 11g Release 1 11.1.1.3, for XSLT operations in Oracle BPEL Process Manager, the
result was cached into memory as a whole document in binary XML format. For large
document processing, this caused out-of-memory errors. Starting with 11g Release 1
11.1.1.4, a the streamResultToTempFile property was added. This property
enables XSLT results to be streamed to a temporary file and then loaded from the
temporary file. Set streamResultToTempFile to yes when processing large
payload using XSLT. The default value is no.

This property is applicable when using the following BPEL XPath functions:

• ora:processXSLT('template','input','properties'?)

• ora:doXSLTransformForDoc('template','input','name', 'value')

To configure large XML documents to be processed using XSLT:

1. Create a BPEL common properties schema. For example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace ="http://schemas.oracle.com/service/bpel/common"
 xmlns:common = "http://schemas.oracle.com/service/bpel/common"
 xmlns:xs = "http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" blockDefault="#all">

 <xs:element name="serviceProperties" type="common:PropertiesType"/>

Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 51-17

 <xs:element name="anyProperties" type="common:ArrayOfNameAnyTypePairType"/>
 <xs:complexType name="NameValuePairType">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ArrayOfNameValuePairType">
 <xs:sequence>
 <xs:element name="item" type="common:NameValuePairType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="NameAnyTypePairType">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="value" type="xs:anyType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ArrayOfNameAnyTypePairType">
 <xs:sequence>
 <xs:element name="item" type="common:NameAnyTypePairType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="PropertiesType">
 <xs:sequence>
 <xs:element name="property" type="common:NameValuePairType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ArrayOfAnyTypeType">
 <xs:sequence>
 <xs:element name="item" type="xs:anyType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

2. Within a BPEL process, add the namespace in the import section:

xmlns:common = "http://schemas.oracle.com/service/bpel/common"

3. Create a global variable (for this example, named propertiesXMLVar):

<variable name="propertiesXMLVar" element="common:anyProperties"/>

4. Set the streamResultToTempFile property to yes. This assign activity should
exist before performing an XSLT transformation.

<assign name="Assign_xsltprop">
 <copy>
 <from>
 <common:anyProperties>
 <common:item>
 <common:name>streamResultToTempFile</common:name>
 <common:value>yes</common:value>
 </common:item>
 </common:anyProperties>
 </from>
 <to variable="propertiesXMLVar"/>
 </copy>
</assign>

Best Practices for Handling Large Documents

51-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

51.1.4.5 Using XSLT Transformations on Large Payloads (For Oracle Mediator)

Until 11g Release 1 11.1.1.3, for XSLT operations in Oracle Mediator, the result was
cached into memory as a whole document in binary XML format. For large document
processing, this caused out-of-memory errors. Starting with 11g Release 1 11.1.1.4, the
streamResultToTempFile property was added. This property enables XSLT results
to be streamed to a temporary file and then loaded from the temporary file. Set
streamResultToTempFile to yes when processing large payloads using XSLT. The
default value is no.

Note:

This property is recommended only for processing large payloads. Enabling
this property could reduce performance for normal payloads.

To configure large XML documents to be processed using XSLT:

1. Create an Oracle SOA Suite project with an Oracle Mediator component.

2. Open the composite.xml file for the project in Source view.

3. In the composite.xml file, scroll to the component element that defines the
Oracle Mediator component to process large XML documents, and add the
streamResultToTempFile property. Set the property to yes as shown below.

<component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>
 <property name="streamResultToTempFile">yes</property>
</component>

4. Save and close the file.

51.1.4.6 Using XSLT Transformations for Repeating Structures

In scenarios in which the repeating structure is of smaller payloads compared to the
overall payload size, Oracle recommends using XSLT transformations because the
current XSLT implementation materializes the entire DOM in memory. For example,
use PurchaseOrder.LineItem.Supplier (a subpart of a large payload).

You can also substitute it with the assign activity, as it performs a shadow copy.
Although a shadow copy does not materialize DOM, it creates a shadow node to point
to the source document.

You can also use the following optimized translation functions while performing
transformations/translations of large payloads:

• ora:doTranslateFromNative or med:doTranslateFromNative

• ora:doTranslateToNative or med:doTranslateToNative

• ora:doStreamingTranslate or med:doStreamingTranslate

For more information about these functions, see XPath Extension Functions and
Understanding Technology Adapters.

51.1.4.7 Processing Large Documents in Oracle B2B

For processing large documents in Oracle B2B, tune the following parameters:

Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 51-19

• mdsCache

• Cache Size

• Protocol Message Size

• Number of threads

• Stuck Thread Max Time

• Tablespace

• Large payload size

The following sections describe the parameters you must set for processing large
documents in Oracle B2B. For more information, see Section "Using Document
Streams to Handle Large Payloads" of User's Guide for Oracle B2B.

51.1.4.7.1 MDSInstance Cache Size

To set the Oracle Metadata Services (MDS) Repository instance cache size, use Oracle
Enterprise Manager Fusion Middleware Control. This property depends on the size of
the metadata. Specify a value based on the metadata/endpoint count. The default
value is 100000. For information, see Section "Setting B2B Configuration Properties in
Fusion Middleware Control" of User's Guide for Oracle B2B.

51.1.4.7.2 Protocol Message Size

If Oracle B2B wants to send or receive more than 10 MB of message or the import/
export configuration is more than 10 MB, then change the following setting
accordingly at the Oracle WebLogic Server Administration Console:

To configure the protocol message size:

1. In the Domain Structure, select Environment > Servers.

2. In the Name column of the table, select soa_server.

3. Select the Protocols tab.

4. Change the value for Maximum Message Size.

This setting can also be added/modified in the $DOMAIN_HOME/config/
config.xml file next to the server name configuration, as shown in the following
example:

<name>soa_server1</name>
<max-message-size>150000000</max-message-size>

Note:

By default, max-message-size is not available in the config.xml file.

51.1.4.7.3 Number of Threads

This parameter improves the message processing capability of Oracle B2B and must be
set in the Oracle Enterprise Manager Fusion Middleware Control. For more

Best Practices for Handling Large Documents

51-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

information, see Section "Configuring Oracle B2B Server Properties" of Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

• b2b.inboundThreadCount

• b2b.inboundSleepTime

• b2b.outboundThreadCount

• b2b.outboundSleepTime

• b2b.defaultThreadCount

51.1.4.7.4 Stuck Thread Max Time Parameter

The Stuck Thread Max Time parameter checks the number of seconds that a thread
must continually work before the server considers the thread stuck. You must change
the following setting in the Oracle WebLogic Server Administration Console:

To configure the Stuck Thread Max Time parameter:

1. In the Domain Structure, select Environment > Servers.

2. In the Name column of the table, select soa_server.

3. Select the Tuning tab.

4. Change the value for Stuck Thread Max Time.

51.1.4.7.5 Tablespace

If you must store more than a 150 MB configuration in the data file, then you must
extend or add the data file to increase the tablespace size, as shown in the following
example:

ALTER TABLESPACE sh_mds add DATAFILE 'sh_mds01.DBF' SIZE 100M autoextend on next
 10M maxsize unlimited;
ALTER TABLESPACE sh_ias_temp add TEMPFILE 'sh_ias_temp01.DBF' SIZE 100M autoextend
 on next 10M maxsize unlimited;

51.1.4.8 Setting a Size Restriction on Inbound Web Service Message Size

If you want to set a size restriction on inbound web service message size, configure the
binding component property max-message-size in the composite.xml file. The
property value is made available to the underlying web service infrastructure, which
uses the value to test against the incoming message size. If the value specified is
exceeded, an exception is thrown indicating that the message size is too large and the
transaction is not processed. The following example provides details:

<composite name="LrgMsg" revision="1.0" label="2011-09-08_22-53-53_259"
 mode="active" state="on">
 <import namespace="http://xmlns.oracle.com/LargeMsg/LrgMsg/BPELProcess1"
 location="BPELProcess1.wsdl" importType="wsdl"/>
 <service name="bpelprocess1_client_ep" ui:wsdlLocation="BPELProcess1.wsdl">
 <interface.wsdl
 interface="http://xmlns.oracle.com/LargeMsg/LrgMsg/BPELProcess1# wsdl.interface
(BPELProcess1)"/>

<binding.ws port="http://xmlns.oracle.com/LargeMsg/LrgMsg/BPELProcess1
 #wsdl.endpoint(bpelprocess1_client_ep/BPELProcess1_pt)">

Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 51-21

 <property name="max-message-size" type="xs:integer" many="false"
 override="may">4</property>
</binding.ws>
</service>

 <component name="BPELProcess1" version="1.1">
 <implementation.bpel src="BPELProcess1.bpel"/>
 </component>

 <wire>
 <source.uri>bpelprocess1_client_ep</source.uri>
 <target.uri>BPELProcess1/bpelprocess1_client</target.uri>
 </wire>
</composite>

51.1.4.9 Using XPath Functions to Write Large XSLT/XQuery Output to a File System

You can use the following functions to write the results of large XSLT/XQuery
operations to a temporary file in a directory system. The document is then loaded
from the temporary file when needed. This eliminates the need for caching an entire
document as binary XML in memory.

• ora:processXSLT

• ora:doXSLTransformForDoc

With the ora:processXSLT function, you use the properties argument to enable
this functionality.

ora:processXSLT('template','input','properties'?)

You retrieve the value of this argument within your XSLT in a way similar to
extracting data from XSL variables. The properties argument is an XML element of
the structure shown in the example that follows. For large payload results (for
example, above 10 MB), set streamResultToTempFile to yes. For small payload
results in which you do not need to write results to a temporary file, leave this
property set to its default value of no.

<propertiesXMLVar>
 <common:item xmlns:common="http://schemas.oracle.com/service/bpel/common">
 <common:name>streamResultToTempFile</common:name>
 <common:value>yes</common:value>
 </common:item>
</propertiesXMLVar>

Within the XSLT, the parameters are accessible through the name of
streamResultToTempFile and its value of yes.

In Oracle BPEL Process Manager, a literal assign is performed to populate the
properties for ora:processXSLT('template','input','properties'?).

For more information about using this function, see processXSLT.

With the ora:doXSLTransformForDoc function, you set the name and value
properties to enable this functionality.

ora:doXSLTransformForDoc('template','input','name', 'value')

With this function, the name of streamResultToTempFile and the value of yes
are passed.

For more information about using the function, see doXSLTransformForDoc.

Best Practices for Handling Large Documents

51-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

51.2 Best Practices for Handling Large Metadata
This section provides recommendations for handling large metadata.

51.2.1 Boundary on the Processing of Large Numbers of Activities in a BPEL Process
There is a limit to the number of activities that can be executed in a BPEL process.
When you exceed this limit, system memory fills up, which can cause timeouts to
occur. For example, with the following parameters, two fault instances occur due to a
timeout:

• 100 threads

• 1 second of think time

• 1000 incoming request messages

Keep the number of incoming request messages at a proper level to ensure system
memory stability.

51.2.2 Using Large Numbers of Activities in BPEL Processes (Without FlowN)
To deploy BPEL processes that have a large number of activities (for example, 50,000),
the following settings are required:

MEM_ARGS: -Xms512m -Xmx1024m -XX:PermSize = 128m -XX:MaxPermSize = 256m
Number of Concurrent Threads = 20
Number of Loops = 5 Delay = 100 ms

The above settings enable you to deploy and execute BPEL processes, which use only
while loops without the flowN activities, successfully.

51.2.3 Using Large Numbers of Activities in BPEL Processes (With FlowN)
To deploy BPEL processes that have a large number of activities (for example, 50,000),
the following settings are required:

USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=256m
Number of Concurrent Threads= 10
Number of Loops=5 Delay=100 ms

Set the StatsLastN property to -1 in the System MBean Browser of Oracle Enterprise
Manager Fusion Middleware Control.

The above settings enable you to deploy and execute BPEL processes, which use the
flowN activities, successfully.

For more information, see Customizing the Number of Flow Activities with the flowN
Activity in BPEL 1.1 and Section "Configuring BPEL Process Service Engine
Properties" of Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

51.2.4 Using a Flow With Multiple Sequences
BPEL processes that have up to 7000 activities can be deployed and executed
successfully with the following settings:

USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -
XX:MaxPermSize=256m

Best Practices for Handling Large Metadata

Managing Large Documents and Large Numbers of Instances 51-23

Note:

If you deploy BPEL processes with more than 8000 activities, Oracle BPEL
Process Manager compilation throws errors.

51.2.5 Using a Flow with One Sequence
BPEL processes that have up to 7000 activities can be deployed and executed
successfully with the following settings:

USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -
XX:MaxPermSize=512m

Note:

If you deploy BPEL processes with more than 10,000 activities, the process
compilation fails.

51.2.6 Using a Flow with No Sequence
You can deploy and execute BPEL processes that have a large number of activities (for
example, up to 5000) successfully.

There is a probability that the BPEL process compilation may fail for 6000 activities.

51.2.7 Large Numbers of Oracle Mediators in a Composite
Oracle recommends that you not have more than 50 Oracle Mediators in a single
composite. Increase the JTA Transaction timeout to a high value based on the
environment.

51.2.8 Importing Large Data Sets in Oracle B2B
Oracle recommends that you do not use browsers for large data set imports, and that
you use the command line utility. The following utility commands are recommended
for large data configuration:

• purge: Purges the entire repository.

• import: Imports the specified ZIP file.

• deploy: Deploys an agreement with whichever name is specified. If no name is
specified, then all the agreements are deployed.

However, the purgeimportdeploy option is not recommended for transferring or
deploying the Oracle B2B configuration.

For more information, see User's Guide for Oracle B2B.

51.3 Best Practices for Handling Large Numbers of Instances
This section provides recommendations for handling large numbers of instance and
fault metrics.

Best Practices for Handling Large Numbers of Instances

51-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

51.3.1 Instance and Rejected Message Deletion with the Purge Script or Oracle
Enterprise Manager Fusion Middleware Control

You can delete thousands of instances and rejected messages with the PL/SQL purge
script or from the Auto Purge page in Oracle Enterprise Manager Fusion Middleware
Control.

For more information, see Administering Oracle SOA Suite and Oracle Business Process
Management Suite.

Best Practices for Handling Large Numbers of Instances

Managing Large Documents and Large Numbers of Instances 51-25

Best Practices for Handling Large Numbers of Instances

51-26 Developing SOA Applications with Oracle SOA Suite

52
Customizing SOA Composite Applications

This chapter describes how to customize SOA composite applications with the
customization feature available with a BPEL process service component. It describes
how to create a customizable application, customize the vertical version of the
application, and customize the customer version of the application. It also describes
how to upgrade to the next version of the application.

This chapter includes the following sections:

• Introduction to Customizing SOA Composite Applications

• Creating the Customizable Composite

• Customizing the Vertical Application

• Customizing the Customer Version

• Upgrading the Composite

52.1 Introduction to Customizing SOA Composite Applications
This section describes the life cycle for customizing SOA composite applications. For
example, assume the following organizations require use of the same composite, but
with slight modifications:

• A core applications development team

• A vertical applications team

• A customer

The core applications development team creates a base customizable composite and
delivers it to a vertical applications team that customizes it for a certain industry (for
example, telecommunications). The tailored solution is then sold to a
telecommunications customer that further customizes the composite for their specific
geographic business needs. Essentially, there is a base composite and several layers of
customized composites. At a later time in the composite life cycle, the core
applications development team creates the next version of the base composite,
triggering an upgrade cycle for the vertical applications team and the customer.

Layer values are the values for a given customization layer. It is a one-to-many
relationship from a layer to its layer values. You select a layer value from a layer to
perform customizations. For example, assume you specify a customization class
representing a customization layer called Country. You can then specify countries for
its values, such as USA, China, and India. When you restart Oracle JDeveloper in the
Customization Developer role to perform customizations, you must select one of the
layer values (that is, a country) of the layer from the Oracle JDeveloper Customization
Context window such as USA, which means you want to create the customization for
that country.

Customizing SOA Composite Applications 52-1

52.2 Creating the Customizable Composite
This section provides an overview of the steps required for creating the customizable,
base SOA composite application.

52.2.1 How to Create Customization Classes
This section describes how to create customization classes. In this example, you create
a class for a customization layer named MyCustomizationLayer.

To create customization classes:

1. Invoke the Create Java Class Wizard in Oracle JDeveloper by selecting File > From
Gallery > General > Java.

2. Create a Java class extending from the following class:

oracle.tip.tools.ide.fabric.custom.GenericSOACustomizationClass

3. Provide the following content for the customization class.

package myCustomizationPackage;

import oracle.tip.tools.ide.fabric.custom.GenericSOACustomizationClass;

public class MyCustomizationClass extends GenericSOACustomizationClass {

 public MyCustomizationClass() {
 super();

 // set the customization layer name
 setName("MyCustomizationLayer");
 }
}

For the customization class to have the correct customization layer, the
customization layer name must be set by adding the following to the constructor
without parameters:

 // set the customization layer name
 setName("MyCustomizationLayer");

You can also optionally remove the constructor with parameters.

The Create Java Class Wizard automatically generates the following content:

package myCustomizationPackage;

import oracle.tip.tools.ide.fabric.custom.GenericSOACustomizationClass;

public class MyCustomizationClass extends GenericSOACustomizationClass {
 public MyCustomizationClass(String string, String string1) {
 super(string, string1);
 }

 public MyCustomizationClass() {
 super();
 }
}

Creating the Customizable Composite

52-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To make the customization class effective, compile the customization class by
building the SOA project.

4. In the Applications window, right-click the SOA project and select Build
SOA_project_name.jpr.

5. Ensure that the build succeeds by reviewing the output in the Log window at the
bottom of Oracle JDeveloper.

52.2.2 How to Create the Customizable Composite

To create the customizable composite:

1. Start Oracle JDeveloper and select the Default Role.

2. From the File menu, select New > Applications > SOA Application, and click OK.

3. Follow the steps in the Create SOA Application wizard.

4. In the Configure SOA Settings dialog of the Create SOA Application wizard (Step 3
of 3), select both Composite With BPEL Process and the Customizable check box,
and click Finish.

5. Design the BPEL process.

Note:

If you design a transformation, note the following customization restrictions
in the XSLT Map Editor:

• The Create in Template option that is displayed by right-clicking a node
in the target panel is disabled.

• The Test XSL Map option is disabled for the call templates and apply
templates for imported XSL files. This option works for named templates,
but not for template rules with a match attribute.

6. Customize the BPEL process by creating a scope activity. This action is required
because by default the BPEL process is not customizable.

Note:

You can only customize the composite.xml file, .bpel file (for Oracle BPEL
Process Manager), .xsl map file, and .mplan file (for Oracle Mediator) when
logged into Oracle JDeveloper with the Customization Developer role.

7. Right-click the scope and select Customizable. If you expand the scope and right-
click it, you do not see the Customizable option.

8. In the Applications window, expand Application Resources > Descriptors > ADF
META_INF.

9. Open the adf-config.xml file and select the MDS tab.

10. Click the Add icon to add the required customization classes, as shown in
Figure 52-1.

Creating the Customizable Composite

Customizing SOA Composite Applications 52-3

In real environments, the customization classes are provided by the core
applications team, as described in the example scenario in Introduction to
Customizing SOA Composite Applications. When you use your own customization
classes, you must add your customization class JAR file to your project to make the
classes available for the adf-config.xml file.

Figure 52-1 Customization Classes

11. Right-click the SOA project and select Deploy.

Note:

You can receive a compilation error if your scope activity is empty. You can
drag an empty activity into the scope activity to pass compilation.

12. On the Deployment Action page, select Generate SAR File. This creates a JAR file
package. This JAR is also known as a SOA archive (SAR).

13. Check the application into a source code control system. The file is now ready for
delivery to the vertical applications team.

For information on how to write customization classes, see Developing Fusion Web
Applications with Oracle Application Development Framework.

52.2.3 How to Add an XSD or WSDL File

To add an XSD or WSDL file:

You can add an XML schema or WSDL document in Oracle JDeveloper when logged
in with the Customization Developer role.

1. Right-click the Oracle SOA Suite project in the Applications window.

Creating the Customizable Composite

52-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

2. Select SOA.

3. Select the artifact to create:

• Create XML Schema

Invokes the Create XML Schema dialog for adding a new XML schema file in
the project. When complete, the new schema file automatically opens.

• Create WSDL Document

Invokes the Create WSDL dialog to add a new WSDL file in the project.

52.2.4 How to Search for Customized Activities in a BPEL Process
You can search for customized activities in a BPEL process in Oracle JDeveloper.

To search for customized activities:

1. Access Oracle JDeveloper using the Customization Developer role.

2. In the Search menu for the BPEL process at the top of the designer, select
Customization Search, as shown in Figure 52-2.

Figure 52-2 Customization Search Option

The search results display in the Search for Customizations tab of the Log window
at the bottom of the designer.

52.2.5 What You May Need to Know About Resolving Validation Errors in Oracle
JDeveloper

In the customization role, the Oracle Metadata Services (MDS) Repository merges
customizations with the base metadata. The merging can result in an invalid XML
document against its schema. MDS Repository merging does not invoke a schema
validation to ensure that the merging always creates a valid XML document. This can
cause a problem for MDS clients that rely on the validity of the metadata to render
their metadata UI editors.

Whenever a SOA file such as composite.xml becomes invalid, you must switch to
Source view in Oracle JDeveloper to directly fix the XML source. If Source view is not
editable (for example, you have accessed Oracle JDeveloper using the Customization
Developer role), you must use the Structure window in Oracle JDeveloper to fix the
XML source.

For example, assume you created a base SOA composite application with a BPEL
process that included a customizable scope. The SAR file for the base application was
then imported into a new application in which the following components were added
when accessing Oracle JDeveloper with the Customization Developer role:

• An outbound file adapter

Creating the Customizable Composite

Customizing SOA Composite Applications 52-5

• An invoke activity (added to the customizable scope) for invoking the file adapter

When version two of the base SOA composite application was created, a synchronous
Oracle Mediator service component was added, which caused the routing rules to the
BPEL process service component to be updated.

The SAR file for version two of the base application was then imported into the
customized application. When the user accessed Oracle JDeveloper with the
Customization Developer role, an invalid composite error was displayed. The
composite.xml file in the Structure window showed the following invalid structure
for the sequence of service components and reference binding components. The
following example provides details:

<component> </component>
<reference> </reference>
<component> </component>

The <reference> component (in this case, the outbound file adapter added when
the user accessed Oracle JDeveloper with the Customization Developer role in
version one of the base application) should have displayed last. The following
example provides details.

<component> </component>
<component> </component>
<reference> </reference>

To resolve this error, go to the Structure window and copy and paste these
components into the correct order. This action resolves the composite validation error.

52.2.6 What You May Need to Know About Resolving a Sequence Conflict
This section provides an example of how to resolve a sequence conflict.

To resolve a sequence complex:

1. Customize version 1 of a SOA composite application.

For example, while logged into Oracle JDeveloper with the Customization
Developer role, you add new activities into a customizable scope activity of the
BPEL process. The BPEL process creates a sequence activity into which the new
activities are added.

2. Create version 2 of the SOA composite application.

In the version 2 composite, if new activities are added into the same customizable
scope, a new sequence activity is created.

3. Import version 2 of the SOA composite application into a customized application.

4. Open Oracle JDeveloper in the Customization Developer role.

The following error is displayed:

Sequence element is not expected

52.2.6.1 To resolve the conflict:

1. Go to the Structure window.

2. Expand the sequence.

Creating the Customizable Composite

52-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. Copy each component and paste it into another sequence.

4. Delete the components in the sequence from which they were copied.

5. Delete the sequence when it is empty.

52.2.7 What You May Need to Know About Compiling and Deploying a Customized
Application

When you deploy or compile a customized application at the core application, vertical
application, or customer level, warning messages describing unexpected ID attributes
are displayed, as shown in the following example. You can safely ignore these
messages. These messages display because the schema definition does not include
these simple-type elements, which is expected behavior. These messages do not
prevent the customized composite from being successfully deployed.

[scac] warning: in
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml(22,32):
 Schema validation failed for
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml<Line 22,
 Column 32>: XML-24535: (Error) Attribute
 'http://www.w3.org/XML/1998/namespace:id' not expected.
 [scac] warning: in
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml(23,32):
 Schema validation failed for
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml<Line 23,
 Column 32>: XML-24535: (Error) Attribute
 'http://www.w3.org/XML/1998/namespace:id' not expected.

52.3 Customizing the Vertical Application
This section provides an overview of the steps required for customizing the vertical
SOA composite application.

Note:

Do not customize the same SOA composite application for different layer
values. Layer values are the customizations made to the base composite, as
described in Introduction to Customizing SOA Composite Applications. Only
a single layer value for customization is supported. If you must support
another layer value, always import the base composite into a different project
and change the composite name to be specific to the layer value you want to
customize. This approach is also useful for deployments in which you do not
want to deploy different layer values with the same composite name.

52.3.1 How to Customize the Vertical Application

To customize the vertical application:

1. Add the layer values for the customization layers through either of the following
methods:

a. To add application-specific layer values, click the Configure Design Time
Customization Layer Values link, as shown in Figure 52-3.

Customizing the Vertical Application

Customizing SOA Composite Applications 52-7

Figure 52-3 Configure Design Time Customization Layer Values Link

b. Add the layer values.

After you specify the values and save the file, the
CustomizationLayerValues.xml file is displayed in the MDS DT folder
under Application Resources. The customization class provides the layer
name and the CustomizationLayerValues.xml file provides the layer values.
Both are required. You can double-click the file in this location to open an
editor for making additional modifications.

or

a. To add global values applicable to all applications, open the
CustomizationLayerValues.xml file in $JDEV_HOME/jdeveloper/
jdev and add the layer values for the customization layers. For example, add
the value Communications to the industry layer.

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
 <cust-layer name="industry">
 <cust-layer-value value="communications" display-name="Communications"/>
 </cust-layer>
</cust-layers>

2. Start Oracle JDeveloper and select the Default Role.

3. Create a new SOA application with a different name than the core application.

4. From the File menu, select Import > SOA Archive Into SOA Project.

5. Click Browse to select the composite archive JAR file created by the core
application team in Creating the Customizable Composite.

6. In the Composite Name field, enter a different name than the core SOA project.

Note:

Do not select any SOA project. You must create a new SOA project for the JAR
file that you import.

7. Select the Import for Customization check box.

8. In the Applications window, right-click the project, and select SOA >
Customizable.

9. Restart Oracle JDeveloper.

The Customization Context dialog displays the available customization layers and
layer values.

Customizing the Vertical Application

52-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

10. Select a layer and value to customize, as shown in Figure 52-4 (for this example,
layer industry and value Communications are selected).

Figure 52-4 Customization Context

11. In the SOA Composite Editor, double-click the BPEL process to access Oracle
BPEL Designer.

You can only edit scope activities that have been set to customizable. In the
example shown in Figure 52-5, the core applications team set only one scope to be
customizable. The other activities in the BPEL process are disabled and cannot be
edited.

Figure 52-5 One Customizable Scope

12. Right-click the SOA project in the Applications window and select Deploy to
create a JAR file of the customized composite (SAR).

Since deployment is invoked with the customization role enabled, the base
composite with the appropriate layers based on the current customization context
is automatically merged.

13. Check in the application to a source code control system.

The JAR file contains a merged composite that in turn acts as a base process for
the next level of customization. The JAR file can now be delivered to the customer.

Customizing the Vertical Application

Customizing SOA Composite Applications 52-9

Note:

You can create WSDL and XSD files while logged into Oracle JDeveloper with
the Customization Developer role. In the Applications window, right-click
the project name and select SOA > Create WSDL Document or SOA > Create
XML Schema.

52.4 Customizing the Customer Version
This section provides an overview of the steps required for customizing the customer
version of the SOA composite application.

52.4.1 How to Customize the Customer Version

How to customize the customer version:

1. Add the layer values for the customization layers through either of the following
methods:

a. To add application-specific layer values, click the Configure Design Time
Customization Layer Values link, as shown in Step 1 of Customizing the
Vertical Application.

b. Add the layer values.

After you specify the values and save the file, the
CustomizationLayerValues.xml file is displayed in the MDS DT folder
under Application Resources. You can double-click the file in this location to
open an editor for making additional modifications.

or

a. To add global values applicable to all applications, open the
CustomizationLayerValues.xml file in $JDEV_HOME/jdeveloper/
jdev and add the layer values for the customization layers. For example, add
the values North America and Asia Pacific to the site layer.

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
 <cust-layer name="site">
 <cust-layer-value value="communications" display-name="North America"/>
 <cust-layer-value value="communications" display-name="Asia Pacific"/>
 </cust-layer>
</cust-layers>

2. Start Oracle JDeveloper and select the Default Role.

3. Create a new SOA application with a different name than the core application or
customized application.

4. From the File menu, select Import > SOA Archive Into SOA Project.

5. Click Browse to select the composite archive JAR file created by the vertical
applications team in Customizing the Vertical Application.

6. Select the Import for Customization check box.

7. From the Tools menu, select Switch Roles > Customization Developer.

Customizing the Customer Version

52-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

8. Restart Oracle JDeveloper.

The Customization Context dialog displays the available customization layers and
layer values.

9. Select a layer and value to customize, as shown in Figure 52-6 (for this example,
the layer site and value North America are selected).

Figure 52-6 Customization Context

10. Customize the BPEL process.

11. Right-click the SOA project and select Deploy to create a JAR file (SAR) for the
North American region.

12. Check the application into a source code control system.

52.5 Upgrading the Composite
This section provides an overview of the steps required for upgrading the SOA
composite application to the next version.

52.5.1 How to Upgrade the Core Application Team Composite
The core application team fixes bugs, makes product enhancements. and creates the
next version of the composite.

To upgrade the core application team composite:

1. Check out the application created in Creating the Customizable Composite from
source control.

2. Start Oracle JDeveloper and select the Default Role.

3. Make bug fixes and product enhancements.

4. Deploy the composite to create the next revision of the JAR file.

5. Deliver the JAR file to the vertical applications team.

52.5.2 How to Upgrade the Vertical Applications Team Composite
The vertical applications team customizes the new base composite to create a version
of the JAR file.

To upgrade the vertical applications team composite:

1. Check out the application created in Customizing the Vertical Application from
source control.

Upgrading the Composite

Customizing SOA Composite Applications 52-11

2. Start Oracle JDeveloper and select the Default Role.

3. Open the checked-out application.

4. Select the project node in the Applications window to set the current project
context. This is important because the import command in the next step imports
the SOA archive into the selected project to upgrade the base.

5. From the File menu in Oracle JDeveloper, import the new revision of the JAR file
created in How to Upgrade the Core Application Team Composite.

6. From the Tools menu, select Switch Roles > Customization Developer.

7. Restart Oracle JDeveloper.

8. In the Customization Context dialog, select a layer and value to customize (for
example, select the layer industry and value Communications).

9. Open the BPEL process to see if the new base composite can be merged with layers
for the above selected context.

10. Review the Log window for potential warnings and errors.

11. If required, fix errors and warnings by modifying the process. This edits the layers
behind the scenes.

12. Deploy the composite to create the next revision of the customized JAR file and
deliver it to the customer for an upgrade.

52.5.3 How to Upgrade the Customer Composite
The customer follows the same procedures as the vertical applications team in How to
Upgrade the Vertical Applications Team Composite to apply their layers to the new
base composite.

Upgrading the Composite

52-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

53
Defining Composite Sensors

This chapter describes how to define composite sensors that provide a method for
implementing trackable fields on messages in a SOA composite application. It
describes how to define sensors on binding components and on service components
that have subscribed to business events. It also describes restrictions on using
composite sensors and how to manage composite sensors during runtime in Oracle
SOA Composer.

This chapter includes the following sections:

• Introduction to Composite Sensors

• Adding Composite Sensors

• Monitoring Composite Sensor Data During Runtime

• Creating and Managing Composite Sensors During Runtime from Oracle SOA
Composer

For information about activity, fault, and variable sensors in a BPEL process, see Using
Sensors and Analytics .

For examples of using composite sensors in business scenarios, see Understanding
Oracle SOA Suite.

53.1 Introduction to Composite Sensors
Composite sensors provide a method for implementing trackable fields on messages.
Composite sensors enable you to perform the following tasks:

• Monitor incoming and outgoing messages.

• Specify composite sensor details in the search utility of the Flow Instances pages
for the SOA Infrastructure, partition, and SOA composite application in Oracle
Enterprise Manager Fusion Middleware Control. This action enables you to
display details about a particular instance with a composite sensor.

• Publish JMS data computed from incoming and outgoing messages.

• Track composite instances initiated through business event subscriptions.

You define composite sensors on service and reference binding components or on
service components that have business event subscriptions in Oracle JDeveloper. This
functionality is similar to variable sensors in BPEL processes. During runtime,
composite sensor data is persisted in the database.

You can also define composite sensors during runtime in Oracle SOA Composer.
Oracle SOA Composer changes are picked up immediately by the runtime, whereas
changes made using Oracle JDeveloper require SOA composite application
redeployment.

Defining Composite Sensors 53-1

For information about searching for composite sensors in Oracle Enterprise Manager
Fusion Middleware Control, see Section "Tracking Business Flow Instances at the SOA
Infrastructure or Partition Level" of Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

53.1.1 Restrictions on Use of Composite Sensors
Note the following restrictions on the use of composite sensors:

• Functions in XPath expressions cannot be used with properties.

• Any composite sensor that is defined by an expression always captures values as
strings. This causes the sensor type to always be a string. This action makes the
search possible.

Capturing values as strings may be useful when dealing with XML types derived
from a string. The following example provides details:

<xs:element name="CardNum">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:length value="16"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Even if the expression is a number, it is captured as a string. You cannot use other
logical operators such as <, >, =, or any combination of these.

• Any composite sensor that is defined by a variable uses the variable type to
determine the sensor type. Sensors can be one of the following types:

– STRING

– NUMBER

– DATE

– DATE_TIME

– Complex XML

• Composite sensors only support two types of sensor actions: Enterprise Manager
and JMS.

• Header-based sensors are only supported for web service bindings.

• Sensor actions for Oracle B2B, service data objects (SDOs), web services invocation
framework (WSIF), and Oracle Business Activity Monitoring bindings are not
supported.

• When creating an XPath expression for filtering, all functions that return a node
set must be explicitly cast as a string:

xpath20:upper-case(string($in.request/inp1:updateOrderStatus/inp1:orderStatus))
= "PENDING"

• Sensors cannot be configured on service components that publish business events.

• Sensors based on business event headers are not allowed (only payloads are
allowed).

Introduction to Composite Sensors

53-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• PL/SQL subscriptions are not supported.

53.2 Adding Composite Sensors
You add sensors to the following components of a SOA composite application in the
SOA Composite Editor:

• Service or reference binding components

• Service components such as a BPEL process or Oracle Mediator that have
subscribed to business events

53.2.1 How to Add Composite Sensors

To add composite sensors:

1. Use one of the following options to add a composite sensor in the SOA Composite
Editor.

a. Right-click a specific service or reference binding component in the Exposed
Services or External References swimlane or a service component that has a
subscribed business event. A service component that has a subscribed
business event includes the word Subscribed on it.

b. Select Configure Sensors.

Note:

The service component must already have a subscribed business event for the
Configure Sensors option to be displayed.

If you selected a binding component, the Composite Sensors dialog displays
the details shown in Figure 53-1. For this example, a service binding
component is selected.

Adding Composite Sensors

Defining Composite Sensors 53-3

Figure 53-1 Composite Sensors Dialog for the Selected Binding
Component

If you selected a service component, the Composite Sensors dialog displays
the details shown in Figure 53-2.

Figure 53-2 Composite Sensors Dialog for the Selected Service
Component

c. Select the binding component or service component in the dialog, and click
the Add icon.

or

a. Click the Composite Sensor icon above the SOA Composite Editor, as shown
in Figure 53-3.

Adding Composite Sensors

53-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 53-3 Composite Sensor Icon

The Composite Sensors dialog for the SOA composite application appears, as
shown in Figure 53-4. This option displays all the service and reference
binding components and service components with subscribed business events
in the SOA composite application.

Figure 53-4 Composite Sensors Dialog

b. Select the specific service, reference, or business event to which to add a
composite sensor, then click the Add icon.

If you selected a binding component such as a service, the Create Composite
Sensor dialog appears as shown in Figure 53-5.

Adding Composite Sensors

Defining Composite Sensors 53-5

Figure 53-5 Create Composite Sensor Dialog for a Service Binding Component

If you selected a service component that has a business event subscription, the
Create Composite Sensor dialog appears as shown in Figure 53-6.

Figure 53-6 Create Composite Sensor Dialog for a Service Component

2. Enter the details shown in Table 53-1.

Adding Composite Sensors

53-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 53-1 Create Composite Sensor Dialog

Name Description

Name Enter a name for the composite sensor. You must enter a name to
enable the Edit icon of the Expression field.

Service Displays the name of the service. This field is only displayed if you
are creating a composite sensor for a service binding component. This
field cannot be edited.

Service sensors monitor the messages that the service receives from
the external world or from another composite application.

Reference Displays the name of the reference. This field is only displayed if you
are creating a composite sensor for a reference binding component.
This field cannot be edited.

Reference sensors monitor the messages that the reference sends to
the external world or to another composite application.

Operation Select the operation for the port type of the service or reference. This
field only displays for service or reference binding components.

Event Displays the name of the service component. This field is only
displayed if you are creating a composite sensor for a service
component. This field cannot be edited.

Event sensors track composite instances initiated through a business
event. You can create multiple sensors per business event.

Event Type Displays the Subscribe business event type. This field cannot be
edited. The publish business event type is not supported.

Expression Click the Edit icon to invoke a dropdown list for selecting the type of
expression to create:

• Variables: Select to create an expression value for a variable. See
How to Add a Variable for instructions.

• Expression: Select to invoke the Expression Builder dialog for
creating an XPath expression. This action always captures values
as strings. See How to Add an Expression for instructions.

• Properties: Select to create an expression value for a normalized
message header property. These are the same properties that
display under the Properties tab of the invoke activity, receive
activity, reply activity, OnEvent branch of a scope activity (in
BPEL 2.0), and OnMessage branch of a pick activity and scope
activity (in BPEL 2.0). See How to Add a Property for
instructions.

Filter Click the Edit icon to invoke the Expression Builder dialog to create
an XPath filter for the expression. You must first create an expression
to enable this field.

For example, you may create an expression for tracking purchase
order amounts over 10,000:

$in.inDict/tns:inDict/ns2:KeyValueOfstringstring/ns2:Value >
10000.00

Adding Composite Sensors

Defining Composite Sensors 53-7

Table 53-1 (Cont.) Create Composite Sensor Dialog

Name Description

Composite
Sensor Actions

Displays the supported sensor actions. This feature enables you to
store runtime sensor data. You can select both Enterprise Manager
and either JMS Queue or JMS Topic.

• Enterprise Manager

Select to make runtime sensor data searchable in the Flow
Instances tab of a SOA composite application in Oracle
Enterprise Manager Fusion Middleware Control. This selection
is the same as the DBSensorAction selection of previous
releases.

Note: When Enterprise Manager is selected, sensor data is sent
to the trackable fields tables. When it is not selected, data is not
sent. However, in both cases, Oracle Enterprise Manager Fusion
Middleware Control still displays the fields that enable you to
search for composite instances based on that sensor.

For more information, see Administering Oracle SOA Suite and
Oracle Business Process Management Suite.

• JMS Queue

Select to store composite sensor data (XML payload) in a JMS
queue. You must specify the JMS connection factory and queue
name.

• JMS Topic

Select to store composite sensor data (XML payload) in a JMS
topic. You must specify the JMS connection factory and topic
name.

Notes: The JMS Queue and JMS Topic selections enable the
composite sensor data (XML payload) to be used by other consumers,
including Oracle Business Activity Monitoring (BAM) and Oracle
Complex Event Processing. Both selections use the native JMS
support provided with Oracle WebLogic Server, and not the Oracle
SOA Suite JMS adapter described in Understanding Technology
Adapters. You can view JMS messages in the Oracle WebLogic Server
Administration Console.

3. Click OK when complete.

For a service or reference binding component, a composite sensor icon displays in
the upper right corner, as shown in Figure 53-7.

Figure 53-7 Sensor Icon on Binding Component

For a service component, a composite sensor icon also displays in the upper right
corner, as shown in Figure 53-8.

Adding Composite Sensors

53-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 53-8 Sensor Icon on Service Component

4. Place your cursor over the composite sensor icon to display details about the
composite sensor.

53.2.1.1 How to Add a Variable

The Select XPath Expression dialog shown in Figure 53-9 enables you to select an
element for tracking.

To add a variable:

1. Expand the tree and select the element to track (for this example, an order ID).

Figure 53-9 Variables

2. Click OK when complete.

53.2.1.2 How to Add an Expression

The Expression Builder dialog shown in Figure 53-10 enables you to create an
expression for tracking.

To add an expression:

1. Build an XPath expression of an element to track.

Adding Composite Sensors

Defining Composite Sensors 53-9

Figure 53-10 Expression

2. Click OK when complete.

53.2.1.3 How to Add a Property

The Select Property dialog shown in Figure 53-11 enables you to select a normalized
message header property for tracking.

To add a property:

1. Select a normalized message header property to track.

Figure 53-11 Properties

2. Click OK when complete.

For more information about normalized messages, see Propagating Normalized
Message Properties Through Message Headers.

53.2.2 What You May Need to Know About Duplicate Composite Sensor Names
Note the following details when using duplicate names for composite sensors.

Adding Composite Sensors

53-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• If you create composite sensors with duplicate names, the entire contents of their
definitions are compared. Duplicate names are permitted where one or more
additional parameters are different (for example, either different configuration
types or different expressions, filters, operation names, and so on). Something
must be different in the definitions for duplicate names to be permitted.

• If you have duplicate sensor definitions, only the last executed sensor value is
persisted. Therefore, you can use this type of configuration for mutually exclusive
paths (for example, a composite can be invoked through service 1 or service 2).
Therefore, you can define the same sensor name on both the services. However, if
you define the same names for service 1 and reference 1, only the sensor value
from reference 1 (the last executed sensor) is stored.

• You typically use multiple sensors with the same name to point to the same
logical entity extracted from different sources (for example, Oracle Enterprise
Manager Fusion Middleware Control displays the final sensor value). Therefore, it
can be confusing if the same sensor name is used to extract an email value and a
social security value from different sources.

• Sensor actions apply to all occurrences of the same sensor name. This situation
means the sensor actions on the most recently defined sensor with the same name
take precedence.

For the scenario shown in sensor.xml in the following example:

• The first two sensors named Service1 are identical. In addition, the
configuration type for both is serviceConfig (composite sensors defined on a
service binding component). Therefore, the sensors become one entry (the second
one is ignored).

• The third sensor named Service1 has a different configuration type of
eventConfig (a composite sensor defined on a business event). Therefore, this
sensor is represented with a separate entry.

• The two sensors named PurchaseOrder Id have different configuration types
(eventConfig and serviceConfig). Therefore, they are represented with
separate entries.

• The two sensors named PurchaseOrder have the same configuration type
(eventConfig), but different expressions. Therefore, they are represented with
separate entries.

<sensors xmlns="http://xmlns.oracle.com/bpel/sensor">
 <sensor sensorName="Service1" kind="service" target="undefined" filter="">
 <serviceConfig service="OrderPublisher_ep"
 expression="$in.property.tracking.ecid" operation="execute"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="Service1" kind="service" target="undefined" filter="">
 <serviceConfig service="OrderPublisher_ep"
 expression="$in.property.tracking.ecid" operation="execute"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="Service1" kind="event" target="undefined" filter=""
 xmlns:po="http://www.mycompany.com/ns/order">
 <eventConfig component="EventMediator"
 expression="$in/po:PurchaseOrder/po:OrderID"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>

Adding Composite Sensors

Defining Composite Sensors 53-11

 <sensor sensorName="Event1" kind="event" target="undefined" filter="">
 <eventConfig component="EventMediator" actionType="Subscribe"
 expression="$in.property.tracking.ecid"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="PurchaseOrder Id" kind="event" target="undefined" filter=""
 xmlns:po="http://www.mycompany.com/ns/order">
 <eventConfig component="EventMediator"
 expression="$in/po:PurchaseOrder/po:OrderID"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="PurchaseOrder Id" kind="service" target="undefined"
 filter="">
 <serviceConfig service="OrderPublisher_ep"
 expression="$in.property.tracking.ecid" operation="execute"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 <sensor sensorName="PurchaseOrder" kind="event" target="undefined" filter=""
 xmlns:po="http://www.mycompany.com/ns/order">
 <eventConfig component="EventMediator" expression="$in/po:PurchaseOrder"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"
 outputDataType="PurchaseOrder"
 outputNamespace="http://mycompany.com/events/orders"/>
 </sensor>
 <sensor sensorName="PurchaseOrder" kind="event" target="undefined" filter=""
 xmlns:po="http://www.mycompany.com/ns/order">
 <eventConfig component="EventMediator"
 expression="$in/po:PurchaseOrder/po:OrderID"
 event="{http://mycompany.com/events/orders}OrderReceivedEvent"
 outputDataType="string" outputNamespace="http://www.w3.org/2001/XMLSchema"/>
 </sensor>
 </sensor>
</sensors>

53.3 Monitoring Composite Sensor Data During Runtime
During runtime, composite sensor data can be monitored in Oracle Enterprise
Manager Fusion Middleware Control:

• Composite sensor data displays in the flow trace of a SOA composite application.

• Composite sensor data can be searched for on the Flow Instances page at the SOA
Infrastructure, individual partition, and SOA composite application levels.

For more information about searching for composite sensors in Oracle Enterprise
Manager Fusion Middleware Control, see Section "Monitoring and Deleting SOA
Composite Application Instances at the SOA Infrastructure Level" and Section
"Monitoring and Deleting SOA Composite Application Instances from the Application
Home Page" of Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

53.4 Creating and Managing Composite Sensors During Runtime from
Oracle SOA Composer

You can create, update, and delete composite sensors during runtime from Oracle
SOA Composer without having to redeploy a SOA composite application. The

Monitoring Composite Sensor Data During Runtime

53-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

following example describes how to create a composite sensor. Changes to composite
sensors can be carried to new revisions of the composite through patching.

Ensure that you understand the issues around using duplicate names for composite
sensors. For more information, see What You May Need to Know About Duplicate
Composite Sensor Names.

To create and manage composite sensors during runtime from Oracle SOA
Composer:

1. Log in to Oracle SOA Composer.

http://host:soa_server_port/soa/composer

2. Expand the navigator on the left and double-click the composite in which to make
changes. Figure 53-12 provides details.

Figure 53-12 Oracle SOA Composer

3. Click Create Session.

The page is refreshed to display the Add, Edit, and Delete icons.

4. Click the Add icon and select an option:

• Create Service Sensor: Data is coming from a service binding component call.

• Create Reference Sensor: Data is coming from a reference binding component
call.

• Create Event Sensor: Data is coming from a service component that has
subscribed to a business event.

For this example, Create Service Sensor is selected because the data is coming
from a service binding component call. Figure 53-13 provides details.

Figure 53-13 Composite Sensor Creation

The Create Composite Sensor dialog is displayed.

5. Click the Edit icon in the Expression section, and select an option:

Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

Defining Composite Sensors 53-13

• Variables: Select to create an expression value for a variable.

• Expression: Select to invoke the Expression Builder dialog for creating an
XPath expression. This action always captures values as strings.

• Properties: Select to create an expression value for a normalized message
header property. These are the same properties that display under the
Properties tab of the invoke activity, receive activity, reply activity, OnEvent
branch of a scope activity (in BPEL 2.0), and OnMessage branch of a pick
activity and scope activity (in BPEL 2.0).

For this example, Expression is selected to build an XPath expression.

Figure 53-14 provides details.

Figure 53-14 XPath Expression Selection of Create Composite Sensor Dialog

The selections of variables, expressions, and header properties are the same as with
the Create Composite Sensor dialog in Oracle JDeveloper, as described in
Table 53-1.

The Expression Builder dialog is displayed.

6. Build an XPath expression and click OK. You can also select custom XPath
expressions that you created.

You are returned to the Create Composite Sensor dialog.

7. Select the Enterprise Manager check box in Figure 53-15 to make this composite
sensor a searchable, trackable field from the Flow Instances page of a SOA
composite application in Oracle Enterprise Manager Fusion Middleware Control,
and click OK. If you do not select this check box, the composite sensor is not
searchable.

Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

53-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 53-15 Create Composite Sensor

The new composite sensor is displayed, including the sensor name, the type and
name of the component in which the sensor is defined, any XPath expression or
filter defined on the sensor, the storage location for runtime sensor data (Enterprise
Manager or a JMS queue and topic), and any JMS targets. Figure 53-16 provides
details.

Figure 53-16 Composite Sensors in Oracle SOA Composer

8. Click Save.

9. In the upper right corner, click Publish to publish this session. Figure 53-17
provides details.

Figure 53-17 Publish Button

Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

Defining Composite Sensors 53-15

10. Enter an optional description for the session when prompted, then click OK.

The composite sensor is now running automatically in the deployed SOA
composite application.

11. Go to the Test Web Service page in Oracle Enterprise Manager Fusion Middleware
Control to invoke a new instance. For information about the Test Web Service page,
see "Initiating a SOA Composite Application Test Instance" of Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

12. Create a new instance of the SOA composite application that includes the
composite sensor (for this example, named loanAmount), and click Invoke.

13. Go to the Flow Instances page of the SOA Infrastructure.

14. In the Sensor Name field of the Flow Instance part of the Search Options section,
specify the composite sensor you added. Figure 53-18 provides details.

Figure 53-18 Searchable Field

15. Click Search.

16. In the Search Results table, select the instance of the SOA composite sensor and
click Show Details.

Instance details are displayed in the Faults, Composite Sensor Values,
Composites, and Resequencing Groups tabs at the bottom of the page.

17. Click the Composite Sensor Values tab.

This tab displays the values of composite sensors detected in the selected business
flow.

• Name: Displays the composite sensor name (for this example, loanAmount).

• Value: Displays the value assigned to the composite sensor.

Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

53-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Location: Displays the service or reference binding component or service
component in which the composite sensor is defined.

• Composite: Displays the SOA composite application in which the composite
sensor is defined.

18. If you want to edit or delete the composite sensor, return to Oracle SOA Composer,
as shown in Figure 53-16, and click Create Session.

The page is refreshed to again display the Add, Edit, and Delete icons.

19. If you set the oracle.soacomposer.composite.showSensorXmlFiles
Oracle WebLogic Server startup script system property, the Show Sensor XML
button appears at the bottom of the page.

20. Click this property to show sensor.xml and sensor-action.xml content. This
helps you to test both to see that they are what you expect them to be.

If you later import this SOA composite application in to Oracle JDeveloper, the
composite sensors created during runtime in Oracle SOA Composer are displayed.

53.4.1 What You May Need to Know About Viewing Composite Sensor Changes in
Oracle SOA Composer

When you add or remove composite sensors in Oracle SOA Composer, you must close
and reopen the project tab above the Composite Sensors table to see the changes. For
example:

1. Create and deploy a SOA composite application with a composite sensor (for this
example, named p1).

2. Log in to Oracle SOA Composer, and select the composite in the navigator.

The p1 composite sensor is displayed.

3. Create an additional composite sensor (for this example, named p2) in the
composite and redeploy it.

4. In the navigator tree of Oracle SOA Composer, click the Refresh button, and select
the composite.

Only composite sensor p1 is displayed, and not p2.

5. Close the project tab above the Composite Sensors page, as shown in Figure 53-19,
and reopen it by selecting the composite in the navigator.

Figure 53-19 Composite Tab in Composite Sensors Page

This enables composite sensors p1 and p2 to be displayed.

Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

Defining Composite Sensors 53-17

Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer

53-18 Developing SOA Applications with Oracle SOA Suite

54
Creating Dynamic Business Processes

This chapter describes how to use two-layer Business Process Management (BPM).
Two-layer BPM enables you to create dynamic business processes whose execution,
rather than being predetermined at design time, depends on elements of the context in
which the process executes. Such elements can include, for example, the type of
customer, the geographical location, or the channel.

To illustrate further, assume you have an application that performs multichannel
banking using various processes. In this scenario, the execution of each process
depends on the channel for each particular process instance.

This chapter includes the following sections:

• Introduction to Two-Layer Business Process Management

• Creating a Phase Activity

• Creating the Dynamic Routing Decision Table

54.1 Introduction to Two-Layer Business Process Management
Two-layer BPM enables you to model business processes using a layered approach. In
that model, a first level is a very abstract specification of the business process.
Activities of a first-level process delegate the work to processes or services in a second
level. Figure 54-1 illustrates this behavior.

Figure 54-1 Two-Layer BPM

In Figure 54-1, the phase I activity of the business process can delegate its work to one
of the corresponding layer II processes: Task 1.1, Task 1.2, or Task 1.3.

Creating Dynamic Business Processes 54-1

The two-layer BPM functionality enables you to create the key element (namely, the
phase activity) declaratively.

By using the design time and runtime functionality of Oracle Business Rules, you can
add more channels dynamically without having to redeploy the business process.
Design time at runtime enables you to add rules (columns) to the dynamic routing
decision table at runtime. Then, during runtime, business process instances consider
those new rules and eventually route the requests to a different channel.

The design time at runtime functionality of Oracle Business Rules also enables you to
modify the endpoint reference of a service that is invoked from a phase activity,
pointing that reference to a different service.

Note:

You can use the design time at runtime functionality of Oracle Business Rules
through Oracle SOA Composer and the Oracle Business Rules SDK.

For information about using Oracle SOA Composer and the Oracle Business
Rules SDK, see:

• Designing Business Rules with Oracle Business Process Management

• Java API Reference for Oracle Business Rules

54.2 Creating a Phase Activity
In two-layer BPM, a phase is a level-1 activity in the BPEL process. It complements the
existing higher-level Oracle Business Rules and human task BPEL activities.

You add a phase activity to a process declaratively in Oracle BPEL Designer by
dragging and dropping it from the Oracle Extensions section of the Components
window to the process model. Figure 54-2 provides details.

Figure 54-2 Phase Activity in Oracle BPEL Designer

Creating a Phase Activity

54-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Note:

The reference WSDL (layer 2 or called references) must have the same abstract
WSDL as that for the phase reference that gets automatically created.

54.2.1 How to Create a Phase Activity
You create the phase activity for your composite application after you have created the
necessary variables.

To create a phase activity:

1. Double-click the Phase activity.

2. In the Name field, enter a value.

3. In the Input and Output Variables section, select the Add icon to add input and
output variables.

4. Select Add Input Variable. The dialog for selecting a variable appears.

5. Select an existing variable or select the Variables folder and click the Add icon to
create a new variable.

6. Click OK. The Phase dialog is displayed with the variable populated.

7. From the Input and Output Variables icon, select Add Output Variable. The
dialog for selecting a variable appears.Select an existing variable or select the
Variables folder and click the Add icon to create a new variable.

8. Click OK. The Phase dialog is displayed with the input and output variable names
populated.Click OK. The Oracle BPEL Designer displays the BPEL process.

9. From the File menu, select Save All.

10. Close the BPEL process.

11. Click the composite_name link (that is, the composite.xml file) above Oracle
BPEL Designer. The SOA Composite Editor appears.

54.2.2 What Happens When You Create a Phase Activity
When you create a phase activity, the artifacts described in Table 54-1 are created.

Table 54-1 Artifacts Created with a Phase Activity

Artifact Description

BPEL scope At the location where the user dropped the phase activity in the BPEL
process, a new BPEL scope is created and inserted into the BPEL process.
The scope has the name of the phase activity. Within the scope, several
standard BPEL activities are created. The most important ones are one
invoke activity to an Oracle Mediator and one receive activity from the
Oracle Mediator.

Creating a Phase Activity

Creating Dynamic Business Processes 54-3

Table 54-1 (Cont.) Artifacts Created with a Phase Activity

Artifact Description

Oracle Mediator
component

With the SOA composite application of the BPEL process service
component, a new Oracle Mediator service component is created. The
Oracle Mediator service component is wired to the phase activity of the
BPEL component that comprises the level-1 BPEL process where the
phase activity has been dropped into the process model. The input and
output of the Oracle Mediator service component is defined by the input
and output of the phase activity.

The Oracle Mediator plan (the processing instructions of the Oracle
Mediator service component) is very simple; it delegates creation of the
processing instructions to the Oracle Business Rules service component.

Oracle Business
Rules component

Within the SOA composite application of the BPEL process service
component, a new Oracle Business Rules service component is created
and wired to the Oracle Mediator component associated with the phase
activity of the BPEL process service component. The Oracle Business
Rules service component includes a rule dictionary. The rule dictionary
contains metadata for such Oracle Business Rules engine artifacts as fact
types, rulesets, rules, decision tables, and similar artifacts. As part of
creating the Oracle Business Rules service component, the rule
dictionary is preinitialized with the following data:

• Fact Type Model: The data model used for modeling rules. The rule
dictionary is populated with a fact type model that corresponds to
the input of the phase activity with some fixed data model that is
required as part of the contract between the Oracle Mediator and
Oracle Business Rules service components.

• Ruleset: A container of rules used as a grouping mechanism for
rules. A ruleset can be exposed as a service. One ruleset is created
within the rule dictionary.

• Decision Table: From an Oracle Business Rules perspective, a
decision table is a collection of rules with the same fact type model
elements in the condition and action part of the rules so that the
rules can be visualized in a tabular format. The new decision table is
created within the ruleset.

• Decision Service: A decision service is created that exposes the
ruleset as a service of the Oracle Business Rules service component.
The service interface is used by Oracle Mediator to evaluate the
decision table.

54.2.3 What Happens at Runtime When You Create a Phase Activity
At runtime, the input of the phase activity is used to evaluate the dynamic routing
decision table. This is performed by a specific decision component of the phase
activity. The result of this evaluation is an instruction for the Oracle Mediator. The
Oracle Mediator routes the request to a service based on instructions from the decision
component.

Note:

In the current release, an asynchronous phase activity is supported. A
synchronous or one-way phase activity is not supported.

Creating a Phase Activity

54-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

54.2.4 What You May Need to Know About Creating a Phase Activity
When creating a phase activity, you must know the following:

• Rules that you must either configure or create in the decision service. This is based
on data from the payload that you use to evaluate a rule.

• For each rule created in the decision service, you must know the corresponding
endpoint URL that must be invoked when a rule evaluates to true. This endpoint
URL is used by the Oracle Mediator to invoke the service in layer 2.

Note:

No transformation, assignment, or validation can be performed on a payload.

54.3 Creating the Dynamic Routing Decision Table
A Dynamic Routing Decision Table is a decision table evaluated by Oracle Business
Rules. Conditions are evaluated on the input data of a phase activity. The result of the
evaluation is a routing instruction for the Oracle Mediator.

54.3.1 How to Create the Dynamic Routing Decision Table
After you have created the phase activity, the wizard launches the Oracle Business
Rules Designer in Oracle JDeveloper for you to edit the Dynamic Routing Decision
Table. Figure 54-3 shows a sample decision table within the Oracle Business Rules
Designer.

Figure 54-3 Sample Decision Table

You can leave the information empty while modeling the level-2 process phases and
complete it after the level-1 process is being deployed using Oracle SOA Composer.

Once you have created and edited the Dynamic Routing Decision Table, the new
level-1 phase activity appears in the BPEL process in Oracle JDeveloper, as shown in
Figure 54-4.

Creating the Dynamic Routing Decision Table

Creating Dynamic Business Processes 54-5

Figure 54-4 Completed Level-1 Phase in Oracle JDeveloper

54.3.2 What Happens When You Create the Dynamic Routing Decision Table
By creating the Dynamic Routing Decision Table, you are configuring the decision
service to dynamically evaluate the conditions applied to the incoming payload and
give the corresponding routing rules to Oracle Mediator. Oracle Mediator then
executes these rules when invoking the service in layer 2.

More specifically, here is what happens at design time when you create the Dynamic
Routing Decision Table:

• A new decision component is created in the composite of the project.

• A new rule dictionary is created in the composite project directory.

• The rule dictionary is populated with a data model that reflects the data model of
the phase input; that is, the XML schema of the phase input is imported into the
rule dictionary.

Creating the Dynamic Routing Decision Table

54-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

55
Integrating the Spring Framework in SOA

Composite Applications

This chapter describes how to use the spring framework to integrate components that
use Java interfaces into SOA composite applications. Oracle SOA Suite uses the spring
framework functionality provided by the WebLogic Service Component Architecture
(SCA) of Oracle WebLogic Server. This chapter also describes how to integrate
components that use Java interfaces with components that use WSDL files in the same
SOA composite application. It also describes using Java Architecture for XML Binding
(JAXB) and the EclipseLink O/X-Mapper (OXM) to map Java classes to XML data.

This chapter includes the following sections:

• Introduction to the Spring Service Component

• Integration of Java and WSDL-Based Components in the Same SOA Composite
Application

• Creating a Spring Service Component in Oracle JDeveloper

• Defining Custom Spring Beans Through a Global Spring Context

• Using the Predefined Spring Beans

• JAXB and OXM Support

• Configuring Groovy and Aspectj Classes with the Spring Service Component

• Troubleshooting Spring Errors

For more information about the WebLogic SCA functionality used by Oracle SOA
Suite, see Developing WebLogic SCA Applications for Oracle WebLogic Server.

For samples about how to use the spring framework, see the Oracle SOA Suite
samples site.

55.1 Introduction to the Spring Service Component
The spring framework is a lightweight container that makes it easy to use different
types of services. Lightweight containers can accept any JavaBean, instead of specific
types of components.

WebLogic SCA enables you to use the spring framework to create Java applications
using plain old Java objects (POJOs) and expose components as SCA services and
references. In SCA terms, a WebLogic spring framework SCA application is a
collection of POJOs plus a spring SCA context file that wires the classes with SCA
services and references.

Integrating the Spring Framework in SOA Composite Applications 55-1

You can use the spring framework to create service components and wire them within
a SOA composite application using its dependency injection capabilities. SCA can
extend spring framework capabilities as follows:

• Publish spring beans as SCA component services that can be accessed by other
SCA components or by remote clients

• Provide spring beans for service references wired to services of other components

As with all service components, spring components are defined in the
composite.xml file. The spring component defined in the composite.xml file has
service and reference elements with binding.java.

Services are implemented by beans and are targeted in the spring context file.
References are supplied by the runtime as implicit (or virtual) beans in the spring
context file.

You can also integrate Enterprise JavaBeans (EJB) with SOA composite applications
through use of Java interfaces (with no requirement for SDO parameters). For
information, see Integrating Enterprise JavaBeans with Composite Applications .

55.2 Integration of Java and WSDL-Based Components in the Same SOA
Composite Application

You can integrate components using Java interfaces and WSDL files in a SOA
composite application in the SOA Composite Editor. As an example, this integration
enables a spring service component to invoke an Oracle BPEL Process Manager or an
Oracle Mediator service component to invoke an EJB, and so on.

The following types of component integrations are supported:

• Java components to WSDL components

If you drag a wire from a Java interface (for example, EJB service or spring service
component) to a component that does not support Java interfaces (for example,
Oracle Mediator, Oracle BPEL Process Manager, or others), a compatible WSDL is
generated for the component interfaces.

• WSDL components to Java components

If you drag a wire from a WSDL interface to a component that does not support
WSDL files (for example, a spring service component), a compatible Java interface
is automatically generated. It is also possible to wire an existing WSDL interface to
an existing Java interface. In this case, there is no checking of the compatibility
between the WSDL and Java interfaces. You must ensure that it is correct.

• Java components to Java components

If you create a spring service component, you can automatically configure it with
Java interface-based EJB service and reference binding components. No WSDL
files are required.

55.2.1 Java and WSDL-Based Integration Example
When wiring any two service components (or a service component with a binding
component), each end of the wire has an interface defined. With XML, those interfaces
must have the same WSDL definition, and are defined with interface.wsdl in the
composite.xml file.

Integration of Java and WSDL-Based Components in the Same SOA Composite Application

55-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

From the JAX-WS point of view, when wiring a Java interface (which is defined by
interface.java) to a WSDL interface, it is assumed that the two interfaces are
compatible. This is typically enforced and automated by Oracle JDeveloper.

Note:

Only use Oracle JDeveloper in Design view to create and modify the
composite.xml and spring context files described in this section. Do not
directly edit these files in Source view. These examples are provided to show
you how Java interfaces and WSDL files are integrated in a SOA composite
application. Use of Oracle JDeveloper to achieve this functionality is described
in subsequent sections of this chapter.

For example, assume you have a Java interface for a service, as shown in the following
example:

public interface PortfolioService {
 public double getPorfolioValue(String portfolioId);
}

Assume the implementation can use an additional StockQuote service that is
implemented by another component that may be an external web service, or an EJB.
The following example provides details:

public interface StockQuote {
 public double getQuote (String symbol);
}

The composite.xml file for the spring framework lists the PortfolioService
service and the StockQuote service with the interface.java definitions. The
following example provides details.

<component name="PortfolioComp">
 <implementation.spring src="Spring/PortfolioComp.xml"/>
 <componentType>
 <service name="PortfolioService">
 <interface.java interface="com.bigbank.PortfolioService"/>
 </service>
 <reference name="StockService">
 <interface.java interface="com.bigbank.StockQuote"/>
 </reference>
 </componentType>
 </component>

The implementation class implements the service interface and provides a setter for
the reference interface. The following example provides details:

public class PortfolioServiceImpl implements PortfolioService {
 StockQuote stockQuoteRef;

 public void setStockService (StockQuote ref) {
 stockQuoteRef = ref;
 }

 public double getPorfolioValue(String portfolioId) {
 //-- use stock service
 //-- return value
 }
}

Integration of Java and WSDL-Based Components in the Same SOA Composite Application

Integrating the Spring Framework in SOA Composite Applications 55-3

The spring context file calls out the services and references and binds them to the
implementation. The following example provides details:

<beans ...>
 <sca:service name="PortfolioService" type="com.bigbank.PortfolioService"
 target="impl">
 </sca:service>

 <sca:reference name="StockService" type="com.bigbank.StockQuote">
 </sca:reference>

 <bean id ="impl" class ="com.bigbank.PortfolioServiceImpl">
 <property name="stockService" ref="StockService"/>
 </bean>
</beans>

55.2.2 Using Callbacks with the Spring Framework
Oracle SOA Suite uses callbacks for both interface.wsdl and interface.java.
However, the concept of callbacks does not exist in the spring framework. For Oracle
SOA Suite services and references, a callback is specified (in the metadata) as a second
port type for interface.wsdl or a second Java name for interface.java. The
spring metadata has only sca:services and sca:references and no way to
specify a callback.

To design a callback with spring, you must provide sca:services and
sca:references with a specific name. If you create both a sca:service and
sca:reference using the naming conventions of someService and
someServiceCallback, Oracle SOA Suite recognizes this convention and creates a
single service or reference with a callback.

For example, assume you create the syntax shown in the following example in the
spring context file with the spring editor in Oracle JDeveloper:

<sca:service name="StockService"
 type="oracle.integration.platform.blocks.java.callback.StockService"
 target="impl" />
 <sca:reference name="StockServiceCallback"
 type="oracle.integration.platform.blocks.java.callback.StockServiceReply" />

Oracle SOA Suite automatically creates a single service as shown in the following
example:

 <service name="StockService">
 <interface.java
 interface="oracle.integration.platform.blocks.java.callback.StockService"

callbackInterface="oracle.integration.platform.blocks.java.callback.StockServiceRe
ply"/>
 </service>

In the SOA Composite Editor, if a spring interface.java with a callback interface
is dragged to a WSDL component (for example, Oracle BPEL Process Manager, Oracle
Mediator, or others), a WSDL with two port types is generated (technically, a wrapper
WSDL, which is a WSDL that imports two other WSDLs, each having a single port
type).

If you drag a WSDL or Java interface that has a callback to a spring service component,
a single interface is displayed in the SOA Composite Editor. However, inside the

Integration of Java and WSDL-Based Components in the Same SOA Composite Application

55-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

spring editor, you find both a sca:service and sca:reference that have the
same naming conventions (someService and someServiceCallback).

55.3 Creating a Spring Service Component in Oracle JDeveloper
This section describes how to create a spring service component and wire the
component as follows in Oracle JDeveloper:

• To Java interface-based EJB services and references (Java-to-Java integration)

• To an Oracle Mediator service component (Java-to-WSDL integration)

55.3.1 How to Create a Spring Service Component in Oracle JDeveloper

To create a spring service component in Oracle JDeveloper:

1. From the Components window, drag a Spring service component into the , as
shown in Figure 55-1.

Figure 55-1 Spring Context Service Component

The Create Spring dialog is displayed.

2. In the Name field, enter a name for the spring service component. The name
becomes both the component name and the spring context file name. Figure 55-2
provides details.

You can also select Use Existing Context and click Browse to select an existing
spring file. For example, you may want to import a spring context that was
created in Oracle JDeveloper, but outside of Oracle SOA Suite. If you browse and
select a spring context from another project, it is copied to the SOA project.

Creating a Spring Service Component in Oracle JDeveloper

Integrating the Spring Framework in SOA Composite Applications 55-5

Figure 55-2 Create Spring Dialog

Note:

A standalone spring version of WebLogic SCA is also available for use. This
version is typically used outside of Oracle SOA Suite. This version is
accessible by selecting Spring 2.5 JEE from the Components window while
inside the spring editor.

3. Click OK.

A spring icon is displayed in the SOA Composite Editor.

4. If the contents are not automatically displayed, double-click the icon to display
the contents of the spring context in the spring editor.

5. From the Components window, select Weblogic SCA from the dropdown list.

The list is refreshed to display the selections shown in Figure 55-3.

Figure 55-3 WebLogic SCA Menu

6. Drag a Service icon into the spring editor.

The Insert Service dialog appears.

7. Complete the fields shown in Table 55-1 to define the target bean and Java
interface.

Creating a Spring Service Component in Oracle JDeveloper

55-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table 55-1 Insert Service Dialog

Field Description

name Enter a name.

target Enter the target bean. This action enables you to expose the
bean as a service.

Note: Ensure that this target exists. There is no validation
support that checks for the existence of this target.

type Enter the Java interface.

When complete, the Insert Service dialog looks as shown in Figure 55-4.

Figure 55-4 Insert Service Dialog

8. Click OK.

The target bean becomes the service interface in the spring context.

<?xml version="1.0" encoding="UTF-8" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tool
 http://www.springframework.org/schema/tool/spring-tool.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd
 http://www.springframework.org/schema/cache
 http://www.springframework.org/schema/cache/spring-cache.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/task
 http://www.springframework.org/schema/task/spring-task.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/jdbc

Creating a Spring Service Component in Oracle JDeveloper

Integrating the Spring Framework in SOA Composite Applications 55-7

 http://www.springframework.org/schema/jdbc/spring-jdbc.xsd
 http://www.springframework.org/schema/jms
 http://www.springframework.org/schema/jms/spring-jms.xsd
 http://www.springframework.org/schema/oxm
 http://www.springframework.org/schema/oxm/spring-oxm.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
 <!--Spring Bean definitions go here-->
 <sca:service name="scaserv1" target="cp"
 type="oracle.mypackage.myinterface"/>
</beans>

If you close the spring editor and return to the SOA Composite Editor, you see
that a handle has been added to the left side of the spring service component, as
shown in Figure 55-5.

Figure 55-5 Service Handle

9. Return to the spring editor.

10. Drag a Reference icon from the list shown in Figure 55-3 into the spring editor.

The Insert Reference dialog is displayed.

11. Complete the dialog, as shown in Table 55-2, and click OK.

Table 55-2 Insert Reference Dialog

Field Description

name Enter a name.

type Enter the Java interface.

When complete, the spring context displays the service and reference in the spring
editor.

<?xml version="1.0" encoding="UTF-8" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tool

Creating a Spring Service Component in Oracle JDeveloper

55-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

http://www.springframework.org/schema/tool/spring-tool.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/task
http://www.springframework.org/schema/task/spring-task.xsd
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee/spring-jee.xsd
http://www.springframework.org/schema/lang
http://www.springframework.org/schema/lang/spring-lang.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc.xsd
http://www.springframework.org/schema/jms
http://www.springframework.org/schema/jms/spring-jms.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc.xsd
http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
 <!--Spring Bean definitions go here-->
 <sca:service name="scaserv1" target="cp"
type="oracle.mypackage.myinterface"/>
 <sca:reference name="scaref1" type="external.bean.myInterface"/>
</beans>

12. Close the spring context file, as shown in Figure 55-6.

Figure 55-6 Spring Context File

A handle is added to the right side of the spring service component, as shown in
Figure 55-7.

Figure 55-7 Reference Handle

13. Drag the left handle into the Exposed Services swimlane to create a service
binding component, as shown in Figure 55-8.

Creating a Spring Service Component in Oracle JDeveloper

Integrating the Spring Framework in SOA Composite Applications 55-9

Figure 55-8 Service Binding Component

You are prompted to select to expose the service as either a web service or as an
EJB service, as shown in Figure 55-9.

Figure 55-9 Service Type To Create

• EJB: This exposes the EJB service through a Java interface; this selection does
not require the use of a WSDL file.

• Web Service: This exposes the web service through a SOAP WSDL interface.
If you select this option, a WSDL is generated from the Java Interface for
compatibility with the spring service component.

14. Select to expose this service as either an EJB or web service. A service is
automatically created in the Exposed Services swimlane and wired to the spring
service component (for this example, EJB is selected). Figure 55-10 provides
details.

Figure 55-10 EJB Service Binding Component Wired to the Spring Service
Component

15. Double-click the EJB service to display the automatically completed
configuration, as shown in Figure 55-11. The configuration details were created
from the values you entered in the Insert Service dialog in Step 7.

Creating a Spring Service Component in Oracle JDeveloper

55-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 55-11 EJB Service Dialog in Exposed Services Swimlane

16. Replace the default JNDI name that was automatically generated with the name
applicable to your environment.

17. Close the dialog.

18. Drag the right handle of the spring service component into the External
References swimlane to create a reference binding component.

You are prompted with the same spring type option message as shown in Step 13.

19. Select an option to expose this reference. A reference is automatically created in
the External References swimlane and wired to the spring service component (for
this example, EJB is selected). Figure 55-12 provides details.

Figure 55-12 EJB Reference Binding Component Wired to the Spring Service
Component

20. Double-click the EJB reference to display the automatically completed
configuration, as shown in Figure 55-13. The configuration details were created
from the values you entered in the Insert Reference dialog in Step 11.

Creating a Spring Service Component in Oracle JDeveloper

Integrating the Spring Framework in SOA Composite Applications 55-11

Figure 55-13 EJB Reference Dialog in External References Swimlane

21. Close the dialog and return to the SOA Composite Editor, as shown in
Figure 55-14.

Figure 55-14 Java Interface-Based EJB Service and Reference Binding
Components

22. Place the cursor over both the right handle of the service (as shown in
Figure 55-15) and the left handle of the spring service component (as shown in
Figure 55-16). The Java interface is displayed.

Figure 55-15 Java Interface of Service

Creating a Spring Service Component in Oracle JDeveloper

55-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 55-16 Java Interface of Spring Service Component

23. Perform the same action on the right handle of the spring service component and
the left handle of the reference binding component to display its Java interface.

24. Select Source view for the composite.xml file to display similar details.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version 12.1.3.0.0 at [5/16/14 3:05 AM].
 -->
<composite name="Project1"
. . .
. . .
<service name="scaserv1">
 <interface.java interface="oracle.mypackage.myinterface"/>
 <binding.ejb uri="scaserv1_ejb_ep" ejb-version="EJB3"/>
</service>
<property name="productVersion" type="xs:string"
 many="false">12.1.3.0.0</property>
<property name="compositeID" type="xs:string"
 many="false">4c07dbf0-5c01-450e-bde6-8c3866f45edc</property>
<component name="MySpring">
 <implementation.spring src="Spring/MySpring.xml"/>
 <componentType>
 <service name="scaserv1">
 <interface.java interface="oracle.mypackage.myinterface"/>
 </service>
 <reference name="scaref1">
 <interface.java interface="external.bean.myInterface"/>
 </reference>
 </componentType>
</component>
<reference name="scaref1">
 <interface.java interface="external.bean.myInterface"/>
 <binding.ejb uri="scaref1_ejb_ep" ejb-version="EJB3"/>
</reference>
<wire>
 <source.uri>scaserv1</source.uri>
 <target.uri>MySpring/scaserv1</target.uri>
</wire>
<wire>
 <source.uri>MySpring/scaref1</source.uri>
 <target.uri>scaref1</target.uri>
</wire>
</composite>

25. If you wire the right handle of the spring service component to an XML-based
component such as Oracle Mediator instead of the Java interface-based EJB
reference, a Java interface is generated from the Oracle Mediator's existing WSDL
interface. The following steps provide details.

a. Drag the right handle of the spring service component to the Oracle Mediator,
as shown in Figure 55-17.

Creating a Spring Service Component in Oracle JDeveloper

Integrating the Spring Framework in SOA Composite Applications 55-13

Figure 55-17 Integration of Spring Service Component and Oracle
Mediator

b. Click OK when prompted to acknowledge that a compatible interface was
created from the Oracle Mediator WSDL file.

Figure 55-18 Java File Creation from the Oracle Mediator WSDL File

If you drag a wire between a Java interface and a WSDL-based component,
and the WSDL file with the default name (based on the Java Interface name)
already exists, you are prompted with four options. Click Cancel to cancel
creation of the wire. Figure 55-19 provides details.

Figure 55-19 Existing WSDL File

c. Place the cursor over both the right handle of the spring service component
(as shown in Figure 55-20) and the left handle of the Oracle Mediator (as
shown in Figure 55-21) to display the compatible interface.

Creating a Spring Service Component in Oracle JDeveloper

55-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure 55-20 Spring Service Component Interface

Figure 55-21 Oracle Mediator Interface

d. Double-click the spring service component to display the contents of the
spring context file in the spring editor.

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-2.5.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/tool
 http://www.springframework.org/schema/tool/spring-tool-2.5.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-
sca.xsd">
 <!--Spring Bean defintions go here-->
 <sca:service name="scaserv1" target="ep"
type="oracle.mypackage.myinterface"/>
 <sca:reference
type="mediator1.project1.application4.com.oracle.xmlns.Execute_
ptt" name="Mediator1.Mediator1"/>
</beans>

Creating a Spring Service Component in Oracle JDeveloper

Integrating the Spring Framework in SOA Composite Applications 55-15

Note:

• When integrating a component that uses a Java interface with a
component that uses a WSDL file in the SOA Composite Editor, if a
specific interface class is not found in the classpath (including the JAR
files in the SCA-INF/lib directory), but the source file does exist in the
SOA project, you are prompted to automatically compile the source.

• You can also create BPEL process partner links with services that use Java
interfaces. You select this type of service in the Service Explorer dialog
when creating a partner link. For more information, see Introduction to
Partner Links.

55.3.2 What You May Need to Know About Java Class Errors During Java-to-WSDL
Conversions

When a Java-to-WSDL conversion fails because of a bad Java class and you modify the
Java code to correct the problem, you must restart Oracle JDeveloper. Not doing so
results in a Java-to-WSDL conversion failure because the new class is not reloaded.

55.4 Defining Custom Spring Beans Through a Global Spring Context
You can define custom spring beans through a global spring context definition. This
configuration enables you to define these beans only once, at the global level.

55.4.1 How to Define Custom Spring Beans Through a Global Spring Context

To define custom spring beans through a global spring context:

1. Add the custom spring bean definitions into the following file:

SOA_HOME/soa/modules/oracle.soa.ext_11.1.1/classes/
springse-extension-global-beans.xml

2. Add the corresponding classes in either the lib directory (as a JAR file) or the
classes directory (as extracted files of the JAR file).

SOA_HOME/soa/modules/oracle.soa.ext_11.1.1/lib | classes

For more information, see the readme.txt file located in the following directory:

SOA_HOME/soa/modules/oracle.soa.ext_11.1.1

Note:

A server restart is required to pick up newly added spring beans.

55.5 Using the Predefined Spring Beans
Oracle SOA Suite provides the following predefined spring beans:

• headerHelperBean: For getting and setting header properties.

Defining Custom Spring Beans Through a Global Spring Context

55-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• instanceHelperBean: For getting the following information:

– The instance ID of the flow instance currently running.

– The instance ID of the component instance currently running.

– The composite distinguished name (DN) containing the component.

– The name of the spring service component.

• loggerBean: For providing context-aware logging messages.

The predefined spring beans are automatically injected into the spring service
component. However, you must explicitly integrate the predefined spring beans into a
SOA composite application by providing a reference to the bean in the spring context
file.

For an example of how to reference loggerBean and headerHelperBean in a
spring context file, see How to Reference Predefined Spring Beans in the Spring
Context File.

55.5.1 IHeaderHelperBean.java Interface for headerHelperBean
The following example shows the IHeaderHelperBean.java interface for the
headerHelperBean bean:

package oracle.soa.platform.component.spring.beans;
/**
 * Interface for getting and setting header properties.
 * These properties will be set on the normalized message - and passed on
 * to the respective reference that the local reference is wired to on
 * composite level.
 *

 * To use this bean from within your context, declare property
 * with ref="headerHelperBean". E.g.
 * <property name="headerHelper" ref="headerHelperBean"/>
 */
public interface IHeaderHelperBean
{
 /**
 * Get a property from the normalized message header. Note that these
 * properties are defined, and are the same ones, one can get/set via
 * mediator or bpel process
 * @param pKey the property key, case sensitive
 * @return the value, or null in case not found
 */
 public String getHeaderProperty (String pKey);
 /**
 * Set a property on the normalized message header. Note that these
 * properties are defined, and are the same ones, one can get/set via
 * mediator or bpel process
 * @param pKey the property key, case sensitive
 * @param pValue the value to be set
 */
 public void setHeaderProperty (String pKey, String pValue);
}

55.5.2 IInstanceHelperBean.java Interface for instancerHelperBean
The following example shows the IInstanceHelperBean.java interface for the
instanceHelperBean bean:

Using the Predefined Spring Beans

Integrating the Spring Framework in SOA Composite Applications 55-17

package oracle.soa.platform.component.spring.beans;

import oracle.integration.platform.instance.engine.ComponentInstanceContext;
/**
 * Instancehelper Bean, gives access to composite / component + instance
 information
 *

 * To use this bean from within your context, declare property
 * with ref="instanceHelperBean". E.g.
 * <property name="instanceHelper" ref="instanceHelperBean"/>
 */
public interface IInstanceHelperBean
{
 /**
 * Returns the instance id of the composite instance currently running
 * @return the composite instance id
 */
 public String getCompositeInstanceId ();

 /**
 * Returns the instance id of the component instance currently running
 * @return the component instance id
 */
 public String getComponentInstanceId ();

 /**
 * Returns the composite dn containing this component
 * @return the composite dn
 */
 public String getCompositeDN ();

 /**
 * Returns the name of this spring component
 * @return the component name
 */
 public String getComponentName ();

}

55.5.3 ILoggerBean.java Interface for loggerBean
The following example shows the ILoggerBean.java interface for the loggerBean
bean:

package oracle.soa.platform.component.spring.beans;

import java.util.logging.Level;

/**
 * Logger bean interface, messages will be logged as
 * [<composite instance id>/<component instance id>] <message>
 *

 * To use this bean from within your context, declare property
 * with ref="loggerBean". E.g.
 * <property name="logger" ref="loggerBean"/>
 */
public interface ILoggerBean
{

 /**
 * Log a message, with Level.INFO

Using the Predefined Spring Beans

55-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 * @param message
 */
 public void log (String message);

 /**
 * Log a message with desired level
 * @param pLevel the log level
 * @param message the message to log
 */
 public void log (Level pLevel, String message);

 /**
 * Log a throwable with the desired level
 * @param level the level to log with
 * @param message the message
 * @param th the exception (throwable) to log
 */
 public void log (Level level, String message, Throwable th);

}

55.5.4 How to Reference Predefined Spring Beans in the Spring Context File
You create references to the predefined beans in the spring context file.

To reference predefined spring beans in the spring context file:

1. Open the spring context file in Source view in Oracle JDeveloper.

2. Add references to the loggerBean and headerHelperBean predefined beans.

<?xml version="1.0" encoding="windows-1252" ?>
. . .
. . .
 <!--
 The below sca:service(s) corresponds to the services exposed by the
 component type file: SpringPartnerSupplierMediator.componentType
 -->
 <!-- expose the InternalPartnerSupplierMediator + EJB as service
 <service name="IInternalPartnerSupplier">
 <interface.java
 interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 </service>
 -->
 <sca:service name="IInternalPartnerSupplier"
 target="InternalPartnerSupplierMediator"
type="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 <!-- expose the InternalPartnerSupplierMediator + Mock as service
 <service name="IInternalPartnerSupplierSimple">
 <interface.java
 interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 </service>
 -->
 <sca:service name="IInternalPartnerSupplierSimple"
 target="InternalPartnerSupplierMediatorSimple"
type="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
 <!-- the partner supplier mediator bean with the mock ep -->
 <bean id="InternalPartnerSupplierMediatorSimple"
class="com.otn.sample.fod.soa.internalsupplier.InternalSupplierMediator"
 scope="prototype">
 <!-- inject the external partner supplier bean -->

Using the Predefined Spring Beans

Integrating the Spring Framework in SOA Composite Applications 55-19

 <property name="externalPartnerSupplier"
 ref="IExternalPartnerSupplierServiceMock"/>
 <!-- inject the quoteWriter -->
 <property name="quoteWriter" ref="WriteQuoteRequest"/>
 <!-- context aware logger, globally available bean [ps3] -->
 <property name="logger" ref="loggerBean"/>
 <!-- headerHelper bean -->
 <property name="headerHelper" ref="headerHelperBean"/>
 </bean>
 <!-- the partner supplier mediator bean with the ejb -->
 <bean id="InternalPartnerSupplierMediator"
class="com.otn.sample.fod.soa.internalsupplier.InternalSupplierMediator"
 scope="prototype">
 <!-- inject the external partner supplier bean -->
 <property name="externalPartnerSupplier"
 ref="IExternalPartnerSupplierService"/>
 <!-- inject the quoteWriter -->
 <property name="quoteWriter" ref="WriteQuoteRequest"/>
 <!-- context aware logger, globally available bean [ps3] -->
 <property name="logger" ref="loggerBean"/>
 <!-- headerHelper bean -->
 <property name="headerHelper" ref="headerHelperBean"/>
 </bean>
. . .
. . .

55.6 JAXB and OXM Support
Oracle Fusion Middleware provides support for using JAXB and EclipseLink OXM to
map Java classes to XML data. You can store and retrieve data in memory in any XML
format without implementing a specific set of XML routines for the program's class
structure. This support enables you to perform the following:

• Map Java objects to XML data

• Map XML data back to Java objects

For design information about external metadata for JAXB mappings, visit the
following URL:

http://wiki.eclipse.org/EclipseLink/DesignDocs/277920

For information about JAXB OXM and the OXM mapping file (eclipselink-
oxm.xsd), visit the following URLs:

http://wiki.eclipse.org/EclipseLink/FAQ/WhatIsMOXy

http://wiki.eclipse.org/EclipseLink/Examples/MOXy

http://wiki.eclipse.org/Category:XML

You can also map Java classes to XML data when integrating an EJB with SOA
composite applications. For more information, see Integrating Enterprise JavaBeans
with Composite Applications .

55.6.1 Extended Mapping Files
Oracle SOA Suite extends JAXB and OXM file support through use of an extended
mapping (EXM) file. If an EXM file is present in the class path of the design time

JAXB and OXM Support

55-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

http://wiki.eclipse.org/EclipseLink/DesignDocs/277920
http://wiki.eclipse.org/EclipseLink/FAQ/WhatIsMOXy
http://wiki.eclipse.org/EclipseLink/Examples/MOXy
http://wiki.eclipse.org/Category:XML

project, then it can be used for Java-to-WSDL conversions. The EXM file provides data
binding metadata in the following situations:

• When you cannot add the JAXB annotations into the Java source and must specify
them separately

• When scenarios are not covered by JAXB (for example, with top level elements
like method return types or parameter types)

The external JAXB annotations can be specified either directly in the EXM file or
included in the separate TopLink JAXB mapping OXM file that can be referred to from
the EXM file.

The EXM file name must match the Java class name and reside in the same package
location. For example, if the Java class is named
pack1.pack2.myJavaInterface.class, the EXM file must be named pack1/
pack2/myJavaInterface.exm.

Oracle SOA Suite design time supports placing the EXM file in either the source path
(SCA-INF/src) or the class path (SCA-INF/classes or a JAR in SCA-INF/lib).

Placing the EXM file in the source path (SCA-INF/src) enables you to edit the EXM
using Oracle JDeveloper (files in the class path do not appear in the Applications
window in Oracle JDeveloper). When project compilation is complete, the EXM file
(and any XML files that it imports) is copied to the class path (SCA-INF/classes) for
deployment. If the EXM file is in the source path, it must still be in the same
corresponding directory structure.

If you place the EXM (and OXM) files in SCA-INF/src, ensure that your Oracle
JDeveloper project is configured so that SCA-INF/src is the default source directory
(right-click the project name, and select Project Properties > Java Source Paths). EXM
files can also be found in JAR files that are in the project's class path.

When you drag and drop a Java interface (Enterprise JavaBeans) to a BPEL process,
Oracle SOA Suite checks to see if the EXM file exists. If it does, it is passed to the web
services java2wsdl API.

After the WSDL file is generated, an informational message is displayed. If an EXM
file was used, the message displayed takes the following format:

The WSDL file {0} was generated based on the JAVA class {1} using extended mapping
file {2}

The following provides an example of an EXM file:

 <java-wsdl-mapping name="com.hello.sei.MyServiceEndpointInterface"
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding"
 xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
 databinding="toplink.jaxb">
 <xml-schema-mapping>
 <toplink-oxm-file java-package="com.hello.foo" file-path="./foo-oxm.xml"/>
 <toplink-oxm java-package="com.hello.coo">
 <xml-bindings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/oxm">
 <xml-schema
 element-form-default="QUALIFIED"
 attribute-form-default="UNQUALIFIED"
 namespace="urn:customer">
 <xml-ns prefix="ns1" namespace-uri="urn:customer" />
 </xml-schema>
 <java-types>
 <java-type name="Person" xml-transient="true">

JAXB and OXM Support

Integrating the Spring Framework in SOA Composite Applications 55-21

 <java-attributes>
 <xml-transient java-attribute="id"/>
 </java-attributes>
 </java-type>
 <java-type name="Customer">
 <xml-see-also>org.example.employee.Employee</xml-see-also>
 </java-type>
 </java-types>
 </xml-bindings>
 </toplink-oxm>
 </xml-schema-mapping>
. . .
</java-wsdl-mapping>

The EXM schema file for external mapping metadata for the data binding framework
is available at the following URL:

http://www.oracle.com/technology/weblogic/weblogic-wsee-databinding/1.1/
weblogic-wsee-databinding.xsd

The data defines the attributes of a particular Java web service endpoint. This schema
defines three types of XML constructs:

• Constructs that are analogous to JAX-WS or JSR-181 that override or define
attributes on the service endpoint interface (SEI) and JAXB annotations for the
value types used in the interfaces of the SEI.

• Additional mapping specifications not available using standard JAX-WS or JAXB
annotations, primarily for use with the java.util.Collections API.

• References to external JAXB mapping metadata from a Toplink OXM file.

When a construct is the direct analog of a JAX-WS, JSR-181, or JAXB annotation, the
comment in the schema contains a notation such as:

Corresponding Java annotation: javax.jws.WebParam.Mode

55.7 Configuring Groovy and Aspectj Classes with the Spring Service
Component

If you configure a Groovy or Aspectj class in the spring configuration file, you must
follow these conventions:

• Use the classpath protocol:

script-source="classpath:"

Using a relative file path is not possible because the SCA package is not treated as
a regular JAR file for the class loader. For example, the following classpath
protocol indicates to find the Groovy file from the class path.

script-source="classpath:service/GroovyGreeter.groovy"

• Add Groovy and Aspectj files in any of the following directories when using the
classpath protocol. No other directories are possible.

– SCA-INF/classes

– SCA-INF/lib

Configuring Groovy and Aspectj Classes with the Spring Service Component

55-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

http://www.oracle.com/technology/weblogic/weblogic-wsee-databinding/1.1/weblogic-wsee-databinding.xsd
http://www.oracle.com/technology/weblogic/weblogic-wsee-databinding/1.1/weblogic-wsee-databinding.xsd

– Shared SOA lib

If your build scripts are configured to clean the classes directory, either put the
Groovy files in the SCA-INF/lib directory or design your build scripts to
prevent cleaning.

• Add spring extension JAR file libraries for Groovy or Aspectj to the class path of
the managed server's setDomainENV.sh or setDomainENV.bat file and restart
the server. This ensures that deployment is successful. The restart is required
because spring uses Java reflection to instantiate aspect-oriented programming
(AOP). The use of reflection restricts the search for classes to the system class
loader. Any changes to the system class loader require a server restart.

55.8 Troubleshooting Spring Errors
This section describes how to troubleshoot errors with the spring service component.

55.8.1 Spring Bean Interface to Invoke Cannot Be Found
Assume you have a SOA composite application in which a BPEL process invokes a
spring context. However, the spring bean interface to invoke cannot be found. The
administration server diagnostic log file displays the error shown in the following
example:

[2012-04-09T10:30:07.499-07:00] [AdminServer] [NOTIFICATION] [SOA-31704]
[oracle.integration.platform.blocks.java] [tid: [ACTIVE].ExecuteThread: '2' for
queue: 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid:
11d1def534ea1be0:2058db3f:1369787a1b8:-8000-0000000000002be6,0:2] [WEBSERVICE_
PORT.name: SOACohSpringBPELProcess_pt] [APP: soa-infra] [composite_name:
SOACohSpringProj] [component_name: SOACohSpringBPELProcess] [component_instance_
id: 270006] [J2EE_MODULE.name: fabric] [WEBSERVICE.name: soacohspringbpelprocess_
client_ep] [J2EE_APP.name: soa-infra] No mapping found for class
SOACohSpringProj.CohEJBInterface.

Ensure that you deploy the JAR file containing the class into the SCA-INF/lib
directory or the classes into the SCA-INF/classes directory of the SAR file.

55.8.2 Unable to Add a Spring Service Component in the SOA Composite Editor
The Oracle SOA Suite Quick Start installation automatically includes the spring
extension files for invoking the spring editor. This enables you to successfully add a
spring service component in the SOA Composite Editor and invoke the Create Spring
dialog, as described in How to Create a Spring Service Component in .

If you use the standard Oracle JDeveloper installation outside of Oracle SOA Suite,
you must install the spring editor by selecting Check for Updates from the Help main
menu in Oracle JDeveloper, then selecting the spring extension files in the Update
Center. Otherwise, you cannot successfully add a spring service component into the
SOA Composite Editor and invoke the Create Spring dialog. Instead, you receive the
error shown in Figure 55-22.

Troubleshooting Spring Errors

Integrating the Spring Framework in SOA Composite Applications 55-23

Figure 55-22 Spring Unavailability Error

Troubleshooting Spring Errors

55-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Part X
Appendices

This part describes Oracle SOA Suite appendixes.

This part contains the following appendixes:

• BPEL Process Activities and Services

• XPath Extension Functions

• Deployment Descriptor Properties

• Understanding Sensor Public Views and the Sensor Actions XSD

• Propagating Normalized Message Properties Through Message Headers

• Interfaces Implemented By Rules Dictionary Editor Task Flow

• Oracle SOA Suite Configuration Properties Road Map

A
BPEL Process Activities and Services

This appendix describes the BPEL process activities and services that you use when
designing a BPEL process in a SOA composite application.

This appendix includes the following sections:

• Introduction to Activities and Components

• Introduction to BPEL 1.1 and 2.0 Activities

• Introduction to BPEL Services

A.1 Introduction to Activities and Components
When you expand SOA Components in the Components window of Oracle BPEL
Designer, service components are displayed. Figure A-1 shows the service components
that display for a BPEL 2.0 or 1.1 process.

Figure A-1 SOA Components

See the following sections for additional details about service components.

• BPEL process

See Using the BPEL Process Service Component

• Oracle Mediator

See Using the Oracle Mediator Service Component

• Business rule

See Using the Business Rules Service Component

• Human task

Using the Human Workflow Service Component

BPEL Process Activities and Services A-1

• Spring

Integrating the Spring Framework in SOA Composite Applications

For information about Oracle BPEL Designer, see Getting Started with Oracle BPEL
Process Manager .

A.2 Introduction to BPEL 1.1 and 2.0 Activities
This section provides a brief overview of BPEL activities and provides references to
other documentation that describes how to use these activities.

Oracle BPEL Designer includes BPEL 1.1 and BPEL 2.0 activities that can be added to a
BPEL process. These activities enable you to perform specific tasks within a process.
Some activities are available in both BPEL 1.1 and BPEL 2.0. Others are available in
only BPEL 1.1 or BPEL 2.0.

To access these activities, go to the Components window of Oracle BPEL Designer.
The activities display in the following categories:

• BPEL Constructs: Displays core activities (also known as constructs) provided by
standard BPEL 1.1 and 2.0 functionality. The activities in this category are
displayed under additional subcategories of Web Service, Activities, and
Structured Activities in BPEL 1.1 and Web Service, Basic Activities, and
Structured Activities in BPEL 2.0.

• Subprocesses: Displays any created subprocesses. If no subprocesses have been
created, this category is empty. For more information about subprocesses, see
Introduction to Standalone and Inline BPEL Subprocess Invocations.

• Oracle Extensions: Displays extension activities that add value and ease of use to
BPEL 1.1 and 2.0 functionality.

• SOA Components: Displays the business rules, human tasks, and Oracle
Mediator service components that can be added to a BPEL process.

• BPEL Services: Displays the partner links that can be added to a BPEL process,
including JCA adapters (AQ, file, FTP, database, JMS, MQ, Oracle User Messaging
Service, socket, JDE World, SAP, LDAP server, Coherence cache, and third-party),
Oracle BAM 11g binding component, Oracle Healthcare binding component,
Oracle B2B binding component, EJB binding component, ADF-BC binding
component, Oracle E-Business Suite adapter, direct binding component, HTTP
binding component, and Oracle Managed File Transfer (MFT) adapter.

• Custom Activity Templates: Displays any created custom scope activity
templates. For more information about templates, see Introduction to Templates.

Table A-1 lists the available activities.

Table A-1 BPEL 1.1 and 2.0 Constructions and Extensions

Activity Display Under... Supported in
BPEL 1.1

Supported in BPEL 2.0 For More Information

Assign BPEL Constructs Yes Yes Assign Activity

Assert Oracle
Extensions

Yes Yes Assert Activity

Introduction to BPEL 1.1 and 2.0 Activities

A-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table A-1 (Cont.) BPEL 1.1 and 2.0 Constructions and Extensions

Activity Display Under... Supported in
BPEL 1.1

Supported in BPEL 2.0 For More Information

Bind Entity Oracle
Extensions

Yes No Bind Entity Activity

Call Oracle
Extensions

No Yes Call Activity

Compensate BPEL Constructs Yes Yes Compensate Activity

CompensateScop
e

BPEL Constructs No Yes CompensateScope
Activity

Create Entity Oracle
Extensions

Yes No Create Entity Activity

Dehydrate Oracle
Extensions

Yes Yes Dehydrate Activity

Dynamic Partner
Link

BPEL Constructs Yes No Dynamic Partner Link
Activity

Email Oracle
Extensions

Yes Yes Email Activity

Empty BPEL Constructs Yes Yes Empty Activity

Exit BPEL Constructs No Yes

Note: Replaces the
terminate activity in
BPEL 2.0.

Exit Activity

Flow BPEL Constructs Yes Yes Flow Activity

FlowN Oracle
Extensions

Yes No

Note: Replaced by the
forEach activity in
BPEL 2.0

FlowN Activity

forEach BPEL Constructs No Yes

Note: Replaces the
FlowN activity in BPEL
2.0.

forEach Activity

If BPEL Constructs No Yes

Note: Replaces the
switch activity in BPEL
2.0.

If Activity

IM Oracle
Extensions

Yes Yes IM Activity

Invoke BPEL Constructs Yes Yes Invoke Activity

Java Embedding Oracle
Extensions

Yes Yes Java Embedding Activity

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-3

Table A-1 (Cont.) BPEL 1.1 and 2.0 Constructions and Extensions

Activity Display Under... Supported in
BPEL 1.1

Supported in BPEL 2.0 For More Information

Partner Link BPEL Constructs Yes Yes Partner Link Activity

Phase Oracle
Extensions

Yes Yes Phase Activity

Pick BPEL Constructs Yes Yes Pick Activity

Receive BPEL Constructs Yes Yes Receive Activity

Receive Signal Oracle
Extensions

Yes Yes Receive Signal Activity

Remove Entity Oracle
Extensions

Yes No Remove Entity Activity

RepeatUntil BPEL Constructs No Yes RepeatUntil Activity

Replay Oracle
Extensions

Yes Yes Replay Activity

Reply BPEL Constructs Yes Yes Reply Activity

Rethrow BPEL Constructs No Yes Rethrow Activity

Schedule Job Oracle
Extensions

Yes Yes Schedule Job

Scope BPEL Constructs Yes Yes Scope Activity

Sequence BPEL Constructs Yes Yes Sequence Activity

Signal Oracle
Extensions

Yes Yes Signal Activity

SMS Oracle
Extensions

Yes Yes SMS Activity

Switch BPEL Constructs Yes No

Note: Replaced by the if
activity in BPEL 2.0.

Switch Activity

Terminate BPEL Constructs Yes No

Note: Replaced by the
exit activity in BPEL 2.0

Terminate Activity

Throw BPEL Constructs Yes Yes Throw Activity

Translate Oracle
Extensions

Yes Yes Translate Activity

User Notification Oracle
Extensions

Yes Yes User Notification
Activity

Introduction to BPEL 1.1 and 2.0 Activities

A-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table A-1 (Cont.) BPEL 1.1 and 2.0 Constructions and Extensions

Activity Display Under... Supported in
BPEL 1.1

Supported in BPEL 2.0 For More Information

Validate Oracle
Extensions (in
BPEL 1.1)

BPEL Constructs
(in BPEL 2.0)

Yes Yes Validate Activity

Voice Oracle
Extensions

Yes Yes Voice Activity

Wait BPEL Constructs Yes Yes Wait Activity

While BPEL Constructs Yes Yes While Activity

XQuery
Transform

Oracle
Extensions

Yes Yes XQuery Transform
Activity

XSLT Transform Oracle
Extensions

Yes Yes XSLT Transform Activity

For more information about activities, see the or the by visiting the following URL:

http://www.oasis-open.org

A.2.1 Tabs Common to Many Activities
While each activity performs specific tasks, many activities include tabs that enable
you to perform similar tasks. This section describes these common tabs.

A.2.1.1 Annotations Tab

The Annotations tab displays on all activities and enables you to provide descriptions
in activities in the form of code comments and name-and-pair value assignments.

The Annotations tab does not provide a method for changing the order of
annotations. As a work around, change the order of annotations in the Source view of
the project's BPEL file in Oracle BPEL Designer.

A.2.1.2 Assertions Tab

The Assertions tab displays in invoke, receive, reply, and the onMessage branches of
pick and scope activities. A set of assertions are executed upon receipt of a callback
message at a request-response operation in these activities. The assertions specify an
XPath expression that, when evaluated to false, causes a BPEL fault to be thrown from
the activity. This provides an alternative to using a potentially large number of switch,
assign, and throw activities after a partner callback.

You can select when to execute a condition:

• Preassert: This condition is executed before the invoke or reply activity send out
the outbound message.

• Postassert: This condition is executed after an invoke activity, receive activity, or
onMessage branch receives the inbound message.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-5

http://www.oasis-open.org

For more information, see the online help for this tab and Throwing Faults with
Assertion Conditions.

A.2.1.3 Correlations Tab

The Correlations tab displays in invoke, receive, and reply activities, the onMessage
branch of pick activities, and the OnMessage branch of scope activities. Correlation
sets address complex interactions between a process and its partners by providing a
method for explicitly specifying correlated groups of operations within a service
instance. A set of correlation tokens is defined as a set of properties shared by all
messages in the correlated group.

For more information, see the online help for this tab and Introduction to Correlation
Sets in an Asynchronous Service.

A.2.1.4 Documentation Tab

The Documentation tab enables you to embed human documentation in the activities
of a BPEL file. These comments only display in the source code of the BPEL file. The
following example provides details.

<invoke>
. . .
 <documentation>
 Invokes the credit rating service partner link
 </documentation>
. . .

Note:

This tab is only available in BPEL 2.0 projects.

A.2.1.5 Headers Tab

The Headers tab displays in invoke, receive, and reply activities, and the onMessage
branch of pick and scope (for BPEL 1.1) activities. You create header variables for use
with adapters, such as Advanced Queuing (AQ), file, FTP, MQ, and Java Message
Service (JMS).

For more information, see the online help for this tab and Understanding Technology
Adapters

A.2.1.6 Properties Tab

The Properties tab displays in invoke, receive, and reply activities, and the onMessage
branch of pick and scope activities. You can define normalized message header
properties for components such as Oracle BPEL Process Manager, Oracle Mediator,
Oracle JCA adapters, REST adapters, and Oracle B2B.

For more information, see the online help for this tab and Propagating Normalized
Message Properties Through Message Headers.

A.2.1.7 Skip Condition Tab

The Skip Condition tab displays in most activities and enables you to specify an
XPath expression that, when evaluated to true, causes the activity to be skipped. This
extension provides an alternative to the case pattern of a switch activity that you use
to make an activity conditional.

Introduction to BPEL 1.1 and 2.0 Activities

A-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For more information, see the online help for this tab and Specifying XPath
Expressions to Bypass Activity Execution.

A.2.1.8 Sources and Targets Tabs

The Sources and Targets tabs enable you to define the source and target activities to
execute in a flow activity. This feature enables you to synchronize the execution of
activities within a flow activity to ensure that a target activity only executes after a
source activity has completed.

For more information, see the online help for this tab and Synchronizing the Execution
of Activities in a Flow Activity.

A.2.1.9 Timeout Tab

The Timeout tab displays in receive activities and provides a timeout setting for
request-response operations. This provides an alternative to the onMessage and
onAlarm branches of a pick activity that you must use when you want to specify a
time out duration for partner callbacks.

For more information, see the online help for this tab and Setting Timeouts for
Request-Reply and In-Only Operations in Receive Activities.

A.2.2 Using the Native Format Builder Wizard Outside of Adapter Configuration
The Native Format Builder wizard enables you to create a native XSD schema file. You
can now invoke the Native Format Builder wizard outside of adapter creation to create
new schemas and edit existing schemas.

A.2.2.1 To create a native format schema from the Applications Window:

1. From the Oracle JDeveloper main menu, select File > New.

2. From the Categories list, select SOA Tier > Interfaces.

3. Click NXSD Schema to invoke the Native Format Builder wizard.

4. On the Welcome page, click Next.

5. On the File Name and Directory page, specify the file name of the schema (for
example, addresses_schema.xsd) and directory path.

6. Follow the remaining pages of the wizard to create the native format schema.

For more information about the Native Format Builder wizard, see Chapter "Native
Format Builder Wizard" of Understanding Technology Adapters.

A.2.2.2 To edit an existing native format schema from the Applications Window:

You can access the Native Format Builder wizard for schema editing from the
Applications window. The context menu option Edit NXSD is available for selection if
the schema file is detected to be a native format schema file.

1. In the Applications window, right-click a native format schema file (for example,
addresses.xsd).

2. Select Edit NXSD.

For more information about the Native Format Builder wizard, see Chapter "Native
Format Builder Wizard" of Understanding Technology Adapters.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-7

A.2.3 Assign Activity
This activity provides a method for data manipulation, such as copying the contents of
one variable to another. Copy operations enable you to transfer information between
variables, expressions, endpoints, and other elements.

Figure A-2 shows the Copy Rules tab of the Assign dialog for BPEL 1.1. You create a
mapping between source and target nodes in the tree in either of the following ways:

• Drag the source node to the target node to create a BPEL copy rule from the
source to the target node. This action creates a line that connects the source and
target types.

• Select the source node, select the target node, and then click the Add icon above
the table at the bottom of the dialog. The mapping is then added to the table and
the connecting line between the nodes is drawn in the tree.

The copy rule is displayed in the From and To sections at the bottom of the dialog.

Figure A-2 Copy Rules Tab of Edit Assign Dialog

The Select Insertion Mode list above the source node section enables you to insert the
next copy rule you create either after or before the rule selected at the bottom of the
dialog.

Icons display above the target node that enable you to perform the following tasks
(from left to right) on target nodes. By default, the center canvas is open. If it is closed,
drag the bars open to display the center canvas.

• Expression icon: Drag this icon to a target node to invoke the Expression Builder
dialog for assigning an XPath expression to that node. You can also drag this icon
to the center canvas to invoke this dialog, specify the expression, save and close
the dialog, and then drag the icon to the target node.

• Literal (BPEL 2.0 specification) icon or XML Fragment (BPEL 1.1 specification)
icon: Drag this icon to a target node to invoke a dialog for assigning a literal (if the
BPEL project supports the BPEL 2.0 specification) or XML fragment (if the BPEL
project supports the BPEL 1.1 specification) to that target node. You can also drag

Introduction to BPEL 1.1 and 2.0 Activities

A-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

this icon to the center canvas to invoke this dialog, specify the value, save and
close the dialog, and then drag the icon to the target node.

• Remove icon: Drag this icon to a target node to create a bpelx:remove extension
rule. You can also drag this icon to the center canvas to invoke this dialog, specify
the rule, save and close the dialog, and then drag the icon to the target node.

• Rename icon: Drag this icon to rename a target node. This adds a bpelx:rename
extension rule with an elementTo attribute. You can also drag this icon to the
center canvas to invoke a dialog, specify the rule, save and close the dialog, and
then drag the icon to the target node.

• Recast icon: Drag this icon to recast a target node. This adds a bpelx:rename
extension rule with a typeCastTo attribute. This results in an xsi:type
attribute in the XML output. You can also drag this icon to the center canvas to
invoke a dialog, specify the rule, save and close the dialog, and then drag the icon
to the target node.

You can also change a selected copy rule to a bpelx extension type
(bpelx:copyList, bpelx:insertAfter, bpelx:insertBefore, or
bpelx:append).

The method of selection differs between BPEL 1.1 and BPEL 2.0.

Figure A-3 shows how you select an extension type in BPEL 1.1. You select a copy
rule, select the Copy dropdown list, and then select the appropriate extension.

Figure A-3 Copy Rule Converted to bpelx Extension in BPEL 1.1

Figure A-4 shows how you select an extension type in BPEL 2.0. You right-click a copy
rule, select Change rule type, and then select the appropriate extension.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-9

Figure A-4 Copy Rule Converted to bpelx Extension in BPEL 2.0

For more information about manipulating XML data with bpelx extensions, see
Manipulating XML Data with bpelx Extensions.

In the From and To XPath fields, you can also place your cursor over the icon to the
left of the source type to display the operation being performed (for example, copy,
append, and so on). Each operation type is represented by a different icon. You can
also right-click a copy rule to display a list of actions to perform:

• Edit 'From' expression or Edit 'To' expression: Select this option to edit XPath
expression values when the created copy rule contains a query for the source or
target node. This selection invokes the Expression Builder dialog. The menu
option that displays is based on the current content of your copy rule selection.

• ignoreMissingFromData: Select this option to toggle the
ignoreMissingFromData attribute on the copy rule on and off. When toggled
on, this suppresses any bpel:selectionFailure standard faults. For more
information, see ignoreMissingFromData Attribute.

• insertMissingToData: Select this option to toggle the insertMissingToData
attribute on the copy rule on and off. For more information, see Section
insertMissingToData Attribute.

• keepSrcElementName (in BPEL 2.0 projects only): Select this option to toggle the
keepSrcElementName attribute on the copy rule on and off. This option enables
you to replace the element name of the destination (as selected by the to-spec)
with the element name of the source.

• Change Rule Type (in BPEL 2.0 projects only): Select this option to change the
type of the selected rule to one of the BPEL extension rules: bpelx:copyList,
bpelx:insertAfter, bpelx:insertBefore, or bpelx:append.

• Delete rule: Select this option to delete the selected rule.

For more information about the ignoreMissingFromData, insertMissingToData, and
keepSrcElementName attributes, see How to Use Assign Extension Attributes.

Introduction to BPEL 1.1 and 2.0 Activities

A-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

The icons above the To section enable you to add, delete, move up, and move down a
selected copy rule.

For more information about the assign activity, see the online Help for the Copy Rules
dialog and Manipulating XML Data in a BPEL Process.

Note:

If an assign activity contains multiple bpelx:append settings, it must be split
into two assign activities. Otherwise, bpelx:append is moved to the end of
the list each time, which can cause problems. As a work around, move it
manually.

A.2.4 Assert Activity
This activity enables you to perform an assertion on a specified expression.

This is a standalone activity in which to specify assertions. This activity can be placed
anywhere in the BPEL process flow. You can also specify assertions in message
exchange activities from the Assertions tab in invoke activities, reply activities, receive
activities, and the onMessage branch of pick and scope activities.

Figure A-5 shows the Assert dialog.

Figure A-5 Assert Dialog

For more information about the standalone assert activity, see Assertion Conditions in
a Standalone Assert Activity and What Happens When You Create Assertion
Conditions.

A.2.5 Bind Entity Activity
This activity enables you to select the entity variable to act as the data handle to access
and plug in different data provider service technologies.

The entity variable can be used with an Oracle Application Development Framework
(ADF) Business Component data provider service using service data object (SDO)-

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-11

based data. The entity variable enables you to specify BPEL data operations to be
performed by an underlying data provider service. The data provider service performs
the data operations in a data store behind the scenes and without use of other data
store-related features provided by Oracle BPEL Process Manager (for example, the
database adapter). This action enhances Oracle BPEL Process Manager runtime
performance and incorporates native features of the underlying data provider service
during compilation and runtime.

Figure A-6 shows the Bind Entity dialog.

Figure A-6 Bind Entity Dialog

A.2.6 Call Activity
This activity enables you to execute referenced subprocess code in standalone and
inline subprocesses in BPEL 2.0. A subprocess is a fragment of BPEL code that can be
reused within a particular processor by separate processes.

Figure A-7 shows the Edit Call dialog.

Figure A-7 Edit Call Dialog

Introduction to BPEL 1.1 and 2.0 Activities

A-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For more information about the call activity, see Introduction to Standalone and Inline
BPEL Subprocess Invocations and Creating Standalone and Inline BPEL Subprocesses
in a BPEL Process.

A.2.7 Compensate Activity
This activity invokes compensation on an inner scope activity that has successfully
completed. This activity can be invoked only from within a fault handler or another
compensation handler. Compensation occurs when a process cannot complete several
operations after completing others. The process must return and undo the previously
completed operations. For example, assume a process is designed to book a rental car,
a hotel, and a flight. The process books the car and the hotel, but cannot book a flight
for the correct day. In this case, the process performs compensation by unbooking the
car and the hotel.The compensation handler is invoked with the compensate activity,
which names the scope on which the compensation handler is to be invoked.

Figure A-8 shows the Compensate dialog in BPEL 1.1. You can perform the following
tasks:

• Click the General tab to provide the activity with a meaningful name.

• Select the scope activity on which to invoke the compensation handler.

Figure A-8 Compensate Dialog

In BPEL 2.0, the Compensate dialog includes a Documentation tab.

For more information about the compensate activity, see Using Compensation After
Undoing a Series of Operations.

A.2.8 CompensateScope Activity
This activity enables you to start compensation on a specified inner scope that has
already completed successfully. Only use this activity from within a fault handler,
another compensation handler, or a termination handler.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-13

Note:

This activity is only supported in BPEL 2.0 projects.

Figure A-9 shows the CompensateScope dialog.

Figure A-9 CompensateScope Dialog

For more information about the compensateScope activity, see Using Compensation
After Undoing a Series of Operations.

A.2.9 Create Entity Activity
This activity enables you to create an entity variable. The entity variable can be used
with an Oracle ADF Business Component data provider service using SDO-based
data.

Figure A-10 shows the Create Entity dialog.

Introduction to BPEL 1.1 and 2.0 Activities

A-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure A-10 Create Entity Dialog

For more information, see Delegating XML Data Operations to Data Provider Services.

A.2.10 Dehydrate Activity
By default, dehydration points are set on activities such as a receive, onMessage,
onAlarm, and wait. The dehydrate activity enables you to explicitly specify a
dehydration point. This activity acts as a dehydration point to automatically maintain
long-running asynchronous processes and their current state information in a database
while they wait for asynchronous callbacks. Storing the process in a database
preserves the process and prevents any loss of state or reliability if a system shuts
down or a network problem occurs. This feature increases both BPEL process
reliability and scalability.

The bpelx:dehydrate extension implements dehydration. For BPEL projects that
support BPEL version 1.1, the syntax is as follows:

<bpelx:dehydrate name="DehydrateInstance"/>

For BPEL projects that support BPEL version 2.0, the syntax is as shown in the
following example:

<extensionActivity>
 <bpelx:dehydrate name="DehydrateInstance"/>
 </extensionActivity>

Figure A-11 shows the Dehydrate dialog in BPEL 2.0.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-15

Figure A-11 Dehydrate Dialog

A.2.11 Dynamic Partner Link Activity
This activity enables you to dynamically assign an endpoint reference to a partner link
for use at runtime in BPEL version 1.1.

Figure A-12 shows the Dynamic Partner Link dialog in BPEL 1.1.

Figure A-12 Dynamic Partner Link Dialog

For more information, see Creating a Dynamic Partner Link at Design Time for Use at
Runtime.

Introduction to BPEL 1.1 and 2.0 Activities

A-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

A.2.12 Email Activity
This activity enables you to send an email notification about an event.

For example, an online shopping business process of an online bookstore sends a
courtesy email message to you after the items are shipped. The business process calls
the notification service with your user ID and notification message. The notification
service gets the email address from Oracle Internet Directory.

Figure A-13 shows the Email dialog in BPEL 2.0.

Figure A-13 Email Dialog

For more information about the email activity, see How To Configure the Email
Notification Channel.

A.2.13 Empty Activity
This activity enables you to insert a no-operation instruction into a process. This
activity is useful when you must use an activity that does nothing (for example, when
a fault must be caught and suppressed).

Figure A-14 shows the Empty dialog in BPEL 2.0.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-17

Figure A-14 Empty Dialog

For more information about the empty activity, see How to Insert No-Op Instructions
into a Business Process with an Empty Activity.

A.2.14 Exit Activity
This activity enables you to immediately end all currently running activities on all
parallel branches without involving any termination handling, fault handling, or
compensation handling mechanisms.

Note:

This activity replaces the terminate activity in BPEL 2.0 projects.

Figure A-15 shows the Exit dialog.

Introduction to BPEL 1.1 and 2.0 Activities

A-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure A-15 Exit Dialog

For more information about the exit activity, see Immediately Ending a Business
Process Instance with the Exit Activity in BPEL 2.0.

A.2.15 Flow Activity
This activity enables you to specify one or more activities to be performed
concurrently. A flow activity completes when all activities in the flow have finished
processing. Completion of a flow activity includes the possibility that it can be skipped
if its enabling condition is false.

For example, assume you use a flow activity to enable two loan offer providers
(United Loan service and Star Loan service) to start in parallel. In this case, the flow
activity contains two parallel activities – the sequence to invoke the United Loan
service and the sequence to invoke the Star Loan service. Each service can take an
arbitrary amount of time to complete their loan processes.

Figure A-16 shows an initial flow activity with its two panels for parallel processing.
You drag activities into both panels to create parallel processing. When complete, a
flow activity looks as shown in Figure A-17.

Figure A-16 Flow Dialog (At Time of Creation)

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-19

Figure A-17 Flow Dialog (After Design Completion)

You can also synchronize the execution of activities within a flow activity. This
ensures that certain actives only execute after other activities have completed.

Note:

Oracle's BPEL implementation executes flows in the same, single execution
thread of the BPEL process, and not in separate threads.

For more information about the flow activity, see Creating a Parallel Flow.

A.2.16 FlowN Activity
This activity enables you to create multiple flows equal to the value of N, which is
defined at runtime based on the data available and logic within the process. An index
variable increments each time a new branch is created, until the index variable reaches
the value of N.

Note:

This activity is replaced by the forEach activity in BPEL 2.0 projects.

Figure A-18 shows the FlowN dialog.

Introduction to BPEL 1.1 and 2.0 Activities

A-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure A-18 FlowN Dialog

For more information about the flowN activity, see Customizing the Number of Flow
Activities with the flowN Activity in BPEL 1.1.

A.2.17 forEach Activity
This activity enables you to process multiple sets of activities sequentially or in
parallel. The forEach activity executes its contained (child) scope activity exactly N+1
times, where N equals the final counter value minus the starting counter value that
you specify in the Counter Values tab of the For Each dialog. While other structured
activities such as a flow activity can have any type of activity as its contained activity,
the forEach activity can only use a scope activity.

Note:

This activity replaces the flowN activity in BPEL 2.0 projects.

Figure A-19 shows a forEach activity with its contained scope.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-21

Figure A-19 forEach Activity

For more information about the forEach activity, see Processing Multiple Sets of
Activities with the forEach Activity in BPEL 2.0.

A.2.18 If Activity
This activity enables you to define conditional behavior for specific activities to decide
between two or more branches. Only one activity is selected for execution from a set of
branches.

Note:

This activity replaces the switch activity in BPEL 2.0 projects.

Figure A-20 shows an if activity with the following defined if, elseif, and else branches.

Figure A-20 If Activity

Introduction to BPEL 1.1 and 2.0 Activities

A-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For more information about the if activity, see Defining Conditional Branching with
the If Activity in BPEL 2.0.

A.2.19 IM Activity
This activity enables you to send an automatic, asynchronous instant message (IM)
notification to a user, group, or destination address. Figure A-21 shows the IM dialog.

Figure A-21 IM Dialog

For more information, see How to Configure the IM Notification Channel.

A.2.20 Invoke Activity
This activity enables you to specify an operation you want to invoke for the service
(identified by its partner link). The operation can be one-way or request-response on a
port provided by the service. You can also automatically create variables in an invoke
activity. An invoke activity invokes a synchronous web service or initiates an
asynchronous web service.

The invoke activity opens a port in the process to send and receive data. It uses this
port to submit required data and receive a response. For synchronous callbacks, only
one port is needed for both the send and receive functions.

Figure A-22 shows the Invoke dialog in BPEL 2.0. You can perform the following
tasks:

• Provide the activity with a meaningful name.

• Select the partner link for which to specify an operation.

• Select the operation to perform.

• Automatically create a variable or select an existing variable in which to transport
the data (payload).

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-23

Figure A-22 Invoke Dialog

For more information about the invoke activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Mapping WSDL Message Parts in BPEL 2.0

• Invoke Activity for Performing a Request

• Adding an Invoke Activity

• How to Return a Fault in an Asynchronous Interaction

• Throwing Faults with Assertion Conditions

A.2.21 Java Embedding Activity
This activity enables you to add custom Java code to a BPEL process using the Java
BPEL extension bpelx:exec. This is useful when you have Java code that can
perform a function, and want to use this existing code instead of starting over. In
BPEL 2.0 projects, the bpelx:exec extension and Java code are wrapped in an
<extensionActivity> element.

Figure A-23 shows the Edit Java Embedding dialog in BPEL 2.0.

Introduction to BPEL 1.1 and 2.0 Activities

A-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure A-23 Edit Java Embedding Dialog

For more information about the Java embedding activity, see Incorporating Java and
Java EE Code in a BPEL Process.

A.2.22 Partner Link Activity
This activity enables you to define the external services with which your process
interacts. A partner link type characterizes the conversational relationship between
two services by defining the roles played by each service in the conversation and
specifying the port type provided by each service to receive messages within the
conversation. For example, if you create a process to interact with a Credit Rating
Service and two loan provider services (United Loan and Star Loan), you create
partner links for all three services.

Figure A-24 shows the Partner Link dialog in BPEL 2.0. You provide the following
details:

• A meaningful name for the service.

• The web services description language (WSDL) file of the external service.

• The actual service type (defined as Partner Link Type).

• The role of the service (defined as Partner Role).

• The role of the process requesting the service (defined as My Role).

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-25

Figure A-24 Partner Link Activity

For more information about partner links, see Invoking an Asynchronous Web Service
from a BPEL Process.

A.2.23 Phase Activity
This activity creates Oracle Mediator and business rules service components for
integration with a BPEL process. You create message request input and message
response output variables and design business rules for evaluating variable content for
the BPEL process.

When you complete these tasks, the following activities and service components are
created:

• An assign activity that includes the message request input and message response
output variables.

• An invoke activity that is automatically designed to invoke an Oracle Mediator
partner link in the BPEL process.

• An Oracle Mediator partner link that is automatically designed to route the
message request input variable to the business rules service component in the
SOA composite application of which this BPEL process is a part. The business
rules service component displays in the . Oracle Mediator also displays as a
service component in the .

• A business rules service component that evaluates the content of the message
request input variable and returns the results in the message response output
variable to Oracle Mediator. Oracle Mediator then makes a routing decision and
routes the message to the correct target destinations.

Figure A-25 shows the Phase dialog in BPEL 2.0.

Introduction to BPEL 1.1 and 2.0 Activities

A-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure A-25 Phase Dialog

For more information, see Creating Dynamic Business Processes .

A.2.24 Pick Activity
This activity waits for the occurrence of one event in a set of events and performs the
activity associated with that event. The occurrence of events is often mutually
exclusive (the process either receives an acceptance or rejection message, but not both).
If multiple events occur, the selection of the activity to perform depends on which
event occurred first. If the events occur nearly simultaneously, there is a race and the
choice of activity to be performed is dependent on both timing and implementation.

The pick activity provides an OnMessage branch. When you double-click the
OnMessage icon in BPEL 2.0, the dialog shown in Figure A-26 appears.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-27

Figure A-26 OnMessage Dialog

The two branches of the pick activity are as follows:

• OnMessage (Automatically displays below the Pick activity icon.)

Contains the code for receiving a reply, for example, from a loan service.

• OnAlarm (Does not automatically display; you must manually add this branch by
selecting the Pick activity icon and clicking the Add OnAlarm icon.)

Contains the code for a timeout, for example, after one minute.

Whichever branch completes first is executed; the other branch is not executed. The
branch that has its condition satisfied first is executed.

Figure A-27 shows the OnAlarm dialog of the pick activity in BPEL 2.0.

Introduction to BPEL 1.1 and 2.0 Activities

A-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure A-27 OnAlarm Branch Dialog of a Pick Activity

Note:

You can also create OnMessage branches in BPEL 1.1 scope activities and
OnAlarm branches in BPEL 1.1 and 2.0 scope activities. Expand the Scope
activity in Oracle JDeveloper, and browse the icons on the left side to find the
branch you want to add.

If you add correlations to an OnMessage branch, the correlations syntax is placed after
the assign activity syntax. The correlation syntax must go before the assign activity.

A.2.24.1 To put the correlation syntax before the assign activity:

1. Create a correlation set in Oracle JDeveloper.

2. Assign this to the OnMessage branch.

3. Complete the remaining design tasks.

4. Before making or deploying the BPEL process, move the correlation syntax before
the assign activity in the BPEL source code.

For more information about the pick activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Mapping WSDL Message Parts in BPEL 2.0

• Throwing Faults with Assertion Conditions

• Selecting Between Continuing or Waiting on a Process with a Pick Activity

• Setting Timeouts for Durable Synchronous Processes

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-29

A.2.25 Receive Activity
This activity specifies the partner link from which to receive information and the port
type and operation for the partner link to invoke. This activity waits for an
asynchronous callback response message from a service, such as a loan application
approval service. While the BPEL process is waiting, it is dehydrated (compressed and
stored) until the callback message arrives. The contents of this response are stored in a
response variable in the process.

Figure A-28 shows the Receive dialog in BPEL 2.0. You can perform the following
tasks:

• Provide a meaningful name.

• Select the partner link service for which to specify an operation.

• Select the operation to be performed.

• Automatically create a variable or select an existing variable in which to transport
the callback response.

Figure A-28 Receive Dialog

For more information about the receive activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Mapping WSDL Message Parts in BPEL 2.0

• Adding a Receive Activity

• Throwing Faults with Assertion Conditions

Introduction to BPEL 1.1 and 2.0 Activities

A-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities

A.2.26 Receive Signal Activity
Use this activity in detail processes to wait for the notification signal from the master
process to begin processing and in a master process to wait for the notification signal
from all detail processes indicating that processing has completed.

Figure A-29 shows the Edit Receive Signal dialog.

Figure A-29 Receive Signal Dialog

For more information, see Coordinating Master and Detail Processes .

A.2.27 Remove Entity Activity
This activity enables you to remove an entity variable. This action removes the row.

Figure A-30 shows the Remove Entity dialog.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-31

Figure A-30 Remove Entity Dialog

A.2.28 RepeatUntil Activity
Use this activity if the body of an activity must be performed at least once. The XPath
expression condition in the repeatUntil activity is evaluated after the body of the
activity completes. The condition is evaluated repeatedly (and the body of the activity
processed) until the provided boolean condition is true. Figure A-31 shows the Repeat
Until dialog.

Note:

This activity is only supported in BPEL 2.0 projects.

Introduction to BPEL 1.1 and 2.0 Activities

A-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure A-31 Repeat Until Dialog

For more information about the repeatUntil activity, see, Defining Conditional
Branching with the repeatUntil Activity.

A.2.29 Replay Activity
This activity enables you to re-execute the activities inside a selected scope.

Figure A-32 shows the Replay dialog in BPEL 2.0.

Figure A-32 Replay Dialog

For more information about the replay activity, see Re-executing Activities in a Scope
Activity with the Replay Activity.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-33

A.2.30 Reply Activity
This activity allows the process to send a message in reply to a message that was
received through a receive activity. The combination of a receive activity and a reply
activity forms a request-response operation on the WSDL port type for the process.

Figure A-33 shows the Reply dialog in BPEL 2.0.

Figure A-33 Reply Dialog

For more information about the reply activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Mapping WSDL Message Parts in BPEL 2.0

• How to Return a Fault in a Synchronous Interaction

A.2.31 Rethrow Activity
This activity enables you to rethrow a fault originally captured by the immediately
enclosing fault handler.

Note:

This activity is only supported in BPEL 2.0 projects.

Figure A-34 shows a rethrow activity within a fault handler (catch activity).

Introduction to BPEL 1.1 and 2.0 Activities

A-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure A-34 Rethrow Activity

For more information about rethrowing faults, see Rethrowing Faults with the
Rethrow Activity.

A.2.32 Schedule Job
This activity enables you to schedule an Oracle Enterprise Scheduler job in a BPEL
process. Figure A-35 shows the Schedule Job dialog.

Figure A-35 Schedule Job Dialog

For more information, see Invoking an Oracle Enterprise Scheduler Job in a BPEL
Process.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-35

A.2.33 Scope Activity
This activity consists of a collection of nested activities that can have their own local
variables, fault handlers, compensation handlers, and so on. A scope activity is
analogous to a { } block in a programming language.

Each scope has a primary activity that defines its behavior. The primary activity can be
a complex structured activity, with many nested activities within it of arbitrary depth.
The scope is shared by all the nested activities.

Figure A-36 shows the Scope dialog in BPEL 2.0. Define appropriate activities inside
the scope activity.

Figure A-36 Scope Dialog

Fault handling is associated with a scope activity. The goal is to undo the incomplete
and unsuccessful work of a scope activity in which a fault has occurred. You define
catch activities in a scope activity to create a set of custom fault-handling activities.
Each catch activity is defined to intercept a specific type of fault.

Figure A-37 shows the Add Catch icon inside a scope activity. Figure A-38 shows the
catch activity area that appears when you click the Add Catch icon. Within the area
defined as Drop Activity Here, you drag additional activities to create fault handling
logic to catch and manage exceptions.

For example, a client provides a social security number to a credit rating service when
applying for a loan. This number is used to perform a credit check. If a bad credit
history is identified or the social security number is identified as invalid, an assign
activity inside the catch activity notifies the client of the loan offer rejection. The entire
loan application process is terminated with a terminate activity.

Introduction to BPEL 1.1 and 2.0 Activities

A-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure A-37 Creating a Catch Branch

Figure A-38 Catch Activity Icon

For more information about the scope activity and fault handling, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Mapping WSDL Message Parts in BPEL 2.0

• Managing a Group of Activities with a Scope Activity

A.2.34 Sequence Activity
This activity enables you to define a collection of activities to perform in sequential
order. For example, you may want the following activities performed in a specific
order:

• A customer request is received in a receive activity.

• The request is processed inside a flow activity that enables concurrent behavior.

• A reply message with the final approval status of the request is sent back to the
customer in a reply activity.

A sequence activity makes the assumption that the request can be processed in a
reasonable amount of time, justifying the requirement that the invoker wait for a
synchronous response (because this service is offered as a request-response operation).

When this assumption cannot be made, it is better to define the customer interaction as
a pair of asynchronous message exchanges.

When you double-click the Sequence icon, the activity area shown in Figure A-39
appears. Drag and define appropriate activities inside the sequence activity.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-37

Figure A-39 Sequence Activity

For more information about the sequence activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Creating a Parallel Flow

A.2.35 Signal Activity
This activity is used in a master process to notify detail processes to perform
processing at runtime and used in detail processes to notify a master process that
processing has completed. Figure A-40 shows the Edit Signal dialog.

Figure A-40 Signal Dialog

For more information, see Coordinating Master and Detail Processes .

A.2.36 SMS Activity
This activity enables you to send a short message system (SMS) notification about an
event.

Figure A-41 shows the SMS dialog in BPEL 2.0.

Introduction to BPEL 1.1 and 2.0 Activities

A-38 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure A-41 SMS Dialog

For more information about the SMS activity, see How to Configure the SMS
Notification Channel.

A.2.37 Switch Activity
This activity consists of an ordered list of one or more conditional branches defined in
a case branch, followed optionally by an otherwise branch. The branches are
considered in the order in which they appear. The first branch whose condition is true
is taken and provides the activity performed for the switch. If no branch with a
condition is taken, then the otherwise branch is taken. If the otherwise branch is not
explicitly specified, then an otherwise branch with an empty activity is assumed to be
available. The switch activity is complete when the activity of the selected branch
completes.

A switch activity differs in functionality from a flow activity. For example, a flow
activity enables a process to gather two loan offers at the same time, but does not
compare their values. To compare and make decisions on the values of the two offers,
a switch activity is used. The first branch is executed if a defined condition (inside the
case branch) is met. If it is not met, the otherwise branch is executed.

Note:

This activity is replaced by the if activity in BPEL 2.0 projects.

Figure A-42 shows a switch activity with the following defined branches.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-39

Figure A-42 Switch Activity

For more information about the switch activity, see the following:

• Introduction to Interaction Patterns in a BPEL Process

• Defining Conditional Branching with the Switch Activity in BPEL 1.1

A.2.38 Terminate Activity
This activity enables you to end the tasks of an activity (for example, the fault
handling tasks in a catch branch). For example, if a client's bad credit history is
identified or a social security number is identified as invalid, a loan application
process is terminated, and the client's loan application document is never submitted to
the service loan providers.

Note:

• The terminate activity is replaced by the exit activity in BPEL 2.0 projects.

• Do not use the terminate activity with a synchronous BPEL process
because it can lead to timeouts.

Figure A-43 shows several terminate activities in the otherwise branch of a switch
activity.

Figure A-43 Terminate Activity

For more information about the terminate activity, see Stopping a Business Process
Instance with the Terminate Activity in BPEL 1.1.

Introduction to BPEL 1.1 and 2.0 Activities

A-40 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

A.2.39 Throw Activity
This activity generates a fault from inside the business process.

Figure A-44 shows the Throw dialog in BPEL 2.0.

Figure A-44 Throw Dialog

For more information about the throw activity, see Throwing Internal Faults with the
Throw Activity.

A.2.40 Translate Activity
This activity enables you to configure an inbound (with automatic use of the
doTranslateFromNative function) translation or outbound (with automatic use of
the doTranslateToNative function) translation.

• Inbound translation consists of native format to XML and opaque to XML.

• Outbound translation consists of XML to native format and large XML to an
attachment in a directory.

This activity is supported in both BPEL 1.1. and 2.0. Figure A-45 shows the Translate
dialog.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-41

Figure A-45 Translate Dialog

For more information, see Translating Between Native Data and XML.

A.2.41 User Notification Activity
This activity enables you to design a BPEL process in which you do not explicitly
select a notification channel during design time, but simply indicate that a notification
must be sent. The channel to use for sending notifications is resolved at runtime based
on preferences defined by the end user in the User Messaging Preferences user
interface of the Oracle User Messaging Service. This moves the responsibility of
notification channel selection from Oracle BPEL Designer to the end user. If the end
user does not select a preferred channel or rule, email is used by default for sending
notifications to that user. Figure A-46 provides details.

Introduction to BPEL 1.1 and 2.0 Activities

A-42 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure A-46 User Notification Dialog

For more information about user notifications, see Allowing the End User to Select
Notification Channels.

For more information about the Oracle User Messaging Service, see Administering
Oracle User Messaging Service and Developing Applications with Oracle User Messaging
Service.

A.2.42 Validate Activity
This activity enables you to validate variables in the list. The variables are validated
against their XML schema.

Figure A-47 shows the Validate dialog in BPEL 2.0.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-43

Figure A-47 Validate Dialog

For more information about the validate activity, see Validating XML Data.

A.2.43 Voice Activity
This activity enables you to send a telephone voice notification about an event.

Figure A-48 shows the Voice dialog.

Figure A-48 Voice Dialog

For more information about the voice activity, see How to Configure the Voice
Notification Channel.

A.2.44 Wait Activity
This activity allows a process to specify a delay for a certain period or until a certain
deadline is reached. A typical use of this activity is to invoke an operation at a certain

Introduction to BPEL 1.1 and 2.0 Activities

A-44 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

time. This activity enables you to wait for a given time period or until a certain time
has passed. Exactly one of the expiration criteria must be specified.

Figure A-49 shows the Wait dialog in BPEL 2.0.

Figure A-49 Wait Dialog

For more information about the wait activity, see Setting an Expiration Time with a
Wait Activity .

A.2.45 While Activity
This activity supports repeated performance of a specified iterative activity. The
iterative activity is repeated until the given while condition is no longer true.

Figure A-50 shows the While dialog in BPEL 2.0. You can enter expressions in this
dialog.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-45

Figure A-50 While Dialog

For more information about the while activity, see Defining Conditional Branching
with the While Activity.

A.2.46 XQuery Transform Activity
This activity enables you to create an XQuery transformation that maps source
elements to target elements (for example, incoming purchase order data into outgoing
purchase order acknowledgment data).

Figure A-51 shows the XQuery dialog in BPEL 2.0. This dialog enables you to perform
the following tasks:

• Define the source and target variables and parts to map.

• Specify the XQuery mapper file.

• Click the second icon (the Add icon) to the right of the Mapper File field to access
the XQuery Mapper for creating a new XQuery file for graphically mapping
source and target elements. Click the Edit icon (third icon) to edit an existing
XQuery file.

Introduction to BPEL 1.1 and 2.0 Activities

A-46 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure A-51 XQuery Dialog

For more information, see Creating Transformations with the XQuery Mapper.

A.2.47 XSLT Transform Activity
This activity enables you to create an XSL transformation that maps source elements to
target elements (for example, incoming purchase order data into outgoing purchase
order acknowledgment data).

Figure A-52 shows the Transform dialog in BPEL 2.0. This dialog enables you to
perform the following tasks:

• Define the source and target variables and parts to map.

• Specify the transformation mapper file.

• Click the second icon (the Add icon) to the right of the Mapper File field to access
the XSLT Map Editor for creating a new XSL file for graphically mapping source
and target elements. Click the Edit icon (third icon) to edit an existing XSL file.

Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-47

Figure A-52 Transform Dialog

For more information about the transform activity, see Creating Transformations with
the XSLT Map Editor .

A.3 Introduction to BPEL Services
BPEL processes can communicate with web-based applications and clients through
SOAP web services, Oracle ADF Business Component (BC) services, JCA adapters,
Oracle B2B services, Oracle Healthcare services, Oracle Business Activity Monitoring
11g, HTTP binding, direct binding, EJB services, REST adapters, Oracle E-Business
Suite, JDE World, SAP, cloud adapters, and partner links.

To access BPEL services:

1. In the Components window of Oracle BPEL Designer, expand BPEL Services to
display the services.

2. Drag and drop the service to the appropriate swimlane. Table A-2 lists the available
services and provides references to documentation that describes these services.

Table A-2 BPEL Services

BPEL Service For More Information, See...

ADF-BC services ADF-BC Services

AQ adapter • AQ Adapter
• Understanding Technology Adapters

Oracle B2B • Oracle B2B
• User's Guide for Oracle B2B

Oracle Business
Activity Monitoring
(BAM) 11g

• Oracle BAM 11g Adapter
• Monitoring Business Activity with Oracle BAM

Introduction to BPEL Services

A-48 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table A-2 (Cont.) BPEL Services

BPEL Service For More Information, See...

Coherence Cache • Coherence Adapter
• Understanding Technology Adapters

Database adapter • Database Adapter
• Understanding Technology Adapters

Direct binding service • Direct Binding Adapter
• Using Direct Binding to Invoke Composite Services

Oracle E-Business
Suite adapter

• Oracle E-Business Suite Adapter

EJB service • EJB Adapter
• Integrating Enterprise JavaBeans with Composite

Applications

File adapter • File Adapter
• Understanding Technology Adapters

FTP adapter • FTP Adapter
• Understanding Technology Adapters

Healthcare adapter • Oracle Healthcare Adapter
• olink:HFPUG1732Healthcare Integration User's Guide for

Oracle SOA Suite

HTTP binding HTTP Binding Service

JDE World adapter http://www.oracle.com/technetwork/middleware/
adapters/documentation/index.html

JMS adapter • JMS Adapter
• Understanding Technology Adapters

LDAP • LDAP Adapter
• Using Oracle Managed File Transfer

Oracle MFT • Oracle MFT
• Using Oracle Managed File Transfer

MQ adapter • MQ Adapter
• Understanding Technology Adapters

REST service Integrating REST Operations in SOA Composite Applications

Cloud adapters Cloud Adapters

SAP adapter http://www.oracle.com/technetwork/middleware/
adapters/documentation/index.html

SOAP • Adding Service Binding Components
• SOAP Web Services

Socket adapter • Socket Adapter
• Understanding Technology Adapters

Third-party adapter • Third-Party Adapter
• Understanding Technology Adapters

Introduction to BPEL Services

BPEL Process Activities and Services A-49

http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html
http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html
http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html
http://www.oracle.com/technetwork/middleware/adapters/documentation/index.html

Table A-2 (Cont.) BPEL Services

BPEL Service For More Information, See...

Oracle User Messaging
Service

• Oracle User Messaging Service Adapter
• Understanding Technology Adapters

Introduction to BPEL Services

A-50 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

B
XPath Extension Functions

This appendix describes the XPath extension functions that are displayed in the
Expression Builder dialog in Oracle JDeveloper. It also describes how to build XPath
expressions in the Expression Builder and how to create user-defined XPath extension
functions. Oracle provides XPath functions that use the capabilities built into Oracle
SOA Suite and XPath standards for adding new functions.

This appendix includes the following sections:

• Advanced Functions

• BPEL Extension Functions

• BPEL XPath Extension Functions

• Conversion Functions

• DVM Functions

• Database Functions

• Date Functions

• Identity Service Functions

• Logical Functions

• Mathematical Functions

• Node Set Functions

• String Functions

• Workflow Service Functions

• XREF Functions

• Building XPath Expressions in the Expression Builder in Oracle JDeveloper

• Creating User-Defined XPath Extension Functions

For additional information about XPath functions, visit the following URL:

http://www.w3.org

B.1 Advanced Functions
This section describes the advanced functions.

XPath Extension Functions B-1

http://www.w3.org

B.1.1 batchProcessActive
This function returns the number of active processes in the batch.

Signature:

ora:batchProcessActive(String rootId, String processId)

Arguments:

• rootId: The ID of the root.

• processId: The ID of the process.

Property IDs:

• namespace-uri:http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.2 batchProcessCompleted
This function returns the number of completed processes in the batch.

Signature:

ora:batchProcessCompleted(String rootId, String processId)

Arguments:

• rootId: The ID of the root.

• processId: The ID of the process.

Property IDs:

• namespace-uri:http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.3 copyList

Note:

While the copyList function is still available for use, Oracle recommends
that you use the bpelx:copyList extension to copy a node list or a node.
For more information, see How to Use bpelx:copyList.

This function copies a node list or a node. The node list to be copied to should not be
null or empty.

Signature:

ora:copyList('variableName', 'partName'?, 'locationPath'?,
Object)

Arguments:

• variableName: The source variable for the data.

Advanced Functions

B-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• partName: The part to select from the variable (optional).

• locationPath: Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

• Object: The object can be either a list or a single item. If the object is a list, each
item in the list is copied. Each item to be copied is either an element, or an element
with the string value of the node created.

Property IDs:

• deprecated

Use the bpelx:copyList extension activity to append to a list.

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.4 create-nodeset-from-delimited-string
This function takes a delimited string and returns a nodeSet.

Signature:

oraext:create-nodeset-from-delimited-string(qname, delimited-
string, delimiter)

Arguments:

• qname: The qualified name in which each node in the node set must be created.
The QName can be represented in two forms:

– task:assignee

– {http://mytask/task}assignee

• delimited-string: The sting of elements separated by the delimiter.

• delimiter: The character that separates the items in the input string; for
example, a comma or a semicolon.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.1.5 createDelimitedString
This function creates a delimited string from the passed-in arguments.

Signature:

ora:createDelimitedString(delimiter as string, nodeList)

Arguments:

• delimiter as string: The character that separates the items in the input
string (for example, a comma or a semicolon).

Advanced Functions

XPath Extension Functions B-3

• nodeList: Provides an ordered collection of nodes.

Property IDs:

• namespace-uri:

• namespace-prefix:ora

B.1.6 createEssParameter
This function creates a parameter for a job in Oracle Enterprise Scheduler.

Signature:

ess:createEssParameter(dataType,name,scope,value)

Arguments:

• dataType

• name

• scope

• value

Property IDs:

• namespace-uri:

• namespace-prefix:ess

For more information about Oracle Enterprise Scheduler, see Developing Applications
for Oracle Enterprise Scheduler.

B.1.7 doStreamingTranslate
This function translates using the streaming XPath APIs. It uses batching so that the
transformation engine does not materialize the result of the transformation into
memory. Therefore, it can handle arbitrarily large payloads of the order of gigabytes.
However, it can only handle forward-only XSL constructs such as for-each. The
targetType can be SDOM or ATTACHMENT.

Signature:

med:doStreamingTranslate('input','streaming xpath
context','targetType','attachment element'?)

Arguments:

• input: The input data of the XPath function. This can be an SDOM or attachment
element.

• streaming xpath context

• targetType: Determines how the XPath function translates the native data into
XML.

• attachment element: The attachment for the returned XML. This parameter is
optional.

Property IDs:

Advanced Functions

B-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: med

Example:

med.doStreamingTranslate($in.request/inp1:request/
inp1:sourceAttachmentElement,$in.request/inp1:request/
inp1:streamingcontext, 'ATTACHMENT', $in.request/inp1:request/
inp1:targetAttachmentElement)

B.1.8 doTranslateFromNative
This function translates the input data to XML, where the input can be a string to
translate, a file or FTP adapter attachment, an attachment, or an element that contains
Base64-encoded data. The targetType can be DOM, ATTACHMENT or SDOM.

Signature:

med:doTranslateFromNative('input','nxsdTemplate','nxsdRoot','tar
getType','attachment element'?)

Arguments:

• input: The input data of the XPath function. The data is in a native format, such
as comma-separated values (CSV).

• nxsdTemplate: The NXSD schema to use to translate the input data to XML
format.

• nxsdRoot: The root element in the NXSD schema.

• targetType: Determines how the XPath function translates the native data into
XML.

• attachment element: The attachment for the returned XML. This parameter is
optional.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: med

Example:

med:doTranslateFromNative(string($in.request/inp1:request/
inp1:source),'xsd/address_csv.xsd','Root-Element','DOM')

B.1.9 doTranslateToNative
This function translates the input DOM to a string or attachment. The targetType
can be a STRING or ATTACHMENT.

Signature:

med:doTranslateToNative('input','nxsdTemplate','nxsdRoot','targe
tType','attachment element'?)

Arguments:

Advanced Functions

XPath Extension Functions B-5

• input: The input data of the XPath function. The data can either be DOM or
SDOM data that must be translated to a native format such as comma-separated
values (CSV).

The input node is usually the root element of the incoming DOM, as shown in the
following example:

med:doTranslateToNative($in.request/inp1:Root-Element, 'xsd/address_csv.xsd',
 @ 'Root-Element','STRING')"

However, the input node can also be a subelement and not the root element of the
incoming DOM, as shown in the following example:

med:doTranslateToNative($in.request/inp1:requestToNative/ns1:Root-Element,
 'xsd/address_csv.xsd', 'Root-Element','ATTACHMENT',
 $in.request/inp1:requestToNative/inp1:attachment)

In this case, you must set the useArrayIdenitifer property to true in the
schema node of the NXSD, as shown below.

nxsd:useArrayIdentifiers="true"

This setting can adversely impact the performance of this function for very large
inputs. You can use the dostreamingxlate function in this case.

• nxsdTemplate: The NXSD schema to use to translate the input data to XML
format.

• nxsdRoot: The root element in the NXSD schema.

• targetType: Determines how the XPath function translates the native data into
XML.

• attachment element: The attachment for the returned XML. This parameter is
optional.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: med

Example:

med:doTranslateToNative($in.request/inp1:Root-Element,'xsd/
address_csv.xsd','Root-Element','STRING')

B.1.10 format
This function formats a message using Java's message format.

Signature:

ora:format(formatStrings, args+)

Arguments:

• formatStrings: The string of data to be formatted.

• args+: The arguments referenced by the format specifiers in the format string. If
there are more arguments than format specifiers, the extra arguments are ignored.
The number of arguments is variable and may be zero.

Advanced Functions

B-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.11 genEmptyElem
This function generates a list of empty elements for the given QName.

Signature:

ora:genEmptyElem('ElemQName',size?, 'TypeQName'?, xsiNil?)

Arguments:

• ElemQName: The first argument is the QName of the empty elements.

• size: The second optional integer argument for the number of empty elements. If
missing, the default size is 1.

• TypeQName: The third optional argument is the QName, which is the xsi:type
of the generated empty name. This xsi:type pattern matches SOAPENC:Array.
If missing or an empty string, the xsi:type attribute is not generated.

• xsiNil: The fourth optional boolean argument is to specify whether the
generated empty elements are XSI - nil, provided the element is XSD-nillable.
The default is false. If missing or false, xsi:nil is not generated.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

For more information about this function, see Generating Functionality Equivalent to
an Array of an Empty Element.

B.1.12 generate-guid
This function generates a unique GUID.

Signature:

oraext:generate-guid()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.1.13 get-content-from-file-function
This function parses the file in the specified native format. Use this function when
designing assign activities in BPEL processes.

Signature:

Advanced Functions

XPath Extension Functions B-7

oraext:get-content-from-file-function(fileName, nxsdTemplate?,
nxsdRoot?)

Example:

oraext:get-content-from-file-function("file:/c:/Ftab.txt",

"file:/c:/Ftab_1.xsd","root")

Arguments:

• fileName: The name of the file.

• nxsdTemplate: The native XSD (NXSD) template for the output.

• nxsdRoot: The NXSD root.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.1.14 getApplicationName
This function returns the application name.

Signature:

ora:getApplicationName()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.15 getAttachmentContent
This function gets the attachment content from an href function.

Signature:

ora:getAttachmentContent(varName[, partName[, query]])

Arguments:

• varName: Specifies the source variable for the data.

• partName: (Optional) Specifies the part to select from the variable.

• query: (Optional) Specifies an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

Advanced Functions

B-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For more information, see Reading and Encoding SOAP Attachment Content.

B.1.16 getAttachmentProperty
Gets a SOAP attachment property from an href that is stored in varName,
partName, and query.

Signature: ora:getAttachmentProperty(propertyName, varName[,
partName[, query]])

Arguments:

• varName: Specifies the source variable for the data.

• partName: (Optional) Specifies the part to select from the variable.

• query: (Optional) Specifies an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.17 getChildElement
This function gets a child element for the given element.

Signature:

ora:getChildElement(element, index)

Arguments:

• element: The source for the data.

• index: The integer value of the child element index.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.18 getComponentInstanceID
This function returns the component instance ID.

Signature:

ora:getComponentInstanceID()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

Advanced Functions

XPath Extension Functions B-9

B.1.19 getComponentName
This function returns the component name.

Signature:

mdhr:getComponentName()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: mdhr

B.1.20 getCompositeInstanceID

Note:

This function is deprecated in 12c Release 1 (12.1.3) and is not displayed in the
Expression Builder.

This function returns the composite instance ID.

Signature:

ora:getComponentInstanceId()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.21 getCompositeName
This function returns the composite name.

Signature:

ora:getCompositeName()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.22 getCompositeURL
This function returns the composite URL.

Advanced Functions

B-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Signature:

ora:getCompositeURL()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.23 getECID
This function returns the execution context ID (ECID).

Signature:

ora:getECID()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.24 getFaultAsString
This function returns the fault as a string value.

Signature:

ora:getFaultAsString()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

For more information, see Getting Fault Details with the getFaultAsString XPath
Extension Function.

B.1.25 getFaultAsXML
This function returns the fault as an XML element.

Signature:

ora:getFaultAsXML()

Arguments:

There are no arguments for this function.

Property IDs:

Advanced Functions

XPath Extension Functions B-11

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix:ora

B.1.26 getFaultName
This function returns the fault name.

Signature:

ora:getFaultName()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.27 getMilestoneName
This function returns the milestone name.

Signature:

ora:getMilestoneName

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.28 getOwnerDocument
This function returns the document object associated with the node.

Signature:

ora:getOwnerDocument(node)

Arguments:

• node: Specifies the XML node.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.29 getParentComponentInstanceID
This function returns the BPEL process instance parent component instance ID.

Signature:

ora:getParentComponentInstanceID()

Advanced Functions

B-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.30 getRevision
This function does not take any arguments and returns the current revision of the
composite from which it is invoked.

Signature:

ora:getRevision

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.31 getTaskReminderDuration
This function computes the next reminder to be sent for the task.

Signature:

ora:getTaskReminderDuration(taskId)

Argument:

• taskId: The task ID of the task.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.1.32 instanceOf
This function extracts arbitrary values from BPEL variables.

Signature:

ora:instanceOf(an_xpath_expression, 'typeQName')

Arguments:

• an_xpath_expression: An XPath expression that returns an element.

• typeQName: The QName of a globally-declared XSD type.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

Advanced Functions

XPath Extension Functions B-13

• namespace-prefix: ora

B.1.33 lookup-xml
This function returns the string value of an element defined by lookupXPath in an
XML file (docURL) given its parent XPath (parentXPath), the key XPath
(keyXPath), and the value of the key (key).

Example:

oraext:lookup-xml('file:/d:/country_data.xml', '/Countries/
Country', 'Abbreviation', 'FullName', 'UK') returns the value of the
element FullName child of /Countries/Country, where Abbreviation = 'UK'
is in the file D:\country_data.xml.

Signature:

oraext:lookup-xml(docURL, parentXPath, keyXPath, lookupXPath,
key)

Arguments:

• docURL: The XML file.

• parentXPath: The parent XPath.

• keyXPath: The key XPath.

• lookupXPath: The lookup XPath.

• key: The key value.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.1.34 parseEscapedXML
This function parses a string to a DOM.

Note:

This function is also displayed for selection under the BPEL XPath Extension
Functions option.

Signature:

oraext:parseEscapedXML(contentString)

Arguments:

• contentString: The string that this function parses to a DOM.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

Advanced Functions

B-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• namespace-prefix: oraext

For more information about this function, see How To Convert from a String to an
XML Element.

B.1.35 parseXML
This function parses a string to a DOM element.

Signature:

oraext:parseXML(contentString)

Arguments:

• contentString: The string that this function parses to a DOM element.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.1.36 processScalableDocumentToNative
This function transforms the scalable document directly to the output stream.

Signature:

ora:processScalableDocumentToNative(template, input,
outputFilePath, nxsd, root, batchsize, properties)

Arguments:

• template

• input

• outputFilePath

• nxsd

• root

• batchsize

• properties

B.1.37 processXSLTAttachmentFromNativeToNative
This function translates the inbound native data (for example, comma-separated value
to XML) and then applies the user-supplied XSL to the translated content. The result
of the XSL transformation is then translated to a native file (for example. comma-
separated value). The input to this XPath function can either be an attachment or
href. It uses batching so that the transformation engine does not put the result of the
transformation into memory. Therefore, it can handle arbitrarily large payloads of the
order of gigabytes. The XPath function translates the inbound native data to XML,
runs the transformation on the XML, and then translates the transformed XML to
native format.

Signature:

Advanced Functions

XPath Extension Functions B-15

ora:processXSLTAttachmentFromNativeToNative(template, input
href, output href, input nxsd path, input root element name,
output nxsd path, output root element name. batch size)

B.1.38 processXSLTAttachmentFromNativeToStream
This function translates the inbound native data (for example, customer-separated
value to XML) and then applies the user-supplied XSL to the translated content. The
output of the transformation is streamed to the output file.The input to this XPath
function can either be an attachment or href. It uses batching so that the
transformation engine does not put the result of the transformation into memory.
Therefore, it can handle arbitrarily large payloads of the order of gigabytes. However,
it can only handle forward-only XSL constructs such as for-each.

Signature:

ora:processXSLTAttachmentFromNativeToStream(template,input href,
output href, input nxsd path, nxsd root element name,
batchsize,properties)

B.1.39 processXSLTAttachmentToNativeStream
This function transforms the inbound XML by applying the user-supplied XSL and
then translates the transformed XML into a native file (for example, comma-separated
value). The input to this XPath function can either be an attachment or href. It uses
batching so that the transformation engine does not put the result of the
transformation into memory. Therefore, it can handle arbitrarily large payloads of the
order of gigabytes. This function first transforms the incoming XML data by applying
the XSL and then translates the transformed XML into native data.

Signature:

ora:processXSLTAttachmentToNativeStream(template, input href,
output href, nxsd schema, nxsd root element, batch size)

B.1.40 processXSLTAttachmentToStream
This function directly streams the result of XSLT transformation to the output file. The
input to this XPath function can either be an attachment or href. It uses batching so
that the transformation engine does not put the result of the transformation into
memory. Therefore, it can handle arbitrarily large payloads of the order of gigabytes.
However, it can only handle forward-only XSL constructs such as for-each.

Signature:

ora:processXSLTAttachmentToStream(template, input href, output
href, batchsize, properties)

B.1.41 processXSLTForScalableDocument
This function returns a scalable document after an XSLT transformation.

Signature:

ora:processXSLTForScalableDocument(template, input, batchsize,
properties)

B.1.42 setCompositeInstanceTitle
This function sets the composite instance title and returns it.

Advanced Functions

B-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Signature:

ora:setCompositeInstanceTitle(title)

Arguments:

• title: The composite instance title.

B.2 BPEL Extension Functions
This section describes the BPEL extension functions.

B.2.1 BPEL Extension Functions in BPEL 1.1 and BPEL 2.0
This section describes BPEL extension functions.

Table B-1 lists the BPEL extension functions supported by either version 1.1 or version
2.0 of the BPEL specification. If a function is supported by a specific version, it
displays for selection in the BPEL Extension Functions list of the Expression Builder
dialog in Oracle JDeveloper. Otherwise, it does not appear. BPEL version 1.1 functions
use the namespace prefix bpws. BPEL version 2.0 functions use the namespace prefix
bpel.

Table B-1 BPEL Extension Functions Supported in BPEL 1.1 or BPEL 2.0

Function Supported in BPEL 1.1? Supported in BPEL 2.0?

bpws:getLinkStatus Yes No

bpws:getVariableData Yes No

getVariableProperty Yes No

bpel:getVariableProperty No Yes

bpel:doXslTransform No Yes

B.2.1.1 getLinkStatus

This function returns a boolean value indicating the status of the link. If the status of
the link is positive, the value is true. Otherwise, the value is false. This function can
only be used in a join condition.

The linkName argument refers to the name of an incoming link for the activity
associated with the join condition.

Signature:

bpws:getLinkStatus ('linkName')

Arguments:

• variableName: The source variable for the data.

• propertyName: The QName of the property.

Property IDs:

• namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/
business-process/

• namespace-prefix: bpws

BPEL Extension Functions

XPath Extension Functions B-17

B.2.1.2 getVariableData

This function extracts arbitrary values from BPEL variables.

When only the first argument is present, the function extracts the value of the variable,
which must be defined using an XML schema simple type or element. Otherwise, the
return value of this function is a node set containing the single node representing
either an entire part of a message type (if the second argument is present and the third
argument is absent) or the result of the selection based on the locationPath (if both
optional arguments are present).

Signature:

bpws:getVariableData ('variableName', 'partName'?,
'locationPath'?)

Arguments:

• variableName: The source variable for the data.

• partName: The part to select from the variable (optional).

• locationPath: Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

Property IDs:

• namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/
business-process/

• namespace-prefix: bpws

B.2.1.2.1 selectionFailure Fault is Thrown if the Result Node Set is a Size Other Than One During
Execution

According to the , if the locationPath argument selects a node set of a size other
than one during execution, the standard fault bpws:selectionFailure must be
thrown by a compliant implementation.

For example, the count() function shown in the following code does not work if
there are multiple entries of product elements under StoreRequest; this causes a
selectionFailure fault to be thrown:

count(bpws:getVariableData('inputVariable',
 'payload','/ns2:StoreRequest/ns2:product'))

To make this work, change the syntax to the following:

"count($inputVariable.payload/ns2:product)"

B.2.1.3 getVariableProperty (For BPEL 1.1)

This function extracts arbitrary values from BPEL variables. The first argument
specifies the source variable for the data and the second argument identifies the
QName of the property to select from that variable. If the given property selects a
node set of a size other than one during execution, the standard fault
bpws:selectionFailure is thrown.

Signature:

bpws:getVariableProperty ('variableName', 'propertyname')

BPEL Extension Functions

B-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Arguments:

• variableName: The source variable for the data.

• propertyName: The QName of the property.

Property IDs:

• namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/
business-process/

• namespace-prefix: bpws

B.2.1.4 getVariableProperty (For BPEL 2.0)

This function extracts arbitrary values from BPEL variables. The first argument
specifies the source variable for the data and the second argument identifies the
QName of the property to select from that variable. If the given property selects a
node set of a size other than one during execution, the standard fault
bpws:selectionFailure is thrown.

Signature:

bpel:getVariableProperty ('variableName', 'propertyname')

Arguments:

• variableName: The source variable for the data.

• propertyName: The QName of the property. If the given property selects a node
set of a size other than one during execution, the standard fault
selectionFailure is thrown.

Property IDs:

• namespace-uri: http://schemas.xmlsoap.org/ws/2003/03/
business-process/

• namespace-prefix: bpel

B.2.1.5 doXslTransform (For BPEL 2.0)

This function returns the result of XSLT transformation with multiple sources.

Note:

If the input is meant to be an XML document, call ora:getOwnerDocument
to wrap the input or use function ora:doXSLTransformForDoc instead of
this function.

Signature:

bpel:doXslTransform(template,input, [paramQName, paramValue]*)

B.3 BPEL XPath Extension Functions
This section describes the BPEL XPath extension functions.

BPEL XPath Extension Functions

XPath Extension Functions B-19

B.3.1 addQuotes
This function returns the content of a string with single quotes added.

Signature:

ora:addQuotes(string)

Arguments:

• string: The string to which this function adds quotes.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.2 authenticate
This function authenticates an LDAP user and returns true or false.

The authenticate, listUsers, lookupUser, and search XPath functions
provide the lookup and search functionality to obtain information from the LDAP
server (typically, the LDAP user details).

These XPath functions use a configuration file to obtain server access information for
the JNDI (for example, context factory, LDAP server provider URL, authenticate type,
and so on). The configuration file is named directories.xml and must be placed in
the same directory in which the .bpel file for the BPEL project is located. To call these
XPath functions, you must provide this file.

The following example shows the format of the directories.xml file:

<?xml version="1.0" ?>
<directories>
<directory name='people'>
<property name="java.naming.provider.url">ldap://servername:port</property>
<property
name="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</property>
<property name="java.naming.security.principal">[username]</property>
<property name="java.naming.security.authentication">simple</property>

<property name="java.naming.security.credentials">[passord]</property>
<property name="entryDN">[entry dn]</property>

</directory>
</directories>

The following shows an example of the directories.xml file:

<?xml version="1.0" ?>
<directories>
<directory name='people'>
<property
name="java.naming.provider.url">ldap://myhost.us.example.com:7001</property>
<property
name="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</property>
<property name="java.naming.security.principal">cn=admin</property>
<property name="java.naming.security.credentials">weblogic</property>
<property name="java.naming.security.authentication">simple</property>
<property name="entryDN">ou=people,ou=myrealm,dc=soainfra</property>

BPEL XPath Extension Functions

B-20 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

</directory>
</directories>

• Signature:

ldap:authenticate('directoryName','userId','password')

• Parameters:

– directoryName: The directory name specified in the directories.xml
file.

– userId: The LDAP server login user ID.

– password: The LDAP server login password.

• Return:

true or false

Example:

ldap:authenticate('people','weblogic','weblogic')

For this XPath function, only two properties must be specified in the
directories.xml file:

– java.naming.provider.url

– java.naming.factory.initial

B.3.3 countNodes

Note:

While the countNodes function is still available for use, Oracle recommends
that you use version 1.0 of the XPath count() function to return the size of
the elements as an integer.

This function returns the size of the elements as an integer.

Signature:

ora:countNodes('variableName', 'partName'?, 'locationPath'?)

Arguments:

• variableName: The source variable for the data.

• partName: The part to select from the variable (optional).

• locationPath: Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

BPEL XPath Extension Functions

XPath Extension Functions B-21

B.3.4 doXSLTransform
This function implements the WS-BPEL 2.0's doXSLTransform function that
supports multiple parameters of XSLT. When using this function, the XSL template
match must not be set to root (which is /). It must be the root element.

Signature:

ora:doXSLTransform('url_to_xslt',input,
['paramQname',paramValue]*)

Arguments:

• url_to_xslt: Specifies the XSL style sheet URL.

• input: Specifies the input variable name.

• paramQname: Specifies the parameter QName.

• paramValue: Specifies the value of the parameter.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.5 doXSLTransformForDoc
This function is a complementary XPath function to doXSLTransform(). It aims to
perform the transformation when the XSLT template matches the document.

The following example shows the doXSLTransformForDoc function:

<function name="ora:doXSLTransformForDoc">
 <className>com.collaxa.cube.xml.xpath.functions.xml.DoXSLTransformForDocument
 </className>
 <return type="node-set"/>
 <params>
 <param name="template" type="string"/>
 <param name="input" type="string"/>
 <param name="properties" type="string" minOccurs="0" maxOccurs="unbounded"/>
 </params>
 <desc resourceKey="PI_FUNCTION_DESC_DOXSLTRANSFORM_FOR_DOC"></desc>
 <detail resourceKey="PI_FUNCTION_DESC_LONG_DOXSLTRANSFORM_FOR_DOC">
 This function is a complement xpath function to doXSLTransform(). It aims
 to do the transformation when the xslt template matching the
document. The signature of this function is <i>ora:doXSLTransformForDoc('url_to_
xslt',input,['paramQname',paramValue]*)</i>.
 </detail>
 <group>BPEL XPath Extension Functions</group>
 </function>

Signature:

ora:doXSLTransformForDoc('url_to_xslt',input,
['paramQname',paramValue]*)

Arguments:

• url_to_xslt: Specifies the XSL style sheet URL.

BPEL XPath Extension Functions

B-22 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• input: Specifies the input variable name.

• paramQname: Specifies the parameter QName.

• paramValue: Specifies the value of the parameter.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

You can use the ora:doXSLTransformForDoc function to write the results of large
XSLT/XQuery operations to a temporary file in a directory system. The document is
then loaded from the temporary file when needed. This eliminates the need for
caching an entire document as binary XML in memory.

For more information, see Using XPath Functions to Write Large XSLT/XQuery
Output to a File System.

B.3.6 doc
This function returns the content of an XML file.

Signature:

ora:doc('fileName','xpath'?)

Arguments:

• fileName: The name of the XML file.

• xpath: A part of an XML file (for example, the node set, node list, or leaf node).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.7 formatDate
This function converts standard XSD date formats to characters suitable for output.

Signature:

ora:formatDate('dateTime','format')

Arguments:

• dateTime: Contains a date-related value in XSD format. For nonstring
arguments, this function behaves as if a string() function were applied. If the
argument is not a date, the output is an empty string. If it is a valid XSD date and
some fields are empty, this function attempts to fill unspecified fields. For
example, 2003-06-10T15:56:00.

• format: Contains a string formatted according to
java.text.SimpleDateFormat format.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

BPEL XPath Extension Functions

XPath Extension Functions B-23

• namespace-prefix: ora

B.3.8 generateGUID
Generates a unique GUID.

Signature:

ora:generateGUID()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.9 getConfigProperty
This function gets the component property value.

Signature:

ora:getConfigProperty(propertyName)

Argument:

• propertyName: The property name.

B.3.10 getContentAsString
This function returns the content of an element as an XML string.

Signature:

ora:getContentAsString(element elementAsNodeList)

Arguments:

• element: The element (source of the data).

• elementAsNodeList: The element as the node list.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.11 getConversationId
This function returns the conversation ID.

Signature:

ora:getConversationId()

Arguments:

There are no arguments for this function.

Property IDs:

BPEL XPath Extension Functions

B-24 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.12 getCreator
This function returns the instance creator.

Signature:

ora:getCreator()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.13 getCurrentDate
This function returns the current date as a string.

Signature:

ora:getCurrentDate('format'?)

Argument:

• format: (Optional) Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

For more information, see How to Assign a Date or Time.

B.3.14 getCurrentDateTime
This function returns the current date time as a string.

Signature:

ora:getCurrentDateTime('format'?)

Argument:

• format: (Optional) Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

BPEL XPath Extension Functions

XPath Extension Functions B-25

B.3.15 getCurrentTime
This function returns the current time as a string.

Signature:

ora:getCurrentTime('format'?)

Argument:

• format: (Optional) Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.16 getElement
This function returns an element using an index from the array of elements.

Signature:

ora:getElement('variableName', 'partName', 'locationPath',
index)

Arguments:

• variableName: The source variable for the data.

• partName: The part to select from the variable (required).

• locationPath: Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (required).

• index: Dynamic index value. The index of the first node is 1.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.17 getInstanceId
This function returns the instance ID.

Signature:

ora:getInstanceId()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

BPEL XPath Extension Functions

B-26 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

B.3.18 getNodeValue
This function returns the value of a DOM node as a string.

Signature:

ora:getNodeValue(node)

Arguments:

• node: The DOM node.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.19 getNodes
This function gets a node list. This is implemented as an alternate to
bpws:getVariableData, which does not return a node list.

Signature:

ora:getNodes('variableName', 'partName'?, 'locationPath'?)

Arguments:

• variableName: The source variable for the data.

• partName: The part to select from the variable (optional).

• locationPath: Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.20 getPreference
This function returns the value of a property specified in the preferences section of the
BPEL suitcase descriptor.

Signature:

ora:getPreference(preferenceName)

Arguments:

• preferenceName: The name of the preference as specified in the BPEL suitcase
descriptor.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

BPEL XPath Extension Functions

XPath Extension Functions B-27

B.3.21 getProcessId
This function returns the ID of the current BPEL process.

Signature:

ora:getProcessId()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.22 getProcessOwnerId
This function returns the ID of the user who owns the process, if specified in the
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getProcessOwnerId()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.23 getProcessURL
This function returns the root URL of the current BPEL process.

Signature:

ora:getProcessURL()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.24 getProcessVersion
This function returns the current process version.

Signature:

ora:getProcessVersion()

Arguments:

BPEL XPath Extension Functions

B-28 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

There are no arguments for this function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.25 integer
This function returns the content of the node as an integer.

Signature:

ora:integer(node)

Arguments:

• node: The input node.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.26 listUsers
This function returns a list of LDAP users.

Signature:

ldap:listUsers('directoryName',filter')

Arguments:

• directoryName: The directory name specified in the directories.xml file.
For information about the directories.xml file, see authenticate.

• filter: The filter expression to use for the search; this value cannot be null.

Returns:

An XML element that contains a list of users.For this XPath function, all properties
must be specified in the directories.xml file.

Example:

ldap:listUsers('people','ou=people');

The following provides an example of the output:

<users xmlns="http://schemas.oracle.com/bpel/ldap">
 <user dn="uid=weblogic">
 <uid>weblogic</uid>
 <userpassword>
Unknown macro: {ssha}

bHDVJRfWVt/Uwlzb4TKU+QTOLB4FLySO</userpassword>

 <objectclass>inetOrgPerson</objectclass>
 <objectclass>organizationalPerson</objectclass>
 <objectclass>person</objectclass>
 <objectclass>top</objectclass>

BPEL XPath Extension Functions

XPath Extension Functions B-29

 <objectclass>wlsUser</objectclass>
 <description>This user is the default administrator.</description>
 <wlsMemberOf>cn=Administrators,ou=groups,ou=myrealm,dc=soainfra</wlsMember
Of>
 <orclguid>8AC1B6206FDD11DEBF9A7F3D47003274</orclguid>
 <sn>weblogic</sn>
 <cn>weblogic</cn>
 </user>
</users>

B.3.27 lookupUser
This function returns LDAP user information.

:Signature:

ldap:lookupUser('directoryName','userId')

Arguments:

• directoryName: The directory name specified in the directories.xml file.
For information about the directories.xml file, see authenticate.

• userId: The user ID to be searched.

Returns:

An XML element that contains the user information.

For this XPath function, all properties must be specified in the directories.xml
file.

Example:

ldap:lookupUser('people','ou=people');

The following provides an example of the output:

<user dn="" xmlns="http://schemas.oracle.com/bpel/ldap">
<ou>people</ou>
<objectclass>organizationalUnit</objectclass>
<objectclass>top</objectclass>
<orclguid>8ABB9BA06FDD11DEBF9A7F3D47003274</orclguid>
</user>

B.3.28 parseEscapedXML
This function parses an XML string to an XML element.

Note:

This function is also displayed for selection under the Advanced Functions
option.

Signature:

ora:parseEscapedXML(xmlString)

Arguments:

• xmlString: The string that this function parses to a DOM.

BPEL XPath Extension Functions

B-30 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

For more information about this function, see How To Convert from a String to an
XML Element.

B.3.29 processXQuery
This function returns the result of an XQuery transformation.

Signature:

ora:processXQuery('template','context'?)

Arguments:

• template: The XSLT template.

• input: The input data to be transformed.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.30 processXQuery10
This function returns the result of an XQuery 1.0 transformation.

Signature: ora:processXQuery10(<path to xquery> [, <xquery
external variable name>, <value>]*)

B.3.31 processXQuery2004
This function returns the result of an XQuery 2004 transformation.

Signature: ora:processXQuery2004(template,context?)

B.3.32 processXSLT
This function returns the result of an XSLT transformation using the Oracle XDK XSLT
processor.

The following example shows the 12c version of processXSLT:

<function name="ora:processXSLT">
 <className>com.collaxa.cube.xml.xpath.functions.xml.GetElementFromXDKXSLTFunction
 </className>
 <return type="node-set"/>
 <params>
 <param name="template" type="string"/>
 <param name="input" type="string"/>
 <param name="properties" type="string" minOccurs="0" maxOccurs="unbounded"/>
 </params>
 <desc resourceKey="PI_FUNCTION_DESC_PROCESSXSLT"></desc>
 <detail resourceKey="PI_FUNCTION_DESC_LONG_PROCESSXSLT">
 This function returns result of XSLT transformation by using Oracle XDK
 XSLT processor.
 </detail>

BPEL XPath Extension Functions

XPath Extension Functions B-31

 <group>BPEL XPath Extension Functions</group>
 </function>

Signature:

• 12c version of the signature:

ora:processXSLT('template','input','properties'?)

Arguments:

• template: The XSLT template. Both HTTP and file URLs are supported.

• input: The input data to be transformed.

• properties: The properties that translate to XSL parameters that can be
accessed within the XSL map using the construct <xsl:param
name="paramName"/>. The properties are defined as follows:

1. Create a params.xsd file to define the name-value pair (every property is a
name-value pair). For example:

<?xml version="1.0" encoding="windows-1252" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/service/bpel/common"
 targetNamespace="http://schemas.oracle.com/service/bpel/common"
 elementFormDefault="qualified">
 <!-- Root Element for Parameters -->
 <xsd:element name="parameters">
 <xsd:complexType>
 <xsd:sequence>
 <!-- Each Parameter is represented by an "item" node that contains
 one unique name and a string value
 -->
 <xsd:element name="item" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="value" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

2. Create a SetParams.xsl file to populate the properties. Within the XSLT,
the parameters are accessible through their names. For this example, the
parameter names are userName and location, and the values are jsmith
and CA, respectively.

<?xml version="1.0" encoding="UTF-8" ?>
<?oracle-xsl-mapper
 <mapSources>
 <source type="XSD">
 <schema location="TestXSLParams.xsd"/>
 <rootElement name="TestXSLParamsProcessRequest"
 namespace="http://xmlns.oracle.com/TestXSLParams"/>
 </source>
 </mapSources>
 <mapTargets>

BPEL XPath Extension Functions

B-32 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <target type="XSD">
 <schema location="params.xsd"/>
 <rootElement name="ArrayOfNameAnyTypePairType"
 namespace="http://schemas.oracle.com/service/bpel/common"/>
 </target>
 </mapTargets>
 <!-- GENERATED BY ORACLE XSL MAPPER 10.1.3.1.0(build 061009.0802) AT [WED
 APR 18 14:35:04 PDT 2007]. -->
?>
<xsl:stylesheet version="1.0"
 xmlns:ns2="http://schemas.oracle.com/service/bpel/common"
xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services
.functions.Xpath20"

 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-
process/"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:ehdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.esb.server.
headers.ESBHeaderFunctions"
 xmlns:ns0="http://www.w3.org/2001/XMLSchema"
 xmlns:orcl="http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services
.functions.ExtFunc"
 xmlns:ids="http://xmlns.oracle.com/bpel/services/
IdentityService/xpath"
 xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:ns1="http://xmlns.oracle.com/TestXSLParams"
 exclude-result-prefixes="xsl ns0 ns1 ns2 xp20 bpws ora ehdr
 orcl ids hwf">
 <xsl:template match="/">
 <ns2:parameters>
 <ns2:item>
 <ns2:name>
 <xsl:value-of select="'userName'"/>
 </ns2:name>
 <ns2:value>
 <xsl:value-of select="'jsmith'"/>
 </ns2:value>
 </ns2:item>
 <ns2:item>
 <ns2:name>
 <xsl:value-of select="'location'"/>
 </ns2:name>
 <ns2:value>
 <xsl:value-of select="'CA'"/>
 </ns2:value>
 </ns2:item>
 </ns2:parameters>
 </xsl:template>
</xsl:stylesheet>

3. Invoke SetParams.xsl from the .bpel file. For example:

– Within assign activity initializeXSLParameters, you initialize the
parameter variable from the specific BPEL variable whose information
you want to access from within the XSLT.

– Within assign activity executeXSLT, you invoke the XSLT with the
parameters as the properties (third) argument of the function
processXSLT.

BPEL XPath Extension Functions

XPath Extension Functions B-33

For example:

<process name="TestXSLParams"
 . . .
 . . .
 <sequence name="main">
 <receive name="receiveInput" partnerLink="client"
 portType="client:TestXSLParams" operation="initiate"
 variable="inputVariable" createInstance="yes"/>
 <assign name="initializeXSLParameters">
 <bpelx:annotation>
 <bpelx:pattern>transformation</bpelx:pattern>
 </bpelx:annotation>
 <copy>
 <from expression="ora:processXSLT ('SetParams.xsl',
 bpws:getVariableData('inputVariable','payload'))"/>
 <to variable="propertiesXMLVar"/>
 </copy>
 </assign>
 <assign name="executeXSLT">
 <bpelx:annotation>
 <bpelx:pattern>transformation</bpelx:pattern>
 </bpelx:annotation>

 <copy>
 <from expression="ora:processXSLT('TestXSLParams.xsl',
 bpws:getVariableData('inputVariable','payload'),
 bpws:getVariableData('propertiesXMLVar'))"/>
 <to variable="outputVariable" part="payload"/>
 </copy>
 </assign>
 <invoke name="callbackClient" partnerLink="client"
 portType="client:TestXSLParamsCallback"
 operation="onResult"
 inputVariable="outputVariable"/>
 </sequence>
</process>

4. In a BPEL process, you use the properties to process the XSLT function.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora (for 12c)

You can use the ora:processXSLT function to write the results of large XSLT/
XQuery operations to a temporary file in a directory system. The document is then
loaded from the temporary file when needed. This eliminates the need for caching an
entire document as binary XML in memory.

For more information, see Using XPath Functions to Write Large XSLT/XQuery
Output to a File System.

B.3.33 readBinaryFromFile
This function reads data from a file.

Signature:

ora:readBinaryFromFile(fileName)

Arguments:

BPEL XPath Extension Functions

B-34 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• fileName: The file name from which to read data.

Property IDs:

• namespace-uri:http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

For more information, see Sending Attachment Streams.

B.3.34 readBinaryFromFileWithMimeHeaders
This function returns the content of a binary file with MIME headers.

Signature:

ora:readBinaryFromFileWithMimeHeaders(fileName, contentId,
contentType, contentDisposition, contentTransferEncoding,
contentDescription, contentLanguage)

B.3.35 readFile
This function returns the content of the file.

Signature:

ora:readFile('fileName','nxsdTemplate'?,'nxsdRoot'?)

Arguments:

• fileName: The name of the file. This argument can also be an HTTP URL.

This function by default reads files relative to the suitcase JAR file for the process.
If the file to read is located in a different directory path, you must specify an extra
directory slash (/) to indicate that this is an absolute path. For example:

ora:readFile('file:///c:/temp/test.doc')

If you specify only two directory slashes (//), you receive an error similar to that
shown in the following example:

XPath expression failed to execute.
Error while processing xpath expression,
the expression is "ora:readFile("file://c:/temp/test.doc")",
the reason is c. Verify the xpath query.

• nxsdTemplate: The NXSD template for the output.

• nxsdRoot -The NXSD root.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

BPEL XPath Extension Functions

XPath Extension Functions B-35

Note:

Currently, the readFile function does not support the functionality to access
files on a web server that requires authorization. If you tried to access such a
file, then you get the following error:

java.io.IOException: Server returned HTTP response code:
401 for URL

B.3.36 search
This function returns a list of LDAP entries.

Signature:

ldap:search('directoryName','filter','scope')

Parameters:

• directoryName: The directory name specified in the directories.xml file.
For information about the directories.xml file, see authenticate.

• filter: The filter expression to use for the search; this value cannot be null.

• scope: The scope of the search. It must be one of the following values: 1: one
level, 2: subtree, or 0: named object. This parameter is optional. By default, its
value is 2.

Returns:

An XML element that contains the list of entries.For this XPath function, all properties
must be specified in the directories.xml file.

Example

ldap:search('people','cn=weblogic');

The following provides an example of the output:

 <searchResult xmlns="http://schemas.oracle.com/bpel/ldap">
 <searchResultEntry dn="uid=weblogic" xmlns="urn:oasis:names:tc:DSML:2:0:core">
 <attr name="uid">
 <value>weblogic</value>
 </attr>
 <attr name="userpassword">
 <value>
Unknown macro: {ssha}

bHDVJRfWVt/Uwlzb4TKU+QTOLB4FLySO</value>

 </attr>

 <attr name="objectclass">
 <value>inetOrgPerson</value>
 <value>organizationalPerson</value>
 <value>person</value>
 <value>top</value>
 <value>wlsUser</value>
 </attr>
 <attr name="description">
 <value>This user is the default administrator.</value>
 </attr>

BPEL XPath Extension Functions

B-36 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <attr name="wlsMemberOf">
 <value>cn=Administrators,ou=groups,ou=myrealm,dc=soainfra</value>
 </attr>
 <attr name="orclguid">
 <value>8AC1B6206FDD11DEBF9A7F3D47003274</value>
 </attr>
 <attr name="sn">
 <value>weblogic</value>
 </attr>
 <attr name="cn">
 <value>weblogic</value>
 </attr>
 </searchResultEntry>
 <searchResultEntry xmlns="urn:oasis:names:tc:DSML:2:0:core"/>
</searchResult>

B.3.37 toCDATA
This function returns a DOM node as a CDATA section.

Signature:

ora:toCDATA(node)

B.3.38 tryToCastToBoolean
This function returns a boolean value if the input is a string of true, false, 1, or 0.

Signature:

ora:tryToCastToBoolean(string)

Argument:

• string: String value to attempt to convert to a boolean value.

B.3.39 writeBinaryToFile
This function writes the binary bytes of a variable (or part of the variable) to a file of
the given file name.

Signature:

ora:writeBinaryToFile(varName[, partName[, query]])

Arguments:

• varName: The name of the variable.

• partName: The name of the part in the messageType variable.

• query: The query string to a child of the root element.

Property IDs:

• namespace-uri:http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.40 getGroupIdsFromGroupAlias
This function returns a list of user IDs for a group alias specified in the
TaskServiceAliases section of the BPEL suitcase descriptor.

BPEL XPath Extension Functions

XPath Extension Functions B-37

Signature:

ora:getGroupIdsFromGroupAlias(String aliasName)

Arguments:

• aliasName: The alias for a list of users or groups.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.3.41 getUserIdsFromGroupAlias
This function returns a list of user IDs for a group alias specified in the
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getUserIdsFromGroupAlias(String aliasName)

Arguments:

• aliasName: Alias name of the group.

Property IDs:

• namespace-uri: http://schemas.oracle.com/xpath/extension

• namespace-prefix: ora

B.4 Conversion Functions
This section describes the conversion functions.

B.4.1 boolean
This function converts the input to a boolean. A number is true only if it is neither
positive or negative zero or NaN. A node-set is true only if it is nonempty. A string is
true only if its length is nonzero.

Signature:

boolean(input as any)

Arguments

• input as any: Any value.

For example:

boolean('false') returns true.

Property IDs:

• namespace-uri:

B.4.2 number
This function converts the input to a number. A string that consists of optional white
space, followed by an optional minus sign, followed by a number, followed by white

Conversion Functions

B-38 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

space is converted to the IEEE 754 number that is nearest (according to the IEEE 754
round-to-nearest rule) to the mathematical value represented by the string. Any other
string is converted to a NaN. A boolean true is converted to 1. A boolean false is
converted to 0. A node-set is first converted to a string as if by a call to the string
function and then converted in the same way as a string parameter.

Signature:

number(input as string or boolean or node-set)

Arguments

• input as string or boolean or node-set: Value to convert.

For example:

number('12.3') returns 12.3.

B.4.3 string
This function converts an object to a string.

Signature:

string(input as any)

Arguments

• input as any: The object to convert.

For example:

string(12.3) returns '12.3'.

Property IDs:

• namespace-uri:

• namespace-prefix:

B.5 DVM Functions
This section describes the domain value map (DVM) functions.

B.5.1 lookupValue
This function returns a string by looking up the value for the target column in a
domain value map, where the source column contains the given source value.

Signature:

dvm:lookupValue(dvmLocation,sourceColumnName,sourceValue,targetC
olumnName,defaultValue)

Arguments:

• dvmLocation: The domain value map URI.

• sourceColumnName: The source column name.

• sourceValue: The source value (an XPath expression bound to the source
document of the XSLT transformation).

• targetColumnName: The target column name.

DVM Functions

XPath Extension Functions B-39

• defaultValue: If the value is not found, then the default value is returned.

• QualifierSourceColumn: The name of the qualifier column.

• QualifierSourceValue: The value of the qualifier.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.dvm.LookupValue

• namespace-prefix: dvm

For more information, see dvm:lookupValue.

B.5.2 lookupValue1M
This function returns an XML document fragment containing values for multiple
target columns of a domain value map, where the value for the source column equals
the source value.

Signature:

dvm:lookupValue1M(dvmLocation,sourceColumnName,sourceValue,targe
tColumnName1,targetColumnName2...)

Arguments:

• dvmMetadataURI: The domain value map URI.

• SourceColumnName: The source column name.

• SourceValue: The source value (an XPath expression bound to the source
document of the XSLT transformation).

• TargetColumnName: The name of the target columns. You must specify at least
one column name. The question mark symbol (?) indicates that you can specify
multiple target column names.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.dvm.LookupValue

• namespace-prefix:dvm

For more information, see dvm:lookupValue1M.

B.6 Database Functions
This section describes the database functions.

B.6.1 lookup-table
This function returns a string based on the SQL query generated from the parameters.

The string is obtained by executing:

SELECT outputColumn FROM table WHERE inputColumn = key

You execute it against the data source that can be either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a data source

Database Functions

B-40 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

JNDI identifier. Only the Oracle thin driver is supported if the JDBC connect string is
used.

Example:

oraext:lookup-
table('employee','id','1234','last_name','jdbc:oracle:thin:xyz/
xyz@localhost:1521:ORCL')

Signature:

oraext:lookup-table(table, inputColumn, key, outputColumn, data
source)

Arguments:

• table: The table from which to draw the data.

• inputColumn: The column within the table.

• key: The key value of the input column.

• outputColumn: The column to output the data.

• data source: The source of the data.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.6.2 query-database
This function returns a node set by executing the SQL query against the specified
database.

Signature:

oraext:query-database(sqlquery as string, rowset as boolean, row
as boolean, data source as string)

Arguments:

• sqlquery: The SQL query to perform.

• rowset: Indicates if the rows should be enclosed in an element.

• row: Indicates if each row should be enclosed in an element.

• data source: Either a JDBC connect string (jdbc:oracle:thin:username/
password@host:port:sid) or a JNDI name for the database.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

Database Functions

XPath Extension Functions B-41

B.6.3 sequence-next-val
Returns the next value of an Oracle sequence.

The next value is obtained by executing the following:

SELECT sequence.nextval FROM dual

You execute it against a data source that can be either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a data source
JNDI identifier. Only the Oracle thin driver is supported if a JDBC connect string is
used.

Example:

oraext:sequence-next-
val('employee_id_sequence','jdbc:oracle:thin:xyz/xyz@localhost:
1521:ORCL')

Signature:

oraext:sequence-next-val(sequence as string, data source as
string)

Arguments:

• sequence: The sequence number in the database.

• data source: Either a JDBC connect string or a data source JNDI identifier.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.7 Date Functions
This section describes the date functions.

B.7.1 add-dayTimeDuration-to-dateTime
This function returns a new date time value adding dateTime to the given duration.

If the duration value is negative, then the resulting value precedes dateTime.

Signature:

xpath20:add-dayTimeDuration-from-dateTime(dateTime as string,
duration as string)

Arguments:

• dateTime as string: The dateTime to which the function adds the duration,
in string format.

• duration as string: The duration to add to the dateTime, or subtract if the
duration is negative, in string format.

Property IDs:

Date Functions

B-42 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.2 current-date
This function returns the current date in the ISO format of YYYY-MM-DD.

Signature:

xpath20:current-date(object)

Arguments:

• Object: The time in standard format.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.3 current-dateTime
This function returns the current datetime value in the ISO format of CCYY-MM-
DDThh:mm:ss.sTZD (where s denotes the time in milliseconds).

For example, if the time is 6 hours, 17 minutes, 15 seconds, 125 milliseconds in the
evening (PM) of May 12, 2004 in time zone Z, current-dateTime returns a value of:

2004-05-12T18:17:15.125Z

If com.oracle.soa.xpath.datetimeWithoutMillis is set to true in the
setDomainEnv file, this function returns the current datetime value in the following
format (where ss denotes the time in seconds):

CCYY-MM-DDThh:mm:ss.TZD

Signature:

xpath20:current-dateTime(object)

Arguments:

• object: The time in standard format.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.3.1 To display the datetime value in seconds:

1. Open the following file:

• On UNIX operating systems, open $MIDDLEWARE_HOME/user_projects/
domains/domain_name/bin/setDomainEnv.sh.

Date Functions

XPath Extension Functions B-43

• On Window operating systems, open MIDDLEWARE_HOME\user_projects
\domains\domain_name\bin\setDomainEnv.bat.

2. Add com.oracle.soa.xpath.datetimeWithoutMillis with a value of
true in the JAVA_OPTIONS section. For example, JAVA_OPTIONS is currently set
as follows:

JAVA_OPTIONS="${JAVA_OPTIONS} ${JAVA_PROPERTIES}
-Dwlw.iterativeDev=${iterativeDevFlag} -Dwlw.testConsole=${testConsoleFlag}
-Dwlw.logErrorsToConsole=${logErrorsToConsoleFlag} "

After modification, JAVA_OPTIONS appears as follows:

 JAVA_OPTIONS="${JAVA_OPTIONS} ${JAVA_PROPERTIES}
-Dwlw.iterativeDev=${iterativeDevFlag} -Dwlw.testConsole=${testConsoleFlag}
-Dwlw.logErrorsToConsole=${logErrorsToConsoleFlag}
-Dcom.oracle.soa.xpath.datetimeWithoutMillis=true"

3. Restart the server.

B.7.4 current-time
This function returns the current time in ISO format. The format is hh:mm:ssTZD.

Signature:

xpath20:current-time(object)

Arguments:

• object: The time in standard format.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.5 day-from-dateTime
This function returns the day from dateTime. The default day is 1.

Signature:

xpath20:day-from-dateTime(object)

Arguments:

• object: The time in standard format as a string.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

Date Functions

B-44 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

B.7.6 format-dateTime
This function returns the formatted string of dateTime using the format provided.
For examples of date and time formatting strings, see the W3C XSL Transformations
documentation; for example, [Y0001]-[M01]-[D01].

Signature:

xpath20:format-dateTime(dateTime as string, format as string)

Arguments:

• dateTime: The dateTime to be formatted.

• format: The format for the output.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.7 hours-from-dateTime
This function returns the hour from dateTime. The default hour is 0.

Signature:

xpath20:hours-from-dateTime(dateTime as string)

Arguments:

• dateTime: The string with the date and time.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.8 minutes-from-dateTime
This function returns the minutes from dateTime. The default minute is 0.

Signature:

xpath20:minutes-from-dateTime(dateTime as string)

Arguments:

• dateTime as string: The date and time.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

Date Functions

XPath Extension Functions B-45

B.7.9 month-from-dateTime
This function returns the month from dateTime. The default month is 1 (January).

Signature:

xpath20:month-from-dateTime(dateTime as string)

Arguments:

• dateTime as string: The dateTime to be formatted.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.10 seconds-from-dateTime
This function returns the seconds from dateTime. The default second is 0.

Signature:

xpath20:seconds-from-dateTime(dateTime as string)

Arguments:

• dateTime as a string: The dateTime as a string.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.11 subtract-dayTimeDuration-from-dateTime
This function returns a new dateTime value after subtracting the duration from
dateTime.

If the duration value is negative, then the resulting dateTime value follows input-
dateTime value.

Signature:

xpath20:subtract-dayTimeDuration-from-dateTime(dateTime as
string, duration as string)

Arguments:

• dateTime as string: The dateTime from which the function subtracts the
duration, in string format.

• duration as string: The duration to subtract from the dateTime, or to add
if the duration is negative, in string format.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

Date Functions

B-46 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• namespace-prefix: xp20

B.7.12 timezone-from-dateTime
This function returns the time zone from dateTime. The default time zone is GMT
+00:00.

Signature:

xpath20:timezone-from-dateTime(dateTime as string)

Arguments:

• dateTime as string: The dateTime for which this function returns a time
zone.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.7.13 year-from-dateTime
This function returns the year from dateTime.

Signature:

xpath20:year-from-dateTime(dateTime as string)

Arguments:

• dateTime: The dateTime as a string.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.8 Identity Service Functions
This section describes the identity service functions.

B.8.1 getDefaultRealmName
This function returns the default realm name.

Signature:

ids:getDefaultRealmName()

Arguments:

There are no arguments for this function.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/
IdentityService/xpath

Identity Service Functions

XPath Extension Functions B-47

• namespace-prefix: ids

B.8.2 getGroupProperty
This function returns the property value for the given group. If the group or attribute
does not exist, it returns null.

Signature:

ids:getGroupProperty(groupName, attributeName, realmName)

Arguments:

• groupName: String or element containing the group whose attribute must be
retrieved.

• attributeName: String or element containing the name of the group attribute.

If the identity service uses the LDAP providerType or JAZN LDAP-based
providers, configure the LDAP server to enable searching by those attributes.

• realmName: The realm name. This is optional. If not specified, the default realm
is assumed.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/
IdentityService/xpath

• namespace-prefix: ids

B.8.3 getManager
This function gets the manager of a given user. If the user does not exist or there is no
manager for this user, it returns null.

Signature:

ids:getManager(userName, realmName)

Arguments:

• userName: The user name.

• realmName: The realm name. This is optional. If not specified, the default realm
is assumed.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/services/
IdentityService/xpath

• namespace-prefix: ids

B.8.4 getManagerFromManagementChain
This function gets the management chain for a given user based on upToUserName,
upToTitle, and upToLevel. If the user does not exist or if there is no manager for
the user, it returns null. Regular expressions can be used in upToTitle and
upToUser parameters.

Signature:

Identity Service Functions

B-48 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

ids:getManagerFromManagementChain()

B.8.5 getReportees
This function gets the reportees of the user. If the user does not exist, it returns null.
This function returns a list of nodes. Each node in the list is called user.

Signature:

ids:getReportees(userName, upToLevel, realmName)

Arguments:

• userName: The user name.

• upToLevel- Defines the levels of indirect reportees to be included in the result. If
the value is 1, it returns only direct reportees. If the value is -1, it returns all levels
of reportees. It can be either an element with value xsd:number or a string, for
example '1'.

• realmName: The realm name. This is optional and, if not specified, the default
realm is assumed.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/services/
IdentityService/xpath

• namespace-prefix: ids

B.8.6 getSupportedRealmNames
This function returns the supported realm names.

Signature:

ids:getSupportedRealms()

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/
IdentityService/xpath

• namespace-prefix: ids

B.8.7 getUserProperty
This function returns the property of the user. If the user does not exist, it returns
null. Use custom attributes if the desired attribute does not exist.

Signature:

ids:getUserProperty(userName, attributeName, realmName)

Arguments:

• userName: String or element containing the user whose attribute must be
retrieved.

• attributeName: The name of the user attribute.

If the identity service uses the LDAP providerType or JAZN LDAP-based
providers, configure the LDAP server to enable searching by those attributes.

Identity Service Functions

XPath Extension Functions B-49

• realmName: The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/
IdentityService/xpath

• namespace-prefix: ids

For more information, see How to Select Email Addresses and Telephone Numbers
Dynamically.

B.8.8 getUserRoles
This function gets the user roles. This function returns a list of objects, either
application roles or groups, depending on the roleType. If the user or role does not
exist, it returns null.

Signature:

ids:getUserRoles(userName, roleType, direct)

Arguments:

• userName: String or element containing the user whose roles are to be retrieved.

• roleType: The role type that takes one of three values: ApplicationRole,
EnterpriseRole, or AnyRole.

• direct: A string or element indicating if direct or indirect roles must be fetched.
This is optional. If not specified, only direct roles are fetched. This is either
xsd:boolean or string true/false.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/services/
IdentityService

• namespace-prefix: ids

B.8.9 getUsersInAppRole
This function returns the list of users who are granted this application role. If either
the application role name or the application name provided as input is null, then it
returns null.

Signature: ids:getUsersInAppRole(appRoleName, appName, direct,
realmName)

Arguments:

• appRoleName: String or element containing the application role whose members
should be retrieved.

• appName: Application name within which the application role is created.

• direct: String or element indicating if only direct grantees or all users should be
fetched.

• realmName: String or element containing the realm name. This is optional and, if
not specified, the default realm is used.

Identity Service Functions

B-50 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

B.8.10 getUsersInGroup
This function gets the users in a group. If the group does not exist, it returns null.
This function returns a list of nodes. Each node in the list is called user.

Signature:

ids:getUsersInGroup(groupName, direct, realmName)

Arguments:

• groupName: The group name.

• direct: A boolean flag. If true, this function returns direct user grantees;
otherwise, all user grantees are returned. It can be either an element with value
xsd:boolean or string 'true'/'false'.

• realmName: The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/
IdentityService/xpath

• namespace-prefix: ids

B.8.11 isUserInAppRole
This function verifies if a user has a specific application role.

Signature:

ids:isUserInAppRole(userName, appRoleName, appName, realmName)

Arguments:

• userName: String or element containing the user whose participation in the role
must be verified.

• appRoleName: The application role name.

• appName: The application name (for example, OracleBPMProcessRolesApp,
OracleBPMComposerRolesApp, and so on).

• realmName: The realm name. This is optional. If not specified, the default realm
is assumed. This function returns a boolean true or false.

B.8.12 isUserInRole
This function verifies if a user has a specific role.

Signature:

ids:isUserInRole(userID, roleName, realmName)

Arguments:

• userID: A string or element containing the user whose participation in the role
must be verified.

• roleName: The role name.

Identity Service Functions

XPath Extension Functions B-51

• realmName: The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/services/
IdentityService/xpath

• namespace-prefix: ids

B.8.13 lookupGroup
This function gets the group. If the group does not exist, it returns null.

Signature:

ids:lookupGroup(groupName, realmName)

Arguments:

• groupName: The group name.

• realmName: The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/services/
IdentityService/xpath

• namespace-prefix: ids

B.8.14 lookupUser
This function gets the user object. If the user does not exist, it returns null.

Signature:

ids:lookupUser(userName, realmName)

Arguments:

• userName: The user name.

• realmName: The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/services/
IdentityService/xpath

• namespace-prefix: ids

B.9 Logical Functions
This section describes the logical function.

B.9.1 and
This function returns true if both parameters evaluate to true. Otherwise, it returns
false.

Logical Functions

B-52 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Signature:

a-boolean and another-boolean

Arguments:

• a-boolean: One boolean value to evaluate.

• another-boolean: The other boolean value to evaluate.

B.9.2 equals
This function returns true if the two parameters are equal. Otherwise, it returns false.

Signature:

parameter1 = parameter2

Arguments:

• parameter1: One parameter to evaluate.

• parameter2: The other parameter to evaluate.

B.9.3 false
This function returns a boolean value of false.

Signature:

false()

B.9.4 greater
This function returns true if the first parameter is greater than the second parameter.
Otherwise, it returns false.

Signature:

parameter1 > parameter2

Arguments:

• parameter1: First parameter to evaluate.

• parameter2: Second parameter to evaluate.

B.9.5 greater equals
This function returns true if the first parameter is greater than or equal to the second
parameter. Otherwise, it returns false.

Signature:

parameter1 >= parameter2

B.9.6 less
This function returns true if the first parameter is less than the second parameter.
Otherwise, it returns false.

Signature:

parameter1 < parameter2

Logical Functions

XPath Extension Functions B-53

Arguments:

• parameter1: First parameter to evaluate.

• parameter2: Second parameter to evaluate.

B.9.7 less equals
This function returns true if the first parameter is less than or equal to the second
parameter. Otherwise, it returns false.

Signature:

parameter1 <= parameter2

Arguments:

• parameter1: First parameter to evaluate.

• parameter2: Second parameter to evaluate.

B.9.8 not
This function returns the negation of the parameter.

Signature:

unobtainable as boolean)

Argument:

• input as boolean: The value to evaluate.

B.9.9 not equals
This function returns true if the two parameters are not equal. Otherwise, it returns
false.

Signature:

parameter1!= parameter2

Arguments:

• parameter1: First parameter to evaluate.

• parameter2: Second parameter to evaluate.

B.9.10 or
This function returns true if either parameter evaluates to true. Otherwise, it returns
false.

Signature:

a-boolean or another-boolean

Arguments:

• a-boolean: First parameter to evaluate.

• another-boolean: Second parameter to evaluate.

Logical Functions

B-54 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

B.9.11 true
This function returns a boolean value of true.

Signature:

true()

Property IDs:

• namespace-uri:

• namespace-prefix:

B.10 Mathematical Functions
This section describes the mathematical functions.

B.10.1 abs
This function returns the absolute value of inputNumber.If the inputNumber is not
negative, the inputNumber is returned. If the inputNumber is negative, the negation
of inputNumber is returned.

Example:

abs(-1) returns 1.

Signature:

xpath20:abs(inputNumber as number)

Arguments:

• inputNumber as number: The number for which the function returns an
absolute value.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.10.2 add
This function adds two numbers.

Example:

2 + 2 = 4

B.10.3 ceiling
This function returns the smallest (closest to negative infinity) number that is not less
than the input number and is an integer.

Example:

ceiling(1.6) returns 2.0.

Mathematical Functions

XPath Extension Functions B-55

B.10.4 count
This function returns the number of nodes in the input node set.

Example:

count(inputNodeSet as node-set)

Argument:

• inputNodeSet: The input node set.

B.10.5 divide
This function returns the first number divided by the second number.

Example:

2 div 2 = 1

B.10.6 floor
This function returns the largest (closest to positive infinity) number that is not greater
than the input number and is an integer.

Signature:

floor(1.6) returns 1.0

B.10.7 max-value-among-nodeset
This function returns the maximum value from a list of input numbers, the node set
inputNumber. The node set inputNumber can be a collection of text nodes or
elements containing text nodes. In the case of elements, the first text node's value is
considered.

Signature:

oraext:max-value-among-nodeset(inputNumber as node-set)

Arguments:

• inputNumber: The node set of input numbers.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.10.8 min-value-among-nodeset
This function returns the minimum value from a list of input numbers, the node set
inputNumbers. The node set can be a collection of text nodes or elements containing
text nodes. In the case of elements, the first text node's value is considered.

Signature:

oraext:min-value-among-nodeset(inputNumbers as node-set)

Arguments:

Mathematical Functions

B-56 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• inputNumber: The node set of input numbers.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.10.9 mod
This function returns the remainder from a truncating division.

Example:

5 mod 2 returns 1

B.10.10 multiply
This function multiplies two numbers.

Example:

2 * 2 = 4

B.10.11 round
This function returns the number that is closest to the input number and is an integer.
If there are two numbers, the one that is closest to positive infinity is returned.

Example:

round(1.5) returns 2.0.

B.10.12 square-root
This function returns the square root of inputNumber.

Example:

oraext:square-root(25) returns 5

Signature:

oraext:square-root(inputNumber as number)

Arguments:

• inputNumber: The input number for which the function calculates the square
root.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.10.13 subtract
This function subtracts the second number from the first number.

Example:

Mathematical Functions

XPath Extension Functions B-57

2 - 2 = 0

B.10.14 sum
This function returns the sum of all nodes in numbers.

Signature:

sum(numbers as node-set-set)

Argument:

• numbers as node-set-set: Total number of node sets.

Property IDs:

• namespace-uri:

• namespace-prefix:

B.10.15 unary
This function multiplies a number by -1.

Signature:

-(-1) = 1

B.11 Node Set Functions
This section describes the node set functions.

B.11.1 last
This function returns the context size.

Signature:

last()

B.11.2 local-name
This function returns the local part of the name of a node.

Signature:

local-name([inputNodeSet as node-set])

Arguments:

• inputNodeSet as node-set: The name of the node set.

B.11.3 name
This function returns the QName of a node.

Signature:

name([inputNodeSet as node-set])

Argument:

• inputNodeSet as node-set: The name of the node set.

Node Set Functions

B-58 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

B.11.4 namespace-uri
This function returns the URI namespace of a node.

Signature:

namespace-uri([inputNodeSet as node])

Argument:

• inputNodeSet as node-set: The name of the node set.

B.11.5 position
This function returns the context position.

Signature:

position()

B.11.6 union
This function computes the union of its operands, which must be node sets.

Signature:

node-set | node-set

B.12 String Functions
This section describes the string functions.

B.12.1 compare
This function returns the lexicographical difference between inputString and
compareString by comparing the unicode value of each character of both the
strings.

This function returns -1 if inputString lexicographically precedes the
compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the
compareString.

Example:

xpath20:compare('Audi', 'BMW') returns -1

Signature:

xpath20:compare(inputString as string, compareString as string)

Arguments:

• variableName: The source variable for the data.

• propertyName: The qualified name (QName) of the property.

Property IDs:

String Functions

XPath Extension Functions B-59

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.12.2 compare-ignore-case
This function returns the lexicographical difference between inputString and
compareString while ignoring case and comparing the unicode value of each
character of both the strings. Table B-2 provides details.

Table B-2 Values Returned

This Function Returns... If...

-1 inputString lexicographically precedes the compareString.

0 Both inputString and compareString are equal.

1 inputString lexicographically follows the compareString.

Example:

oraext:compare-ignore-case('Audi','bmw') returns -1

Signature:

xp:compare-ignore-case(inputString as string, compareString as
string)

Arguments:

• inputString: The string of data to be searched.

• CompareString: The string to compare against the input string.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: oraext

B.12.3 concat
This function returns the concatenation of its string parameters.

Signature:

concat(string1 as string, string2 as string, ...)

Arguments:

• string1: String value to concatenate.

• string2: String value to concatenate.

B.12.4 contains
This function returns true if inputString contains searchString. Otherwise, it
returns false.

String Functions

B-60 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Signature:

contains(inputString as string,searchString as string)

For example:

contains('Michael Kay','Michael') returns true.

B.12.5 create-delimited-string
This function returns a delimited string created from a nodeSet delimited by a
delimiter.

Signature:

oraext:create-delimited-string(nodeSet as node-set, delimiter as
string)

Arguments:

• nodeSet: The node set to convert into a delimited string.

• delimiter: The character that separates the items in the output string (for
example, a comma or a semicolon).

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.6 ends-with
This function returns true if inputString ends with searchString.

Example:

xpath20:ends-with('XSL Map','Map') returns true

Signature:

xpath20:ends-with(inputString as string, searchString as string)

Arguments:

• inputString: The string of data to be searched.

• searchString: The string for which the function searches.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.12.7 format-string
This function returns the message formatted with the arguments passed. At least one
argument is required and supports up to a maximum of 10 arguments.

Example:

String Functions

XPath Extension Functions B-61

oraext:format-string('{0} + {1} = {2}','2','2','4') returns '2 + 2
= 4'

Signature:

oraext:format-string(string,string,string...)

Arguments:

• string: One of the strings to use in the formatted output.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.8 get-content-as-string
This function returns the XML representation of the input element.

Signature:

oraext:get-content-as-string(element as node-set)

Arguments:

• element as node-set: The input element that the function returns as an XML
representation.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.9 get-localized-string
This function returns the locale-specific string for the key. This function uses language,
country, variant, and resource bundle to identify the correct resource bundle. All
parameters must be in string format. Use the string() function to convert any
parameter values to strings before sending them to get-localized-string.

The resource bundle is obtained by resolving resourceLocation against the
resourceBaseURL. The URL is assumed to be a directory only if it ends with /.

Usage: oraext:get-localized-string(resourceBaseURL as string,
resourceLocation as string, resource bundle as string, language
as string, country as string, variant as string, key as string)

Example: oraext:get-localized-string('file:/
c:/','','MyResourceBundle','en','US','','MSG_KEY') returns a locale-
specific string from a resource bundle 'MyResourceBundle' in the C:\ directory.

Signature:

oraext:get-localized-
string(resourceURL,resourceLocation,resourceBundleName,language,
country,variant,messageKey)

Arguments:

String Functions

B-62 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• resourceURL: The URL of the resource.

• resourceLocation: The subdirectory location of the resource.

• resourceBundleName: The name of the ZIP file containing the resource bundle.

• language: The language of the localized output.

• country: The country of the localized output.

• variant: The language variant of the localized output.

• messageKey: The message key in the resource bundle.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.10 index-within-string
This function returns the zero-based index of the first occurrence of searchString
within the inputString.

This function returns -1 if searchString is not found.

Example:

oraext:index-within-string('ABCABC, 'B') returns 1

Signature:

oraext:index-within-string(inputString as string, searchString
as string)

Arguments:

• inputString: The string of data to be searched.

• searchString: The string for which the function searches in inputString.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.11 last-index-within-string
This function returns the zero-based index of the last occurrence of searchString
within inputString.

This function returns -1 if searchString is not found.

Example:

oraext:last-index-within-string('ABCABC', 'B') returns 4

Signature:

oraext:last-index-within-string(inputString as string,
searchString as string)

String Functions

XPath Extension Functions B-63

Arguments:

• inputString: The string of data to be searched.

• searchString: The string for which the function searches in the inputString.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.12 left-trim
This function returns the value of inputString after removing all the leading white
spaces.

Example:

oraext:left-trim(' account ') returns 'account '

Signature:

oraext:left-trim(inputString)

Arguments:

• inputString: The string to be left-trimmed.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.13 lower-case
This function returns the value of inputString after translating every character to its
lower-case correspondent.

Example:

xpath20:lower-case('ABc!D') returns 'abc!d'

Signature:

xpath20:lower-case(inputString)

Arguments:

• inputString: The string of data that is in lowercase.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

String Functions

B-64 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

B.12.14 matches
This function returns true if intputString matches the regular expression pattern
regexPattern.

Example:

xpath20:matches('abracadabra', '^a.*a$') returns true

Signature:

xpath20:matches(intputString, regexPattern)

Arguments:

• inputString: The string of data that must be matched.

• regexPattern: The regular expression pattern.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.12.15 normalize-space
This function returns the input string with white space normalized by stripping
leading and trailing white space and replacing sequences of white space characters
with a single space.

Signature:

normalize-space([inputString as string])

Arguments:

• inputString: The input string.

For example:

normalize-space(' book title ') returns 'book title'.

B.12.16 right-trim
This function returns the value inputString after removing all the trailing white
spaces.

Example:

oraext:right-trim(' account ') returns ' account'

Signature:

oraext:right-trim(inputString as string)

Arguments:

• inputString: The input string to be right-trimmed.

Property IDs:

String Functions

XPath Extension Functions B-65

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.ExtFunc

• namespace-prefix: oraext

B.12.17 starts-with
This function returns true if the input string starts with a search string. Otherwise, it
returns false.

Signature:

starts-with(inputString as string,searchString as string)

Arguments:

• inputString: The input string.

• searchString: The search string.

For example:

starts-with('data type','data') returns true.

B.12.18 string-length
This function returns the number of characters in the input string.

Signature:

string-length([inputString as string])

Argument:

• inputString: The input string.

For example,

string-length('xml') returns 3.

Property IDs:

• namespace-uri:

• namespace-prefix:

B.12.19 substring
This function returns the substring of the input string starting at the position specified
in the starting location with the length specified in length.

Signature:

substring(inputString as string,startingLoc as number,[length as
number])

Arguments:

• inputString: The input string.

• startingLoc: The starting location.

• length as number: The length as a number.

For example:

String Functions

B-66 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

substring('12345',2) returns '2345'.

B.12.20 substring-after
This function returns the substring of the input string that follows the first occurrence
of the search string, or the empty string if the input string does not contain the search
string.

Signature:

substring-after(inputString as string,searchString as string)

Arguments:

• inputString: The input string.

• searchString: The string for which to search.

For example,

substring-after('1999/04/01','/') returns '04/01.

B.12.21 substring-before
This function returns the substring of the input string that precedes the first
occurrence of the search string or the empty string if the input string does not contain
the search string.

Signature:

substring-before(inputString as string,searchString as string)

Arguments:

• inputString: The input string.

• searchString: The string for which to search.

For example:

substring-before('1999/04/01','/') returns '1999'.

B.12.22 translate
Signature:

translate(inputString as string,fromString as string,toString as
string)

Arguments:

• inputString: The input string.

• fromString: The from string.

• toString: The to string.

For example,

translate('--aaa--','abc-','ABC') returns 'AAA'.

String Functions

XPath Extension Functions B-67

B.12.23 upper-case
This function returns the value of inputString after translating every character to its
uppercase correspondent.

Example:

xpath20:upper-case('abCd0') returns 'ABCD0'

Signature:

xpath20:upper-case(inputString as string)

Arguments:

• inputString: The string of data that is in uppercase.

Property IDs:

• namespace-uri: http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20

• namespace-prefix: xpath20

B.13 Workflow Service Functions
This section describes the workflow service functions.

B.13.1 clearTaskAssignees
This function clears the current task assignees.

Signature:

hwf:clearTaskAssignees(taskID)

Arguments:

• task: The task ID of the task.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

• namespace-prefix: hwf

B.13.2 createWordMLDocument
This function creates a Microsoft Word ML document as a base 64-encoded string.

Signature:

hwf:createWordMLDocument(node, xsltURI)

Arguments:

• node: The node is an XML node that is an input to the transformation.

• xsltURI: The XSLT used to transform the node (the first argument) to Microsoft
Word ML.

Property IDs:

Workflow Service Functions

B-68 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

• namespace-prefix: hwf

B.13.3 dynamicTaskAssign
This function selects an assignee of the specified type from the input, using the
specified pattern, in the context of the current task.

This function can only be used in the context of a human task.

Signature:

hwf:dynamicTaskAssign(patternName, participants,
inputParticipantType, targetAssigneeType, isGlobal,
invocationContext, parameter1, parameter2, ..., parameterN)

Arguments:

• patternName: (Mandatory) Name of the pattern to use. The patterns
ROUND_ROBIN, LEAST_BUSY, and MOST_PRODUCTIVE are automatically
provided. It is possible to configure the SOA server with custom patterns.

• participants: (Mandatory) The participant or participants from which to select
the assignee. This can be a string or element containing a participant name or a
comma-separated list of participant names, or a set of elements containing
participant names or comma-separated lists of participant names. Participants
must all be of the same type.

• inputParticipantType: (Mandatory) The type of the input participants (user,
group, or application_role).

• targetAssigneeType: (Mandatory) The type of assignee to select (user,
group, or application_role). The value must match the context in which the
function is used (for example, it must be a user if dynamically selecting an owner
user. Note that if inputParticipantType is the user, the only valid value here
is the user.

• isGlobal: A boolean value that indicates to access the pattern using tasks of all
types or tasks of the same type as the current task. This is optional. It defaults to
false.

• invocationContext: The string to uniquely identify where this function is
used. If not specified, a default context is assigned.

• parameterN : Some dynamic assignment patterns enable parameters to be
specified. The parameter values can be specified as name-value pairs, using an ?
=? character as a delimiter (for example, ?TIME_PERIOD=7?).

Examples:

hwf:dynamicTaskAssign(?LEAST_BUSY?,?jcooper,jstein,mtwain?,?
user?,?user?,?true?,?ErrorAssignee?)

hwf:dynamicTaskAssign(?ROUND_ROBIN?,?LoanAgentGroup?,?group?,?
user?,?false?,?OwnerUser?)

hwf:dynamicTaskAssign(?MOST_PRODUCTIVE?,task:task/task:payload/
task:users,?user?,?user?,?false?,?OwnerUser?,?TIME_PERIOD=7?)

hwf:dynamicTaskAssign(?LEAST_BUSY?,?DeveloperRole?,?
application_role?,?group?)

Workflow Service Functions

XPath Extension Functions B-69

B.13.4 getNotificationProperty
This function retrieves a notification property. This function evaluates to
corresponding values for each notification. Only use this function in the notification
content XPath expression. If used elsewhere, it returns null.

Signature:

hwf:getNotificationProperty(propertyName)

Arguments:

• propertyName: The name of the notification property. It can be one of the
following values:

– recipient: The recipient of the notification.

– recipientDisplay: The display name of the recipient.

– taskAssignees: The task assignees.

– taskAssigneesDisplay: The display names of the task assignees.

– locale: The locale of the recipient.

– taskId: The task ID of the task for which the notification is meant.

– taskNumber: The task number of the task for which the notification is meant.

– appLink: The HTML link to the Oracle BPM Worklist task details page.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

• namespace-prefix: hwf

B.13.5 getNumberOfTaskApprovals
This function computes the number of times the task was approved.

Signature:

hwf:getNumberOfTaskApprovals(taskId)

Arguments:

• taskId: The ID of the task.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

• namespace-prefix: hwf

B.13.6 getPreviousTaskApprover
This function retrieves the previous task approver.

Signature:

hwf:getPreviousTaskApprover(taskId)

Workflow Service Functions

B-70 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Arguments:

• taskId: The ID of the task.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

• namespace-prefix: hwf

B.13.7 getTaskAttachmentByIndex
This function retrieves the task attachment at the specified index.

Signature:

hwf:getTaskAttachmentByIndex(taskId, attachmentIndex)

Arguments:

• taskId: The task ID of the task.

• attachmentIndex: The index of the attachment. The index begins at 1. The
attachmentIndex argument can be a node whose value evaluates to the index
number as a string (all node values are strings). If specified statically, it can be
specified as '1'.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

• namespace-prefix: hwf

B.13.8 getTaskAttachmentByName
This function retrieves the task attachment by the attachment name.

Signature:

hwf:getTaskAttachmentByName(taskId, attachmentName)

Arguments:

• taskId: The task ID of the task.

• attachmentName: The name of the attachment.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

• namespace-prefix: hwf

B.13.9 getTaskAttachmentContents
This function retrieves the task attachment contents by the attachment name.

Signature:

hwf:getTaskAttachmentContents(taskId, attachmentName)

Arguments:

• taskId: The task ID of the task.

Workflow Service Functions

XPath Extension Functions B-71

• attachmentName: The name of the attachment.

Property IDs:

• namespace-uri:http://xmlns.oracle.com/bpel/workflow/xpath

• namespace-prefix: hwf

B.13.10 getTaskAttachmentsCount
This function retrieves the number of task attachments.

Signature:

hwf:getTaskAttachmentsCount(taskId)

Arguments:

• taskId: The task ID of the task.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

• namespace-prefix: hwf

B.13.11 getTaskResourceBundleString
This function returns the internationalized resource value from the resource bundle
associated with a task definition.

Signature:

hwf:getTaskResourceBundleString(taskId, key, locale?)

Arguments:

• taskId: The task ID of the task.

• key: The key to the resource.

• locale: (Optional) The locale. This value defaults to system locale. This returns a
resourceString XML element in the namespace http://
xmlns.oracle.com/bpel/services/taskService, which contains the
string from the resource bundle.

Property IDs:

• namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

• namespace-prefix: hwf

B.14 XREF Functions
This section describes the cross reference (XREF) functions.

B.14.1 lookupPopulatedColumns
This function looks up a cross-reference column for a single value or multiple values
corresponding to a value in a reference column.

Signature:

XREF Functions

B-72 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

xref:lookupPopulatedColumns(tableName,columnName,value,needAnExc
eption)

Arguments:

• xrefTableName: The name of the reference table.

• xrefColumnName: The name of the reference column.

• xrefValue: The value corresponding to the reference column name.

• needAnException: If this value is set to true, then an exception is thrown when
no value is found in the referenced column. Otherwise, an empty node set is
returned.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref

B.14.2 lookupXRef
This function looks up a cross-reference column for a value that corresponds to a value
in a reference column.

Signature:

xref:lookupXRef(tableName,referenceColumnName,referenceValue,col
umnName,needAnException)

Arguments:

• xrefLocation: The cross-reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• needAnException: When the value is set to true, an exception is thrown if the
value is not found. Otherwise, an empty value is returned.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref

For more information, see About the xref:lookupXRef Function.

B.14.3 lookupXRef1M
This function looks up a cross-reference column for multiple values corresponding to a
value in a reference column.

Signature:

xref:lookupXRef1M(tableName,referenceColumnName,referenceValue,c
olumnName,needAnException)

XREF Functions

XPath Extension Functions B-73

Arguments:

• xrefLocation: The cross-reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• needAnException: If this value is set to true, then an exception is thrown when
the referenced value is not found. Otherwise, an empty node set is returned.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref

For more information, see About the xref:lookupXRef1M Function.

B.14.4 markForDelete
This function deletes a value in a cross-reference table. The row, containing the
column value passed to the function, is deleted from the XREF_DATA table and moved
to the XREF_DELETED_DATA table. This function returns true if the deletion is
successful. Otherwise, it returns false.

Signature:

xref:markForDelete(tableName,columnName,value)

Arguments:

• xrefTableName: The cross-reference table name.

• xrefColumnName: The name of the column that contains the value to be deleted.

• xrefValueToDelete: The value to be deleted.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref

For more information, see How to Delete a Cross Reference Table Value.

B.14.5 populateLookupXRefRow
This function populates the column value in the cross-reference table (XREF) in which
the reference column has the reference value. Depending on the mode, the reference
value may also be populated. Unlike the xref:populateXRefRow function, the
xref:populateLookupXRefRow function does not throw a unique constraint
violation error when records with the same ID are added simultaneously. Instead, it
behaves as a lookup and returns the existing source value that caused the error and
does not stop the processing flow. Use this function to resolve any concurrency issues
that can arise when using the xref:populateXRefRow function.

Signature:

XREF Functions

B-74 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

xref:populateLookupXRefRow(xrefLocation as string,
referenceColumnName as string, referenceValue as string,
columnName as string, value as string, mode as string)

For example:

xref:populateLookupXRefRow("C:\xrefs\customer-id.xref", "Oracle
System" , "ORCL_100", "SAP System", "SAP_001", "ADD")

B.14.6 populateXRefRow
This function populates the column name in the cross-reference table (XREF) in which
the reference column has the reference value.

Signature:

xref:populateXRefRow(tableName,referenceColumnName,referenceValu
e,columnName,value,mode)

Arguments:

• xrefLocation: The cross-reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• xrefvalue: The value corresponding to the reference column name.

• xrefmode: The name of the XREF population mode.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref

For more information, see About the xref:populateXRefRow Function.

B.14.7 populateXRefRow1M
This function populates the column with multiple values in the cross-reference table
(XREF) in which the reference column has the reference value.

Signature:

xref:populateXRefRow1M(tableName,referenceColumnName,referenceVa
lue,columnName,value,mode)

Arguments:

• xrefLocation: The cross-reference URI.

• xrefReferenceColumnName: The name of the reference column.

• xrefReferenceValue: The value corresponding to the reference column name.

• xrefColumnName: The name of the column to be looked up for the value.

• xrefvalue: The value corresponding to the reference column name.

XREF Functions

XPath Extension Functions B-75

• xrefmode: The name of the XREF population mode.

Property IDs:

• namespace-uri:http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions

• namespace-prefix: xref

For more information, see About the xref:populateXRefRow1M Function.

B.15 Building XPath Expressions in the Expression Builder in Oracle
JDeveloper

You can use the Expression Builder dialog and the XPath Building Assistant to create
XPath expressions. You can visually design XPath expressions in a BPEL process,
human workflow, or Oracle Mediator service component in the Expression Builder
dialog.

B.15.1 How to Use the Expression Builder

To use the Expression Builder:

1. In the Functions list, select the function category to use (for example, Identity
Service Functions).

2. Select the function (for example, getManager).

3. Click Insert Into Expression, as shown in Figure B-1.

Figure B-1 Expression Builder Dialog

This inserts the function into the Expression field at the top.

4. In the Expression field, place the cursor between the parentheses of the function, as
shown in Figure B-2.

Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-76 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure B-2 Placement of Cursor

5. In the Schema section, expand the schema path to make your selection, as shown in
Figure B-3.

Figure B-3 Selection of Schema

6. Click Insert Into Expression.

The expression is inserted into the function, as shown in Figure B-4.

Figure B-4 XPath Expression Creation

B.15.2 Introduction to the XPath Building Assistant
Several dialogs enable you to specify XPath expressions with the XPath Building
Assistant, including:

• Expression field of the Expression Builder dialog

• Expression field of the Initialize tab of the Create Variable dialog in BPEL 2.0

• Edit XPath Expression and Edit Function dialogs of the XSLT Map Editor

Manually specifying long and complex expressions is supported, but can be a
cumbersome and error-prone process. The XPath Building Assistant provides the
following set of features that simplify this process:

• Automatic completion of the following:

– Elements and attributes

– Functions

Building XPath Expressions in the Expression Builder in Oracle JDeveloper

XPath Extension Functions B-77

– BPEL variables and parts

• Function parameter tool tips

• Syntactic and semantic validation of XPaths

B.15.3 How to Use the XPath Building Assistant
This section provides an example of using the XPath Building Assistant to build an
expression in the Expression field of the Expression Builder dialog.

To use the XPath Building Assistant:

1. Click inside the Expression field and press Ctrl and then the space bar. The menu
of available selections is displayed.

2. Make a selection from the list in either of the following ways:

• Scroll down the list and double-click a function.

• Enter the beginning letter (for example, c) to display only items starting with
that letter, and double-click the appropriate function.

Figure B-5 provides details.

Figure B-5 List of Values for Building an Expression

This value is added to the Expression field. The list automatically displays again
with different options and prompts you to enter the next portion of the XPath
expression.

3. Select and double-click the next portion. Figure B-6 provides details.

Figure B-6 Invocation of Next Portion of Function

This value is added to the Expression field. The list automatically displays again
and prompts you to enter the next portion of the XPath expression.

4. Continue this process to build the remaining parts of the XPath expression.

5. Manually add text as appropriate. Figure B-7 provides details.

Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-78 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Figure B-7 Manual Addition of Text

Note:

Instead of double-clicking selections in the XPath Building Assistant popups,
you can also use the Enter key to make the selection. If your expression is
complete, but you are still being prompted to enter information, press Esc.
This closes the list.

B.15.4 Using the XPath Building Assistant in the XSLT Mapper
This section provides an example of using the XPath Building Assistant to build an
expression in the Edit XPath Expression dialog of the XSLT Mapper.

To use the XPath Building Assistant in the XSLT Mapper:

1. Go to the XSLT Map Editor.

2. From the Component Palette list, select Advanced Functions.

3. Scroll down the list to the xpath-expression function.

4. Drag and drop the xpath-expression function into the XSLT Map Editor, as shown
in Figure B-8.

Figure B-8 xpath-expression

5. Double-click the function to display the Edit XPath Expression dialog.

6. Click the cursor inside the XPath Expression field.

7. Press Ctrl and then the space bar to display a list of values for building an
expression, as shown in Figure B-9.

Building XPath Expressions in the Expression Builder in Oracle JDeveloper

XPath Extension Functions B-79

Figure B-9 List of Values for Building an Expression

8. Make a selection from the list (for this example, concat(String) as String) in either
of the following ways:

• Scroll down the list and double-click concat(String) as String.

• Enter the letter c to display only items starting with that letter, then select and
double-click concat(String) as String.

Figure B-10 provides details.

Figure B-10 Expression List Selection

This selection is added to the XPath Expression field. The list automatically
displays again with different options and prompts you to enter the next portion of
the XPath expression.

9. Continue this process to build the remaining parts of the XPath expression.

10. Click OK to close the Edit XPath Expression dialog when complete.

B.15.5 Function Parameter Tool Tips
Function parameter tool tips display the expected arguments of a chosen XPath
function. For example, if you manually enter the function concat, and then enter (,
the parameter tool tip appears and displays the expected arguments of the concat
function. The current argument name of the function is highlighted in bold.
Figure B-11 provides details.

Figure B-11 Current Argument Name of the Function

Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-80 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Once you finish specifying one argument, and enter a comma to move to the next
argument, the tool tip updates itself to highlight the second argument name in bold,
and so on. While editing existing XPaths that contain functions, you can re-invoke
parameter tool tips by positioning the cursor within the function and then pressing a
combination of the Ctrl, Shift, and space bar keys.

B.15.6 Syntactic and Semantic Validation
Within Oracle JDeveloper, an XPath expression is considered syntactically valid if it
conforms to the XPath 1.0 specification. The XPath Building Assistant warns you about
syntactically incorrect XPath functions (for example, a missing parenthesis or
apostrophe) by underlining the erroneous area in red. Drag the mouse pointer over
this area. The error message displays as a tool tip. The red underlining error
disappears after you make corrections. Figure B-12 provides details.

Figure B-12 Syntactically Incorrect XPaths

Syntactically valid XPath functions may be semantically invalid. This can cause
unexpected errors at runtime. For example, you can misspell the name of an element,
variable, function, or part. The XPath Building Assistant warns you about semantic
errors by underlining the erroneous area in blue. Drag the mouse pointer over this
area. The error message displays as a tool tip. The blue underlining error disappears
after you make corrections. Figure B-13 provides details.

Figure B-13 Semantically Incorrect XPaths

B.15.7 Creating Expressions with Free Form Text and XPath Expressions
You can mix free form text with XPath expressions in some dialogs.

1. Place your cursor over the field to display a popup message that describes this
functionality. Figure B-14 provides details.

Figure B-14 Functionality Description Menu

2. Enter free form text (in this example, 'Hello, your telephone number').
Figure B-15 provides details.

Building XPath Expressions in the Expression Builder in Oracle JDeveloper

XPath Extension Functions B-81

Figure B-15 Free Form Text

3. Enter <% when you are ready to invoke the XPath Building Assistant. Figure B-16
provides details.

Figure B-16 XPath Building Assistant Invocation Preparation

A red underline appears, which indicates that you are being prompted to add
information.

4. Press Ctrl and then the space bar to invoke the XPath Building Assistant.
Figure B-17 provides details.

Figure B-17 XPath Building Assistant Invocation

5. Scroll down the list and double-click the value you want.

6. Continue this process to build the remaining parts of the expression.

B.15.8 Using Double Slashes for Directory Paths in XPath Functions on Windows Can
Cause Errors

The use of slashes to represent directory paths in XPath extension functions on
Windows operating systems can be interpreted in two ways:

• With double slashes. For example, file://c:/Ftab.txt.

• With single slashes. For example, file:/c:/Ftab.txt.

If you specify double slashes and receive an error message, try specifying single
slashes.

For example, the following use of double slashes does not work:

oraext:get-content-from-file-function("file://c:/Ftab.txt","file:
//c:/Ftab_1.xsd","root")

Whereas, the following use of single slashes works correctly:

oraext:get-content-from-file-function("file:/c:/Ftab.txt","file:
/c:/Ftab_1.xsd","root")

Building XPath Expressions in the Expression Builder in Oracle JDeveloper

B-82 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

B.16 Creating User-Defined XPath Extension Functions
You can create user-defined (custom) XPath extension functions for use in Oracle SOA
Suite. These functions can be created for the following components:

• Oracle BPEL Process Manager

• Oracle Mediator

• XSLT Mapper

• Human workflow

• Shared by all of these components

XPath extension functions in Oracle SOA Suite adhere to the following standards:

• A single schema defines the configuration syntax for both system functions and
user-defined functions.

• XPath functions are categorized based on usage (Oracle BPEL Process Manager,
Oracle Mediator, human workflow, XSLT Mapper, and those commonly used by
all).

• System functions are separated from user-defined functions.

• A repository hosts both system function configuration files and user-defined
function configuration files.

• A repository hosts user-defined function implementation JAR files and
automatically makes them available for the Java Virtual Machine (JVM) (class
loaders).

As a best practice, follow these conventions for creating functions:

• If possible, write functions that can be shared across all components. Functions
shared by all components can be created in a configuration file named ext-soa-
xpath-functions-config.xml. You must implement XSLT Mapper functions
differently than Oracle BPEL Process Manager, Oracle Mediator, and human
workflow functions.

For more information about these implementation differences, see How to
Implement User-Defined XPath Extension Functions.

• If you create a function for one component that cannot be used by others (for
example, a function for Oracle BPEL Process Manager that cannot be used by
Oracle Mediator or human workflow), then create that function in the
configuration file specific to that component. For this example, the Oracle BPEL
Process Manager function must be created in a configuration file named ext-
bpel-xpath-functions-config.xml.

The following example shows the function schema used by system and user-defined
functions:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://xmlns.oracle.com/soa/config/xpath"
 targetNamespace="http://xmlns.oracle.com/soa/config/xpath"
 elementFormDefault="qualified">
 <element name="soa-xpath-functions" type="tns:XpathFunctionsConfig"/>

Creating User-Defined XPath Extension Functions

XPath Extension Functions B-83

 <element name="function" type="tns:XpathFunction"/>
 <complexType name="XpathFunctionsConfig">
 <sequence>
 <element ref="tns:function" minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="resourceBundle" type="string"/>
 <attribute name="version" type="string"/>
 </complexType>

 <complexType name="XpathFunction">
 <sequence>
 <element name="className" type="string"/>
 <element name="return">
 <complexType>
 <attribute name="type" type="tns:XpathType"
 use="required"/>
 </complexType>
 </element>
 <element name="params" type="tns:Params" minOccurs="0"
 maxOccurs="1"/>
 <element name="desc">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="detail" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="icon" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="helpURL" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="group" minOccurs="0">

Creating User-Defined XPath Extension Functions

B-84 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey" type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="wizardClass" type="string" minOccurs="0"/>
</sequence>
<attribute name="name" type="string" use="required"/>
 <attribute name="deprecated" type="boolean" use="optional"/>
</complexType>

 <complexType name="Params">
 <sequence>
 <element name="param" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="name" type="string" use="required"/>
 <attribute name="type" type="tns:XpathType"
 use="required"/>
 <attribute name="minOccurs" type="string"
 default="1"/>
 <attribute name="maxOccurs" type="string"
 default="1"/>
 <attribute name="wizardEnabled" type="boolean"
 default="false"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <simpleType name="XpathType">
 <restriction base="string">
 <enumeration value="string"/>
 <enumeration value="boolean"/>
 <enumeration value="number"/>
 <enumeration value="node-set"/>
 <enumeration value="tree"/>
 </restriction>
 </simpleType>
</schema>

B.16.1 How to Implement User-Defined XPath Extension Functions
This section describes how to implement user-defined XPath extension functions for
Oracle SOA Suite components.

B.16.1.1 How to Implement Functions for the XSLT Mapper

Implementation of user-defined XPath extension functions for the XSLT Map Editor is
different than for other components:

• Each XSLT Map Editor function requires a corresponding public static method
from a public static class. The function name and method name must match.

• XSLT Map Editor function namespaces must take the form http://
www.oracle.com/XSL/Transform/java/mypackage.MyFunctionClass,
where mypackage.MyFunctionClass is the fully-qualified class name of the
public static class containing the public static methods for the functions.

Creating User-Defined XPath Extension Functions

XPath Extension Functions B-85

B.16.1.2 How to Implement Functions for All Other Components

For Oracle BPEL Process Manager, Oracle Mediator, and human workflow functions,
you must implement either the
oracle.fabric.common.xml.xpath.IXPathFunction interface (defined in the
fabric-runtime.jar file) or javax.xml.xpath.XPathFunction.

To implement functions for all other components:

1. Implement the oracle.fabric.common.xml.xpath.IXPathFunction
interface for your XPath function. The IXPathFunction interface has one method
named call(context, args). The signature of this method is as shown in the
following example:

 package oracle.fabric.common.xml.xpath;
 public interface IXPathFunction
 {
 /** Call this function.
 *
 * @param context The context at the point in the
 * expression when the function is called.
 * @param args List of arguments provided during
 * the call of the function.
 */
 public Object call(IXPathContext context, List args) throws
 XPathFunctionException;
 }

where:

• context: The context at the point in the expression when the function is
called.

• args: The list of arguments provided during the call of the function.

For the following example, a function named getNodeValue(arg1) is
implemented that gets a value of w3c node:

package com.collaxa.cube.xml.xpath.dom.functions;
 import oracle.fabric.common.xml.xpath.IXPathFunction;
 import oracle.fabric.common.xml.xpath.IXPathFunction
 . . .

 public class GetNodeValue implements IXPathFunction {
 Object call(IXPathContext context, List args) throws XPathFunctionException
 {
 org.w3c.dom.Node node = (org.w3c.dom.Node) args.get(0);
 return node.getNodeValue()
 }
 }

B.16.2 How to Configure User-Defined XPath Extension Functions
This section describes how to configure user-defined XPath extension functions.

To configure user-defined XPath extension functions:

1. Create an XPath extension configuration file in which to define the function. The
following example shows a sample configuration file that follows the function

Creating User-Defined XPath Extension Functions

B-86 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

schema shown in Creating User-Defined XPath Extension Functions. In this
example, two functions are created: mf:myFunction1 and mf:myFunction2.

<?xml version="1.0" encoding="UTF-8"?>
<soa-xpath-functions resourceBundle="myPackage.myResourceBundle"
 xmlns="http://xmlns.oracle.com/soa/config/xpath"
 xmlns:mf="http://www.my-functions.com">
 <function name="mf:myFunction1">
 <className>myPackage.myFunctionClass1</className>
 <return type="node-set"/>
 <params>
 <param name="p1" type="node-set" wizardEnabled="true"/>
 <param name="p2" type="string"/>
 <param name="p3" type="number" minOccurs="0"/>
 <param name="p4" type="boolean" minOccurs="0" maxOccurs="3"/>
 </params>
 <desc resourceKey="func1-desc-key">this is my first function</desc>
 <detail resourceKey="func2-long-desc-key">my first function does ... </detail>
 <icon>myPackage/resource/image/myFunction1.png</icon>
 <group resourceKey="func-group-key">My Function Group</group>
 <wizardClass>myPackage.myWizardClass1</wizardClass>
 </function>
 <function name="mf:myFunction2">
 <className>myPackage.myFunctionClass2</className>
 <return type="string"/>
 <params>
 <param name="p1" type="node-set" wizardEnabled="true"/>
 <param name="p2" type="string"/>
 <param name="p3" type="number" minOccurs="0"/>
 <param name="p4" type="boolean" minOccurs="0" maxOccurs="unbounded"/>
 </params>
 <desc resourceKey="func2-desc-key">this is my second function</desc>
 <detail resourceKey="func2-long-desc-key">my second function does ...</detail>
 <icon>myPackage/resource/image/myFunction2.png</icon>
 <group resourceKey="func-group-key">My Function Group</group>
 <wizardClass>myPackage.myWizardClass2</wizardClass>
 </function>
</soa-xpath-functions>

Table B-3 describes the elements of the configuration file. Each function
configuration file uses soa-xpath-functions as its root element. The root
element has an optional resourceBundle attribute. The resourceBundle value
is the fully qualified class name of the resource bundle class providing national
language support (NLS) for all function configurations.

Table B-3 Function Schema Elements

Element Description

className The fully qualified class name of the function implementation class.

return The return type of the function. This can be one of the following types supported by XPath and
XSLT: string, number, boolean, node set, and tree.

Creating User-Defined XPath Extension Functions

XPath Extension Functions B-87

Table B-3 (Cont.) Function Schema Elements

Element Description

params The parameters of the function. A function can have no parameters. A parameter has the
following attributes:

• name: The name of the parameter.
• type: The type of the parameter. This can be one of the following types supported by

XPath and XSLT: string, number, boolean, node set, and tree.
• minOccurs: The minimum occurrences of the parameter. If set to 0, the parameter is

optional. If set to 1, the parameter is required. The current restriction is that this attribute
must only take a value of either 0 or 1 and that optional parameters must be defined after
the required parameters. The default value is 1 if this attribute is absent.

• maxOccurs: The maximum occurrences of the parameter. If set to unbounded, the
parameter can repeat anytime. This can support functions such as XPath 1.0 function
concat(), which can take unlimited parameters. The current restriction is that no
parameters except the last parameter of the function can have maxOccurs greater than 1
or unbounded. The default value is 1 if this attribute is absent.

• wizardEnabled: Indicates whether to enable a wizard to enter the parameter value. This
supports a user interface where the parameter value must be entered. If set to true, a
wizard launch button is rendered next to the parameter value field. The wizard launch
button, when pressed, launches a popup wizard to help the user enter the parameter value.
The wizard class must be specified later. The default value is false if this attribute is
absent, meaning there is no wizard support for the parameter by default.

desc An optional description of the function. If the resourceKey is present, the description is
retrieved from the resource bundle specified earlier on the root element.

detail An optional longer (detailed) description of the function. If the resourceKey is present, the
description is retrieved from the resource bundle specified earlier on the root element.

icon An optional icon URL of the function. If the resourceKey is present, the icon URL is retrieved
from the resource bundle specified earlier on the root element. This is to support a user interface
in which the function must be displayed.

helpURL An optional help HTML URL of the function. If the resourceKey is present, the help URL is
retrieved from the resource bundle specified earlier on the root element. This is to support a
user interface in which the function help link must be displayed.

group An optional group name of the function. If the resourceKey is present, the group name is
retrieved from the resource bundle specified earlier on the root element. This is to support a
user interface where functions must be grouped. If no group name is specified, the function falls
into a built-in advanced functions group when being grouped in a user interface.

wizardClass The fully qualified class name of the wizard class for all parameters that are wizard-enabled.
This is to support a user interface in which parameter values must be entered. This wizard class
is invoked by wizard launch buttons to help you enter parameter values. If there is no wizard-
enabled parameter, this element must be absent.

Note: This element is not supported for user-defined functions. Only system functions currently
support this feature.

2. Name your user-defined XPath extension configuration file based on the
component type with which to use the function. Table B-4 describes the naming
conventions to use for user-defined configuration files.

Table B-4 User-Defined Configuration Files

To Use with This Component... Use This Configuration File Name...

Oracle BPEL Process Manager ext-bpel-xpath-functions-config.xml

Creating User-Defined XPath Extension Functions

B-88 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table B-4 (Cont.) User-Defined Configuration Files

To Use with This Component... Use This Configuration File Name...

Oracle Mediator ext-mediator-xpath-functions-
config.xml

XSLT Mapper ext-mapper-xpath-functions-config.xml

Human workflow ext-wf-xpath-functions-config.xml

All components ext-soa-xpath-functions-config.xml

3. Place the configuration file inside a JAR file along with the compiled classes.
Within the JAR file, the configuration file must be located in the META-INF
directory. The JAR file does not need to reside in a specific directory.

Note:

The customXpathFunction JAR must be added explicitly as it is not part of
the SOA composite.

4. In Oracle JDeveloper, go to Tools > Preferences > SOA.

5. Click the Add button and select your JAR file.

6. Restart Oracle JDeveloper for the changes to take effect.

The JAR file is automatically added to the JVM's class path to make it available for
use.

B.16.3 How to Deploy User-Defined Functions to Runtime
The soa/modules/oracle.soa.ext_11.1.1 directory is provided for adding
custom JAR files and classes. For information, see Adding Custom Classes and JAR
Files.

Creating User-Defined XPath Extension Functions

XPath Extension Functions B-89

Creating User-Defined XPath Extension Functions

B-90 Developing SOA Applications with Oracle SOA Suite

C
Deployment Descriptor Properties

This appendix describes how to define deployment descriptor configuration and
partner link properties for BPEL process service components used at runtime by
Oracle WebLogic Server, Oracle Enterprise Manager Fusion Middleware Control, or
both.

This appendix includes the following section:

• Introduction to Deployment Descriptor Properties

For more information about deployment descriptor properties, see Chapter "Oracle
BPEL Process Manager Performance Tuning" of Tuning Performance.

C.1 Introduction to Deployment Descriptor Properties
Deployment descriptors are BPEL process service component properties used at
runtime by Oracle WebLogic Server, Oracle Enterprise Manager Fusion Middleware
Control, or both. There are two types of properties:

• Configuration

• Partner link binding

Table C-1 lists the configuration deployment descriptor properties.

When you define configuration properties, you must add a prefix of bpel.config to
the property name. For example, the property inMemoryOptimization must be
defined as bpel.config.inMemoryOptimization. For information on defining
properties in the Property Inspector in Oracle JDeveloper, see How to Define
Deployment Descriptor Properties in the Property Inspector.

Table C-1 Properties for the configurations Deployment Descriptors

Property Name Description

completionPersistPolicy This property configures how the instance data is saved. It can only be set at the
BPEL service component level. The following values are available:

• on (default): The completed instance is saved normally.
• deferred: The completed instance is saved, but with a different thread

and in another transaction.
• faulted: Only The faulted instances are saved.

Note: When an unhandled fault occurs, regardless of these flags, audit
information for instances is persisted within the CUBE_INSTANCE table.

• off: No instances of this process are saved.

disableAsserts This property, when set to true, disables assertions in BPEL projects.

Deployment Descriptor Properties C-1

Table C-1 (Cont.) Properties for the configurations Deployment Descriptors

Property Name Description

globalTxMaxRetry If using outbound adapters in an asynchronous BPEL process, specify the
maximum number of retries for a remote fault.

globalTxRetryInterval If using outbound adapters in an asynchronous BPEL process, specify the time
interval in milliseconds between retries for a remote fault.

inMemoryOptimization Default value is false. This property can only be set to true if it does not
have dehydration points. Activities like wait, receive, onMessage, and onAlarm
create dehydration points in the process. If this property is set to true, in-
memory optimization is attempted on the instances of this process on to-spec
queries.

keepGlobalVariables Specify whether the server can keep global variable values in the instance store
when the instance completes:

• false (default): Global variable values are deleted when the instance
completes.

• true: Global variable values are not deleted.

oneWayDeliveryPolicy This property sets the persistence policy of the process in the delivery layer.
The possible values are:

• async.persist: Messages are persisted in the database. With this
setting, reliability is obtained with some performance impact on the
database. In some cases, overall system performance can be impacted.

• async.cache: Incoming delivery messages are kept only in the in-
memory cache. If performance is preferred over reliability, consider this
setting. When set to async.cache, if the rate at which one-way messages
arrive is much higher than the rate at which they are delivered, or if the
server fails, messages can be lost. In addition, the system can become
overloaded (messages become backlogged in the scheduled queue) and
you can receive out-of-memory errors. Consult your own use case
scenarios to determine if this setting is appropriate.

When you set oneWayDeliveryPolicy to async.cache in high
availability environments, invoke and callback messages in the middle of
execution at the time of a server crash may be lost or duplicated. Server
failover is not supported for async.cache. For more information, see
Section "Oracle BPEL Process Manager High Availability Architecture and
Failover Considerations" of High Availability Guide.

• sync: Direct invocation occurs on the same thread. The scheduling of
messages in the invoke queue is bypassed, and the BPEL instance is
invoked synchronously. In some cases this setting can improve database
performance.

For information about setting this property during BPEL process creation, see
How to Add a BPEL Process Service Component.

For more information, see Section "Tuning Database Persistence for BPEL" of
Tuning Performance.

reenableAggregationOnCo
mplete

This property controls the number of instances to create and use to route
messages. The possible values are:

• true: Creates a new instance to handle the messages of the same
correlation.

• false: Creates only one instance for handling messages.
For more information, see Routing Messages to the Same Instance.

Introduction to Deployment Descriptor Properties

C-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table C-1 (Cont.) Properties for the configurations Deployment Descriptors

Property Name Description

sensorActionLocation The location of the sensor action XML file. The sensor action XML file
configures the action rule for the events.

sensorLocation The location of the sensor XML file. The sensor XML file defines the list of
sensors into which events are logged.

transaction This property configures the transaction behavior of the BPEL instance for
initiating calls.

• requiresNew: A new transaction is created for the execution, and the
existing transaction (if there is one) is suspended. This behavior is true for
both request/response (initiating) environments and one-way, initiating
environments in which bpel.config.oneWayDeliveryPolicy is set
to sync.

• required: In request/response (initiating) environments, this setting
joins a caller's transaction (if there is one) or creates a new transaction (if
there is no transaction). In one-way, initiating environments in which
bpel.config.oneWayDeliveryPolicy is set to sync, the invoke
message is processed using the same thread in the same transaction.

• notSupported: Executes a business process without the need for a
transaction. For more information, see Executing a Business Process
Without a Transaction.

Note: This property does not apply for midprocess receive activities. In those
cases, another thread in another transaction is used to process the message. This
is because a correlation is needed and it is always done asynchronously.

For information about setting this property during BPEL process creation, see
How to Add a BPEL Process Service Component.

Table C-2 lists the partner link binding deployment descriptor properties.

When you define partner link binding properties, you must add a prefix of
bpel.partnerLink.partner_link_name to the property name. For example, the
property nonBlockingInvoke must be defined as
bpel.partnerLink.partner_link_name.nonBlockingInvoke. For information
on defining properties in the Property Inspector in Oracle JDeveloper, see How to
Define Deployment Descriptor Properties in the Property Inspector.

Introduction to Deployment Descriptor Properties

Deployment Descriptor Properties C-3

Table C-2 Properties for the partnerLinkBinding Deployment Descriptors

Property Name Description

idempotent An idempotent activity is an activity that can be retried (for example, an assign
activity or an invoke activity). The instance is saved after a nonidempotent
activity. This property is applicable to both durable and transient processes.

• true (default): If the server fails, it performs the activity again after
restarting. This is because the server does not dehydrate immediately after
the invoke and no record exists that the activity executed.

• false: Activity is dehydrated immediately after execution and recorded
in the dehydration store. When idempotent is set to false, it provides
better failover protection, but may impact performance if the BPEL process
accesses the dehydration store frequently.

For information about using fault handling with the idempotent
property set to false, see What You May Need to Know About the
idempotent Property and Fault Handling.

For more information about the idempotent property, see Managing
Idempotence at the Partner Link Operation Level.

nonBlockingInvoke Default value is false. When this is set to true, a separate thread is spawned
to perform the invocation so that the invoke activity does not block the instance.

For more information, see What You May Need to Know About the Execution
of Parallel Flow Branches in a Single Thread.

validateXML Enables message boundary validation. When set to true, the XML message is
validated against the XML schema during a receive activity and an invoke
activity for this partner link. If the XML message is invalid, then a
bpelx:invalidVariables runtime fault is thrown. This overrides the
domain level validateXML property.

C.1.1 How to Define Deployment Descriptor Properties in the Property Inspector
You define configuration and partner link binding deployment descriptor properties
and values in the Property Inspector of Oracle JDeveloper. When complete, the
properties are displayed in the BPEL process service component section of the
composite.xml file.

1. In the SOA Composite Editor, select the BPEL process service component, as
shown in Figure C-1.

Figure C-1 Selected BPEL Process Service Component

2. Go to the Property Inspector in the lower right corner of Oracle JDeveloper.

Introduction to Deployment Descriptor Properties

C-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

3. In the Properties section, click the Add icon, as shown in Figure C-2.

For this example, the oneWayDeliveryPolicy property is already defined because
the Delivery option was selected in the Create BPEL Process dialog during BPEL
process creation. For more information about setting this property during BPEL
process creation, see How to Add a BPEL Process Service Component.

Figure C-2 Property Inspector

The Create Property dialog is displayed.

4. In the Name field, enter the deployment descriptor property. For this example, the
configuration deployment descriptor property oneWayDeliveryPolicy is
defined. Therefore, a prefix of bpel.config is required. For more information
about configuration deployment descriptor properties, see Table C-1.

If you instead add a partner link binding property, a prefix of
bpel.partnerLink.partner_link_name is required, where
partner_link_name is the name of the partner link (for example,
LoanService). For more information about partner link binding deployment
descriptor properties, see Table C-2.

5. In the Value field, enter an applicable value for this property (for example,
async.persist).

6. Click OK.

The Property Inspector displays the added deployment descriptor property.

7. Click Source in the SOA Composite Editor.

The oneWayDeliveryPolicy configuration property with the bpel.config
prefix is displayed in the composite.xml file, as shown in the following example:

<component name="LoanApproval" version="2.0">
. . .
 <componentType>
 . . .
 . . .
 <property name="bpel.config.oneWayDeliveryPolicy" type="xs:string"
 many="false">async.persist</property>
 </componentType>
</component>

If you instead define a partner link binding deployment descriptor property in the
Property Inspector (for example, the nonBlockingInvoke partner link binding

Introduction to Deployment Descriptor Properties

Deployment Descriptor Properties C-5

property), it is displayed in the composite.xml file, as shown in the example that
follows. Note the prefix of bpel.partnerLink.partner_link_name, which is
required for this type of property.

<component name="myBPELServiceComponent" version="2.0">
 . . .
 <componentType>
 . . .
 . . .
 <property name="bpel.partnerLink.partner_link_name.nonBlockingInvoke">
false</property>
 </componentType>
</component>

C.1.2 How to Get the Value of a Preference within a BPEL Process
The value of a property can be read by a BPEL process using the XPath extension
function ora:getPreference(myPref). This gets the value of
bpel.preference.myPref.

This function can be used as part of a simple assign statement, used in condition
expressions, or used as part of a more complex XPath expression.

Introduction to Deployment Descriptor Properties

C-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

D
Understanding Sensor Public Views and the

Sensor Actions XSD

This appendix describes the available sensor public views and the sensor actions XSD
file that you can import into Oracle BPEL Designer.

This appendix includes the following sections:

• Introduction to Sensor Public Views and the Sensor Actions XSD File

• Sensor Public Views

• Sensor Actions XSD File

For more information, see Using Sensors and Analytics .

D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File
A set of public views is exposed to allow SQL access to sensor values from literally
any application interested in the data. In addition, a sample sensor action schema is
provided for importing into Oracle BPEL Designer.

D.2 Sensor Public Views
The sensor framework of Oracle BPEL Process Manager provides the functionality to
persist sensor values created by processing BPEL instances in a relational schema
stored in the dehydration store of Oracle BPEL Process Manager. The data is used to
display the sensor values of a process instance in Oracle Enterprise Manager Fusion
Middleware Control.

D.2.1 Schema
The database publisher persists the sensor data in a predefined relational schema in
the database. The following public views can be used from a client (Oracle Warehouse,
portals, and so on) to query the sensor values using SQL.

Note:

In Table D-1 through Table D-4, the Indexed or Unique? column provides
unique index names and the order of the attributes. For example, U1,2 means
that the attribute is the second one in a unique index named U1. PK means
primary key.

D.2.1.1 BPEL_PROCESS_INSTANCES

Table D-1 provides an overview of all the process instances of .

Understanding Sensor Public Views and the Sensor Actions XSD D-1

Table D-1 BPEL_PROCESS_INSTANCES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

INSTANCE_KEY NUMBER -- PK N Unique instance ID

APPLICATION_
NAME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_NA
ME

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_NA
ME

VARCHAR2 500 -- N User-defined component name

TITLE NVARCHAR2 200 -- Y User-defined title of the BPEL process

STATE NUMBER -- -- Y State of the BPEL process instance

STATE_TEXT VARCHAR2 21 -- Y Text presentation of the state attribute

PRIORITY NUMBER -- -- Y User-defined priority of the BPEL
process instance

STATUS NVARCHAR2 200 -- Y User-defined status of the BPEL
process

STAGE VARCHAR2 100 -- Y User-defined stage property of a
BPEL process

CONVERSATION
_ID

VARCHAR2 256 -- Y User-defined conversation ID of a
BPEL process

CREATION_DAT
E

TIMESTAMP 6 -- N Creation time stamp of the process
instance

MODIFY_DATE TIMESTAMP 6 -- Y Time stamp when the process
instance was modified

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

EVAL_TIME NUMBER -- -- Y Evaluation time of the process
instance in milliseconds

D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUES

Table D-2 contains all the activity sensor values of the monitored BPEL processes.

Sensor Public Views

D-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table D-2 BPEL_ACTIVITY_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

SENSOR_NAME NVARCHAR2 200 U1,2 N The name of the sensor that fired

SENSOR_TARGE
T

NVARCHAR2 512 -- N The target of the fired sensor

ACTION_NAME NVARCHAR2 200 U1,3 N The name of the sensor action

ACTION_FILTE
R

NVARCHAR2 512 -- Y The filter of the action

CREATION_DAT
E

TIMESTAMP 6 -- N The creation date of the activity
sensor value

MODIFY_DATE TIMESTAMP 6 -- Y The time stamp of last modification

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

CRITERIA_SAT
ISFIED

VARCHAR2 1 -- Y NULL, Y, or N

ACTIVITY_NAM
E

NVARCHAR2 200 -- N The name of the BPEL activity

ACTIVITY_TYP
E

VARCHAR2 30 -- N The type of the BPEL activity

ACTIVITY_STA
TE

VARCHAR2 30 -- Y The state of the BPEL activity

EVAL_POINT VARCHAR2 30 -- N The evaluation point of the activity
sensor

ERROR_MESSAG
E

NCLOB -- -- Y An error message

RETRY_COUNT NUMBER -- -- Y The number of retries of the activity

EVAL_TIME NUMBER -- -- Y Evaluation time of the activity in
milliseconds

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_
NAME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_NA
ME

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

Sensor Public Views

Understanding Sensor Public Views and the Sensor Actions XSD D-3

Table D-2 (Cont.) BPEL_ACTIVITY_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

COMPONENT_NA
ME

VARCHAR2 500 -- N User-defined component name

D.2.1.3 BPEL_FAULT_SENSOR_VALUES

Table D-3 contains all the fault sensor values.

Table D-3 BPEL_FAULT_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_
NAME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_NA
ME

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_NA
ME

VARCHAR2 500 -- N User-defined component name

SENSOR_NAME NVARCHAR2 200 U1,2 N The name of the sensor that fired

SENSOR_TARGE
T

NVARCHAR2 512 -- N The target of the fired sensor

ACTION_NAME NVARCHAR2 200 U1,3 N The name of the sensor action

ACTION_FILTE
R

NVARCHAR2 512 -- Y The filter of the action

CREATION_DAT
E

TIMESTAMP 6 -- N The creation date of the activity
sensor value

MODIFY_DATE TIMESTAMP 6 -- Y The time stamp of last modification

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

CRITERIA_SAT
ISFIED

VARCHAR2 1 -- Y NULL if no action filter specified; Y if
action filter is specified and evaluates
to true; N otherwise

ACTIVITY_NAM
E

NVARCHAR2 200 -- N The name of the BPEL activity

Sensor Public Views

D-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table D-3 (Cont.) BPEL_FAULT_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

ACTIVITY_TYP
E

VARCHAR2 30 -- N The type of the BPEL activity

MESSAGE CLOB -- -- Y The fault message

D.2.1.4 BPEL_VARIABLE_SENSOR_VALUES

Table D-4 contains all the variable sensor values.

Table D-4 BPEL_VARIABLE_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_
NAME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_NA
ME

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_NA
ME

VARCHAR2 500 -- N User-defined component name

SENSOR_NAME NVARCHAR2 200 U1,2 N Name of the sensor that fired

SENSOR_TARGE
T

NVARCHAR2 512 -- N Target of the sensor

ACTION_NAME NVARCHAR2 200 U1,3 N Name of the action

ACTION_FILTE
R

NVARCHAR2 512 -- Y Filter of the action

ACTIVITY_SEN
SOR

NUMBER -- -- Y ID of the corresponding activity
sensor value

CREATION_DAT
E

TIMESTAMP 6 -- N Creation date

TS_DATE DATE -- -- N Date portion of creation_date

TS_HOUR NUMBER -- -- N Hour portion of creation_date

VARIABLE_NAM
E

NVARCHAR2 512 -- N The name of the BPEL variable

Sensor Public Views

Understanding Sensor Public Views and the Sensor Actions XSD D-5

Table D-4 (Cont.) BPEL_VARIABLE_SENSOR_VALUES View

Attribute Name SQL Type Attribute
Size

Indexed or
Unique?

Null? Comment

EVAL_POINT VARCHAR2 30 -- Y Evaluation point of the corresponding
activity sensor

CRITERIA_SAT
ISFIED

VARCHAR2 1 -- Y NULL, Y, or N

TARGET NVARCHAR2 512 -- -- --

UPDATER_NAME NVARCHAR2 200 -- N The name of the activity or event that
updated the variable

UPDATER_TYPE NVARCHAR2 200 -- N The type of the BPEL activity or event

SCHEMA_NAMES
PACE

NVARCHAR2 512 -- Y Namespace of variable sensor value

SCHEMA_DATAT
YPE

NVARCHAR2 512 -- Y Data type of the variable sensor value

VALUE_TYPE NUMBER -- -- N The value type of the variable
(corresponds to java.sql.Types
values)

VARCHAR2_VAL
UE

NVARCHAR2 4000 -- Y The value of string-like variables

NUMBER_VALUE NUMBER -- -- Y

DATE_VALUE TIMESTAMP 6 -- Y User-defined date

DATE_VALUE_T
Z

VARCHAR2 10 -- Y User-defined time zone

BLOB_VALUE BLOB -- -- Y

CLOB_VALUE CLOB -- -- Y

D.3 Sensor Actions XSD File
The following example provides a sample sensor action schema that you can import
into Oracle BPEL Designer. This schema is also relevant to custom data publishers.

<?xml version="1.0" encoding="utf-8"?>
<!--
 This schema contains the sensor definition. Sensors monitor data
 and execute callbacks appropriately.

 BPEL designer uses this file as a template to generate to generate
 SensorActionData.xsd. It does this by replacing special tags.
 Do not modify these special tags. For details, see comments in the file.
 The replacement is done using a simple text replacement, so the white
 spaces too should be preserved as indicated in comments.
-->
<xsd:schema blockDefault="#all" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/bpel/sensor"

Sensor Actions XSD File

D-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sensor="http://xmlns.oracle.com/bpel/sensorDataPlaceHolder"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://xmlns.oracle.com/bpel/sensor"
 nxsd:encoding="UTF-8">

<!-- *** The following line is a place holder. Do not remove it. It must remain as
 is, including any whitespace. If you change this, please let BAM sensor action
 developer know. -->
<!-- $importSensorVar -->

 <xsd:simpleType name="tSensorActionPublishType">
 <xsd:annotation>
 <xsd:documentation>
 This enumeration lists the possibe publishing types for probes.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="BpelReportsSchema"/>
 <xsd:enumeration value="JMSQueue"/>
 <xsd:enumeration value="JMSTopic"/>
 <xsd:enumeration value="BAM"/>
 <xsd:enumeration value="LogFile"/>
 <xsd:enumeration value="Custom"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="tSensorActionProperty">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <!--
 Attributes of a sensor action
 -->
 <xsd:attributeGroup name="tSensorActionAttributes">
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 <xsd:attribute name="enabled" type="xsd:boolean" use="optional"
 default="true"/>
 <xsd:attribute name="filter" type="xsd:string"/>
 <xsd:attribute name="publishName" type="xsd:string" use="required"/>
 <xsd:attribute name="publishType" type="tns:tSensorActionPublishType"
 use="required"/>
 <!--
 the name of the JMS Queue/Topic or custom java API, ignored for other
 publishTypes
 -->
 <xsd:attribute name="publishTarget" type="xsd:string" use="optional"/>
 </xsd:attributeGroup>

 <!--
 The sensor action type. A sensor action consists:
 + unique name
 + effective date
 + expiration date - Optional. If not defined, the probe is active
 indefinitely.
 + filter (to potentially suppress data publishing even if a sensor marks
 it as interesting). - Optional. If not defined, no filter is

Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-7

 used.
 + publishName A name of a publisher
 + publishType What to do with the sensor data?
 + publishTarget Name of a JMS Queue/Topic or custom publisher.
 + potentially many sensors.
 -->
 <xsd:complexType name="tSensorAction">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string" minOccurs="1"
 maxOccurs="unbounded"/>
 <xsd:element name="property" minOccurs="0" maxOccurs="unbounded"
 type="tns:tSensorActionProperty"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="tns:tSensorActionAttributes"/>
 </xsd:complexType>

 <!--
 define a listing of sensor actions in a single document. It might be a good
 idea to
 have one sensor action list per business process.
 -->
 <xsd:complexType name="tSensorActionList">
 <xsd:sequence>
 <xsd:element name="action" type="tns:tSensorAction" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="tSensorKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="fault"/>
 <xsd:enumeration value="variable"/>
 <xsd:enumeration value="activity"/>
 <xsd:enumeration value="service"/>
 <xsd:enumeration value="reference"/>
 <xsd:enumeration value="event"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="tActivityConfig">
 <xsd:annotation>
 <xsd:documentation>
 The configuration part of an activity sensor comprises of a mandatory
 'evalTime' attribute
 and an optional list of variable configurations
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig">
 <xsd:sequence>
 <xsd:element name="variable" type="tns:tActivityVariableConfig"
 maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="evalTime" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent> </xsd:complexType>

 <xsd:complexType name="tVariableConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig">
 <xsd:attribute name="outputDataType" use="required" type="xsd:string"/>

Sensor Actions XSD File

D-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <xsd:attribute name="outputNamespace" use="required" type="xsd:string"/>
 <xsd:attribute name="queryName" use="optional" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tActivityVariableConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableConfig">
 <xsd:attribute name="target" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tFaultConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig"/>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tSensorConfig"/>

 <xsd:complexType name="tExpressionConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableConfig">
 <xsd:attribute name="expression" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 expresion="$in/$payload/$partName/xpathExpression |
 $in/$header/xpathExpression |
 $in/$property/name |
 $out/$payload/$partName/xpathExpression |
 $out/$header/xpathExpression |
 $out/$property/name |
 $fault/$payload/$partName/xpathExpression |
 $fault/$header/xpathExpression |
 $fault/$property/name"

 Where
 $in - The input/request message to the operation/event
 $out - The output/Response message from the operation
 $fault - The fault message from the operation
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tOperationConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tExpressionConfig">
 <xsd:attribute name="operation" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 The name of the operation in the service/reference on which the
 sensor is defined.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>

Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-9

 </xsd:complexType>

 <xsd:complexType name="tServiceConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tOperationConfig">
 <xsd:attribute name="service" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 The name of the service on which the sensor is defined.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tReferenceConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tOperationConfig">
 <xsd:attribute name="reference" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 The name of the reference on which the sensor is defined.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tEventConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tExpressionConfig"> <xsd:attribute
name="component" type="xsd:string" use="required">
 <xsd:annotation>
 <xsd:documentation>
 The name of the component which raises or receives the event.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="event" use="required" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>
 The name of the event that the component raises or receives.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="actionType" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Publish"/>
 <xsd:enumeration value="Subscribe"/> </
xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tSensor">
 <xsd:sequence>
 <xsd:element name="activityConfig" type="tns:tActivityConfig"

Sensor Actions XSD File

D-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 minOccurs="0"/>
 <xsd:element name="faultConfig" type="tns:tFaultConfig" minOccurs="0"/>
 <xsd:element name="variableConfig" type="tns:tVariableConfig"
 minOccurs="0"/>
 <xsd:element name="serviceConfig" type="tns:tServiceConfig" minOccurs="0"/>
 <xsd:element name="referenceConfig" type="tns:tReferenceConfig"
 minOccurs="0"/>
 <xsd:element name="eventConfig" type="tns:tEventConfig" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="sensorName" use="required" type="xsd:string"/>
 <xsd:attribute name="kind" use="required" type="tns:tSensorKind"/>
 <xsd:attribute name="target" use="required" type="xsd:string"/>
 <xsd:attribute name="filter" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="tSensorList">
 <xsd:sequence>
 <xsd:element name="sensor" type="tns:tSensor" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tProperty">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:complexType name="tHeaderInfo">
 <xsd:sequence>
 <xsd:element name="applicationName" type="xsd:string"/>
 <xsd:element name="compositeName" type="xsd:string"/>
 <xsd:element name="compositeInstanceId" type="xsd:string"/>
 <xsd:element name="compositeRevision" type="xsd:string"/>
 <xsd:element name="compositeLabel" type="xsd:string"/>
 <xsd:element name="componentName" type="xsd:string"/>
 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processRevision" type="xsd:string"/>
 <xsd:element name="domain" type="xsd:string"/>
 <xsd:element name="instanceId" type="xsd:integer"/>
 <xsd:element name="midTierInstance" type="xsd:string"/>
 <xsd:element name="timestamp" type="xsd:dateTime"/>
 <xsd:element name="sensor" type="tns:tSensor"/>
 <xsd:element name="property" minOccurs="0" maxOccurs="unbounded"
 type="tns:tProperty"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tSensorData">
 <xsd:sequence>
 <xsd:element name="activityData" type="tns:tActivityData" minOccurs="0"/>
 <xsd:element name="faultData" type="tns:tFaultData" minOccurs="0"/>
 <xsd:element name="variableData" type="tns:tVariableData" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="serviceData" type="tns:tServiceData" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="referenceData" type="tns:tReferenceData" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="eventData" type="tns:tEventData" minOccurs="0"

Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-11

 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tFaultData">
 <xsd:sequence>
 <xsd:element name="activityName" type="xsd:string"/>
 <xsd:element name="activityType" type="xsd:string"/>
 <xsd:element name="faultName" type="xsd:QName"/>
 <!-- *** The following line is a place holder. Do not remove it. It must
 remain as is, including any whitespace. If you change this, please let BAM
 sensor action developer know. -->
 <xsd:element name="data" type="xsd:anyType" minOccurs="0"/> <!-- DO NOT
 MODIFY: fault data type -->
 </xsd:sequence>
 </xsd:complexType>

 <!--
 xml type that will be provided to sensors for variable Datas. Note the
 any element represents variable data.
 -->
 <xsd:complexType name="tVariableData">
 <xsd:sequence>
 <xsd:element name="dataType" type="xsd:integer"/>
 <!-- *** The following line is a place holder. Do not remove it. It must
 remain as is, including any whitespace. If you change this, please let BAM
 sensor action developer know. -->
 <xsd:element name="data" type="xsd:anyType"/> <!-- DO NOT MODIFY: sensor
 variable data type -->
 <xsd:element name="queryName" type="xsd:string"/>
 <xsd:element name="target" type="xsd:string"/>
 <xsd:element name="updaterName" type="xsd:string" minOccurs="1"/>
 <xsd:element name="updaterType" type="xsd:string" minOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tServiceData">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string"/>
 <xsd:element name="data" type="xsd:anyType"/>
 <xsd:element name="dataType" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tReferenceData">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string"/>
 <xsd:element name="data" type="xsd:anyType"/>
 <xsd:element name="dataType" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tEventData">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string"/>
 <xsd:element name="data" type="xsd:anyType"/>
 <xsd:element name="dataType" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

Sensor Actions XSD File

D-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 <xsd:complexType name="tActivityData">
 <xsd:sequence>
 <xsd:element name="activityType" type="xsd:string"/>
 <xsd:element name="evalPoint" type="xsd:string"/>
 <xsd:element name="durationInSeconds" minOccurs="0" type="xsd:double"/>
 <xsd:element name="duration" type="xsd:duration" minOccurs="0"/>
 <xsd:element name="errorMessage" nillable="true" minOccurs="0"
 type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 The header of the document contains some metadata.
 -->
 <!--
 Sensor Action data is presented in the form of a header and potentially many
 data
 elements depending on how many sensors associated to the sensor action marked
 the
 data as interesting.
 -->
 <xsd:complexType name="tSensorActionData">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tHeaderInfo"/>
 <xsd:element name="payload" type="tns:tSensorData" minOccurs="1"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

<!--
 <xsd:simpleType name="tActivityEvalPoint">
 <xsd:restriction>
 <xsd:enumeration value="start"/>
 <xsd:enumeration value="complete"/>
 <xsd:enumeration value="fault"/>
 <xsd:enumeration value="compensate"/>
 <xsd:enumeration value="retry"/>
 </xsd:restriction>
 </xsd:simpleType>

-->

 <!--
 The process sensor value header comprises of a timestamp
 where the sensor was triggered and the sensor metadata
 -->
 <xsd:complexType name="tProcessSensorValueHeader">
 <xsd:sequence>
 <xsd:element name="timestamp" type="xsd:dateTime"/>
 <xsd:element ref="tns:sensor"/>
 </xsd:sequence>
 </xsd:complexType>
 <!--
 Extend tActivityData to include more elements
 -->
 <xsd:complexType name="tProcessActivityData">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>

Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-13

 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="evalTime" type="xsd:long" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="retryCount" type="xsd:int" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tVariableData to include more elements
 -->
 <xsd:complexType name="tProcessVariableData">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tFaultData to include more elements
 -->
 <xsd:complexType name="tProcessFaultData">
 <xsd:complexContent>
 <xsd:extension base="tns:tFaultData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence> </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Copy of tSensorData type with some modified types.
 -->
 <xsd:complexType name="tProcessSensorData">
 <xsd:sequence>
 <xsd:element name="activityData" type="tns:tProcessActivityData"
 minOccurs="0"/>
 <xsd:element name="faultData" type="tns:tProcessFaultData" minOccurs="0"/>
 <xsd:element name="variableData" type="tns:tProcessVariableData"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 A single process sensor value comprises of the sensor value metadata
 (sensor and timestamp) and the payload (the value) of the sensor
 -->
 <xsd:complexType name="tProcessSensorValue">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tProcessSensorValueHeader"/>
 <xsd:element name="payload" type="tns:tProcessSensorData"/>

Sensor Actions XSD File

D-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 </xsd:sequence>
 </xsd:complexType>

 <!--
 Process instance header.
 -->
 <xsd:complexType name="tProcessInstanceInfo">
 <xsd:sequence>
 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processRevision" type="xsd:string"/>
 <xsd:element name="domain" type="xsd:string"/>
 <xsd:element name="instanceId" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 The list of sensor values comprises of a process header describing the
 BPEL process with name, cube instance id etc. and a list of sensor values
 comprising of sensor metadata information and sensor values.
 -->
 <xsd:complexType name="tProcessSensorValueList">
 <xsd:sequence>
 <xsd:element name="process" type="tns:tProcessInstanceInfo" minOccurs="1"
 maxOccurs="1"/>
 <xsd:element name="sensorValue" type="tns:tProcessSensorValue" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- The sensor list is the root element of the sensor.xml document in the
 bpel process suitcase and is used to define sensors. -->
 <xsd:element name="sensors" type="tns:tSensorList"/>

 <!-- A sensor is used to monitor a particular aspect of a bpel process -->
 <xsd:element name="sensor" type="tns:tSensor"/>

 <!-- The actions element is the root element of the sensorAction.xml document
 in the bpel process suitcase and is used to define sensor actions.
 Sensor actions define how to publish data captured by sensors -->
 <xsd:element name="actions" type="tns:tSensorActionList"/>

 <!-- actionData elements are produced by the sensor framework and sent to the
 appropriate data publishers when sensors 'fire' -->
 <xsd:element name="actionData" type="tns:tSensorActionData"/>

 <!-- This element is used when the client API is used to query sensor values
 stored in the default reports schema -->
 <xsd:element name="sensorValues" type="tns:tProcessSensorValueList"/>
</xsd:schema>

Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-15

Sensor Actions XSD File

D-16 Developing SOA Applications with Oracle SOA Suite

E
Propagating Normalized Message

Properties Through Message Headers

This appendix describes how to set normalized message properties that enable you to
propagate these properties through message headers.

This appendix includes the following sections:

• Introduction to Normalized Messages

• Manipulating Normalized Message Properties with bpelx Extensions

E.1 Introduction to Normalized Messages
Header manipulation and propagation is a key business integration messaging
requirement. Components such as Oracle BPEL Process Manager, Oracle Mediator,
Oracle JCA adapters, REST adapters, and Oracle B2B rely extensively on header
support to solve customers' integration needs. For example, you can preserve a file
name from the source directory to the target directory by propagating it through
message headers. In Oracle BPEL Process Manager and Oracle Mediator, you can
access, manipulate, and set headers with varying degrees of user interface support.

A normalized message is simplified to have only two parts, properties and payload.

Typically, properties are name-value pairs of scalar types. To fit the existing complex
headers into properties, properties are flattened into scalar types.

The user experience is simplified while manipulating headers in design time, because
the complex properties are predetermined. In the Mediator Editor or Oracle BPEL
Designer, you can manipulate the headers with some reserved key words.

However, this method does not address the properties that are dynamically generated
based on your input. Based on your choice, the header definitions are defined. These
definitions are not predetermined and therefore cannot be accounted for in the list of
predetermined property definitions. You cannot design header manipulation of the
dynamic properties before they are defined. To address this limitation, you must
generate all the necessary services (composite entry points) and references. This
restriction applies to services that are expected to generate dynamic properties. Once
dynamic properties are generated, they must be stored for each composite. Only then
can you manipulate the dynamic properties in the Mediator Editor or Oracle BPEL
Designer.

For information about normalized message properties in JCA adapters and Oracle
B2B, see Understanding Technology Adapters and User's Guide for Oracle B2B.

E.1.1 Oracle Web Services Addressing Properties
Table E-1 lists the predetermined properties of a normalized message for Web Services
Addressing (WS-Addressing). The WS-Addressing headers from incoming SOAP

Propagating Normalized Message Properties Through Message Headers E-1

requests are propagated within Oracle SOA Suite through the normalized message
properties. However, overriding of WS-Addressing headers in the outbound SOAP
message through use of these normalized message properties is not supported.

Table E-1 Properties for Oracle Web Services Addressing

Property Name Propagatable
(Yes/No)

Direction
(Inbound /
Outbound)

Data
Type

Range of
Valid Values

Description

wsa.messageId No Inbound String URI format This property specifies
the identifier for the
message and the
endpoint to which
replies to this message
should be sent as an
endpoint reference.

wsa.relatesTo No Inbound String URI format This optional
(repeating) element
information item
contributes one
abstract relationship
property value, in the
form of an (IRI,
IRI) pair. The content
of this element (of type
xs:anyURI) conveys
the message ID of the
related message.

wsa.replyToAddress No Inbound String URI format Represents a contract
between two
components
communicating
asynchronously.

wsa.replyToPortType No Inbound QName Any QName This value is passed to
the web service to
configure the
portType on the
service's callback. It is
translated to the WS-
Addressing callback
endpoint reference's
PortType element.

wsa.replyToService No Inbound QName Any QName This value is passed to
the web service to
configure service on
the service's callback.
It is translated to the
WS-Addressing
callback endpoint
reference's
ServiceName
element.

Introduction to Normalized Messages

E-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table E-1 (Cont.) Properties for Oracle Web Services Addressing

Property Name Propagatable
(Yes/No)

Direction
(Inbound /
Outbound)

Data
Type

Range of
Valid Values

Description

wsa.action No Inbound String URI format This required element
(whose content is of
type xs:anyURI)
conveys the value of
the action property.

wsa.to No Inbound String URI format This optional element
(whose content is of
type xs:anyURI)
provides the value for
the destination
property. If this
element is not present,
then the value of the
(destination) property
is http://
www.w3.org/
2005/08/
addressing/
anonymous.

E.1.2 How to Set Normalized Message Properties in Message Headers

To set normalized message properties in message headers:

1. In the dialog of the selected activity, click the Properties tab.

2. For BPEL 2.0 projects, perform the following tasks:

a. Click the Add icon.

b. From the Name list, select the property. Figure E-1 provides details.

Figure E-1 Properties Tab for Normalized Messages Header Properties

Introduction to Normalized Messages

Propagating Normalized Message Properties Through Message Headers E-3

http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous

c. Select the value of the property:

If You Select... Perform the Following Steps...

Expression
i. Click Search to invoke the XPath Expression Builder

dialog.

ii. Create the XPath expression, and click OK.

iii. Click OK.

Variable
i. Click Search to invoke the Variable XPath Builder dialog.

ii. Select the variable, and click OK.

iii. Click OK.

The defined property is displayed.

3. For BPEL 1.1 projects, perform the following tasks:

a. Scroll down and select the property.

b. In the Value column, double-click to display the ellipses.

c. Click the ellipses.

The Adapter Property Value dialog is displayed.

d. Enter the variable name as the value, and click OK.

e. For activities with a Type column (for example, invoke activities), click the
row of the property.

f. From the list that is displayed, select input or output for the message
direction.

g. Click Apply, then OK.

E.2 Manipulating Normalized Message Properties with bpelx Extensions
Oracle BPEL Process Manager uses bpelx extensions to manipulate normalized
message properties in message exchange operations. The syntax is different based on
whether your BPEL project supports BPEL version 1.1 or 2.0.

E.2.1 BPEL 2.0 bpelx Extensions Syntax
The following example shows bpelx extensions syntax in BPEL 2.0:

<invoke ...>
 <bpelx:fromProperties>?
 <bpelx:fromProperty name="NCName" .../>+
 </bpelx:fromProperties>
 <bpelx:toProperties>?
 <bpelx:toProperty name="NCName" .../>+
 </bpelx:toProperties>
</invoke>

Manipulating Normalized Message Properties with bpelx Extensions

E-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

<receive ...>
 <bpelx:fromProperties>?
 <bpelx:fromProperty name="NCName" .../>+
 </bpelx:toProperties>
</receive>

<onEvent ...>
 <bpelx:fromProperties>?
 <bpelx:fromProperty name="NCName" .../>+
 </bpelx:fromProperties>
</onEvent>

<reply...>
 <bpelx:toProperties>?
 <bpelx:toProperty name="NCName" .../>+
 </bpelx:toProperties>
</reply>

<reply ...>
 <bpelx:toProperties>
 <bpelx:toProperty name="NCName" .../>
 </bpelx:toProperties>
</reply>

Note the following details:

• The toProperty is a from-spec. This copies a value from the from-spec to
the property of the given name.

• The fromProperty is a to-spec. This copies a value from the property to the
to-spec.

E.2.2 BPEL 1.1 bpelx Extensions Syntax
The following example shows bpelx extensions syntax in BPEL 1.1:

<invoke ...>
 <bpelx:inputProperty name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
 <bpelx:outputProperty name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</invoke>

<receive ...>
 <bpelx:property name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</receive>

<onMessage...>
 <bpelx:property name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</onMessage>

<reply ...>
 <bpelx:property name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</reply>

Manipulating Normalized Message Properties with bpelx Extensions

Propagating Normalized Message Properties Through Message Headers E-5

Manipulating Normalized Message Properties with bpelx Extensions

E-6 Developing SOA Applications with Oracle SOA Suite

F
Interfaces Implemented By Rules Dictionary

Editor Task Flow

This appendix describes the Oracle Business Rules Dictionary Editor Task Flow, which
implements the MetadataDetails and NLSPrefrences interfaces when creating
an ADF-based Web application. The interfaces are defined in the
soaComposerTemplates.jar file.

This appendix includes the following sections:

• The MetadataDetails Interface

• The NLSPreferences Interface

F.1 The MetadataDetails Interface
The MetadataDetails interface is a part of the
oracle.integration.console.metadata.model.share package and is
defined in the soaComposerTemplates.jar file.

The MetadataDetails interface defines three methods, as shown below:

public interface MetadataDetails {
 /**
 * Retrieve the details of the metadata document
 * @return document in string format.
 */
 String getDocument();

 /**
 * Get related document.
 */
 String getRelatedDocument(final RelatedMetadataPath relatedPath);

 /**
 * Update the metadata document.
 * @param doc represents the updated document.
 */
 void setDocument(String doc) throws Exception;
}

F.1.1 The getDocument Method
This method is used to retrieve the rules file in a string format. For doing this action,
you must connect to the Oracle Metadata Repository (MDS) or a file system, and
return the rules file in a string format.

The code sample below shows how to get the file from a local file system:

Interfaces Implemented By Rules Dictionary Editor Task Flow F-1

private static final String RULES_FILE1 =
"file:///C:/scratch/<username>/system/mywork/linkedD/AutoAppProj/oracle/rules/credit/
CreditRatingRules.rules";

 public String getDocument() {
 URL url = null;
 try {
 url = new URL(RULES_FILE1);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }

 private String readFile(URL dictURL) {
 InputStream is;
 try {
 is = dictURL.openStream();
 } catch (IOException e) {
 System.err.println(e);
 return "";
 }
 BufferedReader reader;
 try {
 reader = new BufferedReader(new InputStreamReader(is, "UTF-8"));
 } catch (UnsupportedEncodingException e) {
 System.err.println(e);
 return "";
 }
 String line = null;
 StringBuilder stringBuilder = new StringBuilder();
 String ls = System.getProperty("line.separator");
 try {
 while ((line = reader.readLine()) != null) {
 stringBuilder.append(line);
 stringBuilder.append(ls);
 }
 } catch (IOException e) {
 System.err.println(e);
 return "";
 } finally {
 try {
 reader.close();
 } catch (IOException e) {
 System.err.println(e);
 }
 }
 return stringBuilder.toString();
 }

F.1.2 The getRelatedDocument Method
This method is required when you work with linked dictionaries. You must connect to
MDS, find the related dictionary file, and then return it in a string format. The code
sample below shows how to find the path of the linked dictionaries that are stored
within the ../oracle/rules directory in a local file system:

public String getRelatedDocument(RelatedMetadataPath relatedMetadataPath) {
 String currPath = RULES_FILE1.substring(0, RULES_FILE1.indexOf("oracle/
rules"));

The MetadataDetails Interface

F-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 String relatedDoc = currPath + "oracle/rules/" +
relatedMetadataPath.getValue();

 URL url = null;
 try {
 url = new URL(relatedDoc);
 return readFile(url);
 } catch (IOException e) {
 System.err.println(e);
 }
 return "";
 }

F.1.3 The setDocument Method
This method is used to store the rules file. It returns a String doc value, which is the
name of the updated dictionary based on user edits performed by using Rules
Dictionary Editor Task Flow. You must store the rules file in MDS or a file system. The
code sample below shows how to save the document in the local file system:

public void setDocument(String string) {
 URL url = null;

 try {
 url = new URL(RULES_FILE1);
 } catch (MalformedURLException e) {
 System.err.println(e);
 return;
 }
 Writer writer = null;
 try {
 //os = new FileWriter(url.getPath());
 writer =
 new OutputStreamWriter(new FileOutputStream(url.getPath()),
 "UTF-8");
 } catch (FileNotFoundException e) {
 System.err.println(e);
 return;
 } catch (IOException e) {
 System.err.println(e);
 return;
 }
 try {
 writer.write(string);
 } catch (IOException e) {
 System.err.println(e);
 } finally {
 if (writer != null) {
 try {
 writer.close();
 } catch (IOException ioe) {
 System.err.println(ioe);
 }
 }
 }
 }

F.2 The NLSPreferences Interface
The NLSPrefrences interface defines four methods as shown below:

The NLSPreferences Interface

Interfaces Implemented By Rules Dictionary Editor Task Flow F-3

public interface NLSPreferences
{
 /**
 * Returns the locale to be used.
 **/
 Locale getLocale();

 /**
 * Return the timezone to be used.
 **/
 TimeZone getTimeZone();

 /**
 * Return the dateformat to be used.
 */
 String getDateFormat();

 /**
 * Return the time format to be used.
 */
 String getTimeFormat();

 /**
 * Returns the grouping seperator.
 */
 char getGroupingSeparator();

 /**
 * Returns the grouping seperator.
 */
 char getDecimalSeparator();
}

The code sample below shows a sample implementation of the NLSPreferences
interface:

public class MyNLSPreferences implements NLSPreferences {
 private static final String DATE_STYLE = "yyyy-MM-dd";
 private static final String TIME_STYLE = "HH-mm-ss";
 private static final char G_SEP = ',';
 private static final char D_SEP = '.';

 public Locale getLocale() {
 return Locale.FRENCH;
 }

 public TimeZone getTimeZone() {
 return TimeZone.getTimeZone("America/Los_Angeles");
 }

 public String getDateFormat() {
 return DATE_STYLE;
 }

 public String getTimeFormat() {
 return TIME_STYLE;
 }

 public char getGroupingSeparator() {
 return G_SEP;
 }

The NLSPreferences Interface

F-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

 public char getDecimalSeparator() {
 return D_SEP;
 }
 }

The NLSPreferences Interface

Interfaces Implemented By Rules Dictionary Editor Task Flow F-5

The NLSPreferences Interface

F-6 Developing SOA Applications with Oracle SOA Suite

G
Oracle SOA Suite Configuration Properties

Road Map

This appendix describes the locations of Oracle SOA Suite design time and runtime
configuration properties and provides references to documentation that describes how
to configure these properties.

This appendix includes the following sections:

• Deployment Descriptor Properties

• Normalized Message Header Properties

• SOA Composite Application Properties

• Fault Policy and Adapter Rejected Message Properties

• Oracle B2B System Properties

• Oracle Healthcare Properties

• Oracle Business Activity Monitoring Properties

• Property Pages

• System MBean Browser Advanced Properties

G.1 Oracle BPEL Process Manager Deployment Descriptor Properties
Deployment descriptors are BPEL process service component properties used at
runtime by Oracle WebLogic Server, Oracle Enterprise Manager Fusion Middleware
Control, or both. You set these properties during design time in the composite.xml
file of the SOA composite application. Examples of deployment descriptor properties
include completionPersistPolicy, inMemoryOptimization,
oneWayDeliveryPolicy, transaction, nonBlockingInvoke, and others.

For more information about available deployment descriptor properties, see How to
Define Deployment Descriptor Properties in the Property Inspector and Transaction
and Fault Propagation Semantics in BPEL Processes.

G.2 Normalized Message Header Properties
Header manipulation and propagation are key business integration messaging
requirements. You can set normalized message header properties during design time
in the Properties tab of receive activities, invoke activities, OnMessage branches of
pick and (for BPEL 1.1) scope activities, and reply activities. You can set properties for
the following components:

• Oracle JCA adapters

Oracle SOA Suite Configuration Properties Road Map G-1

• Oracle BPEL Process Manager

• Oracle Web Services Addressing

• Oracle B2B

• REST adapters

For more information, see Propagating Normalized Message Properties Through
Message Headers.

G.2.1 Oracle JCA Adapter Message Header Properties
Oracle JCA adapters expose the underlying back-end operation-specific properties as
header elements and allow for manipulation of these elements within a business
process.

For more information about available Oracle JCA adapter message header properties,
see the following guide:

Appendix A, "Oracle JCA Adapter Properties" of Understanding Technology Adapters for
JCA adapter properties

G.2.2 Oracle BPEL Process Manager and Oracle Web Services Addressing Message
Header Properties

Oracle BPEL Process Manager and Oracle Web Services Addressing rely extensively
on header support to solve customers' integration needs.

For more information about available Oracle BPEL Process Manager and Oracle Web
Services Addressing message header properties, see Propagating Normalized Message
Properties Through Message Headers.

G.2.3 Oracle B2B Message Header Properties
In Oracle B2B, you can manipulate headers with reserved key words.

For more information about available Oracle B2B message header properties, see
Appendix, “Back-End Applications Interface" of User's Guide for Oracle B2B.

G.3 SOA Composite Application Properties
While most updates you make to the composite.xml file are performed from within
the dialogs of the SOA Composite Editor during design time, other properties must be
added manually to this file from within Source view. Table G-1 lists these properties
and provides references to documentation that describes how to configure these
properties.

Table G-1 Oracle SOA Suite Properties

Property Description See...

endpointURI Specifies multiple partner link
endpoint locations. This capability
is useful for failover purposes if the
first endpoint is down.

Multiple Runtime Endpoint
Locations

SOA Composite Application Properties

G-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Table G-1 (Cont.) Oracle SOA Suite Properties

Property Description See...

oracle.composite.f
aultPolicyFile

Specifies the location of the fault
policy file if it is different from the
default location. This option is
useful if a fault policy must be
used by multiple SOA composite
applications.

Handling Faults with the
Fault Management
Framework

oracle.composite.f
aultBindingFile

Specifies the location of the fault
binding file if it is different from
the default location. This option is
useful if a fault policy must be
used by multiple SOA composite
applications.

Handling Faults with the
Fault Management
Framework

passThroughHeader By default, SOAP headers are not
passed through by Oracle
Mediator. To pass SOAP headers,
add this property to the
corresponding Oracle Mediator
routing service.

How to Assign Values

How to Access Headers for
Filters and Assignments

rolesAllowed Specifies role names required to
invoke SOA composite
applications from any Java EE
application.

Specifying Enterprise
JavaBeans Roles

streamIncomingAtta
chments

and

streamOutgoingAtta
chments

Specify these properties to stream
attachments with SOAP.

SOAP with Attachments

oracle.webservices
.local.optimizatio
n

Specifies to override a local
optimization setting for a policy.

SOAP with Attachments

and

Administering Oracle SOA
Suite and Oracle Business
Process Management Suite

oracle.soa.local.o
ptimization.force

You can override the
oracle.webservices.local.o
ptimization property and force
optimization.

Administering Oracle SOA
Suite and Oracle Business
Process Management Suite

one.way.returns.fa
ult

Controls how faults and one-way
messages are handled for one-way
interface SOAP calls.

One-way Message Exchange
Patterns

mtomThreshold Specifies the attachment size in
bytes.

Sending and Receiving
MTOM-Optimized Messages
to SOA Composite
Applications

SOA Composite Application Properties

Oracle SOA Suite Configuration Properties Road Map G-3

G.4 Fault Policy and Adapter Rejected Message Properties
A fault policy file defines fault conditions and their corresponding fault recovery
actions. Each fault condition specifies a particular fault or group of faults, which it
attempts to handle, and the corresponding action for it.

You can enter fault policy properties automatically through the Fault Policy Editor or
manually in a fault policy framework file. Table G-2 lists these properties and provides
references to documentation that describes how to configure these properties.

Table G-2 Oracle SOA Suite Fault Policy Properties

Property Description See...

retryInterval Provides a delay
between retries of an
activity (in seconds).

Manually Creating a Fault Policy File
for Automated Fault Recovery

retryCount Retries an activity a
specified number of
times.

How to Design a Fault Policy for
Automated Fault Recovery with the
Fault Policy Wizard or Manually
Creating a Fault Policy File for
Automated Fault Recovery

org.quartz.scheduler
.idleWaitTime

Specifies a time in
seconds for the
scheduler to wait before
retrying.

How to Design a Fault Policy for
Automated Fault Recovery with the
Fault Policy Wizard or Actions

You can also enter adapter rejected message properties in the fault policy framework
file during design time.

For more information, see Section "Error Handling" of Understanding Technology
Adapters.

G.5 Oracle B2B System Properties
You can set most Oracle B2B properties on the Configuration tab of the Oracle B2B
interface. These settings override property settings performed at Oracle Enterprise
Manager Fusion Middleware Control.

For more information about available Oracle B2B properties, see Chapter "Configuring
B2B System Parameters" of User's Guide for Oracle B2B.

G.6 Oracle Healthcare Properties
You can configure Oracle Healthcare runtime and user interface, workflow
notification, and normalized message header properties.

For more information about available Oracle Healthcare properties, see Healthcare
Integration User's Guide for Oracle SOA Suite.

G.7 Oracle Business Activity Monitoring Properties
You can configure Oracle Business Activity Monitoring (BAM) business view
properties.

Fault Policy and Adapter Rejected Message Properties

G-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

For more information about Oracle BAM properties, see Monitoring Business Activity
with Oracle BAM.

G.8 Oracle Enterprise Manager Fusion Middleware Control Property
Pages

You can configure properties for the following components during runtime in the
property pages of Oracle Enterprise Manager Fusion Middleware Control:

• SOA Infrastructure

• Oracle BPEL Process Manager

• Human workflow notification and task service

• Oracle Mediator

• Cross references

• Oracle B2B

• Service and reference binding components (JCA adapters, web services, REST
adapters, and Oracle Service Registry)

• Global token variables and automatic database purging

G.8.1 SOA Infrastructure Properties
You can configure properties for the SOA Infrastructure on the SOA Infrastructure
Common Properties page. These property settings can apply to all SOA composite
applications running in the SOA Infrastructure. The following types of properties can
be set:

• Audit level

• Payload validation

• Time duration during which to retrieve instances and faults data

• Universal Description, Discovery, and Integration (UDDI) registry

• Callback server and server URLs

• BPM Analytics, BPEL sensors, and composite sensors

• Java Naming and Directory Interface (JNDI) data source

• Web service binding properties

• Advanced configuration properties

For more information about available SOA Infrastructure properties, see Chapter
"Configuring the SOA Infrastructure" of Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

Oracle Enterprise Manager Fusion Middleware Control Property Pages

Oracle SOA Suite Configuration Properties Road Map G-5

G.8.2 Oracle BPEL Process Manager Properties
You can configure BPEL process service engine properties on the BPEL Service Engine
Properties page. These properties are used by the BPEL process service engine during
processing of BPEL service components. The following types of properties can be set:

• Audit trail level

• Audit trail and large document thresholds

• Payload schema validation

• BPEL monitor and sensor enabling

• Advanced configuration properties

For more information about available Oracle BPEL Process Manager properties, see
Chapter "Configuring BPEL Process Service Components and Engines" of
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

G.8.3 Human Workflow Notification and Task Service Properties
You can configure human workflow notification and task service properties on the
Mailer and Task tabs of the Workflow Notification Properties page. These properties
are used by the human workflow service engine during processing of human
workflow service components. The following types of properties can be set:

• The notification mode for messages

• The actionable addresses

• The actionable email account name

• The workflow session time out and custom class path URL values

• The dynamic assignment and task escalation functions of the assignment service

• Advanced configuration properties

For more information about available human workflow notification and task service
properties, see Chapter "Configuring Human Workflow Service Components and
Engines" of Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

G.8.4 Oracle Mediator Properties
You can configure Oracle Mediator properties. These properties are used by the Oracle
Mediator service engine during processing of Oracle Mediator service components.
The following types of properties can be set:

• Audit level and metrics level

• Parallel maximum rows retrieved

• Parallel locker thread sleep

• Custom configuration parameters

• Container ID refresh time and container ID lease timeout

Oracle Enterprise Manager Fusion Middleware Control Property Pages

G-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

• Resequencer locker thread sleep and maximum groups locked

• Advanced configuration properties

For more information about available Oracle Mediator properties, see Chapter
"Configuring Oracle Mediator Service Components and Engines" of Administering
Oracle SOA Suite and Oracle Business Process Management Suite.

G.8.5 Cross Reference Properties
You can configure cross references to dynamically map values for equivalent entities
created in different applications.

For more information about available cross reference properties, see Chapter
"Managing Cross-References" of Administering Oracle SOA Suite and Oracle Business
Process Management Suite.

G.8.6 Oracle B2B Properties
You can enable Oracle B2B Dynamic Monitoring Service (DMS) metrics and configure
advanced properties.

For more information about available Oracle B2B properties, see Chapter "Configuring
Oracle B2B" of Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

G.8.7 Service and Reference Binding Component Properties
You can configure the following service and reference binding component properties:

• Activation specification (for services), interaction specification (for references),
and endpoint properties (such as time outs, thresholds, maximum intervals, and
others) for the JCA adapters

• Web services properties such as enabling REST; enabling the WSDL, metadata
exchange, and endpoint of the web service; and others

For more information about available service and reference binding component
properties, see Chapter "Configuring Service and Reference Binding Components" of
Administering Oracle SOA Suite and Oracle Business Process Management Suite.

G.8.8 Global Token Variables and Automatic Database Purging Properties
You can configure additional properties in Oracle Enterprise Manager Fusion
Middleware Control:

• Define global token variables for specific URIs in SOA composite applications.

• Enable automatic purging of large numbers of instances from the database.

For more information about token configurations, see the "Managing Global Token
Variables for Multiple SOA Composite Applications" section of Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

For more information, see the "Deleting Large Numbers of Instances with Oracle
Enterprise Manager Fusion Middleware Control" section of Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

Oracle Enterprise Manager Fusion Middleware Control Property Pages

Oracle SOA Suite Configuration Properties Road Map G-7

G.9 System MBean Browser Advanced Properties
The System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control
enables you to modify advanced properties that do not display in the property pages
described in Property Pages. These advanced properties display beneath a link at the
bottom of properties pages for the following components:

• SOA Infrastructure

• Oracle BPEL Process Manager

• Oracle Mediator

• Human workflow notification and task service

• Oracle B2B

Note:

In addition to advanced properties, the same properties that display for
modifying in the property pages described in Property Pages also display for
modifying in the System MBean Browser.

G.9.1 SOA Infrastructure Advanced Properties
The More SOA Infra Advanced Configuration Properties link at the bottom of the
SOA Infrastructure Common Properties page enables you to display System MBean
Browser advanced properties for the SOA Infrastructure. Properties that display for
modifying include, but are not limited to, the following:

• The maximum number of times an invocation exception can be retried

• The number of seconds between retries for an invocation exception

• The HTTP proxy authentication realm

• The HTTP proxy authentication type

• The HTTP proxy host

• The password for HTTP proxies that require authentication

• The HTTP proxy port number

• The user name for HTTP proxies that require authentication

• The HTTP protocol URL published as part of the SOAP address of a process in the
WSDL file

• The HTTPS protocol URL published as part of the SOAP address of a process in
the WSDL file

• The path to the Oracle SOA Suite keystore

For more information about available SOA Infrastructure System MBean Browser
properties, see Chapter "Configuring the SOA Infrastructure" of Administering Oracle
SOA Suite and Oracle Business Process Management Suite.

System MBean Browser Advanced Properties

G-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

G.9.2 Oracle BPEL Process Manager Advanced Properties
The More BPEL Configuration Properties link at the bottom of the BPEL Service
Engine Properties page enables you to display System MBean Browser properties for
the BPEL process. Properties that display for modifying include, but are not limited to,
the following:

• The extra BPEL class path to include when compiling BPEL-generated Java
sources

• The maximum number of times a failed expiration call (wait/onAlarm) is retried
before failing

• The delay between expiration retries

• The size of the block of instance IDs to allocate from the dehydration store during
each fetch

• The number of invoke messages stored in in-memory cache

• Whether one-way invocation messages are delivered

For more information about available Oracle BPEL Process Manager System MBean
Browser properties, see Chapter "Configuring BPEL Process Service Components and
Engines" of Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

G.9.3 Oracle Mediator Advanced Properties
The More Mediator Configuration Properties link at the bottom of the Mediator
Service Engine Properties page enables you to display System MBean Browser
properties for Oracle Mediator. Most of the System MBean Browser properties that
display for Oracle Mediator can also be modified on the Mediator Service Engine
Properties page.

For more information about available Oracle Mediator System MBean Browser
properties, see Chapter "Configuring Oracle Mediator Service Components and
Engines" of Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

G.9.4 Human Workflow Notification and Task Service Advanced Properties
The More Workflow Notification Configuration Properties link at the bottom of the
Workflow Notification Properties page and the More Workflow Task Service
Configuration Properties link at the bottom of the Workflow Task Service Properties
page enables you to display System MBean Browser properties for human workflow.
Properties that display for modifying include, but are not limited to, the following:

• The address at which to receive incoming instant messages (IMs)

• Whether to return custom notification service property names

For more information about available human workflow notification and task service
System MBean Browser properties, see Chapter "Configuring Human Workflow
Service Components and Engines" of Administering Oracle SOA Suite and Oracle
Business Process Management Suite.

System MBean Browser Advanced Properties

Oracle SOA Suite Configuration Properties Road Map G-9

G.9.5 Oracle B2B Advanced Properties
The More B2B Configuration Properties link at the bottom of the B2B Server
Properties page enables you to display System MBean Browser properties for Oracle
B2B. Properties that display for modifying include, but are not limited to, Oracle B2B
payload obfuscation.

For more information about available Oracle B2B properties, see Chapter "Configuring
Oracle B2B" of Administering Oracle SOA Suite and Oracle Business Process Management
Suite.

System MBean Browser Advanced Properties

G-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

H
Working with Large Schemas in the XSLT

Editor

The XSLT Editor displays source and target trees that provide an XML representation
of the input and output documents for the XSLT map that is being edited. The editor
creates these trees from the XSD schema documents after you select a root element
definition.

These schema trees can become large and difficult to work with in a graphical
mapping tool, such as the XSLT Editor. Some schema documents define hundreds of
child nodes for each parent node. Expanding a few parent nodes like this, in the tree,
can generate thousands of tree nodes to scroll through when trying to create an XSLT
Map.

If the mapping is sparse, i.e. there are only a few mapped target
nodes even though the schema is very large, the user needs to
constantly scroll through nodes that do not need to be mapped. On
the other hand, if the mapping is not sparse, and many mappings
exist, the user faces a lot of crisscrossing lines that make it difficult to
make sense out of the mappings.

This appendix discusses strategies for both sparse and non-sparse maps, as well as
ways to reduce clutter.

H.1 Sparse Mappings
Schemas are often created to handle a large range of possibilities. When schemas of
this type are used to produce source and target trees, the trees can contain hundreds of
thousands, or even millions of nodes. However, in many cases, the user is only
interested in using or populating a small portion of the nodes defined in the schema.

There are various ways of handling sparse mappings.

Using Sample XML to Generate a Schema

The 12c XSLT Editor has the ability to create schemas from XML documents that can
then be used as schema documents for a source or target tree. If you have a sample
XML document for your source and/or target, this document can be used to build
small schema documents that contain only those nodes that you need for the map.

To create an XSLT map using sample source and target XML documents, select the
Generate from XML option while selecting the schema for a source or target in a new
XSL map.

Working with Large Schemas in the XSLT Editor H-1

A schema is generated and placed in the Schemas folder. This schema will be used to
create the source and target trees for your mapping, and consequently will contain
only the nodes that exist in your original sample XML document.

If you wish to switch back and forth from the small sample schema to the larger
schema that you might be avoiding, you can select Replace/Add Source or Target
Schema from the canvas context menu. Then select either the small sample schema
from the Schemas folder or the larger schema.

Sparse Mappings

H-2 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Using XSLT View

The 12c editor contains a new view available within the Design View tab. This is the
XSLT View. It can be reached by clicking the XSLT button on the top right of the XSLT
editor toolbar.

XSLT View shows the existing statements in the XSLT file. Users who have previously
edited XSLT in a source xml editor may appreciate this view. It is organized in the
same way as statements would appear in the XSLT source. Using this view will
provide a condensed look at the mappings you are creating. For instance, here is a
map against a large target schema document in Map View. Note that some lines run
off the bottom of the display as they map to nodes that appear in the schema later in
the tree.

Sparse Mappings

Working with Large Schemas in the XSLT Editor H-3

Here is the same mapping in XSLT view:

You can now see all of your mappings clearly without unused target nodes taking up
space. If you need to add a new target element from the schema, use the Add
Children From Schema option on the context menu.

From the context menu on any parent node select the Add Children From Schema
option and a list of possible child nodes will appear that can be selected and added.
You also have the option to select All Attributes/All Elements/All Required from this
menu for any parent node.

Sparse Mappings

H-4 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

As an added bonus, when nodes are added this way, all required children of any node
you insert will be added automatically for you. In the example above, when we select
the ns2:records element to be added, it is inserted at its correct place in the tree
and its required ns1:id node is automatically added for you.

If you are used to editing in Source view, an option was added in 12.2.1.0.0 to allow
you to move easily back and forth from source to design view. Right-click any node in
the XSLT panel and select Locate in Source View.

Sparse Mappings

Working with Large Schemas in the XSLT Editor H-5

The source view opens and the node is selected:

To navigate back to any node in Design view, you can select the Locate in Design
View option while in Source View.

XSLT view can also be used to insert any XSLT statement and allows the use of named
and matched templates (template rules). See Editing an XSLT Map in XSLT View for
more information on XSLT view.

H.1.1 Quick Start for XSLT View
You can set the Preference settings to always start the XSLT Editor in XSLT view.
These settings also control the automatic creation of target nodes to get you started. To
set the preferences for XSLT View, select Tools > Preferences to bring up the
Preferences dialog. Then select XSL Maps > XSL Editor.

Sparse Mappings

H-6 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To start in XSLT View, select the XSLT View Initialization option with the desired
options. If you are working with a large schema, it is a good idea to set a limit to the
number of levels of children to be generated.

Then, when you create your XSLT map these options will be used. In addition, these
options are used anytime you select the Clear XSLT Map option from the canvas
context menu.

If you do not like your preference settings for a particular map, you can make changes
to the preferences and regenerate the initial map by selecting Clear XSLT Map.

Sparse Mappings

Working with Large Schemas in the XSLT Editor H-7

H.2 Non-Sparse Mappings
Sometimes, it is necessary to create or modify existing maps that contain large
numbers of target elements and consequently large numbers of mappings. When
editing a map like this, it can be difficult to keep track of what is going on. For such
situations, the 12c XSLT Editor has a new feature that enables the user to set the scope
of the mapping to show only mappings below a selected target node.

For instance, the following is a non-sparse mapping.

We can set the scope of the mapping to an area in the target tree we would like to
work in. Right-click a target node, and select Set Display Scope.

The display is scoped to the target node selected. All lines indicating mappings outside
of this area are not drawn and the source tree becomes condensed, showing only
nodes that are mapped.

Non-Sparse Mappings

H-8 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

You can then continue to work in the scoped area.

Hidden areas in the source tree can be expanded to show nodes that might be needed
for additional mapping. Right-click on any Hidden item in the Source tree to see a
popup menu with options for searching within the tree and selecting nodes to be
shown.

Any search done from this popup will wrap through the tree beyond the currently
selected Hidden area, so that you do not have to select the correct Hidden area for the
node you are looking for.

There are also options on the main context menu that will hide and expand areas of
the source tree. If you right-click on any non-Hidden node in the tree, there are
options to show and hide siblings and children of the selected node.

Non-Sparse Mappings

Working with Large Schemas in the XSLT Editor H-9

In the target tree, you can add nodes from the schema by using the Add Children
from Schema option.

Non-Sparse Mappings

H-10 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

To exit the scoped display, click on a target node outside of the scoped area or select
Exit Display Scope from the context menu in the target tree.

H.3 Reducing Textual Clutter
The 12c XSLT Editor provides the ability to abbreviate node names and other
information in the source and target trees. If you select the Abbreviate Text option
from the canvas context menu, prefixes will be hidden and the text for certain types of
nodes will be abbreviated.

Before abbreviation:

Reducing Textual Clutter

Working with Large Schemas in the XSLT Editor H-11

After abbreviation:

You may also create a Custom Display Options Config file where abbreviations for
node name text may be defined. For instance, in the example above, the phrase
CustomerPartyList appears in many node names. This could be abbreviated to
CPL using a Custom Display Options Config file. Then node names such as
$EscapedSyncCustomerPartyListEBM will appear as $EscapedSyncCPLEBM in
the tree.

Reducing Textual Clutter

H-12 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

This does not change the node name in the XSLT or in any XPath statements
generated. It only applies to the name that appears on the tree node and can help to
reduce overall clutter when schema node definitions use verbose names.

A Custom Display Options Config file can be loaded under XSL Editor preferences.
See How to Import a Customization File to Specify Display Preferences in the XSLT
Map Editor for more details.

H.4 Searching Trees
When searching through large schemas for element names, the search can take long. In
12.1.3, the search does not have a cancel option. This has been added in 12.2.1.

If the search is taking too long, the tree size can be truncated by reducing the
Expansion Depth for the trees in preferences. Go to Tools > Preferences. Select XSL
Maps from the navigator. Click the Show Advanced Options button and change the
Expansion Depth for the XML Schema Maximum Expansion Depth option to a much
smaller value. For trees that have hundreds of children at a single level, this value
needs to be around 10 levels. This will mean that the search will not go below the level
set here, but some trees can contain millions of nodes and the search can take long in
that event.

H.5 Copying and Modifying a Large Input Document
A user may be tempted to try to copy an input XML document by using the automap
feature of the XSLT editor. However, automap generates specific XSLT statements for
every node in the schema. On large schemas, this is not an efficient way to copy an
input document. This can generate XSLT files that are many MBs in size, and these
will be slow to load and difficult to edit. In addition, if the user’s mapping is sparse,
generating thousands of lines of XSLT to execute against nodes that are defined in the
schema, but will never exist at runtime is inefficient.

The 12c XSLT Editor now supports the creation of matched templates (template rules).
In particular, you can now add an identity template that can copy all nodes in the
source tree. Use the following steps:

1. Switch to XSLT view.

2. Select XSLT Templates from the Components Window.

3. Drag and drop the Identity Template from the Miscellaneous Templates section to
the left side of the xsl:stylesheet node. You will see a green highlight when
the drop is in the correct position indicating that the template will be added as a
child of the stylesheet node.

4. Delete the original root match=”/” template from the XSLT.

Your display would look something like the following:

Searching Trees

Working with Large Schemas in the XSLT Editor H-13

Every node in the input document will be processed by the identity template. This
is indicated by the bubble highlighting on each node of the source tree that
indicates the context nodes for the selected template. When each node is processed,
the xsl:copy statement will execute to copy the node to the output. The apply-
templates statement tells the processor to continue processing any child nodes of
the current context node being processed. This will then copy the entire input
document.

Additional templates can then be added to make modifications to the tree while it
is being copied. For instance, suppose we need to simply remove a node from the
input tree. We can do this by adding an empty template for the node we want to
remove from the output. In other words, when we process this node, we will
output nothing, which will effectively remove the node from the tree.

To add an empty template for a node, right-click the source node and select New
Template Rule.

Click OK on the New Template Dialog that follows. The template is added. Note
the difference in the display for the node when the identity template is selected. It
is no longer bubble highlighted, indicating it is no longer processed by the identity
template.

Copying and Modifying a Large Input Document

H-14 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

Selecting the new empty template will now highlight this node, showing that this
template will process the node and output nothing when it is processed.

Now, suppose we also want to upper-case some text in another node. We can
create another template to explicitly process that node to perform the upper-case.
We create a template with the New Template Rule option selected from the
BrokenPlace node in the source tree. When the New Template Rule dialog
appears, we select the node we want to create in the template.

Click OK and the template and the node will be created. We then assign an upper-
case function to the node.

Copying and Modifying a Large Input Document

Working with Large Schemas in the XSLT Editor H-15

When this node is created in the output, its text will be upper-cased.

In this manner, you can copy and modify a large input XML with very few XSLT
statements.

H.6 Generating Test Files with Element and Type Substitutions
It is possible in the XSLT editor to perform element and type substitutions based on
derived types and substitution groups defined in the XSD. Many schemas contain
abstract elements or types that can be overloaded with elements from substitution
groups or elements from derived types using xsi:type.

The test tool in the XSLT editor does not currently support generation of input XML
documents that contain substituted elements. So, when you invoke an XSLT map
where substitutions have been made in the source tree, the following warning occurs.

The user then has to modify the input document generated or provide their own test
input document. This can become problematic, as the user must make the
substitutions themselves in the input document with the correct syntax for the
xsi:type definition or element substitution needed. This can be more problematic in
large schemas where multiple substitutions have been made.

Using the XSLT editor, we can generate an input document that contains the correctly
substituted elements with all of the appropriate namespaces/prefixes defined for us.
This will provide us with a template for the input test document.

In the mapping above there are two substitutions done in the source tree. The first is a
substituted element CommentList from a substitution group defined the schema
document. The second is an Item type substitution for a derived item type defined in
the schema document.

Generating Test Files with Element and Type Substitutions

H-16 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

We would like to write a small XSLT map that will generate a document we can use as
a test input file for testing this map. It has to contain the correct xsi:type and
element substitution information defined in our source document.

We create a new map, selecting no schema document for the source and selecting the
PurchaseOrder schema for the target, as we want to output a PurchaseOrder
document we can use as test input for the PurchaseOrder source in our existing
map.

By using Add Child From Schema and performing the same substitutions on the
PurchaseOrder target that we have on our PurchaseOrder source, we can create a
map that looks like the following:

We then execute this XSLT with the test tool to create our PurchaseOrder template
document.

Generating Test Files with Element and Type Substitutions

Working with Large Schemas in the XSLT Editor H-17

This generates a template for our test input document with the correct substitutions
for our test.

Appropriate test data can then be entered in the fields defined. Alternatively, you can
define data values in the XSLT that generates the test file to pre-populate the test file.

Generating Test Files with Element and Type Substitutions

H-18 Oracle Fusion Middleware Developing SOA Applications with Oracle SOA Suite

	Contents
	Preface
	Audience
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1.x)

	Part I Getting Started with Oracle SOA Suite
	1 Introduction to Building Applications with Oracle SOA Suite
	1.1 Introduction to Oracle SOA Suite
	1.1.1 Service-Oriented Architecture
	1.1.2 Services
	1.1.3 Oracle SOA Suite
	1.1.4 Standards Used by Oracle SOA Suite to Enable SOA
	1.1.5 Service Component Architecture within SOA Composite Applications
	1.1.5.1 Service Components
	1.1.5.2 Binding Components
	1.1.5.3 Wires

	1.1.6 Runtime Behavior of a SOA Composite Application
	1.1.6.1 Service Infrastructure
	1.1.6.2 Service Engines
	1.1.6.3 Deployed Service Archives

	1.1.7 Approaches for Designing SOA Composite Applications

	1.2 Getting Started with Oracle SOA Suite
	1.3 Setting Accessibility Options
	1.3.1 Setting Accessibility Options in Oracle JDeveloper
	1.3.2 Setting Accessibility Options in Oracle SOA Composer and Oracle BPM Worklist
	1.3.2.1 How to Set Accessibility Features Before Logging In
	1.3.2.2 How to Set Accessibility Options After Logging In

	2 Getting Started with Developing SOA Composite Applications
	2.1 Creating a SOA Application
	2.1.1 How to Create a SOA Application and Project
	2.1.2 What Happens When You Create a SOA Application and Project

	2.2 Adding Service Components
	2.2.1 How to Add a Service Component
	2.2.2 What You May Need to Know About Adding and Deleting a Service Component
	2.2.3 How to Edit a Service Component

	2.3 Adding Service Binding Components
	2.3.1 How to Add a Service Binding Component
	2.3.2 How to Define the Interface (WSDL) for a Web Service
	2.3.2.1 Defining a New WSDL Using a Schema
	2.3.2.2 Selecting an Existing WSDL
	2.3.2.3 Automatically Defining a Service Interface WSDL from a Component

	2.3.3 How to View Schemas
	2.3.4 How to Edit a Service Binding Component
	2.3.5 What You May Need to Know About Adding and Deleting Services
	2.3.6 What You May Need to Know About Using the Same Namespace in Different WSDL Files in the Same Composite
	2.3.7 What You May Need to Know About WSDL Browsing in the Resources Window When the SOA Infrastructure Uses Both Internal and External Oracle HTTP Servers

	2.4 Adding Reference Binding Components
	2.4.1 How to Add a Reference Binding Component
	2.4.2 What You May Need to Know About Adding and Deleting References
	2.4.3 What You May Need to Know About WSDL References
	2.4.4 What You May Need to Know About Mixed Message Types in a WSDL File
	2.4.5 What You May Need to Know About Invoking the Default Revision of a Composite

	2.5 Adding Wires
	2.5.1 How to Wire a Service and a Service Component
	2.5.2 How to Wire a Service Component and a Reference
	2.5.3 What You May Need to Know About Adding and Deleting Wires

	2.6 Adding Descriptions to SOA Composite Applications
	2.6.1 How to Add Descriptions to SOA Composite Applications

	2.7 Renaming, Deleting, and Moving Components and Artifacts
	2.7.1 How to Rename and Delete Components in the SOA Composite Editor
	2.7.2 How to Rename, Move, and Delete Artifacts in the Applications Window

	2.8 Viewing Component Details in the Property Inspector
	2.9 Adding Security Policies
	2.10 Deploying a SOA Composite Application
	2.10.1 How to Invoke Deployed SOA Composite Applications

	2.11 Managing and Testing a SOA Composite Application
	2.11.1 How to Manage Deployed SOA Composite Applications in Oracle JDeveloper
	2.11.2 How to Test and Debug a Deployed SOA Composite Application

	3 Managing Shared Data with the Design-Time MDS Repository
	3.1 Introduction to SOA Design-Time MDS Repository Management
	3.1.1 Introduction to the Default SOA Design-Time MDS Repository Connection

	3.2 Changing the Default SOA-MDS Location
	3.2.1 How to Change the Default SOA-MDS Location

	3.3 Sharing Data with the SOA Design-Time MDS Repository
	3.3.1 How to Share Data with the SOA Design-Time MDS Repository

	3.4 Creating and Deleting Subfolders Under the /apps Folder
	3.4.1 How to Create and Delete Subfolders Under the /apps Folder

	3.5 Exporting the Selected Contents of the /apps Folder to a JAR File
	3.5.1 How to Export the Selected Contents of the /apps Folder to a JAR File

	3.6 Importing the Contents of the JAR File into the /apps Folder
	3.6.1 How to Import the Contents of the JAR File into the /apps Folder

	3.7 Transferring the Selected Contents of the /apps Folder to Another MDS Repository
	3.7.1 How to Transfer the Selected Contents of the /apps Folder to Another MDS Repository

	3.8 Exporting an Existing Release 11g MDS Repository to a JAR File
	3.8.1 How to Export an Existing Release 11g MDS Repository to a JAR File

	3.9 Browsing for Files in the SOA Design-Time MDS Repository

	Part II Using the BPEL Process Service Component
	4 Getting Started with Oracle BPEL Process Manager
	4.1 Introduction to the BPEL Process Service Component
	4.1.1 How to Add a BPEL Process Service Component
	4.1.2 How to Validate a BPEL Process Service Component

	4.2 Introduction to Activities
	4.2.1 How to Edit BPEL Activities in the Property Inspector
	4.2.2 How to Copy and Paste Activities in BPEL Projects
	4.2.3 How to Add a Description of Actions to BPEL Process Activities

	4.3 Introduction to Partner Links
	4.4 Creating a Partner Link
	4.4.1 How to Create a Partner Link
	4.4.1.1 Partner Links for an Outbound Adapter
	4.4.1.2 Partner Links for an Inbound Adapter
	4.4.1.3 Partner Links from an Abstract WSDL to Call a Service
	4.4.1.4 Partner Links from an Abstract WSDL to Implement a Service
	4.4.1.5 Partner Links and Human Tasks or Business Rules
	4.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle Mediator

	4.5 Introduction to Adapters
	4.6 Introduction to BPEL Process Monitors

	5 Introduction to Interaction Patterns in a BPEL Process
	5.1 Introduction to One-Way Messages
	5.1.1 BPEL Process Service Component as the Client
	5.1.2 BPEL Process Service Component as the Service

	5.2 Introduction to Synchronous Interactions
	5.2.1 BPEL Process Service Component as the Client
	5.2.2 BPEL Process Service Component as the Service
	5.2.3 Synchronous BPEL Process Invoking an Asynchronous Process

	5.3 Introduction to Asynchronous Interactions
	5.3.1 BPEL Process Service Component as the Client
	5.3.2 BPEL Process Service Component as the Service

	5.4 Introduction to Asynchronous Interactions with a Timeout
	5.4.1 BPEL Process Service Component as the Client
	5.4.2 BPEL Process Service Component as the Service

	5.5 Introduction to Asynchronous Interactions with a Notification Timer
	5.5.1 BPEL Process Service Component as the Client
	5.5.2 BPEL Process Service Component as the Service

	5.6 Introduction to One Request, Multiple Responses
	5.6.1 BPEL Process Service Component as the Client
	5.6.2 BPEL Process Service Component as the Service

	5.7 Introduction to One Request, One of Two Possible Responses
	5.7.1 BPEL Process Service Component as the Client
	5.7.2 BPEL Process Service Component as the Service

	5.8 Introduction to One Request, a Mandatory Response, and an Optional Response
	5.8.1 BPEL Process Service Component as the Client
	5.8.2 BPEL Process Service Component as the Service

	5.9 Introduction to Partial Processing
	5.9.1 BPEL Process Service Component as the Client
	5.9.2 BPEL Process Service Component as the Service

	5.10 Introduction to Multiple Application Interactions

	6 Manipulating XML Data in a BPEL Process
	6.1 Introduction to Manipulating XML Data in BPEL Processes
	6.1.1 XML Data in BPEL Processes
	6.1.2 Data Manipulation and XPath Standards in Assign Activities

	6.2 Delegating XML Data Operations to Data Provider Services
	6.2.1 How to Create an Entity Variable
	6.2.1.1 Understanding How SDO Works in the Inbound Direction
	6.2.1.2 Understanding How SDO Works in the Outbound Direction
	6.2.1.3 Creating an Entity Variable and Choosing a Partner Link
	6.2.1.4 Creating a Binding Key

	6.3 Translating Between Native Data and XML
	6.3.1 How to Translate Native Data to XML Data
	6.3.2 How to Translate XML Data to Native Data
	6.3.3 How to Translate Inbound Native Data to XML Stored as an Attachment

	6.4 Using Standalone SDO-based Variables
	6.4.1 How to Declare SDO-based Variables
	6.4.2 How to Convert from XML to SDO

	6.5 Initializing a Variable with Expression Constants or Literal XML
	6.5.1 How To Assign a Literal XML Element

	6.6 Copying Between Variables
	6.6.1 How to Copy Between Variables
	6.6.2 How to Initialize Variables with an Inline from-spec in BPEL 2.0

	6.7 Moving and Copying Variables in the Structure Window
	6.7.1 To Move Variables in the Structure Window:
	6.7.2 To Copy Variables in the Structure Window:

	6.8 Accessing Fields in Element and Message Type Variables
	6.8.1 How to Access Fields Within Element-Based and Message Type-Based Variables

	6.9 Assigning Numeric Values
	6.9.1 How to Assign Numeric Values

	6.10 Using Mathematical Calculations with XPath Standards
	6.10.1 How To Use Mathematical Calculations with XPath Standards

	6.11 Assigning String Literals
	6.11.1 How to Assign String Literals

	6.12 Concatenating Strings
	6.12.1 How to Concatenate Strings

	6.13 Assigning Boolean Values
	6.13.1 How to Assign Boolean Values

	6.14 Assigning a Date or Time
	6.14.1 How to Assign a Date or Time

	6.15 Manipulating Attributes
	6.15.1 How to Manipulate Attributes

	6.16 Manipulating XML Data with bpelx Extensions
	6.16.1 How to Use bpelx:append
	6.16.1.1 bpelx:append in BPEL 1.1
	6.16.1.2 bpelx:append in BPEL 2.0

	6.16.2 How to Use bpelx:insertBefore
	6.16.2.1 bpelx:insertBefore in BPEL 1.1
	6.16.2.2 bpelx:insertBefore in BPEL 2.0

	6.16.3 How to Use bpelx:insertAfter
	6.16.3.1 bpelx:insertAfter in BPEL 1.1
	6.16.3.2 bpelx:insertAfter in BPEL 2.0

	6.16.4 How to Use bpelx:remove
	6.16.4.1 bpelx:remove in BPEL 1.1
	6.16.4.2 bpelx:remove in BPEL 2.0

	6.16.5 How to Use bpelx:rename and XSD Type Casting
	6.16.5.1 bpelx:rename in BPEL 1.1
	6.16.5.2 bpelx:rename in BPEL 2.0

	6.16.6 How to Use bpelx:copyList
	6.16.6.1 bpelx:copyList in BPEL 1.1
	6.16.6.2 bpelx:copyList in BPEL 2.0

	6.16.7 How to Use Assign Extension Attributes
	6.16.7.1 ignoreMissingFromData Attribute
	6.16.7.2 insertMissingToData Attribute
	6.16.7.3 keepSrcElementName Attribute

	6.17 Validating XML Data
	6.17.1 How to Validate XML Data in BPEL 2.0
	6.17.1.1 Validate XML in an Assign Activity
	6.17.1.2 Validate XML in a Standalone, Extended Validate Activity

	6.17.2 How to Validate XML Data in BPEL 1.1
	6.17.2.1 Validate XML in an Assign Activity
	6.17.2.2 Validate XML in a Standalone, Extended Validate Activity

	6.18 Using Element Variables in Message Exchange Activities in BPEL 2.0
	6.19 Mapping WSDL Message Parts in BPEL 2.0
	6.19.1 How to Map WSDL Message Parts

	6.20 Importing Process Definitions in BPEL 2.0
	6.21 Manipulating XML Data Sequences That Resemble Arrays
	6.21.1 How to Statically Index into an XML Data Sequence That Uses Arrays
	6.21.2 How to Use SOAP-Encoded Arrays
	6.21.2.1 SOAP-Encoded Arrays in BPEL 2.0
	6.21.2.2 Declaring a SOAP Array Using a wsdl:arrayType Attribute Inside a Schema

	6.21.3 How to Determine Sequence Size
	6.21.4 How to Dynamically Index by Applying a Trailing XPath to an Expression
	6.21.4.1 Applying a Trailing XPath to the Result of getVariableData
	6.21.4.2 Using the bpelx:append Extension to Append New Items to a Sequence
	6.21.4.3 Merging Data Sequences
	6.21.4.4 Generating Functionality Equivalent to an Array of an Empty Element

	6.21.5 What You May Need to Know About Using the Array Identifier

	6.22 Converting from a String to an XML Element
	6.22.1 How To Convert from a String to an XML Element

	6.23 Understanding Document-Style and RPC-Style WSDL Differences
	6.23.1 How To Use RPC-Style Files

	6.24 Manipulating SOAP Headers in BPEL
	6.24.1 How to Receive SOAP Headers in BPEL
	6.24.2 How to Send SOAP Headers in BPEL

	6.25 Declaring Extension Namespaces in BPEL 2.0
	6.25.1 How to Declare Extension Namespaces
	6.25.2 What Happens When You Create an Extension

	7 Invoking a Synchronous Web Service from a BPEL Process
	7.1 Introduction to Invoking a Synchronous Web Service
	7.2 Invoking a Synchronous Web Service
	7.2.1 How to Invoke a Synchronous Web Service
	7.2.1.1 How Does the BPEL Process Work

	7.2.2 What Happens When You Invoke a Synchronous Web Service
	7.2.2.1 Partner Link in the BPEL Code
	7.2.2.2 Partner Link Type and Port Type in the BPEL Code
	7.2.2.3 Invoke Activity for Performing a Request
	7.2.2.4 Synchronous Invocation in BPEL Code

	7.3 Specifying Transaction Timeout Values in Durable Synchronous Processes
	7.3.1 How To Specify Transaction Timeout Values
	7.3.2 What You May Need to Know About SyncMaxWaitTime and Durable Synchronous Requests Not Timing Out

	7.4 Calling a One-Way Mediator with a Synchronous BPEL Process

	8 Invoking an Asynchronous Web Service from a BPEL Process
	8.1 Introduction to Invoking an Asynchronous Web Service
	8.2 Invoking an Asynchronous Web Service
	8.2.1 How to Invoke an Asynchronous Web Service
	8.2.1.1 Adding a Partner Link for an Asynchronous Service
	8.2.1.2 Adding an Invoke Activity
	8.2.1.3 Adding a Receive Activity
	8.2.1.4 Performing Additional Activities

	8.2.2 What Happens When You Invoke an Asynchronous Web Service
	8.2.2.1 portType Section of the WSDL File
	8.2.2.2 partnerLinkType Section of the WSDL File
	8.2.2.3 Partner Links Section in the BPEL File
	8.2.2.4 Composite Application File
	8.2.2.5 Invoke and Receive Activities
	8.2.2.6 createInstance Attribute for Starting a New Instance
	8.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous Processes
	8.2.2.8 Multiple Runtime Endpoint Locations

	8.2.3 What You May Need to Know About Midprocess Receive Activities Consuming Messages After Timing Out
	8.2.4 What You May Need to Know About Multiple Client Components Invoking a Composite
	8.2.5 What You May Need to Know About Limitations on BPEL 2.0 IMA Support
	8.2.6 What Happens When You Specify a Conversation ID
	8.2.6.1 bpelx:conversationId in BPEL 1.1
	8.2.6.2 bpelx:conversationId in BPEL 2.0

	8.3 Routing Callback Messages to the Correct Endpoint when Multiple Receive or Pick Activities Use the Same Partner Link
	8.3.1 How to Route Callback Messages to the Correct Endpoint when Multiple Receive and Pick Activities Use the Same Partner Link

	8.4 Managing Idempotence at the Partner Link Operation Level
	8.4.1 How to Manage Idempotence at the Partner Link Operation Level

	8.5 Creating a Dynamic Partner Link at Design Time for Use at Runtime
	8.5.1 How To Create a Dynamic Partner Link at Design Time for Use at Runtime

	8.6 Overriding Security Certificates when Invoking Dynamic Partner Links
	8.7 Overriding WSDL Files of Dynamic Partner Links
	8.8 Using WS-Addressing in an Asynchronous Service
	8.8.1 How to Use WS-Addressing in an Asynchronous Service
	8.8.1.1 Using TCP Tunneling to View Messages Exchanged Between Programs
	8.8.1.1.1 Setting Up a TCP Listener for Synchronous Services
	8.8.1.1.2 Setting Up a TCP Listener for Asynchronous Services

	9 Using Correlation Sets and Message Aggregation
	9.1 Introduction to Correlation Sets in an Asynchronous Service
	9.1.1 Scenarios for Using Correlation Sets
	9.1.2 Understanding Correlation Set Contents and Concepts
	9.1.3 Overview of Correlation Set Creation

	9.2 Creating Correlation Sets in Oracle JDeveloper
	9.2.1 How to Create a Correlation Set with the Correlation Wizard
	9.2.2 How to Manually Create Correlation Sets From the Correlations Tab
	9.2.2.1 Step 1: Creating a Project
	9.2.2.2 Step 2: Configuring Partner Links and File Adapter Services
	9.2.2.2.1 Creating an Initial Partner Link and File Adapter Service
	9.2.2.2.2 Creating a Second Partner Link and File Adapter Service
	9.2.2.2.2.1 Creating a Third Partner Link and File Adapter Service

	9.2.2.3 Step 3: Creating Three Receive Activities
	9.2.2.3.1 Creating an Initial Receive Activity
	9.2.2.3.2 Creating a Second Receive Activity
	9.2.2.3.2.1 Creating a Third Receive Activity

	9.2.2.4 Step 4: Creating Correlation Sets
	9.2.2.4.1 Creating an Initial Correlation Set
	9.2.2.4.2 Creating a Second Correlation Set

	9.2.2.5 Step 5: Associating Correlation Sets with Receive Activities
	9.2.2.5.1 Associating the First Correlation Set with a Receive Activity
	9.2.2.5.2 Associating the Second Correlation Set with a Receive Activity
	9.2.2.5.3 Associating the Third Correlation Set with a Receive Activity

	9.2.2.6 Step 6: Creating Property Aliases
	9.2.2.6.1 Creating Property Aliases for NameCorr
	9.2.2.6.2 Creating Property Aliases for IDCorr

	9.2.2.7 Step 7: Reviewing WSDL File Content

	9.2.3 What You May Need to Know About Conversion IDs and Different Composite Revisions
	9.2.4 What You May Need to Know About Setting Correlations for an IMA Using a fromParts Element With Multiple Parts

	9.3 Routing Messages to the Same Instance
	9.3.1 How to Configure BPEL Process Instance Creation
	9.3.2 How to Use the Same Operation in Entry and Midprocess Receive Activities
	9.3.3 How to Route a Message to a New or Existing Instance when Using Correlation Sets

	10 Using Parallel Flow in a BPEL Process
	10.1 Introduction to Parallel Flows in BPEL Processes
	10.1.1 What You May Need to Know About the Execution of Parallel Flow Branches in a Single Thread

	10.2 Creating a Parallel Flow
	10.2.1 How to Create a Parallel Flow
	10.2.2 What Happens When You Create a Parallel Flow
	10.2.3 Synchronizing the Execution of Activities in a Flow Activity
	10.2.4 How to Create Synchronization Between Activities Within a Flow Activity
	10.2.5 What Happens When You Create Synchronization Between Activities Within a Flow Activity
	10.2.6 What You May Need to Know About Join Conditions in Target Activities

	10.3 Customizing the Number of Parallel Branches
	10.3.1 Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0
	10.3.1.1 How to Create a forEach Activity
	10.3.1.2 What Happens When You Create a forEach Activity

	10.3.2 Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1
	10.3.2.1 How to Create a flowN Activity
	10.3.2.2 What Happens When You Create a FlowN Activity

	11 Using Conditional Branching in a BPEL Process
	11.1 Introduction to Conditional Branching
	11.2 Defining Conditional Branching with the If or Switch Activity
	11.2.1 Defining Conditional Branching with the If Activity in BPEL 2.0
	11.2.1.1 How to Create an If Activity
	11.2.1.2 What Happens When You Create an If Activity

	11.2.2 Defining Conditional Branching with the Switch Activity in BPEL 1.1
	11.2.2.1 How to Create a Switch Activity
	11.2.2.2 What Happens When You Create a Switch Activity

	11.3 Defining Conditional Branching with the While Activity
	11.3.1 How To Create a While Activity
	11.3.2 What Happens When You Create a While Activity

	11.4 Defining Conditional Branching with the repeatUntil Activity
	11.4.1 How to Create a repeatUntil Activity
	11.4.2 What Happens When You Create a repeatUntil Activity

	11.5 Specifying XPath Expressions to Bypass Activity Execution
	11.5.1 How to Specify XPath Expressions to Bypass Activity Execution
	11.5.2 What Happens When You Specify XPath Expressions to Bypass Activity Execution

	12 Using Fault Handling in a BPEL Process
	12.1 Introduction to a Fault Handler
	12.2 Introduction to BPEL Standard Faults
	12.2.1 BPEL 1.1 Standard Faults
	12.2.2 BPEL 2.0 Standard Faults
	12.2.2.1 Fault Handling Order of Precedence in BPEL 2.0

	12.3 Introduction to the Business and Runtime Fault Categories of BPEL Faults
	12.3.1 Business Faults
	12.3.2 Runtime Faults
	12.3.2.1 bindingFault
	12.3.2.2 remoteFault
	12.3.2.3 replayFault

	12.3.3 How to Add and Propagate Fault Handling in a Synchronous BPEL Process
	12.3.3.1 Edit the Schema and WSDL Files
	12.3.3.2 Add a Fault Handler
	12.3.3.3 Create a Fault Response Variable
	12.3.3.4 Add an Assign Activity to the Catch Activity Branch
	12.3.3.5 Add a Reply Activity to the Catch Activity Branch

	12.4 Handling Faults with the Fault Management Framework
	12.4.1 Understanding How the Fault Policy Binding Resolution Works
	12.4.2 How to Design a Fault Policy for Automated Fault Recovery with the Fault Policy Wizard
	12.4.2.1 Step 1: Defining Property Sets
	12.4.2.2 Step 2: Defining Alerts
	12.4.2.3 Step 3: Defining Actions
	12.4.2.4 Step 4: Defining Fault Names and Policies
	12.4.2.5 Step 5: Defining the Fault Policy Bindings for the Fault Policy

	12.4.3 How to Manually Design a Fault Policy for Automated Fault Recovery
	12.4.3.1 Manually Creating a Fault Policy File for Automated Fault Recovery
	12.4.3.2 Associating a Fault Policy with Fault Policy Binding
	12.4.3.3 Additional Fault Policy and Fault Policy Binding File Samples
	12.4.3.4 Designing a Fault Policy with Multiple Rejection Handlers

	12.4.4 How to Execute a Fault Policy
	12.4.5 How to Use a Java Action Fault Policy
	12.4.6 How to Design Fault Policies for Oracle BPM Suite
	12.4.7 What You May Need to Know About Designing a Fault Policy in a Synchronous BPEL Process
	12.4.8 What You May Need to Know About Fault Management Behavior When the Number of Instance Retries is Exceeded
	12.4.9 What You May Need to Know About Binding Level Retry Execution Within Fault Policy Retries

	12.5 Catching BPEL Runtime Faults
	12.5.1 How to Catch BPEL Runtime Faults

	12.6 Getting Fault Details with the getFaultAsString XPath Extension Function
	12.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function

	12.7 Throwing Internal Faults with the Throw Activity
	12.7.1 How to Create a Throw Activity
	12.7.2 What Happens When You Create a Throw Activity

	12.8 Rethrowing Faults with the Rethrow Activity
	12.8.1 How to Create a Rethrow Activity
	12.8.2 What Happens When You Rethrow Faults

	12.9 Returning External Faults
	12.9.1 How to Return a Fault in a Synchronous Interaction
	12.9.2 How to Return a Fault in an Asynchronous Interaction

	12.10 Managing a Group of Activities with a Scope Activity
	12.10.1 How to Create a Scope Activity
	12.10.2 How to Add Descriptive Notes and Images to a Scope Activity
	12.10.3 What Happens After You Create a Scope Activity
	12.10.4 What You May Need to Know About Scopes
	12.10.5 How to Use a Fault Handler Within a Scope
	12.10.6 What You May Need to Know About the idempotent Property and Fault Handling
	12.10.7 How to Create a Catch Activity in a Scope
	12.10.8 What Happens When You Create a Catch Activity in a Scope
	12.10.9 How to Insert No-Op Instructions into a Business Process with an Empty Activity
	12.10.10 What Happens When You Create an Empty Activity

	12.11 Re-executing Activities in a Scope Activity with the Replay Activity
	12.11.1 How to Create a Replay Activity
	12.11.2 What Happens When You Create a Replay Activity

	12.12 Using Compensation After Undoing a Series of Operations
	12.12.1 Using a Compensate Activity
	12.12.2 How to Create a Compensate Activity
	12.12.3 What Happens When You Create a Compensate Activity
	12.12.4 Using a compensateScope Activity in BPEL 2.0
	12.12.5 How to Create a compensateScope Activity
	12.12.6 What Happens When You Create a compensateScope Activity

	12.13 Stopping a Business Process Instance with a Terminate or Exit Activity
	12.13.1 Immediately Ending a Business Process Instance with the Exit Activity in BPEL 2.0
	12.13.1.1 How to Create an Exit Activity
	12.13.1.2 What Happens When You Create an Exit Activity

	12.13.2 Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1
	12.13.2.1 How to Create a Terminate Activity
	12.13.2.2 What Happens When You Create a Terminate Activity

	12.14 Throwing Faults with Assertion Conditions
	12.14.1 How to Create Assertion Conditions
	12.14.1.1 To create assertion conditions in invoke activities, receive activities, reply activities, and OnMessage branches:
	12.14.1.2 To create an assertion condition in standalone assert activities:

	12.14.2 How to Disable Assertions
	12.14.3 What Happens When You Create Assertion Conditions
	12.14.4 What You May Need to Know About Assertion Conditions
	12.14.4.1 bpelx:postAssert and bpelx:preAssert Extensions
	12.14.4.2 Use of faultName and message Attributes
	12.14.4.3 Multiple Assertions
	12.14.4.4 Use of Built-in and Custom XPath Functions and $variable References
	12.14.4.5 Assertion Condition Evaluation Logging of Events to the Instance Audit Trail
	12.14.4.6 Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault
	12.14.4.7 Assertion Conditions in a Standalone Assert Activity

	12.14.5 What You May Need to Know About Postassertion and Preassertion Condition Schemas and Syntax

	12.15 Classifying SOAP Faults as Retriable

	13 Transaction and Fault Propagation Semantics in BPEL Processes
	13.1 Introduction to Transaction Semantics
	13.1.1 Oracle BPEL Process Manager Transaction Semantics
	13.1.1.1 BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction Set to requiresNew
	13.1.1.2 BPELCaller Process Calls a BPELCallee Process That Has bpel.config.transaction Set to required

	13.2 Introduction to Execution of One-way Invocations
	13.3 Executing a Business Process Without a Transaction
	13.3.1 When Should I Use a BPEL Process Without a Transaction?
	13.3.2 Guidelines for Executing Without a Transaction
	13.3.3 How to Create a Synchronous BPEL Process Without a Transaction
	13.3.4 How to Create an Asynchronous BPEL Process Without a Transaction

	13.4 Using In-Memory SOA to Improve System Performance
	13.4.1 Persistence Settings for In-Memory Flow Instances
	13.4.2 Steps to Enable In-Memory SOA
	13.4.2.1 Enabling the In-Memory SOA Flag
	13.4.2.2 Designing Your Business Process to Run In-Memory
	13.4.2.2.1 Setting an Existing Business Process to Be Non-Transactional
	13.4.2.2.2 Setting the Completion Persist Policy for an Existing BPEL Process

	14 Incorporating Java and Java EE Code in a BPEL Process
	14.1 Introduction to Java and Java EE Code in BPEL Processes
	14.2 Incorporating Java and Java EE Code in BPEL Processes
	14.2.1 How to Wrap Java Code as a SOAP Service
	14.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service
	14.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag
	14.2.4 How to Embed Java Code Snippets in a BPEL 2.0 Process
	14.2.5 How to Use an XML Facade to Simplify DOM Manipulation
	14.2.6 How to Use bpelx:exec Built-in Methods
	14.2.7 How to Use Java Code Wrapped in a Service Interface

	14.3 Adding Custom Classes and JAR Files
	14.3.1 How to Add Custom Classes and JAR Files
	14.3.1.1 To Add JARs to BpelcClasspath:
	14.3.1.2 To Add Custom Classes:
	14.3.1.3 To Add Custom JARs:

	14.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper
	14.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper
	14.4.2 What You May Need to Know About Using thread.sleep() in a Java Embedding Activity

	14.5 Embedding Service Data Objects with bpelx:exec
	14.6 Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager
	14.6.1 How to Configure the BPEL Connection Manager Class to Take Precedence

	15 Using Events and Timeouts in BPEL Processes
	15.1 Introduction to Event and Timeout Concepts
	15.2 Selecting Between Continuing or Waiting on a Process with a Pick Activity
	15.2.1 How To Create a Pick Activity
	15.2.2 What Happens When You Create a Pick Activity
	15.2.3 What You May Need to Know About Simultaneous onMessage Branches in BPEL 2.0

	15.3 Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities
	15.3.1 How to Set Timeouts in Receive Activities
	15.3.2 What Happens When You Set Timeouts in Receive Activities
	15.3.3 What You May Need to Know About Setting Timeouts for Request-Reply and In-Only Operations
	15.3.3.1 Timeout Settings Relative from When the Activity is Invoked
	15.3.3.2 Timeout Settings as an Absolute Date Time
	15.3.3.3 Timeout Settings Computed Dynamically with an XPath Expression
	15.3.3.4 bpelx:timeout Fault Thrown During an Activity Timeout
	15.3.3.5 Event Added to the BPEL Instance Audit Trail During an Activity Timeout
	15.3.3.6 Recoverable Timeout Activities During a Server Restart (Refresh Expiration Alarm Table)

	15.4 Setting an Expiration Time with a Wait Activity
	15.4.1 How To Specify the Minimum Wait Time
	15.4.2 How to Create a Wait Activity
	15.4.3 What Happens When You Create a Wait Activity

	15.5 Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0
	15.5.1 How to Create an onEvent Branch in a Scope Activity
	15.5.2 What Happens When You Create an OnEvent Branch

	15.6 Setting Timeouts for Durable Synchronous Processes
	15.7 Invoking an Oracle Enterprise Scheduler Job in a BPEL Process
	15.7.1 How to Create Oracle Database and SOA-MDS Connections
	15.7.2 How to Create a Schedule Job Activity
	15.7.3 How to Attach Security Policies to the Service and Reference Binding Components

	16 Coordinating Master and Detail Processes
	16.1 Introduction to Master and Detail Process Coordinations
	16.1.1 BPEL File Definition for the Master Process
	16.1.1.1 Correlating a Master Process with Multiple Detail Processes

	16.1.2 BPEL File Definition for Detail Processes

	16.2 Defining Master and Detail Process Coordination in Oracle JDeveloper
	16.2.1 How to Create a Master Process
	16.2.2 How to Create a Detail Process
	16.2.3 How to Create an Invoke Activity

	17 Using the Notification Service
	17.1 Introduction to the Notification Service
	17.2 Introduction to Notification Channel Setup
	17.3 Selecting Notification Channels During BPEL Process Design
	17.3.1 How To Configure the Email Notification Channel
	17.3.1.1 Setting Email Attachments
	17.3.1.2 Formatting the Body of an Email Message as HTML
	17.3.1.3 Using Dynamic HTML for Message Content Requires a CDATA Function

	17.3.2 How to Configure the IM Notification Channel
	17.3.3 How to Configure the SMS Notification Channel
	17.3.4 How to Configure the Voice Notification Channel
	17.3.5 How to Select Email Addresses and Telephone Numbers Dynamically
	17.3.6 How to Select Notification Recipients by Browsing the User Directory

	17.4 Allowing the End User to Select Notification Channels
	17.4.1 How to Allow the End User to Select Notification Channels
	17.4.1.1 How to Create and Send Headers for Notifications

	18 Using Oracle BPEL Process Manager Sensors and Analytics
	18.1 Introduction to Oracle BPEL Process Manager Sensors
	18.1.1 Composite Sensors

	18.2 Configuring Sensors and Sensor Actions in Oracle JDeveloper
	18.2.1 How to Access Sensors and Sensor Actions
	18.2.2 How to Configure Activity, Variable, and Fault Sensors
	18.2.2.1 To Configure an Activity Sensor:
	18.2.2.2 To Configure a Variable Sensor:
	18.2.2.3 To Configure a Fault Sensor:

	18.2.3 How to Configure Sensor Actions
	18.2.4 How to Publish to Remote Topics and Queues
	18.2.5 How to Create a Custom Data Publisher
	18.2.6 How to Register the Sensors and Sensor Actions in the composite.xml File

	18.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control
	18.4 Configuring BPEL Process Analytics
	18.4.1 Introduction to Business Indicators
	18.4.2 Introduction to Standard Sampling Points
	18.4.3 Introduction to User-Defined Sampling Points
	18.4.4 How to Access Analytics View
	18.4.4.1 How to Define Business Indicators
	18.4.4.1.1 Defining Counters
	18.4.4.1.2 Defining Dimensions
	18.4.4.1.3 Defining Measures

	18.4.4.2 How to Define Measurements
	18.4.4.2.1 How to Define a Counter Mark
	18.4.4.2.2 How to Define an Interval Start
	18.4.4.2.3 How to Define an Interval Stop
	18.4.4.2.4 How to Define a Single Mark

	18.4.4.3 How to Configure Composite-Level Analytic Sampling Points
	18.4.4.4 How to Configure Process-Level Analytic Sampling Points

	18.4.5 How to Edit Business Indicators in the Business Indicator Overview Editor
	18.4.6 Deploying BPEL Analytics
	18.4.7 Viewing BPEL Analytics at Runtime

	Part III Using the Oracle Mediator Service Component
	19 Getting Started with Oracle Mediator
	19.1 Introduction to Oracle Mediator
	19.2 Mediator Functionality
	19.2.1 Content-Based and Header-Based Routing
	19.2.2 Synchronous and Asynchronous Interactions
	19.2.3 Sequential and Parallel Routing of Messages
	19.2.4 Message Resequencing
	19.2.5 Data Transformation
	19.2.6 Payload Validation
	19.2.7 Java Callouts
	19.2.8 Event Handling
	19.2.9 Dynamic Routing
	19.2.10 Error Handling
	19.2.11 Sending Messages Back to the Caller (Echo)
	19.2.12 Multiple Part Messages

	19.3 Creating a Mediator
	19.3.1 How to Create a Mediator
	19.3.1.1 To Create a Composite Application with a Mediator:
	19.3.1.2 To Create a Mediator in an Existing Composite Application:
	19.3.1.3 To create a new project with a Mediator:
	19.3.1.4 To create a Mediator in an existing project:

	19.4 Introduction to the Mediator Editor Environment
	19.5 Configuring the Mediator Interface Definition
	19.5.1 How to Configure the Mediator Interface Definition
	19.5.2 What Happens When You Create a Mediator
	19.5.2.1 Without an Interface Definition
	19.5.2.2 With a WSDL-Based Interface
	19.5.2.3 With a One-Way Interface Definition
	19.5.2.4 With a Synchronous Interface Definition
	19.5.2.5 With an Asynchronous Interface Definition
	19.5.2.6 With an Event Subscription

	19.6 Defining an Interface for a Mediator
	19.6.1 How to Define an Interface for a Mediator
	19.6.1.1 To Subscribe to Events:
	19.6.1.2 To Define Services for a Mediator Using a Wire:
	19.6.1.3 To Define Services for a Mediator in the Mediator Editor:

	19.7 Generating a WSDL File
	19.7.1 How to Generate a WSDL File
	19.7.1.1 To generate a WSDL file for a one-way interface from an XSD file:
	19.7.1.2 To generate a WSDL file for a synchronous interface from an XSD file:
	19.7.1.3 To generate a WSDL file for an asynchronous interface from an XSD file:

	19.8 Specifying Validation and Priority Properties
	19.9 Modifying a Mediator Service Component
	19.9.1 How To Modify Mediator Operations
	19.9.2 How To Modify Mediator Event Subscriptions

	20 Creating Oracle Mediator Routing Rules
	20.1 Introduction to Routing Rules
	20.1.1 Static Routing Rules
	20.1.1.1 Types of Static Rules
	20.1.1.2 Static Routing Rule Components

	20.1.2 Dynamic Routing Rules
	20.1.3 Sequential and Parallel Execution
	20.1.3.1 Basic Principles of Sequential Routing Rules
	20.1.3.2 Basic Principles of Parallel Routing Rules
	20.1.3.3 Finer Control Over Thread Allocation in Parallel Routing

	20.2 Resequencing Rules
	20.3 Defining Routing Rules
	20.3.1 How To Access the Routing Rules Section
	20.3.1.1 From the SOA Composite Editor:
	20.3.1.2 From the Applications window:

	20.3.2 How to Create Static Routing Rules
	20.3.2.1 How to Specify Mediator Services or Events
	20.3.2.1.1 To invoke a service:
	20.3.2.1.2 To trigger an event:
	20.3.2.1.3 To echo a service:

	20.3.2.2 What You May Need to Know About Echoing a Service
	20.3.2.3 How to Specify Sequential or Parallel Execution
	20.3.2.4 How to Configure Response Messages
	20.3.2.5 How to Handle Premature Callbacks
	20.3.2.6 How to Handle Multiple Callbacks
	20.3.2.7 How to Handle Faults
	20.3.2.7.1 To define an additional fault routing:
	20.3.2.7.2 To remove a fault routing section:

	20.3.2.8 How to Specify an Expression for Filtering Messages
	20.3.2.8.1 To specify an expression for filtering messages:
	20.3.2.8.2 To specify a filter expression on a message payload:

	20.3.2.9 How to Translate Between Native XSD Formats and XML Formats
	20.3.2.10 How to Use Inbound Translation
	20.3.2.11 How to Use Outbound Translation
	20.3.2.12 How to Create XSLT Transformations
	20.3.2.12.1 To create a transformation:
	20.3.2.12.2 To add user-defined extension functions:

	20.3.2.13 How to Create XQuery Transformations
	20.3.2.13.1 To create an XQuery transformation:
	20.3.2.13.2 To edit an XQuery transformation:

	20.3.2.14 How to Assign Values
	20.3.2.14.1 To copy a source node to a target node:
	20.3.2.14.2 To assign complex expressions:
	20.3.2.14.3 To assign constant values and XML fragments:

	20.3.2.15 What You May Need to Know About the Assign Activity
	20.3.2.16 How to Access Headers for Filters and Assignments
	20.3.2.16.1 Manual Expression Building for Accessing Headers for Filters and Assignments
	20.3.2.16.2 Manual Expression Building for Accessing Properties for Filters and Assignments

	20.3.2.17 How to Use Semantic Validation
	20.3.2.18 How to Work with Attachments
	20.3.2.19 How to Use Java Callouts
	20.3.2.19.1 To make Java callout classes available:
	20.3.2.19.2 To enter the Java class for the callout:
	20.3.2.19.3 To set the payload root element (when using a filter expression):
	20.3.2.19.4 To enable domain value map and cross reference functions:
	20.3.2.19.5 Mediator Java Callout API
	20.3.2.19.6 Sample Java Callout Class

	20.3.3 How to Create Dynamic Routing Rules
	20.3.3.1 How to Dynamically Override a Static Routing Rule Using a DVM
	20.3.3.1.1 To override a static route using DVM:
	20.3.3.1.2 To add a new domain to the DVM:
	20.3.3.1.3 To add a new row to the DVM:
	20.3.3.1.4 To delete a domain from the DVM:
	20.3.3.1.5 To delete a row from the DVM:

	20.3.3.2 How to Dynamically Override a Static Routing Rule Using a Decision Component
	20.3.3.2.1 To override a static route using a Decision Component:
	20.3.3.2.2 To edit a decision component:

	20.3.3.3 How to Remove an Existing Dynamic Routing Rule

	20.3.4 What You May Need to Know About Using Dynamic Routing Rules
	20.3.5 How to Define Default Routing Rules
	20.3.5.1 Default Rule Scenarios
	20.3.5.2 Default Rule Target
	20.3.5.3 Default Rule: Validation, Transformation, and Assign Functionality
	20.3.5.4 Default Rule: Java Callouts
	20.3.5.5 Default Rule: Mediator .mplan File

	20.4 Mediator Routing Use Cases

	21 Working with Multiple Part Messages in Oracle Mediator
	21.1 Introduction to Mediator Multipart Message Support
	21.2 Working with Multipart Request Messages
	21.2.1 How to Specify Filter Expressions for Multipart Request Messages
	21.2.2 How to Add Validations for Multipart Request Messages
	21.2.3 How to Create Transformations for Multipart Request Messages
	21.2.4 How to Assign Values for Multipart Request Messages
	21.2.5 How to Work with Multipart Reply, Fault, and Callback Source Messages
	21.2.6 How to Work with Multipart Target Messages

	22 Using Oracle Mediator Error Handling
	22.1 Introduction to Mediator Error Handling
	22.1.1 Fault Policies
	22.1.1.1 Conditions
	22.1.1.2 Actions
	22.1.1.2.1 Retry Action
	22.1.1.2.2 Rethrow Action
	22.1.1.2.3 Human Intervention Action
	22.1.1.2.4 Abort Action
	22.1.1.2.5 Java Code Action

	22.1.2 Fault Bindings
	22.1.3 Error Groups in Mediator

	22.2 Using Error Handling with Mediator
	22.2.1 How to Use Error Handling for a Mediator Service Component
	22.2.2 What Happens at Runtime

	22.3 Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control
	22.4 Error Handling XML Schema Definition Files
	22.4.1 Schema Definition File for fault-policies.xml
	22.4.2 Schema Definition File for fault-bindings.xml

	23 Resequencing in Oracle Mediator
	23.1 Introduction to the Resequencer
	23.1.1 Groups and Sequence IDs
	23.1.2 Identification of Groups and Sequence IDs

	23.2 Resequencing Order
	23.2.1 Standard Resequencer
	23.2.1.1 Overview of the Standard Resequencer
	23.2.1.2 Information Required for Standard Resequencing
	23.2.1.3 Example of the Standard Resequencer

	23.2.2 FIFO Resequencer
	23.2.2.1 Overview of the FIFO Resequencer
	23.2.2.2 Information Required for FIFO Resequencing
	23.2.2.3 Example of the FIFO Resequencer

	23.2.3 Best Effort Resequencer
	23.2.3.1 Overview of the Best Effort Resequencer
	23.2.3.2 Best Effort Resequencer Message Selection Strategies
	23.2.3.2.1 Maximum Rows Selected
	23.2.3.2.2 Time Window

	23.2.3.3 Best Effort Resequencer Message Delivery
	23.2.3.4 Information Required for Best Effort Resequencing
	23.2.3.5 Example of Best Effort Resequencing Based on Maximum Rows
	23.2.3.6 Example of Best Effort Resequencing Based on a Time Window

	23.3 Configuring the Resequencer
	23.3.1 How to Specify the Resequencing Level
	23.3.2 How to Configure the Resequencing Strategy
	23.3.2.1 To configure a standard resequencer:
	23.3.2.2 To configure a FIFO resequencer:
	23.3.2.3 To configure a best effort resequencer:

	24 Understanding Message Exchange Patterns of an Oracle Mediator
	24.1 One-way Message Exchange Patterns
	24.1.1 The one.way.returns.fault Property
	24.1.1.1 To add the one.way.returns.fault property:

	24.2 Request-Reply Message Exchange Patterns
	24.3 Request-Reply-Fault Message Exchange Patterns
	24.4 Request-Callback Message Exchange Patterns
	24.5 Request-Reply-Callback Message Exchange Patterns
	24.6 Request-Reply-Fault-Callback Message Exchange Patterns

	Part IV Using the Business Rules Service Component
	25 Getting Started with Oracle Business Rules
	25.1 Introduction to the Business Rule Service Component
	25.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks

	25.2 Overview of Rules Designer Editor Environment
	25.2.1 Applications Window
	25.2.2 Rules Designer Window
	25.2.3 Structure Window
	25.2.4 Business Rule Validation Log Window

	25.3 Introduction to Creating and Editing Business Rules
	25.3.1 How to Create Business Rules Components
	25.3.2 Working with Business Rules in Rules Designer

	25.4 Adding Business Rules to a BPEL Process
	25.4.1 How to Add Inputs for Business Rule
	25.4.2 How to Add Outputs for Business Rule
	25.4.3 How to Set Options and Create Decision Service and Business Rule Dictionary
	25.4.4 What Happens When You Add Business Rules to a BPEL Process
	25.4.5 What Happens When You Create a Business Rules Dictionary
	25.4.6 What You May Need to Know About Invoking Business Rules in a BPEL Process
	25.4.7 What You May Need to Know About Decision Component Stateful Operation

	25.5 Adding Business Rules to a SOA Composite Application
	25.5.1 How to Add Business Rules to a SOA Composite Application
	25.5.1.1 How to Add Inputs to a Business Rule
	25.5.1.2 How to Add Output to a Business Rule
	25.5.1.3 How to Set Options and Create Decision Service and Business Rules Dictionary

	25.5.2 How to Select and Modify a Decision Function in a Business Rule Component

	25.6 Running Business Rules in a Composite Application
	25.6.1 What You May Need to Know About Testing a Standalone Decision Service Component

	25.7 Using Business Rules with Oracle ADF Business Components Fact Types

	26 Using Declarative Components and Task Flows
	26.1 Introduction to Declarative Components and Task Flows
	26.2 Introduction to the Oracle Business Rules Editor Declarative Component
	26.2.1 Using the Oracle Business Rules Editor Component
	26.2.2 How to Create and Run a Sample Application by Using the Rules Editor Component
	26.2.2.1 How to Create the RuleSetModel Object
	26.2.2.2 How to Create the .jspx File
	26.2.2.3 How to Refer to the Oracle Rules Shared Libraries
	26.2.2.4 How to Run the Sample Application

	26.2.3 How to Deploy a Rules Editor Application to a Standalone WLS
	26.2.4 What You May Need to Know About the Custom Permissions for the Rules Editor Component
	26.2.5 What You May Need to Know About the Supported Tags of the Rules Editor Component

	26.3 Introduction to the Oracle Business Rules Dictionary Editor Declarative Component
	26.3.1 Using the Oracle Business Rules Dictionary Component
	26.3.2 How to Create and Run a Sample Application by Using the Rules Dictionary Editor Component
	26.3.2.1 How to Create the RuleDictionaryModel Object
	26.3.2.2 How to Create .jspx File for the Rules Dictionary Editor Component
	26.3.2.3 How to Refer the oracle.rules and the oracle.soa.rules_dict_dc.webapp Shared Libraries
	26.3.2.4 How to Run the Sample Rules Dictionary Editor Application

	26.3.3 How to Deploy a Rules Dictionary Application to a Standalone Oracle WebLogic Server
	26.3.4 What You May Need to Know About the Supported Attributes of the Rules Dictionary Editor Component

	26.4 Introduction to the Oracle Business Rules Dictionary Editor Task Flow
	26.4.1 Using the Oracle Business Rules Dictionary Task Flow
	26.4.2 How to Create and Run a Sample Application By Using the Rules Dictionary Editor Task Flow
	26.4.2.1 How to Add a Rule Dictionary Editor Task Flow
	26.4.2.2 How to Edit the pagedef.xml File
	26.4.2.3 How to Refer to oracle.rules and oracle.soa.rules_dict_dc.webapp Shared Libraries
	26.4.2.4 How to Run the Sample Task Flow Application

	26.4.3 How to Deploy a Rules Dictionary Editor Task Flow Application to a Standalone Oracle WebLogic Server

	26.5 Localizing the ADF-Based Web Application
	26.6 Working with Translations
	26.6.1 Enabling Translations for Consumer of Reusable Rules UI ADF Task Flow Component
	26.6.1.1 Sample Code to Pass an Implementation of IRelatedMetadataDetails

	26.6.2 Enabling Translations for Consumer of Rules Web UI Application
	26.6.2.1 Sample Code for Creating an Instance of resourceManager

	Part V Using the Human Workflow Service Component
	27 Getting Started with Human Workflow
	27.1 Introduction to Human Workflow
	27.2 Introduction to Human Workflow Concepts
	27.2.1 Introduction to Design and Runtime Concepts
	27.2.1.1 Task Assignment and Routing
	27.2.1.1.1 Participant
	27.2.1.1.2 Participant Type
	27.2.1.1.3 Participant Assignment
	27.2.1.1.4 Ad Hoc Routing
	27.2.1.1.5 Outcome-based Completion of Routing Flow

	27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment
	27.2.1.2.1 Static Task Assignment
	27.2.1.2.2 Dynamic Task Assignment
	27.2.1.2.3 Assign tasks with Business Rules

	27.2.1.3 Task Stakeholders
	27.2.1.4 Task Deadlines
	27.2.1.5 Notifications
	27.2.1.6 Task Forms
	27.2.1.7 Advanced Concepts
	27.2.1.8 Reports and Audit Trails

	27.2.2 Introduction to the Stages of Human Workflow Design

	27.3 Introduction to Human Workflow Use Cases
	27.3.1 Task Assignment to a User or Role
	27.3.2 Use of the Various Participant Types
	27.3.3 Escalation, Expiration, and Delegation
	27.3.4 Automatic Assignment and Delegation
	27.3.5 Dynamic Assignment of Users Based on Task Content

	27.4 Introduction to Human Workflow Architecture
	27.4.1 Human Workflow Services
	27.4.2 Use of Human Task
	27.4.3 Service Engines

	27.5 Human Workflow and Business Rule Differences Between Oracle SOA Suite and Oracle BPM Suite

	28 Creating Human Tasks
	28.1 Introduction to Human Tasks
	28.1.1 Introduction to Creating a Human Task Definition
	28.1.2 Introduction to Associating the Human Task Definition with a BPEL Process
	28.1.3 Introduction to Generating the Task Form

	28.2 Creating Human Tasks
	28.2.1 How to Create a Human Task Using the SOA Composite Editor
	28.2.2 How to Create a Human Task Using Oracle BPEL Designer
	28.2.3 What Happens When You Create a Human Task

	28.3 Configuring Human Tasks
	28.4 Exiting the Human Task Editor and Saving Your Changes
	28.5 Associating Human Tasks with BPEL Processes
	28.5.1 How to Associate a Human Task with a BPEL Process
	28.5.2 What You May Need to Know About Deleting a Wire Between a Human Task and a BPEL Process
	28.5.3 How to Define the Human Task Activity Title, Initiator, Priority, and Parameter Variables
	28.5.3.1 Specifying the Task Title
	28.5.3.2 Specifying the Task Initiator and Task Priority
	28.5.3.3 Specifying Task Parameters

	28.5.4 How to Define the Human Task Activity Advanced Features
	28.5.4.1 Specifying a Scope Name and a Global Task Variable Name
	28.5.4.2 Specifying a Task Owner
	28.5.4.3 Specifying an Identification Key
	28.5.4.4 Specifying an Identity Context
	28.5.4.5 Specifying an Application Context
	28.5.4.6 Including the Task History of Other Human Tasks

	28.5.5 How to View the Generated Human Task Activity
	28.5.5.1 Invoking BPEL Callbacks

	28.5.6 What You May Need to Know About Changing the Generated Human Task Activity
	28.5.7 What You May Need to Know About Deleting a Partner Link Generated by a Human Task
	28.5.8 How to Define Outcome-Based Modeling
	28.5.8.1 Specifying Payload Updates
	28.5.8.2 Using Case Statements for Other Task Conclusions

	28.5.9 What You May Need to Know About Encoding an Attachment

	29 Configuring Human Tasks
	29.1 Accessing the Sections of the Human Task Editor
	29.2 Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context
	29.2.1 How to Specify a Task Title
	29.2.2 How to Specify a Task Description
	29.2.3 How to Specify a Task Outcome
	29.2.4 How to Specify a Task Priority
	29.2.5 How to Specify a Task Category
	29.2.6 How to Specify a Task Owner
	29.2.6.1 Specifying a Task Owner Statically Through the User Directory or a List of Application Roles
	29.2.6.2 Specifying a Task Owner Dynamically Through an XPath Expression

	29.2.7 How To Specify an Application Context

	29.3 Specifying the Task Payload Data Structure
	29.3.1 How to Specify the Task Payload Data Structure

	29.4 Assigning Task Participants
	29.4.1 How to Specify a Stage Name and Add Parallel and Sequential Blocks
	29.4.2 How to Assign Task Participants
	29.4.3 How to Configure the Single Participant Type
	29.4.3.1 Creating a Single Task Participant List
	29.4.3.1.1 Creating Participant Lists Consisting of Value-Based Names and Expressions
	29.4.3.1.2 Creating Participant Lists Consisting of Value-Based Management Chains
	29.4.3.1.3 Creating Participant Lists Consisting of Rulesets
	29.4.3.1.3.1 Viewing the Rule Dictionary

	29.4.3.2 Specifying a Time Limit for Acting on a Task
	29.4.3.3 Inviting Additional Participants to a Task
	29.4.3.4 Bypassing a Task Participant

	29.4.4 How to Configure the Parallel Participant Type
	29.4.4.1 Specifying the Voting Outcome
	29.4.4.2 Creating a Parallel Task Participant List
	29.4.4.3 Specifying a Time Limit for Acting on a Task
	29.4.4.4 Inviting Additional Participants to a Task
	29.4.4.5 Bypassing a Task Participant

	29.4.5 How to Configure the Serial Participant Type
	29.4.5.1 Creating a Serial Task Participant List
	29.4.5.2 Specifying a Time Limit for Acting on a Task
	29.4.5.3 Inviting Additional Participants to a Task
	29.4.5.4 Bypassing a Task Participant

	29.4.6 How to Configure the FYI Participant Type
	29.4.6.1 Creating an FYI Task Participant List

	29.5 Selecting a Routing Policy
	29.5.1 How to Customize Tasks Routing
	29.5.1.1 Exclude Task Creator from Approval List
	29.5.1.2 Allow All Participants to Invite Other Participants or Edit New Participants
	29.5.1.3 Allow Initiator to Add Participants
	29.5.1.4 Stopping Routing of a Task to Further Participants
	29.5.1.5 Enabling Early Completion in Parallel Subtasks
	29.5.1.6 Completing Parent Subtasks of Early Completing Subtasks

	29.5.2 How to Specify Advanced Task Routing Using Business Rules
	29.5.2.1 Introduction to Advanced Task Routing Using Business Rules
	29.5.2.2 Facts
	29.5.2.3 Action Types
	29.5.2.4 Sample Ruleset
	29.5.2.5 Linked Dictionary Support
	29.5.2.6 Creating Advanced Routing Rules

	29.5.3 How to Use External Routing
	29.5.4 How to Configure the Error Assignee and Reviewers
	29.5.4.1 How to Change Server Settings

	29.6 Specifying Multilingual Settings and Style Sheets
	29.6.1 How to Specify WordML and Other Style Sheets for Attachments
	29.6.2 How to Specify Multilingual Settings

	29.7 Specify What to Show in Task Details in the Worklist
	29.8 Escalating, Renewing, or Ending the Task
	29.8.1 Introduction to Escalation and Expiration Policy
	29.8.2 How to Specify a Policy to Never Expire
	29.8.3 How to Specify a Policy to Expire
	29.8.4 How to Extend an Expiration Policy Period
	29.8.5 How to Escalate a Task Policy
	29.8.6 How to Specify Escalation Rules
	29.8.7 How to Specify a Due Date

	29.9 Specifying Participant Notification Preferences
	29.9.1 How to Notify Recipients of Changes to Task Status
	29.9.2 How to Edit the Notification Message
	29.9.3 How to Set Up Reminders
	29.9.4 How to Change the Character Set Encoding
	29.9.5 How to Secure Notifications to Exclude Details
	29.9.6 How to Display the Oracle BPM Worklist URL in Notifications
	29.9.7 How to Make Email Messages Actionable
	29.9.8 How to Send Task Attachments with Email Notifications
	29.9.9 How to Send Email Notifications to Groups and Application Roles
	29.9.10 How to Customize Notification Headers

	29.10 Specifying Access Policies and Task Actions on Task Content
	29.10.1 Introduction to Access Rules
	29.10.2 Specifying User Privileges for Acting on Task Content
	29.10.3 Specifying Actions for Acting Upon Tasks
	29.10.4 How to Specify a Workflow Digital Signature Policy
	29.10.4.1 Specifying a Certificate Authority

	29.11 Specifying Restrictions on Task Assignments
	29.11.1 How to Specify Restrictions on Task Assignments

	29.12 Specifying Java or Business Event Callbacks
	29.12.1 Specifying Java Callbacks
	29.12.2 Specifying Business Event Callbacks
	29.12.3 How to Specify Task and Routing Customizations in BPEL Callbacks
	29.12.4 How to Disable BPEL Callbacks

	30 Designing Task Forms for Human Tasks
	30.1 Introduction to the Task Form
	30.1.1 What You May Need to Know About Task Forms: Time Zone Conversion

	30.2 Associating the Task Flow with the Task Service
	30.3 Creating an ADF Task Flow Based on a Human Task
	30.3.1 How To Create an ADF Task Flow from the Human Task Editor
	30.3.2 How To Create an ADF Task Flow Based on a Human Task
	30.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task
	30.3.4 What You May Need to Know About Having Multiple ADF Task Flows That Contain the Same Element with Different Meta-attributes

	30.4 Creating a Task Form
	30.4.1 How To Create an Autogenerated Task Form
	30.4.2 How to Register the Library JAR File for Custom Page Templates
	30.4.3 How To Create a Task Form Using the Custom Task Form Wizard
	30.4.4 How To Create a Task Form Using the Complete Task with Payload Drop Handler
	30.4.4.1 Complete Task with Payload
	30.4.4.2 Complete Task without Payload
	30.4.4.3 Task Details for Email
	30.4.4.4 Task Header
	30.4.4.5 Task Actions
	30.4.4.6 Task History
	30.4.4.7 Task Comments and Attachments

	30.4.5 How To Create Task Form Regions Using Individual Drop Handlers
	30.4.6 How To Add the Payload to the Task Form
	30.4.7 What Happens When You Create a Task Form

	30.5 Refreshing Data Controls When the Task XSD Changes
	30.6 Securing the Task Flow Application
	30.7 Creating an Email Notification
	30.7.1 How To Create an Email Notification
	30.7.1.1 Creating a Task Flow with a Router
	30.7.1.2 Creating an Email Notification Page

	30.7.2 What Happens When You Create an Email Notification Page

	30.8 Deploying a Composite Application with a Task Flow
	30.8.1 How To Deploy a Composite Application with a Task Flow
	30.8.2 How To Redeploy the Task Form
	30.8.3 How To Deploy a Task Flow as a Separate Application
	30.8.4 How To Deploy a Task Form to a non-SOA Oracle WebLogic Server
	30.8.4.1 Before Deploying the Task Form: Port Changes
	30.8.4.2 Configuring Unique Cookie Context Paths for the Session Tracking Cookies
	30.8.4.3 Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server
	30.8.4.4 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server
	30.8.4.5 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server
	30.8.4.6 Including a Grant for bpm-services.jar
	30.8.4.7 Deploying the Application

	30.8.5 What Happens When You Deploy the Task Form
	30.8.6 What You May Need to Know About Undeploying a Task Flow

	30.9 Displaying a Task Form in the Worklist
	30.10 Displaying a Task in an Email Notification
	30.10.1 Changing the Text for the Worklist Application in Task Notifications
	30.10.2 Changing the URL of the Worklist Application in Task Notifications

	30.11 Reusing the Task Flow Application with Multiple Human Tasks
	30.11.1 How To Reuse the Task Flow Application with Multiple Human Tasks
	30.11.2 How to Reuse the Task Flow Application with Different Actions

	31 Human Workflow Tutorial
	31.1 Introduction to the Human Workflow Tutorial
	31.2 Prerequisites
	31.3 Creating an Application and a Project with a BPEL Process
	31.4 Creating the Human Task Service Component
	31.5 Designing the Human Task
	31.6 Associating the Human Task and BPEL Process Service Components
	31.7 Creating a Task Form Project
	31.8 Deploying the Task Form
	31.9 Creating an Application Server Connection
	31.10 Deploying the SOA Composite Application
	31.11 Initiating the Process Instance
	31.12 Acting on the Task in Oracle BPM Worklist
	31.13 Additional Tutorials

	32 Using Oracle BPM Worklist
	32.1 Introduction to Oracle BPM Worklist
	32.2 Logging In to Oracle BPM Worklist
	32.2.1 How To Log In to the Worklist
	32.2.1.1 Enabling the weblogic User for Logging in to the Worklist

	32.2.2 What Happens When You Log In to the Worklist
	32.2.3 What Happens When You Change a User's Privileges While They are Logged in to Oracle BPM Worklist

	32.3 Customizing the Task List Page
	32.3.1 How To Filter Tasks
	32.3.1.1 To Filter Tasks Based on Assignee or State
	32.3.1.2 To Filter Tasks Based on Keyword Search
	32.3.1.3 To Filter Tasks Based on an Advanced Search

	32.3.2 How To Create, Delete, and Customize Worklist Views
	32.3.2.1 To Customize a Worklist View

	32.3.3 How To Customize the Task Status Chart
	32.3.4 How To Create a ToDo Task
	32.3.5 How to Create Subtasks in Worklist Application
	32.3.5.1 What You May Need to Know About Creating Subtasks

	32.4 Exporting Tasks to Microsoft Excel
	32.4.1 How to Export Tasks to Excel

	32.5 Acting on Tasks: The Task Details Page
	32.5.1 System Actions
	32.5.2 Task History
	32.5.3 How To Act on Tasks
	32.5.3.1 To Request Information
	32.5.3.2 To Route a Task
	32.5.3.3 To Add Comments or Attachments

	32.5.4 How To Act on Tasks That Require a Digital Signature

	32.6 Approving Tasks
	32.7 Setting a Vacation Period
	32.8 Setting Rules
	32.8.1 How To Create User Rules
	32.8.2 How To Create Group Rules
	32.8.3 Assignment Rules for Tasks with Multiple Assignees
	32.8.4 How to Avoid Circular Logic in Reassigned Vacation Rules

	32.9 Using the Worklist Administration Functions
	32.9.1 How To Manage Other Users' or Groups' Rules (as an Administrator)
	32.9.2 How to Specify the Login Page Realm Label
	32.9.3 How to Specify the Resource Bundle
	32.9.4 How to Specify the Language Locale Information
	32.9.5 How to Specify User Name Format
	32.9.6 How to Specify a Branding Logo
	32.9.7 How to Specify the Branding Title
	32.9.8 How to Choose a Skin
	32.9.8.1 To Choose A Skin
	32.9.8.2 To Create a JAR File Containing Customized Skins

	32.9.9 How to Enable Customized Applications and Links
	32.9.10 How to Specify an Image for a Task Action

	32.10 Specifying Notification Settings
	32.10.1 Messaging Filter Rules
	32.10.1.1 Data Types
	32.10.1.2 Attributes

	32.10.2 Rule Actions
	32.10.3 Managing Messaging Channels
	32.10.3.1 Viewing Your Messaging Channels
	32.10.3.2 Creating, Editing, and Deleting a Messaging Channel

	32.10.4 Managing Messaging Filters
	32.10.4.1 Viewing Messaging Filters
	32.10.4.2 Creating Messaging Filters
	32.10.4.3 Editing a Messaging Filter
	32.10.4.4 Deleting a Messaging Filter

	32.11 Using Mapped Attributes (Flex Fields)
	32.11.1 How To Map Attributes
	32.11.1.1 To Create Labels
	32.11.1.2 To Browse All Mappings
	32.11.1.3 To Edit Mappings by Task Type

	32.11.2 Custom Mapped Attributes

	32.12 Creating Worklist Reports
	32.12.1 How To Create Reports
	32.12.2 What Happens When You Create Reports
	32.12.2.1 Unattended Tasks Report
	32.12.2.2 Tasks Priority Report
	32.12.2.3 Tasks Cycle Time Report
	32.12.2.4 Tasks Productivity Report

	32.13 Accessing Oracle BPM Worklist in Local Languages and Time Zones
	32.13.1 Strings in Oracle BPM Worklist
	32.13.2 How to Change the Preferred Language, Display Names of Users, and Time Zone Settings if the Identity Store is LDAP-Based
	32.13.3 How to Change the Language in Which Tasks Are Displayed
	32.13.4 How To Change the Language Preferences from a JAZN XML File
	32.13.5 What You May Need to Know Setting Display Languages in Worklist
	32.13.6 How To Change the Time Zone Used in the Worklist

	32.14 Creating Reusable Worklist Regions
	32.14.1 How to Create an Application With an Embedded Reusable Worklist Region
	32.14.2 How to Set Up the Deployment Profile
	32.14.3 How to Prepare Federated Mode Task Flows For Deployment
	32.14.4 What You May Need to Know About Task List Task Flow
	32.14.5 What You May Need to Know About Certificates Task Flow
	32.14.6 What You May Need to Know About the Reports Task Flow
	32.14.7 What You May Need to Know About Application Preferences Task Flow
	32.14.8 What You May Need to Know About Mapped Attributes Task Flow
	32.14.9 What You May Need to Know About Rules Task Flow
	32.14.10 What You May Need to Know About Approval Groups Task Flow
	32.14.11 What You May Need to Know About Task Configuration Task Flow

	32.15 Java Code for Enabling Customized Applications in Worklist Application

	33 Building a Custom Worklist Client
	33.1 Introduction to Building Clients for Workflow Services
	33.2 Packages and Classes for Building Clients
	33.3 Workflow Service Clients
	33.3.1 The IWorkflowServiceClient Interface

	33.4 Class Paths for Clients Using SOAP
	33.5 Class Paths for Clients Using Remote EJBs
	33.6 Initiating a Task
	33.6.1 Creating a Task
	33.6.2 Creating a Payload Element in a Task
	33.6.3 Initiating a Task Programmatically

	33.7 Changing Workflow Standard View Definitions
	33.8 Writing a Worklist Application Using the HelpDeskUI Sample

	34 Introduction to Human Workflow Services
	34.1 Introduction to Human Workflow Services
	34.1.1 SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow Services
	34.1.1.1 Support for Foreign JNDI Names

	34.1.2 Security Model for Services
	34.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP Web Services
	34.1.2.2 Creating Human Workflow Context on Behalf of a User
	34.1.2.3 Obtaining the Workflow Context for a User Previously Authenticated by a JAAS Application

	34.1.3 Task Service
	34.1.4 Task Query Service
	34.1.5 Identity Service
	34.1.5.1 Identity Service Providers
	34.1.5.1.1 Custom User Repository Plug-ins

	34.1.6 Task Metadata Service
	34.1.7 User Metadata Service
	34.1.8 Task Report Service
	34.1.9 Runtime Config Service
	34.1.9.1 Internationalization of Attribute Labels

	34.1.10 Evidence Store Service and Digital Signatures
	34.1.10.1 Prerequisites
	34.1.10.2 Interfaces and Methods

	34.1.11 Task Instance Attributes

	34.2 Notifications from Human Workflow
	34.2.1 Contents of Notification
	34.2.2 Error Message Support
	34.2.3 Reliability Support
	34.2.4 Management of Oracle Human Workflow Notification Service
	34.2.5 How to Configure the Notification Channel Preferences
	34.2.6 How to Configure Notification Messages in Different Languages
	34.2.7 How to Send Actionable Messages
	34.2.7.1 How to Send Actionable Emails for Human Tasks

	34.2.8 How to Send Inbound and Outbound Attachments
	34.2.9 How to Send Inbound Comments
	34.2.10 How to Send Secure Notifications
	34.2.11 How to Set Channels Used for Notifications
	34.2.12 How to Send Reminders
	34.2.13 How to Set Automatic Replies to Unprocessed Messages
	34.2.14 How to Create Custom Notification Headers

	34.3 Assignment Service Configuration
	34.3.1 Dynamic Assignment and Task Escalation Patterns
	34.3.1.1 How to Implement a Dynamic Assignment Pattern
	34.3.1.2 How to Configure Dynamic Assignment Patterns
	34.3.1.3 How to Configure Display Names for Dynamic Assignment Patterns
	34.3.1.4 How to Implement a Task Escalation Pattern

	34.3.2 Dynamically Assigning Task Participants with the Assignment Service
	34.3.2.1 How to Implement an Assignment Service
	34.3.2.2 Example of Assignment Service Implementation
	34.3.2.3 How to Deploy a Custom Assignment Service

	34.3.3 Custom Escalation Function

	34.4 Class Loading for Callbacks and Resource Bundles
	34.5 Resource Bundles in Workflow Services
	34.5.1 Task Resource Bundles
	34.5.2 Global Resource Bundle – WorkflowLabels.properties
	34.5.3 Worklist Client Resource Bundles
	34.5.4 Task Detail ADF Task Flow Resource Bundles
	34.5.5 Specifying Stage and Participant Names in Resource Bundles
	34.5.6 Case Sensitivity in Group and Application Role Names

	34.6 Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services
	34.6.1 Human Workflow Services Clients
	34.6.1.1 Task Query Service Client Code
	34.6.1.2 Configuration Option
	34.6.1.2.1 JAXB Object
	34.6.1.2.2 Workflow Client Configuration File - wf_client_config.xml
	34.6.1.2.3 Workflow Client Configuration in the Property Map

	34.6.1.3 Client Logging
	34.6.1.4 Configuration Migration Utility

	34.6.2 Identity Propagation
	34.6.2.1 Enterprise JavaBeans Identity Propagation
	34.6.2.1.1 Client Configuration
	34.6.2.1.2 Requirements for Client Applications For Identity Propagation

	34.6.2.2 SAML Token Identity Propagation for SOAP Client
	34.6.2.2.1 Client configuration
	34.6.2.2.1.1 Identity Propagation Mode Setting Through Properties
	34.6.2.2.1.2 Identity Propagation Mode Setting in Configuration File
	34.6.2.2.1.3 Identity Propagation Mode Setting Through the JAXB Object

	34.6.2.3 Public Key Alias

	34.6.3 Client JAR Files

	34.7 Task States in a Human Task
	34.8 Database Views for Oracle Workflow
	34.8.1 Unattended Tasks Report View
	34.8.2 Task Cycle Time Report View
	34.8.3 Task Productivity Report View
	34.8.4 Task Priority Report View

	Part VI Using Binding Components
	35 Getting Started with Binding Components
	35.1 Introduction to Binding Components
	35.1.1 SOAP Web Services
	35.1.1.1 WS-AtomicTransaction Support
	35.1.1.1.1 Ensuring Participation of BPEL Processes in WS-AT
	35.1.1.1.2 WS-AT Transactions are Not Supported When Optimization is Enabled

	35.1.2 HTTP Binding Service
	35.1.2.1 Supported Interactions
	35.1.2.2 How to Configure the HTTP Binding Service
	35.1.2.3 How to Enable Basic Authentication for HTTP Binding

	35.1.3 JCA Adapters
	35.1.3.1 Database Adapter
	35.1.3.2 File Adapter
	35.1.3.3 FTP Adapter
	35.1.3.4 AQ Adapter
	35.1.3.5 JMS Adapter
	35.1.3.6 MQ Adapter
	35.1.3.7 Socket Adapter
	35.1.3.8 Third-Party Adapter
	35.1.3.9 Oracle User Messaging Service Adapter
	35.1.3.10 LDAP Adapter
	35.1.3.11 Coherence Adapter

	35.1.4 Oracle E-Business Suite Adapter
	35.1.5 Oracle BAM 11g Adapter
	35.1.6 Oracle B2B
	35.1.7 Oracle Healthcare Adapter
	35.1.8 Oracle MFT
	35.1.9 ADF-BC Services
	35.1.10 EJB Adapter
	35.1.11 Direct Binding Adapter
	35.1.12 REST Binding
	35.1.13 Cloud Adapters

	35.2 Introduction to Integrating a Binding Component in a SOA Composite Application
	35.2.1 How to Integrate a Binding Component in a SOA Composite Application
	35.2.2 How to Use ADF Binding to Invoke a Composite Application from a JSP/Java Class

	35.3 Creating Tokens for Use in the Binding URLs of External References
	35.3.1 How to Create Tokens for Use in the Binding URLs of External References

	36 Integrating REST Operations in SOA Composite Applications
	36.1 Introduction to REST Support
	36.2 Creating REST Support in Service and Reference Binding Components
	36.2.1 How to Configure the REST Binding Component in a SOA Composite Application
	36.2.1.1 REST Method Definition Dialog
	36.2.1.2 REST Operation Binding Dialog

	36.2.2 Example: REST Enable an Existing Service Component
	36.2.3 Example: Adding Resources and Operations from a WADL Service to a REST Reference
	36.2.4 How to Configure the REST Adapter Through Shortcuts
	36.2.4.1 To generate a REST service based on a web service deployed on an application server:
	36.2.4.2 To generate a REST reference based on a REST service deployed on an application server:
	36.2.4.3 To generate a REST service based on a SOA component's WSDL service:

	36.2.5 How to Generate Schemas Manually
	36.2.6 How to Generate Schemas from Samples
	36.2.7 How to Use Global Token Variables
	36.2.8 How to Set REST Header Properties
	36.2.8.1 Inbound and Outbound Headers
	36.2.8.2 Custom Header Support

	36.2.9 What You May Need to Know About REST Fault Binding
	36.2.10 What You May Need to Know About Converting a JSON Interchange Format to a REST Schema
	36.2.11 What You May Need to Know About REST References Calling REST Services in the Same Node

	36.3 Using JavaScript and JSON in BPEL Components
	36.4 Testing the REST Adapter with the HTTP Analyzer
	36.5 Testing and Configuring REST Reference Binding Components in Oracle Enterprise Manager Fusion Middleware Control

	37 Integrating Enterprise JavaBeans with Composite Applications
	37.1 Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications
	37.1.1 Integration Through Java Interfaces
	37.1.2 Integration Through SDO-Based EJBs

	37.2 Designing an SDO-Based Enterprise JavaBeans Application
	37.2.1 How to Create SDO Objects Using the SDO Compiler
	37.2.2 How to Create a Session Bean and Import the SDO Objects
	37.2.3 How to Create a Profile and an EAR File
	37.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean
	37.2.5 How to Use Web Service Annotations
	37.2.6 How to Deploy the Enterprise JavaBeans EAR File

	37.3 Creating an Enterprise JavaBeans Service in Oracle JDeveloper
	37.3.1 How to Integrate Java Interface-based Enterprise JavaBeans with SOA Composite Applications
	37.3.2 How to Integrate SDO-based Enterprise JavaBeans with SOA Composite Applications

	37.4 Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite
	37.4.1 How to Create a Java Interface-Based Client to Invoke Oracle SOA Suite
	37.4.2 How to Invoke an SDO-Enterprise JavaBeans Service

	37.5 Specifying Enterprise JavaBeans Roles
	37.6 Configuring Enterprise JavaBeans Binding Support in the Credential Store Framework
	37.6.1 How to Configure Enterprise JavaBeans Binding Support in the Credential Store Framework
	37.6.1.1 To configure Enterprise JavaBeans binding support in the credential store framework:
	37.6.1.2 To specify the oracle.jps.credstore.map and oracle.jps.credstore.key properties
	37.6.1.3 To grant SOA infrastructure runtime access to the CSF map store

	38 Using Direct Binding to Invoke Composite Services
	38.1 Introduction to Direct Binding
	38.1.1 Direct Service Binding Component
	38.1.2 Direct Reference Binding Component

	38.2 Introduction to the Direct Binding Invocation API
	38.2.1 Synchronous Direct Binding Invocation
	38.2.2 Asynchronous Direct Binding Invocation
	38.2.3 Required JAR Files for Compiling and Running the Direct Binding Java Client Code
	38.2.4 SOA Direct Address Syntax
	38.2.5 SOA Transaction Propagation

	38.3 Exception Handling with SOA Direct Transport
	38.4 Invoking a SOA Composite Application in Oracle JDeveloper with the Invocation API
	38.4.1 How to Create an Inbound Direct Binding Service
	38.4.2 How to Create an Outbound Direct Binding Reference
	38.4.3 How to Set an Identity for J2SE Clients Invoking Direct Binding
	38.4.4 What You May Need to Know About Invoking SOA Composites on Hosts with the Same Server and Domain Names

	38.5 Samples Using the Direct Binding Invocation API

	Part VII Sharing Functionality Across Service Components
	39 Oracle SOA Suite Templates and Reusable Subprocesses
	39.1 Introduction to Oracle SOA Suite Templates
	39.2 Introduction to Standalone and Inline BPEL Subprocess Invocations
	39.2.1 Introduction to a Standalone Subprocess
	39.2.2 Introduction to an Inline Subprocess

	39.3 Differences Between Oracle SOA Suite Templates and Reusable Subprocesses
	39.4 Creating Oracle SOA Suite Templates
	39.4.1 Creating and Using a SOA Project Template
	39.4.1.1 How To Create a SOA Project Template
	39.4.1.2 How to Use a Composite Template in Another SOA Composite

	39.4.2 Creating and Using a Service Component Template
	39.4.2.1 How to Create a Service Component Template
	39.4.2.2 How to Use a Service Component Template in Another SOA Composite

	39.4.3 Creating and Using a BPEL Scope Activity Template
	39.4.3.1 How to Create a BPEL Scope Activity Template
	39.4.3.2 How to Use a BPEL Scope Activity Template in Another BPEL Process

	39.4.4 Managing Templates

	39.5 Creating Standalone and Inline BPEL Subprocesses in a BPEL Process
	39.5.1 How to Create a Standalone BPEL Subprocess
	39.5.2 How to Create an Inline Subprocess
	39.5.3 How to Create a Standalone Subprocess that Takes a Partner Link as a Parameter
	39.5.4 What You May Need to Know About Renaming a Subprocess

	40 Creating Transformations with the XSLT Map Editor
	40.1 Introduction to the XSLT Map Editor
	40.1.1 Using the Map View
	40.1.2 Using the XSLT View
	40.1.3 Using the Components Window
	40.1.4 Using the Properties Window

	40.2 Creating an XSLT Map
	40.2.1 How to Create an XSLT Map
	40.2.2 How to Create an XSL Map File in Oracle BPEL Process Manager
	40.2.3 How to Create an XSL Map File from Imported Source and Target Schema Files in Oracle BPEL Process Manager
	40.2.4 How to Create an XSL Map File in Oracle Mediator
	40.2.5 What You May Need to Know About Creating an XSL Map File
	40.2.6 What Happens at Runtime If You Pass a Payload Through Oracle Mediator Without Creating an XSL Map File
	40.2.7 What Happens If You Receive an Empty Namespace Tag in an Output Message

	40.3 Editing an XSLT Map in Map View
	40.3.1 How to Perform a Value Copy by Linking Nodes
	40.3.2 How to Create an Empty Node in the Output Document
	40.3.3 How to Set a Literal Text Value for a Target Node
	40.3.4 How to Add an XSLT Statement
	40.3.4.1 To Add an XSLT Statement:
	40.3.4.2 To Add an xsl:text or xsl:variable Statement:
	40.3.4.3 To Drag and Drop an XSLT statement to a Target Node:
	40.3.4.4 How to Add Conditional Processing Using xsl:if
	40.3.4.4.1 To add an xsl:if statement using the context menu:
	40.3.4.4.2 To add an xsl:if statement using drag and drop:

	40.3.4.5 How to Add Conditional Processing Using xsl:choose
	40.3.4.5.1 To add an xsl:choose statement using the context menu:
	40.3.4.5.2 To add an xsl:choose statement using drag and drop:

	40.3.4.6 How to Add Loops Using xsl:for-each
	40.3.4.6.1 To add an xsl:for-each statement using the context menu:
	40.3.4.6.2 To add an xsl:for-each statement using drag and drop:

	40.3.4.7 How to Add xsl:sort for an xsl:for-each Statement
	40.3.4.7.1 To add an xsl:sort statement using the context menu:
	40.3.4.7.2 To add an xsl:sort statement using drag and drop:

	40.3.4.8 How to Duplicate XSLT Instructions
	40.3.4.8.1 Example: Modifying the Mapping by Changing the XPath Expression
	40.3.4.8.2 Example: Modifying the Mapping by Deleting and Re-Creating It

	40.3.5 How to Duplicate an Element
	40.3.6 How to Delete an Element or Attribute
	40.3.7 How to Remove Mappings from an Element or Attribute

	40.4 Editing an XSLT Map in XSLT View
	40.4.1 How to Add a Target Element or Attribute Before Mapping
	40.4.1.1 How to Add Elements and Attributes from the Target Schema
	40.4.1.1.1 To add elements and attributes when target schema is present:
	40.4.1.1.2 To drag and drop elements and attributes from the target schema tree:

	40.4.1.2 How to Add Literal Elements and Attributes When No Target Schema Is Present
	40.4.1.2.1 To add a literal element when there is no target schema:
	40.4.1.2.2 To add a literal attribute when there is no target schema:

	40.4.1.3 How to Create an Empty Node in the Output Document

	40.4.2 How to Perform a Value Copy by Linking Nodes
	40.4.3 How to Insert an xsl:valueof Statement
	40.4.4 How to Set a Literal Text Value for an XSLT Node
	40.4.5 How to Set a Literal Text Value Using an xsl:text Instruction
	40.4.6 How to Add XSLT Statements
	40.4.6.1 To add an XSLT element using the context menu:
	40.4.6.2 To add XSLT elements from the Components window:

	40.4.7 How to Set the Value of an XSLT Expression Attribute
	40.4.8 How to Duplicate an Element
	40.4.9 How to Delete an Element or Attribute
	40.4.10 How to Move an Element
	40.4.11 How to Remove Mappings from an Element or Attribute

	40.5 Using XPath Expressions
	40.5.1 How to Modify an Existing Source to Target Mapping
	40.5.1.1 To edit an XPath expression using the Edit XPath dialog
	40.5.1.2 To edit an existing XPath expression using the Properties window
	40.5.1.3 How to Add an XPath Function to an Existing XPath Expression

	40.5.2 How to Modify an Existing Function XPath Expression in the Canvas Pane
	40.5.2.1 To set a function parameter using drag and drop:
	40.5.2.2 To delete a function parameter:
	40.5.2.3 How to Edit a Function as a Full XPath Expression
	40.5.2.3.1 To edit a function as a textual XPath expression using the XPath Edit dialog:
	40.5.2.3.2 To edit a function as a textual XPath expression using the Properties Window:

	40.5.2.4 How to Edit Individual Function Parameters
	40.5.2.4.1 To edit the parameters of a function using the Edit Function dialog:
	40.5.2.4.2 To edit the parameters of a function using the Properties window:

	40.5.3 How to Create a New Function in the Canvas Pane
	40.5.3.1 To create an XPath Function using the canvas context menu
	40.5.3.2 To create an XPath function using the Components window
	40.5.3.3 To create an XPath function using the target tree context menu
	40.5.3.4 To create an XPath function by dragging it to the target tree

	40.5.4 How to Chain Functions Together
	40.5.5 How to Remove an XPath Expression
	40.5.6 How to Import User-Defined Functions

	40.6 Using Auto Map to Map Complex Nodes
	40.6.1 How to Set Auto Map Preferences
	40.6.2 How to Execute an Auto Map

	40.7 Checking the Completion Status of the Map
	40.8 Testing the Map
	40.8.1 How to Test the Transformation Mapping Logic
	40.8.1.1 How to Test XSLT Maps that Use DVM Lookup Functions
	40.8.1.2 How to Test XSLT Maps that Use XREF Functions
	40.8.1.2.1 Working with returnValue:
	40.8.1.2.2 Adding Additional Rows:

	40.8.2 How to Generate Reports
	40.8.3 How to Customize Sample XML Generation

	40.9 Importing an External XSLT Map
	40.10 Using Variables and Parameters
	40.10.1 How to Add Global Variables
	40.10.2 How to Add Local Variables in Map View
	40.10.3 How to Add Local Variables in XSLT View
	40.10.4 How to Add Global Parameters

	40.11 Substituting Elements and Types
	40.12 Using Named Templates
	40.12.1 How to Create a Named Template
	40.12.2 How to Edit a Named Template
	40.12.3 How to Add Parameters to an Existing Named Template
	40.12.4 How to Invoke a Named Template

	40.13 Using Template Rules
	40.13.1 How to Create a Template Rule
	40.13.1.1 Example: Creating a Template Rule
	40.13.1.1.1 Invoking the Template

	40.13.2 How to Refactor an Existing Map to Create a Template Rule

	40.14 Using the Execution View
	40.14.1 How to Use Execution View to Prevent or Troubleshoot Runtime Errors
	40.14.1.1 Searching for Nodes
	40.14.1.2 Setting Display Options

	40.15 Debugging the XSLT Map
	40.15.1 Setting Breakpoints in the XSLT Map Editor
	40.15.2 Running the Debugger on the XSLT Map
	40.15.3 Viewing Breakpoints
	40.15.4 Setting Conditions for XSLT Breakpoints

	40.16 Troubleshooting Memory Issues
	40.17 Setting XSL Map Preferences
	40.17.1 How to Set XSLT Map Preferences
	40.17.2 How to Set the XSL Editor Preferences
	40.17.3 How to Import a Customization File to Specify Display Preferences in the XSLT Map Editor

	41 Creating Transformations with the XQuery Mapper
	41.1 Introduction to the XQuery Mapper
	41.1.1 About the Source and Target Trees
	41.1.2 Using the XQuery Mapper Toolbar
	41.1.3 Using the Properties Window
	41.1.4 Using the Components Window
	41.1.5 Source Editor

	41.2 Creating an XQuery Map File
	41.2.1 How to Create an XQuery Main/Library Module

	41.3 Using the XQuery Mapper
	41.3.1 How to Use Value Mapping to Copy a Leaf Element Value to a Target Leaf Element
	41.3.2 How to Use Overwrite Mapping to Copy an Element Subtree to the Target Tree
	41.3.3 How to Use Append Mapping to Copy an Element Subtree to the Target Tree
	41.3.4 How to Perform Multiple Value Mappings with One Drag and Drop Action

	41.4 Using XQuery Functions
	41.4.1 How to Add an XQuery Function in the XQuery Mapper
	41.4.1.1 To add an XQuery function:
	41.4.1.2 To edit a function's parameters:

	41.5 Using Library Modules
	41.5.1 How to Import a Library Module

	41.6 Working with Zones and FLWOR Constructs
	41.6.1 How to Edit a FLWOR Construct

	41.7 Using Type Annotations to Improve XQuery Performance
	41.8 Testing Your XQuery Map
	41.8.1 How to Test an XQuery Map

	42 Using Business Events and the Event Delivery Network
	42.1 Introduction to Business Events
	42.1.1 EDN Integration with Oracle SOA Suite
	42.1.2 Business Event API Support for Remote Clients
	42.1.2.1 Guidelines for Manually Setting Event Delivery Network Properties When Invoking the BusinessEvent.setProperty API
	42.1.2.1.1 Properties That Cannot Be Manually Set
	42.1.2.1.2 Properties That Can Be Manually Set

	42.1.3 Local and Remote Event Connections

	42.2 Creating Business Events in Oracle JDeveloper
	42.2.1 How to Create a Business Event

	42.3 Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component
	42.3.1 How to Subscribe to a Business Event
	42.3.2 How to Publish a Business Event
	42.3.3 What Happens When You Create and Subscribe to a Business Event
	42.3.4 What Happens When You Publish a Business Event
	42.3.5 What You May Need to Know About Subscribing to a Business Event
	42.3.6 What You May Need to Know About Publishing Events Across Domains Using SAF
	42.3.6.1 Workaround for Local Subscribers

	42.3.7 How to Configure a Foreign JNDI Provider to Enable Administration Server Applications to Publish Events to the SOA Server
	42.3.8 How to Configure the Connection Factory When the Oracle WebLogic Server JMS Runs in the Same Local JVM as the JMS Adapter

	42.4 Subscribing to or Publishing a Business Event from a BPEL Process Service Component
	42.4.1 How to Subscribe to a Business Event
	42.4.2 How to Publish a Business Event
	42.4.3 What Happens When You Subscribe to and Publish a Business Event

	42.5 How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

	43 Working with Cross References
	43.1 Introduction to Cross References
	43.2 Introduction to Cross Reference Tables
	43.3 Oracle Data Integrator Support for Cross Referencing
	43.4 Creating and Modifying Cross Reference Tables
	43.4.1 How to Create Cross Reference Metadata
	43.4.2 What Happens When You Create a Cross Reference
	43.4.3 How to Create Custom Database Tables
	43.4.4 How to Add an End System to a Cross Reference Table

	43.5 Populating Cross Reference Tables
	43.5.1 About the xref:populateXRefRow Function
	43.5.2 About the xref:populateLookupXRefRow Function
	43.5.3 About the xref:populateXRefRow1M Function
	43.5.4 How to Populate a Column of a Cross Reference Table

	43.6 Looking Up Cross Reference Tables
	43.6.1 About the xref:lookupXRef Function
	43.6.2 About the xref:lookupXRef1M Function
	43.6.3 About the xref:lookupPopulatedColumns Function
	43.6.4 How to Look Up a Cross Reference Table for a Value

	43.7 Deleting a Cross Reference Table Value
	43.7.1 How to Delete a Cross Reference Table Value

	43.8 Creating and Running the Cross Reference Use Case
	43.8.1 How to Create the Use Case
	43.8.1.1 Task 1: How to Configure the Oracle Database and Database Adapter
	43.8.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project
	43.8.1.3 Task 3: How to Create a Cross Reference
	43.8.1.4 Task 4: How to Create a Database Adapter Service
	43.8.1.5 Task 5: How to Create EBS and SBL External References
	43.8.1.6 Task 6: How to Create the Logger File Adapter External Reference
	43.8.1.7 Task 7: How to Create an Oracle Mediator Service Component
	43.8.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Service Component
	43.8.1.8.1 To create routing rules for an insert operation:
	43.8.1.8.2 To create routing rules for an update operation:
	43.8.1.8.3 To create routing rules for an updateID operation:
	43.8.1.8.4 To create routing rules for a delete operation:

	43.8.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator
	43.8.1.9.1 To create routing rules for the insert operation:
	43.8.1.9.2 To create routing rules for a delete operation:
	43.8.1.9.3 To create routing rules for the update operation:
	43.8.1.9.4 To create routing rules for the UpdateID operation:

	43.8.1.10 Task 10: How to Configure an Application Server Connection
	43.8.1.11 Task 11: How to Deploy the Composite Application

	43.8.2 How to Run and Monitor the XrefCustApp Application

	43.9 Creating and Running Cross Reference for 1M Functions
	43.9.1 How to Create the Use Case
	43.9.1.1 Task 1: How to Configure the Oracle Database and Database Adapter
	43.9.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project
	43.9.1.3 Task 3: How to Create a Cross Reference
	43.9.1.4 Task 4: How to Create a Database Adapter Service
	43.9.1.5 Task 5: How to Create an EBS External Reference
	43.9.1.6 Task 6: How to Create a Logger File Adapter External Reference
	43.9.1.7 Task 7: How to Create an Oracle Mediator Service Component
	43.9.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Component
	43.9.1.8.1 To create routing rules for the insert operation:
	43.9.1.8.2 To create routing rules for the update operation:

	43.9.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator
	43.9.1.9.1 To create routing rules for the insert operation:
	43.9.1.9.2 To create routing rules for the update operation:

	43.9.1.10 Task 10: How to Configure an Application Server Connection
	43.9.1.11 Task 11: How to Deploy the Composite Application

	44 Working with Domain Value Maps
	44.1 Introduction to Domain Value Maps
	44.1.1 Domain Value Map Features
	44.1.1.1 Qualifier Domains
	44.1.1.2 Qualifier Hierarchies
	44.1.1.3 One-to-Many Mappings

	44.2 Creating Domain Value Maps
	44.2.1 How to Create Domain Value Maps
	44.2.2 What Happens When You Create a Domain Value Map

	44.3 Editing a Domain Value Map
	44.3.1 How to Add Domains to a Domain Value Map
	44.3.2 How to Edit a Domain
	44.3.3 How to Add Domain Values to a Domain Value Map
	44.3.4 How to Edit Domain Values

	44.4 Using Domain Value Map Functions
	44.4.1 Understanding Domain Value Map Functions
	44.4.1.1 dvm:lookupValue
	44.4.1.2 dvm:lookupValue1M

	44.4.2 How to Use Domain Value Map Functions in Transformations
	44.4.3 How to Use Domain Value Map Functions in XPath Expressions
	44.4.4 What Happens at Runtime

	44.5 Creating a Domain Value Map Use Case for a Hierarchical Lookup
	44.5.1 How to Create the HierarchicalValue Use Case
	44.5.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project
	44.5.1.2 Task 2: How to Create a Domain Value Map
	44.5.1.3 Task 3: How to Create a File Adapter Service
	44.5.1.4 Task 4: How to Create ProcessOrders Mediator Component
	44.5.1.5 Task 5: How to Create a File Adapter Reference
	44.5.1.6 Task 6: How to Specify Routing Rules
	44.5.1.7 Task 7: How to Configure an Application Server Connection
	44.5.1.8 Task 8: How to Deploy the Composite Application

	44.5.2 How to Run and Monitor the HierarchicalValue Application

	44.6 Creating a Domain Value Map Use Case For Multiple Values
	44.6.1 How to Create the Multivalue Use Case
	44.6.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project
	44.6.1.2 Task 2: How to Create a Domain Value Map
	44.6.1.3 Task 3: How to Create a File Adapter Service
	44.6.1.4 Task 4: How to Create the LookupMultiplevaluesMediator Mediator
	44.6.1.5 Task 5: How to Create a File Adapter Reference
	44.6.1.6 Task 6: How to Specify Routing Rules
	44.6.1.7 Task 7: How to Configure an Application Server Connection
	44.6.1.8 Task 8: How to Deploy the Composite Application

	44.6.2 How to Run and Monitor the Multivalue Application

	44.7 Preloading DVM Cache for Faster First-Use
	44.7.1 How to Preload DVM Cache at Server Startup

	45 Using Oracle SOA Composer with Domain Value Maps
	45.1 Introduction to Oracle SOA Composer
	45.1.1 How to Log in to Oracle SOA Composer

	45.2 Viewing Domain Value Maps at Runtime
	45.2.1 How To View Domain Value Maps at Runtime

	45.3 Editing Domain Value Maps at Runtime
	45.3.1 How to Edit Domain Value Maps at Runtime
	45.3.1.1 Changing to Edit Mode
	45.3.1.2 Adding Rows
	45.3.1.3 Editing Rows
	45.3.1.4 Deleting Rows

	45.4 Publishing Changes at Runtime
	45.4.1 How to Publish Changes at Runtime
	45.4.2 How to Discard Changes at Runtime

	45.5 Detecting Conflicts

	Part VIII Completing Your Application
	46 Enabling Security with Policies and Message Encryption
	46.1 Introduction to Policies
	46.2 Attaching Policies to Binding Components and Service Components
	46.2.1 How to Attach Policies to Binding Components and Service Components
	46.2.1.1 To attach a policy to a service component:

	46.2.2 How to Override Policy Configuration Property Values
	46.2.2.1 Overriding Client Configuration Property Values
	46.2.2.2 Overriding Server Configuration Property Values

	46.3 Encrypting and Decrypting Specific Fields of Messages
	46.3.1 How to Encrypt and Decrypt Specific Fields of Messages

	47 Deploying SOA Composite Applications
	47.1 Introduction to Deployment
	47.2 Deployment Prerequisites
	47.2.1 Creating the Oracle SOA Suite Schema
	47.2.2 Creating a SOA Domain
	47.2.3 Configuring a SOA Cluster

	47.3 Understanding the Packaging Impact
	47.4 Anatomy of a Composite
	47.5 Preparing the Target Environment
	47.5.1 How to Create Data Sources and Queues
	47.5.1.1 Script for Creation of JMS Resource and Redeployment of JMS Adapter
	47.5.1.2 Script for Creation of the Database Resource and Redeployment of the Database Adapter

	47.5.2 How to Create Connection Factories and Connection Pooling
	47.5.3 How to Enable Security
	47.5.4 How to Set the Business Flow Instance Name or Composite Instance Name at Design Time
	47.5.4.1 Setting the Business Flow Instance Name in Oracle Mediator
	47.5.4.2 Setting the Business Flow Instance Name in a BPEL Process
	47.5.4.3 Setting the Composite Instance Name in a BPEL Process

	47.5.5 How to Deploy Trading Partner Agreements and Task Flows
	47.5.6 How to Create an Application Server Connection
	47.5.7 How to Create a SOA-MDS Connection
	47.5.7.1 What You May Need to Know About Opening the composite.xml File Through a SOA-MDS Connection

	47.6 Customizing Your Application for the Target Environment Before Deployment
	47.6.1 How to Use Configuration Plans to Customize SOA Composite Applications for the Target Environment
	47.6.1.1 Introduction to Configuration Plans
	47.6.1.2 Introduction to a Configuration Plan File
	47.6.1.3 Introduction to Use Cases for a Configuration Plan
	47.6.1.3.1 How to Use a Configuration Plan when Creating Environment-Independent Processes

	47.6.1.4 How to Create a Configuration Plan in Oracle JDeveloper
	47.6.1.5 How to Create a Configuration Plan with the WLST Utility
	47.6.1.6 How to Attach a Configuration Plan with ant Scripts
	47.6.1.7 How to Create Global Token Variables

	47.7 Deploying SOA Composite Applications in Oracle JDeveloper
	47.7.1 How to Deploy a Single SOA Composite in Oracle JDeveloper
	47.7.1.1 Creating an Application Server Connection
	47.7.1.2 Optionally Creating a Project Deployment Profile
	47.7.1.3 Deploying the Profile
	47.7.1.4 What You May Need to Know About Deploying Human Task Composites with Task Flows to Partitions

	47.7.2 How to Deploy Multiple SOA Composite Applications in Oracle JDeveloper
	47.7.3 How to Deploy and Use Shared Data Across Multiple SOA Composite Applications in Oracle JDeveloper
	47.7.3.1 Create a JAR Profile and Include the Artifacts to Share
	47.7.3.2 Create a SOA Bundle that Includes the JAR Profile
	47.7.3.3 Deploy the SOA Bundle with Oracle JDeveloper
	47.7.3.3.1 To deploy the SOA bundle with ant:

	47.7.3.4 Use Shared Data
	47.7.3.4.1 Creating a SOA-MDS Connection
	47.7.3.4.2 Creating a BPEL Process

	47.7.4 How to Deploy an Existing SOA Archive in Oracle JDeveloper

	47.8 Deploying and Managing SOA Composite Applications with the WLST Utility
	47.9 Deploying and Managing SOA Composite Applications with ant Scripts
	47.9.1 How to Use ant to Automate the Testing of a SOA Composite Application
	47.9.2 How to Use ant to Compile a SOA Composite Application
	47.9.3 How to Use ant to Package a SOA Composite Application into a Composite SAR File
	47.9.4 How to Use ant to Deploy a SOA Composite Application
	47.9.5 How to Use ant to Undeploy a SOA Composite Application
	47.9.6 How to Use ant to Export a Composite into a SAR File
	47.9.7 How to Use ant to Export Postdeployment Changes of a Composite into a JAR File
	47.9.8 How to Use ant to Import Postdeployment Changes of a Composite
	47.9.9 How to Use ant to Export Shared Data of a Given Pattern into a JAR File
	47.9.10 How to Use ant to Remove a Top-level Shared Data Folder
	47.9.11 How to Use ant to Start a SOA Composite Application
	47.9.12 How to Use ant to Stop a SOA Composite Application
	47.9.13 How to Use ant to Activate a SOA Composite Application
	47.9.14 How to Use ant to Retire a SOA Composite Application
	47.9.15 How to Use ant to Assign the Default Version to a SOA Composite Application
	47.9.16 How to Use ant to List the Deployed SOA Composite Applications
	47.9.17 How to Use ant to List All Available Partitions in the SOA Infrastructure
	47.9.18 How to Use ant to List All Composites in a Partition
	47.9.19 How to Use ant to Create a Partition in the SOA Infrastructure
	47.9.20 How to Use ant to Delete a Partition in the SOA Infrastructure
	47.9.21 How to Use ant to Start All Composites in the Partition
	47.9.22 How to Use ant to Stop All Composites in the Partition
	47.9.23 How to Use ant to Activate All Composites in the Partition
	47.9.24 How to Use ant to Retire All Composites in the Partition
	47.9.25 How to Use ant to Manage SOA Composite Applications

	47.10 Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion Middleware Control
	47.11 Deploying SOA Composite Applications to a Cluster
	47.12 Deploying SOA Composite Applications with No Servers Running
	47.12.1 Offline Deployment Configuration Files
	47.12.1.1 Offline Deployment Configuration List File
	47.12.1.2 Offline Deployment Configuration File
	47.12.1.3 Relative Configuration File Paths
	47.12.1.4 Order of Deployment

	47.12.2 How to Deploy SOA Composite Applications and Shared Data with No Server Running
	47.12.3 What You May Need to Know About Offline Composite Deployment in a Cluster Environment
	47.12.4 What You May Need to Know About Deploying SOA Composite Applications that Reference Shared Data That is Not in the MDS Repository

	47.13 Postdeployment Configuration
	47.13.1 Security
	47.13.2 Updating Connections
	47.13.3 Updating Data Sources and Queues
	47.13.4 Attaching Policies

	47.14 Testing and Troubleshooting
	47.14.1 Verifying Deployment
	47.14.2 Initiating an Instance of a Deployed Composite
	47.14.3 Automating the Testing of Deployed Composites
	47.14.4 Recompiling a Project After Receiving a Deployment Error
	47.14.5 Reducing Java Code Size to Resolve Java Compilation Errors
	47.14.6 Troubleshooting Common Deployment Errors
	47.14.6.1 Common Oracle JDeveloper Deployment Issues
	47.14.6.2 Common Configuration Plan Issues
	47.14.6.3 Deploying to a Managed Oracle WebLogic Server
	47.14.6.4 Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server
	47.14.6.5 Deploying with an Unreachable Proxy Server
	47.14.6.6 Releasing Locks to Resolve ADF Task Form EAR File Deployment Errors
	47.14.6.7 Increasing Memory to Recover from Compilation Errors
	47.14.6.8 Oracle JDeveloper Compilation Error When Property Alias Definition is Missing for a Receive Activity with a Correlation Set
	47.14.6.9 ADF Binding Service Names Must Be Unique Across All Deployed SOA Composite Applications

	47.15 Patching Running Instances of a SOA Composite
	47.15.1 Using the SOA Patch Developer Mode in JDeveloper
	47.15.1.1 Generating the Patch XML File
	47.15.1.2 Creating a Sparse Deployment Profile

	47.15.2 Verifying and Deploying the Patch Using WLST
	47.15.3 Deleting the Patch File

	48 Using the Oracle SOA Suite Development Maven Plug-In
	48.1 Introduction to the Oracle SOA Suite Maven Plug-in
	48.1.1 POM Files and Archetypes
	48.1.2 Maven Plug-in Goals
	48.1.2.1 compile
	48.1.2.2 package
	48.1.2.3 deploy
	48.1.2.4 test
	48.1.2.5 undeploy

	48.1.3 Using Maven Online Help

	48.2 Installing the Oracle SOA Suite Maven Plug-in
	48.2.1 How to Configure the Oracle SOA Suite Maven Plug-In

	48.3 Using the Oracle SOA Suite Maven Archetype

	49 Debugging and Auditing SOA Composite Applications
	49.1 Introduction to the SOA Debugger
	49.2 Debugging a SOA Composite Application
	49.2.1 How to Start the SOA Debugger
	49.2.2 How to Set Breakpoints and Initiate Debugging
	49.2.3 How to Step Through a Debugging Session
	49.2.4 How to End or Detach from a Debugging Session
	49.2.5 How to Remove Breakpoints
	49.2.6 How to View Adapter Properties
	49.2.7 How to View Threads

	49.3 Testing SOA Composite Applications with the HTTP Analyzer
	49.4 Auditing SOA Composite Applications at the BPEL Activity Level
	49.4.1 How to Audit SOA Composite Applications at the BPEL Activity Level

	50 Automating Testing of SOA Composite Applications
	50.1 Introduction to the Composite Test Framework
	50.1.1 Test Cases Overview
	50.1.2 Overview of Test Suites
	50.1.3 Overview of Emulations
	50.1.4 Overview of Assertions

	50.2 Introduction to the Components of a Test Suite
	50.2.1 Process Initiation
	50.2.2 Emulations
	50.2.3 Assertions
	50.2.4 Message Files

	50.3 Creating Test Suites and Test Cases with the Create Composite Test Wizard
	50.4 Editing the Contents of Test Cases in Test Mode in the SOA Composite Editor
	50.4.1 How to Initiate Inbound Messages
	50.4.2 How to Emulate Outbound Messages
	50.4.3 How to Emulate Callback Messages
	50.4.4 How to Emulate Fault Messages
	50.4.5 How to Create Assertions
	50.4.5.1 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML Document
	50.4.5.2 Creating Assertions on a Leaf Element

	50.4.6 What You May Need to Know About Assertions

	50.5 Testing BPEL Process Service Components
	50.5.1 Overview of Assertions on BPEL Process Activities
	50.5.2 Overview of a Fast Forward Action on a Wait Activity
	50.5.3 Overview of Assert Activity Execution
	50.5.4 How to Create BPEL Process Service Component Tests
	50.5.5 How to Create Assertions
	50.5.6 How to Bypass a Wait Activity
	50.5.7 How to Specify the Number of Times to Execute an Activity

	50.6 Deploying and Running a Test Suite
	50.6.1 How to Deploy and Run a Test Suite from Oracle JDeveloper
	50.6.2 How to Deploy and Run a Test Suite from Oracle Enterprise Manager Fusion Middleware Control
	50.6.3 How to Deploy and Run a Test Suite with a WLST Command
	50.6.4 How to Deploy and Run a Test Suite with an ant Script

	Part IX Advanced Topics
	51 Managing Large Documents and Large Numbers of Instances
	51.1 Best Practices for Handling Large Documents
	51.1.1 Use Cases for Handling Large Documents
	51.1.1.1 Passing Binary Objects as Base64-Encoded Text in XML Payloads
	51.1.1.1.1 SOAP Inline
	51.1.1.1.2 SOAP MTOM
	51.1.1.1.3 Opaque Passed by File/FTP Adapters
	51.1.1.1.4 Opaque Passed by Oracle B2B

	51.1.1.2 End-to-End Streaming with Attachments
	51.1.1.2.1 SOAP with Attachments
	51.1.1.2.2 Working with Streaming Attachments
	51.1.1.2.3 Creating Composites that Use MIME Attachments
	51.1.1.2.4 Performance Overhead and Pass Through Attachments
	51.1.1.2.5 Properties for Streaming Attachments
	51.1.1.2.6 Streaming Attachments from the SOA Web Service Binding Layer
	51.1.1.2.7 Reading and Encoding SOAP Attachment Content
	51.1.1.2.8 Sending Attachment Streams
	51.1.1.2.9 Overriding Pass Through Settings for Attachments in Oracle Mediator
	51.1.1.2.10 Sharing Attachments Using Synchronous Flows
	51.1.1.2.11 Attachment Options of File/FTP Adapters
	51.1.1.2.12 Oracle B2B Attachment

	51.1.1.3 Sending and Receiving MTOM-Optimized Messages to SOA Composite Applications
	51.1.1.3.1 Scenarios for Storing SwA and MTOM-Optimized Attachments to the Database

	51.1.1.4 Processing Large XML with Repeating Constructs
	51.1.1.4.1 Debatching with the File/FTP Adapter
	51.1.1.4.2 Chunking with the File/FTP Adapters

	51.1.1.5 Processing Large XML Documents with Complex Structures
	51.1.1.5.1 Streaming with the File/FTP Adapters
	51.1.1.5.2 Oracle B2B Streaming

	51.1.2 Limitations on Concurrent Processing of Large Documents
	51.1.2.1 Opaque Schema for Processing Large Payloads

	51.1.3 JVM Memory Sizing Recommendations for SOA Composite Applications
	51.1.4 General Tuning Recommendations
	51.1.4.1 General Recommendations
	51.1.4.1.1 Increasing the HTTP POST Timeout
	51.1.4.1.2 Increasing the Timeout Value

	51.1.4.2 Setting Audit Levels from Oracle Enterprise Manager for Large Payload Processing
	51.1.4.3 Using the Assign Activity in Oracle BPEL Process Manager and Oracle Mediator
	51.1.4.4 Using XSLT Transformations on Large Payloads (For Oracle BPEL Process Manager)
	51.1.4.5 Using XSLT Transformations on Large Payloads (For Oracle Mediator)
	51.1.4.6 Using XSLT Transformations for Repeating Structures
	51.1.4.7 Processing Large Documents in Oracle B2B
	51.1.4.7.1 MDSInstance Cache Size
	51.1.4.7.2 Protocol Message Size
	51.1.4.7.3 Number of Threads
	51.1.4.7.4 Stuck Thread Max Time Parameter
	51.1.4.7.5 Tablespace

	51.1.4.8 Setting a Size Restriction on Inbound Web Service Message Size
	51.1.4.9 Using XPath Functions to Write Large XSLT/XQuery Output to a File System

	51.2 Best Practices for Handling Large Metadata
	51.2.1 Boundary on the Processing of Large Numbers of Activities in a BPEL Process
	51.2.2 Using Large Numbers of Activities in BPEL Processes (Without FlowN)
	51.2.3 Using Large Numbers of Activities in BPEL Processes (With FlowN)
	51.2.4 Using a Flow With Multiple Sequences
	51.2.5 Using a Flow with One Sequence
	51.2.6 Using a Flow with No Sequence
	51.2.7 Large Numbers of Oracle Mediators in a Composite
	51.2.8 Importing Large Data Sets in Oracle B2B

	51.3 Best Practices for Handling Large Numbers of Instances
	51.3.1 Instance and Rejected Message Deletion with the Purge Script or Oracle Enterprise Manager Fusion Middleware Control

	52 Customizing SOA Composite Applications
	52.1 Introduction to Customizing SOA Composite Applications
	52.2 Creating the Customizable Composite
	52.2.1 How to Create Customization Classes
	52.2.2 How to Create the Customizable Composite
	52.2.3 How to Add an XSD or WSDL File
	52.2.4 How to Search for Customized Activities in a BPEL Process
	52.2.5 What You May Need to Know About Resolving Validation Errors in Oracle JDeveloper
	52.2.6 What You May Need to Know About Resolving a Sequence Conflict
	52.2.6.1 To resolve the conflict:

	52.2.7 What You May Need to Know About Compiling and Deploying a Customized Application

	52.3 Customizing the Vertical Application
	52.3.1 How to Customize the Vertical Application

	52.4 Customizing the Customer Version
	52.4.1 How to Customize the Customer Version

	52.5 Upgrading the Composite
	52.5.1 How to Upgrade the Core Application Team Composite
	52.5.2 How to Upgrade the Vertical Applications Team Composite
	52.5.3 How to Upgrade the Customer Composite

	53 Defining Composite Sensors
	53.1 Introduction to Composite Sensors
	53.1.1 Restrictions on Use of Composite Sensors

	53.2 Adding Composite Sensors
	53.2.1 How to Add Composite Sensors
	53.2.1.1 How to Add a Variable
	53.2.1.2 How to Add an Expression
	53.2.1.3 How to Add a Property

	53.2.2 What You May Need to Know About Duplicate Composite Sensor Names

	53.3 Monitoring Composite Sensor Data During Runtime
	53.4 Creating and Managing Composite Sensors During Runtime from Oracle SOA Composer
	53.4.1 What You May Need to Know About Viewing Composite Sensor Changes in Oracle SOA Composer

	54 Creating Dynamic Business Processes
	54.1 Introduction to Two-Layer Business Process Management
	54.2 Creating a Phase Activity
	54.2.1 How to Create a Phase Activity
	54.2.2 What Happens When You Create a Phase Activity
	54.2.3 What Happens at Runtime When You Create a Phase Activity
	54.2.4 What You May Need to Know About Creating a Phase Activity

	54.3 Creating the Dynamic Routing Decision Table
	54.3.1 How to Create the Dynamic Routing Decision Table
	54.3.2 What Happens When You Create the Dynamic Routing Decision Table

	55 Integrating the Spring Framework in SOA Composite Applications
	55.1 Introduction to the Spring Service Component
	55.2 Integration of Java and WSDL-Based Components in the Same SOA Composite Application
	55.2.1 Java and WSDL-Based Integration Example
	55.2.2 Using Callbacks with the Spring Framework

	55.3 Creating a Spring Service Component in Oracle JDeveloper
	55.3.1 How to Create a Spring Service Component in Oracle JDeveloper
	55.3.2 What You May Need to Know About Java Class Errors During Java-to-WSDL Conversions

	55.4 Defining Custom Spring Beans Through a Global Spring Context
	55.4.1 How to Define Custom Spring Beans Through a Global Spring Context

	55.5 Using the Predefined Spring Beans
	55.5.1 IHeaderHelperBean.java Interface for headerHelperBean
	55.5.2 IInstanceHelperBean.java Interface for instancerHelperBean
	55.5.3 ILoggerBean.java Interface for loggerBean
	55.5.4 How to Reference Predefined Spring Beans in the Spring Context File

	55.6 JAXB and OXM Support
	55.6.1 Extended Mapping Files

	55.7 Configuring Groovy and Aspectj Classes with the Spring Service Component
	55.8 Troubleshooting Spring Errors
	55.8.1 Spring Bean Interface to Invoke Cannot Be Found
	55.8.2 Unable to Add a Spring Service Component in the SOA Composite Editor

	Part X Appendices
	A BPEL Process Activities and Services
	A.1 Introduction to Activities and Components
	A.2 Introduction to BPEL 1.1 and 2.0 Activities
	A.2.1 Tabs Common to Many Activities
	A.2.1.1 Annotations Tab
	A.2.1.2 Assertions Tab
	A.2.1.3 Correlations Tab
	A.2.1.4 Documentation Tab
	A.2.1.5 Headers Tab
	A.2.1.6 Properties Tab
	A.2.1.7 Skip Condition Tab
	A.2.1.8 Sources and Targets Tabs
	A.2.1.9 Timeout Tab

	A.2.2 Using the Native Format Builder Wizard Outside of Adapter Configuration
	A.2.2.1 To create a native format schema from the Applications Window:
	A.2.2.2 To edit an existing native format schema from the Applications Window:

	A.2.3 Assign Activity
	A.2.4 Assert Activity
	A.2.5 Bind Entity Activity
	A.2.6 Call Activity
	A.2.7 Compensate Activity
	A.2.8 CompensateScope Activity
	A.2.9 Create Entity Activity
	A.2.10 Dehydrate Activity
	A.2.11 Dynamic Partner Link Activity
	A.2.12 Email Activity
	A.2.13 Empty Activity
	A.2.14 Exit Activity
	A.2.15 Flow Activity
	A.2.16 FlowN Activity
	A.2.17 forEach Activity
	A.2.18 If Activity
	A.2.19 IM Activity
	A.2.20 Invoke Activity
	A.2.21 Java Embedding Activity
	A.2.22 Partner Link Activity
	A.2.23 Phase Activity
	A.2.24 Pick Activity
	A.2.24.1 To put the correlation syntax before the assign activity:

	A.2.25 Receive Activity
	A.2.26 Receive Signal Activity
	A.2.27 Remove Entity Activity
	A.2.28 RepeatUntil Activity
	A.2.29 Replay Activity
	A.2.30 Reply Activity
	A.2.31 Rethrow Activity
	A.2.32 Schedule Job
	A.2.33 Scope Activity
	A.2.34 Sequence Activity
	A.2.35 Signal Activity
	A.2.36 SMS Activity
	A.2.37 Switch Activity
	A.2.38 Terminate Activity
	A.2.39 Throw Activity
	A.2.40 Translate Activity
	A.2.41 User Notification Activity
	A.2.42 Validate Activity
	A.2.43 Voice Activity
	A.2.44 Wait Activity
	A.2.45 While Activity
	A.2.46 XQuery Transform Activity
	A.2.47 XSLT Transform Activity

	A.3 Introduction to BPEL Services

	B XPath Extension Functions
	B.1 Advanced Functions
	B.1.1 batchProcessActive
	B.1.2 batchProcessCompleted
	B.1.3 copyList
	B.1.4 create-nodeset-from-delimited-string
	B.1.5 createDelimitedString
	B.1.6 createEssParameter
	B.1.7 doStreamingTranslate
	B.1.8 doTranslateFromNative
	B.1.9 doTranslateToNative
	B.1.10 format
	B.1.11 genEmptyElem
	B.1.12 generate-guid
	B.1.13 get-content-from-file-function
	B.1.14 getApplicationName
	B.1.15 getAttachmentContent
	B.1.16 getAttachmentProperty
	B.1.17 getChildElement
	B.1.18 getComponentInstanceID
	B.1.19 getComponentName
	B.1.20 getCompositeInstanceID
	B.1.21 getCompositeName
	B.1.22 getCompositeURL
	B.1.23 getECID
	B.1.24 getFaultAsString
	B.1.25 getFaultAsXML
	B.1.26 getFaultName
	B.1.27 getMilestoneName
	B.1.28 getOwnerDocument
	B.1.29 getParentComponentInstanceID
	B.1.30 getRevision
	B.1.31 getTaskReminderDuration
	B.1.32 instanceOf
	B.1.33 lookup-xml
	B.1.34 parseEscapedXML
	B.1.35 parseXML
	B.1.36 processScalableDocumentToNative
	B.1.37 processXSLTAttachmentFromNativeToNative
	B.1.38 processXSLTAttachmentFromNativeToStream
	B.1.39 processXSLTAttachmentToNativeStream
	B.1.40 processXSLTAttachmentToStream
	B.1.41 processXSLTForScalableDocument
	B.1.42 setCompositeInstanceTitle

	B.2 BPEL Extension Functions
	B.2.1 BPEL Extension Functions in BPEL 1.1 and BPEL 2.0
	B.2.1.1 getLinkStatus
	B.2.1.2 getVariableData
	B.2.1.2.1 selectionFailure Fault is Thrown if the Result Node Set is a Size Other Than One During Execution

	B.2.1.3 getVariableProperty (For BPEL 1.1)
	B.2.1.4 getVariableProperty (For BPEL 2.0)
	B.2.1.5 doXslTransform (For BPEL 2.0)

	B.3 BPEL XPath Extension Functions
	B.3.1 addQuotes
	B.3.2 authenticate
	B.3.3 countNodes
	B.3.4 doXSLTransform
	B.3.5 doXSLTransformForDoc
	B.3.6 doc
	B.3.7 formatDate
	B.3.8 generateGUID
	B.3.9 getConfigProperty
	B.3.10 getContentAsString
	B.3.11 getConversationId
	B.3.12 getCreator
	B.3.13 getCurrentDate
	B.3.14 getCurrentDateTime
	B.3.15 getCurrentTime
	B.3.16 getElement
	B.3.17 getInstanceId
	B.3.18 getNodeValue
	B.3.19 getNodes
	B.3.20 getPreference
	B.3.21 getProcessId
	B.3.22 getProcessOwnerId
	B.3.23 getProcessURL
	B.3.24 getProcessVersion
	B.3.25 integer
	B.3.26 listUsers
	B.3.27 lookupUser
	B.3.28 parseEscapedXML
	B.3.29 processXQuery
	B.3.30 processXQuery10
	B.3.31 processXQuery2004
	B.3.32 processXSLT
	B.3.33 readBinaryFromFile
	B.3.34 readBinaryFromFileWithMimeHeaders
	B.3.35 readFile
	B.3.36 search
	B.3.37 toCDATA
	B.3.38 tryToCastToBoolean
	B.3.39 writeBinaryToFile
	B.3.40 getGroupIdsFromGroupAlias
	B.3.41 getUserIdsFromGroupAlias

	B.4 Conversion Functions
	B.4.1 boolean
	B.4.2 number
	B.4.3 string

	B.5 DVM Functions
	B.5.1 lookupValue
	B.5.2 lookupValue1M

	B.6 Database Functions
	B.6.1 lookup-table
	B.6.2 query-database
	B.6.3 sequence-next-val

	B.7 Date Functions
	B.7.1 add-dayTimeDuration-to-dateTime
	B.7.2 current-date
	B.7.3 current-dateTime
	B.7.3.1 To display the datetime value in seconds:

	B.7.4 current-time
	B.7.5 day-from-dateTime
	B.7.6 format-dateTime
	B.7.7 hours-from-dateTime
	B.7.8 minutes-from-dateTime
	B.7.9 month-from-dateTime
	B.7.10 seconds-from-dateTime
	B.7.11 subtract-dayTimeDuration-from-dateTime
	B.7.12 timezone-from-dateTime
	B.7.13 year-from-dateTime

	B.8 Identity Service Functions
	B.8.1 getDefaultRealmName
	B.8.2 getGroupProperty
	B.8.3 getManager
	B.8.4 getManagerFromManagementChain
	B.8.5 getReportees
	B.8.6 getSupportedRealmNames
	B.8.7 getUserProperty
	B.8.8 getUserRoles
	B.8.9 getUsersInAppRole
	B.8.10 getUsersInGroup
	B.8.11 isUserInAppRole
	B.8.12 isUserInRole
	B.8.13 lookupGroup
	B.8.14 lookupUser

	B.9 Logical Functions
	B.9.1 and
	B.9.2 equals
	B.9.3 false
	B.9.4 greater
	B.9.5 greater equals
	B.9.6 less
	B.9.7 less equals
	B.9.8 not
	B.9.9 not equals
	B.9.10 or
	B.9.11 true

	B.10 Mathematical Functions
	B.10.1 abs
	B.10.2 add
	B.10.3 ceiling
	B.10.4 count
	B.10.5 divide
	B.10.6 floor
	B.10.7 max-value-among-nodeset
	B.10.8 min-value-among-nodeset
	B.10.9 mod
	B.10.10 multiply
	B.10.11 round
	B.10.12 square-root
	B.10.13 subtract
	B.10.14 sum
	B.10.15 unary

	B.11 Node Set Functions
	B.11.1 last
	B.11.2 local-name
	B.11.3 name
	B.11.4 namespace-uri
	B.11.5 position
	B.11.6 union

	B.12 String Functions
	B.12.1 compare
	B.12.2 compare-ignore-case
	B.12.3 concat
	B.12.4 contains
	B.12.5 create-delimited-string
	B.12.6 ends-with
	B.12.7 format-string
	B.12.8 get-content-as-string
	B.12.9 get-localized-string
	B.12.10 index-within-string
	B.12.11 last-index-within-string
	B.12.12 left-trim
	B.12.13 lower-case
	B.12.14 matches
	B.12.15 normalize-space
	B.12.16 right-trim
	B.12.17 starts-with
	B.12.18 string-length
	B.12.19 substring
	B.12.20 substring-after
	B.12.21 substring-before
	B.12.22 translate
	B.12.23 upper-case

	B.13 Workflow Service Functions
	B.13.1 clearTaskAssignees
	B.13.2 createWordMLDocument
	B.13.3 dynamicTaskAssign
	B.13.4 getNotificationProperty
	B.13.5 getNumberOfTaskApprovals
	B.13.6 getPreviousTaskApprover
	B.13.7 getTaskAttachmentByIndex
	B.13.8 getTaskAttachmentByName
	B.13.9 getTaskAttachmentContents
	B.13.10 getTaskAttachmentsCount
	B.13.11 getTaskResourceBundleString

	B.14 XREF Functions
	B.14.1 lookupPopulatedColumns
	B.14.2 lookupXRef
	B.14.3 lookupXRef1M
	B.14.4 markForDelete
	B.14.5 populateLookupXRefRow
	B.14.6 populateXRefRow
	B.14.7 populateXRefRow1M

	B.15 Building XPath Expressions in the Expression Builder in Oracle JDeveloper
	B.15.1 How to Use the Expression Builder
	B.15.2 Introduction to the XPath Building Assistant
	B.15.3 How to Use the XPath Building Assistant
	B.15.4 Using the XPath Building Assistant in the XSLT Mapper
	B.15.5 Function Parameter Tool Tips
	B.15.6 Syntactic and Semantic Validation
	B.15.7 Creating Expressions with Free Form Text and XPath Expressions
	B.15.8 Using Double Slashes for Directory Paths in XPath Functions on Windows Can Cause Errors

	B.16 Creating User-Defined XPath Extension Functions
	B.16.1 How to Implement User-Defined XPath Extension Functions
	B.16.1.1 How to Implement Functions for the XSLT Mapper
	B.16.1.2 How to Implement Functions for All Other Components

	B.16.2 How to Configure User-Defined XPath Extension Functions
	B.16.3 How to Deploy User-Defined Functions to Runtime

	C Deployment Descriptor Properties
	C.1 Introduction to Deployment Descriptor Properties
	C.1.1 How to Define Deployment Descriptor Properties in the Property Inspector
	C.1.2 How to Get the Value of a Preference within a BPEL Process

	D Understanding Sensor Public Views and the Sensor Actions XSD
	D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File
	D.2 Sensor Public Views
	D.2.1 Schema
	D.2.1.1 BPEL_PROCESS_INSTANCES
	D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUES
	D.2.1.3 BPEL_FAULT_SENSOR_VALUES
	D.2.1.4 BPEL_VARIABLE_SENSOR_VALUES

	D.3 Sensor Actions XSD File

	E Propagating Normalized Message Properties Through Message Headers
	E.1 Introduction to Normalized Messages
	E.1.1 Oracle Web Services Addressing Properties
	E.1.2 How to Set Normalized Message Properties in Message Headers

	E.2 Manipulating Normalized Message Properties with bpelx Extensions
	E.2.1 BPEL 2.0 bpelx Extensions Syntax
	E.2.2 BPEL 1.1 bpelx Extensions Syntax

	F Interfaces Implemented By Rules Dictionary Editor Task Flow
	F.1 The MetadataDetails Interface
	F.1.1 The getDocument Method
	F.1.2 The getRelatedDocument Method
	F.1.3 The setDocument Method

	F.2 The NLSPreferences Interface

	G Oracle SOA Suite Configuration Properties Road Map
	G.1 Oracle BPEL Process Manager Deployment Descriptor Properties
	G.2 Normalized Message Header Properties
	G.2.1 Oracle JCA Adapter Message Header Properties
	G.2.2 Oracle BPEL Process Manager and Oracle Web Services Addressing Message Header Properties
	G.2.3 Oracle B2B Message Header Properties

	G.3 SOA Composite Application Properties
	G.4 Fault Policy and Adapter Rejected Message Properties
	G.5 Oracle B2B System Properties
	G.6 Oracle Healthcare Properties
	G.7 Oracle Business Activity Monitoring Properties
	G.8 Oracle Enterprise Manager Fusion Middleware Control Property Pages
	G.8.1 SOA Infrastructure Properties
	G.8.2 Oracle BPEL Process Manager Properties
	G.8.3 Human Workflow Notification and Task Service Properties
	G.8.4 Oracle Mediator Properties
	G.8.5 Cross Reference Properties
	G.8.6 Oracle B2B Properties
	G.8.7 Service and Reference Binding Component Properties
	G.8.8 Global Token Variables and Automatic Database Purging Properties

	G.9 System MBean Browser Advanced Properties
	G.9.1 SOA Infrastructure Advanced Properties
	G.9.2 Oracle BPEL Process Manager Advanced Properties
	G.9.3 Oracle Mediator Advanced Properties
	G.9.4 Human Workflow Notification and Task Service Advanced Properties
	G.9.5 Oracle B2B Advanced Properties

	H Working with Large Schemas in the XSLT Editor
	H.1 Sparse Mappings
	H.1.1 Quick Start for XSLT View

	H.2 Non-Sparse Mappings
	H.3 Reducing Textual Clutter
	H.4 Searching Trees
	H.5 Copying and Modifying a Large Input Document
	H.6 Generating Test Files with Element and Type Substitutions

