
Oracle® Fusion Middleware
Developing Applications with Oracle JDeveloper

12c (12.2.1.2)

E76675-01

Septermber 2016

Documentation for Oracle JDeveloper users that describes how
to use the JDeveloper IDE and provides detailed information
on the functionality available within it.

Oracle Fusion Middleware Developing Applications with Oracle JDeveloper, 12c (12.2.1.2)

E76675-01

Copyright © 2011, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Akhilesh Swarnkaar

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface .. xxxi

Audience ... xxxi

Related Documents.. xxxi

Conventions.. xxxi

Documentation Accessibility .. xxxii

What's New in This Guide.. xxxiii

New and Changed Features for 12c (12.2.1.2) ... xxxiii

1 Introduction to Oracle JDeveloper

About Oracle JDeveloper... 1-1

Oracle JDeveloper Information Resources.. 1-2

Configuring Proxy Settings ... 1-2

Using an Automatic Configuration Script for Proxy Settings .. 1-3

Migrating to Oracle JDeveloper 12c... 1-4

2 Oracle JDeveloper Accessibility Information

Using a Screen Reader and Java Access Bridge with Oracle JDeveloper ... 2-1

Oracle JDeveloper Features that Support Accessibility .. 2-1

Keyboard Access .. 2-1

Screen Reader Readability .. 2-2

Flexibility in Font and Color Choices .. 2-3

No Audio-only Feedback .. 2-3

No Dependency on Blinking Cursor and Animation ... 2-3

Screen Magnifier Usability.. 2-3

How to Change the Editor or Tabbed View of a File .. 2-4

How to Read Text in a Multi-line Edit Field .. 2-4

How to Read the Line Number in the Source Editor .. 2-4

How to Access Exception Stack HTML Links and Generated Javadoc Links in the Log

Window.. 2-4

Recommendations for Customizing Oracle JDeveloper ... 2-4

How to Customize the Accelerators Keys .. 2-4

iii

How to Pass a Conflicting Accelerator Key to Oracle JDeveloper.. 2-4

How to Change the Look and Feel of the IDE ... 2-5

How to Customize the Fonts in Editors .. 2-5

How to Customize Syntax Highlighting... 2-5

How to Display Line Numbers in Editors .. 2-5

How to Change the Timing for Code Insight... 2-5

How to Specify the Columns in the Debugger .. 2-5

Highly Visual Features of Oracle JDeveloper... 2-5

3 Working with Oracle JDeveloper

About Working with Oracle JDeveloper... 3-1

Working with JDeveloper Roles ... 3-2

How to Change the JDeveloper Role... 3-2

How to Manage JDeveloper Features and Installed Updates.. 3-2

Working with Windows in the IDE ... 3-3

How to Maximize Windows... 3-3

How to Minimize and Restore Dockable Windows in the IDE... 3-4

How to Dock Windows in the IDE .. 3-4

How to Close and Reopen Dockable Windows in the IDE.. 3-5

How to Restore Window Layout to Factory Settings ... 3-6

Keyboard Navigation in JDeveloper.. 3-6

How to Work with Shortcut Keys in the IDE... 3-6

Common Navigation Keys.. 3-8

Navigation in Standard Components.. 3-8

Navigating Complex Controls.. 3-14

Navigation in Specific Components .. 3-20

Customizing the IDE .. 3-26

How to Change the Look and Feel of the IDE ... 3-26

How to Customize the General Environment for the IDE ... 3-27

How to Customize the Compare Window in the IDE .. 3-27

How to Customize the Components window ... 3-27

How to Change Roles in JDeveloper ... 3-29

How to Associate File Types with JDeveloper... 3-30

Working with the Resources Window... 3-30

Using the Resources Window... 3-30

Working with IDE Connections ... 3-31

Searching the Resources Window.. 3-32

Filtering Resources Window Contents.. 3-33

Importing and Exporting Catalogs and Connections ... 3-34

Working with Resources Window Catalogs .. 3-34

Working with Catalog Folders ... 3-35

Working with Source Files .. 3-36

Working with Index Data.. 3-36

iv

Using the Source Editor... 3-36

How to Set Preferences for the Source Editor .. 3-43

How to Customize Code Templates for the Source Editor .. 3-46

How to Manage Source Files in the Editor Window... 3-48

Working with Mouseover Popups... 3-51

How to Locate a Source Node in a Window such as the Applications Window, Databases

Window, Applications Server Window .. 3-52

How to Set Bookmarks in Source Files.. 3-52

How to Edit Source Files ... 3-53

How to Compare Source Files .. 3-55

How to Revert to the Last Saved Version of a File .. 3-56

How to Search Source Files... 3-56

How to Print Source Files.. 3-57

Reference: Regular Search Expressions... 3-58

Working with Extensions .. 3-58

How to Install Extensions with Check for Updates .. 3-58

How to Install Extensions from the Provider's Web Site.. 3-58

How to Install Extensions Directly from OTN... 3-59

How to Install Extensions Using the JDeveloper dropins Directory 3-59

Using the Online Help ... 3-59

Using the Help Center ... 3-60

How to Open the Online Help ... 3-61

How to Search the Documentation.. 3-61

How to Add Bookmarks to the Favorites Page.. 3-62

How to Customize the Online Help Display ... 3-63

How to Open and Close Multiple Help Topics ... 3-63

How to Print Help Topics ... 3-64

Common Development Tools ... 3-64

Application Overview ... 3-64

File List... 3-66

Compare Window.. 3-68

Applications Window.. 3-69

Application Servers Window ... 3-72

Structure Window ... 3-73

Applications Window - Data Controls Panel ... 3-75

Log Window.. 3-76

Issues Window.. 3-77

Documents Dialog.. 3-78

Dependency Explorer .. 3-78

Adding External Tools to JDeveloper.. 3-79

How to Find All External Programs Supported by JDeveloper .. 3-79

How to Add Access to an External Program from JDeveloper ... 3-79

How to Change the Appearance of an External Program.. 3-79

v

Working with Tasks ... 3-79

About Task Repositories ... 3-80

Working with Tasks ... 3-80

Finding and Opening Tasks.. 3-80

Creating and Saving Task Queries... 3-81

Reporting New Tasks .. 3-81

How to Add a Task Repository.. 3-82

Working with the Tasks Window .. 3-82

How to View Tasks .. 3-82

How to Organize Tasks ... 3-83

4 Getting Started with Developing Applications with Oracle JDeveloper

About Developing Applications with Oracle JDeveloper .. 4-1

Creating Applications and Projects.. 4-1

How to Create an Application.. 4-2

How to Create a Custom Application ... 4-2

How to Create a Project ... 4-3

Creating a New Custom Project ... 4-3

Managing Applications and Projects ... 4-3

How to Open an Existing Application .. 4-4

How to Open an Existing Project ... 4-4

How to Quickly Add Items to a Project Using the New Menu... 4-4

How to Import Existing Source Files into JDeveloper .. 4-5

How to Import Files into a Project ... 4-7

Managing Folders and Java Packages in a Project .. 4-8

How to Manage Working Sets.. 4-8

How to Browse Files in JDeveloper Without Adding Them to a Project............................... 4-10

How to View an Archive... 4-11

How to View an Image File in JDeveloper ... 4-11

Setting Default Project Properties .. 4-11

How to Set Default Project Properties... 4-11

How to Set Properties for Individual Projects ... 4-12

How to Manage Libraries.. 4-14

How to Manage Application and Project Templates .. 4-18

How to Manage File Templates .. 4-20

How to Save an Application or Project ... 4-25

How to Save an Individual Component or File ... 4-25

How to Rename an Application, Project, or Individual Component 4-26

How to Relocate an Application, Project, or Project Contents .. 4-26

How to Close an Application, Project, or Other File... 4-27

How to Remove a File from a Project.. 4-28

How to Remove a Project from an Application ... 4-28

How to Remove an Application... 4-28

vi

5 Developing Applications Using Modeling

About Modeling with Diagrams .. 5-1

UML Diagrams ... 5-1

Business Services Diagrams.. 5-2

Transformations.. 5-2

Creating, Using, and Managing Diagrams ... 5-2

Creating a New Diagram .. 5-4

Working with Diagram Elements .. 5-4

How to Copy Elements to Another Diagram... 5-8

How to Rename a Diagram... 5-8

How to Publish a Diagram as an Image.. 5-8

How to Setup a Page for Printing .. 5-9

How to Set the Area of a Diagram to Print... 5-9

How to See a Preview of Your Page Before Printing .. 5-9

How to Clear a Diagram Print Area .. 5-9

How to Zoom in and Out of a Diagram.. 5-9

How to Display an Entire Diagram ... 5-9

How to Display the Selected Elements at the Maximum Size... 5-10

How to Display a Diagram in its Original Size ... 5-10

How to Delete a Diagram.. 5-10

Working with Diagram Layout.. 5-10

Working with Diagram Nodes... 5-14

Working with Diagram Edges.. 5-16

Annotating Your Diagrams .. 5-16

Storing Diagrams.. 5-17

Using UML .. 5-18

Creating UML Elements Off a Diagram.. 5-18

Storing UML Elements Locally .. 5-18

Using UML Profiles.. 5-19

Importing and Exporting UML ... 5-21

Using MOF Model Libraries .. 5-24

Using Transformations .. 5-26

Transformation Types.. 5-27

UML-Java Transformation .. 5-27

UML-Offline Database Transformation.. 5-28

UML-ADF Business Components Transformation ... 5-36

Modeling with UML Class Diagrams.. 5-37

Creating a UML Class Diagram ... 5-38

Working with the Class Diagram Features .. 5-39

Modeling with Activity Diagrams ... 5-41

Working with the Activity Diagram Features.. 5-41

Modeling with Sequence Diagrams ... 5-44

vii

Working with the Sequence Diagram Features ... 5-44

Modeling with Use Case Diagrams ... 5-50

Working with the Use Case Diagram Features.. 5-50

Exporting a Use Case Model for the First Time... 5-53

Exporting a Changed Use Case Model ... 5-55

Importing a Use Case Model from a Set of HTML Files... 5-56

Editing the HTML Files ... 5-56

Importing from HTML files .. 5-59

Modeling with Profile Diagrams ... 5-60

Modeling with Java Class Diagrams.. 5-61

How to Create Java Classes, Interfaces and Enums .. 5-61

How to Model Inner Java Classes and Interfaces .. 5-62

Modeling Composition in a Java Class Diagram... 5-62

Modeling Inheritance on a Java Class Diagram... 5-63

Extending Modeled Java Classes ... 5-63

Implementing Modeled Java Interfaces .. 5-64

Modeling Java Fields and Methods ... 5-64

Refactoring Class Diagrams.. 5-64

Modeling with EJB Diagrams .. 5-65

Working with EJB/JPA Modeling Features ... 5-66

Modeling with Database Diagrams .. 5-71

Working with the Database Modeling Features .. 5-71

6 Versioning Applications with Source Control

About Versioning Applications with Source Control ... 6-1

Downloading Source Control Extensions in Oracle JDeveloper ... 6-1

Setting Up and Configuring Source Control .. 6-2

Setting Up Subversion and JDeveloper... 6-2

How to Set Up and Configure a Git Repository .. 6-6

How to Set Up CVS with JDeveloper .. 6-7

How to Configure CVS For Use with JDeveloper ... 6-9

How to Set Up Perforce with JDeveloper ... 6-9

Installing Perforce Components for use with JDeveloper.. 6-9

How to Set Up Team System and JDeveloper.. 6-11

Versioning Applications With Mercurial.. 6-14

Setting Up and Configuring a Source Repository.. 6-17

How to Create a Source Repository... 6-17

How to Connect to a Source Control Repository... 6-21

Configuring JDeveloper for the Source Repository .. 6-24

How to Load the Repository with Content .. 6-27

How to Create a WebDAV Connection .. 6-31

Working with Files in Source Control .. 6-34

How to Check Out Files .. 6-34

viii

How to Update Files with Subversion .. 6-36

How to Work with New and Changed Files in Git... 6-39

How to Work with Files in Perforce ... 6-42

How to Lock and Unlock Files ... 6-45

How to Check In Changed Files... 6-47

How to Use Change Sets and Changelists.. 6-51

How to Use Comment Templates for Checkins .. 6-54

Working with Branches and Tags .. 6-57

How to Create Branches .. 6-57

How to Use Branches... 6-59

How to Create Tags.. 6-61

How to Use Tags .. 6-63

How to Use Properties in Subversion ... 6-64

Working with File History, Status and Revisions.. 6-67

File History .. 6-67

Replacing a File with the Subversion Base Revision... 6-68

How to Undo or Revert Changes... 6-68

How to Merge Changes from Different Files ... 6-69

Working with File Versions and History in CVS... 6-71

Working with File Versions in Perforce .. 6-74

Working with File Versions in Team System... 6-74

Using an External Diff Tool with CVS .. 6-76

Integrating a Third Party Diff Utility ... 6-77

Integrating other CVS Commands .. 6-77

Working with Patches in Source Control .. 6-78

How to Create and Apply Patches ... 6-79

7 Getting Started with Developing Java Applications

About Developing Java Applications .. 7-1

Using the Java Source Editor... 7-1

Using Code Insight ... 7-2

Using Code Insight to Add Annotations to Your Java Code... 7-2

Using Code Peek... 7-3

Using Scroll Tips ... 7-3

Using InfoTips... 7-3

Searching Incrementally .. 7-4

Using Shortcut Keys ... 7-4

Bookmarking .. 7-4

Browsing Java Source... 7-4

Using Code Templates ... 7-5

Setting Preferences for the Java Source Editor ... 7-5

How to Set Comment and Brace-Matching Options for the Java Source Editor 7-5

How to Set Import Statement Sorting Options for the Java Source Editor.............................. 7-6

ix

How to Choose a Coding Style... 7-6

Using Toolbar Options... 7-7

Using the Quick Outline Window.. 7-9

Working with the Java UI Visual Editor ... 7-10

Java Swing and AWT Components .. 7-10

8 Working with Java Code

About Working with Java Code ... 8-1

Navigating in Java Code.. 8-1

How to Browse Java Elements.. 8-2

How to Locate the Declaration of a Variable, Class, or Method ... 8-2

How to Find the Usages of a Class or Interface ... 8-3

How to Find the Usages of a Method.. 8-3

How to Find the Usages of a Field... 8-4

How to Find the Usages of a Local Variable or Parameter .. 8-4

Identifying Overridden or Implemented Method Definitions .. 8-5

How to View the Hierarchy of a Class or Interface... 8-5

Stepping Through the Members of a Class .. 8-5

Editing Java Code ... 8-6

How to Create a New Java Class or Interface .. 8-6

How to Implement a Java Interface ... 8-6

How to Override Methods.. 8-7

How to Convert an Anonymous Inner Class to a Lambda Expression 8-7

How to Use Code Templates .. 8-8

Using Predefined Code Templates .. 8-9

How to Expand or Narrow Selected Text... 8-14

How to Surround Code with Coding Constructs.. 8-14

How to Fold Code .. 8-15

Adding an Import Statement.. 8-15

How to Organize Import Statements .. 8-16

Using ojformat .. 8-16

Editing with the Java Visual Editor .. 8-17

How to Add Documentation Comments .. 8-19

How to Update Documentation Comments... 8-20

How to Set Javadoc Properties for a Project ... 8-20

How to Customize Documentation Comment Tags ... 8-21

How to View Javadoc for a Code Element Using Quick Javadoc .. 8-21

How to Preview Documentation Comments ... 8-22

How to Audit Documentation Comments ... 8-22

How to Build Javadoc.. 8-22

How to Create References to Missing Annotation Elements... 8-23

Using the JOT Structure Window .. 8-23

Refactoring Java Projects ... 8-24

x

Refactoring on Java Class Diagrams.. 8-25

How to Invoke a Refactoring Operation... 8-26

How to Preview a Refactoring Operation .. 8-27

How to Rename a Code Element .. 8-28

How to Delete a Code Element ... 8-29

Refactoring Classes and Interfaces .. 8-29

How to Duplicate a Class or Interface... 8-30

How to Extract an Interface from a Class ... 8-31

How to Extract a Superclass ... 8-32

How to Use Supertypes Where Possible... 8-32

How to Convert an Anonymous Class to an Inner Class... 8-33

How to Move an Inner Class .. 8-33

Refactoring Class Members .. 8-33

How to Change a Method to a Static Method.. 8-35

How to Change the Signature of a Method.. 8-35

How to Pull Members Up into a Superclass... 8-35

How to Push Members Down into Subclasses .. 8-36

How to Introduce a Field .. 8-37

How to Inline a Method Call .. 8-38

How to Introduce a Variable .. 8-38

How to Introduce a Parameter ... 8-39

How to Introduce a Constant ... 8-39

How to Extract a Method .. 8-40

How to Extract a Class... 8-41

How to Replace a Constructor with a Factory Method .. 8-41

How to Encapsulate a Field .. 8-42

How to Invert a Boolean Expression ... 8-42

Refactoring XML Schemas ... 8-43

9 Building Java Projects

About Building Java Projects .. 9-1

Building with Make and Rebuild Commands.. 9-2

How to Set Compiler Preferences .. 9-2

Compiling with Make ... 9-2

Compiling with Rebuild.. 9-3

Understanding Dependency Checking ... 9-3

Compiling Applications and Projects .. 9-4

How to Configure Your Project for Compiling.. 9-4

How to Specify a Native Encoding for Compiling.. 9-5

Compiling from the Command Line ... 9-5

Cleaning Applications and Projects ... 9-6

How to Clean .. 9-6

Building with Apache Ant... 9-7

xi

Create an Ant Build File at Application Level ... 9-7

Create an Ant Build File at Project Level .. 9-8

Create an Empty Ant Build File ... 9-8

Running Ant on Project Buildfile Targets... 9-8

Using the Ant Tool in the IDE .. 9-9

Building and Running with Apache Maven... 9-9

Understanding Repositories ... 9-10

Understanding Maven Plugins .. 9-11

Understanding Dependencies .. 9-11

Understanding the Project Object Model.. 9-11

Understanding the Settings File ... 9-12

Selecting the POM File... 9-12

Installing Maven... 9-13

Before You Begin .. 9-13

How to Create Maven POM Files ... 9-14

Using the Context Menu in the POM file .. 9-15

How to Specify and Manage Remote Repositories ... 9-16

Populating the Repository .. 9-17

How to Match the Default Maven Structure When You Create an Application 9-20

How to Create Maven Projects Using Maven Archetypes... 9-20

What Happens When You Create a New Maven Application.. 9-22

How to Run Maven Goals on POM Files.. 9-23

How to Create a Maven POM for a Project .. 9-23

Auditing Maven Applications.. 9-24

Configuring Test Settings.. 9-24

Understanding Code Insight .. 9-24

Using the WebLogic Maven Plugin in JDeveloper.. 9-25

Using ojdeploy and ojmake .. 9-25

Understanding Continuous Delivery and Continuous Integration .. 9-26

10 Testing and Profiling Java Application Projects

About Profiling Applications.. 10-1

About Starting the Profiler .. 10-1

Starting and Profiling JDeveloper Applications Simultaneously ... 10-1

Attaching the Profiler to a Running JDeveloper Applications ... 10-2

Profiling External Applications .. 10-2

Profiling Telemetry... 10-2

Profiling Methods ... 10-3

Profiling Specific Methods .. 10-4

Profiling Objects.. 10-4

Profiling Specific Objects... 10-5

Profiling Threads .. 10-5

Profiling Locks .. 10-6

xii

Additional Functions when Running a Profiling Session... 10-6

Capturing Heap Dump Data... 10-7

Viewing UI Elements with Heap Walker ... 10-8

How to Analyze a Heap Dump Using Object Query Language (OQL)............................... 10-10

Taking and Accessing Snapshots of Profiling Data ... 10-19

Taking Snapshots at the End of a Profiling Session .. 10-19

Taking Snapshots During a Profiling Session .. 10-20

Starting and Stopping the Application Finished Dialog .. 10-20

Accessing Snapshots .. 10-21

How to Calibrate the Profiler .. 10-22

How to Set Profiling Points ... 10-22

Unit Testing with JUnit ... 10-23

Creating a JUnit Test for a Java Project ... 10-23

How to Create a JUnit Custom Test Fixture... 10-24

How to Create a JUnit JDBC Test Fixture ... 10-24

Creating a JUnit Test Case .. 10-25

How to Add a Test to a JUnit Test Case.. 10-26

Creating a JUnit Test Suite .. 10-26

How to Create a Business Components Test Suite.. 10-27

How to Create a Business Components Test Fixture.. 10-28

How to Update a Test Suite with all Test Cases in the Project .. 10-29

How to Run JUnit Test Suites ... 10-30

11 Auditing and Monitoring Java Projects

About Auditing and Monitoring Java Projects... 11-1

Auditing Java Projects.. 11-1

Understanding Audit Rules.. 11-2

Understanding Audit Metrics .. 11-2

Using the Auditing Tools .. 11-3

Using the Audit Window Report Panel .. 11-3

Using the Audit Window Toolbar ... 11-3

Using the Audit Window Context Menu.. 11-4

How to Audit Java Code in JDeveloper.. 11-5

Auditing Java Code from the Command Line... 11-6

Working with Audit Profile.. 11-9

How to Delete an Audit Profile.. 11-11

How to Import or Export an Audit Profile ... 11-11

How to Run Audit to Generate an Audit Report .. 11-12

How to Audit Unserializable Fields .. 11-12

How to Audit Serializable Fields That Do Not Have serialVersionUID.............................. 11-12

Viewing an Audit Report .. 11-13

How to Organize Audit Report Rows... 11-14

Using Filters with Reports .. 11-14

xiii

How to Save an Audit Report .. 11-15

How to Fix an Audit Rule Violation.. 11-15

How to Fix a Construct's Audit Rule Violations ... 11-16

How to Hide Audit Rule Violations .. 11-16

How to Hide Audit Report Measurements .. 11-17

Monitoring HTTP Using the HTTP Analyzer .. 11-17

How to Use the Log Window... 11-17

How to Use the Test Window .. 11-18

How to Use the Instances Window ... 11-20

What Happens When You Run the HTTP Analyzer .. 11-21

How to Specify HTTP Analyzer Settings.. 11-21

How to Use Multiple Instances .. 11-21

How to Configure External Web Browsers .. 11-22

Using SSL with the HTTP Analyzer .. 11-22

How to Run the HTTP Analyzer.. 11-25

How to Debug Web Pages Using the HTTP Analyzer ... 11-25

How to Edit and Resend HTTP Requests ... 11-25

How to Use Rules to Determine Behavior.. 11-26

How to Set Rules .. 11-27

Using the HTTP Analyzer with Web Services ... 11-28

Using the HTTP Analyzer with WebSockets ... 11-31

Using the HTTP Analyze with Fast Infoset .. 11-32

Reference: Troubleshooting the HTTP Analyzer... 11-32

12 Running and Debugging Java Projects

About Running and Debugging Java Programs .. 12-1

Understanding the Processes Window.. 12-2

Configuring a Project for Running... 12-2

How to Choose a Run Configuration .. 12-2

How to Create a Run Configuration.. 12-3

How to Run a Project or File ... 12-3

How to Run a Project from the Command Line .. 12-3

How to Change the Java Virtual Machine .. 12-4

Macros.. 12-4

Setting the Classpath for Programs.. 12-4

Setting the CLASSPATH Environment Variable (for java.exe) ... 12-5

Using the JDeveloper Library CLASSPATH.. 12-5

Setting the CLASSPATH to Include Your Projects.. 12-5

Setting the CLASSPATH Parameter (for java.exe) .. 12-6

Debugging Java Programs... 12-6

Understanding the Debugger Icons... 12-7

Debugging an Application Deployed to Integrated WebLogic Server 12-10

How to Debug a Project in JDeveloper ... 12-11

xiv

How to Edit and Recompile.. 12-11

Using FastSwap Deployment to Minimize Redeployment.. 12-12

How to Debug ADF Components.. 12-16

How to Configure a Project for Debugging.. 12-18

How to Set the Debugger Start Options.. 12-18

How to Launch the Debugger .. 12-19

How to Export Debug Information to a File .. 12-19

Using the Source Editor When Debugging .. 12-20

Using Context Menu Items ... 12-20

Using Tooltips... 12-21

Using Java Expressions in the Debugger .. 12-21

Moving Through Code While Debugging.. 12-22

How to Step Into a Method... 12-22

How to Step Over a Method... 12-23

Controlling Which Classes Are Traced Into... 12-24

How to Step Through Behavior as Guided by Tracing Lists ... 12-24

How to Locate the Execution Point for a Thread... 12-25

How to Run to the Cursor Location .. 12-25

How to Pause and Resume the Debugger ... 12-26

How to Terminate a Debugging Session .. 12-26

How to View the Debugger Log .. 12-27

Using the Debugger Windows ... 12-27

How to Open Debugger Windows .. 12-27

How to Use the Breakpoints Window... 12-27

How to Use the Data Window ... 12-27

How to Use the Smart Data Window.. 12-28

How to Use the Watches Window... 12-28

How to Use the Inspector Window ... 12-30

How to Use the Heap Window .. 12-30

Using the Stack Window... 12-31

How to Use the Classes Window... 12-31

How to Use the Monitors Window.. 12-32

How to Use the Threads Window .. 12-32

How to Set Preferences for the Debugger Windows .. 12-33

How to Specify Which Columns Display in the Window.. 12-33

Managing Breakpoints ... 12-33

Understanding Verified and Unverified Breakpoints .. 12-34

Understanding Deadlocks... 12-35

Understanding the Deadlock Breakpoint .. 12-36

Understanding Grouped Breakpoints... 12-36

How to Edit Breakpoint Options ... 12-36

Editing a Breakpoint .. 12-37

How to Set Source Breakpoints ... 12-37

xv

How to Control Breakpoint Behavior.. 12-38

How to Delete a Breakpoint.. 12-38

How to Set Instance Breakpoints ... 12-39

How to Set Exception Breakpoints .. 12-40

How to Make a Breakpoint Conditional ... 12-40

Using Pass Count Breakpoints ... 12-41

How to Examine Breakpoints with the Breakpoints Window .. 12-41

How to Manage Breakpoint Groups ... 12-41

Examining Program State in Debugger Windows... 12-42

How to Inspect and Modify Data Elements .. 12-43

How to Modify Expressions in the Inspector Window .. 12-44

How to Show and Hide Fields in the Filtered Classes List .. 12-44

Debugging Remote Java Programs .. 12-45

How to Start a Java Process in Debug Mode.. 12-45

How to Use a Project Configured for Remote Debugging... 12-46

How to Configure JPDA Remote Debugging .. 12-47

13 Implementing Java Swing User Interfaces

About Applications Developed in Earlier Versions .. 13-1

About Java Swing UI Components and Containers .. 13-2

Designing Java GUIs ... 13-2

About Guarded Blocks .. 13-3

How to Create a Form.. 13-3

Understanding the Forms You Can Create... 13-3

Adding Components.. 13-4

How to Set Component Properties .. 13-5

How to Select Components in Your User Interface... 13-5

How to Align Components... 13-6

How to Size Components.. 13-7

Working with Containers .. 13-7

Reordering Components Within a Container .. 13-8

Working with Layout Managers .. 13-8

How to Set the Layout Manager .. 13-9

Understanding FreeDesign Layout ... 13-10

How to Set Layout Properties .. 13-10

Understanding Layouts Provided with JDeveloper ... 13-11

Using BorderLayout... 13-12

Using CardLayout .. 13-13

Using FlowLayout.. 13-14

Using GridBagLayout.. 13-14

Using GridLayout... 13-18

Previewing a User Interface.. 13-18

How to Create Accessible Forms.. 13-19

xvi

Working with Event Handling ... 13-19

How to Attach Event Handling Code to Menu Events .. 13-20

How to Attach Event-Handling Code to a Component Event .. 13-20

How to Quickly Create an Event Handler for a Component's Default Event 13-20

How to Modify GUI Source Code .. 13-21

Modifying GUI Form Code Outside of the IDE... 13-21

How to Modify Code Generation for a Property... 13-22

Working with the UI Debugger.. 13-22

Working with UI Debugger Windows.. 13-23

How to Start the UI Debugger.. 13-23

Examining the Application Component Hierarchy .. 13-24

How to Display Component Information in the Watches Window..................................... 13-24

How to Inspect a UI Component in an Properties window... 13-25

How to Trace Events Generated by Components ... 13-25

How to Show Event Listeners .. 13-25

Remote Debugging GUI Applications .. 13-26

Automatic Discovery of Listeners.. 13-27

14 Working with JavaBeans

About Working with JavaBeans ... 14-1

Using JavaBeans in JDeveloper... 14-1

How to Implement an Event-Handling Method ... 14-2

What Happens When You Create an Event-Handling Method.. 14-2

Understanding Standard Event Adapters... 14-3

How to Create an Event Set .. 14-3

How to Make a Component Capable of Firing Events .. 14-3

15 Getting Started with Developing Java EE Applications

About Developing Java EE Applications .. 15-1

Java EE and Oracle Application Developer Framework ... 15-1

Using Web Page Tools ... 15-2

Using Enterprise JavaBeans and Java Persistence Components.. 15-2

Using Oracle TopLink .. 15-2

Understanding Secure Applications .. 15-2

Working With Applications That Use XML ... 15-3

Working With Applications That Use Web Services... 15-3

16 Developing Applications Using Web Page Tools

About Developing Applications Using Web Page Tools.. 16-1

Using the Source Editor .. 16-1

Source Editor Features... 16-2

Working in the Visual Editing Environment ... 16-3

Using the Properties Window .. 16-16

xvii

Using the Components Window.. 16-18

Using the Overview Editor for JSF Configuration Files ... 16-19

Planning Your Page Flows With JSF Navigation Diagrams .. 16-21

How to Use Code Insight For Faster Web Page Coding ... 16-27

Developing Applications with JavaServer Faces ... 16-28

Building Your JSF Application .. 16-29

Building your JSF Business Component Framework.. 16-31

Converting a Project to Facelets ... 16-59

Running and Testing JSF Applications ... 16-61

Developing Applications with HTML Pages.. 16-62

Building Your HTML Pages ... 16-62

Working with HTML Text .. 16-64

Working with HTML Images ... 16-65

Working with HTML Tables... 16-67

Working with HTML Forms... 16-72

Working with Cascading Style Sheets... 16-74

Working with Java Server Pages ... 16-78

Building Your JSP Application... 16-78

Understanding Flow Control in JSPs... 16-81

Debugging and Deploying JSPs ... 16-82

Running a JSP.. 16-83

Understanding JSP Segments ... 16-85

Developing Applications with Java Servlets .. 16-85

Understanding Servlet Support in JDeveloper .. 16-85

Implementing Basic Methods for an HTTP Servlet... 16-87

How to Create a Servlet Filter .. 16-89

How to Create a Servlet Listener ... 16-89

Registering a Servlet Filter in a JSP Page .. 16-90

How to Run a Servlet ... 16-90

How to Debug a Servlet .. 16-91

How to Deploy a Servlet ... 16-92

Developing Applications with Script Languages .. 16-92

How to Work with JavaScript Code Insight... 16-93

How to Use Breadcrumb Support.. 16-94

Working with Script Languages .. 16-94

How to Use Structure Pane Support ... 16-97

Refactoring JavaScript Code ... 16-97

Working with JSP and Facelet Tag Libraries .. 16-101

Using Tag Libraries with Your Web Pages... 16-101

How to Work with Custom Tag Libraries .. 16-103

17 Developing with EJB and JPA Components

About Developing with EJB and JPA Components... 17-1

xviii

Support For EJB Versions and Features .. 17-1

Building EJB 3.x Applications and Development Process .. 17-5

EJB 3.x Application Development Process ... 17-5

How to Work with an EJB Business Services Layer ... 17-6

Using Java EE Design Patterns in Oracle JDeveloper ... 17-7

Using Java EE Contexts and Dependency Injection (CDI) ... 17-8

beans.xml File.. 17-8

Interceptor Binding Type .. 17-9

Qualifier Type ... 17-10

Scope Type... 17-11

Stereotype .. 17-11

Building a Persistence Tier ... 17-12

About JPA Entities and the Java Persistence API .. 17-12

How to Create JPA Entities... 17-14

About SDO For EJB/JPA... 17-16

Using an EJB/POJO-based ADF-BC Service for Deployment to the SOA Platform.......... 17-16

How to Create an SDO Service Interface for JPA Entities.. 17-17

How to Generate Database Tables from JPA Entities ... 17-18

Annotations for EJB/JPA .. 17-18

How to Annotate Java Classes ... 17-20

Representing Relationships Between Entities .. 17-21

Java Persistence Query Language.. 17-21

JPA Object-Relational Mappings.. 17-21

How to Use Java Service Facades .. 17-22

How to Define a Primary Key for an Entity ... 17-22

Implementing Business Processes in Session Beans .. 17-24

Using Session Facades .. 17-24

How to Create a Session Bean .. 17-25

How to Create Session Beans in EJB Modules ... 17-26

How to Create Message-Drive Beans in EJB Modules.. 17-26

How to Add, Delete, and Edit EJB Methods ... 17-27

How to Add a Field to an EJB... 17-27

How to Remove a Field From an EJB .. 17-28

Customizing Business Logic with EJB Environment Entries... 17-28

Exposing Data to Clients ... 17-28

How to Identify Resource References .. 17-29

How to Specify a Primary Key for ADF Binding .. 17-29

How to Use ADF Data Controls for EJBs.. 17-29

Modeling EJB/JPA Components on a Diagram... 17-29

Deploying EJBs as Part of an Web Application.. 17-29

Deploying EJB Modules and JPA Persistence Units ... 17-30

Deploying JPA Entity Beans ... 17-30

About EJB Modules ... 17-30

xix

About JPA Persistence Units... 17-30

How to Create a JPA Persistence Unit... 17-31

How to Remove EJBs in a Module... 17-31

How to Import EJBs into JDeveloper .. 17-31

Running and Testing EJB/JPA Components.. 17-32

How to Test EJB/JPA Components Using the Integrated Server ... 17-32

How to Test EJB/JPA Components Using a Remote Server.. 17-33

How to Test EJB Unit with JUnit.. 17-34

18 Developing Persistence in Applications Using Oracle TopLink

About Developing Persistence in Applications Using TopLink.. 18-2

Developing TopLink JPA Projects.. 18-2

How to Specify the JPA Version .. 18-2

How to Create Entities... 18-3

How to Create and Configure a JPA Persistence Descriptor (persistence.xml).................... 18-3

How to Create Persistence Units.. 18-4

How to Configure Persistence Units ... 18-5

About Using JPA Mappings ... 18-7

How to Use JPA Mappings ... 18-9

How to Create JPA Mapping Descriptors .. 18-9

How to Generate Unique IDs for Primary Keys.. 18-12

How to Configure Queries.. 18-12

How to Specify Derived Identifiers in Mappings.. 18-13

Using TopLink Extensions .. 18-13

Developing Native TopLink Mappings .. 18-13

Designing Native TopLink Applications.. 18-13

Using Native TopLink in Application Design ... 18-14

Creating Native TopLink Metadata... 18-14

Creating Project Metadata... 18-15

Creating Session Metadata.. 18-15

Using Native TopLink Descriptors.. 18-15

Using Native TopLink Mappings .. 18-16

Understanding the TopLink Editor ... 18-19

Developing Native TopLink Relational Projects.. 18-24

How to Create Relational Projects and Object Maps .. 18-24

How to Create Relational Descriptors... 18-24

How to Configure Relational Descriptors .. 18-25

Developing Native TopLink XML Projects .. 18-25

How to Create XML Projects and Object Maps ... 18-26

How to Create XML Descriptors.. 18-27

How to Add XML Schemas .. 18-27

Developing Native TopLink EIS Projects.. 18-27

How to Create EIS Projects and Object Maps .. 18-28

xx

How to Create EIS Descriptors... 18-28

Using EIS Data Sources ... 18-29

Developing Native TopLink Sessions.. 18-29

How to Create a New Native TopLink Sessions Configuration File 18-30

How to Create Native TopLink Sessions .. 18-30

Acquiring Sessions at Runtime .. 18-30

How to Create Session Brokers .. 18-31

How to Create Data Source Logins.. 18-31

How to Create Connection Pools ... 18-32

Developing Native TopLink Applications.. 18-32

Using TopLink the Cache.. 18-33

How to Configure the TopLink Cache .. 18-34

Using Queries.. 18-35

How to Create Queries .. 18-36

Using Basic Query API .. 18-37

Using Advanced Query API ... 18-37

How to Create TopLink Expressions... 18-39

Understanding TopLink Transactions .. 18-39

TopLink Transactions and the Unit of Work ... 18-40

19 Developing Secure Applications

About Developing Secure Applications .. 19-1

Understanding Java EE Applications and Oracle Platform Security Services for Java

(OPSS)... 19-1

Understanding Fusion Web Applications and ADF Security ... 19-1

Understanding Container-managed Security .. 19-2

Additional Functionality ... 19-2

Securing Applications in Phases... 19-2

About Web Application Security and JDeveloper Support.. 19-3

Handling User Authentication in Web Applications .. 19-4

About Authentication Type Choices ... 19-4

Encrypting Passwords for a Target Domain .. 19-5

How to Create an Identity Store .. 19-6

How to Add Test Users to the Identity Store ... 19-7

Managing Enterprise Roles in the Identity Store... 19-8

How to Create a Credential Store .. 19-8

How to Add a Login Module ... 19-9

How to Authenticate Through a Custom Login Module ... 19-10

How to Add a Key Store ... 19-11

How to Enable an Anonymous Provider.. 19-12

How to Add Credentials to Users in the Identity Store.. 19-12

How to Choose the Authentication Type for the Web Application 19-12

Securing Application Resources in Web Applications.. 19-13

xxi

How to Secure Application Resources Using the jazn-data.xml Overview Editor 19-13

How to Secure ADF Resources Using ADF Security in Fusion Web Applications............ 19-14

Configuring an Application-Level Policy Store ... 19-15

How to Add Application Roles to an Application Policy Store .. 19-15

How to Add Member Users or Enterprise Roles to an Application Role 19-16

How to Create Custom Resource Types ... 19-16

How to Add Resource Grants to the Application Policy Store ... 19-17

How to Add Entitlement Grants to the Application Policy Store... 19-17

How to Create a Custom JAAS Permission Class ... 19-18

How to Add Grants to the System Policy Store... 19-18

Migrating the Policy Stores ... 19-19

How to Migrate the Policy Stores .. 19-19

Migrating Application Policies... 19-20

Migrating Credentials.. 19-20

Migrating Users and Groups .. 19-21

Securing Development with JDBC... 19-21

20 Developing Applications Using XML

About Developing Applications Using XML ... 20-1

Using the XML File Editors ... 20-1

Understanding XML Editing Features .. 20-2

Understanding the XML Editor Toolbar... 20-3

How to Set Editing Options for the XML Editor ... 20-3

Working with XML Schemas .. 20-4

Working with Attributes in the XSD Visual Editor... 20-4

What Happens When You Create an XML Schema in the XSD Visual Editor 20-5

Selecting XSD Components .. 20-6

Choice Component .. 20-6

All Component ... 20-6

Sequence Component .. 20-7

Cardinality and Ordinality ... 20-7

ComplexType Component.. 20-8

Attribute Group Component .. 20-8

Union Component.. 20-9

List Component .. 20-9

Working with XML Schema Substitution Groups... 20-9

How to Import and Register XML Schemas ... 20-10

How to Generate Java Classes from XML Schemas with JAXB... 20-10

Working with XSD Documents and Components... 20-11

How to Display a Schema in Both Editors.. 20-11

How to Create an Image of the XSD Visual Editor Design Tab .. 20-11

How to Navigate with Grab Scroll in the XSD Visual Editor .. 20-12

How to Expand and Collapse the XSD Component Display... 20-12

xxii

How to Zoom In and Out in the XSD Visual Editor ... 20-13

How to Select XSD Components ... 20-13

What Happens When You Select a Component in the XSD Visual Editor.......................... 20-14

How to Select Target Positions for XSD Components .. 20-14

How to Insert XSD Components.. 20-15

How to Cut XSD Components ... 20-16

How to Copy XSD Components .. 20-16

How to Delete XSD Components .. 20-17

How to Paste XSD Elements ... 20-17

How to Move XSD Components ... 20-17

How to Set and Modify XSD Component Properties ... 20-18

How to Set Properties for Multiple XSD Components ... 20-19

Localizing with XML.. 20-19

What You May Need to Know About XLIFF Files ... 20-20

Developing Databound XML Pages with XSQL Servlet... 20-20

Supporting XSQL Servlet Clients... 20-20

How Can You Use XSQL Servlet?.. 20-21

How to Create an XSQL File... 20-21

How to Edit XML Files with XSQL Tags .. 20-22

How to Check the Syntax in XSQL Files ... 20-22

How to Create XSQL Servlet Clients that Access the Database .. 20-22

Creating XSQL Servlet Clients for Business Components ... 20-23

What You May Need to Know About XSQL Error JBO-27122 .. 20-25

How to Create a Custom Action Handler for XSQL... 20-26

How to Deploy XSQL Servlets ... 20-27

How to View Output from Running XSQL Files as Raw XML Data.................................... 20-29

How to Create an XSL Style Sheet for XSQL Files... 20-29

How to Format XML Data with a Style Sheet .. 20-30

How to Modify the XSQL Configuration File .. 20-31

Using XML Metadata Properties in XSQL Files... 20-31

21 Developing and Securing Web Services

About Developing and Securing Web Services.. 21-1

Developing Java EE Web Services Using JDeveloper ... 21-2

Securing Java EE Web Services Using JDeveloper .. 21-3

Discovering and Using Web Services.. 21-4

Using JDeveloper to Create and Use Web Services ... 21-4

How to Use Proxy Settings and JDeveloper .. 21-5

How to Set the Context Root for Web Services.. 21-6

How to Configure Connections to Use with Web Services.. 21-7

How to Work with Type Mappings .. 21-7

How to Choose Your Deployment Platform.. 21-9

How to Work with Web Services Code Insight ... 21-10

xxiii

Working with Web Services in a UDDI Registry ... 21-10

How to Define UDDI Registry Connections .. 21-11

What You May Need to Know About Choosing the View for your UDDI Registry

Connection... 21-13

How to Search for Web Services in a UDDI Registry ... 21-14

How to Generate Proxies to Use Web Services Located in a UDDI Registry...................... 21-14

How to Display Reports of Web Services Located in a UDDI Registry 21-14

How to Publish Web Services to a UDDI Registry.. 21-15

Creating JAX-WS Web Services and Clients... 21-15

How to Create JAX-WS Web Services (Bottom-up) .. 21-16

How to Create JAX-WS Web Services from WSDL (Top-down) .. 21-20

How to Create JAX-WS Web Service Clients ... 21-21

How to Use Web Service Atomic Transactions ... 21-26

How to Use SOAP Over JMS Transport ... 21-29

How to Use Fast Infoset for Optimizing XML Transmission .. 21-33

How to Use MTOM for Optimizing Binary Transmission... 21-36

How to Manage WSDL Files... 21-39

How to Edit JAX-WS Web Services ... 21-45

How to Delete JAX-WS Web Services ... 21-45

Creating RESTful Web Services and Clients... 21-45

How to Create RESTful Web Services... 21-46

How to Create RESTful Web Service Clients ... 21-60

Creating WebSockets.. 21-62

How to Configure WebSockets in the Properties Window.. 21-63

How to Configure WebSockets Using Annotations.. 21-64

How to Test the WebSocket Connection... 21-65

Attaching Policies ... 21-65

What You May Need to Know About OWSM Policies .. 21-65

What You May Need to Know About Oracle WebLogic Web Service Policies 21-66

How to Attach Policies to JAX-WS Web Service and Clients .. 21-66

How to Attach Policies to RESTful Web Services and Clients .. 21-76

How to Use a Different OWSM Policy Store.. 21-80

How to Use Custom Web Service Policies.. 21-81

Deploying Web Services .. 21-82

How to Deploy Web Services to Integrated WebLogic Server .. 21-82

How to Deploy Web Services to a Standalone Application Server 21-83

How to Undeploy Web Services .. 21-83

Testing and Debugging Web Services ... 21-84

How to Test Web Services in a Browser ... 21-84

How to Debug Web Services .. 21-84

How to Test Web Services with JUnit ... 21-86

How to View Web Service Message Logs for an Application Server................................... 21-87

Monitoring and Analyzing Web Services ... 21-87

xxiv

How to Download and Register a WS-I Analyzer .. 21-88

How to Analyze Web Services in the Applications Window .. 21-88

How to Create and Analyze Web Service Logs .. 21-89

How to Analyze Web Services Running in the Integrated Server .. 21-90

How to Examine Web Services using the HTTP Analyzer ... 21-91

22 Deploying Applications

About Deploying Applications... 22-1

Developing Applications with the Integrated Application Server ... 22-4

Developing Applications to Deploy to Standalone Application Servers............................... 22-4

Developing Applications to Deploy to Oracle Java Cloud Service... 22-5

Understanding the Archive Formats... 22-5

Understanding Deployment Profiles... 22-6

Understanding Deployment Descriptors.. 22-6

Configuring Deployment Using Deployment Plans... 22-6

Deploying from the Java Edition ... 22-6

Running Java EE Applications in the Integrated Application Server... 22-7

Understanding the Integrated Application Server Log Window ... 22-8

Rules Governing Deployment to the Integrated Application Server 22-8

Working with Integrated Application Servers... 22-9

Connecting and Deploying Java EE Applications to Application Servers................................... 22-15

How to Create a Connection to the Target Application Server... 22-15

Connecting to Specific Application Server Types ... 22-17

How to Create and Edit Deployment Profiles ... 22-20

How to Create and Edit Deployment Dependencies .. 22-24

How to Create and Edit Deployment Descriptors .. 22-26

How to Configure Global Deployment Preferences ... 22-30

How to Configure Applications for Deployment.. 22-30

How to Use Deployment Plans .. 22-35

Deploying Java Applications .. 22-37

Deploying to a Java JAR.. 22-38

Deploying to an OSGi Bundle .. 22-39

Deploying Java EE Applications .. 22-39

How to Deploy to the Application Server from JDeveloper.. 22-39

How to Deploy a RAR File.. 22-40

How to Add a Resource Adapter Archive (RAR) to the EAR ... 22-40

How to Deploy a Metadata Archive (MAR) File ... 22-41

How to Deploy an Applet as a WAR File ... 22-41

How to Deploy a Shared Library Archive.. 22-42

How to Deploy to a Managed Server That Is Down... 22-43

Post-Deployment Configuration .. 22-43

Testing the Application and Verifying Deployment ... 22-43

Deploying from the Command Line.. 22-44

xxv

ojdeploy ... 22-44

Using ojdeploy from Mac OS X Platforms.. 22-47

Using ojdeploy.. 22-48

How to Deploy from the Command Line Using Ant .. 22-52

Using ojserver ... 22-58

Deploying Using Java Web Start .. 22-58

Purpose of the Java Web Start Technology .. 22-59

How to Create a Java Web Start File.. 22-60

How to Create a Java Client Web Archive for Java Web Start .. 22-61

How to Create a Java Web Start JNLP Definition for Java Clients 22-62

How to Deploy a Java Client Web Application Archive for Java Web Start 22-63

Deploying Using Weblogic SCA Spring.. 22-64

About WebLogic SCA ... 22-64

About Spring .. 22-65

Installing the Weblogic SCA Spring Extension.. 22-65

Using Oracle WebLogic SCA ... 22-66

Using Spring ... 22-69

Troubleshooting Deployment... 22-70

Common Deployment Issues ... 22-70

How to Troubleshoot Deployment to Integrated Application Servers 22-70

How to Troubleshoot Deployment to Oracle WebLogic Server.. 22-71

How to Troubleshoot Deployment to IBM WebSphere ... 22-73

23 Getting Started with Working with Databases

About Working with Databases ... 23-1

Connecting to and Working with Databases ... 23-1

Designing Databases.. 23-1

Getting Started With Oracle Database Express Edition.. 23-2

How to Manage Database Preferences and Properties ... 23-3

24 Using the Database Tools

Using the Databases Window... 24-1

Using the Database Cart .. 24-3

Using the Structure Window .. 24-6

Using the Database Reports Window.. 24-8

Using the Find Database Object Window ... 24-9

Using the SQL Worksheet ... 24-10

Using Execution Plan... 24-13

How to Recall Statements from the SQL Worksheet History .. 24-14

Using the SQL History Window... 24-14

Using the Snippets Window ... 24-15

Using the Database Object Viewer... 24-16

Database Object Viewer Tabs Toolbars... 24-16

xxvi

Using the PL/SQL Source Editor ... 24-17

Using Test Query.. 24-19

Synchronizing Package Specifications and Bodies.. 24-20

Using SQL*Plus... 24-21

DBMS Output Window ... 24-22

OWA Output Window... 24-23

25 Connecting to and Working with Databases

About Connecting to and with Working with Databases... 25-1

Configuring Database Connections ... 25-2

Connection Scope ... 25-2

What Happens When You Create a Database Connection ... 25-2

About Connection Properties Deployment .. 25-3

How to Create Database Connections... 25-3

Defining Additional JDBC Parameters ... 25-4

Using Different Drivers ... 25-5

Connecting to Oracle Database Using OCI8 .. 25-6

How to Edit Database Connections ... 25-6

How to Export and import Database Connections ... 25-7

How to Open and Close Database Connections .. 25-8

How to Delete Database Connections ... 25-8

How to Register a New Third-Party JDBC Driver .. 25-9

How to Create User Libraries for Non-Oracle Databases ... 25-9

Reference: Connection Requirements for Oracle's Type 2 JDBC Drivers (OCI) 25-10

Browsing and Searching Databases ... 25-11

Browsing Databases ... 25-11

How to Browse online Database Objects .. 25-12

How to Browse Offline Databases and Schemas ... 25-12

How to Use Database Filters... 25-12

How to Enable and Disable Database Filters ... 25-13

How to Open a Database Table in the Database Object Viewer ... 25-14

How to Edit Table Data ... 25-14

How to Find Objects in the Database .. 25-14

Connecting to Databases.. 25-15

What Happens When You Create a Connection to a Database... 25-15

How to Create Connections to Oracle Databases .. 25-15

How to Create Connections to Non-Oracle Databases... 25-18

Connecting and Deploying to Oracle Database Cloud Service ... 25-25

Types of JDeveloper Connection to Oracle Database Cloud Service.................................... 25-25

Using the Database Cart.. 25-27

Importing and Exporting Data ... 25-31

Importing Data Using SQL*Loader ... 25-32

Importing Data Into an External Table ... 25-32

xxvii

How to Import Data into Existing Tables ... 25-32

How to Import Data to New Tables .. 25-33

How to Import Data Using SQL*Loader .. 25-33

How to Import Data Using External Tables ... 25-33

Exporting Data from Databases ... 25-34

How to Export Data to Files.. 25-35

Copying, Comparing, and Exporting Databases ... 25-35

How to Copy Databases .. 25-35

How to Compare Database Schemas... 25-35

How to Export Databases.. 25-36

Working with Oracle and Non-Oracle Databases ... 25-36

Working with Database Reports .. 25-36

Using Database Reports .. 25-36

Reference: Pre-Defined Database Reports ... 25-39

Troubleshooting Database Connections.. 25-44

Deploying to a Database that Uses an Incompatible JDK Version 25-44

26 Designing Databases Within Oracle JDeveloper

About Designing Databases Within Oracle JDeveloper ... 26-1

Creating, Editing, and Dropping Database Objects... 26-1

Working with Offline Database Definitions... 26-1

Working with Database Objects... 26-21

Using Database Reports .. 26-22

Validating Date and Time Values .. 26-22

Creating Scripts from Offline and Database Objects ... 26-22

How to Create SQL Scripts ... 26-22

How to Create OMB Scripts from Tables ... 26-23

How to Create SXML Scripts .. 26-24

27 Using Java in the Database

About Using Java in the Database.. 27-1

Choosing SQLJ or JDBC... 27-1

Using SQLJ .. 27-2

Using Oracle JDBC Drivers... 27-2

SQLJ versus JDBC... 27-4

Embedding SQL in Java Programs with SQLJ ... 27-4

Embedding SQL in Java Programs with JDBC .. 27-7

Accessing Oracle Objects and PL/SQL Packages using Java... 27-9

How to Use JPublisher... 27-10

JPublisher Output... 27-14

Properties Files.. 27-15

How to Enhance JPublisher-Generated Classes .. 27-15

How to Extend JPublisher-Generated Classes ... 27-16

xxviii

JPublisher Options ... 27-17

Using Java Stored Procedures... 27-18

How to Debug Java Stored Procedures... 27-26

How to Remove Java Stored Procedures .. 27-26

28 Running and Debugging PL/SQL and Java Stored Procedures

About Running and Debugging PL/SQL and Java Stored Procedures .. 28-1

Running and Debugging Functions, Procedures, and Packages... 28-1

Debugging PL/SQL Programs and Java Stored Procedures.. 28-2

Debugging PL/SQL Objects ... 28-2

How to Specify the Database Debugger Port... 28-4

Debugging PL/SQL and Java Stored Procedures Prerequisites ... 28-5

How to Locally Debug PL/SQL Programs... 28-6

How to Remotely Debug PL/SQL Programs... 28-6

Using Acceptable Legal PL/SQL Expressions in the Debugger ... 28-8

xxix

xxx

Preface

Welcome to Administering Oracle ADF Applications.

Audience
This document is intended for developers that use Oracle JDeveloper and provides
detailed information on the functionality available in IDE.

Related Documents
• Oracle Fusion Middleware Installing Oracle JDeveloper

• Oracle Fusion Middleware Understanding Oracle Application Development Framework

• Oracle Fusion Middleware Developing Extensions for Oracle JDeveloper

• Oracle Fusion Middleware Developing Fusion Web Applications with Oracle Application
Development Framework

• Oracle Fusion Middleware Developing Web User Interfaces with Oracle ADF Faces

• Oracle Fusion Middleware Developing Applications with Oracle ADF Data Controls

• Oracle JDeveloper 12c Online Help

• Oracle JDeveloper 12c Release Notes, link included with your Oracle JDeveloper
installation, and on Oracle Technology Network

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxxi

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

xxxii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New in This Guide

The following topics introduce the new and changed features of Oracle JDeveloper
and other significant changes that are described in this guide, and provides pointers to
additional information. This document is the new edition of Oracle Fusion Middleware
Developing Applications with Oracle JDeveloper.

New and Changed Features for 12c (12.2.1.2)
Oracle JDeveloper 12c (12.2.1.2) includes the following new and changed features for
this document.

xxxiii

1
Introduction to Oracle JDeveloper

JDeveloper is an integrated development environment (IDE) for building applications.
It builds applications using the latest standards for Java, XML, Web services, and SQL.
This chapter provides an overview of Oracle JDeveloper. It includes the following
sections.

• About Oracle JDeveloper

• Oracle JDeveloper Information Resources

• Configuring Proxy Settings

• Migrating to Oracle JDeveloper 12c

For definitions of unfamiliar terms found in this and other books, see the Glossary.

About Oracle JDeveloper
Oracle JDeveloper supports the complete development life cycle with integrated
features for modeling, coding, debugging, testing, profiling, tuning, and deploying
applications. JDeveloper is the main development platform for the Oracle Fusion
Middleware suite of products. It is a cross-platform IDE that runs on Windows, Linux,
Mac OS X, and other UNIX-based systems.

Oracle JDeveloper provides a visual and declarative development approach and
works together with the Oracle ADF to simplify development.

Key features of JDeveloper include:

• A consistent development environment that can be used for various technology
stacks including Java, SOA, Oracle WebCenter Portal, SQL and PL/SQL, HTML,
and JavaScript.

• XML-based application development.

• A full development and modeling environment for building database objects and
stored procedures.

• A wide range of application deployment options, including Integrated Oracle
WebLogic Server, an integrated run time service for running and testing
applications before deploying to a production environment.

• Extension capabilities that enable customization of the IDE based on development
needs and add additional functionality.

JDeveloper is available in two editions: Oracle JDeveloper Studio and Oracle
JDeveloper Java. The Studio edition is the complete version of JDeveloper and
includes all features. The Java edition contains only the core Java and XML features,

Introduction to Oracle JDeveloper 1-1

and offers shorter download times. This guide is applicable to both editions of
JDeveloper.

Oracle JDeveloper Information Resources
Oracle JDeveloper includes resources designed to get you up and running quickly.
You can learn about Oracle JDeveloper using various methods in addition to this
guide, including online demonstrations, tutorials, and the Oracle Technology Network
(OTN) forum. The following table lists several of these resources.

Table 1-1 Supporting Oracle JDeveloper Resources

Resource Description

OTN Oracle JDeveloper The main page for Oracle JDeveloper is located at: http://
www.oracle.com/technetwork/developer-tools/
jdev/overview/index.html

OTN Oracle JDeveloper
Documentation

The main page for Oracle JDeveloper documentation is located
at: http://www.oracle.com/technetwork/developer-
tools/jdev/documentation/index.html

Oracle JDeveloper Tutorials The tutorials provide step-by-step instructions to accomplish
specific tasks in Oracle JDeveloper.

The tutorials are located at: http://docs.oracle.com/cd/
E37547_01/tutorials/toc.htm

Sample Applications The Summit sample applications for Oracle ADF are a set of
applications developed with the purpose of demonstrating
common use cases in ADF applications, including the
integration between the components of the Oracle ADF
technology stack (ADF Business Components, ADF Faces, ADF
DVT Faces, and ADF Controller). The samples consist of several
workspaces that demonstrate various features of component
functionality. For descriptions of the sample code drawn from
the Summit sample applications, see relevant chapters of Oracle
Fusion Middleware Developing Fusion Web Applications with Oracle
Application Development Framework.

The sample applications are available from: http://
www.oracle.com/technetwork/developer-tools/
jdev/documentation/index.html

OTN Oracle JDeveloper
Forum

You can use the Oracle JDeveloper page on the OTN forum to
ask a question, contribute to a discussion, or interact with other
users.

The Oracle JDeveloper page on the OTN forum is located at:
http://forums.oracle.com/forums/forum.jspa?
forumID=83

Configuring Proxy Settings
By default JDeveloper uses the system proxy settings for your device. You might need
to customize these settings to reach external servers.

To configure proxy settings:

1. Choose Tools > Preferences > Web Browser and Proxy.

Oracle JDeveloper Information Resources

1-2 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://docs.oracle.com/cd/E37547_01/tutorials/toc.htm
http://docs.oracle.com/cd/E37547_01/tutorials/toc.htm
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=83
http://forums.oracle.com/forums/forum.jspa?forumID=83

2. Select the Proxy Settings tab.

3. Select a proxy option and fill in any active fields.

No Proxy. Select this option when your system does not use a proxy to access the
internet.

Use System Default Proxy Settings. Select this option to have the server use the
default proxy settings on your machine. These are the settings configured in your
OS (for Windows or Mac) or in your Window Manager. This includes the host, the
port, and the exceptions, and you cannot add to or enhance those settings.

The expectation is that your OS settings are correct and there is nothing else to add.
To edit the settings for your operating system:

• On Windows, go to Control Panel, Internet Options.

• On MacOS go to System Preferences, Network, Advanced, Proxies.

• On Linux, the proxy settings are configured in the window manager (for
example, on Gnome, this is in System, Preferences, Network Proxy).

Use Automatic Configuration Script. Specify the location of an automatic
configuration script. For example, the URL for a corporate wpad.dat file
(http://wpad.myhost.com/wpad.dat).

Manual Proxy Settings. Manually define the proxy settings specifically for your
organization. Like the System Defaults settings, the manual No Proxy settings are
initially inherited from the OS. Once inherited, they can be modified, enhanced, or
even replaced.

4. Click Test Proxy to verify that any settings you provided are correct. If the test
fails, verify that you have entered the correct URL, host information, or
authentication information. and that you can access the external server through
your network or VPN.

5. When you have verified that you can connect to your proxy server, click OK.

Using an Automatic Configuration Script for Proxy Settings
If your organization uses an automatic configuration script for proxy settings (for
example, wpad.dat or similarly named scripts), you can configure JDeveloper to use
this script automatically.

To configure JDeveloper to use an automatic configuration script:

1. Choose Tools > Preferences > Web Browser and Proxy.

2. Select the Proxy Settings tab.

3. Select the option Use Automatic Configuration Script.

4. In the Script field, enter the complete URL to the server on which the script resides.

5. Click Test Proxy to verify that the URL is correct. If the test fails, verify that you
have entered the correct URL, and that you can access that URL through your
network or VPN.

6. When you have verified that you can connect to your proxy server, click OK.

Configuring Proxy Settings

Introduction to Oracle JDeveloper 1-3

JDeveloper will now automatically use the script at the specified URL for proxy
settings.

Migrating to Oracle JDeveloper 12c
For complete information on supported migration paths, on how to migrate
applications and projects or information about importing preferences and settings
from an earlier version of Oracle JDeveloper to Oracle JDeveloper 12c, see Oracle
Fusion Middleware Installing Oracle JDeveloper.

Migrating to Oracle JDeveloper 12c

1-4 Developing Applications with Oracle JDeveloper

2
Oracle JDeveloper Accessibility Information

Oracle JDeveloper provides a wide range of features that are designed to support
accessibility. Our goal is to make Oracle Products, Services, and supporting
documentation accessible to the disabled community.

This chapter includes the following sections:

• Using a Screen Reader and Java Access Bridge with Oracle JDeveloper

• Oracle JDeveloper Features that Support Accessibility

• Recommendations for Customizing Oracle JDeveloper

• Highly Visual Features of Oracle JDeveloper

Using a Screen Reader and Java Access Bridge with Oracle JDeveloper
For assisting technologies, like screen readers, to work with Java-based applications
and applets, the Windows-based computer must also have Sun's Java Access Bridge
installed. Please refer to Oracle Fusion Middleware Installing Oracle JDeveloper for the
screen reader setup procedure, and for the recommended minimum technology stack.

Oracle JDeveloper Features that Support Accessibility
Oracle JDeveloper supports accessibility features. For additional accessibility
information about Oracle products, including information on how to configure and
use them, see the Oracle Accessibility Program page at:

http://www.oracle.com/accessibility/

Oracle's goal is to ensure that disabled end-users of our products can perform the
same tasks, and access the same functionality as other users. Oracle JDeveloper
provides a number of features that are designed to support accessibility goals.

Keyboard Access
Oracle JDeveloper features support keyboard access to JDeveloper functionality; a
summary is provided below. The mnemonic keys used to open menus and choose
commands are included in all procedural topics. Please refer to the keyboard
navigation topics for a summary of how keys are assigned within JDeveloper and the
lists of accelerator keys provided for commands.

The following menu and toolbar functionality is provided through keyboard access:

• Users can navigate to and invoke all menu items.

• All toolbar functions are accessible through menu items.

• All menus and menu items have unique and functioning mnemonic keys.

Oracle JDeveloper Accessibility Information 2-1

http://www.oracle.com/accessibility/

• All context menus within the windows and source editor can be invoked.

• Frequently used menu items have unique accelerator keys.

The following functionality is available in JDeveloper IDE windows, which include the
Applications window, Structure window, source editor, Properties window,
Constraints, Profilers, Debugger windows, Help windows, Log windows and BC4J
Tester. Users can:

• Navigate between all open windows, to all nodes within a window or pane, and
between tabs in a window.

• Set focus in a window or pane.

• Invoke all controls within a window or pane, and perform basic operations.

• Navigate and update properties in the Properties window.

• Use Code Insight and Code Templates in the source editor.

• Invoke context sensitive help topics, navigate to and open all help topics, and
navigate between the navigation and viewer tabs.

• Open, close, dock, undock, minimize, restore and maximize the applicable
JDeveloper window.

Tips:

• You can press Escape to move the focus from the current dockable window
to the last active editor. Press Shift+Escape to move the focus and also close
the current window.

• You can press Shift+F10 to open the context menu for any window. Use the
Down Arrow and Up arrow keys to select a command and press Enter, or
use the accelerators to invoke a command on the context menu.

The following functionality is available in Oracle JDeveloper dialogs and wizards:

• Users can navigate to and invoke all controls within all wizards and dialogs.

• The order in which the Tab key causes focus to flow is consistent and logical.

• Mnemonic keys are provided for controls where appropriate.

Navigation and controls are available with runtime applications, which include all
runnable files that are produced with Oracle JDeveloper, including Java applications,
HTML applications, applets, JSF (Faces) applications, JSPs, and Servlets. With runtime
applications, users can:

• Navigate to all controls within all runtime applications.

• Invoke all controls within all runtime applications.

Screen Reader Readability
Here is a summary of screen readability in JDeveloper, when it is used with a screen
reader.

Oracle JDeveloper Features that Support Accessibility

2-2 Developing Applications with Oracle JDeveloper

When used with menus and toolbars:

• All menus and menu items are read.

• All toolbar items, including the window toolbar items, are read.

• The hint text on all toolbar items is read.

When used with JDeveloper IDE windows:

• All open windows are read.

• All components within each window, including tabs, are read.

• Status text at the bottom of the IDE, and within the source editor, is read.

When used with dialogs and wizards:

• All controls within all wizards and dialogs are read.

• Hint text is read.

When used with runtime applications:

• All controls within all runtime applications are read.

Flexibility in Font and Color Choices
The user interface in JDeveloper improves usability for people who are visually
impaired by offering flexibility in color and font choices. The following font and color
features are included:

• Users can specify both the font and the size in which the font displays for editors.

• All features of the product have black text on a white or gray background.

• Colored text, underlining or images are never used as the only method of
conveying information.

No Audio-only Feedback
In JDeveloper, there is no situation in which the only feedback a user receives is
audible feedback. All audible feedback is accompanied by a visual indicator. For
example, a prompt accompanies the bell sound that occurs when an error or illegal
action has taken place.

No Dependency on Blinking Cursor and Animation
JDeveloper makes minimal use of a blinking cursor and animation. No features in
JDeveloper use blinking indicators, with the exception of the cursor in the source
editor. No features rely on animated sequences.

Screen Magnifier Usability
The JDeveloper user interface works well with screen magnifiers. All features of the
product can be magnified by a screen magnifier.

Oracle JDeveloper Features that Support Accessibility

Oracle JDeveloper Accessibility Information 2-3

How to Change the Editor or Tabbed View of a File
When you press Enter on a node in the Applications window, you open the default
editor for that file. To switch to the different editors and views available for a
document; for example, to display a JSP file in source view or history view instead of
design view, you can use the Alt+Page Up and Alt+Page Down accelerators to invoke
the Window > Go to > Right Editor and Window > Go to > Left Editor menu
commands, respectively.

How to Read Text in a Multi-line Edit Field
To have the text in a multi-line edit field read by a screen reader, you can select text by
holding down the Shift key while moving the cursor either up or down with the
Arrow keys, depending on the initial cursor position.

How to Read the Line Number in the Source Editor
To have the line number read by a screen reader while you are editing a file in the
source editor, you can press Ctrl+G.

How to Access Exception Stack HTML Links and Generated Javadoc Links in the Log
Window

After generating exception stack HTML links or Javadoc links in the Log window,
they will not be recognized as links, but read as plain text by a screen reader. To access
the links, set the cursor focus to the Log window. Right-click or press Shift+F1 and
select Save As from the context menu. Save the contents of the Log window as an
HTML file. Add the saved HTML file to a project or application as a resource. Open
the file from the Applications window in order to invoke the Oracle JDeveloper
HTML/JSP visual editor, which will display the links correctly. Navigate the file and
access the links from the HTML/JSP visual editor.

Recommendations for Customizing Oracle JDeveloper
JDeveloper provides a number of customization features that enable users to specify
their requirements for keyboard usage, display attributes of the IDE, and timing where
appropriate. All customization features are organized within the Preferences dialog.
For maximum usability and to accommodate your needs, you should consider
changing any of the following from the defaults to a more usable customized setting.

How to Customize the Accelerators Keys
You can add and change the default accelerator keys for Oracle JDeveloper in the
Tools > Preferences > Shortcut Keys page. You can also load preset keymaps that you
are accustomed to using.

How to Pass a Conflicting Accelerator Key to Oracle JDeveloper
In addition to changing the mapped accelerator keys, you can pass a conflicting
accelerator key to JAWS by preceding the accelerator key combination with Insert+F3.

Recommendations for Customizing Oracle JDeveloper

2-4 Developing Applications with Oracle JDeveloper

How to Change the Look and Feel of the IDE
You can change the default look and feel for Oracle JDeveloper in the Tools >
Preferences > Environment page. The look and feel determines the display colors and
shapes of objects like menus and buttons.

How to Customize the Fonts in Editors
You can change the font and font size that display in editors in the Tools >
Preferences > Code Editor > Fonts page.

How to Customize Syntax Highlighting
You can change the font style, as well as the foreground and background colors used
in syntax highlighting within the source editor in the Tools > Preferences > Code
Editor > Syntax Colors page.

How to Display Line Numbers in Editors
You can display or hide line numbers in the source editor in the Tools > Preferences >
Code Editor > Line Gutter page.

How to Change the Timing for Code Insight
You can specify the number of seconds that Code Insight is delayed, or disable Code
Insight in the Tools > Preferences > Code Editor > Code Insight page.

How to Specify the Columns in the Debugger
You can choose the columns and types of information that display in the Debugger in
the Tools > Preferences > Debugger pages.

Highly Visual Features of Oracle JDeveloper
Oracle JDeveloper includes features that are highly visual, and these features have
equivalent functionality that is available to people who are blind or visually impaired:

• The UI and visual editors. The source editor provides equivalent functionality, as
pages and UI elements can be completely designed and coded in the source editor.

• The Components window. The source editor provides equivalent functionality, as
elements and tags that can be selected from the Components window can also be
entered in the source editor.

You can add a component from the Components window to the UI or visual editor
using keystrokes.

Oracle JDeveloper also includes modeling features. It is possible to create, edit and
move elements on a diagram using only keystrokes.

Highly Visual Features of Oracle JDeveloper

Oracle JDeveloper Accessibility Information 2-5

Highly Visual Features of Oracle JDeveloper

2-6 Developing Applications with Oracle JDeveloper

3
Working with Oracle JDeveloper

This chapter is designed to help you to get you up and running quickly on Oracle
JDeveloper. Find information about working with the general development
environment, source files, connections, using the online help, and common
development tools.

This chapter includes the following sections:

• About Working with Oracle JDeveloper

• Working with JDeveloper Roles

• How to Manage JDeveloper Features and Installed Updates

• Working with Windows in the IDE

• Keyboard Navigation in JDeveloper

• Customizing the IDE

• Working with the Resources Window

• Working with Source Files

• Working with Extensions

• Using the Online Help

• Common Development Tools

• Adding External Tools to JDeveloper

• Working with Tasks

• Working with the Tasks Window

About Working with Oracle JDeveloper
JDeveloper is the main development platform for the Oracle Fusion Middleware suite
of products. It is a cross-platform IDE that runs on Windows, Linux, Mac OS X, and
other UNIX-based systems.

JDeveloper is available in two editions: Oracle JDeveloper Studio and Oracle
JDeveloper Java. The Studio edition is the complete version of JDeveloper and
includes all features. The Java edition contains only the core Java and XML features,
and offers shorter download times.

Working with Oracle JDeveloper 3-1

Working with JDeveloper Roles
Roles enable you to tailor the JDeveloper environment. The modified environment
removes items that you do not need from JDeveloper, including menus, preferences,
New Gallery, and even individual fields on dialogs. The role you select determines
which features and options are available to you as you work in JDeveloper.

The roles available are:

• Default Role. This role allows you to access all JDeveloper features. The other roles
provide subsets of these features.

• Customization JDeveloper. This role allows you to create customizable
applications, using the Oracle Metadata Services (MDS) framework.

• Database Edition. This gives you access to just the core database development
tools.

• Java EE Edition. This includes only features for core Java EE development.

• Java Edition. This includes only features for core Java development.

Note:

The full set of online help is always available regardless of the role you have
chosen for JDeveloper.

How to Change the JDeveloper Role
JDeveloper prompts you to select a role the first time it is run. You can also change the
role while JDeveloper is running.

To change the JDeveloper role:

1. From the main menu, select Tools > Switch Roles.

2. The current role contains a bullet next to it. In the Switch Roles menu, select the
role you want to switch to.

How to Manage JDeveloper Features and Installed Updates
To optimize performance and user experience, JDeveloper allows you to disable
features you do not need for your project. Managing features enables you to see only
those components of the IDE that are most relevant to your work. Managing features
has no affect on the data in a project itself. Additionally, you can also uninstall updates
that you previously installed.

For example, assume two projects used to create two different views into an
application. The first project might have Java features loaded, which informs
JDeveloper that the IDE should reflect the Java technology stack. Such filtering
eliminates clutter from individual projects. The second project might have a features
loaded for Swing/AWT, informing JDeveloper to reflect IDE components required for
Swing/AWT development.

To add or remove features in JDeveloper:

Working with JDeveloper Roles

3-2 Developing Applications with Oracle JDeveloper

1. From the main menu, select Tools > Features. The Manage Features and Updates
dialog opens. This dialog displays the features available in the current JDeveloper
role. These features are checked by default.

2. Search for the feature you want to add or remove by entering it in the Search
field, or scroll in the list of features. Click a feature or feature category to view its
description on the right.

3. Check the features you want to add or keep, and uncheck the features you want to
remove. Click the Check for Updates icon to open the Check For Updates wizard
which allows you to load features from an extension.

4. Optionally, to clear previously loaded features from the cache, click Clear Cache.
When you clear the cache, the features are not loaded automatically each time you
restart JDeveloper. The features are loaded only when you use them.

5. Click Update Status when you are done. This feature allows you to commit
changes to the features you have made.

Note:

Update Status is not applicable when you install features using Check For
Updates feature.

To uninstall an installed update:

1. From the main menu, select Tools > Features. The Manage Features and Updates
dialog opens.

2. Click Installed Updates to view the updates that have been installed.

3. Search for the update you want to uninstall by entering it in the Search field, or
scroll in the list of updates. Click an update or update category to view its
description on the right.

4. Check the updates you want to uninstall and click Uninstall.

Working with Windows in the IDE
JDeveloper allows you to arrange the windows according to your convenience.
JDeveloper uses two kinds of windows in the IDE:

• Dockable windows that can be placed anywhere in the IDE.

• Tabbed editor windows that are fixed in the center of the IDE.

How to Maximize Windows
You can maximize any JDeveloper window for better visibility and convenience.
Double-click the title bar of any JDeveloper window to quickly maximize to full screen
view. Double-click the title bar again to return the window to its former position in the
IDE.

Windows do not stay maximized when JDeveloper is closed and then reopened.
Instead the window returns to its default size. However minimized windows stay
minimized when JDeveloper is reopened.

Working with Windows in the IDE

Working with Oracle JDeveloper 3-3

How to Minimize and Restore Dockable Windows in the IDE
You can minimize any dockable window in JDeveloper, or set it to remain open in
place. The default state is set to remain open.

When a window is set to stay open, its position is static. It remains always visible, in
whichever position you have docked it.

When a window is set to minimize, its behavior is more fluid. When you give it focus,
it opens fully in the general area (top, bottom, left, right) where you last left it docked.
When you move the focus elsewhere, the minimized window collapses into the
margin. Whether open or closed, any minimized window's status set to minimize is
identified by a named button in the margin.

To minimize any dockable window:

• Click the Minimize icon in the far right-hand corner of the window set to be kept
open.

If the window currently has focus, it now expands to full height and remains in
place. If the window does not have focus, it collapses into the margin.

When you minimize a window, a button bearing that window's name appears in
the margin. You can toggle the minimized window open and closed with this
button.

Note:

When you minimize a window that exists in a docking zone that also contains
other windows, all windows in the docking zone are minimized.

How to Dock Windows in the IDE
You can float any window that's normally docked—the Applications window, any
custom window, the Log window, the Properties window, the Components window.
You can also resize and position it wherever you would like within JDeveloper.

Generally, floating windows are best suited for a large screen with enough room for
displaying both the information windows and your source code. If you are using
floating windows on a smaller screen they can sometimes be hidden by other
information windows as you work.

All of the tools available under the Window menu—the Applications window,
Structure window, Properties window, and so on—can be arranged however you like.
You can dock them singly or in groups. You can also tab windows together in one
location, either as docked or floating windows.

The following table provides information on how to move dockable windows.

Requirement Action

Move a solitary docked window Grab its title bar and drag

Decouple a docked window from a
group

Grab its title bar and drag

Working with Windows in the IDE

3-4 Developing Applications with Oracle JDeveloper

Requirement Action

Move a group of docked, tabbed, or
docked and tabbed windows

Grab the title bar for the group—the topmost
horizontal title bar, empty but for the close box—
and drag.

To decouple one tabbed window from
a group

Grab the window's tab and drag.

Note:

The title bars for docked windows sometimes appear vertically, on the side of
the window.

The following table provides information on ways to reposition dock windows:

Requirement Action

Dock a window (or window group)
against another edge of the
development area

Drag the window (or window group) to the
destination edge

Dock a window (or window group)
alongside another window

Drag the window (or window group) to the top,
bottom, or side edge of the docked window

Tab one window with another Drag the window to be tabbed into the center of
the destination window (or window group) and
release

How to Close and Reopen Dockable Windows in the IDE
You can easily open and close the main elements of the JDeveloper IDE. These include
the Applications window, Databases window, Structure window, Properties window,
Components window, Resources window and Log window.

Opening a Closed Window

You can open a window that is currently closed.

To open a closed window:

• In the Window menu, choose the name of the window.

Closing an Open Window

You can close a window that is currently open.

To close an open window, perform one of the following steps:

• Click the Close icon which appears on the tab window's name.

• With the focus in the window, press Shift+Escape or Ctrl+Click.

Working with Windows in the IDE

Working with Oracle JDeveloper 3-5

How to Restore Window Layout to Factory Settings
You can restore the window layout in JDeveloper to the default, factory setting.

To restore the layout of dockable windows:

• From the Window menu, select Restore Windows to Factory Settings.

Keyboard Navigation in JDeveloper
For any action that can be accomplished with a mouse, including selection, there is a
way to accomplish the action solely from the keyboard. You can accomplish any task
in JDeveloper using the keyboard that you can using the mouse.

How to Work with Shortcut Keys in the IDE
JDeveloper comes with several predefined keyboard schemes. You can choose to use
one of these, or customize an existing set to suit your own coding style by changing
which keyboard shortcuts map to which actions.

The shortcut keys defined in the Java Look and Feel guidelines provide the base set for
JDeveloper. The various predefined keyboard schemes available in JDeveloper are
then overlaid upon this base set. If the same shortcut key exists in both the look and
feel guidelines and the JDeveloper keyboard scheme, the JDeveloper scheme prevails.
If a shortcut key defined by the look and feel guidelines does not appear in a
JDeveloper scheme, then it is the original look and feel definition that remains in effect
when the scheme in question is enabled.

Loading Preset Keyboard Schemas

At any given time, then, the shortcut keys enabled in JDeveloper depend upon the
interaction of the currently enabled scheme with the Java look and feel guidelines.
When you first open JDeveloper, the default scheme is enabled. You can change this
scheme whenever you wish, and within each scheme, you can customize any of the
shortcut key assignments that you would like. Note that any customized shortcuts you
create in a scheme are not retained when another predefined keyboard scheme is
activated (or even if the same scheme is reloaded).

To load preset keyboard schemes:

1. From the main menu, choose Tools > Preferences.

2. In the preferences dialog, select the Shortcut Keys node. For more information at
any time, press F1 or click Help from within the Preferences dialog.

3. On the shortcut keys page, click More Actions and then select Load Keyboard
Scheme. The Load Keyboard Scheme dialog appears, with the currently loaded
keyboard scheme highlighted.

4. In the Load Keyboard Scheme dialog, select the scheme you wish to load and click
Ok.

5. On the Shortcut Keys page, if you have finished, click Ok.

Viewing JDeveloper Commands and Associated Keyboard Shortcuts

To view JDeveloper commands and their associated keyboard shortcuts (if assigned):

Keyboard Navigation in JDeveloper

3-6 Developing Applications with Oracle JDeveloper

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Shortcut Keys node.

3. On the Shortcut Keys page, under Available Commands, you can view the
complete set of JDeveloper commands, and what keyboards shortcuts (if any) are
assigned to each. If you are looking for a particular command or shortcut, or want
to look at shortcuts for a particular category of commands only, enter a filtering
expression in the Search field.

4. You can also define new shortcuts, or change existing ones.

Redefining a Keyboard Shortcut for a Command

If you prefer using a different keyboard shortcut to the one currently assigned for a
command in a keyboard scheme, you can specify a shortcut of your choice.

Note:

If you use the Smart Common Input Method (SCIM), the keyboard shortcut
for Completion Insight (Ctrl+Space) will not function as expected in the
JDeveloper Code Editor, because Ctrl+Space is interpreted as part of the
SCIM user interface. If you need to use SCIM, you should follow the
instructions shown here to map a different key sequence to Completion
Insight.

To define a new keyboard shortcut for a command within a given keyboard scheme:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Shortcut Keys node. For more information at
any time, press F1 or click Help from within the preferences dialog.

3. On the Shortcut Keys page, under Available Commands, select the command that
you wish to define a new shortcut for.

4. To define a new shortcut for this action, place focus on the New Shortcut field, and
then press the key combination on the keyboard.

If this proposed shortcut already has a command associated with it, that command
will now appear in the Conflicts field. Any conflicting shortcuts are overwritten
when a new shortcut is assigned.

5. To assign this shortcut to the action selected, click Assign. If you want to delete an
already-assigned shortcut, click the Delete button in the toolbar.

If you want to assign more than one shortcut to a command, select the command
and click the Duplicate button. Then, type the shortcut key in the New Shortcut
field and click Assign.

6. When you are finished, click Ok.

Importing and Exporting Keyboard Schemas

JDeveloper enables you to import and export keyboard schemas.

To import or export keyboard schemes:

Keyboard Navigation in JDeveloper

Working with Oracle JDeveloper 3-7

1. From the main menu, select Tools > Preferences to open the Preferences dialog.

2. Click More Actions > Export or Import. Keyboard schemes are stored as XML files.

Common Navigation Keys
The following table describes the common methods of moving the cursor in
JDeveloper:

Table 3-1 Common Methods of Moving the Cursor

Key Cursor Movement Ctrl+cursor Movement

Left Arrow Left one unit (e.g., a single character) Left one proportionally larger
unit (e.g., a whole word)

Right
Arrow

Right one unit Right one proportionally
larger unit

Up Arrow Up one unit or line Up one proportionally larger
unit

Down
Arrow

Down one unit or line Down one proportionally
larger unit

Home Beginning of the line To the beginning of the data
(top-most position)

End End of the line To the end of the data (bottom-
most position)

Tab Next field or control, except when in a text
area or field. In this case, press Ctrl+Tab to
navigate out of the control.

Where there are fields and controls ordered
horizontally as well as vertically, pressing
Tab moves the cursor first horizontally to the
right, then at the end of the line, down to the
left of the next line.

To the next panel which may
be an editor, or a window,
except when in a text area or
field. In this case, press Ctrl
+Tab to navigate out of the
control

Shift+Tab Previous field To previous tab position. In
property sheets, this moves the
cursor to the next page

Enter Selects and highlights the default button,
except when in a combo box, shuttle button,
or similar control.

Note: The default button changes as you
navigate through controls.

n/a

Navigation in Standard Components
This section describes keyboard navigation in standard JDeveloper components.

Buttons

The following table describes the keyboard actions to perform navigation tasks
involving buttons.

Keyboard Navigation in JDeveloper

3-8 Developing Applications with Oracle JDeveloper

Table 3-2 Keyboard Navigation for Buttons

Navigation Keys

Navigate forward to or
from button

Tab

Navigate backward to or
from button

Shift+Tab

Activate the default button
(when the focus is not on a
button)

Enter

Activate any button while
it has focus

Enter, Spacebar, or keyboard shortcut (if one has been defined)

Activate Cancel or Close
buttons on a dialog

Esc

Checkboxes

The following table describes the keyboard actions to perform navigation tasks
involving checkboxes.

Table 3-3 Keyboard Navigation for Checkboxes

Navigation Keys

Navigate forward to or
from checkbox

Tab

Navigate backward to or
from checkbox

Shift+Tab

Select or deselect (when the
focus is on the checkbox)

Spacebar or keyboard shortcut (if one has been defined)

Navigate to checkbox and
select or deselect (when the
focus is not on the
checkbox)

Keyboard shortcut (if one has been defined)

Dropdown Lists and Combo Boxes

The following table describes the keyboard actions to perform navigation tasks
involving dropdown lists and combo boxes.

Table 3-4 Keyboard Navigation for Dropdown Lists and Combo Boxes

Navigation Keys

Navigate forward to or
from a combo box or
dropdown list

Tab or keyboard shortcut (if one has been defined)

Keyboard Navigation in JDeveloper

Working with Oracle JDeveloper 3-9

Table 3-4 (Cont.) Keyboard Navigation for Dropdown Lists and Combo Boxes

Navigation Keys

Navigate backward to or
from a combo box or
dropdown list

Shift+Tab

Toggle list open and closed Spacebar (the current selection receives the focus)

Open a list Down Arrow to open (first item on list receives focus)

Move up or down within
list

Up and Down Arrow keys (highlighted value has focus)

Move right and left within
the initial entry on a combo
box

Right and Left Arrow keys

Select list item Enter

Note: The first time you press Enter, the item in the list is
selected. The second time you press Enter, the default button is
activated.

Close list (with the
highlighted value selected)

Esc

List Boxes

The following table describes the keyboard actions to perform navigation tasks
involving list boxes.

Table 3-5 Keyboard Navigation for List Boxes

Navigation Keys

Navigate forward into or
out of a list

Tab

Navigate backward into or
out of list

Shift+Tab

Make a selection Up Arrow, Down Arrow, Spacebar, or Enter

Note: The first time you press Enter, the highlighted item in the
list is selected. The second time you press Enter, the default
button is activated.

Move within list Up Arrow or Down Arrow

Move to beginning of list Home or Ctrl+Home

Move to end of list End or Ctrl+End

Select all entries Ctrl+A

Toggle (select or deselect)
an item

Spacebar or Ctrl+Spacebar

Keyboard Navigation in JDeveloper

3-10 Developing Applications with Oracle JDeveloper

Table 3-5 (Cont.) Keyboard Navigation for List Boxes

Navigation Keys

Select next item up in list
without deselecting item
with current focus

Shift+Up Arrow Key

Select next item down in
list without deselecting
item with current focus

Shift+Down Arrow Key

Select current item and all
items up to the top of the
list

Shift+Home

Select current item and all
items up to the bottom of
the list

Shift+End

Select current item and all
items visible above that
item

Shift+Page Up

Select current item and all
items visible below that
item

Shift+Page Down

Select item with current
focus without deselecting
other items (to select items
that are not adjacent)

Ctrl+Spacebar

Navigate through list
without deselecting item
with current focus.

Ctrl+Up Arrow or Ctrl+Down Arrow

Radio Buttons

Table 3-6 Keyboard Navigation for Radio Buttons

Navigation Keys

Navigate forward to or
from radio button

Tab

Navigate backward to or
from radio button

Shift+Tab

Navigate forward from
radio button

Arrow Keys

Navigate between radio
button

Arrow Keys

Select radio button Arrow key (navigating to a radio button via arrows selects it) or
keyboard shortcut (if one has been defined)

Keyboard Navigation in JDeveloper

Working with Oracle JDeveloper 3-11

Table 3-6 (Cont.) Keyboard Navigation for Radio Buttons

Navigation Keys

Deselect radio button Select a different radio button in the group using one of the
commands above

Shuttles

The following table describes the keyboard actions to perform navigation tasks
involving shuttles.

Table 3-7 Keyboard Navigation for Shuttles

Navigation Keys

Navigate forward into or
out of a list

Tab

Navigate backward into or
out of list

Shift+Tab

Make a selection Up Arrow or Down Arrow

Move within list Up Arrow or Down Arrow

Move to beginning of list Home or Ctrl+Home

Move to end of list End or Ctrl+End

Select all entries Ctrl+A

Toggle (select or deselect)
an item

Spacebar or Ctrl+Spacebar

Select next item up in list
without deselecting item
with current focus

Shift+Up Arrow Key

Select next item down in
list without deselecting
item with focus

Shift+Down Arrow Key

Select current item and all
items up to the top of the
list

Shift+Home

Select current item and all
items up to the bottom of
the list

Shift+End

Select current item and all
items visible above that
item

Shift+Page Up

Select current item and all
items visible below that
item

Shift+Page Down

Keyboard Navigation in JDeveloper

3-12 Developing Applications with Oracle JDeveloper

Table 3-7 (Cont.) Keyboard Navigation for Shuttles

Navigation Keys

Select item with current
focus without deselecting
other items (to select items
that are not adjacent)

Ctrl+Spacebar

Navigate through list
without deselecting item
with current focus.

Ctrl+Up Arrow or Ctrl+Down Arrow

Sliders

The following table describes the keyboard actions to perform navigation tasks
involving sliders.

Table 3-8 Keyboard Navigation for Sliders

Navigation Keys

Navigate forward to or
from slider

Tab

Navigate backward to or
from slider

Shift+Tab

Increase value Up Arrow or Right Arrow

Decrease value Left Arrow or Down Arrow

Minimum value Home

Maximum value End

Spin Controls

The following table describes the keyboard actions to perform navigation tasks
involving spin controls.

Table 3-9 Keyboard Navigation for Spin Controls

Navigation Keys

Navigate forward to or
from spin control

Tab

Navigate backward to or
from spin control

Shift+Tab

Increase value Up Arrow or Right Arrow, or type the value you want

Decrease value Left Arrow or Down Arrow, or type the value you want

Minimum value Home

Maximum value End

Keyboard Navigation in JDeveloper

Working with Oracle JDeveloper 3-13

Text Fields

The following table describes the keyboard actions to perform navigation tasks
involving text fields.

Table 3-10 Keyboard Navigation for Text Fields

Navigation Keys

Navigate forward into or
out of text box

Tab or keyboard shortcut (if one has been defined)

Navigate backward into or
out of text box

Shift+Tab

Move to previous/next
character within text box

Left Arrow/Right Arrow

Move to start/end of box Home/End

Select all text Ctrl+A

Deselect all text Left Arrow or Right Arrow

Select current item and all
items up to the Left/Right

Shift+Left Arrow, Shift+Right Arrow

Select current item and all
items up to the Start/End

Shift+Home, Shift+End

Select current item and all
items up to the previous/
next word

Ctrl+Shift+Left Arrow, Ctrl+Shift+Right Arrow

Copy selection Ctrl+C

Copy Path Ctrl+Shift+C

Cut selection Ctrl+X

Paste from clipboard Ctrl+V

Extended Paste from
clipboard history

Ctrl+Shift+V

Delete next character Delete

Delete previous character Backspace

Navigating Complex Controls
This section contains information about keyboard shortcuts for complex UI
components.

Dockable Windows

The following table describes the keyboard actions to perform navigation tasks
involving dockable windows.

Keyboard Navigation in JDeveloper

3-14 Developing Applications with Oracle JDeveloper

Table 3-11 Keyboard Navigation for Dockable Windows

Navigation Keys

Navigate forward in or out
of dockable window

Ctrl+Tab

Navigate backward in or
out of dockable window

Ctrl+Shift+Tab

Display context menu Shift+F10

Navigate between tabs
within a dockable window

Alt+Page Down, Alt+Page Up

Move between elements
including dropdown lists,
search fields, panels, tree
structure (but not
individual elements in a
tree), individual
component buttons

Tab

Move up/down through
dockable window contents
(scrollbar)

Up Arrow, Down Arrow.

This scrolls the window contents if the focus moves beyond
visible area of canvas.

Move left/right (scrollbar) Up Arrow, Down Arrow.

This scrolls the panel contents if focus moves beyond visible
area of canvas.

Move to start/end of data
(component buttons)

Ctrl+Home, Ctrl+End

Select an element Enter or Spacebar

Scroll left/right within the
canvas area (without
moving through the
window contents)

Ctrl+Left/Ctrl+Right

Scroll Up/Down within the
canvas area (without
moving through the
window contents)

Ctrl+Up/Ctrl+Down

Menus

Context menus are accessed using Shift+F10. Menus from the main menu bar are
accessed using the keyboard shortcut for the menu.

The following table describes the keyboard actions to perform navigation tasks
involving the menu bar.

Table 3-12 Keyboard Navigation for Menus

Navigation Keys

Navigate to menu bar F10

Keyboard Navigation in JDeveloper

Working with Oracle JDeveloper 3-15

Table 3-12 (Cont.) Keyboard Navigation for Menus

Navigation Keys

Navigate out of menu bar Esc

Navigate between menus
in menu bar

Right Arrow, Left Arrow

Navigate to menu item Up Arrow, Down Arrow

Navigate from menu item Up Arrow, Down Arrow

Activate item Enter, Spacebar, or keyboard shortcut (if one has been defined)

Open submenu Right Arrow

Retract submenu Left Arrow or Esc

Panels

The following table describes the keyboard actions to perform navigation tasks
involving panels.

Table 3-13 Keyboard Navigation for Panels

Navigation Keys

Navigate in/out forward Tab

Navigate in/out backward Shift+Tab

Expand panel (when focus
on header)

Right Arrow

Collapse panel (when focus
on header)

Left Arrow

Navigate within panel Up Arrow, Down Arrow

Navigate to panel header
from contents (when focus
is on top item in list)

Up Arrow

Navigate to panel contents
from header (when focus is
on header)

Down Arrow

Tables

Arrow keys move focus in the direction of the arrow, except when a web widget has
focus; in that case, the down arrow or enter key initiates the widget control action,
such as opening a choice list. Tab moves the focus right, Shift+Tab moves the focus
left.

The following table describes the keyboard actions to perform navigation tasks
involving tables.

Keyboard Navigation in JDeveloper

3-16 Developing Applications with Oracle JDeveloper

Table 3-14 Keyboard Navigation for Tables

Navigation Keys

Navigate forward in or out
of table

Ctrl+Tab

Navigate backward in or
out of table

Shift+Ctrl+Tab

Move to next cell (wrap to
next row if in last cell)

Tab Arrow or Right Arrow

Move to previous cell
(wrap to previous row if in
first cell)

Shift+Tab or Left Arrow

Controls in cells open Down Arrow or Enter

Block move left Ctrl+Page Up

Block move right Ctrl+Page Down

Block move up Page Up

Block move down Page Down

Move to first cell in row Home

Move to last cell in row End

Move to first cell in table Ctrl+Home

Move to last cell in table Ctrl+End

Select all cells Ctrl+A

Deselect current selection
(and select alternative)

Any navigation key

Extend selection on row Shift+Up Arrow

Extend selection one
column

Shift+Down Arrow

Extend selection to
beginning of row

Shift+Home

Extend selection to end of
row

Shift+End

Extend selection to
beginning of column

Ctrl+Shift+Home

Extend selection to end of
column

Ctrl+Shift+End

Edit cell without overriding
current contents, or show
dropdown list in combo
box

F2

Keyboard Navigation in JDeveloper

Working with Oracle JDeveloper 3-17

Table 3-14 (Cont.) Keyboard Navigation for Tables

Navigation Keys

Reset cell content prior to
editing

Esc

Tabs

This section refers to the tabs that appear within a dockable window, view or dialog.
The following table describes the keyboard actions to perform navigation tasks
involving tabs in dockable windows, views and dialogs.

Table 3-15 Keyboard Navigation for Tabs

Navigation Keys

Navigate forward into or
out of tab control

Tab

Navigate backward into or
out of tab control

Ctrl+Tab

Move to tab (within
control) left/right

Left Arrow/Right Arrow

Move to tab (within
control) above/below

Up Arrow/Down Arrow

Move from tab to page Ctrl+Down

Move from page to tab Ctrl+Up

Move from page to
previous page (while focus
is within page)

Ctrl+Page Up

Move from page to next
page (while focus is within
page)

Ctrl+Page Down

Trees

The following table describes the keyboard actions to perform navigational tasks
involving trees.

Table 3-16 Table Navigation for Trees

Navigation Keys

Navigate forward into or
out of tree control

Tab

Navigate backward into or
out of tree control

Shift+Tab

Expand (if item contains
children)

Right Arrow

Keyboard Navigation in JDeveloper

3-18 Developing Applications with Oracle JDeveloper

Table 3-16 (Cont.) Table Navigation for Trees

Navigation Keys

Collapse (if item contains
children)

Left Arrow

Move to parent from child
(if expanded)

Left Arrow

Move to child from parent
(if already expanded)

Right Arrow

Move up/down one item Up Arrow, Down Arrow

Move to first item Home

Move to last entry End

Select all children of
selected parent

Ctrl+A

Select next item down in
list without deselecting that
item that currently has
focus

Shift+Down Arrow

Select next item up in list
without deselecting that
item that currently has
focus

Shift+Up Arrow

Select current item and all
items up to the top of the
list

Shift+Home

Select current item and all
items up to the bottom of
the list

Shift+End

Select the item with current
focus without deselecting
other items (to select items
that are not adjacent)

Ctrl+Spacebar

Navigate through list
without deselecting item
with current focus

Ctrl+Up/Down Arrow

Wizards

The following table describes the keyboard actions to perform navigation tasks
involving wizards.

Keyboard Navigation in JDeveloper

Working with Oracle JDeveloper 3-19

Table 3-17 Keyboard Navigation for Wizards

Navigation Keys

Navigate between stops on
the roadmap or between
pages

Up Arrow, Down Arrow (these do not wrap)

Navigate forward between
components on wizard
panel, wizard navigation
bar buttons, and navigation
panel

Tab

Navigate backward
between components on
wizard panel, wizard
navigation bar buttons, and
navigation panel

Shift+Tab

Navigate between buttons
on Navigation Bar

Right and Left Arrow Key (does not wrap)

Navigate between stops on
Roadmap/between wizard
pages

Ctrl Page Up and Ctrl Page Down

Navigation in Specific Components
This section contains information about keyboard shortcuts for JDeveloper-specific UI
components.

Dialogs

The following table describes the keyboard actions to perform navigational tasks
involving dialogs.

Table 3-18 Keyboard Navigation for Dialogs

Navigation Keys

Close dialog without
making any selections or
changes

Esc

Activate the default button
(if one is defined)

Enter

Overview Editor (Form + Mapping)

The following table describes the keyboard actions to perform navigation tasks
involving overview editors.

Keyboard Navigation in JDeveloper

3-20 Developing Applications with Oracle JDeveloper

Table 3-19 Keyboard Navigation for the Overview Editor

Navigation Keys

Navigate into or out of
overview editor from other
pages in editor (for
example Source or History)

Alt+Tab

Navigate from the tab
group to next control in
editor)

Tab or Ctrl+Down Arrow

Navigate forward or
backwards between
controls on overview editor

Tab or Alt+Tab

Move between tabs in the
side tab control (when the
focus in the tab group)

Up Arrow, Down Arrow

Move between tabs in side
tab control (when focus on
Page)

Ctrl+Page Up/Ctrl+Page Down

Move from page to tab
group (from next control in
editor)

Ctrl+Tab

Move from page to tab
group (from any control in
editor)

Ctrl+Up Arrow

Open and close Sections
(when focus is on a section
header)

Enter, Spacebar, Right Arrow/Left Arrow

Component and Resources windows

The following table describes the keyboard actions to perform navigational tasks in
windows such as the Components and Resources windows.

Table 3-20 Keyboard Navigation for Components and Resources windows

Navigation Keys

Navigate forward in or out
of window

Ctrl+Tab This moves you into first item within the pane.

Navigate backward in or
out of window

Ctrl+Shift+Tab

Move between elements
including dropdown lists,
search fields, panels, tree
structure (but not
individual elements in a
tree), individual
component buttons

Tab, Shift+Tab

Keyboard Navigation in JDeveloper

Working with Oracle JDeveloper 3-21

Table 3-20 (Cont.) Keyboard Navigation for Components and Resources windows

Navigation Keys

Move up/down elements
in a list or tree

Up Arrow/Down Arrow

Move left/right elements in
a list or tree

Left Arrow/Right Arrow

Move to start/end of data
(component buttons)

Ctrl+Home/Ctrl+End

Select a component button Enter

Windows such as the Applications Window, Databases Window, Applications
Server Window

The following table describes the keyboard actions to perform navigation tasks
involving these windows.

Table 3-21 Keyboard Navigation for Windows such as the Applications Window,
Databases Window, and Application Server Window

Navigation Keys

Navigate forward in or out
of window

Ctrl+Tab This moves you into first item within the pane.

Navigate backward in or
out of window

Ctrl+Shift+Tab

Move between elements
including dropdown lists,
search fields, panels, tree
structure (but not
individual elements in a
tree), individual
component buttons

Tab

Move up/down elements
in a list or tree

Up Arrow/Down

Move left/right elements in
a list or tree

Left Arrow/Right Arrow

Move to start/end of data
(component buttons)

Ctrl+Home/Ctrl+End

Select a component button Enter

Select an element Enter

Properties window

The following table describes the keyboard actions to perform navigation tasks
involving the Properties window.

Keyboard Navigation in JDeveloper

3-22 Developing Applications with Oracle JDeveloper

Table 3-22 Keyboard Navigation for the Properties window

Navigation Keys

Navigate forward into or
out of Properties window

Ctrl+Tab

Navigate backward into or
out of Properties window

Ctrl+Shift+Tab

Navigate from side tab
group to page

Tab

Navigate backward and
forwards between elements
on page

Tab, Shift+Tab

Move to tab above/below
(when focus is on the side
tab)

Up Arrow, Down Arrow

Move to tab right or left,
above or below (when
focus is on the internal tab
group)

Up Arrow, Down Arrow, Right Arrow, Left Arrow

Move from side tab group
to page

Ctrl+Down Arrow

Move from page to side tab
group

Ctrl+Up Arrow

Move to side tab above
(previous) when focus on
page

Ctrl+Page Up

Move to side tab below
(next) when focus on page

Move to side tab below (next) when focus on page

Open and Close sections
(when focus is on a section
header)

Enter

Text Editors

The following table describes the keyboard actions to perform navigation tasks
involving the panel elements of text editors.

Table 3-23 Keyboard Navigation for Text Editors

Navigation Keys

Navigate forward in or out
of editor

Ctrl+Tab

Navigate backward in or
out of editor

Ctrl+Shift+Tab

Keyboard Navigation in JDeveloper

Working with Oracle JDeveloper 3-23

Table 3-23 (Cont.) Keyboard Navigation for Text Editors

Navigation Keys

Move from page to
previous page

Alt+Page Up

Move from page to next
page

Alt+Page Down

The following table describes the keyboard actions to perform navigation tasks
involving the text or canvas areas of text editors.

Table 3-24 Keyboard Navigation for Canvas Areas of Text Editors

Navigation Keys

Move up/down one line Up Arrow, Down Arrow

Move left/right one
character

Left Arrow, Right Arrow

Move to start/end of line Home, End

Move to previous/next
word

Ctrl+Left Arrow, Ctrl+Right Arrow

Move to start/end of text
area

Ctrl+Home/Ctrl+End

Move to beginning/end of
data

Ctrl+Home/Ctrl+End

Move up/down one
vertical block

Page Up/Page Down

Block move left Ctrl+Page Up

Block move right Ctrl+Page Down

Block extend up Shift+Page Up

Block extend down Shift+Page Down

Block extend left Ctrl+Shift+Page Up

Block extend right Ctrl+Shift+Page Down

Select all Ctrl+A

Deselect all Up Arrow, Down Arrow, Left Arrow, Right Arrow

Extend selection up/down
one line

Shift+Up Arrow/Shift+Down Arrow

Extend selection left/right
one component or char

Shift+Left Arrow/Shift+Right Arrow

Extend selection to
start/end of line

Shift+Home/Shift+End

Keyboard Navigation in JDeveloper

3-24 Developing Applications with Oracle JDeveloper

Table 3-24 (Cont.) Keyboard Navigation for Canvas Areas of Text Editors

Navigation Keys

Extend selection to
start/end of data

Ctrl+Shift+Home/Ctrl+Shift+End

Extend selection up/down
one vertical block

Shift+Page Up/Shift+Page Down

Extend selection to
previous/next word

Ctrl+Shift+Left Arrow /Ctrl+Shift+Right Arrow

Extend selection left/right
one block

Ctrl+Shift+Page Up/Ctrl+Shift+Page Down

Copy selection Ctrl-C

Cut selection Ctrl-X

Paste selected text Ctrl-V

Graphical Editors

The following table describes the keyboard actions to perform navigation tasks
involving graphical editors.

Table 3-25 Keyboard Navigation for Graphical Editors

Navigation Keys

Navigate forward in or out
of editor

Ctrl-Tab

Navigate backward in or
out of editor

Ctrl+Shift+Tab

Move from page to
previous page

Alt+Page Up

Move from page to next
page

Alt+Page Down

The following table describes the keyboard actions to perform navigation tasks
involving the canvas areas of graphical editors.

Table 3-26 Keyboard Navigation for Canvas Areas of Graphical Editors

Navigation Keys

Move to the next focusable
element within editor area

Up Arrow, Down Arrow, Left Arrow, Right Arrow

Select element Spacebar

Activate context menu Shift+F10

Keyboard Navigation in JDeveloper

Working with Oracle JDeveloper 3-25

Monitors and Inspector Windows

The following table describes the keyboard action to close the Monitors and the
Inspector windows while debugging.

Table 3-27 Keyboard Navigation for the Monitors and Inspector Windows

Navigation Keys

Closes the Monitors and the Inspectors
windows without using the standard
keyboard operations. The shortcut opens the
context menu for the child window which
provides the Close button.

Ctrl + Spacebar

Customizing the IDE
You can alter the appearance and functionality of a wide variety of JDeveloper
features. You can:

• Change the look and feel

• Customize the general environment

• Customize dockable windows

• You can also customize the following windows in the IDE:

– Compare window

– Components window

How to Change the Look and Feel of the IDE
You can alter the appearance of JDeveloper using pre-defined settings.

To change the look and feel of the IDE:

1. From the main menu, choose Tools > Preferences. For more information at any
time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, select the Environment node if it is not already selected.

3. On the Environment page, select a different look and feel from the Look and Feel
dropdown list.

4. Click OK.

5. Restart JDeveloper.

Note:

The key bindings in Motif are different from key bindings in Windows. Under
Motif, the arrow keys do not change the selection. Instead they change the
lead focus cell. You must press Ctrl + Space to select an item. This is expected
behavior.

Customizing the IDE

3-26 Developing Applications with Oracle JDeveloper

How to Customize the General Environment for the IDE
You can customize the default display options, In addition, you can define other
general behavior, such as whether JDeveloper will automatically reload externally
modified files and whether output to the Log window is automatically saved to a file.

To change the general environment settings for the IDE:

1. From the main menu, choose Tools > Preferences. For more information at any
time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, select the Environment node if it is not already selected.

3. On the Environment page, select the options and set the fields as appropriate.

4. Click OK.

5. Restart JDeveloper.

How to Customize the Compare Window in the IDE
You can customize the display of the Compare window.

To customize the options for comparing files:

1. From the main menu, choose Tools > Preferences. For more information at any
time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, select Compare.

3. On the Compare page, set the options available for the display of two files being
compared.

4. Click OK.

How to Customize the Components window
The Components window offers you a quick method for inserting components into
files open in the editor.

How to Add a Page to the Components Window

You can add pages to the Components window, within which to group additional
components. You can also add components to existing pages.

To add a page to the Components Window:

1. From the main menu, choose Tools > Configure Components to open the
Configure Components dialog. For more information at any time, press F1 or click
Help from within the Configure Components dialog.

2. Optionally, in the Configure Components dialog, for Page Type select the
appropriate type to limit the display in the Pages list.

3. In the Configure Components dialog, underneath the Pages list box, click Add.

4. In the Create Components Window dialog, enter the name of the new page and
select a type from the dropdown list. If you selected a page type in Step 2, that type
is reflected now in this dialog.

Customizing the IDE

Working with Oracle JDeveloper 3-27

5. Click OK to return to the Configure Components Window dialog.

6. If finished, click OK. The new page is now added to the dropdown list in the
Components window. It also appears in the Pages list of the Configure
Components window dialog.

How to Add a JavaBeans Component to the Components Window

You can add pages to the Components window to group your JavaBeans components,
or you can add components to existing pages. Once you add JavaBeans to the
Components window, you can insert these beans into any file you have open in the
Java Visual Editor by selecting them from the Components window.

To add a JavaBeans component to the Components Window:

1. If the bean is not already referenced by a library, create a user library (outside the
project) for the bean.

In the Class Path field, set the location of the bean class. If the bean is in an archive,
use the archive. If the bean is contained in a project, use the output directory of that
project.

Note that when you are creating your own JavaBeans for later deployment, it can
be useful to defer putting them into an archive until you have finished
development.

2. From the main menu, choose Tools > Configure Components to open the
Configure Components dialog. For more information at any time, press F1 or click
Help from within the Configure Components dialog.

3. Optionally, in the Configure Components dialog, for Page Type select Java to view
only those pages containing JavaBeans.

Skip to Step 6 if you do not want to add a new page.

4. Underneath the Pages list box, click Add.

5. In the Create Components Page dialog, enter the name of the new page, ensure that
Java is selected from the dropdown list, and click OK.

Your new page name is added to the bottom of the Pages list in the Configure
Components dialog.

6. In the Pages list, select the page to which you wish to add the JavaBeans
component.

7. Underneath the Components list box, click Add.

8. In the Add JavaBeans dialog, fill in the appropriate details for the new component.

9. Click OK to return to the Configure Components window dialog.

10. If finished, click OK.

The new beans component now appears in the Components window when the
appropriate page is selected. It also appears in the Components list of the Configure
Components dialog when the page it is associated with is selected in the Pages list.

How to Remove a Page from the Components Window

You can remove pages from the Components window.

Customizing the IDE

3-28 Developing Applications with Oracle JDeveloper

To remove a page from the Components Window:

1. From the main menu, choose Tools > Configure Components to open the
Configure Components dialog. For more information at any time, press F1 or click
Help from within the Configure Components dialog.

2. Optionally, in the Configure Components dialog, for Page Type select the
appropriate type to limit the display in the Pages list.

3. In the Pages list, select the page to be removed.

4. Underneath the Pages list box, click Remove.

If the page cannot be removed, the Illegal Request dialog appears.

5. To confirm removal, in the Confirm Remove Page dialog, click Yes.

6. In the Configure Components dialog, click OK.

The page no longer appears in the Components window dropdown list. It has also
been removed from the Pages list of the Configure Components window dialog.

How to Remove a Component from the Components Window

You can remove a component from the Components window.

To remove a component from the Components Window:

1. From the main menu, choose Tools > Configure Components to open the
Configure Components Window dialog. For more information at any time, press F1
or click Help from within the Configure Components Window dialog.

2. Optionally, in the Configure Components Window dialog, for Page Type select the
appropriate type to limit the display in the Pages list.

3. In the Pages list, select the page you want to remove the component from.

4. In the Components list box, click Remove.

If the component cannot be removed, the Illegal Request dialog appears.

5. To confirm removal, in the confirmation dialog, click Yes.

6. In the Configure Components Window dialog, click OK.

The component no longer appears in the Components window dropdown list. It
has also been removed from the Components list of the Configure Components
Window dialog.

You cannot remove a component using the Components Window context menu. You
must work through the Configure Components Window dialog.

How to Change Roles in JDeveloper
You can change the roles that are used to shape JDeveloper. Shaping tailors the
JDeveloper environment based on the role of the user.

When you change to a new role, it is only available after you restart JDeveloper.

To change the role for JDeveloper:

Customizing the IDE

Working with Oracle JDeveloper 3-29

• From the main menu, choose Tools > Switch Roles and select the role of your
choice.

How to Associate File Types with JDeveloper
You can associate commonly used file types with JDeveloper. Once a file type has been
associated with JDeveloper, opening a file of that type automatically launches
JDeveloper. (This feature is supported only in Windows systems.)

To associate a file type with JDeveloper:

1. From the main menu, choose Tools > Preferences and open the File Types pane.
For more information at any time, press F1 or click Help from within the
Preferences dialog.

2. In the list of file types, select a file type to be associated with JDeveloper.

3. In the Details for area, check Open with JDeveloper.

Working with the Resources Window
The Resources window allows you to create connections to a number of different
resources, such as application servers, databases, and WebDAV servers, from where
you can use them in different applications and share them with other users.

When designing and building applications, you may need to find and use many
software assets. You may know what you want to find, but you may not be certain
where to find it or even what the artifact of interest is called. Even if you think you
know where to find the artifact, and what it is called, you might not know how to
establish a connection to the source repository. Consider the following:

• An application developer needs to find and incorporate shared model, view and
controller objects created by other members of her team, and by other product
teams.

• A UI designer needs access to a corporate catalog of images, style sheets, templates
and sample designs to facilitate rapid creation of standards-compliant pages.

• An application integrator needs easy access to a variety of web services of interest
to a particular domain.

• An end user needs to find relevant content (for example, portlets and UI
components) for use while personalizing a page.

In each of these cases, the user has a simple goal: find the resource(s) needed for the
task at hand. The process of discovering and accessing the assets should be as
effortless as possible.

Using the Resources Window
By default, the Resources window is displayed to the right of the JDeveloper window.
The Resources window lets you:

• Locate resources stored in a wide variety of underlying repositories through IDE
connections

• Locate resources by browsing a hierarchical structure in catalogs

• Search for resources and save searches

Working with the Resources Window

3-30 Developing Applications with Oracle JDeveloper

• Filter resources to reduce the visible set when browsing

• Use a resource you have found in an application you are building

• Facilitate resource discovery and reuse by sharing catalog definitions

How to Open the Resources Window

The Resources window allows you to work with different resources, such as
application servers, databases, and WebDAV servers.

To open the Resources window:

• In the main menu, choose Window > Resources.

How to Refresh the Resources Window

The Resources window allows you to work with different resources, such as
application servers, databases, and WebDAV servers.

To refresh the Resources window:

• In the Resources window, click New and choose Refresh.

Alternatively, in the Resources Window choose Refresh from the context menu of
an object in the My Catalogs panel or the IDE Connections panel.

Working with IDE Connections
When you create a connection in JDeveloper, you can create it as an IDE connection
that can be reused in different applications, or shared between users, or as an
application connection where the connection is only available to that application.

IDE connections are globally defined connections available for reuse, and they are
listed in the IDE Connections panel of the Resources window. You can copy IDE
connections to the Applications window to use them within an application.

IDE connections are listed in the IDE Connections panel of the Resources window. In
addition, some types of connections may appear in special connection-type windows.
For example, database connections are also listed in the Databases window under the
IDE Connection node, and you edit database objects through the database connection
in the Databases window.

The different types of connections that can be made depends on the technologies and
extensions available to you. To see what you can create a connection to, choose IDE
Connections from the New button in the Resources window. The specific types of
connection you can make depend on the technologies and extensions available to you.

The file system location for Resources connection descriptor definition information is

system-dir/jdeveloper/system12.1.2.n.nn.nn.nn/o.jdeveloper.rescat2.model/connections/
connections.xml

To create an IDE connection:

1. In the IDE Connections panel of the Resources window, choose IDE Connections
from the New button.

2. Choose the type of connection you want to create, and enter the appropriate
information in the Create Connection dialog. For more information at any time,
press F1 or click Help from within the dialog.

Working with the Resources Window

Working with Oracle JDeveloper 3-31

Once you have created a connection in the Resources window, you can edit details of
the connection, but you cannot change the connection name.

To edit an IDE connection:

1. In the IDE Connections panel of the Resources window, choose Properties from
the context menu of a connection.

2. The Edit Connection dialog opens where you can change the connection details.
For more information at any time, press F1 or click Help from within the Edit
Connection dialog.

You can use connections in the Resources window in an application.

The connection can be added to the application currently open in JDeveloper, and it is
listed in the Application Resources panel of the Applications window, under the
Connections node.

To add a connection to an application:

In the IDE Connections panel of the Resources window, choose Add to Application
from the context menu of a connection.

Alternatively, drag the resource from the Resources window and drop it onto an
application page.

Alternatively, drag the connection from IDE Connections in the Resources window
and drop it onto the Application Resources panel in the Applications window.

Searching the Resources Window
There are two ways of searching in the Resources window:

• Performing a simple search

• Performing an advanced search, where you enter parameters in a dialog

In addition, you can define a dynamic folder in a catalog where the content of the
folder is defined by a query expression that is executed when the folder is opened.

The time the search takes depends on how many resources there are in the Resources
window, and how long it takes to connect to them, and the results are displayed in the
Search Results panel.

How to Perform a Simple Search

When you perform a simple search, the search is performed across all the contents of
the Resources window, and it may take some time because JDeveloper connects to
remote resources during the search.

To perform a simple search:

1. In the Resources window, click the Search Options button to choose whether the
search is performed against the Name, Type or Description of the resource. For
more information at any time, press F1 or click Help from within the Resources
window.

2. Enter a search string in the field. For example, if you want to find every resource
that contains dep in the name, choose Name in step 1, and enter dep. Every
resource that contains the string dep will be listed in the search results.

3. Click the Start Search button to start the search.

Working with the Resources Window

3-32 Developing Applications with Oracle JDeveloper

How to Perform an Advanced Search

Alternatively, you can perform an advanced search where you specify a series of
search criteria, and choose where to start the search from.

To perform an advanced search:

1. In the Resources window, choose Advanced Search from the context menu of an
object in the My Catalogs panel or the IDE Connections panel. For more
information at any time, press F1 or click Help from within the Advanced Search
dialog.

2. Define where the search starts. Either select from Search in, or click Show
Hierarchy which allows you choose within a hierarchical list of the Resources
window contents.

3. Enter search criteria to return the resources you want, and click Search.

How to Stop and Save a Search

You can stop a search before it has completed by clicking the Stop Search button.

You can save a search and reuse it. There are two ways of saving a search in order to
reuse it:

• As a dynamic folder, where the contents of the folder are created dynamically
based on the search criteria when the folder is opened.

• As a static folder containing the results of the search.

Dynamic folders can also be created directly in a catalog.

To save a search:

1. In the Search Results panel of the Resources window, choose Save Search from the
context menu.

2. In the Save Search dialog, choose:

• Save Search Criteria, to create a dynamic folder.

• Save Search Results, to create a static folder of results.

For more information at any time, press F1 or click Help from within the Resources
window.

3. Enter a name for the folder.

4. Choose the catalog to contain the folder, either from the dropdown list, or from the
hierarchical list displayed when you click Show Hierarchy.

Filtering Resources Window Contents
Filters allow you fine-tune the contents of catalog folders.

To filter the contents of My Catalogs:

1. In the Resources window, choose Filter from the context menu of an object in the
My Catalogs panel or the IDE Connections panel. For more information at any
time, press F1 or click Help from within the Filter dialog.

Working with the Resources Window

Working with Oracle JDeveloper 3-33

2. Enter a string to define the filtering. Only entries in the folder that contain the
string will be shown.

Importing and Exporting Catalogs and Connections
Catalogs and connections are shared by importing Resource catalog archive (.rcx) files
that have been exported by another user.

To export a catalog:

Note:

When you select a catalog to export, any connections in the catalog are also
selected. If you deselect the catalog before exporting, you must be sure to also
deselect the connections that are not wanted in the archive file.

1. In the Resources window, choose Export from the context menu of an object in the
My Catalogs panel or the IDE Connections panel.

2. In the Export Catalog and Connections dialog, select the catalogs and connections
to be exported, and decide how errors will be handled. For more information at
any time, press F1 or click Help from within the Export Catalog and Connections
dialog.

To import a catalog:

1. In the Resources window, choose Import from (New).

2. In the Import Catalog and Connections dialog, specify or browse to the path and
name of the Resource catalog archive file (.rcx). For more information at any time,
press F1 or click Help from within the Import Catalog and Connections dialog.

3. Choose the catalogs and connections you want to import, and determine how to
handle errors.

Working with Resources Window Catalogs
A catalog is a user-defined construct for organizing resources from multiple
underlying repositories. The contents of a catalog and its associated folder structure
can be designed to be used by an individual developer, or they can be targeted
towards specific groups of users such as the UI designers for a development project.

Catalog folders organize resources in a catalog. You use catalog folders in the same
way you would to organize files in a file system or bookmarks in a Web browser. Each
catalog folder can contain any combination of:

• Folders.

• Dynamic folders, which are populated using a query.

• Filters, which are used to fine-tune the content of a folder or subtree.

Creating Catalogs

You can organize the information in the Resources window in catalogs.

To create a catalog:

Working with the Resources Window

3-34 Developing Applications with Oracle JDeveloper

1. In the Resources window, choose New Catalog from the New button.

2. In the Create Catalog dialog, specify a name for the catalog. For more information
at any time, press F1 or click Help from within the Create Catalog dialog.

3. (Optional) Provide a description for the catalog, and the email of the catalog
administrator.

Renaming Catalogs

You can rename catalogs.

To rename a catalog:

1. In the Resources window, right-click the catalog, and choose Rename from the
context menu.

2. In the Rename dialog, specify a new name for the catalog. For more information at
any time, press F1 or click Help from within the Rename dialog.

Working with Catalog Folders
You can create folders to organize the contents of catalogs.

How to Create Folders

You can organize the information within catalogs in folders.

To create a catalog folder:

1. In the Resources window, choose New Folder from the context menu of a catalog
in the My Catalogs panel or the IDE Connections panel. For more information at
any time, press F1 or click Help from within the Create Folder dialog.

2. Enter a name for the folder.

How to Create Dynamic Folders

Dynamic Folders provide a powerful way to dynamically populate a catalog folder
with resources. The content of the folder is defined by a query expression that is
executed when the folder is opened. The results of the query appear as the contents of
the folder.

To create a dynamic folder:

1. In the Resources window, choose New Dynamic Folder from the context menu of a
catalog in the My Catalogs panel or the IDE Connections panel. For more
information at any time, press F1 or click Help from within the Create Dynamic
Folder dialog.

2. Define the search criteria that will be used to populate this folder when it is
opened.

How to Add Resources to a Catalog

You can add a connection from the IDE Connections panel or a resource from the
Search panel in the Resources window to a catalog in My Catalogs.

You can reorganize a catalog by selecting an item or folder in the catalog and dragging
it to another folder in the same catalog, or to another catalog.

Working with the Resources Window

Working with Oracle JDeveloper 3-35

To add a resource to a catalog:

1. In the Resources window, right click a connection in the IDE Connections panel, or
the result of a search in the Search panel and choose Add to Catalog from the
context menu.

2. The Add to Catalog dialog opens for you to specify the name for the resource in the
catalog, and the catalog to add it to. For more information at any time, press F1 or
click Help from within the Create Connection dialog.

Alternatively, you can drag an item from under IDE Connections and drop it on a
catalog or catalog folder.

Working with Source Files
JDeveloper includes an editor for editing source files across several technologies,
including Java and XML, among others.

Working with Index Data
When you develop an application in JDeveloper, the IDE stores information in
the .data directories for the files used to build your application. JDeveloper stores
many items in the .data directories, but the two most important are:

• a cache of information about the files that are part of your project; these are
sometimes referred to as the index or index data.

• the compiler .cdi files, which contain information generated by the Java
compiler.

While the compiler uses both of these, the IDE relies on the information in the index
data for many other operations, such as to provide code assistance, auditing,
refactoring, and many more. The information in the .data directories can be
expensive to generate, and on complex applications can result in long compile times.
Keeping the data in an easily available cache makes it more effective and results in
faster operation while using the IDE.

As a project or application changes, however, the cached data may become out of date.
You can update the index data for your project or application with the Refresh Client
button. Updating the index data is context-sensitive, depending on both the content of
the Projects panel and your selection in the Refresh Client menu.

To refresh the index data:

1. To update the index data for just the current project, select Refresh Project.

2. To update the index data for your entire application, select Refresh Application.

Using the Source Editor
JDeveloper includes an editor for editing source files across several technologies,
including Java and XML, among others.

Depending on the type of source file you are editing, the source editor will be
available in one of the following forms:

• Java Source Editor

Working with Source Files

3-36 Developing Applications with Oracle JDeveloper

• XML Editor

• HTML/JSP Source Editor

• JavaScript Editor

• PL/SQL Source Editor

In addition to technology-specific features, the source editor also has a set of common
features across all technologies that enhance the coding experience. These features
include bookmarking, code insight, code templates, and several other features that
enable you to code faster and better.

Use the Code Editor page in the Preferences dialog to customize the source editor to
suit your coding style.

The source editor offers a set of common features across all technologies that provide
intuitive support for a variety of coding tasks. Available across all forms of the editor,
these features enhance your coding experience through quicker execution of coding
tasks and better navigation through code.

Breadcrumb Navigation

The breadcrumb bar, located at the bottom of the editor window, shows the hierarchy
of code entities from the current caret position up to the top of the file. Hovering the
mouse cursor over a node pops up some information about the node, and clicking on
the node navigates the caret to the node location.

A breadcrumb can be clicked to display a popup list of child breadcrumbs can be
displayed (where appropriate). For example, for a Java class, you can click the
breadcrumb to display the class' methods and inner classes in a list. Choosing an item
on this list will navigate the editor to its location.

If block coloring has been activated and colors have been assigned, breadcrumbs are
highlighted in the same color as their corresponding code blocks.

Overview Popup

The right margin of the editor provides colored overview marks that are indicators for
a location in the source file. Hovering the mouse over an overview mark makes a
popup appear which displays information about the item in that location of the source
file, and a snippet of the relevant code.

The following overview indicators are provided:

• A square mark at the top right corner of the editor window indicates the overall
health of your source file, as per its color. White indicated that the health is
currently being calculated. Green indicates that there are no errors or warnings in
the file. Red indicates errors, and yellow indicates warnings

• Rectangles, depending on their color, signify the occurrence of the following source
editing artifacts:

– Red: Java code error

– Pale blue: bookmark

– Medium blue: current execution breakpoint

– Yellow: occurrence of searched text

– Pale orange: Java warning

Working with Source Files

Working with Oracle JDeveloper 3-37

– Bright orange: Profile Point

As shown in Figure 3-1, the right margin displays a miniature view of the source code.
Press the Shift key and hover over this view to display code not currently viewable in
the editor. By adjusting the position of the mouse while pressing Shift, you can view
the entire code without scrolling in the editor itself.

Figure 3-1 Miniature View of Source Code

Overview Edit Marks

The overview strip in the right margin of the source editor shows an additional strip of
marks indicating sections of the file that have changed. This allows you to instantly
see sections of the file that have changed and quickly navigate between them.

You can use the following key to understand what the marks signify:

• Green mark: Addition

• Purple mark: Change

• Red mark: Deletion

A mark can be clicked on to instantly navigate to that point, or it can be hovered over
to show a popup of the change.

As you work on your code, the overview strip on the right margin displays a solid line
and a doted line. Solid indicates caret position. Doted indicates last edit. Hover over
these indicators to view the referenced sections.

Working with Source Files

3-38 Developing Applications with Oracle JDeveloper

Hovers

Hovers enable you to position the mouse cursor over certain areas of the IDE and get
some information on them in a popup window that appears floating in front.

Whitespace Display

Tools menu > Preferences > Code Editor > Display > Show Whitespace Characters

This feature optionally renders spaces, new lines, carriage returns, non-breaking
spaces, and tab characters as visible characters in the editor. Turned off by default, this
can be enabled and disabled using the Preferences Dialog.

Duplicate Selection

Edit menu > Duplicate Selection

Duplicates the currently selected block of code, and places the copied code beside the
original code. After duplication, the newly inserted code is selected. The clipboard is
not affected by this operation.

Vertical Selection

Edit menu > Block Selection

This feature enables you to select code vertically when you do not want to select text
that wraps around the end of lines. This is useful for selecting tabular data, or
vertically aligned code blocks.

Join Lines

Join the current line to the next, or join all lines in a selection. Any comment delimiters
or extra whitespace are intelligently removed to join the lines.

Default keyboard shortcut: Ctrl+J

Cursor Position

When the source editor is in use, the status bar at the bottom displays the line and
column coordinates of the current position of the cursor.

Mouse Wheel Zoom

Hold down the Ctrl key and use the mouse scroller to zoom in to or zoom out of the
code editor.

Features Available From the Context Menu

The generic source editor also provides a set of features through the context menu. To
use these features, in the context menu, select Source. Depending on the type of source
file in use, items other than the ones mentioned below may be present in the context
menu. For example, the Java Source Editor contributes Java-specific options to the
source editor context menu.

Note:

These features are also available through the Source menu.

Completion Insight

Completion insight provides you with a list of possible completions, such as method
names, and parameter types if they are applicable, at the insertion point, which you
may use to auto-complete Java code you are editing. This list is generated based on the

Working with Source Files

Working with Oracle JDeveloper 3-39

code context found at the insertion point. The contexts supported by completion
insight are:

• Within package and import statements

• Within extends, implements, and throws clauses

• Within continue and break statements

• Within general code expressions

Default keyboard shortcut: Ctrl+Space

Parameter Insight

Parameter insight provides you with the types and names of the parameters of the
method call you are typing. If the method is overloaded, multiple sets of parameter
types and names are listed.

Default keyboard shortcut: Ctrl+Shift+Space

Note:

If errors for the file appear in the Structure window, Code (Completion or
Parameter) Insight may not work. If the class(es) you are using are not in your
project (that is, not on your classpath), Code Insight will not appear. Please
note that you may need to compile your src files in order for Code Insight to
have access to them.

Complete Statement

Use to auto-complete code statements where such a completion is obvious to
JDeveloper; for example, semi-colon insertions at the end of a statement.

Default keyboard shortcut: Ctrl+Shift+Enter

Expand Template

Insert a code template from a list of JDeveloper's predefined code templates. The code
templates offered are context sensitive. For example, templates to declare class
variables are only offered when the cursor is in the appropriate place in the class file.

Default keyboard shortcut: Ctrl+Enter

Code Assist

Code Assist examines your code in the editor and provides assistance to fix common
problems. A Code Assist icon appears in the editor margin when JDeveloper has a
suggestion for a code change. To invoke Code Assist manually, press Ctrl+Alt+Enter.
To select an action listed in Code Assist, press Alt+ the underlined key.

Default keyboard shortcut: Ctrl+Alt+Enter

QuickDoc

Select to view the Javadoc or Jsdoc (depending on whether you are using the Java or
JavaScript editor) for the element in focus.

Default Keyboard Shortcut: Ctrl+D

Working with Source Files

3-40 Developing Applications with Oracle JDeveloper

Toggle Line Comments

Comments out the line currently in focus in the source editor. Running this command
on a commented line uncomments the line.

Default Keyboard Shortcut: Ctrl+Slash

Indent Block

Indents the line of code currently in focus. If a block of code is selected, the entire
block is indented.

Unindent Block

Unindents a line or block of code, based on code has focus in the editor.

Using Mini-Maps

The Mini-Map offers a zoomed out 'live' view of the current file and displays it as a
strip alongside the code editor. Changes in the source code are shown in the Mini-
Map.

The Mini-Map allows you to see code structure at a higher level; a very useful feature
when coding large files. Additionally, you can click on the Mini-Map to quickly
navigate a source file.

The Mini-Map size can be adjusted via a right click menu and it offers a Google Maps
like way to select views:

• Satellite—zoomed out text

• Logical—text is replaced by colored boxes indicating methods and class structure

• Hybrid—logical information is overlaid onto the satellite view

Using Stepping Margin

While debugging an application JDeveloper displays a stepping margin indicating the
debugger location and relevant breakpoint data. You may select to hide the stepping
margin by right clicking on the margin and deselecting the Show Margin option.

Using Multi Cursor

The Multi Cursor function in JDeveloper enables you to type a text string and have it
populated in multiple lines simultaneously. To use the Multi Cursor function:

1. Open a Java class.

2. Place the cursor on any code line.

3. Go to Edit > Multi-Cursor. Choose any of the three options: Add Cursor Above,
Add Cursor Below, or Select Highlights. For example, you select the Add Cursor
Below option.

A second cursor displays on the line below.

Note: Option Add Cursor Below will be inactive if the cursor is placed at the
bottom line of the code and similarly the Add Cursor Above will be inactive if
the cursor is placed at the first line of the code.

4. Start typing.

Working with Source Files

Working with Oracle JDeveloper 3-41

Your text appears in both lines. The following table describes the keyboard
shortcuts to use the multi cursor functionality:

Table 3-28 Keyboard Navigations for Multi Cursor Functions

Navigation Keys

Add Cursor Above Alt+Shift+Page Up

Add Cursor Below Alt+Shift+Page Down

Select Highlights Alt+Shift+S

To return to the single cursor functionality, go to Edit > Multi-Cursor > Clear
Multiple Cursors.

Using Hyperlinking with Javadoc Comments

JDeveloper enables you to create hyperlinks in the Javadoc comments of your code by
following these steps::

1. Open a Java class.

2. From the main menu, click Source < Add Javadoc Comments.

A comments section is created at the top of the code file.

3. Type a URL such as http://www.google.com

4. From the main menu, click Tools < Preferences.

The Preferences dialog opens.

5. From the hierarchical tree, click Mouse Actions.

The Mouse Actions page is displayed.

6. Go to the Activate Via Hover and... column and on the Hyperlinks row select alt
from the dropdown list. Click OK.

7. Hover the mouse over the URL while holding down the alt key and click the URL.

A browser opens at http://www.google.com

Using the Find and Replace Toolbar
JDeveloper displays a code Find toolbar at the top of the editor window with the
following options:

Table 3-29 Functions of the Find and Replace Toolbar

Function Description

Match Case Select to perform a case-sensitive search.

Whole Words Select to search for whole words that match the string entered in the Find field

Regular Expressions Select to treat the text in the Find field as a regular expression

Working with Source Files

3-42 Developing Applications with Oracle JDeveloper

http://www.google.com
http://www.google.com

Table 3-29 (Cont.) Functions of the Find and Replace Toolbar

Function Description

Selected Text Only Highlight a section of the code. The Find function will be executed over the
highlighted code only.

Wrap Around The found entries are highlighted on a different color.

Replace When selected, a new bar is displayed below the Find bar. Use this option to find
and replace data in your code files. You may replace a single entry, skip an entry, or
replace all entries.

Find in Files Select this option for more complex searches. When clicking this option a dialog is
displayed with a help button. Click that button to find information relevant to that
dialog.

Quick Outline Displays an outline highlighting the Java methods to aid in finding the appropriate
portions of the code to be searched.

Surround Launches the Surround dialog. Click the question mark in that dialog to learn more
about this function.

Generate Accessors Launches the Generate Accessor dialog. Click on the dialog help to learn more about
this function.

Override Methods Launches the Override Methods dialog. Click on the dialog help to learn more about
this function.

Implement Interface Launches the Implement Interface dialog. Click on the dialog help to learn more
about this function.

Reformat Highlights a portion of the code for easy reformatting.

Bookmark Inserts a bookmark on the found instance of the found entry. Once selected,
additional options are displayed in the Find toolbar to Go to Next Bookmark or Go
to Previous Bookmark.

Show Selected Element Shows the found element and hides the rest of the code.

Show Block Coloring Displays a doted line around blocks of code.

How to Set Preferences for the Source Editor
You can change the default settings of many of the features of the source editor by
changing the preferences.

You can also view or change shortcut keys for the source editor, by modifying the
predefined keyboard schemes.

How to Set Indentation Size for the Source Editor

JDeveloper uses a default indentation style in the source editor. You can set your own
indentation size based on your programming preferences.

To set indentation size for the source editor:

1. From the main menu, choose Tools > Preferences. For more information at any
time, press F1 or click Help from within the Preferences dialog.

Working with Source Files

Working with Oracle JDeveloper 3-43

2. In the Preferences dialog, select the Code Editor node, then the Code Style page.

3. On the Code Style page, select the Edit button.

4. On the Format tab, open the Indentation node and select Indentation Size.

5. Change the indentation value as required.

Note:

While editing code, if you press the Tab key when the Use Tab Character
option is unchecked, JDeveloper indents by the indentation size you specify (4
by default). If you select Use Tab Character, JDeveloper will use tab
characters for indenting, based on values specified in both the Indentation
Size and Tab Size fields. For example, if you use an indent size of 4, and a tab
size of 8, then it takes two indent levels (4 spaces each) to reach the tab size (8).
So if you press Tab twice to indent twice, JDeveloper will insert a tab character
in the source file. That tab character will expand to 8 spaces.

6. Click OK to close the dialogs.

How to Set Fonts for the Source Editor

You can set fonts for the source editor, including font type and size.

To set fonts for the Source Editor

1. From the main menu, choose Tools > Preferences. For more information at any
time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, select the Code Editor node, then the Fonts node.

3. On the Fonts page, select a font type and size. Alter the sample text, if you wish.
The sample text display reflects your font changes.

By default, all your system fonts are loaded. To limit the fonts available on this
page to fixed-width fonts, select Display Only Fixed-Width Fonts.

4. Click OK.

How to Set Caret Behavior for the Source Editor

You can set caret behavior for the source editor, including blinking, blink rate, and
caret shape.

To set caret behavior for the source editor:

1. From the main menu, choose Tools > Preferences. For more information at any
time, press F1 or click Help from within Preferences dialog.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Caret Behavior node.

4. On the Caret Behavior page, set the different attributes that determine how the
caret will look and behave.

For more information, press F1 or click Help from within the dialog page.

Working with Source Files

3-44 Developing Applications with Oracle JDeveloper

5. Click OK.

How to Set Display Options for the Source Editor

You can set options for general display features in the source editor, including options
for breadcrumbs, scroll tips, the right margin, and brace matching.

To set display options for the source editor:

1. From the main menu, choose Tools > Preferences. For more information at any
time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Display node.

4. On the Display page, enter the settings you wish for the right margin.

5. Click OK.

How to Set Line Gutter Behavior for the Source Editor

You can set the appearance of line gutters for the source editor. JDeveloper allows you
to specify colors, line selection, and line number visibility.

To set line gutter behavior for the source editor:

1. From the main menu, choose Tools > Preferences. For more information at any
time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Line Gutter node.

4. On the Line Gutter page, decide whether or not line numbers will appear.

5. Set the other attributes to create the line gutter behavior that you want.

6. Click OK.

How to use the Save as HTML parameter in the Source Editor

JDeveloper allows you to save Java source files in HTML format via the File > Save as
HTML command.

To customize how JDeveloper tags your HTML files:

1. From the main menu, choose Tools > Preferences. For more information at any
time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Save As HTML node.

4. On the Save As HTML page, customize the HTML markup by selecting the
available options

5. Click OK.

How to Set Options for Syntax Highlighting in the Source Editor

You can control the colors and font style used by the source editor.

Working with Source Files

Working with Oracle JDeveloper 3-45

To set the options for syntax highlighting in the source editor:

1. From the main menu, choose Tools > Preferences. For more information at any
time, press F1 or click Help from within the Preferences dialog

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Syntax Colors node.

4. On the Syntax Colors page, begin by selecting the appropriate category for the
syntax you wish to work with.

The display on the page changes to reflect the current settings for the first style
listed in this category, which is highlighted.

5. With the category displayed above, select any individual style in the Available
Styles list to view its current settings.

6. Select a font style and set the background and foreground color as desired. The
sample text changes accordingly.

7. Click OK.

How to Set Bookmark Options for the Source Editor

You can specify the persistence and search behavior of bookmarks you create in
JDeveloper. On the Bookmarks page, decide how you want to handle bookmarks once
you've exited the editor or Oracle JDeveloper, how to traverse bookmarks, and how to
handle bookmarks at the end of files for lines that may no longer exist

To set bookmark options for the source editor:

1. From the main menu, choose Tools > Preferences. For more information at any
time, press F1 or click Help from within Preferences dialog.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Bookmarks node.

4. On the Bookmarks page, set bookmark options.

5. Click OK.

How to Customize Code Templates for the Source Editor
Code templates assist you in writing code more quickly and efficiently while you are
in the source editor. You can edit the existing templates or create your own.

To view existing code templates:

1. From the main menu, choose Tools > Preferences, expand the Code Editor node,
and select Code Templates. For more information at any time, press F1 or click
Help from within Preferences dialog.

2. On the Code Templates page, scroll through the shortcuts, which represent the
letters you must type to evoke each template.

3. Click on any shortcut to view the associated template code on the Code tab. If
there are any imports associated with this template, they will be shown on the
Imports tab.

Working with Source Files

3-46 Developing Applications with Oracle JDeveloper

To edit an existing code template:

1. From the main menu, choose Tools > Preferences, expand the Code Editor node,
and select Code Templates.

2. On the Code Templates page, make changes to the shortcut, the description, the
code (including the variables used in it), and the imports, as required.

3. When you are finished, click OK.

To define a new code template:

1. From the main menu, choose Tools > Preferences, expand the Code Editor node,
and select Code Templates.

2. On the Code Templates page, click Add. The cursor jumps to the bottom of the
Shortcut list and a new row is added.

3. Type in the name for the new shortcut and add a description in the list next to it.

4. Select the Code tab and enter the code for this template. Note that cursor position
is a part of the template, representing the logical insertion point for new code to
be entered when the template is used. Select the Imports tab and enter any
imports associated with this template.

5. Click OK.

To customize the HTML and JSP options for the source editor:

1. Choose Tools > Preferences. For more information at any time, press F1 or click
Help from within Preferences dialog.

2. Expand the Code Editor node.

3. Select the XML and JSP/HTML node.

4. On the XML and JSP/HTML page, select End Tag Completion to enable that
option.

5. Click OK.

To set undo behavior for the source editor:

1. From the main menu, choose Tools > Preferences. For more information at any
time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Undo Behavior node.

4. On the Undo Behavior page, use the slider bar to set the number of actions of the
same type to be combined into one undo.

5. Select or deselect the options for combining insert-mode and overwrite-mode edits
and for combining the deletion of next and previous characters.

6. If you wish to be able to undo navigation-only changes, select the appropriate
checkbox. If you enable this setting, use the slide bar to set the number of
navigation changes to be combined into one undo.

7. Click OK.

Working with Source Files

Working with Oracle JDeveloper 3-47

How to Manage Source Files in the Editor Window
Oracle JDeveloper possesses several capabilities for easier handling of files in the
editor window.

How to Change the View of a File

You can open a file to fill the maximum view available in JDeveloper. This is done by
maximizing the source editor to fill JDeveloper

The same technique of double-clicking a tab can be used for any of the other windows
in JDeveloper, for example, the Help Center, or the Applications window.

To maximize the view of a file:

• In the source editor, double-click the tab of the file. The source editor becomes the
only window visible in JDeveloper, with the file you have chosen currently
displayed in it.

To reduce the view of a file to its former size:

• Double-click the tab of the file again. The windows within Oracle JDeveloper
return to their former layout.

How to Navigate Between Open Files in the Editor Window

You can navigate through files visually (cycling through by tab), historically (cycling
through by order of access), or numerically (cycling through based on file shortcut key
assignment).

To navigate through open files by tab:

• Press Alt+Left Arrow or Alt+Right Arrow. Use Alt+Left Arrow to navigate to the
left and Alt+Right Arrow to navigate to the right.

To navigate through open files based on history:

• Press Ctrl+Tab or Ctrl+Shift+Tab.

Use Ctrl+Tab to open the last active file. Note that opening a file renders it the
currently active file, such that the previously active file now becomes the last file to
have been active.

For example, given files A, B, and C (opened in the order C, B, A), where file A
currently has focus, pressing Ctrl+Tab brings B to the foreground. Now B is the file
with focus and A is the last active file. Pressing Ctrl+Tab again thus brings A back
to the foreground.

• Press Ctrl+Tab+Tab+Tab to cycle through files by order of access without
stopping. Only when you stop on a file is that file given focus. Stopping on a file is
equivalent to using Ctrl+Tab on that file.

How to Display the List of All Currently Open Files

You can display all the files currently open in the editor window, or all the files
currently open in a particular tab group.

To display the alphabetical list of all the files currently open in a given tab group:

Working with Source Files

3-48 Developing Applications with Oracle JDeveloper

Click the File List button in the upper right-hand corner of the editor window.
Alternately, with the focus in the editor window, press (in the default keyboard
scheme) Alt+0.

If the editor window is not subdivided, the list will contain all open files. If the editor
window is subdivided, the list will contain all the open files in that tab group.

To display the alphabetical list of all the files (documents) currently open in the editor
window, regardless of split or detached files:

• From the main menu, choose Window > Documents.

To switch focus to a file (document) currently open in the editor window:

• From the main menu, choose Window > Documents. Select a document and click
Switch to Document.

How to Access a Recently Opened File

Oracle JDeveloper remembers the last files you have edited.

To access a recently-edited file:

1. From the main menu, choose Navigate > Go to Recent Files or (in the default
keyboard scheme) press Ctrl+ =.

2. In the Recent Files dialog, select the file from the list or begin typing the first letters
of the filename.

3. Click OK.

By default, only those files opened directly (through the Applications window, for
instance) appear in the list. Those opened indirectly (for example, as you debug code)
do not automatically appear. To view files opened both directly and indirectly, select
Show All.

When you close an application in JDeveloper with any files open, reopening the
application opens the files in the same state they were in at closing.

How to Manage Multiple Editors for a File

You can split the editor window horizontally or vertically, opening a single file in
multiple views. In each view, you've the choice of changing which editor the file is
opened in.

You can split a file into as many views as you like. The split views are automatically
synchronized with each other.

To open a single file in multiple views:

1. Right-click the file title and choose Split Horizontally or Split Vertically.

The editor window is now split into two identical and independent windows
opened on the same file. Each window has its own set of editor tabs at the bottom.

2. In each window, select the editor tab to view the file in that editor.

Note that some editors (such as the Java Visual Editor) permit only one view at a
time on a file.

Alternately, you can split the file using the mouse, either horizontally or vertically.

Working with Source Files

Working with Oracle JDeveloper 3-49

To split the file horizontally, grab the splitter just above the vertical scroll bar (on the
upper right-hand side of the window) and drag it downward.

To split the file vertically, grab the splitter just to the right of the horizontal scroll bar
(on the lower right-hand side of the window) and drag it left.

To navigate quickly between split views:

• Press F6 to cycle forward.

• Press Shift+F6 to cycle backward.

To collapse those multiple views back into one:

• Right-click the file title and choose Unsplit.

Alternately, you can drag the splitter past the end of the editor window.

How to Work With Multiple Files

You can split the editor window horizontally or vertically, opening views on more
than one file at a time. Each view is independent of the others

You can split the editor window into as many different independent views as you
would like.

To view more than one file at a time, in independent windows:

• Right-click a tab in the editor and choose New Document Tab Group.

The editor window is now split in two, with different files in each window. Each
window has a set of document tabs at the top and a set of editor tabs at the bottom.
Each window is known as a tab group.

You can create as many tab groups as you like.

Alternately, you can detach a file using the mouse, by grabbing the document tab for
the file and dragging it towards the area of the window where you want the file
displayed.

As you drag the tab, the icon that follows the cursor changes. A split window with an
arrow to the left, right, top, or bottom indicates that if you release the mouse now, the
new window will be placed in that relationship to the current window.

To move a file to a different tab group:

1. Drag the document tab for the file to the center of the area occupied by the tab
group you wish to attach it to.

2. When the icon that follows the cursor changes to show a miniature window with
tabs, release the mouse.

To collapse multiple views back into one:

• Right-click a tab in the editor and choose Collapse Document Tab Group.

Alternately, you can simply grab the document tab for a detached file and drop it onto
an existing tab or tab group. When the icon changes to show a miniature window with
tabs, release the mouse.

How to Quickly Close Files in the Editor Window

You can close any file open in the editor window with a single click.

Working with Source Files

3-50 Developing Applications with Oracle JDeveloper

To close the current file, choose one of the following ways:

• From the main menu, choose File > Close.

• Press Ctrl+F4.

• In the editor, right-click the tab for the current file and choose Close.

• Hover the mouse over the tab for the current file and click the Close button.

To close all files, choose one of the following ways:

• From the main menu, choose File > Close All.

• Press Ctrl+Shift+F4.

• In the editor, right-click the tab for any file and choose Close All.

To close all files except one:

• In the editor, right-click the tab for the file you want to stay open and choose Close
Others.

To close multiple files at once:

1. From the main menu, choose Window > Documents.

2. In the Documents dialog, select the files to be closed and click Close Document(s).

To selectively close files:

1. In the editor, select the corresponding tab for the file to be closed.

2. Ctrl+click the tab, or hover the mouse over the tab and click the Close button.

Working with Mouseover Popups
Mouseover Popups enable you to position the mouse cursor over certain areas of the
IDE and get some information on them in a popup window that appears floating in
front. Information is available on the following:

• Javadoc

• Source code

• Data values while debugging

• Breakpoints

The popup window appears when you move the mouse over and optionally press the
key that you assign for the feature. The following are some of the areas of the IDE that
mouseover popups are available for:

• Structure window

• Text in an editor

Smart-Popup

The Smart-Popup feature shows the most appropriate popup for a given situation,
depending on the order of popups specified in the Mouseover Popups page of the
Preferences dialog. Smart-Popup is activated by a keystroke which you can specify on
the Mouseover Popups page of the Preferences Dialog.

Working with Source Files

Working with Oracle JDeveloper 3-51

For example, you may have the following popup configuration (set using the
Mouseover Popups page of the Preferences dialog)

• Smart-Popup is enabled and configured on the Control key.

• The Data Values, Documentation, and Source popups all have Smart-Popup
enabled and are ordered in the following way: Data Values, Documentation,
Source Code in the Mouseover Popups table.

With this configuration, if you hover the mouse over a variable in the source editor
and press Control, then:

• The Data Values popup is considered first. If you are debugging and the mouse
hovers over a variable with a value, the Data Value popup is displayed.

• If no popup is displayed for the previous step, then the Documentation popup is
considered next. If the variable has any documentation, it is displayed in a popup
window.

• If no popup is displayed for the previous step, then the Source popup is considered
next, and the source code for the variable (if available) is displayed in a popup
window.

With Smart-Popup, you only need to use the Smart-Popup activation keystroke for the
IDE to display the most appropriate popup

Note:

Even with Smart-Popup enabled, the individual popups for Data Values,
Documentation, and Source Code can still be activated by their respective
activation keys.

How to Locate a Source Node in a Window such as the Applications Window,
Databases Window, Applications Server Window

You can quickly locate the source node in the Applications window for any file
opened for editing, whether or not that node is in the current project.

To locate the node for any file opened in the editor:

1. Make sure that the focus in the editor is on the file you wish to locate.

2. From the context menu, choose Select in Applications Window.

How to Set Bookmarks in Source Files
You can use bookmarks in your source files to help you quickly locate relevant code.
You can use the Bookmarks Window to navigate to bookmarked material.

To set or remove a bookmark in a source file:

1. Within the file, place the cursor in the gutter of the line you would like
bookmarked.

2. Right-click and choose Toggle Bookmark.

Working with Source Files

3-52 Developing Applications with Oracle JDeveloper

How to Edit Source Files
Oracle JDeveloper provides several features for editing source files.

How to Open Source Files in the Source Editor

JDeveloper provides a powerful source editor that will help you write different kinds
of code quickly and efficiently.

You can set preferences for the specific editor for each file type.

To open your source code in its default editor:

• In the Applications window, double-click the file or right-click and choose Open.

The default editor associated with that file type appears in the content area. If the
editor is already open on that file, the editor comes to the foreground.

To open your source code in a specific editor or viewer:

1. In the Applications window, double-click the file or right-click and choose Open.

2. In the editor window, select the appropriate editor tab.

Changes made in the source will be immediately reflected in other views of that file.

You can also generate Java source code from modeled Java classes.

How to Edit Source Code with an External Editor

It is possible to edit source code that you have opened in JDeveloper with an outside
editor, should you wish to do so. When you return to the JDeveloper IDE, it will detect
the changes you have made.

Before you edit a file externally, you should first save any changes made in
JDeveloper. If you do not, when you return to JDeveloper, you will be asked whether
to reload those files or not. If you reload the externally modified files, you will lose the
unsaved changes made in JDeveloper. If you do not reload them, you will lose the
changes made outside JDeveloper once you save the file in JDeveloper.

To edit source code with an external editor, with the file open in JDeveloper:

1. Save any changes made to the file open in JDeveloper.

2. Edit your file externally and save your changes to the disk.

3. Return to JDeveloper and to the file open in the source editor.

By default, the file is reloaded in JDeveloper without a confirmation beforehand. To
receive a confirmation dialog, deselect the Silently Reload When File Is
Unmodified option on the Environment page of the Preferences dialog.

Note:

You can also format Java code from the command line by invoking
ojformat.exe, which is included in your JDeveloper installation.

Working with Source Files

Working with Oracle JDeveloper 3-53

How to Insert a Code Snippet from the Components Window into Source Files

Once you have added code snippets to the Components window, you can add them to
files open in the editor.

Alternatively, you can use code templates to assist you in writing code more quickly
and efficiently while you are in the source editor.

To insert a code snippet from the Components Window into a source file:

1. Open the file in the source editor.

2. If the Components window is not visible, open it by choosing Window >
Components.

3. In the Components window dropdown list, select Code Snippets or the snippets
page you have defined.

The snippets defined for that page appear listed to the right. Toggle between list
and icon views by right-clicking and choosing the view you want from the context
menu.

4. Position your cursor in the file at the point where the snippet is to be inserted.

5. In the Components window, click the snippet name or icon.

The code snippet appears in the file.

How to Record and Play Back Macros in Source Files

You can record, and play back, keystroke sequences in files open in the source editor.

To define shortcut keys for recording and playing back:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Shortcut Keys node.

3. On the Shortcut Keys page, in the Search field, enter Macro Toggle
Recording.

4. You will see the Macro Toggle Recording action selected under Available
Commands.

5. To assign a shortcut, place focus in the New Shortcut field, and enter a shortcut
by pressing the key combination on the keyboard.

If this proposed shortcut already has an command associated with it, that
command will appear in the Conflicts field.

6. To assign the shortcut you have specified, click Assign.

7. Now, in the Search field, enter Macro Playback.

8. Repeat steps 5 and 6 to assign a shortcut for playing back the macro.

9. Click OK.

To record a macro:

1. Open the source file in an editor.

Working with Source Files

3-54 Developing Applications with Oracle JDeveloper

2. To begin recording, press the key combination you have defined for recording
macros.

3. Now enter the keystroke sequence you wish to record.

4. To end recording, again press the key combination you have defined for recording
macros.

To play back a macro:

1. Open the source file in an editor.

2. Position your cursor in the open file.

3. Press the key combination you have defined for playing back macros.

How to Create Tasks

You can create tasks that are directly related to lines in files of source code, or tasks
that are associated with applications, projects or general files. Oracle JDeveloper
comes with the tags TODO, TASK, and FIXME preconfigured, and you can add your
own task tags in the Tasks page of the Preferences dialog.

To add your own task tags:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Task Tags node.

3. On the Task Tags page, alter the source tags to suit your requirements.

For more information, press F1 or click Help from within the dialog page.

4. Click OK.

To create a task associated with a comment line in source code:

1. Within the source code file, create a comment line starting with // and one of the
task tags, for example //TODO.

2. Continue to type the comment, which will at the same time appear as an item in the
Issues window.

How to Compare Source Files
You can compare source files either belonging to the same project, or outside.

To compare a file currently being edited with its saved version:

1. Place the focus on the current version open in the editor.

2. Select the History tab in the editor window.

The saved file opens side by side with the file in the editor buffer.

To compare one file with any other file on the disk:

1. Place the focus on the current version open in the editor.

2. From the main menu, choose File > Compare With > File on Disk.

The two files open side by side, under a tab labeled Compare.

To compare one file with another file outside the project:

Working with Source Files

Working with Oracle JDeveloper 3-55

1. Place the focus on the file in the editor to be compared.

2. From the main menu, choose File > Compare With > Other File.

3. In the Select File to Compare With dialog, navigate to the file and click Open.

The two files open side by side, under a tab labeled Compare.

To compare any two files within the same project:

1. In the Applications window, select the two files to be compared.

2. From the main menu, choose File > Compare With > Each Other.

The two files open side by side, under a tab labeled Compare.

How to Revert to the Last Saved Version of a File
While you are in the process of making changes to a file, at any time you can revert to
the last saved version of the file. Any changes you have made since the last save are
undone.

To revert to the last saved version of a file:

1. While the changed file has focus in the editor, from the main menu choose File >
Replace With > File On Disk.

2. In the Confirm Replace dialog, click Yes.

How to Search Source Files
Oracle JDeveloper provides a powerful source editor that will help you write different
kinds of code quickly and efficiently.

How to Search Text in an Open Source File

You can search for text with the option of replacing it across your source file.

To search a source file currently open in the source editor, with the option to replace
text:

1. With the file open in the editor, ensure that the editor has focus.

2. Optionally, if an instance of the text you want to search for is easily found, you can
highlight it now.

3. From the main menu, choose Search > Find. Alternatively, press Ctrl+F.

4. In the Find toolbar, enter the text string.

Text previously searched for in this session of JDeveloper appears in the dropdown
located next to the Find magnifying glass icon.

5. Select other search parameters accordingly.

For more information, press F1 or click Help from within the dialog.

6. Click OK.

You may invoke the Replace function by choosing Search > Replace. Alternatively,
press Ctrl+R.

Working with Source Files

3-56 Developing Applications with Oracle JDeveloper

How to Search for a Single Text String

You can search for a single text string in your source file.

To do a simple search in the open source file for a single text string:

1. With the file open in the editor, ensure that the editor has focus.

2. Place the cursor in the file at the point you wish to search from.

3. From the main menu, choose Search > Incremental Find Forward or Search >
Incremental Find Backwards.

4. In the dialog, enter the search text.

As you type, the cursor jumps to the next instance of the group of letters displayed.

How to Search All Files in a Project or Application

Alternatively, enter the text string in the search box. As you type, the cursor jumps to
the next instance of the group of letters displayed. Use the Previous or Next buttons to
search up and down the file. Click in the search box to set Match Case, Whole Word,
or Highlight Occurrences.

To search all files in a project or an application:

1. From the main menu, choose Search > Find in Files.

2. In the Find in Files dialog, enter or select the text to locate.

Text previously searched for in this session of Oracle JDeveloper appears in the
Search Text dropdown list. By default, if you opened this dialog with text selected
in the source editor, that text appears as the first entry.

3. If you want to choose the file types that are included in the search, click the File
Types button to open the File Types To Include dialog. By default, all file types will
be searched.

4. Select other search parameters as required.

For more information, press F1 or click Help from within the dialog.

5. Click OK.

How to Print Source Files
Oracle JDeveloper enables you to print source files.

To print a source file:

1. Display the file to be printed in an editor, or select its filename in the Applications
window.

2. From the main menu, choose File > Print. Alternatively, to preview printed output,
select File > Print Preview.

3. In the Print dialog, select your print options.

4. Click OK.

Working with Source Files

Working with Oracle JDeveloper 3-57

Reference: Regular Search Expressions
Regular expressions are characters that customize a search string through pattern
matching. You can match a string against a pattern or extract parts of the match.

JDeveloper uses the standard Sun regular expressions package, java.util.regex. For
more information, see "Regular Expressions and the Java Programming Language" at
http://docs.oracle.com/javase/tutorial/essential/regex/.

Working with Extensions
Extensions are components that are loaded and integrated with JDeveloper after it is
started. Extensions can access the IDE and perform many useful tasks. In fact, much of
JDeveloper itself is composed of extensions. Most of the basic functionality in
JDeveloper is implemented as extensions—software packages which add features and
capabilities to the basic JDeveloper IDE. You can add existing extensions into
JDeveloper, or create your own.

This section contains information on finding, installing, and enabling or disabling
JDeveloper extensions. The simplest way to find and download JDeveloper extensions
is through the Check for Updates wizard.

If you need additional capabilities from the IDE (such as integration with a version
control system or a special editor or debugger), you can add external tools to
JDeveloper. See Adding External Tools to for more information. In addition, you can
obtain additional extension development tools and functionality in the Extension
Software Development Kit (SDK). You can download the Extension SDK via the Check
for Updates wizard.

You can also download the Extension SDK from the Oracle Technology Network Web
page.

Note:

Any time an extension is added or upgraded, the migration dialog appears at
startup in case you need to migrate any previous settings related to that
extension.

How to Install Extensions with Check for Updates
The easiest way to find and install extensions is to use the Check for Updates wizard.

To install extensions using the Check for Updates wizard:

1. From the Help menu, select Check for Updates.

2. Follow the steps in the wizard to browse, download, and install patches and
extensions.

You can also access the Check for Updates wizard by selecting Tools > Features >
Check for Updates.

How to Install Extensions from the Provider's Web Site
Some extension providers prefer to have you install directly from their Web site, so
that among other things they can contact you when there are updates to the extension.

Working with Extensions

3-58 Developing Applications with Oracle JDeveloper

http://docs.oracle.com/javase/tutorial/essential/regex/

In this case, the Check for Updates wizard will inform you of the provider's
preference, and will then open your default Web browser so that you can conduct the
download and installation from the provider's Web site.

To download and install from the provider's Web site:

• Follow the instructions on the provider's Web site for downloading and installing
the extension. Be sure to note any comments or instructions on registration,
configuration, or other setup requirements.

How to Install Extensions Directly from OTN
You can find and download extensions from the JDeveloper Extensions Exchange
website on OTN. The page is located here:

http://www.oracle.com/technetwork/developer-tools/jdev/
index-099997.html

The available extensions include:

• SQL*Plus Extension, an extension that enables you to load or execute SQL*Plus
scripts from within JDeveloper.

• Oracle Business Intelligence Beans, a set of standards-based JavaBeans™ that
enables developers to build business intelligence applications.

• Other extensions to JDeveloper contributed by the JDeveloper community.

To install extensions after you have downloaded them from OTN:

• For extensions created for the current release, see the Oracle Fusion Middleware
Developing Extensions for Oracle JDeveloper.

• For extensions created for earlier releases, see: "Extension Packaging and
Deployment For Previous Versions of JDeveloper" in the Extension SDK.
Extensions were packaged differently and placed in a different location in earlier
releases.

How to Install Extensions Using the JDeveloper dropins Directory
JDeveloper supports the concept of a "watched directory". A watched directory is a
location where a user or script can drop files and have them discovered by JDeveloper
automatically the next time it starts.

To install an extension using the dropins directory:

• Drop your extension jar in the JDeveloper dropins directory, which is located in the
jdeveloper/dropins folder.

• Additional dropins directories can be specified via the
ide.bundle.search.path property, either at the command line or by adding
an entry in the jdev.conf file.

Using the Online Help
You can access the JDeveloper online help through the Help Center. This section
describes how you can effectively use the features of the Help Center.

The JDeveloper Help Center comprises two windows: the help window and the help
topic viewer.

Using the Online Help

Working with Oracle JDeveloper 3-59

http://www.oracle.com/technetwork/developer-tools/jdev/index-099997.html
http://www.oracle.com/technetwork/developer-tools/jdev/index-099997.html

The following types of content are available:

• Conceptual and procedural information, which is available in this guide.

• Context sensitive online help topics, which open when you press F1 or click Help
in a dialog or wizard, or click the help icon in a wizard.

• Developer guides, which provide end-to-end information for developing
applications with specific technologies.

• Tutorials, which provide introductions to many JDeveloper application scenarios.

From the Help Center, you can also access additional documentation on Oracle
Technology Network (OTN).

The Help Center search feature lets you search the installed documentation, the
documentation available from OTN, and the Fusion Middleware Documentation
Library.

You can also customize the way you view content.

Using the Help Center
The Help Center enables you to browse the table of contents, locate relevant topics in
the Contents list, and do a full text search of installed and online content. It also
provides a Favorites list for saving links to frequently referenced topics. The Help
Center comprises two windows: the window that displays either Contents or Favorites
and the help topic viewer. You can customize some aspects of these windows.

The following table describes the features available in the Help Center toolbar.

Table 3-30 Help Center Toolbar Icons

Icon Name Description

Keep Help Center
on Top (Alt+K)

Keeps the Help Center on top of all other
open windows.

Windows Choose to display either the Contents list or
the Favorites list.

JDeveloper
Forum

Launches an external browser instance and
visits the JDeveloper Forum on Oracle
Technology Network (OTN).

Search Searches all the documentation installed as
online help, Oracle Technology Network
(OTN) and the Fusion Middleware and
Database Libraries.

The Help Center includes tabs for navigating content on the left:

• Contents - Displays the table of contents for all installed content in the help system,
including traditional online help, tutorials, developer guides, and the user guide.

• Favorites - Displays folders of user defined help topics and external links you have
saved for quick retrieval.

The Help Center includes the following tabs for viewing content and search results on
the right:

Using the Online Help

3-60 Developing Applications with Oracle JDeveloper

• Help content viewers - Display the selected online help and developer guide
contents. Multiple tabbed pages open for selected content.

• Search results - Displays the results of the full text search.

How to Open the Online Help
The JDeveloper Help Center comprises two windows: the help window and the help
topic viewer.

To open the online help, use any of these methods:

• Press F1, click Help, or click the Help icon at any time to display context-sensitive
help.

• From the main menu, choose Help > Search.

• From the main menu, choose Help > Table of Contents.

• From the main menu, choose Help > Help Favorites.

• From the Start page, choose any link with a tutorial, book or help topic icon.

To see a help page that is already open:

• Select a tab at the top of the help topic window.

• Click the scroll buttons at the top of the help topic window to scroll through all
available tabs and select a tab.

• Click the Tab List button at the top of the help topic window to display the list of
all available pages and select a page.

How to Search the Documentation
You can search all the documentation installed as online help by doing a full-text
search, and you can also search Oracle Technology Network (OTN) and the Fusion
Middleware and Database Online Documentation Libraries. You can search an
individual help topic that is open by using the Find icon in the topic viewer toolbar.

To do a full-text search from the Help Center:

1. If the Help Center is not open, from the main menu, choose Help > Search.

2. In the Search field, enter the word or phrase you are searching for.

3. Optionally, open Search Options and select the locations you want to search.
By default, Local Documentation and the Fusion Middleware library are
selected.

4. Set the other search options as needed; these apply only to the online help search.

5. Click Start search or press Enter.

The Search Results page opens in the help viewer area, with the titles and sources
of each matching document, as well as the beginning text.

6. To select a topic, double-click its title.

Using the Online Help

Working with Oracle JDeveloper 3-61

Each help topic opens in a separate tabbed page. The Search Results page remains
available. Each OTN and Documentation Library page opens in your default
browser.

Using the Boolean Expressions option:

BooleanExpression is a recursive tree structure for expressing search criteria involving
boolean expressions. The BooleanExpression is based on the following grammar:

BooleanExpression ::
 BooleanExpression AND BooleanExpression
 BooleanExpression OR BooleanExpression
 BooleanExpression NOT BooleanExpression
 BooleanExpression + BooleanExpression
 BooleanExpression - BooleanExpression
 + BooleanExpression
 - BooleanExpression
 NOT BooleanExpression
 StringExpression (base case)

To begin a documentation search from the main toolbar Search field:

1. In the Search field, enter the word or phrase you are searching for.

2. Open the Search Options menu and select only the documentation: Help: Local,
Help: OTN, Help: iLibrary. Deselect other locations.

By default, all locations are selected.

3. Click the Go icon or press Enter.

The Help Center opens with the Search Results page on the right, showing the titles
and sources of each matching document, as well as the beginning text.

How to Add Bookmarks to the Favorites Page
You can save links to frequently referenced help topics, stored in folders you create
and name, on the Favorites page in the Help Center. The help topic must be open in
the help topic viewer, in order to bookmark it. You can also add links to external sites.

To add links to help topics to the Favorites page:

1. Click the Add to Favorites icon in the help topic viewer toolbar.

The Add to Favorites dialog is displayed.

2. Select the folder to which you want to add the link and click OK.

To add links to external sites to the Favorites page:

1. Click the Add External Favorites icon in the Favorites page toolbar, or right-click
a node on the Favorites page and choose Add External Favorites from the context
menu.

The Add External Favorites dialog is displayed.

2. Enter a title for the page or document in the Name field.

3. Enter the fully qualified path in the URL field.

4. Select the folder to which you want to add the link and click OK.

Using the Online Help

3-62 Developing Applications with Oracle JDeveloper

To create a new Favorites folder:

1. Click the New Folder icon in the Favorites page toolbar, or right-click a node on
the Favorites page and choose New Folder from the context menu.

2. Enter the new folder name and click OK.

You can also create a new folder when the Add to Favorites dialog is open, by clicking
New Folder.

To rename a Favorites folder:

1. Right-click a folder on the Favorites page and choose Rename from the context
menu.

2. Enter the new folder name and click OK.

You can also rename a folder when the Add to Favorites dialog is open, by clicking
Rename.

To delete a Favorites folder or link:

• Click the Delete icon in the Favorites page toolbar, or right-click a node on the
Favorites page and choose Delete from the context menu.

You can also delete a folder when the Add to Favorites dialog is open, by selecting the
node and clicking Delete.

How to Customize the Online Help Display
You can customize some features of the Help Center window through the toolbars and
context menu.

Use the Keep on Top icon to keep the Help Center in front of all open windows,
including JDeveloper.

You can select the following types of help that you want to display from the Windows
drop down in the Help Center toolbar:

• Contents - Displays the table of contents for all installed online help topics and
books.

• Favorites - Displays folders of user defined links for quick access to installed and
external documentation.

Use the Change Font Size options in help topic viewer toolbar to increase or decrease
the font size incrementally.

How to Open and Close Multiple Help Topics
When you navigate through topics in the help system, the topics open in new tabbed
pages.

To see a help page that is already open, use one of the following ways:

• Select a tab at the top of the help topic window.

• Click the scroll buttons above the help topic viewer to scroll through all available
tabs and select a tab.

• Click File List button above the help topic viewer to display the list of all
available pages and select a page.

Using the Online Help

Working with Oracle JDeveloper 3-63

When you open topics by clicking links within topics, the topics open within the same
viewer. To cycle through those topics, click Forward or Back icons in the help topic
viewer toolbar. Note that you cannot navigate forward or back between different
types of help viewer tabs; for example, the search results and help topic tabs. Use the
scroll buttons instead.

To close one or more pages open in the help topic viewer:

• Right-click in the help topic viewer tab and choose from options on the context
menu.

You can close the page in front, all the pages, or all the pages except the page in
front.

How to Print Help Topics
You can print help topics individually or by section.

To print an individual help topic:

1. Open a help topic in the help topic viewer.

2. In the help topic viewer toolbar, click the Print icon.

To print a topic grouping:

1. Click the Contents tab in the Help Center.

2. In the table of contents tree, select a topic folder.

3. Right-click and choose Print Topic Subtree.

The container topic and its children are printed. Topics listed as links are not printed.

Common Development Tools
This section provides an introduction to fundamental JDeveloper IDE functionality
and concepts.

Application Overview
Use the Application Overview pages to guide you as you build a Fusion Web
application, and to create files and objects and view the status of them.

Checklist

The Application Overview Checklist steps you through the building of a Fusion Web
application, according to Oracle recommended best practices. The Checklist is
displayed by default when a Fusion Web application is created, as part of the
Application Overview pages.

The checklist optionally walks you through the entire process of configuring and
building your application, with links to specific dialogs and wizards. Each step is also
designed to teach you about the architecture, tools and resulting files using a
combination of links to step-by-step instructions, relevant sections of the Developer's
Guides, and descriptions of what happens in the IDE as a consequence of doing the
work in a step.

Unlike a wizard, the Checklist itself is intended to provide a linear, but ultimately
flexible and lightweight guide. You can follow the prescribed path in exact sequence,

Common Development Tools

3-64 Developing Applications with Oracle JDeveloper

or explore tasks in a different preferred order. When using the Checklist, it suggests a
best way to accomplish your goals, but you are not restricted by it. You can also close
the Application Overview and work directly in the IDE, or work in both the IDE and
Checklist interchangeably.

To use the Checklist:

1. Expand a step and read the prerequisites and assumptions.

2. Optionally click any of the documentation links.

3. Click the button that takes you to the relevant area of the IDE.

4. Use the status indicator dropdown to change the status as you work through
tasks.

File Summary Pages

All files and artifacts that you create within JDeveloper appear in the Application
Overview file summary pages, organized by object type. You can create new files and
artifacts, and view them filtered by status and project. The following table describes
the types of file summary pages.

Table 3-31 File Summary Pages

Page Function

Status Displays information about the object types available, using
these status icons:

• Error
• Warning
• Incomplete
• Advisory
• Ok
• Unchecked

Common Development Tools

Working with Oracle JDeveloper 3-65

Table 3-31 (Cont.) File Summary Pages

Page Function

File Displays the names of the objects. You can sort the objects in
ascending or descending order by clicking the Sort icon in
any of the column headings.

Project Displays the project in which the file or object is located.

File Summary Pages Toolbar

The following table describes the icons in the File Summary Pages toolbar and their
functions.

Table 3-32 Icons in the File Summary Pages Toolbar

Icon Name Function

New Creates new objects of the types listed, in the selected project. The
context menu lists the files and objects associated with the
technology that can be created in each project.

Edit Opens the selected file or object in its default editor.

Delete Removes the selected file or object.

Filter
Status or
Project

Displays the list of all files of a particular status by selecting the
status, as described above. By default, Show All is selected.

If there is more than one project within the current application, use
this list to select which project or projects you wish to be included
in the file summary pages. You can choose:

• all projects
• a specific project from those available in the application

File List
Use the File List to search for and work on objects that you have created within an
application.

File List Tab Header

The following table describes the options available in the file list tab header.

Common Development Tools

3-66 Developing Applications with Oracle JDeveloper

Table 3-33 File List Tab Header Options

Option Function

Look in If you have more than one project within the current application, use this
list to select which project or projects will be searched for objects. The list
includes all projects in the current application, plus options to show all
projects and a selection of projects (multiple projects). You can choose:

• a specific project from those available in the application
• All Projects
• Multiple Projects, which opens the Select Projects dialog where you

choose the projects from those available in the application.

Saved Searches Initially contains <New Search>. After you have saved at least one search,
also lists all saved searches. Selecting a saved search will display the search
criteria for that search. The search results will show the results of the most
recent search, even as you change between saved searches. To obtain new
search results, click the Search button. Saving a search is one of the actions
available from the More Actions button.

Show History Opens the Recent Searches dialog, through which you can return to a
recent search. The search criteria of the selected search is shown, while the
search results remain as they were for the most recent search. To obtain
new search results, click the Search button.

Search Criteria Area

The following table describes the features available in the search criteria area.

Table 3-34 Features in the Search Criteria Area

Option Function

Search criteria
input line(s)

Initially contains a single input line for search criteria. You can add
further lines by clicking the Add icon at the end of the line. You can
remove lines by clicking the Delete icon at the end of the line that you
want to remove. By default, the first field in the line contains File Name:
you can change this to File Extension, Date Modified, Status, or Category.
The second field contains the options available for extending the entry in
the first field. The third field contains a list of all object types that can be
searched for.

Match options Choose between Match All and Match Any to determine the scope of the
search.

Search Click to begin a search based on the search criteria currently shown.

Common Development Tools

Working with Oracle JDeveloper 3-67

Table 3-34 (Cont.) Features in the Search Criteria Area

Option Function

More Actions Click to reveal the following menu of options for use with named
searches:

• Save - Saves the current search criteria with the name currently in the
Saved Searches box (even if the name is <New Search>).

• Save As - Opens the Save As dialog, through which you can save the
current search criteria as a new named search.

• Restore - Restores a deleted named search if used immediately after
the Clear option on this menu has been used.

• Clear - Clears the search criteria for this named search. You can restore
the criteria to this named search by immediately selecting the Restore
option on this menu.

• Delete - After confirmation, deletes the current named search.

Search Results Table

The following table describes the options available in the Search Results table.

Table 3-35 Options Available in the Search Results Table

Option Function

Results
summary

Shows the number of files that match the search criteria, and the date and
time that the search was completed.

Refresh Reruns the search with the current search criteria.

Customize table Opens a menu from which you can choose the columns that will be
displayed in the results table. Also contains a Select Columns option,
which opens the Customize Table dialog, through which you can choose
which columns to display and the order in which they are displayed in the
results table. The columns that are shown by default are Status, File,
Project, and Date Modified, in that order. Other columns that you can
choose to show are Application and Category.

Table headings You can change the order of the columns by grabbing a table heading and
moving it horizontally. You can change whether objects are shown in
ascending or descending order within the columns by clicking a heading
to give it focus, then clicking again to change the sort order. The sort icon
(or) in the table heading will change as appropriate.

Objects list Lists all the objects returned by the search. You can initiate actions for an
object by selecting the name, right-clicking, and selecting from the context
menu.

Compare Window
The Compare Window allows you to view the differences between two files or two
directories.

You might want to do this when deciding whether to check in a particular file to a
source control system, especially if doing so will overwrite a file whose contents you
are unfamiliar with. The Compare Window is integrated with the Application
Overview and the Applications window, and with the Subversion source control
system.

Common Development Tools

3-68 Developing Applications with Oracle JDeveloper

Toolbar

The following table describes the icons in the Compare Window toolbar and their
functions.

Table 3-36 Compare Window Toolbar Icons

Icon Name Function

Go to First
Difference

Click to move the cursor to the first difference.

Go to Previous
Difference

Click to move the cursor to the previous difference.

Go to Next
Difference

Click to move the cursor to the next difference.

Go to Last
Difference

Click to move the cursor to the last difference.

Generate Patch Click to open the Generate Patch dialog, where you can
generate a patch containing changes that have been made to
the files.

Source and Target Areas

The title bar of each area identifies the file that contains the differences. The versions
are aligned line by line. Lines with differences are highlighted using shaded boxes,
joined as appropriate.

Applications Window
The Applications window allows you to manage the contents and associated resources
of an application.

Applications Window Toolbar

This section describes the features available from the Applications window toolbar.

Main dropdown list

Use the main dropdown list, displayed in the figure below, to create a new
application, open an existing application, or choose from the list of open applications.
Use the context menu to choose from the list of application level actions available.

Application menu

Use the application menu, displayed in the figure below, to choose from a list of
actions available.

The following table describes the options available from the Application Menu.

Common Development Tools

Working with Oracle JDeveloper 3-69

Table 3-37 Application Menu Options

Menu Option Function

New Project Opens the New Gallery ready for you to select the type of project to
create.

New (Ctrl+N) Opens the New Gallery. Only those items available to be created from an
application are available

Open Project Opens the Open Project dialog, where you navigate to a project that you
want to open in this application.

Close
Application

Closes the current application.

Delete
Application

Deletes the application control file (.jws) from disk.

Rename
Application

Opens the Rename dialog where you can change the name of the current
application.

Find Application
Files

Opens the File List, where you can search for specific files.

Show Overview Opens the Application Overview which is the home for all files you can
create in this application.

Filter Application Opens the Manage Working Sets dialog where you can specify the files
to include or exclude from being listed in the Applications window.

Secure Secures your application resources.

Deploy Allows you to choose from the deployment profiles defined for the
application.

Refactor Allows you to choose from the refactoring options available for the
application.

Compare With Allows you to choose from the comparing options available for the
application.

Application
Properties

Opens the Application Properties dialog where you can set various
properties for the application.

Application Operations

You can select several application operations from the Applications window. These
include:

• In the initial view, before any application content is shown, select the New
Application link to create a new application or select the Open Application link to
open an existing application.

• Open any currently closed window, or bring a currently open window to the
foreground, using Window > window-name.

• Dock, float, maximize, split (vertically or horizontally), restore or close the
Applications window using the context menu available by right-clicking its tab or
by pressing Alt+Minus.

Common Development Tools

3-70 Developing Applications with Oracle JDeveloper

• Change the application shown in the window by choosing one from the main
dropdown list or, if the one you want is not shown, by choosing Open
Application.

• Create a new application by choosing New Application from the dropdown list.

• Open the context menu for the application by right-clicking the application, or by
clicking the Application Menu icon (to the right of the application name).

Projects Panel Operations

You can perform the following operations from the projects panel of the Applications
window:

• View the project properties by clicking the Project Properties icon.

• Refresh the project contents by clicking the Refresh icon.

• Filter the project content that you work with by selecting options from the
Working Sets dropdown menu.

• Change what is shown in the window by selecting options from the Applications
Window Display Options dropdown menu.

• Obtain a context-sensitive menu of commands for any node by right-clicking it.

• Display the structure of an object in the Structure window by clicking the object's
name.

• Open an object in its default editor, or bring the default editor into focus, by
double-clicking the object's name.

• Rename a file using File > Rename.

• Relocate a file using File > Save As.

• Search for items visible in the panel by putting the focus anywhere inside it and
typing a search string for the object you are looking for. (Precede with an asterisk to
search for instances of names containing the search string.)

• Close or open the panel by clicking its bar.

• Remove the panel from view by opening its dropdown menu (panel bar, far right)
and choosing Minimize. Restore it by clicking the three dots at the very bottom of
the Applications window and then clicking Projects.

Application Resources Panel Operations

You can perform the following operations in the Application Resources panel:

• Close or open the panel by clicking its bar.

• Change the area used by the panel by grabbing its bar and moving it up or down.

• Remove the panel from view by opening its dropdown menu (panel bar, far right)
and choosing Minimize. Restore it by clicking the three dots at the very bottom of
the Applications window and then clicking Application Resources.

• Obtain a context-sensitive menu of commands for any node by right-clicking it.

• Display the structure of an object in the Structure window by clicking its name.

Common Development Tools

Working with Oracle JDeveloper 3-71

• Open an object in its default editor, or bring the default editor into focus, by
double-clicking the object's name.

• Search for items visible in the panel by putting the focus anywhere inside it and
typing a search string for the object you are looking for. (Precede with an asterisk to
search for instances of names containing the search string.)

Data Controls Panel Operations

You can perform the following operations in the Data Controls panel:

• Close or open the panel by clicking its bar.

• Change the area used by the panel by grabbing its bar and moving it up or down.

• Remove the panel from view by opening its dropdown menu (panel bar, far right)
and choosing Minimize. Restore it by clicking the three dots at the very bottom of
the Applications window and then clicking Data Controls.

• Obtain a context-sensitive menu of commands for any node by right-clicking it.

• Edit the definition of a data control by opening its context menu and choosing Edit
Definition.

• Search for items visible in the panel by putting the focus anywhere inside it and
typing a search string for the object you are looking for. (Precede with an asterisk to
search for instances of names containing the search string.)

Recent Files Panel Operations

You can perform the following operations in the Recent Files panel:

• Close or open the panel by clicking its bar.

• Change the area used by the panel by grabbing its bar and moving it up or down.

• Remove the panel from view by opening its dropdown menu (panel bar, far right)
and choosing Minimize. Restore it by clicking the three dots at the very bottom of
the Applications window and then clicking Recent Files.

• Open an object in its default editor, or bring the default editor into focus, by
double-clicking the object's name.

• Search for items visible in the panel by putting the focus anywhere inside it and
typing a search string for the object you are looking for. (Precede with an asterisk to
search for instances of names containing the search string.)

Application Servers Window
The Application Servers window allows you to manage connections to application
servers. It is integrated with the Resources window.

When you create an application server connection in the Application Servers window
it is available in the Resources window. Similarly, when you create an application
server connection in the Resources window, it is available in the Application Servers
window.

From the context menu of the Application Servers window, you can:

Common Development Tools

3-72 Developing Applications with Oracle JDeveloper

• Create a new connection to an application server by choosing New Application
Server from the context menu of the Application Servers node.

• Import connections by clicking Import from the context menu of the Application
Servers node.

• Export connections by clicking Export from the context menu of the Application
Servers node.

• Edit the properties of an existing application server connection by choosing
Properties from the context menu of the connection.

From the context menu of IntegratedWebLogicServer, you can:

• Start the Integrated WebLogic Server.

• Start the Integrated WebLogic Server in debug mode.

• Create the Default Domain. When you first start the Application Servers window,
the only node is IntegratedWebLogicServer (domain unconfigured). Before you can
work with Integrated WebLogic Server, you must create a default domain. If you
are creating the default domain for the first time, you must enter an administrator
password for the new domain.

• Update the Default Domain.

• Configure a log to help diagnose problems.

• Launch the Admin Console for:

– Integrated WebLogic Server.

– Oracle WebLogic Server.

The following table describes the icons in the Application Servers window toolbar:

Table 3-38 Application Servers window Toolbar Icons

Icon Name Function

Refresh Click to refresh the contents of the selected application server
connection.

Delete Click to delete the selected application server connection.

Structure Window
The Structure window offers a structural view of the data in the document currently
selected in the active window of those windows that participate in providing
structure, which include the diagrams, the editors and viewers, and the Properties
window.

Depending on the document currently open, the Structure Window enables you to
view data in two modes:

• Source - displays the code structure of the file currently open in the editor.
Applicable to technologies that allow code editing. For example, this tab will not be
available when a diagram is open for editing.

Common Development Tools

Working with Oracle JDeveloper 3-73

• Design - displays the UI structure of the file currently open in the editor.

In the Structure window, you can view the document or diagram data in a variety of
ways. The structures available for display are based upon document or diagram type.
For a Java file, you can view code structure, UI structure, or UI model data. For an
XML file, you can view XML structure, design structure, or UI model data.

The Structure window is dynamic, tracking always the current selection of the active
window (unless you freeze the window's contents on a particular view), as is pertinent
to the currently active editor. When the current selection is a node in the Applications
window, the default editor is assumed. To change the view on the structure for the
current selection, select a different structure tab.

The windows that participate in providing structure also follow selections made in the
Structure window. Double-clicking the node for a method in the Structure window,
for instance, makes the source editor the active view and takes you directly to the
definition for that method.

You can open multiple instances of the Structure window, freezing the contents of any
number of them, in order to compare the structures of different files. You can also
switch structure views without changing editors.

Diagram objects (such as UML elements) listed in the Structure window can be
dragged from the window and dropped directly onto diagrams.

Structure Window Toolbar

The following table describes the icons in the Structure Window toolbar and their
functions:

Table 3-39 Structure Window Toolbar Icons

Icon Name Function

Freeze Click to freeze the Structure window on the current view. A
window that has been frozen does not track the active selection
in the active window.

New View Click to open a new instance of the Structure window. The new
view appears as a tabbed page in the same window.

Structure Window Views

The Structure window view depends upon the document type of the current selection
in the active window. Each view offers different options for viewing and sorting the
structure of your files based on file type.

The following table describes the Structure Window views.

Table 3-40 Structure Window Views

View Description

ADF Business Components
View

When you select any ADF business component in the
Applications window, the Structure window offers a
structured view of the component's files, attributes, and other
properties.

Common Development Tools

3-74 Developing Applications with Oracle JDeveloper

Table 3-40 (Cont.) Structure Window Views

View Description

Cascading Style Sheet View This view allows you to select and group CSS elements for
easy editing. When a CSS file is open for editing, CSS selectors
in the file are displayed in the Structure window as one of
three types: Element, Class, and ID.

Java View This view displays the code as well as design structure of the
Java file currently being edited. Additionally, you can specify
several display preferences to view structural data.

JSP/HTML View This view displays the code structure and UI bindings for the
JSP/HTML file that is currently selected.

Struts View The Struts view shows the hierarchy of elements and
attributes for the Struts configuration file currently selected in
the Applications window or editor.

TopLink View The TopLink view displays detailed information about the
TopLink element selected in Applications window or TopLink
editor, including descriptors, sessions, and mappings.

UML View The UML view displays the behavior, interaction, and code
structure in UML-based diagrams such as Activity Diagrams,
Class Diagrams, and Use Case Diagrams.

Diagram View When a diagram is open for editing, the Diagram view
displays the components that have been added to the
diagram. You can select an element in the Structure Window's
diagram view and locate it in the diagram

Applications Window - Data Controls Panel
Use to view the data controls created to represent an application's business services
and to create databound UI components by dragging and dropping the control panel
objects onto an open web page or ADF Swing panel.

Note:

The Data Controls panel may appear empty if no data controls have been
created for or imported into the application.

The panel displays objects to which your UI components can be bound, including data
collections, attributes, and methods that the business services developer exposed
through the Oracle ADF data control, as well as specific, built-in operations that are
generic to all data collections.

When you drag an object from the Data Controls panel onto a page, the context menu
displays the UI components you can create for that specific object. Creating
components this way means that they will automatically be databound to the dropped
object.

After inserting a databound UI component into the displayed web page or Java panel,
you can view the Oracle ADF data binding:

Common Development Tools

Working with Oracle JDeveloper 3-75

• In the code view of a web page, where data binding objects appear in expressions
that get evaluated at runtime using the expression language features of the JSTL
tag library.

• In the associated page definition file. The page definition file defines the bindings
created for the page, panel, or form.

Data Controls panel toolbar

The following table describes the icons in the Data Controls panel toolbar and their
functions:

Table 3-41 Data Controls Panel Toolbar Icons

Icon Name Function

Refresh Panel Click to reload the panel if the underlying business components
have changed.

Filter Panel Click to enter search criteria to find a specific item in the panel.

Log Window
The Log window displays tabbed windows for specific feedback from various
components of the IDE.

The Log window displays information on:

• Apache Ant. When you build your project using Apache Ant, the Log Window
displays relevant build information.

• Maven. When you build your project using Maven, the Log Window displays
relevant messages.

• Debugger

• Audit

• Profiler

To bring up the context menu for the contents of the Log window, right-click within
the window. To bring up the context menu for the Log window as window, right-click
on the tab.

From the context menu for the general Log window, you can:

• Copy the contents of the window

• Select all data within the window

• Wrap the text in the window

• Clear the contents of the window

• Save the contents of the window to another format

• Close the window

Other actions may be available within the tabbed sections generated by specific
processes.

Common Development Tools

3-76 Developing Applications with Oracle JDeveloper

From the context menu for the window itself, you can:

• Close the window

• Close all other tabs but for the currently selected tab

• Close all tabs within the window

Issues Window
The Issues window enables you to view and manage application issues. It has the
following features:

• It displays audit violations in file, project, working set, or application and provides
information to help you resolve the issues. The Code Assist audit profile
determines the audit violations that are reported.

• It displays a list of all warnings and errors encountered by the compiler after Make
or Rebuild is executed.

You can pin the information tab for a compiler operation and view the results of
multiple Make or Rebuild operations by switching between tabs.

• It displays tasks specified in the source code.

If you are working in a Java source file, a task will automatically be created
whenever you type // TODO (in other words, when you create a comment and use
the source tag recognized by JDeveloper). These tasks then appear in the Issues
window.

• Double-clicking on any item in the Issues window takes you to the corresponding
source code.

• JDeveloper displays a series of tabs across the bottom of the Issues window, which
highlight issues uncovered at different stages of testing and development (for
example, when you build or run your application). If your application runs without
issues, the tab displays a success message. If JDeveloper detects issues, the tab
displays a description of the issue, the name of the file that caused the issue, the
location of that file in the hierarchy of your application, and the name of the project
containing that file.

The following table describes the Issues window toolbar.

Element Description

 Error
Toggle to show just errors in the selected scope.

 Warning
Toggle to just show warning issues in the selected scope.

 Incomplete
Toggle to show just incomplete issues in the selected scope.

 Info
Toggle to show just the number of advisory issues in the selected file,
or to list the advisory issues in the file.

 Task Marker
Toggle to show just tasks.

Common Development Tools

Working with Oracle JDeveloper 3-77

Element Description

 Configure View
Options

Toggle to configure the following view options:

• Table View: Select to view items in a flat tabular structure.
• Tree View: Select to view items in a nodal tree structure. In this

view, items are sorted first by project, and then by file.
• Current Issues Scope: Select to determine the scope of issues to be

displayed.
• Preferences: Select to open the Issues page of the Preferences

dialog, where you can configure Issues window behavior.

Documents Dialog
The Documents dialog lets you navigate quickly among open documents in
JDeveloper, including the Start Page.

At the bottom of the dialog, the Description panel lists the pathname to files that you
have opened, in cases where you may have more than one file of the same name open.
For example, if you have multiple files named Class1.java in different applications
open at the same time, the pathname in the Description panel can help you identify
which document is associated with which application.

To open the Documents dialog:

• Select Window > Documents.

JDeveloper displays a list of all documents currently open. You can select a document
by selecting the document from the list, then clicking Switch to Document.

You can choose to sort how the documents are displayed by selecting an option under
Order By:

• Name displays the documents in alphabetical order.

• Recent Usage displays the documents in the order in which they were most
recently accessed.

Dependency Explorer
The Dependency Explorer provides information on the dependencies between project
artifacts. You can open the Dependency Explorer from a node in the Applications
window for an ADF application such as a .jspx, or from the node for a diagram.

To open the Dependency Explorer:

1. Right-click on the element you want to examine dependencies for in the
Applications window.

2. From the context-menu, select Explore Dependencies.

Alternatively, choose Search > Explore Dependencies.

For more information, click F1 from the Dependency Explorer window.

You can filter the types of file displayed by clicking the Filter button in the
Dependency Explorer and choosing the types of file not include.

Common Development Tools

3-78 Developing Applications with Oracle JDeveloper

Adding External Tools to JDeveloper
External tools are custom JDeveloper menu items and toolbar buttons that launch
applications installed on your system, applications that are not packaged as part of
JDeveloper.

How to Find All External Programs Supported by JDeveloper
You can identify any applications that JDeveloper already recognizes in order to add
them to JDeveloper.

To find all external programs that JDeveloper is preconfigured to support:

1. From the main menu, choose Tools > External Tools.

2. In the External Tools dialog, click Find Tools.

How to Add Access to an External Program from JDeveloper
You can add access to an external program from the JDeveloper IDE.

To add access to an external program from JDeveloper:

1. From the main menu, choose Tools > External Tools.

2. In the External Tools dialog, click New. Follow the instructions in the wizard.

How to Change the Appearance of an External Program
You can change the settings for an external application, as well as remove an external
application from the JDeveloper IDE.

To change how an external program appears, or remove access to an external program
from JDeveloper:

1. From the main menu, choose Tools > External Tools.

2. In the External Tools dialog, click Edit or Delete. If you are editing the options,
display, integration or availability of an external tool from JDeveloper, select the
corresponding tab and change the values. Click Help for help choosing valid
values.

3. Click OK. Your changes are reflected immediately.

Working with Tasks
You can organize issues that are recorded on a registered issue tracker as tasks in
JDeveloper. To work with tasks, you first need to specify the issue tracker that is used
as the task repository for your project. After you register a task repository, you can use
the Tasks window to perform the following:

• Find, update and resolve tasks

• Create new tasks

• Organize tasks by category

• Create and save queries

Adding External Tools to JDeveloper

Working with Oracle JDeveloper 3-79

About Task Repositories
A task repository is a system for tracking issues that are submitted against a project.
JDeveloper supports two types of task repositories:

• Local - JDeveloper includes a local task repository that you can use to store
personal tasks. Tasks in your local repository are only stored on your local file
system and are only accessible to you from within JDeveloper. You store
scheduling details about tasks in your local repository.

• Remote - A remote task repository is generally located on a remote server and is
accessible to other users. You can use a remote repository to submit tasks and
assign responsibility for resolving tasks to members of a team collaborating on a
project.

Remote task repositories typically use an issue tracking system. JDeveloper
provides support for the Bugzilla and JIRA issue tracking systems. For more details
about the supported issue tracking systems, see the following sites:

– Bugzilla: http://www.bugzilla.org/

– Atlassian JIRA: http://www.atlassian.com/software/jira/overview

Working with Tasks
You can use the Tasks window to find, update and create tasks on a remote repository
or your local repository.

Finding and Opening Tasks
From the Tasks window, you can perform a quick search for tasks by id or a string in
the summary or open the Find Tasks page to create an advanced query. You can view
a list of tasks that match your saved queries in the Tasks window.

After you save a query, the results of the search are listed under the query name in the
Tasks window. You can double-click any task in the list to open the task form in a new
window. You do not need to be online to open a task that is listed under a saved
query. You can update a task in the and save the changes when you are offline and
then submit the changes the next time that you are online.

To perform a quick search of tasks:

1. Choose Window > Tasks from the main menu to open the Tasks window.

Alternatively, choose Team > Find Tasks to open the Find Tasks dialog and select
the repository from the drop-down list. The drop-down list contains all remote task
repositories that are registered with JDeveloper.

2. In the Repositories section of the Tasks window, click the Search task in repository
icon for the repository that you want to search.

3. Enter a task id or string in the Search task in Local Tasks repository dialog.

When you type in the text field, the dialog displays a list of possible matches that is
based on tasks that you recently viewed.

4. Select a task from the drop-down list.

Working with Tasks

3-80 Developing Applications with Oracle JDeveloper

http://www.bugzilla.org/
http://www.atlassian.com/software/jira/overview

You can choose Search online Task Repository in the drop-down list to retrieve
more results.

5. Click Open.

When you click Open, the task form opens in a window in JDeveloper.

Creating and Saving Task Queries
You can save and name search queries that you use repeatedly. You create and save
queries using the Find Tasks dialog or create a query as a URL. If you are not online,
you can open tasks that are listed in the Tasks window. You can also update a task
when you are not online and submit the changes later when you are online again.

To create and save a task query:

1. Choose Window > Tasks from the main menu to open the Tasks window.

2. In the Repositories section, click the Create New Query icon for the repository to
open the Find Tasks dialog.

Alternatively, you can choose Team > Find Tasks in the main menu to open the
Find Tasks dialog.

3. Enter the search criteria.

4. Click Search to retrieve the results of the query.

When you click Search, JDeveloper searches the remote repository and displays the
search results in the form.

5. Click Save Changes in the search dialog.

6. Enter a name for the query and click Save.

After you save the query, the new named query is added under the repository node in
the Tasks window.Expand the named query node to view a list of tasks that meet the
search criteria. You can double-click any task in the list to open the task form in a new
window.

You can open and update tasks in the list when you are not online. If you are not
online, the Submit Changes button is disabled in the task dialog. You can click the
Save Changes button to save any updates that you make to the task and submit the
changes when you are online.

Reporting New Tasks
To create a new task in JDeveloper, you need to use your local repository or register a
remote task repository and then use the Report a New Task dialog to specify the
details of the task. If you are not logged in to the task repository, you will be prompted
to supply the log in details when you submit the new task. If you are not online, you
can create and save the task and then submit the task when you are online.

To report new tasks:

1. Open the Tasks window and click the Create New Task icon for the repository in
the Repositories section.

Alternatively, choose Team > Report Task from the main menu and choose a
repository in the Report a New Task form.

Working with Tasks

Working with Oracle JDeveloper 3-81

2. Enter the details of the new task.

3. Click Finish to submit a task to a remote repository or choose File > Save from the
main menu to save a task to your local repository.

How to Add a Task Repository
To use an issue tracker, you need to register it as a task repository. After the task
repository is registered, you can use tools in JDeveloper to find, report and resolve
tasks that are recorded in the task repository.

To add a task repository:

1. Choose Window > Tasks from the main menu to open the Tasks window.

2. Click the Add Repository icon in the Repositories section.

3. Enter connection details and click OK.

To modify the connection properties of a task repository:

1. Choose Window > Tasks from the main menu to open the Tasks window.

2. Right-click the repository node in the Repositories section and choose Properties.

3. Modify the connection details and click OK.

Working with the Tasks Window
The Tasks window provides an organized overview of tasks that are recorded in a task
repository. To use the Tasks window, you can use the local task repository or register
a remote task repository with JDeveloper.

The Categories section of the Tasks window displays lists of tasks that are organized
by category. The Repositories section of the Tasks window displays a list of all tasks
that are the results of a saved query. You can create new categories and queries from
the Tasks window.

Right-click a task in the window to view options such as opening, deleting, scheduling
and assigning a category to the task. You can also move the mouse cursor over a task
in the window to view a summary, including its status.

How to View Tasks
Use the Tasks window to view lists of organized tasks. You can organize tasks by
assigning a task to a category. You can also save queries and view the results of the
query in the Tasks window. You can double-click any task entry in a list to open the
task in a new window.

You can enter a string in the Filter text field in the Tasks window to limit the tasks that
are displayed to the tasks that contain the string in the task summary.

To view tasks that are organized by category:

1. Choose Window > Tasks from the main menu to open the Tasks window.

2. Expand a category node in the Categories section to see a list of tasks that you
assigned to that category.

3. Double-click a task in the list to open the task in a window.

Working with the Tasks Window

3-82 Developing Applications with Oracle JDeveloper

You can move your cursor over a task entry to view a summary of the task.

To search for a task:

1. Choose Window > Tasks from the main menu to open the Tasks window.

2. Click the Search Task in Repository icon for the repository that you want to
search.

3. In the Search Task in Repository dialog, enter the task id or part of the task
summary text, or select from recent tasks in the drop-down list.

4. (Optional) Select a category from the drop-down list if you want to simultaneously
assign the task to your category. Click Open.

When you click Open, the task opens in a window.

How to Organize Tasks
You use custom categories to group tasks in the Tasks window. After you create a
custom category, you can assign any task to that category and the task remains in that
category until you explicitly remove it or you add it to a different category. A task can
only be in one custom category. By default, the Categories section at the top of the
Tasks window displays all tasks that are assigned to a custom category regardless of
the status of the task.

The Categories section contains three default Schedule categories that group the tasks
that have scheduling details (Today, This Week, All) and one default category for
tasks that were opened recently. To hide a Schedule category, click the Set Tasks
window filter icon at the top of the Tasks window and disable the category in the list.
To hide the tasks that are resolved, click the icon and disable Show finished tasks in
categories.

To organize tasks by custom category:

1. Choose Window > Tasks from the main menu to open the Tasks window.

2. Click the Create Category icon at the top of the Tasks window to open the New
Category dialog box.

3. Enter a name for the category in the dialog box. Click OK.

When you click OK, a node for the new category is added under the Categories
section in the Tasks window.

4. Open a task in JDeveloper.

5. Right-click on the task and choose Set category.

6. Click OK.

When you click OK, the task is added to the list of tasks under the category node.

You can also right-click a task entry in the Repositories section and choose Set
Category to assign the task to a category.

To remove a task from a custom category:

1. Choose Window > Tasks from the main menu to open the Tasks window.

2. Expand a category node in the Categories section to see the list of tasks that are
grouped in that category.

Working with the Tasks Window

Working with Oracle JDeveloper 3-83

3. Right-click the task entry that you want to remove and choose Remove from
Category.

You can remove a task from a category by assigning the task to a different category.

To remove all completed tasks from a category, click the Remove all finished tasks
from categories icon.

Working with the Tasks Window

3-84 Developing Applications with Oracle JDeveloper

4
Getting Started with Developing

Applications with Oracle JDeveloper

JDeveloper provides several tools and features for developing applications. You can
use these features to effectively build, test, run, and deploy your application. This
chapter provides an overview of the features for developing applications available in
JDeveloper.

This chapter includes the following sections:

• About Developing Applications with Oracle JDeveloper

• Creating Applications and Projects

• Managing Applications and Projects

About Developing Applications with Oracle JDeveloper
The features for developing applications in JDeveloper include:

• Different types of window for managing and working with different object types
and resources associated with applications, projects, and files.

• Several visual and code editing tools to facilitate the task of creating different types
of source documents. The editors are integrated with other windows in the IDE,
thus drag and drop operations and simultaneous, automatic updates among the
various integrated tools are supported.

• Tools to simplify the task of testing and analyzing source code, processes, and
application modules or packages.

Creating Applications and Projects
The application is the highest level in the control structure. It is a view of all the objects
you need while you are working. An application keeps track of all your projects while
you develop programs. A project is a logical container for a set that defines a
JDeveloper program or portion of a program. A project might contain files
representing different tiers of a multi-tier application, for instance, or different
subsystems of a complex application. These files can reside in any directory and still
be contained within a single project.

All of the projects within an application are displayed below that application. If you
filter a project using the working set, the project is not displayed under the
application. Closing an application or project closes all open editors or viewers for files
in that application or project and unloads the files from memory.

You can remove application and project control files from the IDE without deleting
them from the disk. (This is not true for other types of file, which will be deleted from

Getting Started with Developing Applications with Oracle JDeveloper 4-1

the disk at the time that they are removed from the IDE.) JDeveloper can recognize
many different file types, displaying each in its appropriate viewer or editor when you
double-click the file.

When adding a project to an application, you can choose to:

• Create a new project, with specific objects and attributes you define.

• Create a new empty project, which inherits default project properties.

• Open an existing set of files from outside JDeveloper into a new project.

Projects control their files lists directly through the directory. Applications and
packages also define where and how the files within a project are stored.

Note:

The same object (physical file) can appear in more than one project. This
means that any actions carried out on the object in one project will show up in
the other project (although some effects will become apparent only after the
project is compiled). For packages, two or more projects should not share a
package unless, first, they also share a source path used to generate the
package and, secondly, the package is already compiled and will never be
changed.

How to Create an Application
The application is the highest level in the control structure. It is a view of all the objects
you need while you are working. An application keeps track of all your projects while
you develop programs..

To create a new application with a specific feature scope:

1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, under General, select Applications.

3. In the Items list, double-click the application type you want to create.

4. In the Create Application dialog, enter application details like the name and
directory. For help with the wizard, press F1.

5. Click Next to open the Project Name page, where you can optionally provide
details for your project.

6. When you are done, click Finish.

How to Create a Custom Application
You can either create an application with a specific feature scope, or create a custom
application that contains a single project that can be customized to include any
features.

To create a new custom application:

1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, under General, select Applications.

Creating Applications and Projects

4-2 Developing Applications with Oracle JDeveloper

3. In the Items list, double-click Custom Application. The Create Custom Application
wizard opens.

4. In the Create Custom Application dialog, enter application details like the name
and directory. For help with the wizard, press F1.

5. Click Next to open the Project Name page, where you can optionally provide
details for your project.

6. When you are done, click Finish.

How to Create a Project
A project is a logical container for a set of files that defines a JDeveloper program or
portion of a program. You can create a project that is preconfigured with a specific set
of features.

To create a new project with a specific feature scope:

1. In the Applications window, select the application within which the project will
appear.

2. Click the Application Menu icon, and select New Project to open the Projects page
of the New Gallery.

3. In the Items list, double-click the project type you want to create.

4. Complete the Create Project wizard, and click Finish. For help on the wizard, press
F1.

The new project appears in the Applications window. It inherits whatever default
properties you have already set. To alter project properties for this project, either
double-click the filename or right-click and choose Project Properties.

Creating a New Custom Project
To create a new custom project:

1. In the Applications window, open the application that will contain the new project.

2. Click the Application Menu icon, and select New Project to open the Projects page
of the New Gallery.

3. Under Items, select Custom Project.

4. Click OK.

Managing Applications and Projects
You can effectively manage your applications and projects using the Applications
window. The Applications window organizes your projects in terms of higher-level
logical components that gives you a logical view of your application and the data it
contains. It provides an infrastructure that the different extensions can plug into and
use to organize their data and menus in a consistent, abstract manner. While the
Applications window can contain individual files (such as Java source files), it is
designed to consolidate complex data. Complex data types such as entity objects, UML
diagrams, EJB, or web services appear in this Applications window as single nodes.
The raw files that make up these abstract nodes appear in the Structure window.

Managing Applications and Projects

Getting Started with Developing Applications with Oracle JDeveloper 4-3

Applications displayed in the Applications window contain one or more projects.
Within the projects are the root folders for the paths in that project. You can choose to
view project contents as a directory tree or file list, and packages by tree or list. And
you can sort the nodes within packages and directories by type.

How to Open an Existing Application
You have the option of creating new applications from scratch or opening existing
ones. As soon as you create or import the application, it is added to the Applications
node in the Applications window.

To open an existing application and add it to the Applications window:

1. In the Applications window, select Open Application from the dropdown list.

2. Navigate to the application file and select it.

Be sure that the file type field either specifies .jws files or allows all types to be
displayed.

3. Click Open.

The application is added to the list of applications in the Applications window.

How to Open an Existing Project
As soon as you create or import a project, it is added to the selected application.

To open an existing project and add it to an application:

1. In the Applications window, select the application to which the project will be
added.

2. From the main menu, choose File > Open.

3. Navigate to the project file and select it.

Be sure that the file type field either specifies .jpr files or allows all types to be
displayed.

4. Click Open.

The project is added to the active application.

How to Quickly Add Items to a Project Using the New Menu
After you have created your project, you can directly create components related to the
project's features using the project context menu.

To add items using the project context menu:

1. Right-click the project you want to add items to and click New. Alternatively, you
can click the New button in the toolbar after selecting your project in the
Applications window.

Note:

The File > New menu displays the same items as the project context menu,
and also contains additional application-level items.

Managing Applications and Projects

4-4 Developing Applications with Oracle JDeveloper

2. In the New menu, click the item you want to add. If you want to choose an item
from the New Gallery, click From Gallery. The second section of the context menu
contains a list of recently created items for the current project type. The third
section of the New menu contains a list of most-recently created items.

How to Import Existing Source Files into JDeveloper
You can create new files of various types from scratch or open existing ones. When
opening existing files, you can import them, along with their file structure, into an
existing project or build a completely new project around them.

Alternatively, you can add source files to projects you already have.

How to Import Existing Files into a New JDeveloper Project

You can import existing files of any type into JDeveloper, creating a new project as
you do so.

To open existing files and import them into a new JDeveloper project:

1. In the Applications window, select or create the application to which the new
project will be added.

2. With the application selected choose File > New to open the New Gallery.

3. In the Categories tree, expand General and select Projects.

4. In the Items list, double-click Project from Existing Source.

5. On the Location page of the Project from Existing Source wizard, enter a name for
the new .jpr file or accept the default.

For more information on this or subsequent wizard pages, press F1 or click Help
from within the wizard.

Alternatively, you can select File > Import, and choose either Java Source or
Source into New Project.

6. Accept the default directory path, enter a new path, or click Browse to navigate to
one.

7. Click Next.

8. On the Specify Source page, in the Java Content area, click Add to open the Choose
Directory dialog.

9. In the dialog, navigate to the directory containing the files you wish to add. Click
Select to close the dialog and display the directory in the wizard.

10. When you have finished adding directories, you can apply file or directory filters.
To apply filters, click Add next to the Included tab.

11. When the import list is complete, optionally select Copy Files to Project directory
to clone the selected files in your project rather than simply pointing to the original
source.

12. Define a default output directory and default package.

13. Click Finish.

Managing Applications and Projects

Getting Started with Developing Applications with Oracle JDeveloper 4-5

The new project appears under the selected application node, populated with the
imported files.

You can fine tune your project directories structure, for example to point to resource
directories, in the Project Properties dialog.

How to Import a WAR File into a New JDeveloper Project

You can import a WAR file into JDeveloper, creating at the same time a new project to
contain its extracted contents.

To open a WAR file and import it into a new JDeveloper project:

1. In the Applications window, select or create the application to which the new
project will be added.

2. With the application selected choose File > New to open the New Gallery.

3. In the Categories tree, expand General and select Projects.

4. In the Items list, double-click Project from WAR File.

5. Complete the Create Project from WAR File wizard.

For information when using this wizard, press F1.

The wizard analyzes the WAR file and extracts its contents.

The new project appears under the selected application node, populated with the
imported files.

How to Import an EAR File into a New JDeveloper Application

When you import an EAR file, JDeveloper will always create a new application and
populate it with projects based on the EAR modules extracted. You cannot add the
contents of an EAR file to an existing application or project.

You should not use this procedure to import an EAR file that you simply wish to
deploy using JDeveloper. To do this, create a new application and project, then copy
your EAR file into the project directory (or add its location to the project's content).
The EAR file will then appear in the Applications window under the project's
Application Sources node. From here, you can deploy the file by right-clicking it and
choosing Deploy to.

To open an EAR file and import it into a new JDeveloper application:

1. From the main menu, choose File > Import and double-click EAR File.

The Import EAR File wizard is not sensitive to context, so you need not select
anything specific in the Applications window first.

2. Complete the Import EAR File wizard.

On the Finish page, the contents of the final application are displayed.

3. Click Finish to accept the listing and create the application.

The new application appears in the Applications window, populated with projects
based on the imported modules.

Managing Applications and Projects

4-6 Developing Applications with Oracle JDeveloper

How to Import Files into a Project
You can create new files of various types from scratch or open existing ones. When
opening existing files, you can import them, along with their file structure, into an
existing project or build a completely new project around them.

You can also create new projects from existing source.

Note:

You can use the Import Existing Sources wizard to add.zip or.jar files to
projects. You cannot use it to add.war or.ear files. A .war file requires the
Import WAR File wizard to property extract its contents into the project. An
EAR file requires the Import EAR File wizard, which extracts its contents into
a new application.

To open an existing file and add it to a project using the Import Existing Sources
wizard:

1. In the Applications window, select the project to which the file will be added.

2. From the main menu, choose File > Import.

3. In the Import dialog, double-click Existing Sources.

4. On the Add Source Files and Directories page of the Import Existing Sources
wizard, click Add to open the Select Files or Directories dialog.

For more information on this or subsequent wizard pages, press F1 or click Help
from within the wizard.

5. In the dialog, navigate to the directory containing the files you wish to add, or to
the individual files themselves, and click Open to close the dialog and display the
files in the wizard.

You can return to this dialog as many times as you want, adding as many
individual files or directories as you would like, by clicking Add again once you
have returned to the wizard.

6. When you have finished adding files or directories, and have returned to the
wizard, you can refine your list by selecting and deselecting individual files or by
applying filters. To apply filters, click File Filter or Directory Filter.

7. When your import list is complete, optionally select Copy Files to Project directory
to clone the selected files in your project rather than simply pointing to the original
source. If you select this option, accept the default src directory, enter a new
directory, or click Browse to navigate to one.

8. Click Next.

9. On the Finish page, review the listing of new project files. To accept this list, click
Finish.

The files are now added to the selected project.

Managing Applications and Projects

Getting Started with Developing Applications with Oracle JDeveloper 4-7

Managing Folders and Java Packages in a Project
JDeveloper enables you to create custom folders or Java packages within your project
to better organize your project files.

How to Create a Folder or Java Package

To create a folder or Java package:

1. In the Applications window, select the project or folder within which you want to
create the custom folder.

2. On the File menu, select New.

3. In the New Gallery, under Categories, select General.

4. Under Items, select Folder to create a new folder. To create a Java Package, under
Items, select Java Package.

5. In the Create Folder or Create Java Package dialog, specify the name of the folder
or Java package, and the directory you want to create it in.

How to Delete a Folder or Java Package

To delete a folder or Java package:

1. Select the folder or Java package that you want to delete.

2. On the File menu, select Delete.

3. On the Confirm Delete Folder dialog, confirm the deletion of the folder or Java
package. Click Show Folder Files to see the files contained in the folder or Java
package.

How to Manage Working Sets
Working sets allow you to configure the Applications window to show you a subset of
files from your project. This is particularly useful when working with large projects.
Until you create a working set, there are no default working sets. After you create a
working set, the option All Files lets you to get back to the default view.

How to Group Objects into a Working Set

You can run and debug a working set in just the same way as you run and debug a
project. This allows you to work on just a subset of a large application, for example a
Java EE application, without affecting the entire application or incurring a
performance hit.

To group objects in the Applications window into a working set:

1. In the Applications window, select the objects that you want to include in a new
working set.

2. In the Applications window, click the Working Sets icon and select New from
Selection.

This opens a Save As dialog. For more information at any time, press F1 or click
Help from within the Save As dialog.

Managing Applications and Projects

4-8 Developing Applications with Oracle JDeveloper

3. Enter a name for the working set, then click OK.

How to Create a Working Set by Defining File and Directory Filters

You can define a working set by selecting from files or containers in the Applications
window, or by providing include and exclude filter patterns through the Manage
Working Sets dialog.

To create a working set by defining file and directory filters:

1. In the Applications window, click the Working Sets icon and select Manage
Working Sets.

This opens the Working Sets dialog. Use the tree on the left to select the projects to
include. In the right panel, select which files in the current project to include. For
more information at any time, press F1 or click Help from within the Working Sets
dialog.

2. Click Save As to save the working set.

How to Create a Working Set From Search Results in the Log Window

You can create one or more sets of files for working on within a project. Based on the
scope of your search, the action to save the search results as a working set is available.

To create a working set from the results of a search in the Log window:

1. In the Log window, right-click and choose Save as Working Set from the context
menu.

2. In the Create Working Set dialog, enter a name for the working set.

How to Identify the Current Working Set

A tooltip in JDeveloper identifies the working set you are currently using:

• In the Applications window, hover the mouse over the Working Sets icon. The
name of the current working set is displayed as a tooltip. Alternatively, click the
Working Sets icon to bring up a menu in which the active working set is checked.

How to Change the Active Working Set

To change the active working set:

• In the Applications window, click the Working Sets icon and select the working set
you want to open.

Files not belonging to the working set are removed from the Applications window
but no editors are closed.

How to Edit Files and Projects in a Working Set

To edit files and projects in a working set:

1. In the Applications window, click the Working Sets icon and select Manage
Working Sets.

This opens the Working Sets dialog. For more information at any time, press F1 or
click Help from within the Working Sets dialog.

Managing Applications and Projects

Getting Started with Developing Applications with Oracle JDeveloper 4-9

2. Select the working set that you want to change from the Working Set drop-down
list.

3. Make the changes as required.

How to Show All Files in the Applications window

To restore the view in the Applications window to show all files:

• In the Applications window, click the Working Sets icon and select (All Files).

How to Run and Debug a Working Set

Before you begin, ensure that you are using the working set you want to run or debug.
This should include the projects that represent the Java EE modules (Web applications,
EJB modules) that you are working on and any dependencies.

Be aware that any projects that are explicit dependencies (in the Dependencies page of
the Project Properties dialog) will be included even if they are excluded from the
working set.

To run and debug a working set:

1. Choose Tools > Preferences > Run, then select the option Always Run or Debug
the current working set and its dependencies.

Note:

This option is not available for the Database Developer or Java Developer
roles.

2. Click OK.

The next time you run or debug, JDeveloper will use the current working set. You
can change to run and debug the entire application by choosing Tools >
Preferences > Run, then selecting the option Always Run or Debug the entire
application.

How to Browse Files in JDeveloper Without Adding Them to a Project
Sometimes, you may not want to add files directly to a project, but yet have them
handy for browsing. You can bring files into the JDeveloper IDE, without adding them
to a project.

To browse files in JDeveloper without adding them to a project:

1. From the main menu, choose File > Open.

As you are only going to view the files, it doesn't matter which node in the
Applications window is currently selected.

2. Navigate to the file or files to be opened. Be sure that the file type field either
specifies the appropriate file type or allows all types to be displayed

3. Select the file or files. You can select as many files, or directories, from the list as
you would like.

Archive files appear twice: once as a virtual directory and then again as a file. If
you will be opening an archive file, select its appearance in the list as a directory.

Managing Applications and Projects

4-10 Developing Applications with Oracle JDeveloper

4. With your selection made, click Open.

How to View an Archive
You can easily inspect the contents of any archive, after first opening the archived file
in JDeveloper. You can add the contents of an archive to an existing or new JDeveloper
project.

To open an archive in JDeveloper and view its contents:

1. From the main menu, choose File > Open.

As you are only going to view the contents of the archive, it doesn't matter which
node in the Applications window is currently selected.

2. Navigate to the directory containing the archive. Archive files appear twice: once as
a virtual directory and then again as a file.

If you do not see the archive files, double-check that all file types are being
displayed.

3. Select the second appearance of the archive, the archive as a file, and click Open.

How to View an Image File in JDeveloper
You can easily view any.gif, .jpg, .jpeg, or .png file from within JDeveloper.

To open and view an image in JDeveloper:

1. From the main menu, choose File > Open.

As you are only going to view the image, it doesn't matter which node in the
Applications window is currently selected.

2. Navigate to the image or images to be opened. Be sure that the file type field
either specifies all file types or the image types.

3. Select the image.

4. With your selection made, click Open.

The image is displayed in the main working area of JDeveloper.

To view an image already imported into JDeveloper:

1. In the Applications window, select the image file.

2. Double-click the file, or right-click and choose Open.

Setting Default Project Properties
The project properties you specify in the Default Project Properties dialog apply to all
subsequent projects you create across applications. Those you specify in the Project
Properties dialog apply only to the current project. You can also set custom properties
to override the properties set in a current project. This is particularly useful in a
multiuser development environment. Custom properties are not stored in the .jpr file.

How to Set Default Project Properties
When you set project properties for an individual project, you override the default
values for that project alone.

Managing Applications and Projects

Getting Started with Developing Applications with Oracle JDeveloper 4-11

The procedures you follow for setting default project properties are identical to those
for setting properties for individual projects — with the exception that, as you are in
default properties, you do not need to first select an individual project. Note that some
project properties cannot be set from the Default Project Properties dialog.

To view or change the default settings for a project:

1. From the main menu, choose Application > Default Project Properties.

2. In the Default Project Properties dialog, select the appropriate category.

3. View or set the various properties as desired.

4. When finished, click OK.

How to Set Properties for Individual Projects
You can set the project properties for all subsequent projects, or fine-tune the
properties for any individual project.

Additional project properties are also available, based upon specific tasks such as
compiling, or debugging.

How to View or Change the Current Output Path for an Individual Project

When you set project properties for an individual project, you override the default
values for that project alone.

To view or change the current output path for an individual project:

1. In the Applications window, select the appropriate project.

2. From the main menu, choose Application > Project Properties, or right-click and
choose Project Properties.

The Project Properties dialog opens with the input paths displayed on the last page
that you viewed.

3. On the Project Source Paths page, change the output directory as desired by typing
in the new values or by clicking Browse.

4. When finished, click OK.

How to Set the Target Java SE for a Project

Setting the target Java SE specifies which Java SE JDeveloper will use when compiling
and running your project.

To view or change the current Java SE for an individual project:

1. In the Applications window, select the appropriate project.

2. From the main menu, choose Application > Project Properties, or right-click and
choose Project Properties.

The Project Properties dialog opens with the common input paths displayed or on
the last page that you viewed.

3. On the Libraries and Classpath page the Java SE Version used for the project is
displayed. Click Change to define a new Java SE.

Managing Applications and Projects

4-12 Developing Applications with Oracle JDeveloper

4. When finished, click OK.

How to Manage Project Dependencies

Complex applications generally comprise multiple projects, which may be related
though dependencies. That is, project A must depend on project B when project A uses
classes or resources from project B. When this dependency is set, compiling project A
will automatically compile project B.

Deployment profile dependencies are created and edited in the Project Properties
dialog available from the Tools menu.

To manage the project dependencies for an individual project:

1. In the Applications window, select the appropriate project.

2. From the main menu, choose Application > Project Properties, or right-click and
choose Project Properties.

3. Select the Dependencies node.

4. On the Dependencies page, view the current dependency hierarchy for the project.

5. Select or deselect projects as desired.

6. To change the current dependency ordering, click Ordering.

7. When finished, click OK.

How to Associate Features with a Project Via a Template

When you create a project from a template, the project will inherit all the features
available in the template. More features are added dynamically to the project as you
create content in your project. Go to Project Properties > Features > Reconcile to filter
the list of features that are actually in use in the project.

To associate features with a project via its project template:

Note:

This procedure is applicable only for new projects created from a template.

1. From the main menu, choose Application > Manage Templates.

2. In the Manage Application Templates dialog, click the project template for which
the features are to be associated.

Application templates are listed as first-level nodes under Application Templates.
Project templates appear below their application template.

3. In the panel to the right, select the appropriate features from the Available Project
Templates list and use the shuttle buttons to transfer them to the Selected Project
Templates list.

4. When finished, click OK.

How to Associate Features with an Individual Project

When features are associated with a project, JDeveloper's design time filters the
choices you see based upon what you are most likely to need for a project of this type.

Managing Applications and Projects

Getting Started with Developing Applications with Oracle JDeveloper 4-13

To associate features with an individual project:

1. In the Applications window, select the appropriate project.

2. From the main menu, choose Application > Project Properties, or right-click and
choose Project Properties.

3. Select the Features node.

4. On the Features page, click the Add Features button.

5. In the Add Features dialog, select the features to be associated with the project in
the Project Features list.

6. Click the shuttle button to transfer your selection to the Selected list.

7. Click OK.

How to Set Javadoc Properties for a Project

Every project you create carries the JDeveloper project defaults or those you have
supplied yourself for all projects. You can also replace these defaults on a project-by-
project basis. Setting these properties is the same in either case: only the location, and
application, of the information differs.

To set Javadoc properties for an individual project:

1. In the Applications window, select the project.

2. From the main menu, choose Application > Project Properties, or right-click and
choose Project Properties.

3. Under Profiles, select the active profile node.

4. Under the active profile node, select the Javadoc node.

5. When finished, click OK to close the Project Properties dialog.

How to Manage Libraries
There are two categories of library: internal and external. Internal library definitions
are persisted within the project file itself (that is, within the .jpr file) and are thus
always available to anyone opening that project. However, internal library definitions
are not sharable among any other projects. You can add an internal library to a project
by going to the Libraries and Classpath page of the Project Properties dialog, and
clicking Add JAR/Directory.

External library definitions are persisted within their own stand-alone library
definition file (that is, the .library file). As such, external libraries can be checked into
source control, referenced by any number of projects, and can be shared among all
users in a team environment in the same way that java source files are. Since external
libraries have their own unique URL, adding an external library to a project adds that
URL to the project.

How to Add Application-level Libraries and Classpaths

Libraries are often required across many or all projects within an application. All
libraries that you add at the application level are implicitly added to the libraries and
classpaths of all projects within the application and are readily available at design and
compile time.

Managing Applications and Projects

4-14 Developing Applications with Oracle JDeveloper

Any library or classpath added at the application level for use during deployment are
included in the packaged EAR lib directory and is selected for deployment by default.

To add an application-level library:

1. Right-click the application in the application window.

2. Select Application Properties from the contextual menu.

3. Select the Libraries and Classpath node.

4. Click Add Library.

5. Locate the required library in the selection tree and click OK.

Libraries added at the application-level do not appear in the in the project properties
Libraries and Classpath page by default. Check Show Application Libraries in the
project properties Libraries and Classpath page to see all application-level libraries
(this option is disabled if no application-level libraries exist). You can move the list of
application-level libraries as a block to the top or bottom of the classpath entries using
the Move to Top or Move to Bottom arrows. You cannot move an individual
application-level library.

You can create and add an application-level library in the same way as described in
How to Create a New Library and Add it to a New Project.

How to View the Current Libraries in a Project

When you include libraries in a project, the source paths defined for those libraries
automatically become part of the project's classpath.

To view the current libraries for an individual project:

1. In the Applications window, select the appropriate project.

2. From the context menu, choose Project Properties.

3. Select the Libraries and Classpath node.

The libraries currently included in the project are shown in the Classpath Entries
list.

How to Add an Existing Library to a Project

You can add an existing library to a project.

To add an existing library to a project:

1. With the project selected in the Applications window, open the Project Properties
dialog.

2. Select the Libraries and Classpath node

3. On the Libraries and Classpath page, click Add Library.

4. Locate the required library in the selection tree and click OK.

How to Create a New Library and Add it to a New Project

You can create a new library and add it to a new project.

To create a new library and add it to a project:

Managing Applications and Projects

Getting Started with Developing Applications with Oracle JDeveloper 4-15

1. With the project selected in the Applications window, open the Project Properties
dialog.

2. Select the Libraries and Classpath node.

3. On the Libraries and Classpath page, click Add Library.

4. On the Add Library dialog, click New.

5. In the Create Library dialog, enter a name for the new library and select its
location.

6. For each path type, click Add Entry or Add URL as appropriate. To remove a path,
or correct an addition, click Remove. To rearrange the order of entries, use the
reordering buttons to the right of the display area.

7. Once you have clicked either Add Entry or Add URL, in the resulting selection
dialog enter the filename or browse through the list to select one. When your entry
is complete, click Select.

8. In the Create Library dialog, click OK.

9. On the Libraries and Classpath page, if finished click OK.

How to Edit an Existing Library in a Project

You can edit an existing library in a project.

To edit an existing library in a project:

1. With the project selected in the Applications window, open the Project Properties
dialog.

2. Select the Libraries and Classpath node.

3. On the Libraries and Classpath page, select the library to be altered from the
Classpath Entries list.

4. Click Edit. (This button remains the View button if the library is not editable.)

5. In the Edit Library Definition dialog, the appropriate library's name should appear
in the first field. Make any desired changes to the library name by typing directly
into the field.

6. For each Edit Path dialog, click Add Entry or Add URL as appropriate. To remove
a path, or correct an addition, click Remove. To rearrange the order of entries, use
the reordering buttons to the right of the display area.

7. Once you have clicked either Add Entry or Add URL, in the resulting selection
dialog enter the directory name or browse through the list to select one. When your
entry is complete, click Select.

8. In the Edit Library dialog, click OK.

9. On the Libraries and Classpath page, if finished click OK.

How to Remove Libraries from a Project

When you remove libraries from a project, the source paths defined for those libraries
no longer form part of the project's classpath.

Managing Applications and Projects

4-16 Developing Applications with Oracle JDeveloper

To remove a library from a project:

1. In the Applications window, select the appropriate project.

2. From the main menu, choose Application > Project Properties, or right-click and
choose Project Properties.

3. Select the Libraries and Classpath node.

4. On the Libraries page, select the desired library or libraries from the Libraries list
and click Remove.

5. If finished, click OK.

How to Import Libraries or Java SEs Outside the Project Scope

You can work with libraries completely outside the JDeveloper project scope, setting
them up to be either available to you for use in any of your projects or available to a
group of users across an installation.

To work with libraries or Java SEs outside of the scope of a project:

1. From the main menu, choose Tools > Manage Libraries.

2. In the Manage Libraries dialog, select either the Libraries or the Java SE
Definitions tab.

3. Select the User node to import libraries for your own use. Select the Extension
node to import libraries for use across a group.

4. Click Load Dir.

5. In the Load Directories dialog, navigate to the library that you wish to import and
click Select.

6. When finished, click OK.

How to Create Libraries or Java SEs Outside the Project Scope

You can work with libraries completely outside the JDeveloper project scope, setting
them up to be either available to you for use in any of your projects or available to a
group of users across an installation.

To create libraries or Java SEs outside the scope of a project:

1. From the main menu, choose Tools > Manage Libraries.

2. In the Manage Libraries dialog, select either the Libraries or the Java SE
Definitions tab.

3. Select the User node to create libraries for your own use. Select the Extension node
to create libraries for use across a group.

4. Click New.

5. In the Create Library dialog or the Create Java SE dialog, complete the details for
the new library or Java SE.

6. When finished, click OK.

Managing Applications and Projects

Getting Started with Developing Applications with Oracle JDeveloper 4-17

How to Edit Libraries or Java SEs Outside the Project Scope

You can work with libraries completely outside the JDeveloper project structure,
setting them up to be either available to you for use in any of your projects or available
to a group of users across an installation.

To edit libraries or Java SEs outside the scope of a project:

1. From the main menu, choose Tools > Manage Libraries.

2. In the Manage Libraries dialog, select either the Libraries or the Java SE
Definitions tab.

3. In the tab list, select the library to be edited. Its attributes are displayed in the fields
to the right.

4. To change the Java SE executable, click Browse.

5. To change the class, source, or doc paths, select the path that you want to change
then click one of the buttons beneath the paths panel: Add Entry, Add URL, or
Remove.

You can also reorder the entries, by clicking the up and down buttons in the right
margin.

6. When finished, click OK.

How to Delete Libraries or Java SEs Outside the Project Scope

You can work with libraries completely outside the JDeveloper project scope, setting
them up to be either available to you for use in any of your projects or available to a
group of users across an installation.

To delete libraries or Java SEs outside the scope of a project:

1. From the main menu, choose Tools > Manage Libraries.

2. In the Manage Libraries dialog, select either the Libraries or the Java SE
Definitions tab.

3. In the tab list, select the library to be deleted. You can delete only those libraries
you have created.

4. Click Remove and respond to the confirmation dialog.

The library is deleted immediately.

5. To close the Manage Libraries dialog, click OK.

How to Manage Application and Project Templates
Application and project templates provide you with a quick way to create the project
structure for standard applications with the appropriate combination of features
already specified. The new application created from template appears in the
Applications window already partitioned into tiered projects, with the associated
features set.

The application template you select determines the initial project structure, the named
project folders within the application. The project templates define the associated

Managing Applications and Projects

4-18 Developing Applications with Oracle JDeveloper

features. You can then filter the work you do in JDeveloper such that the choices
available are focused on the features you are working with.

How to Define a New Application Template

An application template organizes one or more project templates which specify the
project types expected in the application. Using such templates enables you to
standardize the way you develop an application.

To define a new application template:

1. Begin the process of creating a new application.

2. In the Create Application dialog, click Manage Templates. Alternately, if you are
not in this dialog, choose Application > Manage Templates.

For more information at any time, press F1 or click Help from within the
appropriate dialog.

3. In the Manage Templates dialog, select the Application Templates node and click
to open the Create Application Template dialog

4. Enter a name for the new template and click OK.

The new template appears in the template list of the Manage Templates dialog. All
application templates are listed as first-level nodes under Application Templates.

5. Complete defining the Application Template. For more information at any time,
press F1 or click Help from within the Manage Templates dialog.

The application template appears in the New Gallery in the Applications category of
the Business Tier.

How to Define a New Project Template

Project templates specify the various types of projects expected in a given application.
Project templates are contained within application templates.

To define a new project template:

1. Define a new application template.

Alternately, if the template has already been defined, choose Application >
Manage Templates.

2. In the Manage Templates dialog, select the Project Templates node and click the
Add icon to open the Create Project Template dialog.

3. Enter a name for the new template and click OK.

The new template appears in the template list of the Manage Templates dialog. All
project templates are listed as first-level nodes under Project Templates.

4. Complete defining the Project Template. For more information at any time, press
F1 or click Help from within the Manage Templates dialog.

The project template appears in the New Gallery in the Projects category.

Managing Applications and Projects

Getting Started with Developing Applications with Oracle JDeveloper 4-19

How to Share Application and Project Templates

You can create an application or project template in a shared location. Other users can
read templates from the shared location and use the same templates for their
application and projects.

To create a shared template:

1. Choose Application > Manage Templates.

2. In the Manage Templates dialog, select either the Application Templates or Project
Templates node and click the Add a shared location icon.

3. In the Add Templates Directory dialog, enter or browse to the location where you
want the shared template to be stored.

The shared templates folder is listed under both the Application Templates and Project
Templates node.

How to Edit an Existing Application or Project Template

You can edit existing user-defined application or project templates.

To edit an existing application or project template:

1. From the main menu, choose Application > Manage Templates.

2. In the Manage Templates dialog, select the template you want to edit.

For more information at any time, press F1 or click Help from within the Manage
Templates dialog.

3. In the panel to the right, edit the attributes of the templates as desired.

4. When finished, click OK.

How to Delete an Existing Application or Project Template

You can delete existing user-defined application or project templates.

To delete an existing application or project template:

1. From the main menu, choose Application > Manage Templates.

2. In the Manage Templates dialog, select the name of the template to be deleted.

Application templates are listed as first-level nodes under Application Templates.
Project templates are listed as first-level nodes under Project Templates.

For more information at any time, press F1 or click Help from within the Manage
Templates dialog.

3. Click Delete.

4. Click OK.

How to Manage File Templates
JDeveloper allows you to create file templates with pre-populated custom data and
use them in your application. For example, you can create a Java class file template
that contains basic header tagging, then when you need to add a Java class file in your

Managing Applications and Projects

4-20 Developing Applications with Oracle JDeveloper

application, you would start from your created template and that would save you
from manually entering basic header data in every single Java class.

You can create templates for all the files types supported in JDeveloper such as Java,
html, xml, etc.

There are two workflows for managing file templates: you can edit an existing
template and you can create a new template. The workflows are described below.

To edit an existing template:

1. Open your application in JDeveloper and navigate to Tools > Preferences > File
Templates. JDeveloper provides an out-of-the-box Java class template.

2. In the File Templates dialog go to the folder directory and navigate to General >
Java.

3. Click the provided template, Copyrighted Class. The template details and
template content appears on the right pane.

By default the built-in templates are not editable. If you start typing to modify the
content of the template, you will be prompted to confirm that you want to modify
the built-in template.

4. Modify the template by adding a simple line of text above the @author line. For
example,

* Enter a description of this class.

Note:

JDeveloper provides out of the box variables to use in your templates. To
understand those variables see, Available File Template Variables.

You can use the Reset button on the top-right corner of the page to revert the
template to its original text.

5. Click OK to close the Preferences dialog.

6. To use the template in your application, navigate to New > Gallery > General >
Java and you will see on the right pane the Copyrighted Class template.

7. Select the template and click OK.

After defining the File Name, the new class is created using the text in the created
template.

Managing Applications and Projects

Getting Started with Developing Applications with Oracle JDeveloper 4-21

Figure 4-1 Edit File Template

Line 28 shows the text that you added to the template on step 4.

To create a new template:

1. Open your application in JDeveloper and navigate to Tools > Preferences > File
Templates. JDeveloper provides an out-of-the-box Java class template.

2. In the File Templates dialog navigate to the folder directory to General > Java.

3. Click the provided template, Copyrighted Class. The template details and template
content appears on the right pane. You will use this Java class template as a starting
point for developing your new template.

4. Click the Copy icon at the top right corner of the page.

The Copy Template - Copyright Class dialog appears

Figure 4-2 New File Template Dialog

Managing Applications and Projects

4-22 Developing Applications with Oracle JDeveloper

5. JDeveloper populates the new template details, but the following fields can be
modified:

• Id—the id for this new template

• Name—he name of the template as it will appear in the Gallery

• File Name—the path and file name for this new template. You can modify any
part of the file name, including location.

• Category—the main category in the Gallery

• Folder—the id for this new template

• Description—the description of the file as it will appear in the Gallery

• Messages—the place where any errors in the template definition are described,
for example if you enter a duplicate template id. The messages area is empty
when there are no errors. This field cannot be modified.

In this example we will only rename the new template as My Copyrighted Java
Class

6. Click OK.

A copy of the existing template is created.

7. Delete all the existing template text and enter the following:

/**
* Enter a description of this class.
 */

public class ${name} {

 public ${name}(){
 super();
 }
}

Note:

JDeveloper provides out of the box variables to use in your templates. To
understand those variables see, Available File Template Variables.

8. Click OK. The new template is created.

9. To use the new template in your application, navigate to New > Gallery > General
> Java and you will see on the right pane the created My Copyrighted Java Class
template.

Managing Applications and Projects

Getting Started with Developing Applications with Oracle JDeveloper 4-23

Figure 4-3 New File Template - Select From Gallery

10. Select the new template and click OK. After defining the file name, the new class is
created using the text in the created template.

Figure 4-4 New File Template - Editor View

Available File Template Variables

JDeveloper provides the following File Template Variables out-of-the-box:

• name—the name, without extension, of the file that will be created

Managing Applications and Projects

4-24 Developing Applications with Oracle JDeveloper

• nameAndExt—the name, without extension, of the file that will be created

• date—the current time, in this format: Feb 16, 2008 from
DateFormat.getDateInstance() during template processing

• package—the current package is specified

• time—the current time, in this format: 7:37:58 PM from
DateFormat.getTimeInstance() during template processing.

• dateTime—the current date, from DateFormat.getDateTimeInstance() during
template processing

• user—the current user name, as returned from System.getProperty("user.name")

How to Save an Application or Project
You can save an application or project in several ways.

To save all the components across applications, including all projects:

• From the main menu, choose File > Save All or click the Save All icon.

Alternately, you can save components individually by using File > Save.

It is important to note that saving the application or project container (.jws, .jpr)
file alone does not save the individual files governed by that application or project.
Nor does saving individual contained files save the container node.

Each node is an independent entity and must be saved as such. Using Save All takes
care of changes to these container files, as well as all content files.

Using Save or Save As on a selected application or project node saves or duplicates
the .jws or .jpr file only: it does not save or duplicate the files contained within the
node.

Note too that if you do a Save As on an application or a project container file, that
container is replaced, but the files contained are not altered. If you do a Save As on an
individual file, that file is duplicated. However, if you want to rename a file, you
should use File > Rename.

How to Save an Individual Component or File
Saving the application or project container (.jws, .jpr) file alone does not save the
individual files governed by that application or project. Nor does saving individual
contained files save the container node.

Each node is an independent entity and must be saved as such. Using Save All takes
care of changes to these container files, as well as all content files.

Using Save or Save As on a selected application or project node saves or duplicates
the .jws or .jpr file only: it does not save or duplicate the files contained within the
node.

You can rename an individual file or component using File > Rename.

Note that if you do a Save As on an application or a project container file, that
container is replaced, but the files contained are not altered. If you do a Save As on an
individual file, that file is duplicated.

To save an individual component or file:

Managing Applications and Projects

Getting Started with Developing Applications with Oracle JDeveloper 4-25

1. In the Applications window, select the component or file to be saved.

2. From the main menu, choose File > Save or click the Save icon in the toolbar.

The file is immediately saved, its italicized name changing to Roman font.

How to Rename an Application, Project, or Individual Component
You can rename application control files, project control files, and individual files. The
correct way of renaming Java classes is to use refactoring.

To rename an application or project container, or an individual source file:

1. In the Applications window, select the node to be saved.

2. From the main menu, choose File > Rename.

For simple files, the Rename dialog opens. For Java files, the Rename File dialog
opens.

3. If the Rename File dialog has opened, choose between renaming only the selected
file, or renaming the file, the class defined by it, and all references to the class

If you choose to rename the class and update references, the Rename Object_Name
dialog opens.

4. If the Rename Object_Name dialog opens, change the name and choose options as
required, then click OK.

5. If the Rename dialog opens, change the name as required and click Save.

The node now appears in the Applications window with the new name.

Alternately, you can use File > Save As. Note that Rename always replaces the target
file. Save As replaces application or project container (.jws, .jpr) files, but
duplicates source files.

When you are saving files, remember that saving a container file alone does not save
the contents of the entire application or project. For that, you need to use Save All.

How to Relocate an Application, Project, or Project Contents
The Applications window presents a visual representation of the logical structure of
applications and projects. It is not a file directory. It does not necessarily represent the
physical location of those files.

To change the physical location of individual files, you can work in JDeveloper. To
change the physical location of a group of files, it is easier to work through your
operating system's file manager.

To change the association of files with projects or projects with applications, you
would work in the Applications window, adding or removing as appropriate.

Note:

The best practice for relocating Java classes is to use the options available on
the Refactor menu.

Managing Applications and Projects

4-26 Developing Applications with Oracle JDeveloper

To change the physical location of an individual file, whether within the project or a
container (.jws or .jpr) file:

1. In the Applications window, select the file to be moved.

2. From the main menu, choose File > Rename. If you have chosen a Java file, the
Rename File dialog will open. You will be able to relocate the file only if you
choose the option Rename the file only, do not update references in this dialog.

3. In the Rename dialog, navigate to the new location for the file and change the
file's name if you wish.

4. Click Save.

The file is now physically stored in the new directory. Its logical representation
does not change in the Applications window unless you explicitly alter it.

To change the physical location of an entire application or directory:

1. In your operating system's file manager, navigate to the directory in which the
files currently reside. Files stored in the JDeveloper default directory reside in the
mywork folder.

2. Select the entire directory (application, project, or files within a project) to be
moved and move it to the new location.

The files have now been moved, but JDeveloper no longer knows where they are.

3. When you return to JDeveloper, in the Applications window, and choose Open
Application from the drop-down list.

4. Navigate to the new physical location of the application or project and click Open.

To change the physical location of a group of files from one project to another:

1. In your operating system's file manager, navigate to the directory in which the files
currently reside.

2. Select the files to be moved and move them to the new location.

3. When you return to JDeveloper, select the project in the Applications window, and
choose Project Properties from the context menu.

4. In the Project Source Paths page of the Project Properties dialog, use the Add
button and navigate to the location of the files you want to add.

The files are now physically located where you placed them in step 2, and logically
associated in the Applications window wherever you targeted them in step 4.

How to Close an Application, Project, or Other File
When you close an application, project, or file in the Applications window, that
application or project is unloaded from memory. When an application or project is
closed, it appears in its unexpanded form in the Applications window.

In addition, you can remove applications, projects, or files from the Applications
window, which removes them only from the list, or you can delete them permanently,
wherever they reside, from within JDeveloper.

To close an application or project:

Managing Applications and Projects

Getting Started with Developing Applications with Oracle JDeveloper 4-27

1. In the Applications window, select the application or project to be closed.

2. From the main menu, choose File > Close.

If any files within that application or project were changed and not saved, you are
prompted to save them.

The application or project now collapses and appears in the Applications window
with the plus sign indicating that is ready for expansion.

You can close a file opened in a viewer or an editor by clicking on the close box of the
corresponding document tab above the editor window.

How to Remove a File from a Project
You can remove files from a project, which removes them only from the Applications
window list, or you can delete them permanently, wherever they reside, from within
JDeveloper.

To remove a file from a project:

1. In the Applications window, select the file or files you wish removed.

2. Select File > Delete.

3. The Confirm Delete Dialog is displayed. If you are certain that you want to delete
the file, click Yes.

How to Remove a Project from an Application
You can remove projects from the application by deleting the project control file (.jpr)
from within JDeveloper.

To remove a project from an application:

1. In the Applications window, select the project you wish to remove.

2. Select File > Delete Project.

3. The Confirm Delete Project Dialog is displayed. To confirm the deletion, click Yes.

How to Remove an Application
You can close an application and remove it from the Applications window. If you
want to delete the application

To remove an application from the IDE:

1. In the Applications window, click the Application Menu.

2. Select Close Application.

3. The Confirm Close Application Dialog is displayed. Select an option based on your
preference.

4. Select Application > Delete to delete the application and its contents.

Managing Applications and Projects

4-28 Developing Applications with Oracle JDeveloper

5
Developing Applications Using Modeling

This chapter describes how to use the modeling tools and technologies to create
Unified Modeling Language (UML) class, profile, activity, sequence, and use case
diagrams, as well as database, EJB, and business component diagrams to model your
various business services and database structures.

This chapter includes the following sections:

• About Modeling with Diagrams

• Creating_ Using_ and Managing Diagrams

• Using UML

• Using Transformations

• Modeling with UML Class Diagrams

• Modeling with Activity Diagrams

• Modeling with Sequence Diagrams

• Modeling with Use Case Diagrams

• Modeling with Profile Diagrams

• Modeling with Java Class Diagrams

• Modeling with EJB Diagrams

• Modeling with Database Diagrams

About Modeling with Diagrams
JDeveloper supports six standard UML diagrams types, and four business services
diagram types to model the software and systems development for your applications.

All of the diagram types can be created using the New Gallery wizards and are
supported with the JDeveloper diagram editor, Components window, and the
Properties window.

UML Diagrams
JDeveloper offers six standard UML diagram types:

• Activity Diagram. Model system behavior as coordinated actions. You can use
activity objects to model business processes, such as tasks for business goals, like
shipping, or order processing.

Developing Applications Using Modeling 5-1

• Activity Diagram with Partitions. Model a single activity, showing its partitions as
vertical divisions (lanes).

• Class Diagram. Model the structure of your system. Use to inspect the architecture
of existing classes, attributes, operations, associations, generalizations and interface
realizations.

• Sequence Diagram. Model the traces of system behavior as a sequence of events.
Sequence diagrams primarily show this as messages between objects ordered
chronologically.

• Use Case Diagram. Model what a system is supposed to do. A use case diagram is
a collection of actors, use cases, and their communications.

• Profile Diagram. Define extensions to UML using profiles and stereotypes.

Business Services Diagrams
There are four diagrams that support business services:

• Business Components Diagram. Model entity objects, view objects, application
modules and the relationships between them.

• Database Diagram. Model your online and offline database tables and their
relationships as well as views, materialized views, sequences, public and private
synonyms.

• EJB Diagram. Model the entity beans, session and message-driven beans inside a
system, and the relationships between them.

• Java Class Diagram. Model the relationships and the dependencies between Java
classes, enums, fields, methods, references, inheritance relationships, and
implementation relationships.

Transformations
Transformation is the process of creating Java objects from UML classes, or creating
UML classes from Java classes. The transformation types are as follows:

• UML-Java Transformation. See UML-Java Transformation.

• UML-Offline Databases Transformation. Transform a UML class diagram to an
offline database and vice versa. See UML-Offline Database Transformation.

• UML-ADF Business Components Transformation. Transform UML classes to
entity objects. See UML-ADF Business Components Transformation.

Creating, Using, and Managing Diagrams
Oracle JDeveloper provides you with a wide range of tools and diagram choices to
model your application systems. There are wizards to walk you through creating your
diagrams and elements, as well as a Components window and Properties window to
make it easy to drag and drop, and to edit a variety of elements without leaving your
editing window.

Figure 5-1 shows the diagram editor window, with a class diagram, as well as the
Applications window and Components window. Open diagrams by double-clicking

Creating, Using, and Managing Diagrams

5-2 Developing Applications with Oracle JDeveloper

them in the Applications window, and once open, drag-and-drop components onto
the diagram editor from the Components window.

Once you have created your diagram, add components to your diagram from the
Components window. Zoom in and out of your diagrams with keystroke commands
or view them at original size, or a percentage of the original size. When you are
finished, you can publish your diagram as an image or print it using the right-click
context menu or the main menu commands.

Figure 5-1 Create Class Diagram Example

Figure 5-2 Class Diagram Example Showing Component Window

Creating, Using, and Managing Diagrams

Developing Applications Using Modeling 5-3

Creating a New Diagram
The New Gallery wizard creates a diagram that is ready to contain your components.
The wizard lets you choose the diagram type, specify the package, and select the
components you want access in the Component window. Figure 5-3 shows an example
create dialog for a class diagram.

To create a new diagram:

1. In the Applications window, select your project, then choose File > New From
Gallery > General > Diagrams.

2. Select a diagram type, click OK.

3. The default package for a diagram is the default package specified in the project
settings. An empty diagram is created in the specified package in the current
project, and opened in the content area. Click OK.

Working with Diagram Elements
Diagram elements are available in the Components window from which they can be
dragged into the diagram. There are a variety of tools to help you manage your
elements visually, as well as managing the properties of your elements.

How to Locate an Element on a Diagram

Click on the element name in the Structure window. The element is selected in the
diagram. You can also use the thumbnail window of the diagram to find an element.
To display a thumbnail view of a diagram, select the diagram either in the applications
window or by clicking on the background of the diagram, then choose Window >
Thumbnail. You can grab the view area box and move it over elements on the
thumbnail view of the diagram. The corresponding elements are brought into view on
the main diagram.

How to Select Specific Elements on a Diagram

Press and hold down the Ctrl key, then click the element on the diagram.

How to Select All Elements on a Diagram

Select all elements on a diagram to perform actions on all elements at the same time,
such as align, copy, delete, or move. Click on the diagram surface, and then select any
element, and choose Edit > Select All. You can also drag out an area on the diagram
surface to select all or multiple elements.

How to Select All Elements of the Same Type

If you want to edit or manage many elements of the same type, at the same time, use
the select all option.

To select all elements of the same type:

1. Select an object of the type you want.

2. From the context menu, choose Select All This Type.

Creating, Using, and Managing Diagrams

5-4 Developing Applications with Oracle JDeveloper

How to Deselect an Element in a Group of Selected Elements

If you select a group of elements, and you want to exclude particular elements, use the
deselect option. This might be quicker than selecting the entire group one element at a
time.

To deselect a selected element in a group of selected elements:

1. Press and hold down the Ctrl key.

2. Click the element(s) on the diagram to deselect.

How to Group Elements on a Diagram

Grouping elements locks two or more elements into a purely visual container.

To form a group of elements:

1. Expand the diagram annotations accordion, if necessary. In the Components
window, click Group.

2. Position the pointer at the corner of the area on the diagram to group the elements,
then press and hold down the mouse button.

3. Drag the mouse pointer over the area.

4. Release the mouse button when the objects are entirely enclosed.

How to Manage Grouped Elements

Use the Manage Group feature to move elements in and out of groups, move elements
to other groups, or move groups in and out of other groups.

To manage grouped elements on a diagram:

1. Select the group to manage.

2. Right-click and select Manage Group.

To move elements in and out of groups by Shift+drag the element to the desired
position.

How to Change Semantic Properties

Open the Properties dialog in one of the following ways:

• Double-click an element on the diagram.

• Right-click an element on the diagram, and from its context menu, choose
Properties.

How to Change Element Properties Using the Properties window

1. Select Window > Properties. The Properties window displays both visual and
semantic properties.

2. Select the diagram element.

3. Select the property to change.

Creating, Using, and Managing Diagrams

Developing Applications Using Modeling 5-5

4. On the right of the Properties window, select the control and change the value.
(The control may be an edit box, a drop-down list, a checkbox, etcetera). If a single
element is selected all valid properties are available; it multiple elements are
selected, only the properties valid for all elements are selected.

How to Change the Element Color or Font

1. Select the element or elements on the diagram.

2. Then in the Properties window (Window >Properties), on the Graphical Options
tab, select the current color (or the box for font type), make the required change(s),
then press Enter.

Alternatively, on the tool bar, select the font type, font size, or color box, then make
the required change.

Another option is to choose Visual Properties from the context menu, then make
the required change.

How to Change the Visual Properties of New Diagram Elements

Use the Preferences dialog to define the default visual properties of any elements you
add to your diagrams.

To change the default setting of diagram elements to be added to a diagram:

1. Choose Tools > Preferences, select Diagrams, select the diagram type, and then
(from the Edit Preferences for drop-down box), select the element type to change,
as shown in Figure 5-3.The preferences might be displayed on a single panel or
multiple tabs.

2. Change the default values as you require, and click OK.

Figure 5-3 Class Diagram Preferences Dialog

Creating, Using, and Managing Diagrams

5-6 Developing Applications with Oracle JDeveloper

How to Copy Visual Properties

Use the Preferences dialog to copy preferences between elements.

To copy and paste visual properties to elements:

1. Select a diagram element.

2. Right-click and select Copy Graphical options from the context menu.

3. Select the target element(s).

4. Right-click and select Paste Graphical Options from the context menu.

How to Resize Elements on a Diagram

Resize an element by dragging the grab bars until the item is the size you want. Some
diagram elements cannot be resized, such as initial and final nodes.

Certain element types also have internal grab bars, that are displayed when an
element is selected. These internal grab bars are for resizing the compartments of those
diagram elements.

Whenever a diagram element is resized towards the visible edge of the diagram, the
diagram is automatically scrolled. New diagram pages are added where an element is
resized off the diagram surface.

To resize a diagram element:

1. Select the element to resize.

2. Position the pointer on any grab bar on the element and hold down the mouse
button. The pointer is displayed as a double-headed arrow when it is over a grab
bar.

3. Drag the grab bar until the element is resized, then release the mouse button.

How to Display Related Classes on a Diagram

Classes and interfaces related to those currently displayed on the diagram can be
brought onto the diagram. This includes classes or interfaces that are extended,
implemented, or referenced by the selected class or interface.

Choose from the following options to display related classes on a diagram:

• Select the class or interface, on the diagram, then choose Diagram > Show >
Related Elements.

• Right-click the class or interface, on the diagram, then choose Diagram > Show >
Related Elements.

How to Move Diagram Elements

Dragging elements on the diagram surface is the easiest way of moving elements. To
move elements over a larger areas, cut and paste. Whenever a diagram element is
moved towards the visible edge of the diagram, the diagram is automatically scrolled.
New diagram pages are added where an element is moved off the diagram surface.

To move diagram elements:

Creating, Using, and Managing Diagrams

Developing Applications Using Modeling 5-7

1. Select the element, or elements to move.

2. Position the pointer on the elements, then press and hold down the mouse button.

3. Drag the selected elements to their new position.

4. Release the mouse button. If an element overlaps another element they are
displayed on top of one another. Right-clicking the element and choose Bring to
Front to view.

How to Undo the Last Action on a Diagram

You can undo and redo your most recent graphical actions by choosing Edit >Undo
[...] or clicking the undo icon. Graphical actions change the appearance of elements on
the diagram surface and include the following:

• Cutting and pasting elements on diagrams.

• Altering the position and size of diagram elements.

• Changing the font, color, and line width of diagram elements.

Changes to an element's semantic properties can only be undone if the technology
(Java, for example) permits it. Changing an element's semantic properties might
prevent previous graphical changes from being undone.

To redo an action, choose Edit > Redo [...] or click the redo icon

How to Copy Elements to Another Diagram
Use the context menu or keystrokes to copy elements across different diagrams.

To copy elements from a diagram and paste them into another diagram:

1. Select the diagram elements, then choose Copy on the context menu, or choose the
Copy icon on the toolbar, or press Ctrl-C.

2. Open the destination diagram.

3. Place the pointer where you want the diagram elements to be added, then choose
Paste from the context menu (or choose the Paste icon on the toolbar, or press Ctrl-
V.

How to Rename a Diagram
Renaming changes the diagram name without leaving a copy of the original.

To rename a diagram:

1. In the Applications window, select the diagram to rename.

2. Choose File > Rename.

How to Publish a Diagram as an Image
Use the right-click context option to publish your diagram as a graphic image. You can
preview and print your diagram once it is published as an image.

To publish a diagram as an image:

Creating, Using, and Managing Diagrams

5-8 Developing Applications with Oracle JDeveloper

1. Right-click your diagram, then choose Publish Diagram.

Alternatively, click on the surface of the diagram, then choose Diagram > Publish
Diagram.

2. Select the destination folder from the table for the image file.

3. From the File type drop-down list, select the file type for the image file (SVG,
SVGZ, JPEG, or PNG).

4. In the File name box, enter a name for the image file, including the appropriate file
extension (svg, svgz, jpg, or png).

5. Click Save.

How to Setup a Page for Printing
Change from portrait to landscape or your margins for printing using page setup.

To setup the page before printing:

1. Click on the surface of the diagram you want to print, then choose File > Page
Setup.

2. Make changes to the settings on the tabs of the Page Setup dialog.

How to Set the Area of a Diagram to Print
Set a specific area of your diagram to print using set print area off the File menu
option.

To set the area of the diagram to print:

1. Choose File > Print Area > Set Print Area.

2. On the diagram, drag the mouse pointer to enclose the objects on the diagram to
print. The area to print is shown with a dashed outline. If you do not set an area,
then the whole diagram is printed.

How to See a Preview of Your Page Before Printing
To see a preview of your page go to File > Print Preview. You can also set print
options from this page by choosing Print Options. On the Print Option page you can
add header and footer content as well as text formatting.

How to Clear a Diagram Print Area
To clear a diagram print area choose File > Print Area > Clear Print Area.

How to Zoom in and Out of a Diagram
Use Ctrl+scroll to zoom in and out of diagrams. When you are using the thumbnail
view, use scroll to zoom. There are also zoom options on the diagram toolbar.

How to Display an Entire Diagram
In the zoom drop-down list, located on diagram toolbar, choose Fit to Window, or
click the diagram, then choose Diagram > Zoom > Fit to Window.

Creating, Using, and Managing Diagrams

Developing Applications Using Modeling 5-9

How to Display the Selected Elements at the Maximum Size
In the zoom drop-down list, located on the diagram toolbar, choose Zoom to Selected,
or click the diagram, then choose Diagram > Zoom > Zoom to Selected.

How to Display a Diagram in its Original Size
In the zoom drop-down list, located on the diagram toolbar, choose 100%, or click the
diagram, then choose Diagram > Zoom > 100%.

How to Delete a Diagram
Delete the diagram and related diagram elements using the menu bar.

To delete a diagram:

1. In the Applications window, select the diagram to remove.

2. Choose Edit > Delete. These commands remove the diagram file from the system
and close the editing window for that diagram. The elements for the deleted
diagram remain in the applications window and on the file system.

You can also delete a diagram from the Applications window. In the Applications
window, right-click on the diagram name and choose Delete.

Working with Diagram Layout
Diagrams can be laid out in hierarchical, symmetrical, grid, and row styles. Elements
within your diagrams can also have customized layout styles. There are many
preferences available to customize the way you diagram looks. Most preferences can
be set using the various diagram preferences dialogs at Tools > Preferences >
Diagrams (diagram type), as shown in Figure 5-4. From the general preferences dialog
you can choose Edit Preferences for to set specific preferences for new diagrams.

Figure 5-4 Class Diagram Visual Properties

How to Use a Hierarchical Diagram Layout

Hierarchical layout puts diagram elements in hierarchies based on generalization
structures and other edges with a defined direction, as show in Figure 5-5. edges
between the nodes are laid out using the most direct route. Nodes on a diagram that
are not connected to any other nodes are laid out in a grid layout. Hierarchical layout
is available in four orientations: top to bottom, bottom to top, left to right and right to
left.

Creating, Using, and Managing Diagrams

5-10 Developing Applications with Oracle JDeveloper

Figure 5-5 Hierarchical Diagram Layout Example

How to Use Layout Edges on a Diagram

Diagram edges can be laid out in either oblique or rectilinear line styles. Oblique lines
can be repositioned at any angle. Rectilinear lines are always shown as a series of right
angles.

You can set the default line style for each diagram edge using the "Line Style"
preference under Tools > Preferences > Diagrams > Class and from the Edit
Preferences dropdown, select Association, as shown in Figure 5-6.

Figure 5-6 Diagram Preferences, Edit Preferences for Line Style

You can also set the line style for all instances of that diagram type. Keep in mind that
when the line style of an individual edge is changed to oblique, and you change the
line style from rectilinear to oblique, no change will be apparent on the diagram, but
you will then be able to move any of the lines on the diagram into a new position at
any angle.

You can select individual diagram edges and change their line style. If you change an
individual line from oblique to rectilinear, the line will be redrawn using right angles.

Creating, Using, and Managing Diagrams

Developing Applications Using Modeling 5-11

If you change an individual line from rectilinear to oblique, no change will be made to
the line, but you can reposition it (or portions of it) at any angle.

You can also choose the crossing styles for your lines to be bridge or tunnel style.
Selecting bridge creates two parallel lines where the lines intersect. Selecting tunnel
creates a semi-circle shape on the intersection. The default style is a regular crossing
over of the two lines where the lines intersect.

How to Use a Symmetrical Diagram Layout

Symmetrical layout aligns diagram elements symmetrically based on the edges
between the nodes as shown in Figure 5-7. Under certain circumstances, a symmetrical
layout will position nodes in a radial layout around a central node. Nodes on a
diagram that are not connected to any other nodes are laid out in a grid layout.

Figure 5-7 Symmetrical Diagram Example

How to Use an Orthogonal Diagram Layout

Orthogonal diagrams show hierarchical and non-hierarchical elements where the
aligned edges of a component all follow the same direction, as shown in Figure 5-8.
For class diagrams, the generalization hierarchy is simply aligned, indicating the
independence of each element.

Figure 5-8 Orthogonal Diagram Layout Example

How to Use a Grid Diagram Layout

Grid layout puts the diagram elements in a grid pattern with nodes laid out in straight
lines either in rows from left to right, or in columns from top to bottom, as shown in
Figure 5-9. Nodes are laid out starting with the top left node.

Creating, Using, and Managing Diagrams

5-12 Developing Applications with Oracle JDeveloper

Figure 5-9 Grid Diagram Layout Example

How to Lay Out Diagram Elements

Layout styles are available by opening the context menu for a diagram and choosing
Lay Out Shapes, or by selecting the Diagram > Layout Shapes as shown in Figure
5-10.

Figure 5-10 Diagram Layout Options Dropdown

To layout elements on a diagram:

1. Choose one of the following:

• Select the individual elements on the diagram.

• Click the surface of the diagram to layout all the elements on a diagram.

• Select the container element to layout all the elements within a container
element.

2. On the diagram tool bar, choose the required layout style from the dropdown list,
shown in Figure 5-10.

After the selected elements have been laid out they remain selected to be moved
together to any position on the diagram.

To set the layout for new elements on a diagram, click on the diagram background and
select Visual Properties from the context menu.

To set the default layout for new elements on a diagram go to Tools > Preferences >
Diagrams.

How to Lay Out Diagrams Using the Grid

Diagram elements can be automatically snapped to the nearest grid lines, even if the
grid is not displayed on the diagram. Grid cells on the diagram are square and only

Creating, Using, and Managing Diagrams

Developing Applications Using Modeling 5-13

one value is required to change both the height and width of the grid cells. By default,
elements are not snapped to the grid on activity diagrams. To set the default diagram
grid display and behavior go to Tools > Preferences, select Diagrams. From there you
can select the Show Grid checkbox to display the grid or Snap to Grid checkbox to
snap elements to the grid. The grid does not have to be displayed for elements to be
snapped to it.

To define diagram grid display and behavior for the current diagram:

1. Click the surface of the diagram.

2. In the View > Properties window, select to Show Grid, or Snap to Grid.

How to Distribute Diagram Elements

Distributing diagram elements spatially arranges elements to specific point, such as
top, bottom, etc. When you are distributing elements, the outermost selected elements
on the vertical and horizontal axes are used as the boundaries. To fine tune the
distribution, move the outermost elements in the selection, then redistribute the
element.

To distribute diagram elements:

1. Select three or more diagram elements and choose Diagram > Distribute.

2. Select the distribution for the elements.

• Select the horizontal distribution: None, Left, Center, Spacing, or Right.

• Select the vertical distribution: None, Top, Center, Spacing, or Bottom.

3. Click OK.

How to Align Diagram Elements

Elements can be aligned vertically and horizontally. You can also change the location
of elements to have equal vertical and horizontal spacing.

To align and size elements:

1. Select two or more elements. Choose Diagram > Align.

2. Choose from the following:

• Select the horizontal alignment.

• Select the vertical alignment.

3. Use the Size Adjustments checkboxes to set the size of the selected elements:

• Select the Same Width for all the selected elements to have the same width. The
new element width is the average width of the selected element.

• Select the Same Height for all the selected elements to have the same height.
The new element height is the average height of the selected elements.

4. Click OK.

Working with Diagram Nodes
In a UML diagram a node can represent a physical device or an execution
environment. A physical device can be a single device or a configuration of multiple

Creating, Using, and Managing Diagrams

5-14 Developing Applications with Oracle JDeveloper

devices. An execution environment is a software container (such as an operating
system or an EJB). You can create nodes inside or outside elements.

How to Create a Node on a Diagram

Create a node using the Components window.

To create a node on a diagram:

1. Select the node type you want to create from those listed in the Components
window for your diagram.

2. Click the diagram where you want to create the node, or drag it from the
component palette. This adds the node at its default size.

Alternatively, click and hold down the mouse button where you want to place one
of the corners of the node and drag the node outline to the opposite node corner
and release the mouse button.

3. Enter the name for the node when the default element name is highlighted on the
new node.

How to Create Internal Nodes on a Diagram Element

Elements can be represented on a diagram as internal nodes on other diagram
elements.

Internal nodes can be used to create the following:

• Inner classes and inner interfaces.

• Relation usages.

Figure 5-11 Symbolic Diagram Class View

Figure 5-12 Expanded Diagram Class View Showing Internal Nodes

To create an internal node on a diagram element:

1. Select the node on the diagram to create an internal node.

2. Choose Diagram > View As Expanded to display an expanded view of the node.

3. Create the node for the internal node inside the expanded box, or drag the
appropriate node from the Applications window, or diagram, and drop it in the
expanded node to create an inner node.

To change the way nodes are presented on a diagram:

Select the diagram element(s) and choose one of the following:

Creating, Using, and Managing Diagrams

Developing Applications Using Modeling 5-15

• Diagram > View As > Compact.

• Diagram > View As > Symbolic.

• Diagram > View As > Expanded.

To optimize the size of nodes on a diagram:

Use the optimize feature of the right-click context menu to optimize your nodes.
Optimizing will adjust the size of the nodes so that all attributes show.

1. Select the nodes to resize.

2. Right-click the selected nodes then choose Optimize Shape Size > Height and
Width, as one option, or separately.

Working with Diagram Edges
You can hide a single edge or any number of edges on your diagrams. Edges that are
hidden on a diagram continue to show in the Structure window, with "hidden"
appended. If there are any hidden edges, you can bring them back into view
individually or all at once.

How to Hide Edges on a Diagram

To hide one or more edges:

1. Select the diagram edge to hide. (To select all edges of a particular type, right-click
an edge, then choose Select All This Type.)

2. Right-click and choose Hide Selected Shapes.

You can also go to the Structure window, select the edge or edges to hide, right-
click and choose Hide Shapes.

How to Show Hidden Edges on a Diagram

In the Structure window, select the edge to show, right-click and choose Show Hidden
Shapes.

How to Show all Hidden Edges on a Diagram

In the Structure window, select the edges to show, right-click and choose Show
Hidden Shapes.

How To List All Hidden Edges Together in the Structure Window

Right-click an object listed in the Structure window and choose Order By Visibility.

How to Change Crossing Styles on a Diagram

You can choose the crossing styles for your lines to be bridge or tunnel style. Selecting
bridge creates two parallel lines where the lines intersect. Selecting tunnel creates a
semi-circle shape on the intersection. The default style is a regular crossing over of the
two lines where the lines intersect. You can also choose no crossing style, which is the
default setting.

Annotating Your Diagrams
Notes are used for adding explanatory text to a diagram or the elements on a diagram.
A note can be attached to one or more elements. A note is stored as part of the current

Creating, Using, and Managing Diagrams

5-16 Developing Applications with Oracle JDeveloper

diagram, not as a separate file system element. Note options are available in the
Components window, as shown in Figure 5-13.

Figure 5-13 Annotations in the Components window

How to Add a Note to a Diagram

Use the Diagram Annotations feature in the Components window to add a note to
your diagram.

To add a note to a diagram:

1. Click the Note icon in the Diagram Annotations section of the Components
window.

2. To create the note at the default size, click the diagram to create the note.

To create the note at a different size, click the diagram, drag the note box to the
desired size, and release the mouse button.

3. Enter the text for the note, then click the diagram surface.

How to Attach a Note to an Element on a Diagram

The Components window Diagram Annotations feature provides an Attachment
component to attach notes to your diagram elements.

To attach a note to an element on a diagram:

1. Click the Attachment icon in the Diagram Annotations section of the Components
window.

2. Click the note.

3. Click the element that you want to attach the note to.

How to Change the Font on a Note

Change the font using the standard editing options available on the note element.

To change the font size, color, bold, or italics on a note:

1. Click the note element. The text editing box appears.

2. Select the text to edit.

3. Select your text format.

Storing Diagrams
Diagrams are stored on disk as diagram files. Diagram files reference the elements that
are displayed on the diagram and contain display information for those elements (size,

Creating, Using, and Managing Diagrams

Developing Applications Using Modeling 5-17

color, font, display of various properties etc.). Diagram files are stored in the folder for
the package in which the diagram resides, which is stored in the model path specified
in the project settings. Notes, diagram links and dependencies are also stored in the
diagram file.

To set the model path:

• Choose Application > Default Project Properties > Project Source Paths >
Modelers.

Diagram elements such as Java classes are referenced in the diagram file, but their
definition and implementation details are only stored in the implementation files for
those elements. Although the diagrammatic details for these elements (position, color,
size, etc.) are stored in the diagram file, no separate model definitions of these
elements are stored.

Using UML
The UML elements that are created independently in the New Gallery are listed in the
application window and can be dropped onto your diagrams. You can also create a
UML application, which allows you to quickly create diagrams and related
components.

UML element properties allow you to customize both display appearance (graphical
options such as color or font) or semantic properties which describe the behavior of
the element when it is deployed (attributes, display options, class relationships, and so
forth).

The general preferences dialog sets preferences for all diagrams of that type Right-
click and choose Visual Properties to edit preferences for the diagram currently in
your editing window.

Creating UML Elements Off a Diagram
Use the New Gallery to create UML elements without a pre-existing diagram.

To create UML elements off a diagram:

1. Select the project in the Applications window.

2. Select File > New. The New Gallery opens.

3. In the Categories panel, open the General node and select the UML node. The UML
elements are listed in the Items panel.

4. In the Items panel, select the UML element to create, then click OK. The properties
dialog opens for the selected UML element.

5. Complete the properties dialog, then click OK. The UML element is added to the
applications window.

Storing UML Elements Locally
UML elements are stored in individual files. Their location is dependent on the
package property of the element. These element files hold the properties defined
against the various elements, but the diagram file still defines which elements are
displayed on the diagram and the visual properties of those elements.

Using UML

5-18 Developing Applications with Oracle JDeveloper

Element files for modeled UML elements are stored in the appropriate package folder
under the folder specified in the project model path. To set the model path, choose
Application > Default Project Properties > Project Source Paths > Modelers.

Using UML Profiles
A UML Profile can be applied to a UML model to specify additional semantics.
JDeveloper includes the two UML 2.4.1 standard profiles and a profile for
transforming UML objects to Offline Database objects. It also allows other profiles to
be registered. These may be third party or user defined.

How to Create a Profile

Follow these steps to create a profile.

1. Create a new project.

2. Right-click the project and select Project Properties from the context menu. Select
the Libraries and Classpath node. Click the Add Library button on the right.

3. In the Add Library dialog, select UML 2.4.1 Metamodel and click OK.

4. Right-click the project and select New > From Gallery.

5. In the General category, select the UML node. In the Items pane, select Profile, and
click OK. The Properties editor opens.

a. Give the profile a name. The name is used to identify the profile when it is
applied.

b. Give the profile a URI. This is the namespace URI that will be used for the
XML namespace when persisting an applied profile.

c. Make sure that the profile has no owning package.

You can create both Stereotypes and Extensions as Package Elements within the
Profile, however it is easier to do this using a Profile diagram.

6. Click OK to close the Project Properties dialog.

How to Export a Profile

1. Select the project containing the profile and select File > Export.

2. Choose Export UML as XMI.

3. In the Export dialog, choose a location and select MOF 2.4.1 XMI 2.4.1 from the
version dropdown.

How to Add a Profile

To add a profile, go to Tools > Preferences > UML > Profiles. The profiles page shows
all of the current profiles (authored by you or a third party) available in the
application, as shown on Figure 5-14. Under Tool Metamodels, click Add (+). Once
you have added a profile, select it and click Edit. Specify the document URI for the
profile. The document URI is used when persisting references to elements in the
profile, in particular a profile application's reference to the profile.

Using UML

Developing Applications Using Modeling 5-19

Figure 5-14 UML Preferences Profiles Dialog

How to Apply a Profile to a UML Package

Follow these steps to apply a profile to a UML package.

1. In the Applications window right-click on the UML package and choose
Properties.

2. In the Package Properties dialog, Structure list select Profile Application. Click Add
(+) and choose a UML profile. Edit any property values and click OK.

3. In the Structure list, select Packaged Element.

Using UML

5-20 Developing Applications with Oracle JDeveloper

4. Expand a metaclass instance, choose Applied Stereotype and click Add (+) and
select a property. The properties available depend on the UML profile you are
using.

For example, expand the Class node, select Applied Stereotype, and click Add (+).
Figure 5-15 shows the Name after Transform property from the UML profile
DatabaseProfile.

Figure 5-15 Package Properties Dialog Showing Resulting Class Name for UML
Transformation

Importing and Exporting UML
UML models created using other modeling software can be imported into JDeveloper
using XML Metadata Interchange (XMI) if the models are UML 2.1.1 to 2.4.1
compliant.

The XMI specification describes how to use the metamodel to transform UML models
as XML documents.

How to Import and Export UML Models Using XMI

The following are restrictions that apply to importing:

• Diagrams cannot be imported.

• You can use XMI to import one or more files. Any profiles referenced by XMI must
first be registered with JDeveloper using Tools > Preferences > UML > Profiles.

• Each profile must be in a separate file. For more information see, Using UML
Profiles.

To import UML model from XMI:

1. With an empty project selected in the Applications window, choose File > Import.

2. Select UML from XMI, then click OK.

Using UML

Developing Applications Using Modeling 5-21

Figure 5-16 Choose UML from XMI Dialog

3. Complete the Import UML from XMI dialog. Diagrams can be automatically
created from the imported model. he dialog will offer you this option during the
process, as shown in Figure 5-17.

Figure 5-17 Import UML from XMI Dialog

How to Export UML Models as XMI

Follow these steps to export a UML model as XMI.

1. Select your project.

2. Choose File > Export.

Using UML

5-22 Developing Applications with Oracle JDeveloper

Figure 5-18 Choose UML as XMI Dialog

Figure 5-19 Export UML as XMI Dialog

Typical Error Messages When Importing

There are some typical errors and warnings that you can encounter in your XMI
Import Log during import. Many of these can be easily resolved with a few simple
steps, as detailed in Table 5-1. Double clicking on the items in the log navigates to the
problem element. Often issues arise because of incorrect namespaces and standard
object references.

As with other XML, the structure of a valid file is specified by XML schemas, which
are referenced by xmlns namespaces. The XML consists of elements that represent
objects or the values of their parent element object and attributes that are values.
Sometimes the values are references to other objects that may be represented as an
href as for HTML.

Table 5-1 Typical Error Messages When Importing

Error Type Error Detail Resolution

Missing Profile • Error(16,80): The appliedProfile
property has multiplicity [1..1]

• Error(17,70): Attempt to deference
missing element http://
example.oracle.com/MyProfile#_0

• Warning(2,356): http://
example.oracle.com/MyProfile is not a
recognized namespace

• Warning(22,142): Element urn:uuid:
2b45f92d-31c8-4f67-8898-00a2f5bbfd22
ignored

In UML there is an extension mechanism that
allows further XML schemas to be specified in a
'profile'. The messages above indicate that a
relevant profile has not been registered. To
register a profile see, Using UML Profiles.

Using UML

Developing Applications Using Modeling 5-23

Table 5-1 (Cont.) Typical Error Messages When Importing

Error Type Error Detail Resolution

Invalid XMI
Version

Error(2,360): 2.0 is incorrect version for
http://schema.omg.org/spec/XMI/2.1

This message occurs because there is a mismatch
between the xmi:version attribute and the
xmlns:xmi namespace. The xmi:version
should be 2.1

Invalid UML
Namespace

Warning(2,356): http://schema.omg.org/
spec/UML/2.1.1/Unknown is not a
recognized namespace.

This message occurs because the xmlns:uml
namespace should be http://
schema.omg.org/spec/UML/2.1.1/
uml.xml

Invalid L2
Standard
Profile
Namespace

• Error(13,80): The appliedProfile
property has multiplicity [1..1].

• Error(14,81): Attempt to deference
missing element http://
schema.omg.org/spec/UML/2.1.1/
L2Unknown#_0

• Warning(2,344): http://
schema.omg.org/spec/UML/2.1.1/
L2Unknown is not a recognized
namespace

This case is when a standard profile is already
registered with the tool. Change the XMI so that
the xmlns namespace is http://
schema.omg.org/spec/UML/2.1.1/
StandardProfileL2.xmi and the reference is
http://schema.omg.org/spec/UML/
2.1.1/StandardProfileL2.xmi#_0.

Invalid L3
Standard
Profile
Namespace

• Error(13,80): The appliedProfile
property has multiplicity [1..1].

• Error(14,81): Attempt to deference
missing element http://
schema.omg.org/spec/UML/2.1.1/
L2Unknown#_0

• Warning(2,344): http://
schema.omg.org/spec/UML/2.1.1/
L2Unknown is not a recognized
namespace

There is a second standard profile already
registered. If the profile is incorrectly referenced
the messages will be similar to the L2 Profile
Namespace. The correct namespace is http://
schema.omg.org/spec/UML/2.1.1/
StandardProfileL3.xmi and the correct
reference is http://schema.omg.org/
spec/UML/2.1.1/
StandardProfileL3.xmi#_0.

Invalid
Standard Data
Type
Reference

Error(7,75): Attempt to deference missing
element http://schema.omg.org/
spec/UML/2.1.1/Unknown#String

• http://schema.omg.org/spec/UML/
2.1.1/uml.xml#Boolean

• http://schema.omg.org/spec/UML/
2.1.1/uml.xml#Integer

• http://schema.omg.org/spec/UML/
2.1.1/uml.xml#String

• http://schema.omg.org/spec/UML/
2.1.1/uml.xml#UnlimitedNatural

Using MOF Model Libraries
MOF (Meta-Object Facility) Model Library.jar files enable UML objects from one
project to be reused by another.

UML objects can be included in a library in one of two ways:

• Using JDeveloper's own format

• Using an .xmi file supplied by a third party, where each object must have an ID
that is unique within the file.

In the latter case you could import the XMI file to convert it into JDeveloper's format.
However, this does not preserve object identifiers, which might be necessary if you

Using UML

5-24 Developing Applications with Oracle JDeveloper

want to be able to export your own models with standardized references to the library
objects.

You might find it useful to reference the model libraries found in the JDeveloper
installation:

• .../oracle/jdeveloper/jdev/extensions/oracle.uml.v2

The two ZIP files in this directory use catalogs.

• .../oracle/jdeveloper/jdev/extensions/
oracle.jdeveloper.db.modeler.transform

The transform ZIP uses the JDeveloper format.

How to Create an XMI Catalog File

When library objects only have IDs, references to them include the URL of their
containing file. By default this is the physical location on disk, which might be
machine specific. Instead an alias should be specified for the file in the form of
an .xml Catalog file.

Use text editor to create a.xmi file with the following information:

<?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE catalog PUBLIC "-//OASIS//DTD XML
Catalogs V1.1//EN" "http://www.oasis-open.org/committees/entity/release/1.1/
catalog.dtd"><catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"> <uri
name="http://example.oracle.com/MyLibrary.xmi" uri="MyLibrary.xmi"/> <uri
name="http://example.oracle.com/MyLibraryAlias.xmi" uri="http://example.oracle.com/
MyLibrary.xmi"/></catalog>

The first URI element maps a standard name to the library file, which is specified
relative to the location of the catalog in the library. There should be one of these
entries for each .xmi file. Optionally, further URI elements such as the second element
above, can be used to specify additional aliases for the standard name. This can be
useful if there are multiple versions of the library.

Note that only the above URI element from the OASIS XML Catalog specification is
supported.

Create a MOF Model JAR File

To create a MOF model JAR file:

1. Right-click the project that contains the model and choose Properties. In the
Project Properties dialog, choose Libraries and Classpath.

Click Add Library or Add JAR/Directory to add any .xmi and catalog .xml files
to your project's model path. Click OK.

2. Choose File > New > From Gallery. From the General category, select
Deployment Profiles. Choose the MOF Model Library item and click OK.

a. Specify the name of your deployment profile and click OK. The MOF Model
Library dialog opens with JAR Options selected on the left.

b. In the JAR options area, browse to the location of your JAR file and complete
the dialog. Click OK. You return to the Project Properties Deployment page.

3. In the Deployment Profiles area, double-click the name of your MOF Model
Library. Select Library Options in the panel on the left.

Using UML

Developing Applications Using Modeling 5-25

• Enter a name in the Library Name field. It does not have to be the same as the
deployment profile name.

• If you have a catalog file, fill in the MOF Catalog Entry field to specify the
catalog location within the JAR file. You can check the file groups to see what
will be included in the JAR file.

• Click OK.

4. To deploy your changes to the JAR you have just created, right-click the project
and choose Deploy > MyMOFLibrary.

Add a MOF Model Library

To add a MOF model library

If you want to add a library to your project add the source path for your MOF Model
Library as detailed here. If you redeploy, you can update the JAR with any new
changes you make.

1. Select your project and choose Tools >Manage Libraries. Select the Libraries tab
and click the New... button.

2. In the Library Name field supply your MOF model library name.

3. Add the root model folders of the JAR to the source path. Right-click the project
and choose Properties. Select the Project Source Paths node and in the Java Source
Paths area on the right, click the Add button and browse to the library path, and
click OK.

Use a MOF Model Library

To use a MOF model library

1. Create a new project or select an existing project.

2. View the project properties and choose the Libraries and Classpath node.

3. Click Add Library and browse to the location of your MOF model library.

4. Click OK.

Using Transformations
JDeveloper supports UML transformations on your database tables, Java classes, and
interfaces.

You can perform transformations multiple times using the same source and target
models. There are also some reverse transformations to UML from Java classes.

To perform a transformation:

• Select UML objects or elements, database tables, or a Java class.

• From the main menu select Diagram > Transform (the Diagram menu is only
visible when a suitable element is selected).

• Select a transformation type. See Transformation Types.

Using Transformations

5-26 Developing Applications with Oracle JDeveloper

Transformation Types
Once you start the transformation you must choose one of three transformation types:

• – Model Only. Creates the definitions of the transformed elements, but does not
add them to a diagram. The model is created, then displayed in the Applications
window in the current project.

– Same Diagram. Creates transformed elements in the current diagram. The
created model can be viewed in:

◆ The Applications window.

◆ The UML Class diagram. If the conversion is from a database, it will be
visible as modeled tables and constraints.

– New Diagram. Creates a new diagram for the transformed elements. If this is a
database, the new class diagram will have classes for each transformed database
table.

UML-Java Transformation
You can use the UML modeling tools to create a UML Class model, and then
transform it to Java, or vice-versa.

Transform UML to Java

1. Select the UML elements to transform.

2. Select the transformation type, as described in Transformation Types.

3. Click OK, as shown in Figure 5-20.

Figure 5-20 Transform Dialog Showing UML Options

Transform Java to UML

1. Select the Java Element to transform and select Transform from the context menu.

2. Select the transformation type, as described in Transformation Types.

3. Click OK, as show in Figure 5-21.

Using Transformations

Developing Applications Using Modeling 5-27

Figure 5-21 Transform Dialog Showing Java to UML Options

UML-Offline Database Transformation
You can use the UML modeling tools to create a UML Class model, and then
transform it to Java, or an offline database.

Transform an Offline Database Diagram to UML

1. Select the offline database object or objects you want to transform.

2. Right-click and choose Transform.

3. Select the transformation type, as described in Transformation Types.

4. The Transform dialog appears as shown in Figure 5-22. Select Offline Database
Objects to UML.

5. Click OK.

Figure 5-22 Transformation Dialog Showing Offline Database to UML Dialog
Option

Transform UML to Offline Database Objects

1. In the Applications window, select the project containing the UML classes to
transform.

Using Transformations

5-28 Developing Applications with Oracle JDeveloper

2. Choose File > New > From Gallery.

3. Expand the Database Tier and choose Offline Database Objects.

4. From the items list, choose Offline Database Objects from UML Class Model and
click OK.

The Offline Database Objects from UML Class Model wizard opens.

When you invoke the wizard from the New Gallery, the offline database objects
created during the transformation process are only available in the Applications
window.

5. Specify settings.

• Default. Resets the settings in Table 5-2 to default values.

• Previous Transformation. When you have previously run the wizard in this
session of JDeveloper you can select this option to use the last set of transform
settings.

• Previously saved file. Select to use transform settings saved to a file. See
Transformation Settings, and Table 5-2.

6. Specify source. Expand the folders on the left, select the elements to be
transformed for the database model and use the > arrow to move them to the
Selected list. See Figure 5-23.

Figure 5-23 Create Offline Database from UML Class Model Example

7. Specify Target. Specify the target database and its schema. Click Help for an
explanation of each option.

8. Set Naming Options. Select the UML name conversion formats.

Using Transformations

Developing Applications Using Modeling 5-29

9. Set Hierarchy Options. Specify the transformation rule and enable/disable
creation of an intersection table. Click Help for an explanation of each option, and
see Set Hierarchy Options, for a detailed discussion.

10. Set Logging Options. Select the messages to be logged.

11. Inspect a preview. The final page of the wizard gives you the opportunity to view
the database model, and to save the transformation settings to a file. See Table 5-2.

12. Click Finish. The offline database objects are created and displayed in the
Applications window. The transformation settings are saved (if you have enabled
that option).

Transform UML Classes on a Diagram to an Offline Database

1. Open the diagram to transform.

2. Select the elements to transform. Right-click and choose Transform.

3. Select the transformation type, as described in Transformation Types.

Figure 5-24 Transform Dialog Showing

4. Choose UML to Offline Database.

5. The transform wizard opens and you can select the options for the transformation,
similar to Transform UML to Offline Database Objects, steps 5 through 12.

Set Hierarchy Options

There are four types of generalization to specify on the Set Hierarchy Options page on
the Create Offline Database Objects from UML Class Model wizard.

The options are:

• Transform root classes

• Transform leaf classes

• Transform all classes, with generalization

• Transform all classes, creating foreign keys

Consider the case of two root classes and three leaf classes, as shown in Figure 5-25.

Using Transformations

5-30 Developing Applications with Oracle JDeveloper

Figure 5-25 Diagram Showing Two Root and Three Leaf Classes

If you select the option Transform Root Classes, root classes are transformed into
offline tables, and all the attributes and foreign keys from their descendant classes in
the hierarchy are also transformed as shown in Figure 5-26. You also have an option of
creating a discriminator column. The discriminator column contains marker values for
the persistence layer to decipher what subclass to instantiate for a particular row.

Figure 5-26 Transformed Root Classes

If you select the option Transform leaf classes, leaf classes are transformed into offline
tables, and they inherit their columns and foreign keys from their ancestor classes, as
shown in Figure 5-27.

Figure 5-27 Leaf Classes Transformed Inheriting From Generalized Classes

If you select the option Transform all classes, with inheritance, an offline table is
created for every class in the transform set. Each table inherits columns and foreign

Using Transformations

Developing Applications Using Modeling 5-31

keys from its ancestor tables but is otherwise independent, as shown in example
Figure 5-28.

Figure 5-28 All Classes Transformed, Inheriting from Generalized Classes

If you select the Transform all classes, creating foreign keys option to generalized
classes, an offline table is created for every class in the transform set. No columns or
foreign keys are inherited; a foreign key is created to the parent table or tables, as
shown in Figure 5-29.

Figure 5-29 All Classes Transformed with Foreign Keys

Transformation Settings

Table 5-2 shows the information that can be saved when you choose the Save
Transform Settings to File option on the final page of the Create Offline Database

Using Transformations

5-32 Developing Applications with Oracle JDeveloper

Objects from UML Class Model wizard. See Step 12 in Transform UML to Offline
Database Objects.

Table 5-2 Transform Settings That Can Be Saved

Transform Settings Page in Wizard and Notes

Target project and offline
database

Specify Target. Specify where to transform the UML objects to.

Offline schema Specify Target. The schema to transform the objects into.

Note that if you select Choose Schema and specify a schema
which does not exist it will be created. If you transform once to
a new schema, rename the schema then transform again
reusing the same settings the old schema is recreated and the
transformed objects will be created there.

UML name conversions Set Naming Options. Specify the rule for capitalizing and
pluralizing UML names.

Invert role names Set Naming Options. Specify whether to use the role names at
the adjacent or opposite ends of a UML association when
creating foreign key columns.

Add comment option Set Naming Options. Specifies whether the new offline
database objects should have comments explaining how they
were created.

Hierarchy options Set Hierarchy Options. Determines how classes in a hierarchy
should inherit attributes and associations when they are
transformed into tables.

Many-to-many associations Set Hierarchy Options. Specifies whether to create intersection
tables for many-to-many associations.

Log messages Set Logging Options. Specifies type of messages to log (Error,
Warning, Information, Create and Progress).

Reuse Transform Settings

1. In the Applications window, select a class and from the context menu, select New >
Database Objects from UML Class Model.

2. On the Specify Settings page, you can specify the transformation settings as
discussed in Transform UML to Offline Database Objects, Step 5. If you make a
change on the Settings page, and continue using the wizard, you can use the Back
button to return to the Specify Settings page. In this case you will see the Reapply
Settings option, which you can choose to change the initial settings for this wizard.

Using DatabaseProfile for UML Transformations

JDeveloper comes with a UML profile called DatabaseProfile which determines how
class models are transformed to offline database models. For more information about
UML profiles, see Using UML Profiles.

DatabaseProfile contains stereotype properties that control how elements are
transformed. The stereotypes and their properties in this profile are described in Table
5-3.

Using Transformations

Developing Applications Using Modeling 5-33

Table 5-3 Stereotypes and Properties in DatabaseProfile

Stereotype Applied to Offline
Database
Type

Properties Notes

Database
Package

UML::Package SCHEMA Name after transform

Database
Class

UML::Class TABLE Name after transform

Database
Attribute

UML::Property COLUMN Datatypes, Primary A UML Property can be an
attribute or an association end.

Database
Datatype

UML::Type n/a Datatype In the metamodel, Type is the
superclass for a large range of
elements, including, Class,
Association, PrimitiveType and so
on. This stereotype can be applied
to all of them. It can be read by the
transformer whenever a property
(attribute) is of a certain type.

Database
Constraint

UML::Constraint CONSTRAIN
T

Name after
transform, Body

Creates a check constraint against
the transformed table.

Database
Association

UML::
Association

CONSTRAIN
T

Foreign Key naming
rule

Database
Generalizatio
n

UML::
Generalization

CONSTRAIN
T

Foreign Key naming
rule

Certain transforms create foreign
keys out of generalizations and this
stereotype can apply here.

The attributes, or properties, are described in Table 5-4.

Table 5-4 Properties of Stereotypes in DatabaseProfile

Property Description Type

Name after
transform

The name of the transformed database object. If blank, default naming
rules are applied.

String

Body The SQL code for the check constraint. String

Datatype SQL text of the datatype.

There are a number of datatypes, including default, ansi, Oracle, and other
supported database types.

String

Foreign
key
naming
rule

The rule to use when naming a foreign key from an association: use the
UML name, use the databaseName property, or derive a default name
from the table names.

Both Tables Database
Name Owning Name
UML Name

Primary Flag to indicate that transformed column is part of the primary key for the
parent table.

Boolean

Using Transformations

5-34 Developing Applications with Oracle JDeveloper

Use DatabaseProfile to Transform a Class Model

You can transform a class model using DatabaseProfile.

1. In the application window, right-click on a UML package (package.uml_pck)
and choose Properties.

2. In the Package properties Structure pane, select Profile Application and click Add
(+).

3. Select DatabaseProfile from the list of available profiles, as shown in Figure
5-30. Click OK. A new file DatabaseProfile.uml_pa is now listed in the
Applications window, as shown in Figure 5-31.

Figure 5-30 Package Properties Database Profile

Figure 5-31 Profile Application Properties

4. Now you can apply stereotypes to the various elements in the project. In the
example shown in Figure 5-31, you apply stereotypes to the Employee class by
right-clicking Employee.uml_cla and choosing Properties. This opens the Class
Properties dialog for that element.

Using Transformations

Developing Applications Using Modeling 5-35

To specify the name to use after transformation, select Applied Stereotype, click
Add, and choose Database Class. Under Properties, enter a value next to Name
after Transform, as shown in Figure 5-15.

5. Once you have set the stereotypes to apply, proceed to transform the UML Class
model following the steps in UML-Offline Database Transformation. The
stereotypes and properties in DatabaseProfile you set are applied during
transformation. See Table 5-2.

You can apply stereotypes to other elements as well. For example, you can specify
datatypes and a primary key to attributes owned by a particular class. In the same
Class Properties dialog, expand Owned Attribute. and select an existing attribute, or
create one by clicking Add and entering a name for it.Expand the node for the owned
attribute, select Applied Stereotype and click Add. Figure 5-32 shows that at this level
you can specify a number of datatypes, whether the attribute should be transformed to
a primary key, and the name after transform.

Figure 5-32 Database Attributes for Applied Stereotypes

For information about the stereotypes and properties covered by DatabaseProfile, see
Table 5-3 and Table 5-4.

Logging Options

1. Select a class diagram and from the context menu, select New > Offline Database
Objects from UML Class Model. The wizard opens.

2. On the Set Logging Options page, choose the type of actions you want logged.

UML-ADF Business Components Transformation
If you have a UML class diagram it can be transformed to ADF Business Components
using much the same process described in UML-Offline Database Transformation.

1. In the Applications window, select the project containing the UML classes to
transform.

2. Right click on the class to be transformed and select Transform from the context
menu.

3. Select the transformation type, as described in Transformation Types.

4. You are prompted to create a database to contain the transformed components.
After the database connection the creation of the ADF Business component

Using Transformations

5-36 Developing Applications with Oracle JDeveloper

proceeds in the same manner as the creation of a new ADF Business component
diagram.

Modeling with UML Class Diagrams
In UML class diagrams classes are represented as rectangles containing class name
and details. On the diagram, classes and interfaces are divided into compartments,
with each compartment containing only one type of information, as shown in Figure
5-34. The possible elements are listed in Table 5-5. Classes can be displayed as
compact, symbolic or expanded nodes.

Figure 5-33 UML Class Diagram with Elements

Table 5-5 Elements in Class Diagram

Elements Description

* to * Association Defines a many‐to‐many relationship between UML classes.

1 to * Association Defines a one‐to‐many relationship between UML classes.

1 to * Association Class Defines a non-directed one‐to‐many association class.

Class Represents an object. Classes form the main building blocks of
an object-oriented application. Represented on the diagram as a
rectangle containing three compartments stacked vertically.

Constraint Constraints are the degree of freedom, or lack thereof that you
have in modeling a system behavior, or solution.

Constraint Attachment Attaches constraints to other UML elements.

Data Type Data types are modeled elements that define your data values.

Modeling with UML Class Diagrams

Developing Applications Using Modeling 5-37

Table 5-5 (Cont.) Elements in Class Diagram

Elements Description

Directed 1 to * Association Directed One to Many Association is represented on the
diagram as a solid line with an open arrowhead in the direction
of more than one association.

Directed 1 to 1 Association Directed One to One Association is represented on the diagram
as a solid line with an open arrowhead in the direction of the
association.

Directed Composite
Aggregation

Represented on the diagram as a solid line with an open
arrowhead in the direction of the association and a filled
diamond shape at the originating end of the association.

Enumeration Enumerations are data types with a finite, and normally small,
set of named literals. Enumerations contain sets of named
identifiers that are its values.

Generalization Defines generalization relationships between classifiers.
Represented on the diagram as a solid line with an empty
arrowhead pointing towards the specialized classifier or
interface.

Interface Interfaces are represented with a keyword in the name
compartment: «interface». Interfaces can be displayed as
compact, symbolic, or expanded nodes. Nested classes and
interfaces can be modeled inside standard and expanded
interfaces.

Package Use to divide a system into multiple packages, which can
simplify and make the system easier to understand.

Primitive Type Primitive types or data types are data types such as boolean,
byte, decimal, DateTime, Double Float, and Time.

Realization Defines where an interface is realized by a class. Represented
on the diagram as a dashed line with an empty arrowhead
pointing towards the implemented interface.

Creating a UML Class Diagram
Follow these steps to create a UML class diagram:

1. Right-click the project and select New > From Gallery.

2. In the General category, select the UML node. In the Items pane, select Class
Diagram, and click OK.

a. Give the diagram a name that is unique within this package.

b. Select or browse to the owning package for this diagram.

3. Click OK.

Figure 5-34 shows an example of a typical class diagram layout. All attributes and
operations display symbols to represent their visibility. The visibility symbols are: +
Public, - Private, # Protected, and ~ Package.

Modeling with UML Class Diagrams

5-38 Developing Applications with Oracle JDeveloper

To set the diagram display properties go to Tools > Preferences > Diagrams > Class
and choose Diagram.

You can also change the way elements are represented on a diagram. An ellipsis (...) is
displayed in each compartment when not large enough to display its entire contents.
To display all the attributes of a modeled class, right-click the class and choose
Optimize Shape Height.

Working with the Class Diagram Features
The components window contains the elements available for your class diagram, as
shown in Figure 5-35 and described in Table 5-5.

Create classes and interfaces by dragging the class onto the diagram. The element is
created in the location specified by the model path in your project settings and default
properties. (Application > Default Project Properties). You can also model packages by
clicking on the package. If you right-click a modeled package and choose Drill Down,
a diagram is displayed for that package.

Class properties are added to modeled classes and interfaces on a diagram by doing
one of the following:

• Double-click the modeled class or interface to access the properties dialog.

• Right-click the class or interface and choose Properties.

Figure 5-34 Class Diagram Components window

How to Create Classifiers, Constraints, and Packages

You can create classifiers, constraints and packages in the same way you create
diagram nodes, as discussed in Working with Diagram Nodes. except choose Class
from the Components window dropdown. The new object is created in a package that
matches the folder in which the diagram is contained.

Modeling with UML Class Diagrams

Developing Applications Using Modeling 5-39

How to Create Attributes

There are several ways to create an attribute:

• Double-click the modeled class or interface, then add the attribute using the
element property dialog.

• Right-click the class or interface and choose Properties, then add the attribute
using the element property dialog.

• Drag an existing attribute from one class or interface on a diagram to another class
or interface on the same diagram.

To arbitrarily change the order of an attribute within a class, disable the Sort
Alphabetically option and drag the attribute up or down on the screen. Select Tools >
Preferences, open the Diagrams node and choose Class. From the Edit Preferences
for: dropdown, select Class or Interface. Click the Attributes or Operations tab and
deselect Sort Alphabetically).

How to Add Nested Classes and Nested Interfaces

Nested classes and nested interfaces are created either by creating them in the
modeled class or interface using in-place create (with symbolic presentation only) and
by changing shape display preferences, or by right-clicking the class and choosing
View As > Expanded then creating another class inside the expanded node.

How to Add Attributes and Operations

Attributes and operations are added to modeled classes and interfaces by doing any of
the following:

• Double-click the modeled class or interface, then add the attribute or operation
using the element property dialog.

• Right-click the class or interface and choose Properties, then add the attribute or
operation using the element property dialog.

• Drag an existing attribute or operation from one class or interface on a diagram to
another class or interface on the same diagram.

The order of an attribute or operation within a class or interface is changed by
dragging it up or down on the screen. The Sort Alphabetically property for
attributes or operations must be deselected: (Tools >Preferences > Diagrams >
Class > Edit Preferences for: Class or Interface | Attributes or Operations | Sort
Alphabetically).

How to Hide Attributes and Operations

Use the right-click context menu to hide or show attributes and operations elements
on your diagram.

To hide one or more attributes or operations:

1. Select the attributes or operations to hide.

2. Right-click the selected items and choose Hide > Selected Shapes. To show
attributes or operations choose Show All Hidden Members.

Modeling with UML Class Diagrams

5-40 Developing Applications with Oracle JDeveloper

How to Add Generalizations, Realizations, and Associations

Generalized structures are created on a diagram of classes by using the Generalization
icon on the Class Components window.

Where an interface is realized by a class, model it using the Realization icon on the
Class Components window for the diagram.

A variety of associations can be created between modeled classes and interfaces using
the association icons. Associations are modified by double-clicking the modeled
association and changing its properties.

Modeling with Activity Diagrams
Use activity diagrams to model your business processes. Your business processes are
coordinated tasks that achieve your business goals such as order processing, shipping,
checkout and payment processing flows.

Activity diagrams capture the behavior of a system, showing the coordinated
execution of actions, as shown in Figure 5-36.

Figure 5-35 Sample Activity Diagram Showing Elements

Working with the Activity Diagram Features
The Components window contains the elements available for your activity diagram.
An Activity is the only element that you can place directly on the diagram. You can
place the other elements inside an Activity. Each of the elements is represented by
unique icons as well as descriptive labels, as shown in Figure 5-37 and Table 5-6.

Modeling with Activity Diagrams

Developing Applications Using Modeling 5-41

Figure 5-36 Components window for Activity Diagram

Table 5-6 Activity Diagram Elements

Element Description

Action An action is the fundamental unit of behavior specification, for
example, Send Invoice or Receive Payment. It represents a
single step within an activity. An action takes a set of inputs
and converts them into a set of outputs. The execution of an
action represents some transformation or processing in the
modeled system.

An action may receive inputs in the form of control flows and
object flows (the latter via input pins) and passes the results of
its processing or transformations to outgoing control flows or
object flows (the latter via output pins) and onto downstream
nodes. Execution of the action cannot begin until all its
prerequisites are satisfied.

Activity A behavior performed by a system, for example a business
process. An activity is a behavior defined by its owned actions,
object nodes and the flows between them.

Activity Final Node Terminates the execution of the activity when it first receives a
control token. There can be multiple final nodes in an activity.
An Activity Final Node indicates that every action on this
diagram has finished.

Fork/Join Displayed as a vertical or horizontal bar. A Fork is a control
node that has a single incoming flow and two or more outgoing
flows. A Join is a control node that synchronizes a number of
incoming flows into a single outgoing flow. Fork/Join pairs can
be combined as a single diagram node.

Call Behavior Action Maps the action inputs and outputs are simply mapped to the
behavior parameters as appropriate.

Call Operation Action Transmits an operation call request to the target object, where it
may cause the invocation of associated behavior. The behavior
results become the action outputs. The argument values of the
action are available to the execution of the invoked behavior.

Modeling with Activity Diagrams

5-42 Developing Applications with Oracle JDeveloper

Table 5-6 (Cont.) Activity Diagram Elements

Element Description

Central Buffer A type of object node. It gives the node the capability of storing
(buffering) tokens. It manages the tokens that arrive at
incoming flows from one or more object nodes and selects
which tokens and in what order these tokens will be presented
to the downstream object nodes via the outgoing flows.

Control Flow Shows the flow of control tokens.

Data Store A type of object node that passes a buffer for non-transient
data.

Flow Final Node Terminates any incoming flow without terminating the
execution of the entire activity.

Initial Node The starting point for executing an activity. It has no incoming
flows and one or more outgoing flows. There can be only one
initial state on a diagram.

Object Flow Connects object nodes. Object flows can be connected to actions
using pins.

Merge Node A merge node has two or more incoming flows and a single
outgoing flow. A Decision has one incoming flow and two or
more outgoing flows

How to Create an Activity Diagram

Use the New Gallery wizard to create your activity diagram following the steps in
Creating a New Diagram.

How to Create Initial and Final Nodes

To create nodes, click the Initial Node icon, the Activity Final Node icon, or Final
Flow Node icon in the Component window, then click on the diagram where you
want to place the node.

How to Show Partitions

You create partitions on a diagram by selecting an action, then selecting Show
Activity Partition under Display Options in the Properties window.

To show a partition on an activity diagram:

1. In the activity diagram, select an action.

2. In the Properties window, expand the Display Options node.

3. Select Show Activity Partition. The action on the diagram displays the text, (No
Partition).

4. Click on the text. An editing box appears where you can enter a name for the
partition.

Modeling with Activity Diagrams

Developing Applications Using Modeling 5-43

Modeling with Sequence Diagrams
The sequence diagram describes the interactions among class instances. These
interactions are modeled as exchanges of messages. At the core of a sequence diagram
are class instances and the messages exchanged between them to show a behavior
pattern, as shown in Figure 5-38.

Figure 5-37 Typical Sequence Diagram Example

Working with the Sequence Diagram Features
The elements you add from the Components window are laid out in a default position
on your sequence diagram. Lifelines are aligned vertically, unless they are related to
another Lifeline, in which case they are aligned with the create message. Synchronous
and asynchronous calls and are placed in time order down the page.

Figure 5-39 displays the elements in the Components window available to use in your
sequence diagram. Each element is represented by a unique icon as well as a
descriptive label.

Modeling with Sequence Diagrams

5-44 Developing Applications with Oracle JDeveloper

Figure 5-38 Sequence Diagram Components window

Table 5-7 Sequence Diagram Elements

Element Description

Asynchronous Call Represented on a diagram by a diagonal line with an open
arrowhead. An asynchronous call is one for which the sender
does not have to wait for a response before continuing with
processing.

Creation Message Represented on a diagram by the shifting down, relative to the
originating object, of the rectangle and dashed line that
represents the object to be created. A creation message is a
message that leads to the creation of an object

Interaction Captures the behavior of a single case by showing the
interaction of the objects in the system to accomplish the task.

Message A message is a model element that defines a specific kind of
communication between participants in an interaction. A
message conveys information from one participant, which is
represented by a lifeline, to another participant in an
interaction.

Lifeline Represented on a diagram by a rectangular box with a vertical
dashed line descending beneath it. A Lifeline represents the
existence of an object over a period of time

Return A return message is a message that returns from an object to
which a message was previously sent. Return messages are
valid only from synchronous calls, and are themselves
synchronous.

Stop or Destroy Message Represented on a diagram by showing the execution
specification at the end of the message with a large cross
through it. A stop message is a message that leads to the
deletion of an object (or to the indication that an object is no
longer needed).

How to Add and Create a Sequence Diagram

Use the New Gallery wizard to create your activity diagram following the steps in
Creating a New Diagram.

Modeling with Sequence Diagrams

Developing Applications Using Modeling 5-45

How to Start a Sequence Tracer

On any part of the sequence diagram, open the context menu and choose Trace
Sequence. The tracer steps through each of the execution specifications and messages,
highlighting each one.

Note:

Trace Sequence is available for a selected Interaction. It does not appear in the
context menu for the diagram.

How to Automatically Layout Elements in an Interaction

You can right-click an Interaction and choose Sequence, then Automatic Layout to
autolayout the elements within the Interaction.

How to Add Lifelines and Classifiers

You add Lifelines to a sequence diagram by first adding an interaction then clicking
on the Lifeline icon, and then clicking on the interaction. An edit box opens for you to
enter an instance name for the object. This can be left blank for anonymous instances.

You can add a classifier by right-clicking on the Lifeline and choosing Attach
Classifier, which opens a list of elements from which you choose the one you want
associated with the Lifeline. Another way to attach a classifier is to drag the classifying
object from the databases window onto the Lifeline. These methods are confirmed by
the appearance (in the top left of the Lifeline) of an icon representing the classifying
element.

How to Create a Synch Call

You add a synchronous call by clicking on the Message icon, then clicking on the
vertical dashed line or execution specification that is the starting point for the message,
and then on the vertical dashed line that is the destination of the message.

Open an editing box for the text by clicking on the message line and then clicking
inside the gray box that appears.

The starting point and destination point of a synchronous call can be the same Lifeline,
in which case you have created a self call.

Synch calls are depicted on the sequence diagram by solid lines with filled
arrowheads.

How to Work With Execution Specifications

Merge execution specifications by overlapping them on the diagram. Then right-click
and choose Merge Overlapping Occurrences.

You can move an execution specification (and the messages attached to it) to a position
higher or lower than its original one. In some cases this will result in an invalid
diagram. When this happens, the message line will turn red and the destination object
will contain an arrow icon which indicates the direction the object should be moved, to
make the diagram valid.

To resize an execution specification box, drag the small black box that appears on the
lower edge when you select it. An execution specification will be resized if you drag a
message line extending from it.

Modeling with Sequence Diagrams

5-46 Developing Applications with Oracle JDeveloper

How to Add a Create Message

Add a creation message by clicking on the Creation Message icon, then on the
originating object, then on the object to create. The rectangle and dashed line that
represents the object is shifted down the page relative to the originating object.

If the object to be created is not already on the diagram, click within the interaction
that contains the originating object to create an Lifeline representing the object. By
default, a creation message is given the name "create". You can open an edit box for
the message name by clicking on the message line and then clicking inside the gray
box that appears.

How to Create a Delete Message

Before you add a stop or destroy message, you must already have added an Lifeline
for the object that the message deletes.

Add a stop or destroy message by clicking on the Stop or Destroy Message icon, then
on the originating object, then on the lifeline to delete. If you start and end the stop
message on the same object, you will create a self-deleting object. The execution
specification at the end of a stop message is shown with a large cross through it. You
can open an edit box for the message name (for example, close) by clicking on the
message line and then clicking inside the gray box that appears.

How to Create a Reply Message

Add a return message by clicking on the Return icon, then on an end execution
specification, then on the corresponding start execution specification. You will not be
able to end this return message line on any other object. The return message is
depicted by a dashed line with a filled arrowhead. You can open an edit box for the
text of the message by clicking on the message line and then clicking inside the gray
box that appears.

How to Create an Async Call

Add an asynchronous call (and the execution specifications at each end) by clicking on
the Async Message icon, then clicking on the vertical dashed line or execution
specification that is the starting point for the message, then on the vertical dashed line
that is the destination of the message. You can open an edit box for the text of the
message by clicking on the message line and then clicking inside the gray box that
appears.

The starting point and destination point of an asynchronous call can be the same
Lifeline, in which case you have created a self call.

Asynchronous calls are depicted on the sequence diagram using diagonal lines and
open arrowheads.

Using Combined Fragments

A combined fragment defines an expression of an interaction defined by an interaction
operator and corresponding interaction operands. A Combined Fragment reflects a
piece or pieces of interaction (called interaction operands) controlled by an interaction
operator, whose corresponding boolean conditions are known as interaction
constraints. It displays as a transparent window, divided by horizontal dashed lines
for each operand.

Figure 5-40 shows a loop fragment that iterates through purchase items, after the
cashier requests payment. At this point, two payment options are considered and an

Modeling with Sequence Diagrams

Developing Applications Using Modeling 5-47

alternative fragment is created, divided to show the two operands: cash and credit
card. After the fragment completes its trace, the cashier gives a receipt to the customer,
under the fulfilled condition of payment requirements met.

Figure 5-39 Typical Sequence Diagram with Combined Fragments

Figure 5-41 shows the combined fragments that display in the Components window
when your diagram is open in the diagramming window.

Modeling with Sequence Diagrams

5-48 Developing Applications with Oracle JDeveloper

Figure 5-40 Combined Fragments in Components window

Table 5-8 Combined Fragments Interaction Operators

Interaction Operator Description

alt Use to divide up interaction fragments based on Boolean conditions.

assert Use to specify the only valid fragment to occur.

Break Use to designate that the combined fragment represents a breaking
scenario in the sense that the operand is a scenario that is performed
instead of the remainder of the enclosing interaction fragment.

Critical Use to indicate a sequence that cannot be interrupted by other
processing.

Loop Use to indicate that the operand repeats a number of times, as
specified by interaction constraints.

Neg Use to assert that a fragment is invalid, and implies that all other
interaction is valid.

Opt Use to enclose an optional fragment of interaction.

Par Indicate that operands operate in parallel.

Seq Use to indicate that the combined fragment is weakly sequenced. This
means that the ordering within operands is maintained, but the
ordering between operands is undefined, so long as an occurrence
specification of the first operand precedes that of the second operand,
if the occurrence specifications are on the same lifeline.

Strict Use to indicate that the behaviors of the operands must be processed
in strict sequence.

On your sequence diagram interactions you will see combined fragment lock icons.
Locking and unlocking an interaction allows you to keep the combined fragment
behavior within that interaction on that diagram, or extend its reach to other
interactions and other diagrams.

Modeling with Sequence Diagrams

Developing Applications Using Modeling 5-49

Modeling with Use Case Diagrams
Use case diagrams capture the requirements of your system, as shown in Figure 5-42.

Figure 5-41 Typical Use Case Diagram

Working with the Use Case Diagram Features
Use case diagrams express the declared behaviors of your system and how systems
and entities interact with it according to subject and actor use cases.

Figure 5-42 displays the Components window with the elements available to add to
your use case diagram. Each element is represented by a unique icon and descriptive
label.

Modeling with Use Case Diagrams

5-50 Developing Applications with Oracle JDeveloper

Figure 5-42 Use Case Elements in the Components window

Table 5-9 Use Case Elements

Component Description

Actor Represents an abstract role within a system.

Communication Identifies where an actor is associated with a particular use
case.

Dependency Shows a relationship between one element and another.

Extend Shows a target use case extends the definition of a source use
case.

Generalization Identifies where one or more elements specialize another
element. For example, an actor Team Member could be
specialized to actors Manager and Developer.

Include Shows a relationship in a use case that includes another use
case.

Subject Two types of subjects are available. One system usually
contains sets of use cases and actors that comprise the whole
system being modeled. The second type usually contains
groups of use cases that comprise a coherent part of the system
being developed.

Use Case Indicates that one element requires another to perform some
interaction.

Getting A Closer Look at the Use Case Diagram Elements

You can determine the appearance and other attributes for subject, actor and other
objects of these types by modifying the properties in the Properties window, or by
right-clicking the object and modifying the properties.

Modeling with Use Case Diagrams

Developing Applications Using Modeling 5-51

Figure 5-43 Use Case Subject, Actor and object Example

How to Add a Subject to a Use Case Diagram

You can show the system being modeled by enclosing all its actors and use cases
within a subject. Show development pieces by enclosing groups of use cases within
subject lines. Add a subject to a diagram by clicking on Subject in the Components
window, then drag the pointer to cover the area that you want the subject to occupy.
Figure 5-44 shows an accounting subject attached to their related actors. If you drop an
element just inside a subject, the subject line expands to enclose the element. You also
can manually resize subjects. If you reduce the size and there are elements that can no
longer be seen, an ellipsis appears in the lower right corner.

How to Create Actors and Use Cases

Create actors on a diagram by clicking on the Actor icon on the Components window,
and then clicking on the diagram where you want to create it.

To change the properties of an actor or use case, double-click on the modeled element
and edit the element details in the editor.

How to Represent Interactions Between Actors and Use Cases

An Interaction is the only element you can add directly to the diagram. You put all of
the other elements within an Interaction.

You can represent interactions between actors and use cases on a diagram using the
Communication icon on the Components window. You can create generalization
structures between actors and between use cases by using the Generalization icon. To
represent where one use case includes another, use the Include icon, and to represent
where one use case extends another use the Extension icon.

Modeling with Use Case Diagrams

5-52 Developing Applications with Oracle JDeveloper

You can annotate a diagram of use cases using notes, dependency relationships and
URL links. Annotation components are available at the lower part of the Components
window under Diagram Annotations.

How to Represent Relationships Between Use Cases and Subjects

You can represent interactions between use cases and subjects using the
Communication icon on the Components window.

Exporting a Use Case Model for the First Time
The Use Case modeler can generate a set of HTML files from a Use Case model. Each
HTML file corresponds to one of the Use Case elements. The HTML files are generated
in the same project as their relative UML elements, therefore, they are visible in the
Application Navigator and they can be opened and edited with an editor.

To generate HTML files from an existing use case model, right-click on the diagram
surface and choose Export to HTML as shown in Figure 5-45.

Figure 5-44 Export HTML from a Use Case Model

The Exporting Model dialog displays the changes in the model that are about to be
exported, as shown in Figure 5-46.

Modeling with Use Case Diagrams

Developing Applications Using Modeling 5-53

Figure 5-45 Changes to Be Exported

The Exporting Model dialog is a table whose rows represent the details of the changes
to be exported. The right‐hand column shows the type of model change. There are
three types of changes:

• Added. The Use Case element does not have a corresponding HTML file yet.

• Deleted. The Use Case element has been removed form the model but there is still
its corresponding HTML file in the project.

• Changed. The Use Case element has been changed in the model and thus it differs
from its corresponding HTML file.

The first column of the table contains a check box that enables/disables exporting of
the relative model change. Be default, all the check boxes are selected.Once the dialog
is confirmed, the HTML files are generated and they will appear in the Application
Navigator together with the existing Use Case model elements. The suffixes of the
generated HTML files are.xhtml rather than.uml.

Figure 5-46 Exported Model

Modeling with Use Case Diagrams

5-54 Developing Applications with Oracle JDeveloper

Exporting a Changed Use Case Model
When a Use Case model has been exported it is still possible to modify it and
propagate the new changes to the existing generated set of HTML files. Suppose we
change Figure 5-47 as shown in Figure 5-48:

Figure 5-47 Use Case Model Modified after Export to HTML

After export the details for the modified model are as shown in Figure 5-48:

Figure 5-48 Exporting a Changed Model

As we can see, the new use case "Select Class" is added to the set of HTML files, while
the use case "Select Seat" is removed. The Subject "Booking System Flight Booking" is
changed because it contains a new use case, and the use case "Upgrade Flight" is
changed because it includes a different use case from before. Once the dialog is
confirmed, the changes are applied and they are reflected in the Application
Navigator, which now lists the new use case "Select Class" but no longer lists "Select
Seat," as shown in Figure 5-50.

Modeling with Use Case Diagrams

Developing Applications Using Modeling 5-55

Figure 5-49 The Changed Model Following Export

Importing a Use Case Model from a Set of HTML Files
A Use Case model can also be imported from a set of HTML files that contain the
"uml" custom tags. However, creating a Use Case model first entirely in HTML and
then importing it into the Use Case modeler it is not recommended. The import
functionality exists mainly to allow you to make occasional small changes to the
HTML files and apply them to the Use Case model. The HTML files can be edited with
the built-in HTML editor in JDeveloper or with any other external text editor.

Editing the HTML Files
The HTML files can be edited by double-clicking on their entries in the Application
Navigator to open them in the HTML source editor in the main editor panel. The files
consist of a HTML document (precisely, XHTML), embedding the UML namespace
tags.

Modeling with Use Case Diagrams

5-56 Developing Applications with Oracle JDeveloper

Figure 5-50 Editing an HTML Use Case

Figure 5-51 shows the editor with the content of a UseCase HTML file. It shows the
Communicate association to the relative actor, which is an HTML link contained by
the <uml:usecase_communicates> element. For example, if we need to remove
that associations, we simply remove the anchor element from the enclosing HTML list
element, as shown in Figure 5-52.

Modeling with Use Case Diagrams

Developing Applications Using Modeling 5-57

Figure 5-51 Removing Communication Use Case

To add that Communicate association to a different UseCase, open the HTML files and
locate the "<uml:usecase_communicates>" element. Then insert the anchor
element previously removed into the list element, as shown in Figure 5-53.

Figure 5-52 Adding the Communication Use Case

Modeling with Use Case Diagrams

5-58 Developing Applications with Oracle JDeveloper

Importing from HTML files
Make sure all the changed HTML files have been saved before performing the import.
Right-click on the diagram to display the context menu and choose Import from
XHTML. The "Importing Model" dialog displays the changes to be applied to the
model, as shown in Figure 5-54.

Figure 5-53 Importing a Model

The dialog shows that the changes made to the two HTML files will be applied to the
corresponding UseCase elements in the model. Confirming the dialog will cause a
new Communicate association to be drawn between the actor and the "Upgrade
Flight" UseCase, and between the same actor and the "Book Flight" UseCase removed
from the diagram.

Figure 5-54 Revised Model After Import

Modeling with Use Case Diagrams

Developing Applications Using Modeling 5-59

Modeling with Profile Diagrams
Profiles allow adaptation of the UML metamodel for different platforms and domains
or your modeled business processes.

The profile diagram is structure diagram which describes the lightweight extension
mechanism to UML by defining custom stereotypes, tagged values, and
constraints.Stereotypes are specific metaclasses, tagged values are standard meta-
attributes, and profiles are specific kinds of packages. Metamodel customizations are
defined in a profile, which is then applied to a package.

Profiles can be dynamically applied to or retracted from a model. They can also be
dynamically combined so that several profiles will be applied at the same time on the
same model. Profiles only allow adaptation or customization of an existing metamodel
with constructs that are specific to a particular domain, platform, or method. You can't
take away any of the constraints that apply to a metamodel, but using profiles, you
can add new constraints.

How to create a profile diagram:

1. Select File > New. The New Gallery opens.

2. In the Categories panel, open the General node and select the UML node. The
UML elements are listed in the Items panel.

3. In the Items panel, select Profile Diagram, and click OK.

4. Supply the profile diagram details and click OK. The profile diagram is added to
the applications window.

See Using UML Profiles for instructions on how to export a profile as XMI, add a
profile to a diagram, and apply a profile to a UML package.

Modeling with Profile Diagrams

5-60 Developing Applications with Oracle JDeveloper

Figure 5-55 Profile Diagram

Modeling with Java Class Diagrams
The definitions of the classes on a diagram, their members, inheritance, and
composition relationships are all derived directly from the Java source code for those
classes. These are all created as Java code, as well as being displayed on the diagram. If
you change, add to, or delete from, the source code of any class displayed on the
diagram, those changes will be reflected on those classes and interfaces on the
diagram. Conversely, any changes to the modeled classes are also made to the
underlying source code. Some information relating to composition relationships, or
references, captured on a Java class diagram is stored as Javadoc tags in the source
code.

A Java class diagram can contain shapes from other diagram types (Oracle ADF
Business Components, UML elements, Enterprise JavaBeans, and database objects).

How to Create Java Classes, Interfaces and Enums
Java classes, interfaces, or enums are created on a diagram by clicking on the Java
Class icon, Java Interface icon or Java Enum icon on the Java Components window
for the diagram, and then clicking on the diagram where you want to create the class.
The Java source file for the modeled class or interface is created in the location
specified by your project settings.

Java Class, Java Interface, and Java Enum icons are represented on a diagram as
rectangles containing the name and details of the Java class. Java classes and interfaces
are divided into compartments, with each compartment containing only one type of
information.

An ellipsis (...) is displayed in each compartment that is not large enough to display its
entire contents. To view a modeled class so that all the fields and methods are

Modeling with Java Class Diagrams

Developing Applications Using Modeling 5-61

displayed, right-click the class and choose Optimize Shape Size, then Height and
Width.

Each type of class on a diagram is identified by a stereotype in the name compartment.
This is not displayed by default.

Members (fields and methods) display symbols to represent their visibility. The
visibility symbols are: + Public, - Private, # Protected. If no visibility symbol is used,
the field or method has package visibility.

How to Model Inner Java Classes and Interfaces
A diagram can include primary or inner classes from different packages, the current
application, or from libraries. Inner Java classes and inner interfaces are defined as
members of their 'owning' class. Hence, they are also referred as member classes.

Inner classes and inner interfaces are displayed in the inner classes compartment of
the modeled Java class or interface on the diagram. Inner classes are prefixed with the
term Class, and inner interfaces are prefixed with the term Interface, between the
visibility symbol and the class or interface name.

To create an inner class or inner interface on a modeled Java class or interface, either
add the inner class to the implementing Java code, or create a new Java class or
interface as an internal node on an existing modeled class.

Inner Java classes and inner Java interfaces cannot have the same name as any
containing Java class, Java interface or package or contain any static fields or static
methods.

Modeling Composition in a Java Class Diagram
A variety of references (previously referred to as associations) can be created quickly
between classes and interfaces on a diagram using the various reference icons on the
Java Class Components window for the diagram. References created between modeled
Java classes are represented as fields in the source code of the classes that implement
the references. Compositional relationships are represented on the diagram as a solid
line with an open arrowhead in the direction of the reference. Table 5-10 displays the
references that can be modeled on a diagram.

Table 5-10 References Between Classes or Interfaces

Reference Description

Reference (Object) A singular, direct reference from one class or interface to
another. This is represented in the code of the reference's
originating class as a field of type <destination_class>.

Reference (Array) A reference to an array of another class or interface. This is
represented in the code as an array of type
<destination_class>.

Reference (Collection) This is represented in the code as a Collection declaration, and
adds an @associates <{type}> Javadoc tag to the source
to identify this reference as well as the required import
java.util.Collection; statement.

Reference (List) This is represented in the code as a List declaration, and adds
an @associates <{type}> Javadoc tag to the source to
identify this reference as well as the required import
java.util.List; statement.

Modeling with Java Class Diagrams

5-62 Developing Applications with Oracle JDeveloper

Table 5-10 (Cont.) References Between Classes or Interfaces

Reference Description

Reference (Map) This is represented in the code as a Map declaration, and adds
an @associates Javadoc tag to the source to identify this
reference as well as the required import java.util.Map;
statement.

Reference (Set) This is represented in the code as a Set declaration, and adds an
@associates Javadoc tag to the source to identify this
reference as well as the required import java.util.Set; statement.

Note:

If you want to quickly change the properties of a reference on a diagram,
double-click it to display the Code Editor and change the details of the
reference.

Labels are not displayed on references by default. To display the label for a reference,
right-click the reference and choose Visual Properties, then select Show Label. The
default label name is the field name that represents the reference. If you select this
label name on the diagram and change it, an @label <label_name> Javadoc tag
will be added before the field representing the reference in the code.

You can change the aggregation symbol used on a reference on a diagram by right-
clicking the reference, choosing Reference Aggregation Type, then choosing None,
Weak (which adds an @aggregation shared Javadoc tag to the code representing the
reference), or Strong (which adds an @aggregation composite Javadoc tag to the
code representing the reference). Aggregation symbols are for documentary purposes
only.

Modeling Inheritance on a Java Class Diagram
Inheritance structures, which are represented in the Java source as extends
statements, can be created on a diagram of Java classes using the Extends icon on the
Java Class Components window for the diagram. Extends relationships are
represented on the diagram as a solid line with an empty arrowhead pointing towards
the extended class or interface.

Where an interface is implemented by a class, this can be created using the
Implements icon on the Java Components window for the diagram. Creating an
implements relationship adds implements statement to the source code for the
implementing class. Implements relationships are represented on the diagram as a
dashed line with an empty arrowhead pointing towards the implemented Java
interface.

Extending Modeled Java Classes
Extends relationships model inheritance between elements in a class model. Extends
relationships can be created between Java classes and between Java interfaces, creating
an extends statement in the class definition. Enums cannot extend other classes, or be
extended by other classes.

Modeling with Java Class Diagrams

Developing Applications Using Modeling 5-63

Note:

As multiple class inheritance is not supported by Java, only one extends
relationship can be modeled from a Java class on a diagram. Multiple extends
relationships can be modeled from a Java interface.

Implementing Modeled Java Interfaces
Implements relationships specify where a modeled Java class is used to implement a
modeled Java interface. This is represented as an implements keyword in the source
for the Java class. Implements relationships are represented on class diagrams as
dashed lines with an empty arrowhead pointing towards the interface to be
implemented. Enums can

not implement interfaces.

If the implemented interface is an extension (using an extends relationship) of other
modeled interfaces, this is reflected in the Java source code for the interface.

A class that implements an interface can provide an implementation for some, or all,
of the abstract methods of the interface. If an interface's methods are only partially
implemented by a class, that class is then defined as abstract.

Modeling Java Fields and Methods
You can create members (fields and methods) of a Java class or interface on a diagram.
The fields and methods are added to modeled Java classes and interfaces on a diagram
by double-clicking the modeled Java class or interface then adding the field or method
using the Java Source Editor.

• Fields are used to encapsulate the characteristics of a modeled Java class or Java
interface. All modeled fields have a name, a datatype and a specified visibility.

When a field or method is displayed on a class on a diagram, it is prefixed with +
(if declared as public), - (if declared as private) or # (if declared as protected). Static
fields are underlined on the diagram.

• Methods are defined on a class to define the behavior of the class. Methods may
have return types, which may be either a scalar type or a type defined by another
class.

Refactoring Class Diagrams
If you rename or move a class using the in-place edit functionality on a diagram, the
source code for the class is refactored automatically. Renaming or moving a Java
package on a diagram automatically refactors the contents of that package.

Deleting a field, method, or inner class on a diagram automatically applies the Delete
Safely refactoring pattern. To apply a refactoring pattern to a Java class, interface,
enum, or member on a diagram, select the class or member on the diagram and choose
the refactoring pattern from the refactoring menu.

The following refactoring patterns are available for the Java classes, interfaces, and
enums on a Java class diagram:

• Rename

• Move (applies to both single and multiple selections on the diagram)

Modeling with Java Class Diagrams

5-64 Developing Applications with Oracle JDeveloper

• Duplicate

• Extract Interface

• Extract Superclass

The following refactoring patterns are available for the Java fields and methods on a
Java class diagram:

To invoke a refactoring operation:

1. Select a program element in a source editor window, databases window, or
structure pane.

2. Right-click on the program element.

3. Choose an operation from the context menu.

4. You can also choose Refactor from the toolbar and select a refactoring operation
from the drop-down list:

• Rename

• Move

• Make Static

• Pull Members Up

• Push Members Down

• Change Method (Java methods only)

Modeling with EJB Diagrams
Enterprise JavaBeans (EJBs) modeling helps you visualize your EJB entity
relationships and architecture, and to quickly create a set of beans to populate with
properties and methods, and to create a graphical representation of those beans and
the relationships and references between them. Whenever a bean is modeled, the
underlying implementation files are also created.

To model EJBs start by creating an EJB diagram. For more information, see Creating a
New Diagram. You can later add other elements like UML classes, Java classes,
business components, offline database tables, UML use cases and web services to the
same diagram. For more information, see Working with Diagram Elements.

The following are the modeling options available:

• Entity beans can be either Container-Managed Persistence (CMP) or Bean-Managed
Persistence (BMP). Before creating entity beans with bean-managed persistence,
you may want to first consider whether you will need to create relationships
between those entity beans. Relationships can only be created between entity beans
with container-managed persistence.

• Session beans can be have their session type changed on a class diagram by right-
clicking on the session bean and choosing Session Type, then Stateful or Session
Type, then Stateless.

• Message-driven beans are most often used to interact (using EJB References) with
session and entity beans.

Modeling with EJB Diagrams

Developing Applications Using Modeling 5-65

Working with EJB/JPA Modeling Features
Enterprise JavaBeans are created on a diagram by using the Entity Bean icon, Session
Bean icon or Message-Driven Bean components on the Components window. Select
the component and then click the diagram in the desired spot. The implementation
files for the modeled elements are created in the location specified by your project
settings.

Tip:

If you want to model the implementing Java classes for a modeled bean on a
diagram, right-click the modeled bean and choose Show Implementation
Files.

Properties and methods are added by either double-clicking the bean and adding the
property or method using the EJB Module Editor or by creating the new property or
method 'in-place' on the modeled bean itself.

Modeled session and entity beans are made up of several compartments. For example,
Message-driven beans have only a name compartment containing the «message-
driven bean» stereotype and the name of the bean. For EJB 3.0 beans the model
looks different because there are no compartments for interfaces.

Figure 5-56 EJB/JPA Components Diagram

Modeling with EJB Diagrams

5-66 Developing Applications with Oracle JDeveloper

Notice the relationship and edges between the beans. References can be created from
any bean to another bean with a remote or local interface. References can only be
modeled between beans that are inside the current deployment descriptor.

Create a Diagram of EJB/JPA Classes

To create a diagram of EJB/JPA classes:

1. Create a new EJB diagram in a project or application in the New Gallery.

2. Create the elements for the diagram using the EJB Components window. Table 5-11
shows the EJB Components window.

Table 5-11 EJB Components window Icons

Drop-down List Icon Name

EJB Nodes Entity

Message-driven Bean

Session Bean

Entity Relationships Bidirectional * to * Relationship

Bidirectional * to 1 Relationship

Bidirectional 1 to 1 Relationship

Unidirectional * to * Relationship

Unidirectional * to 1 Relationship

Unidirectional 1 to * Relationship

Unidirectional 1 to 1 Relationship

EJB Edges Entity Inheritance Edge

Session Facade Edge

Diagram Annotations Attachment

Modeling with EJB Diagrams

Developing Applications Using Modeling 5-67

Table 5-11 (Cont.) EJB Components window Icons

Drop-down List Icon Name

Group

Link

Note

How to Model EJB/JPA Relationships

You can model a relationship between any two entities on a class diagram by dragging
the relationship component from the Components window. You can also show the
inheritance edge between the root and child entity.

To model a relationship between two entities on a diagram:

1. Click the icon for the relationship to create.

Note:

The navigability and multiplicity of a relationship end can be changed after it
has been created.If EJB component icons are not displayed, select EJB
Components from the dropdown on the Components window.

2. Click the entity at the 'owning', or 'from', end of the relationship.

3. Click the entity bean at the 'to' end of the relationship.

4. Click the relationship line on the diagram, then click the text fields adjacent to the
association to enter the relationship name.

Note:

To change the multiplicity of a relationship end on the diagram, right-click on
the relationship end and choose either Multiplicity > 1 or Multiplicity > *.

Reference Between Beans

References can be created from any bean to any other bean with a remote interface
using the EJB Reference icon and local references can be created from any bean to any
other bean with a local interface using the EJB Local Reference icon on the EJB
Components window for the diagram.

A variety of relationships can be created quickly between modeled entity beans using
the 1 to * Relationship icon, Directed 1 to 1 Relationship icon, Directed 1 to *
Relationship and Directed Strong Aggregation icons.

Properties on Modeled Beans

Properties can be added to modeled EJBs by either double-clicking the bean and
adding the property or method using the EJB Module Editor or by creating the new
property or method directly on the modeled bean.

Modeling with EJB Diagrams

5-68 Developing Applications with Oracle JDeveloper

When creating a property directly on a modeled bean, enter the name and datatype of
the property. For example:

name : java.lang.String

A public (+) visibility symbol is automatically added to the start of the property.

Note:

If a property type from the java.lang package is entered without a package
prefix, for example, String or Long, a property type prefix of java.lang. is
automatically added. If no type is given for a property, a default type of
'String' (java.lang.String) is used

Methods on Modeled Beans

Both local/remote and local/local home methods can be created on modeled beans on
a class diagram.

When creating a method in-place on a modeled bean, enter the name, and optionally
the parameter types and names, and return type of the method. The method return
type must be preceded by a colon (:). For example:

getName(String CustNumber) : java.lang.String

A public (+) visibility symbol is automatically added to the start of the method.

Note:

If a return type from the java.lang package is entered without a package
prefix, for example, String or Long, a return type prefix of java.lang. is
automatically added to the Java in the method's class. If no parameter types
are provided, the method will be defined with no parameters. If no return
type is specified, a default return type of void is used. To change a property of
the method, double-click the class on the diagram, or on the applications
window, then change the details of the method using the EJB Editor.

How to Model Cross Component References

References can be created between modeled beans on a class diagram.

• EJB References can be created from any bean to any other bean with a remote
interface.

• EJB Local References can be created from any bean to any other bean with a local
interface.

Note:

References can only be made to beans that are inside the current deployment
descriptor.

To model a reference between modeled beans:

1. Click the icon from those listed on the EJB Components window:

Modeling with EJB Diagrams

Developing Applications Using Modeling 5-69

• EJB Reference

• EJB Local Reference

2. Click the bean at the 'owning', or 'from', end of the reference.

3. Click the bean at the 'to' end of the reference.

How to Display the Implementing Classes for Modeled Beans

Each modeled bean has underlying Java source files that contain the implementation
code for that element. These implementation files can be displayed on the diagram as
modeled Java classes.

To display a modeled implementing Java class for a modeled bean:

• Select the bean, the Java implementation you want to model on the diagram, then
choose Model > Show > Implementation Files.

• Or, right-click the bean and choose Show Implementation > Files.

How to Display the Source Code for a Modeled Bean

The Java source code for a modeled bean can be displayed in the source editor with
simple commands on the diagram.

To display the Java source code for a model element:

• Right-click the element on the diagram. Choose Go to Source, then choose the
source file you want to view.

• Select the element and choose Model > Go to Source.

How to Change the Accessibility of a Property or Method

You can change the accessibility of a property or method using right-click.

To change the accessibility of a property or method:

1. Right-click the property or method you want to change.

2. Choose the required accessibility option from the Accessible from option.

The accessibility options are:

• Local Interface

• Remote Interface

• Local and Remote Interfaces

How to Reverse Engineer a Diagrammed JPA Entity

Modeled entity beans can be reverse-engineered on a diagram of EJBs from table
definitions in your application database connection.

To reverse-engineer a table definition to an entity bean:

1. Open, or create a diagram.

2. Expand the node in the Connections window for your database connection.

Modeling with EJB Diagrams

5-70 Developing Applications with Oracle JDeveloper

3. Expand the user node, then the Tables nodes.

4. Click the table, the definition to use to create an entity bean, and drag it to the
current diagram.

To reverse-engineer several tables to entity beans, hold down the Ctrl key, select
the tables in the databases window and drag these tables to the diagram, then
release the Ctrl key.

5. Select the EJB version and click OK.

Modeling with Database Diagrams
Modeling your database structures gives you a visual view of your database schema
and the relationships between the online or offline tables. You can also transform
database tables to UML classes and vice-versa using the transformation features. For
more information on database transformation see UML-Offline Database
Transformation.

Working with the Database Modeling Features
With JDeveloper, you can model offline database objects as well as database objects
from a live database connection. You can also create database objects such as tables
and foreign key relationships right on your diagram and integrate them with an online
or offline database. All of the database objects from online or offline databases, as well
as the new objects you create are displayed in the Applications window.

• Offline objects appear in the Application Navigator under the "Offline Database
Sources" node.

• Online database connections that are part of your application appear in the
Application Navigator Application Resources view under the Connections >
Database node.

• Online database connections that are shared across applications appear in the
Database Navigator which can be accessed from Window > Database > Databases.

Use database diagrams to view your structure of database objects and relationships, as
well as create directly on your diagram components such as tables and foreign key
relationships, views and join objects, materialized views, synonyms and sequences.

How to Create a Database Diagram

Create your database diagram using the New Gallery. See Creating a New Diagram.

Once your database diagram is created, you can choose from the components in the
Components window, as shown in Figure 5-57.

Modeling with Database Diagrams

Developing Applications Using Modeling 5-71

Figure 5-57 Database Components Window

How to Create an Offline Database Object

To create an offline database object on the diagram, click on the icon on the Database
Objects Components window, and then click on the diagram where you want to create
the object. This process adds existing objects to a database diagram.

You can also drag objects from a database connection in the Databases window, or
from an offline schema in the Applications window.

How to Create a Foreign Key

To create a Foreign Key in a database diagram, click the table from which the foreign
key originates, and then click the target destination table. The Create Foreign Key
dialog allows you to select an existing column in the target table, or create a new
column. The target table will be the owner of the foreign key.

How to Use Templates to Create Database Objects

All templates are defined in the Offline Database Properties dialog. If the object being
created has a template defined in the offline database in which it is being created, then
using the <ObjectType> component creates objects based on its template. For
example, if the offline database 'Database1' has a Template table 'MyTab', when you
create a new table in Database1 using the table option in the Component window, the
new table created is based on Template 'MyTab'. The existing objects from the offline
database are added to the diagram.

How to Add and Create Private and Public Synonyms

To create Synonyms on a diagram, go to the Components window and choose
Database. From the Database list, click Public Synonym or Private Synonym and then
click the diagram in which you want to create the synonym. Note, both components
contain a checkbox for the Public property. The box is automatically checked for the
Public Synonym, and it is unchecked by default for the private synonym.

You can also drag+drop objects from an online database connection. To import objects
from the database connection to the offline database, add the existing objects from the
database connection to the diagram.

How to Add and Create a Sequence

To create a sequence on a diagram, go to the Database Objects components window
for the diagram, and select Sequence, then click on the diagram where you want to
create the sequence.

Modeling with Database Diagrams

5-72 Developing Applications with Oracle JDeveloper

You can also drag sequences from a database connection, or from an offline database
in the Applications window, and drop them on the diagram.

How to Add and Create Tables

Follow these steps to add tables to a diagram.

1. Go to the Database Components window, click on Table, and then click on the
diagram to insert the table.

You can also drag tables from a database connection or an offline database in the
Applications window, and drop them on the diagram. Existing objects from an
offline DB can be added to the diagram in the same way.

To display various attributes on a modeled table, select Preferences > Diagrams >
Database, and from the "Edit Preferences for" dropdown, select Table. On the
Display tab, check Use Tabular Layout and Show Icons. To view table constraints,
select the Constraints tab and check any constraint attributes you want to display.

The first column in the modeled table indicates whether the column is in a primary,
unique, or foreign key. The second column indicates whether the table column is
mandatory.

Note:

If a table column is in a primary key it will only display the primary key icon
even though it may also be in a unique key or foreign key.

2. To further define the table, click on the table and choose Properties from the
context menu.

On the left is a list of the properties you can define. At the bottom of the panel note
that the Overview tab is the default view. To change the view, click the Diagram,
DDL, or History tabs.

3. To add columns, choose Columns on the left. In the Columns table, click the +
button to add a row for each column you require. For each new column use the
tabbed panel to specify the column's Data Type, Constraints, Indexes, LOB
Parameters, Identity Column, and User Properties.

4. To add constraints, choose Constraints on the left, and use the + dropdown menu
to specify new keys or constraints. Provide the Type and Name and set the
deferrable state. With the constraint selected in the Constraints table, use the
tabbed panel to specify its Properties and User Properties.

To apply a constraint to a column, select the constraint in the Constraints table, and
in the Properties tab below, choose an index, then from the Available Columns
area, choose a column and click the > button to move that column to the Selected
list.

How to Change the Database or Schema

1. On the database diagram, right-click and choose Create Database Objects In >
Database or Schema.

2. Complete the Specify Location dialog or Select Offline Schema dialog.

Modeling with Database Diagrams

Developing Applications Using Modeling 5-73

Note:

All subsequent database objects will be created in the database or schema you
have chosen. Existing objects are unchanged.

How to Create Database Views and Add Database Objects

Follow these steps to create a database view:

1. Open the diagram that needs the database view.

2. In the Components window Database category, expand Database Objects and
select the View icon.

3. Click in the diagram. The View Object is added to the diagram.

To define the view add tables and views from the palette, or table columns or
elements of other views.

To add an existing view, you can drag views from a database connection and drop
them on the diagram. You can also drag in views from an offline database
displayed in the Applications window.

4. Right-click the view component and select Properties. Specify the schema and
name, and fill out the SQL Query and Properties forms.

To import objects from a database connection to an offline database, add existing
objects from the database connection to the diagram.

How to Define a Base Relation Usage

The base relation usage is a component of a FROM clause that specifies a relation to a
table or view. When you define an SQL Query with a FROM clause specified (you can
type it in or use the Query Builder) a Relation Usage object is automatically added to
the View component.

To define a base relation for a view, go the Components window and choose Database.
In the list, click on Relation Usage and then click on the View shape.

How to Create Join Objects

To create join objects between two table usages in a view, click Join Object, then click
on the two table usages to be joined. The Edit Join dialog allows you to specify the
join.

Modeling with Database Diagrams

5-74 Developing Applications with Oracle JDeveloper

6
Versioning Applications with Source

Control

This chapter describes how to use source control systems to manage the versions of
applications developed in a team environment. It discusses the available version
control systems, how to download the various version-control extensions available to
Oracle JDeveloper, and then includes instructions for each of the source control
systems that can be used with JDeveloper.

This chapter includes the following sections:

• About Versioning Applications with Source Control

• Downloading Source Control Extensions in Oracle JDeveloper

• Setting Up and Configuring Source Control

• Setting Up and Configuring a Source Repository

• Working with Files in Source Control

• Working with Branches and Tags

• Working with File History, Status and Revisions

• Working with Patches in Source Control

About Versioning Applications with Source Control
Developing in teams often requires coordination among multiple developers who may
be called upon to make changes to the same files, to track these changes against project
management or bug reporting systems, and eventually to check in or commit their
edited files to a commonly used repository of content that will be built into a
functioning product.

At least one team member is typically required to administer and maintain the
versioning system as it relates to JDeveloper. If you are the administrator for your
versioning system, you will most likely have additional tasks beyond checking files in
and out.

Downloading Source Control Extensions in Oracle JDeveloper
For users familiar with other versioning systems, or whose teams use systems other
than Subversion and Git, JDeveloper provides downloadable extensions that give you
access to the following:

• Concurrent Version System (CVS) olink:OJDUG4067

• Mercurial

Versioning Applications with Source Control 6-1

• Perforce olink:OJDUG5473

• Microsoft Team System olink:OJDUG5476

If your team requires you to download a JDeveloper Extension to integrate your
versioning system with JDeveloper, you can browse for the versioning system from
the Update Center by selecting Help > Check for Updates. Be sure to select all update
centers when you search for your versioning system.

Setting Up and Configuring Source Control
JDeveloper offers several tools for developing in teams. These include integrated
solutions such as Subversion and Git, as well as downloadable extensions such as
Mercurial. In addition, an application lifecycle management system, , is available as a
downloadable extension. You can access commands for all of these systems directly
from the JDeveloper interface, through the Team menu or through the Versions
window

Setting Up Subversion and JDeveloper
JDeveloper is integrated with the popular team development solution Subversion
(SVN). If you are part of a team that uses Subversion, JDeveloper's Team menu
contains commands for using Subversion to manage the content you are working on
while maintaining a connection to your team's repository and tracking changes,
merges, and more. Setting up Subversion involves creating a repository for your
source-controlled files, making sure that JDeveloper can connect to that repository,
importing files to the repository, and more.

In general, you begin by importing your working files into the Subversion repository
to bring them under version control.Once in the repository, your files are then
available to be checked out from the Subversion repository to a local folder known as
the "Subversion working copy." When you create a new file in JDeveloper (or move it
into JDeveloper), you store it in the Subversion working copy. When you are ready to
make your work available to the team, you add these new files to Subversion control.
When it comes time to make your changed and new files available to other users, you
can do so by committing them to the Subversion repository. To take advantage of the
work others on your team have done, you can copy changed files from the Subversion
repository to your working copy by updating your files.

After completing setup, your work with Subversion will revolve around checking files
out, editing them in JDeveloper, and checking them in with your changes. You may
also need to resolve conflicts between changes you made and those made by others in
your team. Files may also be moved in and out of Subversion control, and finally, you
might use special properties of the files associated with specific versions for tracking
bugs, customer requests, and other characteristics.

Installing Subversion Client Software

In addition to creating a repository for your source-controlled files, making sure that
JDeveloper can connect to that repository, and importing files to the repository, it may
be necessary to install Subversion client software under the following circumstances:

• You wish to create a local Subversion repository using the JDeveloper Subversion
VCS extension.

• You wish to use a Java binding (helper library) other than SVNKit, which is the one
supplied with the extension.

Setting Up and Configuring Source Control

6-2 Developing Applications with Oracle JDeveloper

• You wish to connect to a Subversion repository through a proxy server

In all of the above cases, you will need to install separate Subversion client software. If
you wish to use an alternate Java binding, you will additionally have to install the
binding software.

To install Subversion client software:

1. Download the Subversion installer (svn-1.7.8-setup.exe) from http://
subversion.apache.org/ (to, for example, c:\downloads).

2. Run the installer and place the Subversion client in a convenient location, for
example c:\subversion. Reboot your computer.

This procedure assumes that the operating system is Windows. For non-Windows
environments, consult the documentation for the operating system package
management system to ensure the vendor-supplied Subversion client contains
JavaHL.

To check the installation so far, open a command prompt and type svn help. You
should see a list of subcommands. If not, check that the system path contains the bin
directory of the location where the client software was installed (in this example, c:
\subversion\bin).

Checking the Subversion Client Installation

Once you have completed installing the Subversion client software, you can check the
Subversion Client installation.

Important: If you subsequently accept an update of the JDeveloper Subversion
extension from the Update Center (Official Oracle Extensions and Updates), the client
preference will be reset to SVNKit, even if you had previously chosen an alternate
client.

To check the installation:

1. In JDeveloper, select Subversion as the versioning system (Team > Configure, and
then select Subversion).

2. Open the main Subversion preferences page (Tools > Preferences > Versioning),
and then check that the required client installation is available. If more than one is
listed, select the one that you wish to use.

Creating a Subversion Connection

Before you can work with a Subversion repository through JDeveloper, you must
create a connection to it. You can subsequently edit the connection details if they
change for any reason.

Typically, you will obtain the details of your Subversion connection (server name, user
ID, password, etc.) from your team or version control administrator. You will need to
know those details before you create a connection to your Subversion repository.

To create a Subversion connection:

1. In the Versions window (Team > Versions), right-click the Subversion node and
choose New Repository Connection.

The Create Subversion Connection dialog is opened. For help when using this
dialog, press F1 or click Help.

Setting Up and Configuring Source Control

Versioning Applications with Source Control 6-3

2. Enter the URL of the location of the Subversion repository.

3. Optionally, enter a name for the connection.

4. If the Subversion repository has been set up with password protection, enter the
username and password.

5. If you want to test the connection to the Subversion repository, click the Test
Connection button. The results will be displayed in the Status area.

6. To complete the connection, click OK.

Editing a Subversion Connection

If any of the details (such as IP address, port, user ID, password, etc.) of your
Subversion connection change, you can edit the connection in JDeveloper so that you
can connect to it with the new details.

To edit a Subversion Connection:

1. In the Subversion Navigator (Team > Versions), right-click the Subversion
connection name and choose Properties.

The Edit Subversion Connection dialog is opened. For help when using this dialog,
press F1 or click Help.

2. Make changes as required and click OK.

Exporting Subversion Repository Connection Details

You can export the details of your Subversion repository connections to a file. You can
subsequently import the connection details from the file to recreate the Subversion
repository connections. This can greatly simplify the process of connecting to a
Subversion repository as new team members join, as the repository connection file can
be stored on a server accessible to the team, then downloaded as required as new
members join. Similarly, if new servers are added, the team leader or administrator
can distribute new connection information in a connection detail file to be imported by
all team members.

To export Subversion connection details to a file:

1. In the Subversion Navigator, select the Subversion node and, from the context
menu, choose Export Connections.

The Export Subversion Connections dialog opens.

2. Enter a location and name for the file that will contain the connection details, then
click OK.

Importing Subversion Repository Connection Details

If you or your team have saved the details of your Subversion repository connection,
you can import them into JDeveloper to simplify making the connection to your
repository.

To import Subversion connection details from a file:

1. In the Subversion Navigator, select the Subversion node and, from the context
menu, choose Import Connections.

The Import Subversion Connections dialog opens.

Setting Up and Configuring Source Control

6-4 Developing Applications with Oracle JDeveloper

2. Browse to the file that contains the connection details that you wish to import, then
click OK.

Connecting to a Subversion Repository Through a Proxy Server

If you want to connect to a Subversion repository through a proxy server, you must
first install separate Subversion client software.

Once you have installed the Subversion client software, you will have a Subversion
subdirectory in your Windows Application Data directory. To find the Application
Data directory, at the c:/ prompt type cd %APPDATA%. Then open the Subversion
subdirectory. (On Linux, the equivalent subdirectory will be in ~/.subversion,
where ~ is the home directory.)

Note:

If you have entered the proxy settings in the JDeveloper Preferences, you can
omit editing the servers file as described in the following paragraphs.

In the Subversion subdirectory will be a file named servers. Open this file with a
text editor and find the [global] section. Remove the comment marker (#) from the line
http-proxy-host and overtype the placeholder proxy information with the details
of the proxy server that you use. Remove the comment marker (#) from the line http-
proxy-port and overtype the placeholder port information with the port number for
the proxy server. If you wish to exclude certain URLs from using the proxy server,
remove the comment marker (#) from the line http-proxy-exceptions and
overtype the placeholder URLs with URLs that you wish to exclude.

Add additional http-proxy-host and http-proxy-port lines with details of any
other proxy servers that you use.

It is important that the proxy server supports all the http methods used by
Subversion. Some proxy servers do not support the following methods by default:
PROPFIND, REPORT, MERGE, MKACTIVITY, CHECKOUT. If you experience
problems with using a proxy server to access a Subversion repository, ask the server's
system administrator to change the configuration to support these http methods.

Exporting Subversion Controlled Files from the Working Copy

You can export copies of JDeveloper files that are under Subversion control from
either of two places: the Applications window, in which case the files will be exported
from the Subversion “working copy", or the Subversion Navigator, in which case the
files will be exported from the Subversion repository. Exporting the files means
copying them to a local file system directory that you specify.

To export files from the Applications window:

1. In the Applications window, select the project containing the files that you wish to
export.

2. Select Team > Export Files.

An Export Files dialog opens.

3. In the Destination Path box, enter or browse to the location where you want the
files to be copied to.

4. To export the files, click OK.

Setting Up and Configuring Source Control

Versioning Applications with Source Control 6-5

This exports the selected files from the Subversion "working copy" of your local file
system.

Exporting Files from the Subversion Navigator

You can export copies of files under Subversion control from the Subversion
Navigator. This ensures that the files will be exported from the Subversion repository
(not from the "working copy"). In addition, exporting with the Subversion Navigator
lets you specify which revision of the files to export.

To export files from the Subversion Navigator:

1. In the Subversion Navigator, select the repository node or directory containing the
files that you wish to export.

2. Select Team > Export Files.

An Export Files dialog opens.

3. In the Destination Path box, enter or browse to the location where you want the
files to be copied to.

4. If you want to export a particular revision of the files, select Use Revision and
enter the revision number in the adjacent text box.

5. To export the files, click OK.

This exports the selected files from the repository to your local file system.

How to Set Up and Configure a Git Repository
Git is a popular open-source version control system with a growing user community.
To begin using Git with JDeveloper, you create a clone of your team's repository on
your local system.

To complete this procedure, you will need the following information, which should be
available from the Git administrator on your team:

• The name of the repository

• The URL at which the repository is stored

• The user name and password you will use for accessing the repository. Optionally,
your team may use a private key file with a passphrase; you can select the
appropriate option for your team when you connect to Git.

• The name of the remote branch that your team uses for development.

• The destination pathname in your local system to which you wish to store your
local repository.

To connect to Git:

1. Select Team > Connect to Git. This displays the Clone from Git wizard welcome
screen. Click Next to continue.

2. Enter the information about your team's remote Git repository, then click Next to
continue.

3. Specify the remote branch your team uses for development, then click Next to
continue.

Setting Up and Configuring Source Control

6-6 Developing Applications with Oracle JDeveloper

4. Specify the pathname on your local system at which you wish to create your local
repository, then click Next to continue.

5. Verify all the information displayed in the Git Clone Summary screen, then click
OK.

JDeveloper connects you to the remote repository and creates a local clone based on
the branch you selected. From this local clone you can check out, edit, merge, and
commit files to the main repository.

How to Set Up CVS with JDeveloper
In general, CVS uses a common repository of files, accessible to JDeveloper, that you
and your team share while developing a software project. To modify files in that
repository, you first check them out so that CVS tracks the who, when, and what of file
access. In the event that two team members edit the same file at the same time, CVS
contains tools that help you determine whether those changes conflict, and to resolve
problems that may arise and merge these simultaneous changes into a single,
comprehensive file. Finally, CVS lets you check these changed files back into the
repository so that your build tools will have access to the latest files, with new and/or
merged content.

Note:

For extensive information about how to use and administer CVS, see the CVS
online manual at http://www.cvshome.org.

Before you can use CVS to manage your shared content, you need to connect
JDeveloper to CVS. This means configuring JDeveloper, making a connection to your
team's CVS repository, creating a local repository, and more. The topics in this section
cover all the steps you'll need to make sure CVS is available from JDeveloper after
downloading the CVS extension from Check For Updates. If your team is already
using CVS, you should check with them for specifics on how CVS is implemented in
your organization.

The process of setting up CVS with JDeveloper involves configuring JDeveloper,
creating a CVS connection, importing files for the project into your CVS repository,
and then checking out the CVS modules to be edited.

Configuring CVS for Use

Before you can use CVS, you need to configure JDeveloper by setting preferences.

To configure JDeveloper for use with CVS:

1. Choose Tools > Preferences, then select Versions from the left panel of the
Preferences dialog.

2. In the right panel, click Load Extension. The main CVS preferences panel is shown.
Other CVS preferences panels are shown when you click on the items beneath the
CVS node.

3. Make changes to the preferences as required. For more information about the
specific preferences, press F1 or click Help.

4. Click OK to close the Preferences dialog.

Setting Up and Configuring Source Control

Versioning Applications with Source Control 6-7

http://www.cvshome.org

Creating a CVS Connection

Once you have installed the CVS extension in JDeveloper, you must create a
connection to CVS before you can access the repository.

To create a CVS connection:

1. Select Team > CVS > Check Out Module.

JDeveloper prompts you to create a CVS connection. Click OK to open the Create
CVS Connection wizard.

2. Complete the Create CVS Connection wizard.

For help when using the wizard, press F1 or click Help.

Editing a CVS Connection

If any of the connection details change after creation, you can edit the CVS connection.

To edit a CVS connection:

1. In the CVS Navigator (View > CVS Navigator) right-click the connection name
and choose Properties.

The Edit CVS Connection wizard is opened.

2. Use the wizard to make changes as required.

For help when using this wizard, press F1 or click Help.

Exporting a CVS Module

You use the CVS Export wizard to export the revisions of files for a module, creating a
deployment-ready file structure.

To use the CVS Export wizard:

1. Choose Team > CVS > Export Module. The CVS Export wizard is displayed.

2. Complete the export as prompted by the wizard. To obtain more information when
working with the wizard, F1 or click Help.

The files are exported to the location you have specified.

Copying the CVSROOT Path to the Clipboard

You can copy the path of the CVSROOT from a node in the CVS Navigator to the
Clipboard, for use in other applications.

To copy the CVSROOT path to the Clipboard:

1. In the Connection Navigator, right click the connection name.

2. From the context menu, choose Copy CVSROOT.

The full path of the CVSROOT is copied to the Clipboard, from where you can paste it
into another application.

Setting Up and Configuring Source Control

6-8 Developing Applications with Oracle JDeveloper

How to Configure CVS For Use with JDeveloper
In addition to setting up JDeveloper to be able to use CVS, there are certain tasks you
need to perform to make CVS usable with JDeveloper. Some of these tasks may be
performed by your administrator. You should always check to make sure which of
these tasks have been performed in your installation.

In general, you need a local CVS repository for storing files as you are working on
them. You may also need to configure a secure shell (SSH) for communicating with
CVS, and you may need to choose a character set. Finally, you will need to log in to
CVS.

Choosing a Character Set (Local Client Only)

If your installation uses a local CVS client, you need to choose a character set.

For each CVS repository connection, you can choose the character set to be used for
the encoding of files. The default is to use the character set specified by the platform/
operating system.

You can change to the IDE default or to a specific character set through the Set
Encoding dialog.

To choose a character set:

1. Select a connection in the CVS Navigator.

2. Clicking the right mouse button and choose Set Encoding.

3. Select the desired character set.

How to Set Up Perforce with JDeveloper
Before using Perforce with JDeveloper, in addition to downloading the Perforce
extension, you need to install a number of Perforce features so that they are available
to JDeveloper. Once installed, you configure JDeveloper and connect to the Perforce
client workspace. Finally, you need to bring your working files under Perforce control
so that they are available from within JDeveloper while using Perforce.

There must be at least one Perforce server installed, on a machine that is accessible to
the intended JDeveloper users. If a Perforce server installation does not already exist,
obtain the necessary software (for example, from www.perforce.com) and install it in
accordance with Perforce's instructions. Record the identity of the machine on which
the Perforce server software has been installed: you will need this when you connect
to it through JDeveloper.

Before using Perforce with JDeveloper, in addition to downloading the Perforce
extension, you need to install a number of Perforce features so that they are available
to JDeveloper. Once installed, you configure JDeveloper and connect to the Perforce
client workspace. Finally, you need to bring your working files under Perforce control
so that they are available from within JDeveloper while using Perforce.

Installing Perforce Components for use with JDeveloper
There must be at least one Perforce server installed, on a machine that is accessible to
the intended JDeveloper users. If a Perforce server installation does not already exist,
obtain the necessary software (for example, from www.perforce.com) and install it in
accordance with Perforce's instructions.

Setting Up and Configuring Source Control

Versioning Applications with Source Control 6-9

Perforce Client Installation

You must install the Perforce client application on the machines that contain (or that
will contain) JDeveloper. The Perforce client application can be installed from the
same software as the server software, obtainable from www.perforce.com. The
installation must include the “Command Line Client (P4)".

When you first run the Perforce client application, you will be required to create a
Perforce client workspace. The Perforce client workspace is where the working copies
of files under Perforce control will be stored. You can use the JDeveloper default
directory as the Perforce client workspace, whether or not it already contains
JDeveloper files. The JDeveloper default directory is <installation_directory>
\jdev\mywork. Alternatively, you can accept the default Perforce client workspace,
or specify one of your own. In these cases, you should note the location you have
used, because you will need to specify it when creating applications and projects in
JDeveloper.

If you set up passwords in the Perforce client application, you will also need to use
them when connecting to Perforce through JDeveloper.

JDeveloper Installation

JDeveloper must be installed in the normal way. Each installation of JDeveloper can
act as a client application for Perforce. You can install JDeveloper on every machine
that you wish to be a Perforce client, or you can use a mixture of JDeveloper
installations and Perforce's own client applications. The JDeveloper and Perforce client
applications will work together in a seamless manner. In addition to the JDeveloper
embedded support for Perforce, you will also be able to access a Perforce client
application through the JDeveloper interface.

Configuring JDeveloper for Use with Perforce

Before you can configure JDeveloper to use Perforce, you must have installed the
Perforce server and client software.

To configure JDeveloper for use with Perforce:

1. Choose Tools > Preferences > Versioning > Perforce.

2. Verify that the path to the Perforce client is as you installed it.

3. If your team uses comment templates, select Comment Templates from the left-
hand pane and configure your team's comment templates.

4. In the left pane of the Preferences dialog, select General, then make selections about
icons, log messages, opening files automatically for edit, and the length of the idle
period before timeout.

5. In the left pane of the Preferences dialog, select General, then make selections about
the Pending Changes window and the Merge Editor.

6. To save the configuration you have just set up, click OK to close the Preferences
dialog.

Selecting Perforce as the Version System

Once you have configured JDeveloper for use with Perforce, you can select Perforce as
the version system. This will specify a number of default settings which mean that all
team operations will default to Perforce as your chosen version system.

Setting Up and Configuring Source Control

6-10 Developing Applications with Oracle JDeveloper

To select Perforce as the version system:

• Choose Team > Perforce.

You can change this default selection at any time if your team changes to a different
version system at a later date.

How to Set Up Team System and JDeveloper
Oracle JDeveloper's Team System extension allows you to use the source control
features of Microsoft Visual Team System inside JDeveloper. Once you have
JDeveloper configured to work with Team System, you can add files to source control,
and check them in and out from the Applications windows.

To begin using Team System with JDeveloper, you must first create a workspace using
Team System software, and then populate this workspace with content from the Team
System server. Files are checked out to the workspace, where they can be worked on.
Files newly created within JDeveloper must be added to version control. Changed and
new files are made available to other users by checking them in to the Team System
server.

Before beginning to use Team System with JDeveloper, there are some initial steps you
need to follow:

1. Set up the Team System client software. See Setting Up Team System for Use with
JDeveloper.

2. Configure JDeveloper for use with Team System, including the preferences and
other settings for making Team System the source control system recognized by
JDeveloper. See Configuring JDeveloper for Use with Team System.

In practice, Team System (like any version control system) consists of operations that
you use at varying times depending on the place in the product lifecycle. For example,
if you create a new file, you'll need to add it to Team System control. Other operations
you may perform, depending on the stage of development, include:

• Checking out files from the server so that you can work on them. See Checking Out
Files in Team System.

• Making changes to a file saved in your Team System workspace, and make them
available to other users. See How to Check In Files to Team System.

• Using Team System's Shelving feature to save file changes in the Team System
server without having to check the files in. See Shelving and Unshelving Team
System Files.

• Resolving conflicts between your changes and changes made by your team mates
to your Team System files

• Checking in files to your Team System server.

Setting Up Team System for Use with JDeveloper

Using Team System with JDeveloper requires a setup procedure that includes
installing software, connecting to your server, and populating your workspace.

To set up Team System with JDeveloper:

1. Install the Team System server.

Setting Up and Configuring Source Control

Versioning Applications with Source Control 6-11

2. Install the Team System client software.

3. Connect the Team System client software to the Team System server.

4. Use the Team System client software to create one or more workspaces.

5. Use the Team System client software to populate the workspace(s) with content
from the Team System server.

Instructions for doing the above are given in the Team System online help.

Configuring JDeveloper for Use with Team System

Once you have set up Team System for use with Oracle JDeveloper, you are ready to
configure JDeveloper to use Team System. In addition to the steps in Setting Up Team
System for Use with , make sure you have already installed the JDeveloper Team
System VCS extension (from the Official Oracle Extensions and Updates center).

To configure JDeveloper for use with Team System, carry out the following activities
in JDeveloper:

• Connect to Team System as the JDeveloper versioning system.

• Set the workspace to use with JDeveloper.

• Create a JDeveloper project to hold the workspace files.

• Refresh the workspace folders in JDeveloper.

Selecting Team System as the Versioning System

Connecting to Team System as the default versioning system specifies that Team
System is the target for a number of actions from the Team menu.

To connect Team System as the versioning system:

• Choose Team > Connect to Team System.

This displays the Team System connection menu, from which you can select the
available operations. Detailed instructions for this are given in the Team System online
help.

Setting the Team System Workspace to use JDeveloper

Before beginning, you need to set your selected Team System workspace to use
JDeveloper.

To set the workspace to use with JDeveloper:

1. Choose Team > Team System > Set Workspace.

2. Select the required workspace from the list.

Creating a JDeveloper Project for the Workspace Files

Associating the JDeveloper project with the selected Team System workspace ensures
that the files you create and edit will remain part of the workspace your team is using.

To create a JDeveloper project to hold the workspace files:

1. Select File > New to open the New Gallery.

Setting Up and Configuring Source Control

6-12 Developing Applications with Oracle JDeveloper

2. Use the New Gallery to create a new application and project.

3. In the Applications window, select the newly created project and click the Add to
Project Content button in the toolbar.

This opens the Project Content page of the Project Properties dialog.

4. Use the Add button in the Java Content area to add the location of the workspace.

If your workspace contained Java sources, a dialog is displayed through which you
should confirm that you want the sources added to the project content.

To avoid confusion, you may wish to remove non-workspace locations from the
Java Content list.

5. Click OK to close the Project Properties dialog.

Once completed, refresh the workspace folders in JDeveloper by choosing Team >
Refresh Workspace Folders.

Getting Versions of Files from the Team System Server

JDeveloper lets you get (from the Team System server) a version of a file that is in the
Applications window. You must previously have used the get command in the Team
System client software to populate your workspace with source files.

You can use this procedure to obtain the following versions of files: the latest version;
files from a previously saved named changelist; files with a particular date stamp; files
from a previously created named label; files from a particular workspace version.

The version obtained from the Team System server will replace the version currently
in the Applications window.

To get versions of files from the Team System server:

1. In the Applications window, select the application, project or files to set the scope
of the Get operation.

2. Select Team > Team System > Get.

The Get dialog is opened.

3. Complete the dialog.

For information while using the dialog, press F1.

Adding Files to Team System Control

You can bring files under Team System source control. The files will be added to the
Team System server and made available to other users when you next check in the file.

To add files to Team System Control:

1. In the Applications window, select the file that you want to add to Team System
control.

2. Select Team > Add.

The Add dialog is opened.

3. Complete the dialog.

Setting Up and Configuring Source Control

Versioning Applications with Source Control 6-13

For information while using the dialog, press F1.

4. To add the file to the server and make it available to other users, check in the file.

Versioning Applications With Mercurial
Mercurial is a Source Control Management system designed for efficient handling of
very large distributed projects. Unlike Subversion, Mercurial works with distributed
repositories which are commonly used in many open source projects today and
support distributed development without any centralized control.The Mercurial
Plugin support enables you to manage changes to version-controlled files as you
work. You can call Mercurial commands on both files and directories in the Projects,
Files and Favorites windows.

The advantages of a distributed revision control system like Mercurial include:

• Better support for distributed teams by removing a centralized bottleneck

• Better scalability with large numbers of concurrent users

• After the initial clone, faster to work with, independent of a user's network
infrastructure

About Mercurial Visualization Features

JDeveloper provides several file status information tools that simplify the process of
working with version-controlled files, including:

• Color Coding. Enables you to view the current status of version-controlled files.

• Annotations. Enables you to view revision and author information for each line of
version-controlled files.

JDeveloper's Mercurial support is similar in style to its Subversion support. The main
difference is that Mercurial is a distributed revision control system. Therefore, you
typically begin by cloning an external repository to work with. This clone is a
complete copy of the repository including the revision history. You can clone this local
copy as often as you like. When you want, you can push your changes back to the
original repository provided you have permissions, or export your changes and send
them to the owner if you do not.

For further documentation on the Mercurial Plugin support and Mercurial itself, see
the following resources:

Mercurial Home: http://mercurial.selenic.com/wiki/

Understanding Mercurial: http://mercurial.selenic.com/wiki/
UnderstandingMercurial

Mercurial Man Pages: http://www.selenic.com/mercurial/wiki/
index.cgi/ManPages

How to Install Mercurial

Before you can take advantage of the Mercurial support, you need to have Mercurial
client software installed on your system. JDeveloper's Mercurial support works by
using the same commands as the Mercurial command line interface.

Mercurial is available through JDeveloper's Check for Updates feature. After you set
up Mercurial, you can run Mercurial commands from the Team > Mercurial menu at
the top of the JDeveloper main window.

Setting Up and Configuring Source Control

6-14 Developing Applications with Oracle JDeveloper

http://mercurial.selenic.com/wiki/
http://mercurial.selenic.com/wiki/UnderstandingMercurial
http://mercurial.selenic.com/wiki/UnderstandingMercurial
http://www.selenic.com/mercurial/wiki/index.cgi/ManPages
http://www.selenic.com/mercurial/wiki/index.cgi/ManPages

To install Mercurial:

1. Select Help from the main JDeveloper window, then Check for Updates.

2. On the first page of the Select Update Source wizard, make sure Search Update
Centers is selected.

3. Select Official Oracle Extensions and Updates.

4. Click Next.

The wizard updates with a list of extensions you can install.

5. On the Select Updates to Install page of the wizard, select the checkbox next to
Mercurial VCS Extension.

6. Click Next, then Finish.

The Mercurial extension installs. Installation is complete after you restart
JDeveloper.

You can also access the Check for Updates wizard by selecting Tools > Features >
Check for Updates. For more information, see Working with Extensions.

After the Mercurial client is set up, you can run Mercurial commands from the main
window by selecting Team > Mercurial.

How to Set the Path to the Mercurial Executable

After installing through Check for Updates, you may set the path to the hg.exe
executable file. hg.exe is the executable file for Mercurial. You only need to set the
executable file if is not on the system path.

To set the path to the Mercurial executable file:

1. On the main JDeveloper window, select Tools >Preferences.

2. In the left pane of the Preferences dialog, expand Versioning, then click on
Mercurial.

3. On the Versioning: Mercurial page you can select:

• The name of the executable that will be used to run Mercurial, for example,
hg.exe.

• One of the installations of hg.exe in the system or different revisions of it, if
they exist.

• Some other location of hg.exe if, for example, it isn't on the system path.

How to Clone an External Mercurial Repository

A repository is a directory that contains source files, along with their complete
histories. Cloning makes a complete copy of another repository so that you have a
local, private version of it to work with. You can create a local repository in any
directory where you have write permission.

When cloning, you effectively create a copy or clone of the entire repository to work
with in the IDE. To do so, you need to be able to access a Mercurial repository that you
have read privileges for.

To clone a Mercurial repository:

Setting Up and Configuring Source Control

Versioning Applications with Source Control 6-15

1. On the main JDeveloper window, select Team > Mercurial > Clone.

2. On the Clone Repository window, enter the Source Location of the repository.

This is the location of the repository that is to be cloned. You can enter either a
URL or local path, for example, http://selenic.com/hg.

3. In the Destination field, enter a destination for the local repository, for example,
C:/JDeveloper/mywork/hg1.

4. Enter a User Name and Password for the remote repository, if required.

5. Click OK.

How to Place Projects Under Version Control

You can place any project you are working on under version control. This creates a
new local Mercurial repository in the current directory and imports your sources into
it. The repository files are placed under a .hg directory under the project directory.

To place a project under version control:

1. In the Projects window (located on the left side of JDeveloper), select an
unversioned project.

2. From the JDeveloper main window, select Team > Mercurial > Initialize.

You can view files being added to the repository and their status from the
Messages Log window.

Once complete, all the project files are registered in the repository as Locally New.

3. Select Mercurial > Commit from the project's context menu to commit these
project files to the Mercurial repository.

4. Enter a message about the change being committed in the Commit Message text
area, and then click Commit.

The committed files are placed together with the .hg directory in the Mercurial
repository directory.

How to Merge File Revisions

You can merge changes between repository revisions and your local working copy.
The current working directory is updated with all changes made to the requested
revision since the last revision.

To merge file revisions:

1. From the JDeveloper main window, select Team > Mercurial > Initialize.

2. In the Working Directory field of the Merge Working Directory dialog, enter the
top-level directory in the repository, for example, c:\JDeveloper\mywork
\hg1.

3. Check the Use Revision checkbox and enter the revision number.

If you don't know the number for the revision, click Select Revision. A dialog
displays the available revisions number listed from most recent, the revision date,
the user who made the revision, and comments.

Setting Up and Configuring Source Control

6-16 Developing Applications with Oracle JDeveloper

How to Commit Changes

Once your working copies of version-controlled files have been edited, you can then
place changes into the repository using the Mercurial Commit action.

It's a good idea to update any copies you have against the repository prior to
performing a commit in order to ensure that conflicts do not arise. This updates the
local repository to include the latest changes.

To perform an update on sources that you have modified:

• In the JDeveloper main window, select Team > Mercurial > Update.

To commit changes in local files to the repository:

1. Select a version-controlled file (for example, from the Projects window) and right-
click.

2. Select Versioning > Commit from the context menu.

The Commit Dialog opens, listing all files that contain local changes.

3. Enter a commit message in the Commit Message text area, indicating the purpose
of the commit.

You can also select either a comment template you created in Tools > Preferences
> Versioning > Templates or one of the comments that you have previously
entered in the Commit dialog.

4. Click OK.

JDeveloper executes the commit and sends your local changes to the repository.
You can view files being committed to the repository in the Messages log.

Use Commit All to view all the changed files that you can commit to the
Mercurial repository. You can commit selected files or all outstanding changes.
Use the Shift or Ctrl keys to select which files you want to commit.

Setting Up and Configuring a Source Repository
After initializing your version control system in JDeveloper, the next important step is
to configure the source repository. Typically, you maintain a local repository,
containing local copies of the files you are working with, on your own system. You
typically check out the files you want to work on, make edits to the versions on your
local system, and then check the files back in to the remote repository. Your version
control system typically tracks, or at least notifies you of, changes and conflicts if more
than one person is editing a file at a time. The menu options and details vary from
system to system; these variations are described individually in each of the following
sections.

Before beginning to use Subversion with JDeveloper, you will need to load your
repository with content so that you have local versions to edit. For more information,
see How to Load the Repository with Content.

How to Create a Source Repository
Creating a repository is something you typically only do once per project/release;
once you have created the repository, you check files in and out as part of your daily
work routine. In many teams, the source repository is created by a team member
assigned to the role of administrator for the repository; if this is the case, you may be

Setting Up and Configuring a Source Repository

Versioning Applications with Source Control 6-17

able to skip this section and rely instead on accessing the existing source repository for
checking out and checking in files.

The details of creating and connecting to your source repository differ depending on
the versioning software your team uses. The following sections include instructions on
creating source repositories for the versioning systems available to JDeveloper.

Creating a Subversion Repository

In most cases, you will connect to your team's Subversion repository. As you develop
your projects and applications, you will check files out from the Subversion
repository, modify them, and check them back in. This is the typical, and
recommended, practice for using Subversion.

Depending on your installation, however, you may find it necessary to create a
Subversion repository on your local file system through JDeveloper. A connection to
the repository will be created at the same time.

JDeveloper will try to use the file:/// protocol to access the newly created
repository. SVNKit, the Subversion client installed with JDeveloper, supports the
file:/// protocol. If you are using a Subversion client that does not support the
file:/// protocol, you will need to use a different access method (http://,
https://, svn:// or svn+ssh://). Consult the Subversion documentation for how
to do this.

To create a Subversion Repository:

1. Choose Team > Create Local Repository.

If your installation does not support local repository creation, you will see an
error message. Otherwise, the Create Subversion Repository dialog will open.

2. Complete the Create Subversion Repository dialog.

To obtain help while using the dialog, press F1 or click Help.

To browse a Subversion Repository:

1. Expand the connection to your Subversion repository in the Versions window.

2. Double-click on a folder to view its contents.

3. Right-click on an element to view available operations.

Initializing a New Git Repository

If you have new files that are not already part of any existing Git repository, you need
to initialize a Git repository.

You initialize a Git repository when you have a new project with all new files. This is
typically done once per project, at the beginning. As an ongoing task, you are more
likely to add new files to an existing Git repository (see Adding New Files to an
Existing Git Repository), or check out files, edit them, and then commit the changes
back to the Git repository (see Committing a Change to the Git Repository).

To initialize a Git repository:

1. Select Team > Git > Initialize. This displays the Initialize Repository dialog.

2. Enter the path to the local repository, then click OK.

Setting Up and Configuring a Source Repository

6-18 Developing Applications with Oracle JDeveloper

Making a Local Copy of an Existing Git Repository

If your team already has a central Git repository and you wish to make a local copy of
it for your work, you can clone the Git repository as described here.

The following protocols can be used to clone Git repositories:

• Git (git://). The simplest way of connecting to the Git server. The connection is
not authenticated.

• HTTP (http://). HTTP is another simple way of connecting to the server. http://
connections are insecure even with authentication as the files will be transferred in
clear.

• HTTPS (https://). Connects to the server using password authentication.
https:// connections are fully secure and will work through a web proxy.

• Secure Shell (ssh://). This uses public key authentication, and you will need to
generate an authentication key using a utility such as ssh-keygen. This is the
most secure way of cloning an existing Git Repository. However, it will require
additional setup if you are trying to connect through a web proxy.

To clone a Git repository:

• Select Team > Git > Clone.

This opens the Clone from Git Wizard. Enter the information requested on each
screen. You can press F1 or click Help at any time for more information.

Adding New Files to an Existing Git Repository

Adding new files to an existing Git repository involves selecting, then adding the files,
and finally committing them for the changes to be incorporated into the repository.

To add new files to an existing Git repository:

1. Select the files to be added.

2. Select Team > Git > Add (or Team > Git > Add All). This displays the Add dialog.

3. Click OK.

Creating a Local CVS Repository

From within JDeveloper, you can create a new CVS repository on your local file
system. This feature is available only if you are using external CVS client software,
rather than the internal CVS client installed as part of the CVS extension to
JDeveloper.

To create a local CVS repository:

1. Select Team > CVS > Create Local Repository.

2. In the Repository Folder box, enter the path of a directory where you want the new
local repository to be created.

You can specify or select an existing directory if it is empty, or you can specify a
new directory. If the directory you have specified exists and is not empty, you will
see a warning dialog telling you to specify an empty or new directory for the
repository.

Setting Up and Configuring a Source Repository

Versioning Applications with Source Control 6-19

3. If you want to create a connection to the local repository that you are creating,
make sure that the Create Repository Connection box is checked.

The connection will be given a name in the form :local:{path}. If you later want to
change this name, you can do so through the CVS Navigator: from the context
menu of the connection name, open the properties dialog and, on the Name tab,
overtype the existing name with a new one.

4. Click OK. You will see a confirmation dialog when the new local repository has
been created.

Importing JDeveloper Project Files Into CVS

Before you can start using your JDeveloper project with CVS, you have to import the
project files into the CVS repository. This copies all your folders and files to the CVS
repository and places them under source control.

You import your project files into the CVS repository using the Import to CVS wizard.

To use the Import to CVS wizard:

1. Choose Team > CVS > Import Module. The Import to CVS wizard is displayed.

2. Complete the import as prompted by the wizard. For help when using this wizard,
press F1 or click Help.

Before you can change any files, you have to copy them back to your machine, where
you can work on them locally.

Bringing Files Under Perforce Control

Perforce uses a local directory structure to receive files that are going to be placed
under formal source control. This location is called the “Perforce client workspace".
Files created in (or moved into) JDeveloper must be stored in this location. Once files
are in your Perforce client workspace, you bring them fully under source control by
submitting them to a central location called the “Perforce depot". Files must be
submitted to the Perforce depot before they can be versioned and accessed by other
users.

Files that you create within JDeveloper, or files that you bring into JDeveloper from
outside, must be brought under Perforce control before you can use the JDeveloper
Perforce versioning facilities with them.

If you have an existing JDeveloper project that you wish to bring under Perforce
control, use the Import to Perforce wizard.

To put individual JDeveloper files under Perforce control:

1. Select the files in the Applications window and choose Team > Perforce > Open
for Add.

The files can be your work files, or they can be the application and project files
used by JDeveloper.

The Add Files to Perforce dialog is displayed with the files listed.

2. If you wish to lock the files, making them unavailable to others for editing, check
the Lock Files box.

3. To add the files to Perforce control, click OK.

Setting Up and Configuring a Source Repository

6-20 Developing Applications with Oracle JDeveloper

The files are now shown in the Applications window with a red cross, meaning
that they are stored in your Perforce client workspace but not yet in the Perforce
depot. Files must be added to the Perforce depot before they can be versioned and
accessed by other users.

4. To add files to the Perforce depot, select the files in the Applications window and
choose Team > Perforce > Submit.

The Submit Files dialog is displayed with the files listed.

5. Add your versioning comments in the Comments box.

You will later be able to see these comments when viewing the list of versions of a
particular file.

6. To submit the files to the Perforce depot, click OK.

The files are now shown in the Applications window with a green dot, indicating
that they are known to the Perforce depot and are up to date.

To bring files created outside JDeveloper under Perforce control:

1. Copy or move the files into an existing \src directory under the JDeveloper file
storage directory (which should be the same as the Perforce client workspace).

2. Refresh the application or project.

The files should now appear in the Applications window, within the project whose
\src directory you used. The files are marked with a white-on-blue diagonal cross,
showing that they are known to JDeveloper but not under source control.

3. Bring the files under Perforce control as described in the previous procedure.

How to Connect to a Source Control Repository
Once the source control repository has been created (either by you or by a team
administrator), you typically connect to it from the Team menu, then selecting your
versioning system from the Connect To... option.

Viewing Subversion Repository Content

You can view the current content of the Subversion repository through the Versions
window. The nodes under your selected Subversion connection unfold to reveal the
structure and file content of the Subversion repository.

You can open a read-only version of a Subversion repository file by choosing Open
from its context menu. This will let you see what changes have been made to the files
in the Subversion repository since you checked out or updated your local versions.

Folders in the Subversion repository, visible from the Versions window, offer the
following operations:

New
Opens the new gallery, from which you can create applications, connections, projects,
and other entities.

New Remote Directory
Opens the Create Directory dialog, which lets you create a new directory to associate
with the URL of the element on which you right-clicked.

Setting Up and Configuring a Source Repository

Versioning Applications with Source Control 6-21

Delete
Removes the selected element immediately from the JDeveloper view, without a
confirmation dialog. Use with caution.

Check Out
By default, opens the Check Out from Subversion dialog.

If you have configured JDeveloper for a different version control system, Check Out
will open the checkout dialog for your selected version control software.

Logging In to CVS

Some types of connection to a CVS repository require you to log in independently of
making the connection. If you cannot access any CVS features even though a CVS
connection exists, you need to log in.

To log in to a CVS repository:

1. In the CVS Navigator, select Team > Log In.

If the Log In menu option is unavailable but the Log Out option is available, you
are already logged in.

2. In the Log In To CVS dialog, enter your password. If you want your password to
be remembered and supplied automatically when you connect to the CVS
repository in future, check the Connect Automatically on Startup box.

3. Complete login by clicking OK.

Accessing Local Files with CVS

If JDeveloper finds a path to a CVS client on your machine, the JDeveloper CVS
preferences will by default be set to use that CVS client (rather than the internal CVS
client installed with JDeveloper). If no path to a CVS client is found, the preferences
will be set to use the internal CVS client.

The internal CVS client cannot be used to access a local CVS repository (that is, one on
your own machine). If you wish to access a local CVS repository, you must install a
full client/server version of CVS onto your machine and set the JDeveloper CVS
preferences accordingly.

If you wish to use an external CVS client, we recommend the following:

• CVSNT 2.0.58a or higher for Windows platforms - http://march-hare.com/
cvspro/

• cvshome's CVS 1.11.9 for other platforms

Setting Up and Configuring a Source Repository

6-22 Developing Applications with Oracle JDeveloper

http://march-hare.com/cvspro/
http://march-hare.com/cvspro/

Note:

You may already have a CVS installation that is client-only. This will not be
able to access a local CVS repository, and you should install a full client/
server version instead. If you are unable to expand the connections node in the
CVS Navigator or open the list of modules from the Get Module List button in
the CVS wizards, you probably have client-only CVS software that is
attempting to access a local CVS repository. You can check which type of CVS
installation you have by typing cvs -v at the CVS command prompt. A
client-only installation will display (client) at the end of the version
information line, whereas a client/server installation will display (client/
server).

To access CVS through a firewall:

If you are accessing a CVS server through a firewall, you can connect to it if:

• The firewall allows TCP/IP communication on the CVS port

• You use a CVS client that supports HTTP Tunneling (for example, CVSNT)

If there is an authentication failure when you log in, try using the CVS command line
to connect. If this fails, the connection may be being blocked by the firewall, and you
should contact your network administrator.

If necessary, you can alter the value of the CVS root variable to support connection
through a firewall.

Handling CVS File Types

The CVS administrator has to configure the CVS repository for the automatic handling
of binary files produced by JDeveloper, such as image file formats.

Where other file types are updated, CVS attempts to merge them. If you do not want is
to occur, you must change the configuration of the CVS repository.

For more information about CVS, refer to the CVS documentation, or see the CVS
website, http://www.cvshome.org. This is also where you can download CVS
software.

Connecting to Perforce

Before Perforce operations become available within JDeveloper, you must connect to
it.

To connect to Perforce manually:

1. Choose Team > Connect to Perforce.

The Connection dialog is opened. The username, port and client information
should have been derived automatically and should now appear in the Connection
dialog.

2. If not already present, enter the correct username, port and client information.

3. If the Perforce server has been set up with password protection, enter the
password. (If you want the password to be remembered for the next time you make
a connection, check the Remember Password box.)

Setting Up and Configuring a Source Repository

Versioning Applications with Source Control 6-23

http://www.cvshome.org

4. If you want to test the connection to the Perforce server, click the Test Connection
button. The results will be displayed in the rectangular text area.

5. To complete the connection, click OK.

Making Multiple Connections to Perforce

In some development environments, you may need to make more than one connection
to Perforce. For example:

• Your organization uses one Perforce server for development and another Perforce
server for test.

• You wish to connect using two different Perforce clients.

• You wish to use different Perforce user IDs.

The Perforce extension to JDeveloper permits all these operations. You begin by giving
each Perforce connection a name as you create it.

To create a named Perforce connection:

1. Choose Team > Connect to Perforce.

The Connection dialog is opened. The username, port and client information
should have been derived automatically and should now appear in the Connection
dialog.

2. If not already present, enter the correct username, port and client information.

3. Enter a name to use for this Perforce connection. Make sure it is different from any
other Perforce connection that you currently have open.

4. If the Perforce server has been set up with password protection, enter the
password. (If you want the password to be remembered for the next time you make
a connection, check the Remember Password box.)

5. If you want to test the connection to the Perforce server, click the Test Connection
button. The results will be displayed in the rectangular text area.

6. To complete the connection, click OK.

Note that your Perforce changelist will display the connection that applies to each file
in the changelist. For more information on changelists, see How to Use Change Sets
and Changelists.

Configuring JDeveloper for the Source Repository
If you are using Subversion, which is included by default in JDeveloper, you do not
need to configure JDeveloper for your source repository. You only need to connect to
the repository, then you update your local working copy, check files out to work on
them, and then check in your changed files on completion. Other version control
systems, however, have configuration requirements, which require you to configure
them, and JDeveloper, before use.

How to Configure CVS For Use with JDeveloper

In addition to setting up JDeveloper to be able to use CVS, there are certain tasks you
need to perform to make CVS usable with JDeveloper. Some of these tasks may be

Setting Up and Configuring a Source Repository

6-24 Developing Applications with Oracle JDeveloper

performed by your administrator. You should always check to make sure which of
these tasks have been performed in your installation.

In general, you need a local CVS repository for storing files as you are working on
them. You may also need to configure a secure shell (SSH) for communicating with
CVS, and you may need to choose a character set. Finally, you will need to log in to
CVS.

JDeveloper supports SSH Levels 1 and 2 as access methods for CVS repositories.

Configuring for SSH Level 1 (SSH)

JDeveloper does not provide a direct way of using SSH Level 1 as an access method
for the CVS repository. It is however possible to configure SSH Level 1 so that it can be
used for remote shell access.

To configure SSH Level 1 to enable remote shell access:

1. Generate public and private keys using the command: ssh-keygen

2. Concatenate the ~/.ssh/identity.pub public key file with ~/.ssh/
authorized_keys on the machine with the CVS repository.

Before running JDeveloper and attempting to use CVS with SSH Level 1, users should
be explicitly authorized and the environment correctly configured. Follow the steps
below to configure the environment correctly.

To configure the environment for SSH Level 1:

1. Set the CVS_RSH environment variable to the location of the SSH client.

2. At the UNIX command line, enter ssh-agent {shell}, and then press Enter.

3. At the UNIX command line, enter ssh-add, and then press Enter.

4. Start JDeveloper.

5. Select External as the CVS access method when using the CVS Connection Wizard.

Configuring for SSH Level 2 (SSH2)

JDeveloper provides a direct way of using SSH2 as an access method for the CVS
repository.

To use SSH2 for remote shell access:

1. On the JDeveloper CVS preferences page, set the CVS Client preference to Internal
to JDeveloper [...].

2. Start the CVS Connection Wizard.

3. While using the CVS Connection Wizard, on the Connection page, choose Secure
Shell via SSH2 as the Access Method. For more help at this stage, press F1 or click
Help.

4. On the Connection page, click Generate SSH2 Key Pair. This opens the Generate
SSH2 Key Pair dialog. For help using this dialog, press F1 or click Help.

5. After generating the SSH2 key files, an information dialog will appear that explains
where to install the files.

Setting Up and Configuring a Source Repository

Versioning Applications with Source Control 6-25

6. Install the SSH2 key files as instructed in the dialog.

7. Complete the CVS Connection Wizard to create the CVS connection.

If you are using an internal CVS client, you can generate SSH2 key files at any time by
choosing Team > CVS > Administration > Generate SSH2 Key Pair. If you are using
an external CVS client, this menu option is unavailable.

Editing and Watching Files in CVS

Editing and watching are available only when an external CVS client executable is
used.

These procedures allow you to obtain and release an editor on a file, to know who else
in your team is editing files, and to know who is watching for files to be edited. Two
or more developers retain the ability to edit the same file at the same time.

To set up JDeveloper to use editing and watching:

1. Open the preferences page obtainable from Tools > Preferences | Versioning |
CVS.

2. Ensure that External Executable is selected and that valid details are entered.

3. Select Run CVS in Edit/Watch Mode.

4. Open the preferences page obtainable from Tools > Preferences | Versioning |
CVS | General.

5. Deselect Automatically Make Files Editable.

To obtain an editor on a file:

1. With the file selected in the Applications window, select Team > Edit.

2. Check that you want the operation to apply to all of the files highlighted in the file
selection box.

3. To set up a watch for this file, select the Set Watch Actions checkbox and select a
watch action from the drop-down list.

4. Click OK.

To release an editor on a file (to unedit a file):

This action reverses changes made in the current edit. Any local file modifications will
be lost when the editor is released.

1. With the file selected in the Applications window, select Team > Unedit.

2. Check that you want the operation to apply to all of the files highlighted in the file
selection box.

3. Click OK.

To turn on or turn off the file watching facility:

1. In the Applications window, select a project containing files about which you
want to be notified.

2. Select Team > Watch.

Setting Up and Configuring a Source Repository

6-26 Developing Applications with Oracle JDeveloper

3. In the Watch CVS Files dialog, choose Turn On Watching or Turn Off Watching
from the Command Type drop-down list.

4. Click OK.

To add yourself to the list of people who receive notification of work done on files:

1. In the Applications window, select the project containing the files about which you
want to be notified.

2. Select Team > Watch.

3. Check that you want the operation to apply to all of the files in the file selection
box.

4. On the Watch Settings tab, choose Add File Watch as the Command Type from the
drop-down list.

5. Optionally, check the Set Watch Actions checkbox and choose the particular actions
that you want to be notified about.

6. Click OK.

To remove yourself from the list of people that receive notification of work done on
files:

• Follow the procedure for adding yourself to the list (above), but choose Remove
File Watch from the Command Type dropdown list.

To see who is watching for changes being made to files:

• Select Team > Edit Notifications.

The Edit Notifications window is opened. The Watchers tab shows the files that are
being watched and the user(s) who are currently watching for changes.

To see who is currently editing files:

• Select Team > Edit Notifications.

The Edit Notifications window is opened. The Editors tab shows the files that
currently have editors on them and the user(s) who have obtained those editors.

How to Load the Repository with Content
Before you can use the repository for your selected version control system, you
typically have to load the repository with the content your team will be working on.
You might need to do this when:

• Your team begins to work on a new version of the project (especially if you are
working on more than one version concurrently, such as a patch set and a major
update)

• Your team is starting an all-new project, either by beginning with an older version
or with file templates

• You are performing a clean installation of JDeveloper on a new workstation that
does not yet contain a local file system to store your repository's files as you work
on them

Setting Up and Configuring a Source Repository

Versioning Applications with Source Control 6-27

Normally, loading the repository with content is done once per project. After this
initial load, you will regularly update the files and folders in your local repository to
ensure that your files are up to date with the work of your team.

Importing JDeveloper Files Into Subversion

Files that you created within (or brought into) JDeveloper before using Subversion
control must be imported into the Subversion repository, and then checked out from
it.

To import an existing JDeveloper project or application into Subversion:

1. In the Applications window, select the application or project that you want to
import into Subversion.

2. Select Team > Import Files.

The Import to Subversion wizard opens.

3. Complete the wizard. For help while using the wizard, press F1 or click Help.

If you allowed the wizard to check out the imported files, the files are shown in the
Applications window with a version number next to them. You may have to
refresh the view before the files are shown.

If you did not allow the wizard to check out the imported files, you must now
check them out before you can work on them.

Importing a Project to Subversion

You can also import an entire project into Subversion using the JDeveloper Version
Application feature.

To import files using Version Project:

1. Select the application you wish to add to version control.

2. Select Team > Version Project. This opens the Import to Subversion wizard.

3. Complete the wizard. For help while using the wizard, press F1 or click Help.

If you allowed the wizard to check out the imported files, the files are shown in the
Applications window with a version number next to them. You may have to
refresh the view before the files are shown.

If you did not allow the wizard to check out the imported files, you must now
check them out before you can work on them.

After you import files into Subversion using the Version Application feature, you will
notice that Subversion creates two directories, one as your work area and one as a
backup directory.

For example: after creating a new application called Catalog, select Versioning >
Version Application > Subversion. Be sure to select the Perform Checkout from the
Options page, then finish the wizard.

When the wizard completes, browse to the local directory that you have specified as
the Source Directory for this application in Subversion. You will see two directories
listed there: Catalog.svn-import-backup and Catalog.svn-import-
workarea.

Setting Up and Configuring a Source Repository

6-28 Developing Applications with Oracle JDeveloper

JDeveloper (and Subversion) will use the Catalog.svn-import-workarea
directory for file access, checkout/checkin, and other activities. You should avoid
editing, moving, or manipulating files in those directories outside of JDeveloper and
Subversion.

Adding a File to Subversion Automatically

When you create a new file in JDeveloper that is part of a local working copy (that is,
an application that has been versioned and checked out of your SVN repository), you
need to add and then commit the file to Subversion control before you can use the
JDeveloper Subversion facilities with it. The preferred method is to set up JDeveloper
to do this automatically, through the Preferences menu.

To add new files on commit:

1. Select Tools > Preferences > Versioning > Subversion > General.

2. Select Automatically Add New Files On Committing Working Copy.

3. Click OK.

Adding Files Individually to Subversion

You can also place individual files under Subversion control.

To place individual files under Subversion control:

1. Select the files in the Applications window and choose Team > Add.

The files can be your work files, or they can be the application and project files
used by JDeveloper.

The Add to Source Control dialog is displayed with the files listed.

2. To add the files to Subversion control, click OK.

The files are now shown in the Applications window with a black cross, meaning
that they are stored in your JDeveloper workarea but are not yet committed to the
Subversion repository. Files must be committed to the Subversion repository before
they can be versioned and accessed by other users.

3. To commit files to the Subversion repository, select the files in the Applications
window and choose Team > Commit.

The Commit Resources dialog is displayed with the files listed.

4. Add your versioning comments in the Comments box.

You will later be able to see these comments when viewing the list of versions of a
particular file.

5. To commit the files to the Subversion repository, click OK.

The files are now shown in the Applications window with an orange dot,
indicating that they are known to the Subversion repository and are up to date.

Moving Files from Remote Repositories in Git

While you use your local Git repository for changes made while editing, it is
frequently necessary in a distributed team to work with remote repositories. Push, pull
and clone are three concepts that apply to remote Git repositories.

Setting Up and Configuring a Source Repository

Versioning Applications with Source Control 6-29

Fetching and pulling are two different methods of obtaining content from a remote
repository. When you fetch from a remote repository, Git loads all changes into your
local repository but it does not change any of your existing branches. This way, you
can inspect the changes and merge them as appropriate.

To copy from a remote repository without changing existing branches:

1. Select Team > Git > Fetch

2. Follow the instructions on the wizard screens to specify the remote repository and
remote branch you wish to fetch.

3. Click Finish to fetch the files from the remote repository.

Pulling, on the other hand, copies files from the remote repository and updates the
HEAD branch of your local repository.

To copy changes from your local repository to the remote repository, use the Push
command.

Importing JDeveloper Files Into Perforce

Perforce uses a local directory structure to receive files that are going to be placed
under formal source control. This location is called the “Perforce client workspace".
Files created in (or moved into) JDeveloper must be stored in this location. Once files
are in your Perforce client workspace, you bring them fully under source control by
submitting them to a central location called the “Perforce depot". Files must be
submitted to the Perforce depot before they can be versioned and accessed by other
users.

Before you can start using existing JDeveloper project and source files with Perforce,
you have to import them into your Perforce client workspace. Once they are in your
Perforce client workspace, you bring them fully under source control by submitting
them to the Perforce depot.

You import JDeveloper project and source files into your Perforce client workspace
using the Import to Perforce wizard.

To use the Import to Perforce wizard:

1. If you have not already done so, connect to Perforce by choosing Team > Connect
to Perforce.

2. In the Applications window, select the JDeveloper project that you want to bring
under Perforce control.

3. Choose Team > Import Project. The Import to Perforce wizard is displayed.

4. Complete the import as prompted by the wizard. To obtain more information
when working with the wizard, press F1.

The project and files will be shown in the Applications window. If you have chosen
to display overlay icons, these will indicate the current source control status of the
files.

5. To bring the files fully under Perforce source control, submit them to the Perforce
depot.

Setting Up and Configuring a Source Repository

6-30 Developing Applications with Oracle JDeveloper

Updating a Project, Folder, or File in CVS

The CVS update operation updates your local files with data in the CVS repository.
Alternately, you can choose to completely replace your local files with those held in
the CVS repository.

You can update individual files (including project files), or you can update the entire
contents of a project folder.

You can view the contents of the CVS repository through the CVS Navigator. The
nodes under CVS Server unfold to reveal the structure and file content of the CVS
repository. You can open a read-only version of a CVS repository file by choosing
Open from its context menu. This will let you see what changes have been made to the
files in the CVS repository since you checked out or last committed your local
versions.

To update an individual file (including a project file):

1. Select the file(s) in the Applications window, and then choose Team > Update.

2. Set the options as required. For information about these options, press F1 or click
Help.

3. To update all the files listed, click OK.

To update the contents of a project folder:

1. Select the project folder(s) in the Applications window and then, from the context
menu, choose Update Project Folders.

2. Set the options as required. For information about these options, press F1 or click
Help.

3. To update all the files listed, click OK.

To update files shown in the Pending Changes window:

1. With the Pending Changes window in Incoming Changes mode, select the files that
you want to update.

To obtain more information about the Pending Changes window, press F1 or click
Help.

2. Click the Update button.

Note:

For the Pending Changes window to be populated with candidates, the project
containing those candidates must be open. If you do not see a file that you
expect to see, open the project (File > Open > Project, then select your
project).

How to Create a WebDAV Connection
Web-based Distributed Authoring and Versioning, or WebDAV, is an extension to
HTTP which allows users to edit and manage files on WebDAV-enabled servers in a
collaborative fashion. WebDAV connections in JDeveloper allow you to view files
hosted on WebDAV servers in the same way as you would files on the local file

Setting Up and Configuring a Source Repository

Versioning Applications with Source Control 6-31

system. Files located on WebDAV servers, accessed using WebDAV connections in
JDeveloper, can be viewed in the same way as files stored on the local file system or
LAN.

As WebDAV clients provide access using HTTP, files can be accessed through
firewalls (configured to support WebDAV extensions) that would otherwise prevent
FTP file transfer. The JDeveloper read-only implementation of WebDAV supports the
current WebDAV 1.0 standard, which does not support versioning. As a WebDAV
client, JDeveloper can connect directly to any Oracle Internet File System, allowing
you to view WebDAV files from the database.

WebDAV Server Requirements

You must run a WebDAV server to use JDeveloper as a WebDAV client. The WebDAV
server must be one of the following:

• Apache 1.3.19 (or above)

Note:

If the Apache server is version 1.x, the mod_dav module must also be
installed.

• A server that conforms to the WebDAV 1.0 standard

Note:

If you access the Internet through a firewall, it must be configured to process
the extended HTTP commands used by WebDAV.

If your web server is configured to redirect URLs to a different server (for
example, if you are using JkMount in Apache to redirect requests for certain
file extensions to Tomcat), be aware that WebDAV will not be available for
those resources if the server you are redirecting to does not support WebDAV
in that context.

If you'd like to find out more about WebDAV, see the following Web sites:

• http://www.webdav.org

• http://httpd.apache.org/docs-2.1/mod/mod_dav.html

Creating a WebDAV Connection

WebDAV connections created in JDeveloper allow you to view files and folders as part
of a JDeveloper project.

Note:

The same URL cannot be used for more than one WebDAV connection on the
same JDeveloper client.

To create a WebDAV connection in JDeveloper:

Setting Up and Configuring a Source Repository

6-32 Developing Applications with Oracle JDeveloper

1. In the New Gallery, choose General > Connections > WebDAV Connection, then
click OK.

2. Use the WebDAV Connection dialog to create a connection.

For more information while using the dialog, press F1.

Accessing a WebDAV-Enabled Server Via a Proxy Server

If you access the internet via a proxy server you need to configure JDeveloper before
accessing WebDAV-enabled servers on the internet.

To access a WebDAV-enabled server via a proxy server:

1. Check with your network administrator to ensure that your proxy server is
WebDAV-enabled.

2. In JDeveloper choose Tools > Preferences, click Web Browser and Proxy in the left
pane of the Preferences dialog box, make sure that the Use HTTP Proxy Server
checkbox is checked, then enter the details for the proxy.

3. If the WebDAV-enabled server you want to access is inside your firewall and you
do not need to go through your proxy server to access it, add the name of the
WebDAV server to your default web browser's proxy exceptions list. This is
normally set on the browser's preferences/settings page with the other proxy
settings.

Modifying a WebDAV Connection

WebDAV connections are shown in the Application Resources section of the
Applications window, listed under the Connections node.

Existing WebDAV connections can be modified.

To modify a WebDAV connection:

1. Right-click the WebDAV connection that you want to modify.

2. Choose Properties.

3. On the WebDAV Connection Properties dialog, change the details of the WebDAV
connection.

For help while using the dialog, press F1.

4. Click OK.

Refreshing a WebDAV Connection

WebDAV connections are shown in the Application Resources section of the
Applications window, listed under the Connections node.

To ensure that the folders and files accurately reflect the current contents of the
WebDAV server, you can manually refresh the display of a WebDAV connection.

Note:

All folders and files listed for the WebDAV connection are refreshed. The
properties of the folders and files, and their contents, are refreshed.

Setting Up and Configuring a Source Repository

Versioning Applications with Source Control 6-33

To refresh the entire contents of a WebDAV connection:

1. Right-click the WebDAV connection that you want to refresh.

2. Choose Refresh.

Deleting a WebDAV Connection

WebDAV connections are shown in the Application Resources section of the
Applications window, listed under the Connections node.

Deleting a WebDAV connection from JDeveloper does not affect any of the files or
folders on the WebDAV server itself.

To delete a WebDAV connection:

1. Right-click the WebDAV connection you want to delete.

2. Choose Delete.

You can subsequently recreate the connection, in which case the files and folders that
were part of it will be shown beneath it again.

Working with Files in Source Control
As a general rule, your workflow in the version control system your team uses will
follow this basic format:

• Check out files from the repository

• Make changes

• Check in (or commit) files back to the repository

In some circumstances, you may find that other team members have been editing the
same files that you are committing. This requires resolving file conflicts.

In addition, many version control systems allow you to lock a file so that other users
cannot check it out. This prevents you from having file conflicts which need to be
resolved.

How to Check Out Files
Commonly, your version control system requires you to check out a file from the
repository before you begin making changes to it. This logs your access to the file and,
in many instances, locks the file you have checked out to prevent other team members
from accessing it while you are editing it. This can help prevent problems where
multiple team members make conflicting edits to the same file.

Checking Out Files from the Subversion Repository

To begin making edits and revisions to files in your project, you check out the files you
will be working with. It is recommended that you check out the entire application
from the Subversion repository, so that you will have access to all files in that
application in your local work area. Subversion uses the term modules to refer to the
application it is recommended you check out.

Working with Files in Source Control

6-34 Developing Applications with Oracle JDeveloper

Note:

With Subversion, there is no "check in" procedure, so you do not check in files
that you have updated and check them out again when you next want to work
on them. Instead, when you have finished working on your local copies of
files, you commit them to the Subversion repository to bring the files up to
date.

When you check out Subversion files, they are copied from the Subversion repository
to a new location (specified by you) on your local machine. This location and the files
within it constitute the Subversion "working copy."

To check out modules from the Subversion repository:

1. In the Versions window, select the repository node or folder containing the files
that you want to check out.

2. Choose Team > Subversion > Check Out.

If there is no current connection to a Subversion repository, the Create Subversion
Connection dialog is opened for you to create one.

The Check Out from Subversion dialog is displayed. To obtain more information
when working with the dialog, press F1 or click Help.

3. Make sure that the Subversion connection that the dialog displays is the correct
connection (if you have more than one Subversion connection or repository).

4. Browse to the path in the Subversion connection containing the application files
you wish to check out.

5. Enter the destination in your work area to which you wish the checked-out files to
be copied, or click Browse to navigate to your local work area.

6. You have the option of checking specific tags, if your team uses them.

7. If you wish to check out files within folders contained by this Subversion module,
make sure to select Depth.

When you have made all your selections, click OK.

Checking Out Files in Git

Checking out a file from your Git repository makes that file available for changes and
edits. You can also specify the revision you wish to check out.

To check out a file:

1. Select Team > Git > Checkout. This displays the Git Checkout Revision dialog.

2. Enter the branch from which you wish to check out the file. To browse from a list of
available branches, click the Branch button.

3. Select the tag (optional) you wish to check out. To view a list of tags, click the Tag
button, then select the desired tag.

4. Specify the commit ID (optional) for the checkout. To view a list of commit IDs
used in your repository, click the Select Commit button, then choose from the list of
commit revisions.

Working with Files in Source Control

Versioning Applications with Source Control 6-35

5. Optionally, create a new branch for the checkout.

6. When you have made all your selections, click OK.

Git checks out the files you have selected. They are now available for editing.

Checking Out CVS Modules

This is a configuration task you perform when you first start to use JDeveloper with
files and folders that are under CVS source control. You perform this task once, after
(if necessary) importing your JDeveloper project into the CVS repository.

To check out modules from the CVS repository:

1. In the CVS Navigator, select the CVS module that you want to check out by
choosing Team > CVS > Check Out Module.

Alternatively, you can select Check Out Module from the contextual menu.

The Check Out from CVS dialog is displayed.

2. Complete the dialog. For help when using this dialog, press F1 or click Help.

Editing Files in Perforce

Unlike some version control systems, Perforce does not require you to explicitly check
out a file. To begin editing a file in Perforce, select Team > Perforce > Open for Edit.
This opens the Open Files for Edit dialog, which gives you the option of placing the
file on a changelist, locking the file so that other team members cannot edit it
simultaneously, and more. topicid:f1_pfcopenfilesforedit_html

You can start editing a file under Perforce control just by opening it from the
Applications window. While the Perforce server is being contacted, you may
experience a delay before you can type into the opened file. If you would prefer files to
remain closed until you manually open them for editing, set the Automatically Open
Files for Edit preference to off.

How to Update Files with Subversion
Updating files at the beginning of every work session helps ensure that you have all
the changes made and checked in by your team members. This reduces the amount of
time you might have to spend reconciling changes later, because it helps ensure that
you have the latest version of your files when you begin editing them.

Updating Files from the Subversion Repository

Once your Subversion repository is set up, you typically update your local working
copy with files from the repository. This ensures that the files you work on contain all
committed changes that others on your team may have made to the same files.

It is recommended that you perform the update operation on a working copy.

When you use Update Working Copy, all the files in your checked-out working copy
will be updated, regardless of which node you have active in your application in the
JDeveloper Applications window. The alternative is to select Update. This will only
update the folder or file (and any child folders and files) that you have selected in the
Applications window.

To update a working copy (recommended):

Working with Files in Source Control

6-36 Developing Applications with Oracle JDeveloper

topicid:f1_pfcopenfilesforedit_html

1. In the Applications window, select a navigator node or file that is part of the
working copy.

2. Select Team > Update Working Copy.

The Update Working Copy dialog is displayed with the working copy folder listed.

3. Ensure that the folder shown is the correct one for the working copy that you wish
to update. If it is not, cancel the dialog and begin again from step 1.

4. Set the options on the Update Working Copy dialog as required.

To obtain more information about the options, press F1 or click Help.

5. To update the working copy from the Subversion repository, click OK.

Updating Individual Files in the Subversion Repository

You can also update individual files. However, this runs the risk of not updating all
files that may have been modified by your team members since the last time you
checked them out.

To update individual files:

1. In the Applications window, select the file(s) that you wish to update and choose
Team > Update.

The Update Resources dialog is displayed with the file(s) listed.

2. Set the options on the Update Resources dialog as required.

To obtain more information about the options, press F1 or click Help.

3. To update the listed file(s) from the Subversion repository, click OK.

Removing Files from Subversion Control

If you wish to remove a file from Subversion control, use the JDeveloper Delete
feature. This performs a “safe delete," which searches for usages of the file you are
deleting and provides you with a dialog with options for proceeding.

To remove a file from Subversion control:

1. In the Applications window, select the file to be removed from Subversion.

2. Select Edit > Delete (or right-click the file and select Delete).

3. Make sure that Delete Safely is selected.

4. Click OK.

If JDeveloper finds usages of the file you are deleting, a dialog will offer you
options for proceeding. Choose the appropriate option, then click OK.

Working with Files in CVS

As a general rule, working with files in CVS means checking out the latest version of a
file, making your edits, and checking the file in with your changes. Occasionally, if
you and a colleague have made edits to the same file, you may need to merge your
changes to make sure your work is not lost. Other functions of CVS are also available,

Working with Files in Source Control

Versioning Applications with Source Control 6-37

such as adding a new file or removing unused/obsolete files from the repository, but
your general workflow will follow the checkout-edit-checkin pattern.

The file operations in CVS include refreshing the display of CS objects, adding and
removing files, using templates, comparing files, replacing a file in CVS, viewing the
history and status of a file, locking and unlocking files, and working with revisions
and tags.

Refreshing the Display of CVS Objects

The source control status of an object is indicated in the Applications window by an
icon overlay, as listed in Table 6-1.

Table 6-1 CVS Object Status

Icon Description

The object has been copied from the CVS repository and added to your
working files directory.

The object is not under CVS source control, but may be added to the CVS
repository.

There were conflicts when the object (a file) was updated from the CVS
repository. In this case, you have to manually edit the file to resolve all the
points of conflict.

The object has been scheduled for removal from the CVS repository with the
next commit action.

The object is out of synch with the CVS repository due to local or remote
changes.

The object is unmodified since it was last copied from the CVS repository.

The object is unmodified since it was last copied from the CVS repository
but is read-only.

The package or node is a CVS sandbox folder.

The apparent object may comprise several underlying objects, the statuses of
which may not all be identical.

Refreshing the Status of Objects in JDeveloper

If the status of an object is changed outside JDeveloper, for example by checking in an
object using external source control software, the new status might not immediately be
shown in JDeveloper. To ensure that the status indicated in the Applications window
matches the true status of the object in the source control system, you can perform a
manual refresh.

To refresh the status of objects in JDeveloper:

• In the Applications window or CVS Navigator, click Refresh.

Adding and Removing Files in CVS

You can add a file to CVS only if it is part of a project that is already under CVS
version control.

Working with Files in Source Control

6-38 Developing Applications with Oracle JDeveloper

When you create a new file, for example a new class, it has to be added to source
control before you can use the other CVS operations on it. The file is added to source
control locally, and the CVS repository is not updated. The file is identified in the
Applications window by the icon +.

After completing setup, your work will revolve around the following:

• Updating your files from the repository

• Checking out the files you need to work on

• Editing them in JDeveloper

• Committing the modified files back to the repository

You may also need to resolve conflicts between changes you made and those made by
others in your team. Files may also be moved in and out of CVS control as the project
changes. Finally, you might use special properties of the files associated with specific
versions for tracking bugs, customer requests, and other characteristics.

To add a file to CVS through the Applications window:

1. Select the file in the Applications window and choose Team > Add (or, if the file
is binary, Team > Add as Binary). JDeveloper usually recognizes binary files and
adds (Binary) after the file name in the Applications window. The Add to CVS
dialog (or Add to CVS as Binary dialog) is displayed, with the file listed.

2. Click OK.

The file will be added to the CVS repository when the next commit is performed.

To add files shown in the Pending Changes window:

1. With the Pending Changes window in Candidate Files mode, select the files that
you want to add to source control.

To obtain more information about the Pending Changes window, press F1 or click
Help.

2. Click the Add button.

To remove a file from CVS:

When you remove a file from CVS it is removed from your local disk.

1. In the Applications window, select one or more files to be removed, then choose
Team > Remove.

2. The Remove from CVS dialog is displayed with the files listed.

3. Click OK.

The file or files will be removed from the CVS repository when the next commit is
performed.

How to Work with New and Changed Files in Git
In the Git version control system, you commit files for two reasons: to make your
initial import of new files to your repository, and to check in changes when you have
made edits.

In Git, the basic file workflow is in three parts:

Working with Files in Source Control

Versioning Applications with Source Control 6-39

1. You initially create a local file system with the selected branch and content from
your repository. You can do this using Team > Git > Clone.

2. You add new files to the repository: one at a time using Team > Git > Add, or
multiple files with Team > Git > Add All.

3. As you edit files, you check them back into the Git repository one at a time with
Team > Git > Commit, or multiple files with Team > Git > Commit All.

The following sections describe how to perform these operations.

Adding a File to a Git Repository

To add a single file to your Git repository, use the Add command from the Git menu.

To add a file:

1. Select Team > Git > Add.

2. Browse to the pathname for the file you wish to add.

3. Click OK.

The file is added to your selected Git repository.

Adding Multiple Files to a Git Repository

To add multiple files to your Git repository, use the Add All command from the Git
menu. This command adds all files in a directory.

To add multiple file:

1. Select Team > Git > Add All.

2. Browse to the pathname for the directory from which you wish to add files.

3. Click OK.

All files in the selected directory are added to your Git repository.

Creating a Git Stash
Stashing becomes handy when you want to switch branches and don’t want to loose
your unfinished work. It helps in keeping modified tracked files and staged changes
from your working directory and stores in an area outside of the working directory
that you can reapply at any point of time later. You can save as many stashes as you
want and can apply them later.

To create a stash:

1. Select Team > Git > Stash Changes.

2. Select the file(s) from the list that you wish to include in the stash and type in some
definitive comment in the Comments area.

3. Click OK.

The stash is added to your selected Git repository under the Stashed Commits section.

Committing a Change to the Git Repository

When you have made changes to a file, you can commit them to the Git repository.

Working with Files in Source Control

6-40 Developing Applications with Oracle JDeveloper

To commit a change:

1. In the Applications window, select the file whose changes you want to commit.

2. Select Team > Git > Commit. This displays the Commit dialog, which displays the
file name and location in your local directory.

3. In the Commit dialog, you can optionally choose to commit non-staged files.

4. In the Comments field, enter a short description of the changes you have made to
the file you are committing.

5. If your team uses comment templates, select one from the Comment Templates
drop-down list. You can also select the link to display the Preferences > Git >
Comment Templates dialog. This allows you to add or import comment templates.

6. When you are finished, click OK.

JDeveloper commits your changed file to the Git repository.

Committing Multiple Files to the Git Repository

When you have made changes to multiple files, you can commit them all to the Git
repository in one operation.

To commit a number of changed files:

1. In the Applications window, select the files whose changes you want to commit.

2. Select Team > Git > Commit All. This displays the Commit dialog, which displays
the path name to the files in your local directory.

3. In the Commit dialog, you can optionally choose to commit non-staged files.

4. In the Comments field, enter a short description of the changes you have made to
the file you are committing.

5. If your team uses comment templates, select one from the Comment Templates
drop-down list. You can also select the link to display the Preferences > Git >
Comment Templates dialog. This allows you to add or import comment templates.

6. When you are finished, click OK.

JDeveloper commits your changed files to the Git repository.

Applying a Git Stash
When you have created one or more stashes, you can apply them later to the original
files in working directory.

To apply a stash:

1. Select Team > Versions. This displays the Versions navigator in the left panel
which displays your stashed commits under Git repository tree structure.

2. Right click the stash that you with to apply and select Apply Stash. This opens the
Apply Stash dialog.

3. Click OK. Optionally you can select the Delete stash after applying checkbox
before clicking OK if you do not need the stash anymore.

Working with Files in Source Control

Versioning Applications with Source Control 6-41

The selected stash is applied to your original file(s).

How to Work with Files in Perforce
Perforce provides features for creating and applying patches—methods for
determining changes between two revisions of a file, and then applying those changes
to a third file. In addition, Perforce contains features for exporting the details about
repository connections, as well as files in the repository.

Synchronizing Local Files With the Controlled Versions in Perforce

Another person may edit a file through their Perforce client and submit their changes
to the Perforce depot. This will cause your copy of the file to become out of date
compared with the controlled version.

To test that your view is showing the latest file statuses:

• Choose View > Refresh.

A file that is out of date with the controlled version is shown with an exclamation
point icon.

To bring your files up to date compared with the controlled version:

1. From the Connection drop-down list, select the preferred Perforce connection (if
you have more than one) for this changelist.

2. Select the files in the Applications window and choose Team > Sync.

The Sync Files dialog is displayed with the files listed.

3. Complete the dialog.

For more information about the dialog options, press F1.

4. To synchronize the files, click OK.

Your local files are replaced with copies of the controlled versions. The icon shown
next to the files changes to a green dot.

Synchronizing Files With the Perforce Navigator

The Perforce Navigator lets you browse the Perforce depot and update your working
directory from content at the depot. Using the Applications window, you can select
folders or files to sync to your client workspace, downloading content from the
Perforce Server to your computer. If new files are detected in the depot, you have
several options for handling them.

If you open a connection node and no connection has been made, Perforce displays the
connection dialog.

To synchronize your files using the Perforce Navigator:

1. Expand the content under Perforce in the Versions window, selecting the folders
and/or files you wish to synchronize. When you expand to the level of the project
you're working on, right-click the file or folder, and then select Sync From Depot.
This displays the Sync From Depot dialog.

2. The project you selected displays in the Name pane of the Sync From Depot dialog.
Below that are fields you can select or specify:

Head Revision

Working with Files in Source Control

6-42 Developing Applications with Oracle JDeveloper

Synchronize to the Head revision of your project. If you select this, the Sync From
Depot dialog displays the Force sync checkbox. Select Force Sync if you wish to
download the depot content to your working directory regardless of the contents of
each (for example, if you know you want to start with a clean download of the
depot's contents).

Revision Number

Select this to synchronize to a specific revision number. The Sync From Depot
opens the Target field; use the Target field to type the revision number to which
you wish to synchronize your local working copy.

Changelist

Select this to synchronize to a specific changelist. The Sync From Depot opens the
Target field; use the Target field to type the name of the change list from which you
wish to synchronize your local working copy.

Label Name

Select this to open files with a specific label (typically, used to identify a specific
branch). The Sync From Depot opens the Target field; use the Target field to type
the name of the label from which you wish to synchronize your local working
copy.

Date

Select this to specify a date (and, optionally, time) from which you wish to
synchronize your local files. The Sync From Depot opens the Target field; use the
Target field to type the date (in either yyyy/mm/dd or yyyy/mm/dd:hh:mm:ss
format) of the files from which you wish to synchronize your local working copy.

Choose the field that applies to your current project, then click OK.

3. If the depot contains files that do not exist in your source, Perforce tells you that
new files were detected, and lists the following options:

Open files in active project

Copy the files, and open them in the project you have selected.

Create new project from files

Creates a new project, using the files Perforce has detected.

Open editors onto files

Open the files in editor windows, so that you can review them and determine the
best resolution (keep, rename, discard, or modify).

Do not open files

Leaves the files unopened, without copying them from the depot to your working
directory.

Filtering Files By Perforce Workspace

If you have a very large number of files in your Perforce depot, it can be much easier
to navigate to the files you're working on by filtering files in the Perforce workspace.
You can do this by setting things up in the Perforce client, and then displaying the
filtered view in JDeveloper.

Filtering files in Perforce (specifically, p4v) requires making sure that you are viewing
the Depot Tree, then select the Filter icon > Tree Restricted to Workspace View.

Working with Files in Source Control

Versioning Applications with Source Control 6-43

To filter files in JDeveloper:

• Version Navigator > Perforce > Connection name > Context menu - Filter by
Client Workspace.

You will only see a difference in the JDeveloper Version Navigator if the Perforce
client has a rule that restricts the Perforce workspace. (In p4v, the rules are shown and
set in the View field of the Workspace dialog for the selected workspace.) You could
restrict the workspace view in your p4v client with a rule like the following:

//depot/JDeveloper_1013/... //<client name>//JDeveloper_1013

In JDeveloper, if you select Filter by Client Workspace, the Applications window
would be filtered so only //depot/JDeveloper is shown.

Refreshing the Status of Files under Perforce Control

The source control status of a file is indicated in the JDeveloper navigators by icon
overlays, as listed in.

Table 6-2 Perforce Status Icons

Icon Meaning

The file is in the Perforce client workspace but is not yet submitted to
the Perforce depot.

The file will be deleted when next submitted to the Perforce depot.

The file is out of date compared with the Perforce depot.

The file is up to date compared with the Perforce depot.

The file is open for edit.

The file is locked.

If the status of a file is changed outside JDeveloper, for example by using a Perforce
client application, the new status might not immediately be shown in JDeveloper. To
ensure that the status indicated in the Applications window matches the true status of
the file in the source control system, you can perform a manual refresh.

To refresh the status of files in JDeveloper:

• Select View > Refresh.

Deleting Files from Perforce

If you wish to delete a file that it is under Perforce control, you should do so using the
Perforce facilities within JDeveloper or the Perforce client application.

If you need to retrieve a file that has been deleted, you will need to use the Perforce
client. To do this, select Team > Perforce > Launch Perforce Client.

To delete a file under Perforce control:

Working with Files in Source Control

6-44 Developing Applications with Oracle JDeveloper

1. Select the file in the Applications window and choose Team > Open for Delete.

The Delete Files dialog is displayed with the file listed.

2. Click OK.

The file is deleted from the local file system. A black diagonal cross is added to the
file's icon in the Applications window.

How to Lock and Unlock Files
Not all version control systems explicitly require, or even have the facility for, locking
files before editing. In some systems, checking out the file automatically locks it and
prevents other team members from editing that file. In other systems, the files can be
checked out by any team member, with the emphasis being on easily merging
different changes to the resulting file.

The following sections explain how each version control system handles locking and
unlocking a file.

Locking and Unlocking Files in CVS

Note:

The locking of files is not supported in newer releases of CVS client software
and this facility may be removed in future releases of JDeveloper.

You can choose to prevent other users working on a file while you are working on it
yourself. This is not normally considered necessary, because CVS can usually reconcile
differing versions of files as they are being committed to the CVS repository. The
JDeveloper compare and merge facilities will reconcile differing versions of files
automatically, or present you with a tool for doing so manually if there are serious
conflicts.

You may want to ensure that a file is worked on only by you, until you have finished
working on it. This might be because a file is in binary format and therefore inherently
difficult to merge. In this case, you can lock the file that you want to work on. The file
is locked in the CVS repository, and other users are prevented from accessing it. When
you want to let others work on the file, you unlock it.

To lock files in CVS:

1. With the file or files that you want to lock selected in the Applications window,
choose Team > CVS> Administration > Lock.

2. Check that you want the operation to apply to all of the files highlighted in the file
selection box.

3. Click OK.

To unlock files in CVS:

1. With the file or files that you want to lock selected in the Applications window,
choose Team > CVS> Administration > Unlock.

2. Check that you want the operation to apply to all of the files highlighted in the file
selection box.

Working with Files in Source Control

Versioning Applications with Source Control 6-45

3. Click OK.

Editing Files in Perforce

By default, you can start editing a file under Perforce control just by opening it from
the Applications window, without explicitly locking the file. While the Perforce server
is being contacted, you may experience a delay before you can type into the opened
file. If you would prefer files to remain closed until you manually open them for
editing, set the Automatically Open Files for Edit preference to off. The following
procedure works whichever way the preference is set.

To edit a file under Perforce control:

1. Select the file in the Applications window and choose Team > Open for Edit.

The Open Files for Edit dialog is displayed with the file listed.

2. If the file is out of date with the controlled version and you wish to edit the
controlled version, check the Sync files to box.

If you do not obtain the controlled version before editing the file, you may create a
conflict between your file and the version in the Perforce depot. You will then have
to resolve the conflict before your changes can be accepted into the controlled
version.

3. If you wish to lock the file, check the Lock Files box.

Locking a file means that others can edit the file but cannot submit the file until the
person who applied the lock has released it.

4. To make the file editable under Perforce control, click OK.

The file will be indicated to Perforce as editable. A red check mark is added to the
file's icon in the Applications window.

5. To edit the file, choose Open from the file's context menu.

6. Make your changes and save the file.

You can also close the file if you wish.

The changes that you made to the file are now saved in your Perforce client
workspace. To add your changes to the controlled version of the file and make them
available to other users, you must now submit them.

Checking Out Files in Team System

Use to check out files so that you can work on them. The files must already by under
Team System source control.

To check out files:

1. In the Applications Navigator, select the application, project or file that you want to
check out.

2. Select Team > Check Out.

The Check Out dialog is opened.

3. Complete the dialog.

Working with Files in Source Control

6-46 Developing Applications with Oracle JDeveloper

For information while using the dialog, press F1.

Viewing the Status of a File in Team System

You can check the status of a file that is under Team System source control. See also
Refreshing the Status of Files in Team System.

To view the status of a file:

1. With the file selected in the Applications window, open the context menu and
select Team > Properties.

2. Select the Versioning tab.

The status labels shown are those used by Team System to describe the source control
status of the file.

The main statuses are:

• Edited - In JDeveloper, the file is checked out and may have been modified.

• Unchanged - In JDeveloper, the file is currently checked in.

• Scheduled for addition - In JDeveloper, the file has been added (that is, brought
under source control) but not yet checked in.

Refreshing the Status of Files in Team System

The source control status of a file is indicated in the JDeveloper navigators by icon
overlays, as below.

Table 6-3 File status icons in Team System

Icon Description

The object is checked in and must be checked out before it can
be modified.

The object is checked out and can be modified.

The object is not under source control.

The file has been brought under source control but has not yet
been checked in to the Team System server.

The object has been scheduled for removal from the Team
System server the next time it is checked in.

To refresh the status of files in JDeveloper:

• Select View > Refresh.

How to Check In Changed Files
Checking in, sometimes called committing, is the process by which the changes you
have made to your local file version are uploaded to the central repository. The
following sections outline the procedures used by the various version control systems
in use with JDeveloper.

Working with Files in Source Control

Versioning Applications with Source Control 6-47

Committing Files to the Subversion Repository

Once you have made edits and revisions to your working files, you return them to the
Subversion repository.

Use these procedures to bring the Subversion repository up to date with the latest
version of the files you have been working on, at the same time adding any new files
to or removing any unwanted files from the Subversion repository.

You can perform the commit operation on individual files, or in the context of a
working copy.

If an individual object that you want to commit has uncommitted parent objects, you
must first commit the parent objects. An alternative is to commit the working copy
that the objects are part of, in which case all the uncommitted objects will be
committed.

You can also use change sets to manage groups of files, which can help ensure that
you commit all files pertaining to a particular sub-project or task within the overall
application.

To commit individual files shown in the Applications window or the Pending
Changes window:

• Select the file(s) and choose Team > Commit.

The Commit Resources dialog is displayed with any files listed. Set the options on
the Commit Resources dialog as required.

To obtain more information about the options, press F1 or click Help. To commit
the listed file or files to the Subversion repository, click OK.

To commit a working copy from the Applications window:

1. Select a navigator node or file that is part of the working copy.

2. Select Team > Commit Working Copy.

To obtain more information about the options, press F1 or click Help. To update the
Subversion repository with the content of the working copy, click OK.

When you use Commit Working Copy, all the files in your checked out working copy
will be committed, regardless of which node you have active in your application in the
JDeveloper Applications window. The alternative is to select Commit. This will only
commit the folder or file (and any child folders and files) that you have selected in the
Applications window.

Additionally, you can commit a working copy from the Pending Changes window.

To commit a working copy from the Pending Changes window:

1. Put the Pending Changes window into Outgoing Changes mode.

To obtain more information about the Pending Changes window, press F1 or click
Help.

2. Select a file from the working copy that you wish to commit.

3. Select Team > Commit Working Copy.

Working with Files in Source Control

6-48 Developing Applications with Oracle JDeveloper

Saving Work Item ID with the Oracle Team Productivity Center Extension

If you are using Oracle Team Productivity Center, the work item ID will automatically
be saved as a tag in the comment dialog when you commit.

Committing Changes to the Git Repository

There are two options for committing your changes to the Git repository: selecting an
individual file to commit, or committing all files at once.

To commit an individual file:

1. Select the file you wish to commit.

2. Select Team > Git > Commit. This opens the Save Files dialog. Click OK to
continue. This opens the Commit dialog.

3. If your team uses comment templates (for example, to make it simpler to track
issues automatically in a bug-tracking system), select the template or add a
comment. Otherwise, click OK to commit the file to the repository.

To commit all files in a project:

1. Select the project whose files you wish to commit.

2. Select Team > Git > Commit All. This opens the Save Files dialog. Click OK to
continue. This opens the Commit All dialog.

3. If your team uses comment templates (for example, to make it simpler to track
issues automatically in a bug-tracking system), select the template or add a
comment. Otherwise, click OK to commit the files to the repository.

Committing Changes to CVS

Use these procedures to update the CVS repository with the latest version of the files
you have been working on, and to add any new files to or remove any unwanted files
from the CVS repository.

You can perform this on a single file, or in the context of a project. When in the context
of a project, JDeveloper determines which files have changed since they were last
committed and displays them as a list.

If you select a project to be committed that includes files that are not yet part of CVS
version control, the Add Files to CVS message dialog will open. To obtain information
about using this dialog, press F1.

You can view the current contents of the CVS repository through the CVS Navigator.
The nodes under CVS unfold to reveal the structure and file content of the CVS
repository. You can open a read-only version of a CVS repository file by choosing
Open from its context menu. This will let you see what changes have been made to the
files in the CVS repository since you checked out or updated your local versions.

To commit individual files shown in the Applications window:

1. Select the file(s) in the Applications window, and then choose Team > Commit.

The Commit to CVS dialog is displayed with the file(s) listed.

2. Set the options on the Commit to CVS dialog as required.

To obtain more information about the options, press F1 or click Help.

Working with Files in Source Control

Versioning Applications with Source Control 6-49

3. To update the listed file(s) in the CVS repository, click OK.

To commit the contents of project folders shown in the Applications window:

1. Select the project folder(s) in the Applications window and, from the context
menu, choose Versioning > Commit Project Folders.

If there are files in the project that are not under CVS control, you will be asked
whether you want to add them.

The Commit to CVS dialog is displayed with the folder(s) listed.

2. Set the options on the Commit to CVS dialog as required.

To obtain more information about the options, press F1 or click Help.

3. To update the listed file(s) in the CVS repository, click OK.

To commit files shown in the Pending Changes window:

1. With the Pending Changes window in Outgoing Changes mode, select the files that
you want to commit.

To obtain more information about the Pending Changes window, press F1 or click
Help.

2. Click the Commit button.

Submitting Changed Files to the Perforce Depot

Any changes that you make to a file are initially saved in your Perforce client
workspace. To add these changes to the controlled version of the file and make them
available to other users, you must submit them. In the following procedure, if the
Submit menu option is unavailable, it is because there are unresolved conflicts
between your copy of the file and the one in the Perforce depot. Before proceeding,
you will have to resolve the conflicts or revert the file to a non-conflicting version.

To submit changes to the Perforce depot:

1. With the file selected in the Applications window, choose Team > Submit.

The Submit Files dialog is displayed with the file listed.

2. Add your versioning comments in the Comments box.

3. To submit the files to the Perforce depot, click OK.

The file is now shown in the Applications window with a green dot, indicating that
it is up to date compared with the version in the Perforce depot.

How to Check In Files to Team System

Use to check in a file to the Team System server. A checked in version of a file can be
seen and worked on by other users.

To check in files:

1. In the Applications window, select the file that you want to check in.

2. Select Team > Check In.

The Check In dialog is opened.

Working with Files in Source Control

6-50 Developing Applications with Oracle JDeveloper

3. Complete the dialog.

For information while using the dialog, press F1.

How to Use Change Sets and Changelists
Some version control systems (notably Subversion and Perforce) use the notion of
change sets or changelists to group together files which form part of a single logical
group. For example, you might be adding a new feature to an application which has a
number of specific files: the HTML framework which calls a JavaScript function, the
JavaScript file which contains the function itself, and a set of image files which
represent the various states of the button before, when and after the user clicks on it in
the final application. You might choose to group all these files in a single change set, as
a way of tracking them and ensuring that you commit all of them to the repository (or
that you refer to all of them in your team's tracking or build software).

The following sections describe how to use change sets or changelists in the version
control systems that support them.

Using Change Sets in Subversion

Change sets, or change lists, are essentially labels which can be applied to working
copy files to enable group operation on each change list. The idea behind adding files
to a change set is similar to sorting files into directories, but change lists can be created
dynamically and the labels applied to each file, regardless of their level in the file
system hierarchy. You can then address all the files in the change set as a single group.
For example, if you make a single bug fix that requires editing three different files, you
can add all three files to the change set and track them as a single logical unit in the
JDeveloper Pending Changes window.

Subversion lets you associate files with a named change set, either manually or
automatically. You make additions to the change set through the menu system;
automatic additions are also possible through default association, when JDeveloper
detects outgoing changes.

You can browse changes for a named change set in a view of the Pending Changes
window. From there, you can manipulate the change sets, and commit associated
changes to the repository.

To add a selected file to a new change set:

• Select a file from the Pending Changes window, then select Team > Add To > New
Change Set.

To add file to a change set:

1. In the Pending Changes window, select a file to add to an existing change set and
click the right mouse button.

2. Select Add To, then choose an existing change set.

3. Select one of the existing change sets displayed in the dialog, or select New Change
Set to create a new change set containing this file.

4. Click OK.

Editing Change Sets

JDeveloper creates a default, unnamed change set for each installed version control
system, and uses this change set until you specify another change set as the default.

Working with Files in Source Control

Versioning Applications with Source Control 6-51

You can make changes to the content and the status of individual change sets,
including this default change set, by right-clicking any change set and selecting from
the following:

Edit
Change the content of the selected change set.

Remove
Deletes the selected change set from Pending Changes. Does not delete the files
associated with the change set.

Make Default
Makes the selected change set the default for future operations. All newly created and
edited files will be made part of this change set until you either change the default or
manually add the file to a different change set.

Creating a Perforce Changelist

In Perforce, changelists let you group files together to simplify operations. Once files
are grouped in a changelist, you can check them out and submit them all in a single
operation.

In Perforce, changes are submitted to a Perforce repository using a changelist. This lets
you group changes to several files into a logical unit, and then submit this unit to the
Perforce repository in one operation.

You can have more than one changelist. You may find it useful to create changelists
for specific projects, for related groups of files, or for any other grouping of files that
you find create a logical unit, based on the way you and your team work. You can also
move files from one changelist to another.

In general, you use changelists by following this workflow: create a changelist, add
files to your changelist, edit your files and submit your changelist with the edited files.

You can also browse existing changelists through the Changelist Browser. The
Changelist Browser also lets you create, submit, and move files between changelists. If
the submit operation fails on any file in the changelist, then the whole changelist fails.
This means the Perforce repository is left in a consistent state.

A Perforce changelist lets you manipulate a number of changed files and folders in a
single operation, simplifying the process when you have several files that you have
been working on.

To create a Perforce changelist:

1. From the Versioning menu, select Perforce > Create Changelist.

2. From the Connection drop-down list, select the preferred Perforce connection (if
you have more than one) for this changelist.

3. Select the files to be added to the changelist, or click Select All to add all displayed
files to this changelist.

4. Add comments to this changelist, if desired. You can choose a previous comment
(with the option of editing it if necessary), or you can select your comment
template.

5. When you have set up the changelist as desired, click OK.

Working with Files in Source Control

6-52 Developing Applications with Oracle JDeveloper

How to Annotate a Perforce Revision or Changelist

Annotating a Perforce revision or changelist lets you store the Perforce revision or
changelist as a comment linked to every file in the revision. When you modify these
files later in Perforce, you can view the sequence of revisions or changelists to these
files, as annotations to the files.

To add annotations to a changelist:

1. From the Versioning menu, select Team > Perforce > Perforce Pending
Changelists.

2. Select the changelist to view by clicking the Use Changelist selector.

Any previous annotations will be visible in the Comments field of the changelist.

Adding Files to a Perforce Changelist

A Perforce changelist lets you manipulate a number of changed files and folders in a
single operation, simplifying the process when you have several files that you have
been working on. When you add files to Perforce, you can select the changelist to
which these files will be added at the same time, through the Open for Add menu.

To add files to a changelist:

1. From the Versioning menu, select Perforce > Open for Add.

2. Select the changelist to use by clicking the Use Changelist selector.

Submitting a Perforce Changelist

Once you have made a series of edits to your files, you are ready to submit them in
Perforce. If you have created a changelist, you can submit all the files on that
changelist in a single operation, or select just the ones you have edited and submit
them.

To select and submit the files in a changelist:

1. From the Versioning menu, select Perforce > Submit Changelist.

2. Enter a description of the changes you have made in the Description field.

3. Check the files you wish to submit. Use the Select All and Deselect All buttons if
required.

Using the Perforce Changelist Browser

The Changelist Browser lets you see, at a glance, the state of all the pending
changelists in your Perforce repository. Each pending changelist is shown with its
name, description, and contents. The default changelist is always shown at the top of
the browser. Under each changelist, you can browse the files that are associated with
that changelist. Additionally, the Perforce connection and client are displayed at the
top of the browser.

From the Pending Changelist browser, you can create and submit changelists, move
files between changelists, and refresh the browser.

To create a changelist with the Changelist Browser:

Working with Files in Source Control

Versioning Applications with Source Control 6-53

1. From the Versioning menu, select Perforce > Create Changelist.

2. From the Connection drop-down list, select the preferred Perforce connection (if
you have more than one) for this changelist.

3. Select the files to be added to the changelist, or click Select All to add all
displayed files to this changelist.

4. Add comments to this changelist, if desired. You can choose a previous comment
(with the option of editing it if necessary), or you can select your comment
template.

5. When you have set up the changelist as desired, click OK.

To submit a changelist:

1. From the Versioning menu, select Perforce > Submit Changelist.

2. Enter a description of the changes you have made in the Description field.

3. Check the files you wish to submit. Use the Select All and Deselect All buttons if
required.

To move files between changelists:

1. Click the right mouse button the file in the Changelist Browser and select Move
File to Changelist.

2. Select the changelist to which you wish to move this file, then click OK.

You can also refresh the changelist browser by pressing F1.

How to Use Comment Templates for Checkins
Subversion, CVS, Git, and Perforce all let you configure comment templates to be used
when checking in or committing files. One popular use for a comment template is to
structure the comment text in such a way that it can be read by a bug-tracking system
to correlate file checkins with issues being tracked. For example, beginning a comment
with the string bugtraq and then following with the issue number would make it
possible to analyze comments automatically and generate a report of files and the
bugs they were filed against.

The four version control systems that use comment templates all allow you to are
Subversion, CVS, Git, and Perforce. The following instructions are common to all these
systems.

Creating Templates

Many team environments allow the developer to enter comments when a file is
checked in. These comments might include bug report numbers, dependencies on
other files, or some other explanatory information to be stored in connection with the
file being committed to the repository.

In particular, some teams wish to correlate checked-in files with the bugs that the files
address. One way to do this is to set up a standard template for issue tracking, for
example, bugtraq <bug number> where you replace <bug number> with the
actual ID of the issue this file addresses, and use that as the comment to a file checkin.
This way, file checkin comments can be used to correlate the edits with the issues
being tracked.

Working with Files in Source Control

6-54 Developing Applications with Oracle JDeveloper

JDeveloper lets you create and select templates for use with such comments. The
templates are available from the Commit or Checkin menu, depending on how your
version control system refers to the process of committing changes to the repository.

To create a new template:

1. Select Tools > Preferences > Versioning > Subversion > Comment Templates.

2. Click Add. This brings up the Add Template dialog.

3. Type in the comment template as you wish to use it, then click OK.

The template you created will now be available to select when you commit or check in
your files.

Sharing Templates

JDeveloper lets you import and export templates as text files, allowing you to share a
set of templates with your team. This simplifies using the exact format that any
tracking system you use will expect to see in the commit comments, and also avoids
errors in formatting the template.

To import a template:

1. From the Comment Templates page, click Import. This opens a file browser.

2. Navigate to the directory containing the template file you wish to import and click
on the file to select it.

3. Click Open.

The template file will be imported to JDeveloper.

You can also export your templates as a file to be imported later, either by you or (if
you make the file available on a shared resource) by your team members.

To export a template:

1. From the Comment Templates page of your selected version control system, click
Export. This opens a file browser.

2. Navigate to the directory in which you wish to save your template file. Note that
the default template file format is XML.

3. Give your template file a name (for example, my_bugtraq.xml) and click Save.

The template file is now available for import to JDeveloper.

Note that if your team uses more than one version control system, you can use Export
and Import to share the same templates across systems.

Selecting and Using Templates at Checkin

Many team environments require the developer to enter comments when a file is
checked in. These comments might include bug report numbers, dependencies on
other files, or some other explanatory information to be stored in connection with the
file being committed to the repository.

JDeveloper lets you create and select templates for use with such comments. The
templates are available from the Commit menu.

To select a template:

Working with Files in Source Control

Versioning Applications with Source Control 6-55

1. From the Commit menu for your selected versioning system, click Choose a
template or previous comment.

2. Select the template from the list.

3. If your template requires you to enter specific data (for example, a bug or
enhancement tracking number), make the edits in the Comments field.

4. Click OK.

Your file will be committed with the template you selected, plus any edits you made.

Shelving and Unshelving Team System Files

Shelving lets you save file changes in the Team System server without having to check
the files in. As part of the shelving process, you can choose either to continue to work
on the changed files or to remove them from view and revert to unchanged versions.

When you later want to make use of the file changes that were shelved, you can
unshelve them.

If you decide you no longer want to keep changes that were shelved, you can delete
the shelveset that you put them in.

To shelve a set of file changes that have not been checked in:

To shelve a set of file changes that have not been checked in:

1. In the Applications window, select the versioned project containing the files.

2. Select Team > Shelve.

The Shelve dialog opens.

3. Complete the dialog.

For information while completing the dialog, click F1.

The file changes will be shelved when you click OK.

The file icons in the Applications window will change to reflect the new file statuses, if
any.

To unshelve a set of file changes:

1. In the Applications window, select the versioned project into which you want to
unshelve the file changes.

2. Select Team > Unshelve.

The Unshelve dialog opens.

3. Select the shelveset name for the shelveset containing the file changes.

The file changes will be unshelved when you click OK.

Files deleted since the shelveset was created will be reinstated and the file icons in the
Applications window will change to reflect the new file statuses.

To delete a shelveset:

1. Select Team > Delete Shelveset.

The Delete Shelveset dialog opens.

Working with Files in Source Control

6-56 Developing Applications with Oracle JDeveloper

2. Select the name of the shelveset that you want to delete.

The shelveset will be deleted when you click OK.

Deleting Team System Files

Use to delete files from your workspace and from the Team System server.

To delete a file:

1. Select the file in the Applications window and choose Team > Delete.

The Delete dialog is displayed with the file listed.

2. Click OK.

On the Outgoing tab of the Pending Changes window (Team > Pending Changes),
the file will be indicated as ready for deletion: a black diagonal cross is added to
the file's icon.

3. To complete the deletion of the file, select it in the Pending Changes window and
choose Team > Check In.

The Check In dialog is opened.

4. Add your comments, if any, and click OK.

The file is deleted from your workspace and from the Team System server.

Working with Branches and Tags
Many version control systems used with JDeveloper (notably, Subversion, Git, and
CVS) use branches to keep track of development projects or streams. Branches are a
useful way to separate out development when (as is often the case) your team is
working on multiple releases -- for example, a patch release, a major update, and a
new project -- at the same time. Tracking each of these projects as a separate branch in
your version control system makes it easy to track, modify, and update each project
with the correct feature set, bug fixes, and other changes, and to ensure that all
members of the team are tracking the same issues on the same branch.

Tags, on the other hand, are a way of tracking collections of files that capture the state
of development at a particular point. Where a branch represents a stream of
development moving towards a particular release, product or version, tags are useful
for tracking elements within a branch -- such as a specific bug fix that might affect
multiple files in a given release.

How to Create Branches
To work on files independently of the main line of development (the "trunk") you can
create a branch. Using the same feature, you can also create a tag, a collection of files
that captures the state of development at a particular point. Creating branches varies
slightly from system to system.

Working with Branches and Tags in Subversion

When you wish to put the work you have being doing on a branch back into the main
line of development, you can start the process by using the merge revision facility.
This will compare the content of two revisions and apply the differences to the current

Working with Branches and Tags

Versioning Applications with Source Control 6-57

working copy. You can also use this facility whenever you wish to copy changes made
in one revision to another revision.

You may want to change your working copy so that it is based on a different branch.
You can do this using the switch feature, either as part of branch creation or
independently.

To create a branch or tag:

1. Ensure that you have committed your files to Subversion before continuing.

2. In the Applications window, select a project or file that is in the line of
development that you wish to branch or tag.

3. Select Team >Branch/Tag.

4. Complete the Branch/Tag dialog.

For help when completing the dialog, press F1 or click Help.

To use the merge facility (that is, to compare two revisions and apply the results to the
working copy):

1. In the Applications window, select a project or file that is in the start revision (that
is, the resource that is to be compared against).

2. Select Team > Merge.

3. Complete the Merge dialog.

For help when completing the dialog, press F1 or click Help.

To switch the working copy to be based on another location in the repository:

1. In the Applications window, select a project or file that is in the current working
copy.

2. Select Team > Subversion > Switch.

3. Complete the Switch dialog.

For help when completing the dialog, press F1 or click Help.

Creating a New Branch in Git

You can create a new, named branch of your Git repository, and optionally apply a tag
when you create it, from the Create Branch dialog.This creates the named branch for
use with Git, and associates the selected tag with it if you choose.

To create a new branch in Git:

1. Select Team > Git > Create Branch.

2. Enter the name for your branch or tag -- for example, the version number of the
release you are working on, or the code name for the current update.

3. Enter the branch you are using as the source for the branch you are creating. To
select from available branches, click Select Branch. This places the branch name in
the Branch field and greys out the Tag field.

4. To give your new branch a tag, click Select Tag, then select from one of the
available tags displayed in the Select Tag dialog.

Working with Branches and Tags

6-58 Developing Applications with Oracle JDeveloper

5. Optionally, use a specific commit ID for the source of the branch you are creating.
You can either enter the commit ID by hand, by copy and paste (the commit ID is a
40-digit hexadecimal number), or click Select Commit to choose one from a list of
available IDs.

6. When you are finished, click OK.

Creating a New Branch in CVS

You create a new branch when you are beginning a project based on an earlier version
of your code repository, such as for fixing bugs after a major release, or working on
specific features for a subset of your customers.

To create a new branch:

1. In the CVS repository, select the file or folder on which you wish to base your new
branch, then click the right mouse button.

2. Choose Branch > Branch in CVS.

3. Type in the branch name. JDeveloper converts the branch name to the default tag
for the branch, by appending _BASE to the branch name as you type it.

4. Choose whether the branch source is the trunk or the working copy. If you select
the trunk, the HEAD revision of every file is branched.

5. Click Save.

The base tag is applied before the branch is created, allowing you to specify these
versions as a merge point in future.

You can also specify that you wish to create your new branch from an existing branch,
by choosing the branch to use as the base.

To create a new branch from an existing branch:

1. Click Details.

2. Select the desired branch from the list of existing branches.

How to Use Branches
Once you have created a branch, JDeveloper presents a number of methods of using it
to manage and track the projects you have under version control. Typically, you check
out branches at the beginning of a project involving that branch, then later you can
check out the individual files that you are editing or reviewing. You may also
occasionally need to delete a branch (when a project is archived, for example), and you
may also need to merge a branch.

Checking Out a Branch in Git

Checking out a branch in Git gives you access to the files on that branch.

To check out a branch in Git:

1. Select Team > Git > Checkout.

2. The Name and Location fields list the available repositories from which you can
select the branch to check out. Select the repository you wish to use.

Working with Branches and Tags

Versioning Applications with Source Control 6-59

3. Click on Select Branch to display the list of available branches in the Select Branch
dialog. Expand the folders as required to locate the desired branch. Select the
desired branch, then click OK.

4. If you wish to check out content associated with a specific tag, click Select Tag,
then choose the desired tag from the Select Tag dialog. When you are finished, click
OK.

5. To check out content from an existing commit, click on Select Commit, then select
the desired commit from the Select Commit Revision dialog. This lists all available
commits (including their 40-digit hex ID), and also displays the date and time of
the commit, the ID of the team member who made the commit, and a message field
if notes were added at the time of the commit. When you have selected the commit,
click OK.

6. Give the checked-out branch a name to associate with this branch, then click OK.

JDeveloper displays the branch that you have checked out, with any projects and files
associated with the selected branch. You can access these files from the Application
window.

Merging a Branch in Git

Note that after merging your changes from the branch into HEAD, you must still
commit those changes. The changes will be available in the main repository after they
have been pushed to the main repository

Using Branches in CVS

CVS lets you define branches, used when development needs to be carried out
separately from the main (or trunk) branch of a project. JDeveloper gives you access to
CVS branches in your repository through the Tag, Branch and Merge menu.

In CVS, you can create a separate branch when you want to carry out specific work
(such as bug fixes or specialized feature development) without any impact to the main
set of files, also called the trunk.

Once you have created a branch, you interact with it as normally with CVS -- check
out files, commit changes, etc. You can switch back and forth between branches, and
you can merge the changes you have made to your branch back into the trunk.

CVS also lets you apply tags to specific branches, or to specific files in a branch (as
well as generating a new tag for the branch you create, when you create it).

Branch selection is integrated into a number of CVS functions. You can switch
branches or versions for files you are editing or have checked out; you can choose tags,
branches, or version dates while updating the contents of your work area, as well as
while you are checking out a CVS module.

Switching the Branch or Version

You can switch the branch or version of a file you are editing, either from the
JDeveloper Versioning menu or from the file or project's context menu.

To select a branch, version or date from the Versioning menu:

1. From the Versioning menu, choose Tag, Branch or Merge > Switch Branch or
Version.

2. Click the chooser to display a list of branches or versions.

Working with Branches and Tags

6-60 Developing Applications with Oracle JDeveloper

3. Select the branch or version you wish to use.

4. Optionally, click Add Date to specify a date to use.

5. Click OK.

To select a branch, version or date from the project's context menu:

1. Choose Team > Switch Branch or Version.

2. Click the chooser to display a list of branches or versions.

3. Select the branch or version you wish to use.

4. Optionally, click Add Date to specify a date to use.

5. Click OK.

How to Choose a Branch while Updating

When you are updating your content to capture the latest revisions to the repository,
you have the option of branch (via its associated tag) at the same time.

To select a tag and branch while updating:

1. From the project's context menu, choose Update Project Folders.

2. In the Update from CVS dialog, check the box marked Use Revision, Tag or Date,
then click the chooser icon.

3. Select a tag to use.

4. Optionally, click Add Date to specify a date to use.

5. Check any other boxes (Overwrite Local Changes, Prune Empty Folders, etc.) that
you wish to apply to the current update, then click OK.

Choosing a Branch While Checking Out

As with other CVS operations, tags and branches are integrated into the process of
checking out a CVS module.

To choose a branch while checking out:

1. Click the right mouse button on the content in the Versions window to bring up the
context menu, then choose Check Out Module.

2. Check the box labeled Use Revision, Tag or Date, then click the chooser to select a
tag.

3. Select a tag. Optionally, you can click the Add Date button to specify a date. When
you have made your selection, click OK to close the Tags dialog.

4. Choose any other options (Force Match, Ignore Child Folders, etc.), then click OK
to close the Check Out from CVS dialog.

How to Create Tags
Tags give you another way of identifying content that is logically grouped in some
way, typically as a subset of files within a branch (for example, a list of files associated
with a particular feature set, or with a particular bug fix). Once you create tags, they

Working with Branches and Tags

Versioning Applications with Source Control 6-61

can be used in a number of ways, in particular for checking out files from the version
control system.

Creating Tags in Git

You have the option of creating a new tag when you check out a branch in Git.
However, you can also create a tag at any time by using the Create Tag dialog.

To create a tag in Git:

1. Select Team > Git > Create Tag. This opens the Create Tag dialog.

2. In the Name field, type a descriptive name for the tag you are creating (for
example, Version 1.2.3 Beta Release).

3. In the Comments field, enter any descriptive notes that can help you identify this
content in the future when you are using this tag.

4. In the Branch field, enter the branch name or click Select Branch to open the Select
Branch dialog, then choose the branch on which you wish to create this tag. When
you have made your selection from the Select Branch dialog, click OK to close the
dialog and make you selection.

5. If you wish to base this tag on content currently associated with another tag, click
Select Tag to open the Select Tag dialog.

6. Optionally, use a specific commit ID for the source of the tag you are creating. You
can either enter the commit ID by hand (or more likely, by copy and paste as the
commit ID is a 40-digit hexadecimal number), or click Select Commit to choose one
from a list of available IDs.

7. When you have entered all the information for this tag, click OK.

Creating and Assigning CVS Tags

CVS allows you to create and assign tags to content.

To assign CVS tags:

This procedure will assign symbolic tags to the local CVS revisions of selected files.

1. In the Applications window, select a single file, a project or a workspace. If you
select a project or a workspace, all the files within the project or workspace will be
selected for tagging.

2. Choose Team > Tag > Tag.

3. Check that you want the operation to apply to all of the files highlighted in the file
selection box.

4. Enter a name for the tag in the Tag Name box.

5. Set the other options as required. To obtain descriptions of the options, press F1.

6. Click OK.

To view CVS tags:

This procedure will display a dialog containing information about any existing tags
that have been applied to the file revision.

Working with Branches and Tags

6-62 Developing Applications with Oracle JDeveloper

1. From the context menu of the file, choose Team > Properties.

2. Select the Versioning tab. The sticky tag, date and options (if any) are shown, as is
a list of existing tags for the file revision.

To reset CVS tags:

This procedure will remove any sticky tags or dates that have been applied to the
selected files and reset them to the HEAD revision.

1. In the Applications window, select the file or files whose tags you wish to reset.

2. Choose Team > Tag > Reset Tags.

Deleting CVS Tags

Deleting a tag does not delete the content associated with it, but if you are using tags
to identify a specific project that has completed, you can delete the tag to simplify the
display when you are choosing tagged content in future.

To delete CVS tags:

This procedure will delete symbolic tags from the local CVS revisions of selected files.

1. In the Applications window, select a single file, a project or a workspace. If you
select a project or a workspace, the tag will be deleted from all the files within the
project or workspace.

2. Choose Team > Tag > Delete Tag.

3. Check that you want the operation to apply to all of the files highlighted in the file
selection box.

4. Enter the name of the tag in the Tag Name box.

5. Click OK.

How to Use Tags
In Subversion, creating a tag is like creating a branch.

Using Tags in Git

You can select from an existing tag in Git and apply it to the file you have selected for
the current transaction.

To select a tag in Git:

• Select Team > Tag. Scroll through the list to find the tag you wish to apply to the
selected file.

If there are more than one tags that apply to the file, hold down the Ctrl key, then
select each tag that you wish to use.

Using Tags in CVS

Tags in CVS are a way of identifying branches, branch-specific content, or other
content that you wish to identify and manipulate as a single logical group. You can tag
files, folders, or projects. You can then later use these tags to identify branches, update
files from a branch with a specific tag, and other operations.

Working with Branches and Tags

Versioning Applications with Source Control 6-63

You can select and browse tags from context menus as well as the Team > CVS > Tags
menu. The availability of tags differs depending on the context of the operations you
are performing on your content.

Adding a Tag to a Project

You can identify a project by adding a tag to it. You can then operate on this project by
selecting the tag from any of the CVS menus that contain the tag chooser.

To add a tag to a project:

1. Select the project you want to tag.

2. Choose Team > CVS > Tag, Branch and Merge > Tag.

3. Type the tag you want to use, or click the chooser icon to browse the existing tags.

4. Optional: Choose Use Revision, Tag or Date, then type the tag or click the icon to
browse the list.

Applying Tags While Updating a Project or File

You can choose and apply a tag while using the Update from CVS dialog.

To select an existing branch, version or date from the Projects view:

1. From the project's context menu, select Team > Tag.

2. Choose Use Revision, Tag or Date.

3. Click the tag chooser icon.

4. Choose a tag from the list that appears.

How to Delete a Tag

You can also delete a tag. Deleting a tag removes it from any resources to which you
have applied it. Deleting the tag does not delete the content to which the tag was
applied; it merely removes it from the list of available tags.

To delete a tag:

1. Select Team > Tag, Branch and Merge > Delete Tag.

2. Click the chooser icon. Choose the tag you wish to delete, then click OK.

In this context, only existing tag versions (regular non-branch tags) can be selected.

How to Use Properties in Subversion
Subversion lets you define and add properties to various levels of the elements in the
Applications window: files, folders, and other resources. You can define these
properties and use them as a way of tracking files or folders that have something in
common.

About Subversion Properties

As an example of using subversion properties, you can associate a specific subversion
property with a newly added feature. Viewing all files or folders with this subversion
property lets you see all the files associated with this feature: an HTML file, a

Working with Branches and Tags

6-64 Developing Applications with Oracle JDeveloper

JavaScript file, a class definition file, or any other elements that are involved in adding
this new feature to your application.

When you add or edit subversion properties, the dialog lets you select or specify the
following elements:

Resource file
The file (or folder or other resource) to which this property is to be applied. To change
this value, select a different file or resource. Note that if you wish to add this property
at the application or project folder level, edit the resource file entry so that it refers to
the folder, not the file.

Property name
Select a property name from the available list, or enter a new name to create a new
Subversion property. Preface the new property name with svn: to be tracked as a
Subversion property.

Value string
Enter the string to be displayed with this Subversion property when you view
properties. For example, you can associate a specific Subversion property with a
particular bug identification number or a specific upcoming release.

Note that the Value String might differ depending on the property. For instance,
consider a property named svn:externals meant to record the connection between
a local file and its external URL in the SVN repository. This property's value string
would be a pair of text strings, respectively showing the local directory where the
external file is to be checked out and the URL to the external file in the SVN
repository

Assume for this example that the resource file is D:\temp and the property name is
svn:externals. The value string (a value pair) might be:

external_libs https://ukp16449.uk.oracle.com/repos/trunk/FOD/
StoreFront.jar

This indicates that the file StoreFront.jar held in the Subversion repository at that
URL is to be checked out to D:\temp\external_libs. If the Value String entries
were held in a specific file pointed to from this property, use the Value File entry.

Value file
If you know you will be adding the same Subversion property to a number of
resources in your application, you can save the value string in a text file. Click Browse
to select the text file that contains the value string you wish to use.

Set property recursively
Select this if you wish Subversion to apply this property to all files and elements
below the current level in the application or project hierarchy.

Working with Subversion Properties

If your team has been using Subversion properties for some time, you can use the
View Subversion Properties menu to see a list of all elements that use a selected
Subversion property. You can also compare the Subversion properties between
different versions.

To view a list of Subversion properties:

Working with Branches and Tags

Versioning Applications with Source Control 6-65

1. Select an element under Subversion control from the Applications window.

2. Select Team > Subversion > View Subversion Properties.

If your project needs a new property for tracking and managing a particular aspect
(such as a new feature or a bug fix), you can also add new properties.

To add a new Subversion property

1. Select an element under Subversion control from the Applications window.

2. Select Team > Subversion > Add Subversion Property.

3. Enter the values for the property, then click OK. Refer to the following section for
examples of Subversion properties and how to use them.

When you set an external property with a revision number, make sure you follow the
correct format for the value string. You can use either of the following as the value
string for a property of type svn:external to set the ExternalWebINF revision to 16,
using the JDeveloper integrated Subversion:

ExternalWebINF -r 16 https://myserver.myteam.com/svn/repos/
public-html/WEB-INFhttps://myserver.myteam.com/svn/repos/public-
html/WEB-INF@16 ExternalWebInf

Viewing File and Property Status

Use this procedure to check the content status and any associated property status of a
file that is under Subversion source control. You can also refresh the status of a file.

To view the status of a file:

1. With the file selected in the Applications window, open the context menu and
select Team > Properties.

2. Select the Versioning tab.

The status labels shown are those used by Subversion to describe the source control
status of content and any associated property.

The main statuses for content are:

• added - The content has been added to source control but has not yet been
committed to the Subversion repository.

• modified - The property has been locally modified since it was copied from the
repository.

• unmodified (normal) - The property is unmodified since it was last updated from
the Subversion repository.

• conflicted - There were conflicts when the property was updated from the
Subversion repository.

• deleted - The file (content and any associated property) will be removed from the
Subversion repository with the next commit action.

The main statuses for associated properties are:

• modified - The property has been locally modified since it was copied from the
repository.

Working with Branches and Tags

6-66 Developing Applications with Oracle JDeveloper

• unmodified (normal) - The property is unmodified since it was last updated from
the Subversion repository.

• conflicted - There were conflicts when the property was updated from the
Subversion repository.

Resolving Property Conflicts in Subversion

Subversion allows you to create and save properties associated with folders or files.
These properties have a name and a value string.

You can resolve any such conflicts using Subversion's Resolve Tree Conflicts feature.

To resolve Subversion property conflicts:

1. In the Applications window, select the element under Subversion control that has a
property conflict.

2. Click the right mouse button, and then select Team > Subversion > Resolve
Conflicts.

This displays the versions with the conflicting properties in two adjacent panes, as
with the Version Compare.

To resolve the conflict, you can make changes in the Subversion Properties window.

Working with File History, Status and Revisions
One of the most useful parts of working with version control is the ability it gives you
to look at the history of a file and compare changes made to different revisions. In
debugging, you can look through the file history to find a version just prior to the
introduction of a defect, which can help you identify where the problem occurred. If
you and another team member make conflicting changes to a file or a set of files, you
can go back to versions of the file from before the changes were made.

File History
You can refer to the history of a file in your repository to review changes made to it
over the life of the project.

To help you understand the sequence of changes made to a specific Subversion file,
you can use the History Viewer and view the history of Subversion files.

To view the history of a file:

• With the file selected in the Applications window, choose Team > Version History
from the context menu.

For more information while using the History Viewer, press F1 or click Help.

Refreshing the Status of Files Under Subversion Control

The source control status of a file is indicated in the JDeveloper navigators
(Applications window and Teams window) by icon overlays, as below.

If the status of a file is changed outside JDeveloper, for example by using a Subversion
client application, the new status might not immediately be shown in JDeveloper. To
ensure that the status indicated in the Applications window matches the true status of
the file in the source control system, you can perform a manual refresh.

To refresh the status of files in JDeveloper:

Working with File History, Status and Revisions

Versioning Applications with Source Control 6-67

• Select View > Refresh.

Replacing a File with the Subversion Base Revision
Use this procedure to replace a file with the base revision. The base revision is the
revision from which the one you are currently working on originated.

To replace a file with the Subversion base revision:

1. In the Applications window, select the file to be replaced.

2. Choose File > Replace With Base Revision. The Replace With Base Revision dialog
opens. Check that the file that you want to replace is shown in the dialog.

3. To replace the file, click OK.

How to Undo or Revert Changes
Undo changes, revert to previous versions, selecting specific revisions: these are all
commonly used phrases to describe the process of canceling changes you have
decided not to check in to the repository.

Reverting Files to their Previous State in Subversion

Use the Revert command to:

• Undo changes that you have made locally to the contents of a file.

• Change the status of a file that has been added, but not yet committed, back to
unadded.

• Stop a file that is scheduled for removal (in the Pending Changes window) from
being removed from the Subversion repository.

To revert a file:

1. Select the file in the Applications window or Pending Changes window and choose
Team > Revert.

The Revert Local Changes dialog is displayed with the file or files listed.

For help while using the dialog, press F1 or click Help.

2. To revert the listed file or files, click OK.

Reverting Changes to Files in Git

You can revert changes made to a file that you have committed to a Git repository to
return it to a previous state.

To revert changes:

1. Select Team > Git > Revert. This displays a list of files that you can revert to a
previous version, with the path in your local file system at which the file resides.

2. Select the file you wish to revert, then click OK.

Working with File History, Status and Revisions

6-68 Developing Applications with Oracle JDeveloper

Working with Revisions and Tags in CVS

CVS lets you select specific revisions from the CVS repository, if you find it necessary
to begin or resume working with a previous version of the file you are currently
working on.

To open a CVS file revision:

This procedure will obtain a revision of a file from the CVS repository so that you can
view it or save it locally.

1. With the file selected in the Applications window, choose Team > Open Revision.

2. Set the options on the dialog as required. To obtain descriptions of the options,
press F1 or click Help.

3. Click OK.

How to Merge Changes from Different Files
Many version control systems offer ways to let you merge changes from different files,
ending up with a single version which contains edits from multiple team members. To
begin, you will need to compare different versions of the file, then follow the
procedures for selecting and merging changes.

Comparing Files in Subversion

Use these procedures to compare files that are under Subversion control with other
revisions of the same files, or with other files.

To compare revisions of a file:

1. From the context menu for the file, choose Compare With.

2. Select either Previous Revision, Latest Revision, or Other Revision.

If there are no differences, a message is displayed. Otherwise the revision or
revisions are shown in the Compare panel of the History tool.

To compare a file with another file:

1. From the context menu for the file, choose Compare With > Other File.

The Select File to Compare With dialog is opened.

2. Select the file to be compared.

The files are shown in the Compare panel of the History tool.

To compare two files:

1. Select the two files in the Applications window.

2. From the context menu for one of the files, choose Compare With > Each Other.

The files are shown in the Compare panel of the History tool.

You can hide (and later expose) the Compare panel of the History tool to view other
panels in JDeveloper.

Working with File History, Status and Revisions

Versioning Applications with Source Control 6-69

Resolving Conflicts in File Versions

If there is a conflict between your copy of the file and the one in the Subversion
repository, the icon next to the affected file will include an exclamation point. You will
not be able to submit such a file to the Subversion repository. To overcome this
problem, you should do one of the following:

• Revert to a non-conflicting version of the file.

• Resolve the conflict using the JDeveloper merge tool.

• Indicate to the Subversion control system that the conflict has been resolved (Team
> Mark Resolved), even if no changes have been made (usually necessary only for
binary files).

Another reason you might need to do this is if you have resolved the conflict yourself
in the file, rather than using the merge tool. This might be the case if you have chosen
to merge files at the server rather than the more usual solution of merging files locally.

To revert to a non-conflicting file version:

• Select the file in the Applications window and choose Team > Revert.

To resolve the conflicts using the merge tool:

1. Select the file in the Applications window and choose Team > Resolve Conflicts.

The file is opened with the Merge tab displayed, showing the merge tool.

2. Use the merge tool to resolve the conflicts.

For help while using the merge tool, press F1 or click Help.

To indicate that the conflict has been resolved, even if no changes have been made:

• Select the file (usually a file with binary content) in the Applications window and
choose Team > Mark Resolved.

Using the Merge Tool to Resolve Conflicts

Use this procedure to merge two revisions of a file, where the revisions contain
conflicting content. Conflicts are notified in the Pending Changes window: the
outgoing status is "conflicts" or "conflicts on merge", and the Resolve Conflicts button
is active.

To merge two revisions with conflicting content:

1. On the Outgoing tab of the Pending Changes window, select the revision that has
conflicts and click the Resolve Conflicts button. (You can also select the revision in
the Applications window.)

2. The merge tool is opened (as the Merge tab of the file editor).

For help while using the merge tool, press F1 or click Help.

The merge tool has three panels. The left panel contains the content of the version
in the repository. The right panel contains the content of the most recent local
version. The center panel contains the results of the merge. In the margins between
the panels are symbols representing suggested actions to resolve each conflict.

Working with File History, Status and Revisions

6-70 Developing Applications with Oracle JDeveloper

3. View the suggested actions for resolving the conflicts by reading the tooltip of the
margin symbols.

More suggested actions may be available from the context menus of the margin
symbols.

4. Resolve the conflicts by implementing a suggested action in each case.

Accepting an initial suggested action may cause the appearance of additional
suggested actions.

You can also make changes to the content of the center panel by typing into it.

5. To complete the merge, save the changes that have been made by clicking on the
Save Changes button on the merge tool (not the JDeveloper Save option).

Using the Subversion Merge Wizard

The Merge Wizard is instrumental to the way that JDeveloper supports Subversion
merge tracking. Merge tracking in Subversion means in essence that Subversion
remembers your merges so you don't have to. The Merge Wizard provides you with
an easy way of selecting which components you wish to merge, such as specific
revisions, branches, or change sets.

The Merge Wizard gives you a number of options:

Merge Selected Revision Range
Select this when merging a range of revisions to another branch, for example, when
you are back-porting a group of bug fixes to the release branch.

Reintegrate a branch
Normally used when merging the changes on a branch back to the trunk, for example,
if you completed the work on a feature branch and want to reintegrate the changes
back to trunk.

Merge two different trees
Select this to merge the differences between two branches into the working copy.

Block specific revisions from being merged
Select this if you know that specific revisions are not yet ready, or not appropriate, to
be merged into the trunk.

Working with File Versions and History in CVS
CVS gives you techniques that allow you to merge, compare, replace, and view
different versions of the files in your repository.

Merging Files in CVS

Use this procedure to merge two revisions of a file, where the revisions contain
conflicting content. Conflicts are notified in the Pending Changes window: the
outgoing status is "conflicts" or "conflicts on merge", and the Resolve Conflicts button
is active.

To merge two revisions with conflicting content:

1. On the Outgoing tab of the Pending Changes window, select the revision that has
conflicts and click the Resolve Conflicts button.

Working with File History, Status and Revisions

Versioning Applications with Source Control 6-71

2. The merge tool is opened (as the Merge tab of the file editor).

For help while using the merge tool, press F1.

The merge tool has three panels. The left panel contains the content of the version
in the repository. The right panel contains the content of the most recent local
version. The center panel contains the results of the merge. In the margins between
the panels are symbols representing suggested actions to resolve each conflict.

3. View the suggested actions for resolving the conflicts by reading the tooltip of the
margin symbols.

More suggested actions may be available from the context menus of the margin
symbols.

4. Resolve the conflicts by implementing a suggested action in each case.

Accepting an initial suggested action may cause the appearance of additional
suggested actions.

You can also make changes to the content of the center panel by typing into it.

5. To complete the merge, save the changes that have been made, using the Save
button.

Comparing Files in CVS

Use these procedures to compare revisions of files that are under CVS source control.
You can compare a file with its immediate predecessor, or you can compare with any
of the file's previous revisions.

To compare a file shown in the Applications window:

1. From the context menu for the file, choose Compare With.

2. Select either Previous Revision, Head Revision or Other Revision.

3. If you are comparing with previous revisions, these are listed in the Compare CVS
File dialog: Select the file that you want to compare with.

If there are no differences, a message is displayed. Otherwise the Compare tool is
displayed.

To compare a file shown in the Pending Changes window:

You can compare a file in the Pending Changes window either with a previous
revision or with the HEAD revision, depending on which mode the window is in. To
obtain more information when using the Pending Changes window, press F1.

• With the window in Outgoing Changes mode, select the file to be compared, then
select the Compare with Previous Revision button.

• With the window in Incoming Changes mode, select the file to be compared, then
select the Compare with Head Revision button.

If there are no differences, a message is displayed. Otherwise the Compare tool is
displayed.

Working with File History, Status and Revisions

6-72 Developing Applications with Oracle JDeveloper

Replacing a File with a CVS Revision

Use this procedure to replace a file with the base or head revision, or with a file with a
specific revision number or tag. The head revision is the latest one. The base revision is
the revision from which the one you are currently working on originated.

To replace a file with a CVS revision:

1. In the Applications window, select the file to be replaced.

2. Do one of the following:

• To replace with the base revision, choose File > Replace With > Base Revision.
The Replace With Base Revision dialog opens.

• To replace with a specific revision number or tag, choose File > Replace With >
Tagged Revision. The Replace With Tagged Revision dialog opens.

• To replace with the head revision, choose File > Replace With > Head
Revision. The Replace With Head Revision dialog opens.

3. Check that the file that you want to replace is shown in the dialog.

4. When replacing with a specific revision number or tag, enter the revision number
or tag into the text box on the dialog.

5. To replace the file, click OK.

Viewing the History and Status of a File in CVS

The history and status of a file will tell you what has been done to it, and what has
been done to it last. This can help you make the determination of what you need to do
to bring the file up to date, or to begin making your own modifications.

Use this procedure to open the History Viewer and view the history of CVS files.

To view the history of a project or file:

• With the project or file selected in the Applications window, choose Team >
Version History from the context menu.

For more information while using the History Viewer, press F1.

Use this procedure to check the status of a file that is under CVS source control. You
can also refresh the status of files under CVS control.

To view the status of a file:

1. With the file selected in the Applications window, open the context menu and
select Team > Properties.

2. Select the Versioning tab. The status of the file is the first item on the tab.

Possible statuses are:

• Changed locally - the file has been locally modified since it was copied from the
repository.

• Changed in repository - the file has been modified by another user since it was
copied from the repository.

Working with File History, Status and Revisions

Versioning Applications with Source Control 6-73

• Locally removed - the file will be removed during the next commit.

• Locally added - the file will be added during the next commit.

• Up-to-date - the file is up-to-date with the latest CVS repository revision.

• File has conflicts - these may have resulted from a file update or commit action. If
necessary, consult your CVS administrator for assistance.

• Needs merge or needs patch - the file has been updated externally, for example, by
another user.

• Modified - the file previously had merge conflicts, but the timestamp has changed
since.

Working with File Versions in Perforce
Perforce provides tools for resolving conflicts in file versions.

If there is a conflict between your copy of the file and the one in the Perforce depot, the
icon next to the affected file will include an exclamation point. You will not be able to
submit such a file to the Perforce depot. To overcome this problem, you should either
revert to a non-conflicting version of the file, or resolve the conflict.

To revert to a non-conflicting file version:

• Select the file in the Applications window and choose Team > Revert.

To resolve conflicting file versions (assumes use of Perforce merge tool):

1. Open the Perforce client by choosing Team > Resolve.

2. In the pending changelists for the client, identify the change.

3. Resolve the conflict using the Perforce tools.

If you cannot automerge the conflicts, run the merge tool and use its facilities to
create a definitive version from the conflicting data.

4. Accept the merge.

5. Submit the merge.

6. In JDeveloper, use View > Refresh to obtain the green dot on the file.

The file will still be marked as open for edit.

7. Submit the file.

Working with File Versions in Team System
Team System provides tools for working with file versions, including viewing,
comparing, and resolving conflicts among different files in the repository.

Resolving Conflicts in Team System File Versions

If there is a conflict between your copy of the file and the one in the Team System
server when you attempt to check it in, you will see a message box saying that the
operation cannot be completed. To overcome this problem, you must first cancel the
check-in operation, then do one of the following:

Working with File History, Status and Revisions

6-74 Developing Applications with Oracle JDeveloper

• Revert to a non-conflicting version of the file.

• Resolve the conflict using the merge tool in the Team System client software.

To revert to a non-conflicting file version:

• Select the file in the Applications window and choose Team > Undo.

Undoing Changes to Team System Files

Use to undo the most recent change to a file.

To undo changes:

1. In the Applications window, select the file whose last change you want to undo.

2. Select Team > Undo.

The Undo dialog is opened.

The change will be undone when you click OK.

Replacing a File with the Team System Base Version

Use this procedure to replace a file with the base version. The base version is the
version from which the one you are currently working on originated.

To replace a file with the Team System base revision:

1. In the Applications window, select the file to be replaced.

2. Choose File > Replace With > Base Version.

The Replace With Base Version dialog opens.

3. Check that the file that you want to replace is shown in the dialog.

4. To replace the file, click OK.

Viewing the History of a File

Use this procedure to open the History Viewer and view the history of files held under
Team System control.

To view the history of a file:

• With the file selected in the Applications window, choose Team > Version History
from the context menu.

For more information while using the History Viewer, press F1.

Comparing Files In Team System

Use these procedures to compare files that are under Team System control with other
versions of the same files, or with other files.

To compare versions of a file:

1. From the context menu for the file, choose Compare With.

2. Select either Previous Version, Latest Version or Other Version.

If there are no differences, a message is displayed. Otherwise the version or versions
are shown in the History tool.

Working with File History, Status and Revisions

Versioning Applications with Source Control 6-75

To compare a file with another file:

1. From the context menu for the file, choose Compare With > Other File.

The Select File to Compare With dialog is opened.

2. Select the file to be compared.

The files are shown in the Compare tool.

To compare two files:

1. Select the two files in the Applications window.

2. From the context menu for one of the files, choose Compare With > Each Other.

The files are shown in the Compare tool.

Using an External Diff Tool with CVS
JDeveloper has an integrated compare viewer that works well for most circumstances.
However, you may prefer to use another compare tool or the simple output from CVS
DIFF. JDeveloper lets you integrate third party tools and applications. This procedure
describes how to use the External Tools support in JDeveloper to integrate external
compare viewers.

To integrate CVS DIFF:

1. In JDeveloper, select Tools > External Tools.

2. Click Add. This opens the Create External Tool wizard.

3. On the External Program Options page, enter the following information:

Program Executable
The location of your CVS installation (for example c:\cvsnt\cvs.exe) or just
cvs

Arguments
-d ${cvs.root} diff ${file.name}

Alternate arguments
-d ${cvs.root} diff -r ${cvs.revision} -r $
{cvs.second.revision} ${file.name}

Run Directory
${file.dir}

Enter the alternate arguments if you want to integrate a tool that compares two
specific CVS revisions when the history tool is visible.

4. On the Display page, enter a caption for the diff tool (for example CVS Diff with
Repository) in the Caption for Menu Items box.

5. On the Integration page, choose how you want the diff tool to be integrated into
JDeveloper. For example, select the Tools Menu, Navigator Context Menu, and
Code Editor Context Menu items.

Working with File History, Status and Revisions

6-76 Developing Applications with Oracle JDeveloper

6. On the Availability page, select When a File is Selected or Open in the Editor.

7. Click Finish.

Integrating a Third Party Diff Utility
You can use external tools macros to view differences between two revisions in the
history tool using a third party utility such as Araxis Merge. The following steps will
install a menu item to invoke Araxis Merge. For other utilities, consult the
documentation of the utility to determine which command line arguments need to be
passed in.

To integrate a third party diff utility:

1. In JDeveloper, select Tools > External Tools.

2. Click Add. This opens the Create External Tool wizard.

3. On the External Program Options page, enter the following information:

Program Executable The path to the third party tool (for example c:
\araxismerge\compare.exe)

Arguments
/wait /title1:"${file.name} revision ${cvs.revision}" /
title2:"${file.name} revision ${cvs.second.revision}" /2 $
{cvs.revision.file} ${cvs.second.revision.file}

4. On the Display page, enter a caption for the third party tool (for example Araxis
Diff) in the Caption for Menu Items box.

5. Complete the remainder of the wizard as required. For help when using the
wizard, press F1 or click Help.

6. Click Finish.

Integrating other CVS Commands
You can take advantage of the supplied external tool macros to easily integrate other
CVS commands into JDeveloper. An example is the CVS annotate command
(sometimes referred to as “blame"), which shows a summary of who changed each line
of code and when the change was made. To integrate a tool for CVS annotate, set the
following options in a new tool.

To integrate other commands

1. In JDeveloper, select Tools > External Tools.

2. Click Add. This opens the Create External Tool wizard.

3. On the External Program Options page, enter the following information:

Program Executable
The path to the CVS executable (for example, C:\cvs\cvs.exe)

Arguments
-d ${cvs.root} annotate ${file.name}

Working with File History, Status and Revisions

Versioning Applications with Source Control 6-77

Run Directory
${file.dir}

4. Complete the remainder of the wizard as required. For help when using the
wizard, press F1 or click Help.

5. Click Finish.

Working with Patches in Source Control
Many of the version control systems available in JDeveloper provide features for
creating and applying patches—methods for determining changes between two
revisions of a file, and then applying those changes to a third file. In addition,
Subversion contains features for exporting the details about repository connections, as
well as files in the repository.

Subversion (included in JDeveloper) uses the following procedures for creating and
applying patches. In addition, the version control extensions for Concurrent Version
System (CVS), Perforce and Team System all use the same steps for creating and
applying patches.

To create a patch:

This generates a patch comprising the differences between a controlled revision of a
file and a revision of the file held locally.

1. In JDeveloper, open the file for which you want to create a patch.

2. Click the History tab.

The History view lists all the revisions of the file. In the lower portion of the
History view, the left pane shows the contents of a local revision, and the right
pane shows the contents of the controlled revision.

3. Select the revision combination for which you want to create a patch.

4. From the context menu, choose Generate Patch.

The Select Patch Context dialog may open. For help while using this dialog, press
F1 or click Help.

The Generate Patch dialog opens. Complete the dialog as required. For help while
using the dialog, press F1 or click Help.

To apply a patch:

1. In the Applications window, select the resource to which you want to apply a
patch.

The resource can be an application, a project, or a source file.

2. Select Team > Apply Patch.

If you chose to apply a patch to a project, the Select Patch Context dialog opens,
through which you should specify whether you are applying a project file (.jpr)
patch, or whether you are updating the contents of a project.

The Apply Patch dialog is opened.

Working with Patches in Source Control

6-78 Developing Applications with Oracle JDeveloper

3. In the grid at the top of the Apply Patch dialog, check that the target resources are
correctly identified.

4. Choose the source of the patch. For more information about this and the other
options on the dialog, press F1 or click Help.

5. Click Preview. This opens the Apply Patch Preview window, in which you can
accept or reject particular changes. For more information about the options in the
Apply Patch Preview window, press F1 or click Help.

6. To apply the patch, click OK.

How to Create and Apply Patches
JDeveloper provides features for creating and applying patches—methods for
determining changes between two revisions of a file, and then applying those changes
to a third file. You can typically save these patches either as a separate file, or as a
section of text to be copy-and-pasted into the target file.

Creating Patches

You may wish to record the changes between two revisions of a file, then apply those
changes to a third file. You do this by creating a patch and then applying it.

To create a patch:

This generates a patch comprising the differences between a controlled revision of a
file and a revision of the file held locally.

1. In JDeveloper, open the file for which you want to create a patch.

2. Click the History tab.

The History view lists all the revisions of the file. In the lower portion of the
History view, the left pane shows the contents of a local revision, and the right
pane shows the contents of the controlled revision.

3. Select the revision combination for which you want to create a patch.

4. From the context menu, choose Generate Patch.

The Select Patch Context dialog may open. For help while using this dialog, press
F1 or click Help.

The Generate Patch dialog opens. Complete the dialog as required. For help while
using the dialog, press F1 or click Help.

Applying Patches

Once you have created a patch, you apply it from the Team menu.

To apply a patch:

1. In the navigator, select the resource to which you want to apply a patch.

The resource can be an application, a project, or a source file.

2. Select Team > Apply Patch.

If you chose to apply a patch to a project, the Select Patch Context dialog opens,
through which you should specify whether you are applying a project file (.jpr)
patch, or whether you are updating the contents of a project.

Working with Patches in Source Control

Versioning Applications with Source Control 6-79

The Apply Patch dialog is opened.

3. In the grid at the top of the Apply Patch dialog, check that the target resources are
correctly identified.

4. Choose the source of the patch. For more information about this and the other
options on the dialog, press F1 or click Help.

5. Click Preview. This opens the Apply Patch Preview window, in which you can
accept or reject particular changes. For more information about the options in the
Apply Patch Preview window, press F1 or click Help.

6. To apply the patch, click OK.

Working with Patches in Source Control

6-80 Developing Applications with Oracle JDeveloper

7
Getting Started with Developing Java

Applications

This chapter is an overview of the tools and features that JDeveloper provides to speed
up the process of writing Java code.

This chapter includes the following sections:

• About Developing Java Applications

• Using the Java Source Editor

• Using Code Insight

• Using Code Peek

• Using Scroll Tips

• Using InfoTips

• Searching Incrementally

• Using Shortcut Keys

• Bookmarking

• Browsing Java Source

• Using Code Templates

• Setting Preferences for the Java Source Editor

• Using Toolbar Options

• Using the Quick Outline Window

• Working with the Java UI Visual Editor

About Developing Java Applications
JDeveloper enables you to build and assemble Java applets and client applications
using JavaBeans and interactive, desktop-based GUI applications using Swing and
AWT components. You can also create and run Java client applications with Java Web
Start within the JDeveloper IDE.

Using the Java Source Editor
The Java Source Editor displays Java source files, and facilitates editing of Java code.
The Java Source editor is a specialized form of the generic Source Editor that

Getting Started with Developing Java Applications 7-1

JDeveloper provides for editing source code across several technologies, including
XML, JSP, and HTML.

Double-clicking a node in the Applications window either opens or brings the default
editor to the foreground. When a file is open in the Source Editor, its corresponding
elements are displayed hierarchically in the Structure window. Double-clicking a node
in the Structure window shifts the focus to the definition of that element in the Source
Editor.

You can customize the behavior of the Java Source Editor by specifying preferences in
the Preferences Dialog. For more information, see Setting Preferences for the Java
Source Editor.

Using Code Insight
With Java Code Insight, you can filter out unnecessary information such as top-level
packages, imported classes, default Object methods, deprecated items, and emphasize
more key detail such as local variables, locally declared members, overloaded
methods.

You can use Code Insight to speed up the process of writing code. Code Insight has
two varieties: completion insight and parameter insight. You can enable or disable
each independently and set the delay in seconds for each to appear when the cursor is
paused at an appropriate insertion point.

To invoke completion after typing the period separator or, in the default keymap,
press Ctrl+Space. To invoke parameter insight, pause after typing an opening (the left)
parenthesis or, in the default keymap, press Ctrl+Shift+Space. To exit either type of
insight at any time, press Esc. Note that if you change your keymap ping, these
keyboard accelerators may change. You can click QuickDoc, located at the bottom
right of the completion insight list, to display the Javadoc for the currently selected
element

After a method has been completed by completion insight, the source editor
automatically fills in the parameters based on the method code.

You can tab between these parameters, and edit them manually or using parameter
insight. The source editor will automatically add an import if it can find only one exact
match for an unresolved reference to a class. You can set preferences for this feature in
the Preferences Dialog.

You can also use and configure member insight, the Java-specific implementation of
Code Insight's completion insight, and you can choose to display deprecated members
or not in Code Insight's parameter insight window.

Member insight provides you with a list of which instance and static members (fields,
methods, inner classes) are accessible from a given statement context. For example, it
tells you which methods you can call from any given method.

To change Code Insight settings or to view or change accelerators, from the main
menu choose Tools > Preferences to open the Preferences dialog and then navigate to
the appropriate page. For more information, see Editing with the Java Visual Editor

Using Code Insight to Add Annotations to Your Java Code
An annotation is used to associate information with a program element. Annotations
can be used in classes, fields, methods, parameters, local variables, constructors,
enumerations, and packages. To add annotations in your Java code: declare the
annotation, create a function, and then add your annotations.

Using Code Insight

7-2 Developing Applications with Oracle JDeveloper

When you start adding an annotation, Member Insight (Ctrl+Space) displays a list of
options (fields, members, classes) based on the statement context. Parameter Insight
(Ctrl+Shift+Space) displays information about the annotation like the names of the
elements of the annotation type, the default values, and the created values. It also
highlights the element currently under the cursor in the annotation.

For more information see How to Add Documentation Comments.

Using Code Peek
You can hold down the Shift key and then hover over a variable or method to show its
definition in a ghost window. This feature makes it convenient to quickly view code
without moving cursor focus from your current code.

Figure 7-1 Code Peek

Using Scroll Tips
While dragging the vertical scroll bar, a small tip window appears next to the bar,
revealing the methods that are visible or partially visible on screen. This enables you
to more easily see what methods are in view while quickly scrolling. You can also see
the name of the method whose beginning is not immediately in view.

Using InfoTips
An InfoTip is a pop-up window that reveals additional detail about an item in the
application, for example, text in the Java Source Code editor and the overview gutter.
You display the InfoTip by pointing or hovering over the item with your mouse
cursor. It remains visible until you move the mouse away or click elsewhere in the UI.

Figure 7-2 InfoTips

Using Code Peek

Getting Started with Developing Java Applications 7-3

Searching Incrementally
To search incrementally, from the main menu choose Search > Incremental Find
Forward or Search > Incremental Find Backward. Begin typing in the dialog that
displays. As you type, the cursor jumps to the next instance of that particular letter
combination, either forward or backward. The search does not support wildcards.

Using Shortcut Keys
Shortcut keys, or accelerators, are combinations of keys that you can use to navigate or
to perform certain operations using the keyboard instead of the mouse. You can select
from a variety of predefined keymaps or define your own accelerators.

To view or change existing accelerators, to define new accelerators, or to load preset
keymaps, from the main menu choose Tools, then Preferences to open the Preferences
dialog and then navigate to the Shortcut Keys page. To view or change accelerators for
the editor, select Code Editor from the Category list.

Note that block commenting is indicated by Toggle Line Comments. It is defined in
the default keymap as Ctrl-Shift-Slash or Ctrl-Slash.

For more information, see Keyboard Navigation in .

Bookmarking
While bookmarking code:

• You can see a list of all bookmarks you have created in a Bookmarks window. This
window appears when you click the Go to Bookmark icon. This window also
displays the line number and method name that contains the bookmark.

Figure 7-3 Go to Bookmark Icon

• You can create numbered bookmarks using the keyboard shortcut Ctrl+Shift
+<number>. You can quickly navigate to that bookmark by pressing Ctrl
+<number>.

For more information, see How to Set Bookmarks in Source Files.

Browsing Java Source
To navigate to the source for any identifier in an open Java file, right-click on the
identifier you would like to browse and choose Go to Declaration. Alternatively, you
can hold down the Ctrl key and click on an identifier to navigate to its source. If the
source is not available, JDeveloper will reverse-engineer the class file. You may
browse imported classes and interfaces, member fields and methods, and local
variables. If you are browsing a method or constructor invocation, this declaration
search will resolve the types in order to determine the correct method or constructor
invocation. For instance, the following code revokes the declaration search at SetText.
It brings up the source code for javax.swing.JButton, with the SetText()
method displayed.

import javax.swing.JButton
...
JButton b1 = new JButton();

Searching Incrementally

7-4 Developing Applications with Oracle JDeveloper

...
b1.SetText: ('OK');

If the identifier cannot be browsed or if there is nothing at that cursor position, this
search command on the context-sensitive menu will be disabled. If JDeveloper is
unable to locate the appropriate location to jump to or if the identifier cannot be
browsed due to access restrictions (for example, private members), the Java Source
Editor's status bar will display a message indicating so.

Using Code Templates
Code templates are sections of pre-written code that can be conveniently inserted into
source file to avoid typing it in manually. Templates can intelligently modify the
inserted code to suit its surrounding code, and imports required by code templates are
automatically imported.

A complete list of all code templates is available in the Code Editor Help. To edit or
create code templates, or to view or change accelerators, from the main menu choose
Tools > Preferences to open the Preferences dialog and then navigate to the
appropriate page.

For more information, see How to Use Code Templates.

Setting Preferences for the Java Source Editor
You can customize the behavior of the Java Source Editor using the Preferences
Dialog. You can also use the Preferences Dialog to specify settings for the general
source editing environment. For more information, see How to Set Preferences for the
Source Editor.

To set the options for Code Insight as it applies to Java:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Code Editor node.

A list of selectable options displays, for example, Bookmarks and Code Templates.

3. Click an option and choose options that appear on the new page that displays.

4. Click OK when you are finished.

How to Set Comment and Brace-Matching Options for the Java Source Editor
JDeveloper enables you to set comment and brace-matching options for the Java
source editor. For example, you can choose to add leading and closing asterisks as you
add new lines either in multi-line Java comments or in Javadoc comments.

To set the options for Java comment and brace matching in the source editor:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Display node.

4. On the Display page, enable or disable automatic brace matching and set the delay
time.

Using Code Templates

Getting Started with Developing Java Applications 7-5

5. Click OK.

6. Reopen the Preferences dialog, expand the Code Editor node, and select the Java
node.

7. On the Java page, set the attributes for comments and brace matching to create the
behavior that you want.

For example, you can select the Add Closing Bracket or Parenthesis
Automatically option.

8. Click OK.

Note that block commenting is an accelerator function. In the default keymap, use Ctrl
+Shift+/ or Ctrl+/ to block-comment Java code.

How to Set Import Statement Sorting Options for the Java Source Editor
You can set options to sort import statements in the Java Source Editor.

To set the options for sorting import statements:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Code Editor node.

3. Expand the Java node and select Imports.

4. On the Imports page, choose options to create the behavior that you want when
sorting import statements in the editor.

5. Click OK.

How to Choose a Coding Style
You can use the Tools > Preferences dialog to select a profile that determines the style
of code shown in the Java Source Code editor. The coding style determines Java Code
conventions such as formatting, how import statements display in code, variable
names, and member order.

To select a coding style for the Java Source Code editor:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Code Editor node.

3. Click the Code Style node.

4. On the Code Style page, choose a Profile.

5. Click OK.

How to Edit a Coding Style

You can edit an existing coding style and make it available as a selectable Profile
option on the Code Style page. You can also import an existing code style profile from
an XML file.

To edit an existing code profile:

Setting Preferences for the Java Source Editor

7-6 Developing Applications with Oracle JDeveloper

1. Follow the steps in How to Choose a Coding Style to choose an existing profile in
the Profile list.

2. Click Save As and enter a name for your new profile.

3. Click Edit.

4. In the Edit Code Style Profile - Java Code Conventions page, choose options for
your new profile.

5. Click OK.

6. You can alternately click Import to import a code style profile into JDeveloper from
an XML file.

How to Set Up a Coding Style Using an Extension

You can create a custom coding profile using an extension, then set it as the default for
a role, for example, developer, using the extension.xml file. For more information,
see "Introduction to Developing Oracle JDeveloper Extensions" in Oracle Fusion
Middleware Developing Extensions for Oracle JDeveloper.

To set a default coding profile using an extension:

1. Edit a custom style according to How to Edit a Coding Style.

2. Choose Export from the More Actions list.

3. Add it to an extension and put an entry in the extension.xml file, similar to the
following.:

<hooks>
 <code-style xmlns="http://xmlns.oracle.com/ide/extension">
 <profile-url>/META-INF/custom-profile.xml<profile-url>
 </code-style>
<hooks>

4. To set the profile as the default style, add a section to the role shaping file with the
profile name, similar to the following:

<c:settings-ui-customizations>
 <c:page idref="/preferences/ceditor/style">
 <c:field idref="CodingStylePreferences.profile">
 <c:value>Custom Profile</c:value>
 </c:field>
 </c:page>
</c:settings-ui-customizations>

Using Toolbar Options
The Java Source Editor displays Java source files, and facilitates editing of Java code.
Icons that perform various features are located at the top of the Java Source Editor, as
described in Table 7-1.

Using Toolbar Options

Getting Started with Developing Java Applications 7-7

Table 7-1 Toolbar Options

Icon Name Description

Quick Outline Click to display a tree of the available methods
and fields of the current class and its super
classes.

Clicking this icon brings up the Quick Outline
window (for more information, see Using the
Quick Outline Window). This window floats
just above the code and contains a tree of the
available methods and fields of the current class
and its super classes. You can instantly start
typing in a filter field to reduce the visible items,
allowing quick and easy selection for navigation
to the desired place

Code Highlight Click to highlight all instances of the code
component that the cursor is currently placed
on.

Clear All Highlighting Click to clear all highlighting.

Surround Click to surround the currently selected block of
text in the Java Source Editor with a coding
construct, using the Surround With dialog.

Generate Accessors Click to insert get and set methods into a class,
using the Generate Accessors dialog.

Override Methods Click to override inherited methods for the class
in focus.

Implement Interfaces Click to modify a target class to implement one
or more interfaces, or to make a target interface
extend one or more other interfaces, using the
Implement Interface dialog.

Reformat Click to apply source formatting to your code.

Toggle Bookmark Click to insert or remove a bookmark on the line
of code currently in focus.

Go to Next Bookmark Click to place the cursor at the next bookmark.

Go to Previous
Bookmark

Click to place the cursor at the previous
bookmark.

Show Selected Element
Only

Click to view only one particular element in the
editor. You can use this feature to tightly focus
on a method, class, inner class, or field
declaration. A message at the bottom of the file
reminds you that the Show Selected Element
mode is currently active.

Using Toolbar Options

7-8 Developing Applications with Oracle JDeveloper

Table 7-1 (Cont.) Toolbar Options

Icon Name Description

Block Coloring Click to activate block coloring. You can use this
feature to highlight blocks of code for better
readability. Coloring preferences can be set
using the Preferences Dialog.

Using the Quick Outline Window
Clicking the Quick Outline Toolbar icon (Figure 7-4) to the right of the Find field in
the Java source editor displays the Quick Outline window shown in Figure 7-5.

Figure 7-4 Quick Outline Icon

This window floats just above the code and contains a tree of the available methods
and fields of the current class and its super classes. You can instantly start typing in a
filter field to reduce the visible items, allowing quick and easy selection for navigation
to the place.

Figure 7-5 Quick Outline Window

Table 7-2 lists the available icons and options.

Table 7-2 Quick Toolbar Icons

Icon Name Description

Show Methods Click to display methods and constructors. The
default is methods, fields, and static members all
displayed.

Show Fields Click to display fields. The default is methods,
fields, and static members all displayed.

Show Static Members Click to display static members. The default is
methods, fields, and static members all displayed.

Show Public Members Only Click to display only public members. The default
value is deselected.

Using the Quick Outline Window

Getting Started with Developing Java Applications 7-9

Table 7-2 (Cont.) Quick Toolbar Icons

Icon Name Description

Show Inherited Member Click to display only inherited members.

Sort Alphabetically Click to sort class members alphabetically. The
default value is deselected.

Sort by Type Click to sort class members first by type (in this
order: constructors, methods, fields, inner classes),
and then alphabetically within those categories. The
default value is selected.

Click the down arrow next to Sort Alphabetically to
view the option.

Sort by Access Click to sort class members first by access modifier,
and then alphabetically within those categories. The
default value is deselected.

Click the down arrow next to Sort Alphabetically to
view the option

Show Detail Window Click to open the Show Detail window for the
selected item in the Quick Outline window.

In the Show Detail window, click the
Documentation tab to view the package containing
the item.

In the Show Detail window, click the Code tab to see
its definition in the source file.

Working with the Java UI Visual Editor
The Java UI Visual Editor displays the visual components of a user interface in editing
mode. For more information, see Editing with the Java Visual Editor .

Note:

You can use the Java Visual Editor for Swing/AWT Applications only.

Java Swing and AWT Components
Use Swing and AWT JavaBeans components to assemble the user interface (UI) for a
Java application or applet. You construct the UI in the Java Visual Editor by selecting
JavaBeans from the Components window, such as buttons, text areas, lists, dialogs,
and menus. Then, you set the values of the component properties and attach event-
handler code to the component events. Tools to visually design and program Java
classes to produce new compound or complex component.

For more information, see About Java Swing UI Components and Containers.

Working with the Java UI Visual Editor

7-10 Developing Applications with Oracle JDeveloper

8
Working with Java Code

This chapter describes how to take advantage of the JDeveloper tools and features that
help you create the code for your Java applications. For example, you can browse Java
elements in your application using a JDeveloper dialog or directly from an open file in
the Java Source Editor. To edit Java code directly, you can use the Source Editor. Use
the Visual Editor to display a diagram representing your Java code. For example, a
Frame component displays as rectangular box, a button displays as a smaller button
on top of the Frame, and so on.

Refactoring is an editing technique that modifies code structure without altering
program behavior. Refactoring is useful when you want to modify a program's source
code to make it easier to maintain, extend, or reuse.

This chapter includes the following sections:

• About Working with Java Code

• Navigating in Java Code

• Editing Java Code

• How to Add Documentation Comments

• Refactoring Java Projects

About Working with Java Code
In most cases, you use the Java Source Editor to write or edit Java code. It contains a
set of Java-specific features to enhance your coding experience. For example,
JDeveloper makes it easy to code using predefined code templates, add Javadoc
comments, and even apply formatting to your code. These features are available
through the context menu and the Source main menu. For more information, see
Using the Source Editor.

You can customize the behavior of the Java Source Editor by specifying preferences in
the Preferences Dialog. For more information, see How to Set Preferences for the
Source Editor.

Navigating in Java Code
JDeveloper provides many Java-aware editing features that you can use to improve
your productivity. These include features for locating and moving to the source code
for your projects' classes and interfaces and their members. JDeveloper also comes
with keyboard accelerators to step from member to member in a class definition in the
Java Source Editor.

Working with Java Code 8-1

How to Browse Java Elements
While working in JDeveloper, you can browse Java elements using a JDeveloper
dialog or directly from an open file in the Java Source Editor. You also can locate
source code or Javadoc for a given type.

Sources are displayed for classes present in the project's source path. They are also
displayed for classes present in a project library, if the library has sources included.

Browsing a Java Element Directly in JDeveloper

You can browse Java elements in the JDeveloper dialog shown in Figure 8-1:

Figure 8-1 Go to Java Type Dialog

To browse a Java element in JDeveloper:

1. From the main menu, choose Navigate > Go to Java Type.

You can also use the keyboard shortcut, Ctrl+minus.

2. In the Go to Java Type dialog, enter the name of the Java class or interface that you
want to locate.

When you begin entering text in this field, a list of Java entities matching the text
displays. For example, entering j might display a list of classes that includes
java.lang.

You can drill down in the results returned in the Go to Java Type dialog. For
example, double click on the java.lang class to display methods such as
java.lang.Byte.

3. Double-click an entity in the list to open it in the source editor.

How to Locate the Declaration of a Variable, Class, or Method
When working in the Java Source Editor, you can quickly locate the declaration of any
identifier.

To navigate to the declaration of a code element:

• Right-click on the code element and choose Go to Declaration, or:

• Press the Control key and left-click on the code element.

The source code for that element opens, with the line on which it is declared
highlighted.

Navigating in Java Code

8-2 Developing Applications with Oracle JDeveloper

Figure 8-2 Highlighted Declaration

If the declaration is in the same file, the cursor moves to it and highlights it. If the
declaration is in a different file, the source file opens in the Java Source Editor. The
cursor moves to it and highlights it.

How to Find the Usages of a Class or Interface
While working in the Java Source Editor, you can quickly locate references to a class or
interface and its members. By default, usages in the current project and its dependency
projects are reported. You can extend the search to libraries if the source files for the
libraries are accessible.

To find the usages of a class:

1. Select the class or interface in one of the following ways:

• In the Java Source Editor, select the name.

• In the Applications window or the Structure window, select a class or an
interface.

2. Invoke the command using one of the following ways:

• Choose Search > Find Usages.

• Right-click and choose Find Usages.

• Press Ctrl+Alt+U.

The Usages of <Object> dialog displays.

3. In the Find box, select the types of references that the search will return.

4. In the Where box, define the optional additional areas you want to search in.

5. To direct the output of the search, select New Tab to direct the output to a new
Usages Log.

If not selected, the result of the previous search for usages, if any, are discarded.

6. Click OK.

The results display in the Usages Log window.

How to Find the Usages of a Method
While working in the Java Source Editor, you can quickly locate references to a
method.

The search displays applications of the method to instances of the class or interface for
which the method is defined. It also shows applications for instances of its subclasses
or subinterfaces, if any, that inherit the method.

To find the usages of a method:

1. Select the method in one of the following ways:

Navigating in Java Code

Working with Java Code 8-3

• In a Java Source Editor, select the name.

• In the Structure pane, select the method.

2. Invoke the command in one of the following ways:

• Choose Search > Find Usages.

• Right-click and choose Find Usages.

• Press Ctrl+Alt-U.

The Usages of <Method> dialog displays. This dialog provides various options
that you can specify to search for usages.

• Specify options in the dialog and click OK to begin the search.

How to Find the Usages of a Field
While working in the Java Source Editor, you can quickly locate references to a field.

The search shows references to the field in instances of the class or interface for which
the field is defined. It also shows references for instances of its subclasses or
subinterfaces, if any, that inherit the field.

To find the usages of a field:

1. Select the field in one of the following ways:

• In a Java Source Editor, select the name.

• In the Structure pane, select the field.

2. Invoke the command in one of the following ways:

• Choose Search > Find Usages.

• Right-click and choose Find Usages.

• Press Ctrl+Alt-U.

3. Complete the Usages of <Object> dialog and click OK. You can specify options to
extend the search to other areas, define the scope of the search, and optionally
specify that the results be displayed in a new tab in the Log window.

The search will commence, and the results will be displayed in the Usages of
<Object> Log window.

How to Find the Usages of a Local Variable or Parameter
While working in the Java Source Editor, you can quickly locate references to a local
variable or a parameter in a method body. Local variables and parameters used in
extracted code become parameters of the new method.

To find the usages of a local variable or parameter:

1. Select the variable or parameter name in the Java Source Editor.

2. Invoke the command in one of the following ways:

• Choose Search > Find Usages.

Navigating in Java Code

8-4 Developing Applications with Oracle JDeveloper

• Right-click and choose Find Usages.

• Press Ctrl+Alt-U.

The results are displayed in the Usages Log window.

Identifying Overridden or Implemented Method Definitions
While working in the Java Source Editor, you can identify methods that override or
implement superclass definitions. Overriding definitions are marked with the
Overrides up arrow icon, as shown in Figure 8-3.

Figure 8-3 Overrides Icon

Overridden definitions are marked with the Implements margin icon in the Java
Source Editor margin, as shown in Figure 8-4.

Figure 8-4 Implements Icon

To view the overridden definition of a method, click the Overrides margin icon. To
view the overridden definition of a method, click the Implements margin icon.

Click the Back button on the Main toolbar to return to the previous view.

How to View the Hierarchy of a Class or Interface
While working in the Java Source Editor, you can inspect the hierarchy of subtypes
and supertypes of a class or interface.

What displays in the editor is the entire GUI hierarchy for the node. The method of
display depends upon whether this hierarchy consists of menu or non-menu items.

Viewing the Hierarchy of a Class or Interface in the Java Source Editor

The hierarchy window displays the hierarchy of the selected classes or interface.

To view the hierarchy of a class or interface in the Java Source Editor:

1. Select the class or interface, then either right-click and choose Types or choose
Navigate > Types.

The Types window opens (if it is not already open) and the tree of either subtypes
or supertypes will be shown.

2. To toggle the display between subtypes and supertypes, click the Subtype
Hierarchy or Supertype Hierarchy button.

Stepping Through the Members of a Class
You can use keyboard accelerators to step from member to member in a class
definition in a Java Source Editor:

• To step to the next member definition or declaration in the current Java source
view, press Alt+Down, or choose Navigate > Go To Next Member.

Navigating in Java Code

Working with Java Code 8-5

• To step to the previous member definition or declaration in the current Java source
view, press Alt+Up, or choose Navigate, then Go To Previous Member.

The following code-stepping commands are also defined but are not assigned default
accelerators and are not available through the Navigate menu:

• Go to Next Class

• Go to Next Field

• Go to Next Method

• Go to Previous Class

• Go to Previous Field

• Go to Previous Method

You can find these commands listed in the Navigate category of the Shortcut Keys
page of the Preferences dialog. You can add or change accelerators. For more
information, see How to Work with Shortcut Keys in the IDE.

Editing Java Code
JDeveloper provides many Java-aware editing features you can use to improve your
productivity. As an alternative to text editing, you can also use the Java Visual Editor
when developing graphical user interfaces. The Source Editor and Visual Editor are
synchronized; a change in one is immediately reflected in the other. These Java editing
features augment generic source editing features that support coding in any
technology.

How to Create a New Java Class or Interface
Before creating a new class or interface, you must first create an application and a
project. After you create the class or interface, it is added to the active project and, by
default, displays in the Java Source Editor. You can also access it in the Applications
window.

To create a new class and add it to a project:

1. In the Applications window, select the project where you want to add the Java
class, for example, client.

2. Right-click and choose New > Java Class.

3. In the Create Java Class dialog, enter the class or interface name, the package name,
and the superclass that the new class will extend.

4. Select attributes as needed.

5. Click OK.

How to Implement a Java Interface
In the source editor, you can quickly add framework code to modify a target class to
implement an interface or to make a target interface extend another interface.

An implements or extends clause is added to the declaration for the target class or
interface, and an import statement is added to the file. If the target is a class, stub

Editing Java Code

8-6 Developing Applications with Oracle JDeveloper

definitions for the implemented interface's methods are appended to the class or
interface body.

To implement an interface:

1. Open a Java source file.

2. From the main menu, choose Source > Implement Interface.

3. On the Search or Hierarchy tab, locate the class that will implement the interface
and select the names of the interfaces that are to be implemented.

4. If you want documentation comments from the overridden methods to be
included, select Copy Javadoc.

5. Click OK.

How to Override Methods
In the source editor, you can quickly add stub definitions to a class to override
methods inherited from superclasses. An overriding subclass provides a specific
implementation of a method that is already provided by one of its superclasses.

To override methods:

1. Open a Java source file.

2. From the main menu, choose Source > Override Methods.

3. In the Methods list, select the methods that are to be overridden.

The list displays methods inherited from all superclasses. Abstract methods are
shown in bold type. These must be implemented by non-abstract types.

4. If you want documentation comments from the overridden methods to be
included, select Copy Javadoc.

5. Click OK.

The stub method definitions are added to the class.

6. Edit the stub definitions.

How to Convert an Anonymous Inner Class to a Lambda Expression
Lambda expressions enable you to simplify coding by providing a mechanism for
expressing instances of anonymous inner classes that contain only a single method in
more compact forms. You can only convert such a class only if it meets the
requirement of being a functional interface, that is one whose type can be used for a
method parameter when a lambda expression is used as the argument to the method.

Note:

This feature is only accessible if you have specified JDK 1.8 as the target JDK
for your project.

To convert an inner class to a lambda expression:

Editing Java Code

Working with Java Code 8-7

1. In the Java source editor, select the anonymous class to convert.

The IDE analyzes the code to check if code assist is applicable.

2. Click the code assist icon that appears in the editor margin.

3. Click the code assist Convert Anonymous Inner Class to a Lambda Expression.

The lambda expression replaces the inner class.

For more information, see http://docs.oracle.com/javase/tutorial/java/
javaOO/lambdaexpressions.html

You can turn this feature on or off in the Preferences dialog. Note that this feature is
on by default.

To turn this feature off:

1. Go to Tools > Preferences and click the Audit node.

2. Click Edit Profiles on the Audit page.

3. Click the Code Assists tab.

4. Expand the following Code Assists category nodes: Java SE > Java > Code Assists.

5. Uncheck the Eligible Lambda Expression to make the feature unavailable.

Select to make the feature available through code assist.

How to Use Code Templates
JDeveloper provides predefined code templates that assist you in writing code more
quickly and efficiently by inserting text for commonly used statements. For example,
the "Iterate over a list" (itli) template inserts the following code:

for (Object object : Object) {
 ;
 }

Note:

If the template contains variables, the variables are highlighted. You can edit
each variable to complete the template. Pressing Tab moves the caret to the
next template variable.

You can use shortcuts to speed up the selection of the required template. Pressing Ctrl
+Enter anywhere in the source file brings up a list of code templates that you can
select. The templates provided in this list are contextual and only those suitable for the
current location are offered. You can click QuickDoc on the bottom right corner of this
list to see the structure of the selected code template. If you were using the existing
template for the for loop, for instance, you would type for and then (in the default
keymapping) press Ctrl+Enter.

In addition to the templates provided by JDeveloper, you can also define your own
code templates in the Code Editor - Code Templates page of the Preferences dialog.
For more information, see How to Customize Code Templates for the Source Editor.

To evoke a defined code template:

Editing Java Code

8-8 Developing Applications with Oracle JDeveloper

http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

1. In the file open in the editor, put the cursor at the point where the template is to be
inserted.

2. Enter the shortcut associated with the template and then press Ctrl+Enter.

The code as defined in the template is inserted in the source file. Import statements
needed for the template, if any, are inserted at the top of the file.

Note:

Ctrl+Enter is the accelerator assigned in the default keymap. You can assign
an alternative.

Using Predefined Code Templates
The predefined code templates that JDeveloper provides are shown below.

Array Iterator

ai
for (int i = 0; i < $array$.length; i++)
{
 $type$ var = $array$[i];
 end
}

Data Action Event Handler

daev
public void onend(PageLifecycleContext ctx)
{
}

for loop

for
for (end ; ;)
{
}

if statement

if
if (end)
{
}

if else statement

ife
if (end)
{

} else
{

}

Editing Java Code

Working with Java Code 8-9

integer based loop

fori
for (int i = 0; i < lim; i++)
{
 end
}

integer based loop

forn

int n = lim;
for (int i = 0; i < n; i++)
{
 end
}

instanceof + cast

iofc
if (var instanceof $type$)
{
 $type$ $casted$ = ($type$) var;
 end
}

Instantiate a BC4J application module

String amDef = "test.TestModule";
String config = "TestModuleLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef,config);
ViewObject vo = am.findViewObject("TestView");
end// Work with your appmodule and view object here
Configuration.releaseRootApplicationModule(am,true);

Iterate over array

itar

for (int i = 0; i < $array$.length; i++)
{
 $type$ var = $array$[i];
 end
}

Iterate over a collection

itco

for(Iterator $iter$ = col.iterator();$iter$.hasNext();)

{
 $type$ var = ($type$) $iter$.next();
 end }

Editing Java Code

8-10 Developing Applications with Oracle JDeveloper

Iterate over a list

itli
for (int i = 0; i < $list$.size(); i++)
{
 $type$ var = ($type$) $list$.get(i);
 end
}

Iterate over map keys

itmk

Iterator $iter$ = map.keySet().iterator();
while ($iter$.hasNext())
{
 $type$ var = ($type$) $iter$.next();
 end
}

Iterate over map values

itmv

Iterator $iter$ = map.values().iterator();
while ($iter$.hasNext())
{
 $type$ var = ($type$) $iter$.next();
 end
}

JDBC Connection

conn

public static Connection getConnection() throws SQLException
{
 String username = "endscott";
 String password = "tiger";
 String thinConn = "jdbc:oracle:thin:@localhost:1521:ORCL";
 Driver d = new OracleDriver();
 Connection conn =
DriverManager.getConnection(thinConn,username,password);
 conn.setAutoCommit(false);
 return conn;
}

List to array

ltoar

$type$ var = new $typeelem$[$list$.size()];
var = ($type$) $list$.toArray(var);
end

main method

main

public static void main(String[] args)
{

Editing Java Code

Working with Java Code 8-11

 end
}

out.println()

outp

out.println(end);

private ArrayList

pral

private ArrayList _end = new ArrayList();

private boolean

prb

private boolean _end;

private HashMap

prhm

private HashMap _end = new HashMap();

private int

pri

private int _end;

private String

prs

private String _end;

public static final

pusf

public static final end;

public static final boolean

pusfb

public static final boolean end;

public static final int

pusfi
public static final int end;

Editing Java Code

8-12 Developing Applications with Oracle JDeveloper

public static final String

pusfs

public static final String end;

Reverse array iterator

ritar

for (int i = $array$.length; --i >= 0 ;)
{
 $type$ var = $array$[i];
 end
}

Reverse iteration over a list

ritli

for (int i = $list$.size(); --i >= 0 ;)
{
 $type$ var = ($type$) $list$.get(i);
 end
}

System.err.println

sep
System.err.println(end);

System.out.println

sop

System.out.println(end);

switch statement

sw

switch (end)
{
 case XXX:
 {
 }
 break;
 default;
 {
 }
 break;
}

try statement

try

try
{
 end

Editing Java Code

Working with Java Code 8-13

} catch (Exception ex)
{
 ex.printStackTrace();
} finally
{
}

Insert a tag

tag

<tag>
 end
</tag>

while statement

wh

while (end)
{

}

How to Expand or Narrow Selected Text
You can use the Expand/Narrow Selection option to successively expand or narrow a
selected block of code, based on Java syntax. With each successive application of the
option, the selection expands to include the next logical step up in the Java hierarchy,
based on the starting point, until the entire file is selected. For example: method name,
qualified method call, assignment, definition, and so on.

To expand selected code:

1. With the file open in the editor, ensure that the editor has focus.

2. Put the cursor at the point where you want to expand the selection, or select a
portion of the code.

3. From the main menu, choose Source > Expand Selection, or press Ctrl+Shift
+Equals.

The selection expands to include the smallest logical unit containing the element
previously selected or within which the cursor previously resided.

Use the Narrow Selection option (or press Ctrl+Shift+Minus) to successively reduce
selected code in the same fashion.

How to Surround Code with Coding Constructs
You can easily surround Java statements and blocks with coding constructs in the Java
Source Editor.

To surround a block of code with a construct:

1. With the file open in the editor, right-click within a statement, or select a block of
code, and choose Surround. This options is available by right-clicking in the Visual
Editor and choosing Surround from the context menu. Alternatively, you can click
the Surround ({}) icon on the Source Editor toolbar.

Editing Java Code

8-14 Developing Applications with Oracle JDeveloper

Note:

This icon is only enabled when the selected code is a valid code block to which
the Surround With feature can be applied.

2. In the Surround With dialog, select the coding construct.

Code constructs can be set using the Code Templates page of the Preferences dialog.
You can customize code templates as needed or modify existing ones. For more
information, see How to Customize Code Templates for the Source Editor.

How to Fold Code
You can use code folding to hide and display sections of a file currently open in the
Java Source Editor. Code folding can improve readability, letting you view specific
areas by folding selected blocks of code, such as function definitions.

To use code folding:

• Click on the - sign to the left of the first column of text in the JavaScript editor.

This folds the code in the selected element, and changes the - sign to a +.

• Click on the + sign to unfold the code, displaying the full contents of the area you
previously folded.

Right-click between the signs in the margin to open a context menu from which you
can select commands to expand or collapse specific areas of code throughout the entire
file.

If you have code inside a method such as that shown below, you can collapse the
middle chunk of code so you do not have to see it when working on another part of
the method.

public void main(String[] args) throws SQLException, IOException {

 //... some code ...

 {
 Run.dbgPrnt("Extractor main() querying => BSN");
 // make the basin file
 query = "select * from BSN";
 rset = OracleAccess.makeResultSet(query, stmt);
 rset.next();
 l = Basin.extract(rset, Version);
 Format.writeFile(outPath, "groupings.txt", l);
 }

// ... some more code ...

 Run.dbgPrnt("Extractor main() has ended");
}

You can fold code for inner code blocks such as for, while, switch, {...}, etc.

Adding an Import Statement
You can add needed import statements while working in the Java Source Editor. If, as
you are typing in the Source Editor, you introduce a reference to a class that has not

Editing Java Code

Working with Java Code 8-15

yet been imported, a ragged line will appear below it. A popup will open showing that
an import is needed, giving the fully-qualified name of the class.

Figure 8-5 Import Statement Needed

JDeveloper automatically adds an import if it can find only one exact match for an
unresolved reference to a class. If the import assistance matches more than one
possible match, then a popup list displays all possible matches from the class path.
You can then choose the appropriate import and the import statement is automatically
added.

The import assistance popup can be triggered at any time by pressing Alt+Enter.

The gutter-based code assistance can be used to add an import statement. If the editor
does not recognize a class, a light bulb appears in the gutter when the line is
highlighted and various import options are displayed.

To configure or disable Import assistance, you can set Import Statement Options in the
Java Source Editor.

How to Organize Import Statements
You can organize import statements easily in the Java Source Editor. Set the options
for organizing imports in the Preferences dialog. The following options are provided:

• Sort and group the import statements alphabetically by package and class name.

• Narrow the imports by replacing type-import-on-demand statements for packages
with single-type-import statements for individual classes.

• Widen the imports by replacing two or more single-type-import statements for
classes from a common package with a single type-import-on-demand statement
for the package.

• Remove import statements for classes that are not referenced.

You can configure or disable import organizing options.

To organize import statements in a source file:

• With the file open in the editor, right-click and choose Organize Imports.

Using ojformat
ojformat is a command line tool that you can use to reformat workspaces or projects.
It is located in <JDeveloper_Home>/jdev/bin.

The syntax for ojformat is

ojformat option file

Editing Java Code

8-16 Developing Applications with Oracle JDeveloper

where

option is an option such as -ade. -ade indicates that ADE extension for version
control should be loaded. Other version controls should work automatically.

Examples

ojformat -ade application.jws

Reformats all projects in application.jws. Version control is ADE.

ojformat application1.jws application2.jws

Reformats all the projects in both applications

ojformat application.jws project1.jpr

Reformats project1.jpr of application.jws

ojformat app1.jws project1.jpr app2.jws project2.jpr

Reformats project1 of app1 and project2 of app2

Editing with the Java Visual Editor
The Java Visual Editor displays the visual components of a user interface in the Design
tab, as shown in Figure 8-6.

Figure 8-6 Java Visual Editor Design View

You see the Java source view of the visual classes by clicking the Source tab as shown
in Figure 8-7.

Editing Java Code

Working with Java Code 8-17

Figure 8-7 Java Visual Editor Source View

When the Java Visual Editor is open, its corresponding elements are displayed
hierarchically in the Structure window, as shown in Figure 8-8.

Figure 8-8 Structure Window for Java File

If the Properties window is open, selecting elements in either the Structure window or
the Java Visual Editor changes the selection in the Properties window as well.

Right-click anywhere within the Java Visual Editor to bring up a context-sensitive
menu of commands. The context menus differ, depending upon whether you are
editing non-menu or menu items, and the commands available within the context
menu depend on the selected object.

To open the Java Visual Editor:

• Double-click the Java file in the Applications window and click the Design tab in
the editor window.

The source code is accessible in the Source Editor (click the Source tab to view the
source code), enabling you to view and edit your source code in parallel with
designing your UI. Any changes made in the Java Visual Editor or Properties window
are immediately reflected in the source code.

Editing Java Code

8-18 Developing Applications with Oracle JDeveloper

The Java Visual Editor toolbar lets you easily work with components and duplicates
commands that you can choose from the context sensitive menu displayed on a
selected component.

For information on working with the Java Visual Editor, see Implementing Java Swing
User Interfaces .

Protecting Code

JDeveloper provides write protection for code that you are changing. It does this to
preserve the code it requires to function. Figure 8-9 shows a section of Swing/AWT
code that is colored grey, indicating that this section of code is protected.

Figure 8-9 Protected Code

How to Add Documentation Comments
You can use JDeveloper's editing commands to create and maintain Javadoc
comments, such as those in Figure 8-10. After you enter Javadoc comments, you can
use the Find in Files dialog to search for them.

How to Add Documentation Comments

Working with Java Code 8-19

Figure 8-10 Javadoc Comments

To add documentation comments to a source file:

• Place the cursor just above the declaration of the class, field, or method to be
documented, type the start of a documentation comment (/**), and press Enter.
Or,

• With the code element selected in the Structure window, choose Source from the
main menu, then Add Javadoc Comments.

A template for the documentation comment is inserted into the file. Add information
to the template to describe the element.

How to Update Documentation Comments
You can update documentation comments in the Java Source Editor. Tags are added to
or removed from the documentation comment to reflect changes you have made to the
element. Add descriptions for the new tags.

To update documentation comments in a source file:

1. In the Structure window, place the cursor on the element for which comments are
to be updated.

2. Right-click and choose Add Javadoc Comments.

How to Set Javadoc Properties for a Project
Every project you create carries the JDeveloper project defaults or those you have
supplied yourself for all the projects across workspaces. You can also replace these
defaults on a project-by-project basis. Setting these properties is the same in either
case: only the location, and application, of the information differs.

To set Javadoc properties for an individual project:

1. In the Applications window, select the project.

2. From the main menu, choose Application > Project Properties, or right-click and
choose Project Properties.

How to Add Documentation Comments

8-20 Developing Applications with Oracle JDeveloper

3. Choose Javadoc.

4. Set attributes.

5. When finished, click OK to close the Project Properties dialog.

How to Customize Documentation Comment Tags
You can customize the use of documentation comment tags in the Java code editor.
You can define custom tags, and choose which tags will be automatically included
when a documentation comment is created. These choices apply to all projects.

When creating custom tags, you can associate the tag with code elements, define it as
required or not, assign it a default value, and give it an order in the tag list.

To define a custom tag:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, choose the Code Editor > Java > Javadoc page.

3. Click the Plus (+) icon.

A tag with the default name new will be added to the list.

4. In the Tag Properties box, change the name of the tag and set its other properties.

5. When finished, click OK.

How to View Javadoc for a Code Element Using Quick Javadoc
When working in the Java Source Editor, you can quickly access Javadoc-generated
documentation for the following code elements: a class, interface, or an individual
member, using the Quick Javadoc feature.

As shown in Figure 8-11, the Quick Javadoc feature looks up the selected entity on the
source path and displays the Javadoc comment entered in a popup window.

Figure 8-11 Quick Javadoc Window

If no Javadoc comment exists for that element, an empty Javadoc comment is
displayed.

The Quick Javadoc feature is available when the selected source code meets the
following criteria. It is:

• On this project's source path.

• On the source path of a project that the current project depends on.

• Available for a library assigned to this project

How to Add Documentation Comments

Working with Java Code 8-21

• A part of the JDK in use.

To display Javadoc for a code element:

1. Select the code element.

2. From the main menu, choose Source > Quick Javadoc, or from within the editor,
right-click and choose Quick Javadoc.

A popup window displaying the documentation for the element appears. Click
outside the window to close it.

How to Preview Documentation Comments
You can preview documentation comments in your source files, in the same way that
you view Javadoc for a single source element.

To display documentation comments for a given class, member, or method call:

1. Select the name of the code element.

2. Right-click and choose Quick Javadoc.

A popup window showing the Javadoc for just that element now appears. From
this window, you can link to other Javadoc as you would in a browser.

How to Audit Documentation Comments
You can validate documentation comments in your source files. The audit reports
formatting errors and missing or extraneous tags.

To check documentation comments in a source file:

1. In the Applications window, select the file to be checked.

2. From the main menu, choose Build > Audit filename.

3. In the Audit dialog, select Javadoc Rules from the Profile dropdown list.

4. If you want to configure the audit to choose which types of errors to search for or
to ignore, click Edit.

The Audit Profile dialog opens with the Rules tab selected.

5. Expand JavaSE > Java > Javadoc Comments nodes and select one or more Javadoc
rules. Select an item to see a description of the validation check. For each item, you
can set the property values for each rule.

6. Click OK in the Audit Profile dialog.

7. Click Run in the Audit filename dialog.

The results of the audit appear in the Log window.

How to Build Javadoc
You can generate API references and other documentation directly from the
Applications window, based upon the properties set for the project in the Javadoc
page of the Preferences dialog. The documentation will be generated by the javadoc
utility from the code and documentation comments in your files.

How to Add Documentation Comments

8-22 Developing Applications with Oracle JDeveloper

To build Javadoc on a package, file, or project:

1. Select the appropriate node in the Applications window.

2. From the main menu choose Build, then Javadoc.

The Javadoc is generated in the background. Information and results appear in the
Log window. A link in the Log window allows you to add the index.html file to
the project.

How to Create References to Missing Annotation Elements
You can create a reference to a missing annotation element when displaying an audit
hints for an unresolved Java annotation in the Java Source Code editor.

To create a reference to a missing annotation:

1. Open the Java class in the Java Source Code editor.

For more information, see Working with Source Files.

2. Enter the annotation in the Java class source code, for example, @stateless.

3. Hover your cursor over the annotation.

A dialog displays indicating that the type, for example, @stateless, cannot be
found.

4. Click the More link.

5. Click the Create Annotation Type <type> link.

6. In the Create Annotation Type dialog, enter the name of the package where you
want to locate the annotation class, for example, project1.

7. Click OK.

Using the JOT Structure Window
The Java Object Tree (JOT) structure window displays a hierarchical tree of a source
element selected in the Java Source Editor. For example, your Java file might contain
code similar to the following:

public class Class1 implements Serializable{
 @SuppressWarnings("serial:-4347721670334465144")
 // test
 private static final long serialVersionUID = -4347721670334465104;
 public Class2() {
 super();
 }
 /* Non-javadoc comment */

 public void a(){}
 // @SuppressWarnings("serial:23")
 private class foo{}
}

Based on this, the JOT structure window displays at the bottom of JDeveloper, as
shown in Figure 8-12. The hierarchy contains all of the child and parent source
elements in the code. This could be the class, code blocks, or other elements.

How to Add Documentation Comments

Working with Java Code 8-23

Figure 8-12 JOT Structure Window

If you select a SourceElement in the Java Source editor, the corresponding
SourceElement, including corresponding text, is highlighted in the JOT Structure
window.

The Java Object Tree Structure is a JDeveloper extension that you must install to access
this feature. Go to Help > Check for Updates to install the extension.

Once installed, display the JOT Structure window by choosing Window > JOT
Structure Pane.

How to Display Comments and Blank Lines in the JOT Structure Window

In the Java structure window, you can display Java and non-Java comments and blank
lines in your Java code. For example, if Show comments and blank lines is selected
and you set your cursor on a blank line in your Java code, the blank line displays in
the tree with corresponding text, for example, SourceLexicalBlankline
(SRC_LEX_BLANKLINE).

To display comments and blank lines:

1. In the Main menu, choose View > JOT Structure Window.

2. Select Show comments and blank lines.

How to Set the Refresh Mode in the JOT Structure Window

You can use the Refresh on cursor update checkbox to allow refresh of the
hierarchical tree on or off.

For example, with the checkbox selected, you might place your cursor on some text in
your Java source file. The SourceElement of that text and its parents in the JOT tree
display. In order to freeze the state of the JOT Structure Window and develop some
code that uses this particular SourceElement, turn off the Refresh on cursor update
checkbox. Load the Java source file you want to change. While you work, you can
refer to the frozen state of the JOT tree.

To set the refresh mode:

1. In the Main menu, choose Window > JOT Structure Window.

2. Select Refresh on cursor updates.

Refactoring Java Projects
Refactoring is an editing technique that modifies code structure without altering
program behavior. A refactoring operation is a sequence of simple edits that transform a
program's code but, taken together, do not change its behavior. After each refactoring
operation, the program will compile and run correctly. JDeveloper provides a
collection of automated refactoring operations.

Refactoring Java Projects

8-24 Developing Applications with Oracle JDeveloper

Use refactoring when you modify a program's source code to make it easier to
maintain, extend, or reuse. Perform the modification as a series of refactoring steps.
After each step you can rebuild and re-validate the program to ensure that no errors
have been introduced.

Table 8-1 contains some examples of simple refactoring operations.

Table 8-1 Refactoring Operations

Operation Description

Renaming a method This operation finds usages of the target method and then
allows users to decide whether to replace each name
occurrence.

Duplicating a class The definition of the class is replicated, and all occurrences of
the class name in the replicated definition are replaced by the
new name.

Introducing a parameter
into a method

The method definition is modified by the addition of a
parameter, and each method call is modified to provide an
argument of the appropriate type and value.

Changing a schema's target
namespace

All the referring schemas are updated to have the new target
namespace.

JDeveloper also provides more sophisticated refactoring operations such as:

• Extracting an interface from a class by deriving member declarations from selected
class members.

• Pulling members of a class up into a superclass or pushing members down into a
subclass by moving member definitions from one class to another.

• Extracting a class replaces a set of fields or methods with a new container object.

• Introducing a field, variable, parameter, or constant by replacing a selected
expression with a reference to a new element constructed from the expression.

• Extracting a method by replacing highlighted consecutive statements with a call to
a new method constructed from the statements.

• Extracting a method object to create a new method out of an existing block of code
(similar to Extract Method) but moving it into a newly created inner class,
converting all the local variables to fields of the class.

• Introducing a parameter object replaces a set of fields or methods with a new
container object.

If the results of the refactoring operation are not as desired, you can undo the
refactoring as you would any editing operation, by pressing Ctrl+Z.

Refactoring on Java Class Diagrams
If you rename or move a class using the in-place edit functionality on a diagram, the
source code for the class will be re-factored automatically. Renaming or moving a Java
package on a diagram will automatically refactor the contents of that package.

Refactoring Java Projects

Working with Java Code 8-25

Deleting a field, method, or inner class on a diagram will automatically apply the
Delete Safely refactoring pattern. For more information, see How to Delete a Code
Element .

To apply a refactoring pattern to a Java class, interface, enum, or member on a
diagram, select the class or member on the diagram and choose the refactoring pattern
from the Refactoring menu. Where a refactoring pattern is applied in this way, the
appropriate dialog is displayed, including the facility to preview the results of the
refactoring. For more information, see Refactoring Classes and Interfaces.

The following refactoring patterns are available for the Java classes, interfaces, and
enums on a Java class diagram:

• Rename

• Move (applies to both single and multiple selections on the diagram)

• Duplicate

• Extract Interface

• Extract Superclass

The following refactoring patterns are available for the Java fields and methods on a
Java class diagram:

• Rename

• Move

• Make Static

• Pull Members Up

• Push Members Down

• Change Method (Java methods only)

How to Invoke a Refactoring Operation
JDeveloper provides a wide range of automated refactoring operations that enable you
to enhance code quality. The external behavior of the code is not altered, yet its
internal structure improves.

To invoke a refactoring operation:

1. Select a program element in a source editor window, Applications window, or
structure pane.

2. Right-click on the program element and choose Refactor.

3. Choose an operation from the context menu, for example, Rename, Move, or
Delete.

You can also choose Refactor from the toolbar and select a refactoring operation from
the drop-down list.

As shown in Figure 8-13, refactoring context menus contain different items depending
on where in JDeveloper you are right-clicking to display the menu.

Refactoring Java Projects

8-26 Developing Applications with Oracle JDeveloper

Figure 8-13 Refactoring Drop-down List

For example, you can display different context menus containing different refactoring
operations by right-clicking on:

• The structure menu

• The beginning of the line of a method

• The method's return type in the IDE

• The method's name in the IDE

• A parameter in the method's parameter list in the IDE

If the results of the refactoring operation are not what you want, you can undo the
refactoring as you would any editing operation, by pressing Ctrl+Z.

How to Preview a Refactoring Operation
When performing a refactoring operation that may modify many usages, it is helpful
to preview the usages to identify those that should be modified by hand or be
excluded. Depending on the refactoring operation you choose, you can click the
Preview button in the refactoring dialog to see a preview of the changes that will
occur. When you click Preview, a log window is displayed below the source editor.
You can see the usages listed in the Preview Log window, from which you can inspect
and resolve them, and if you wish, commit the operation.

The log displays a collapsible tree of packages and Java files. Under each file, lines of
code containing usages are listed.

• To view a usage in an Edit window, double-click the entry in the log.

• To exclude a usage from the refactoring operation, right click it and choose
Exclude.

To commit the refactoring operation:

1. If you have made any edits that affect usages, click the Refresh icon in the log
toolbar to rerun the usages search.

Refactoring Java Projects

Working with Java Code 8-27

2. Click the Refactor button in the Preview log window.

How to Rename a Code Element
While developing your Java application you can easily rename the definition and all
references to a package, class, interface, method, field, parameter, or variable. If you
wish, you can first generate a preview — a list of the usages that will be replaced. Use
the Show Usages button to see the usages in a tree format.

The scope of a renaming operation is the full scope of the element in the project.
Project, class, interface, and member usages are replaced anywhere they appear in the
project. Parameters and variables are renamed only in the lexical scope of their
definitions: other elements with the same name are not modified.

By default, the operation will be restricted to.java files, excluding comments (but not
documentation comment tags that name code elements) and annotations. Usages that
are not ambiguous will be replaced. Usages of class and interface names will be
replaced if they are fully qualified or if they are named in import statements.

For package, type, and member elements, you can choose to extend the operation to
comments or to other files. When extended to comments, replacements will be made
in line comments, commented-out code, the bodies of documentation comments, and
in annotations. When the operation is extended to other files, text replacements will
also be made in project files of types designated as text files in the File Types page of
the Preferences dialog. Replacements in comments and other files will be made more
aggressively than replacements in Java code.

To rename a code element:

1. Select the element that is to be renamed in one of the two following ways:

• In a Java source editor, select the element name.

• In a window such as the Applications window or Structure window, select the
element name.

2. Invoke the command in one of the two following ways:

• From the Main menu or the context menu, choose Refactor > Rename.

• Press Ctrl+Alt-R.

The Rename dialog opens.

3. In the Rename To box, enter the new name. The name must be valid and not
already in use.

4. Set the depth of the text substitution.

• Select Search Javadoc for Textual Usages to extend the operation to comments,
the bodies of documentation comments, and to annotations.

• (Package, type, and members elements only.) Select Search Text Files to extend
the operation to other types of text files in the project.

5. Select Preview if you wish to inspect the usages that will be replaced before
committing to the renaming operation.

6. Click OK.

Refactoring Java Projects

8-28 Developing Applications with Oracle JDeveloper

If you selected Preview, to avoid all the usages being modified, finish the renaming
operation from the Preview log window.

How to Delete a Code Element
While developing your Java application you can safely delete the definition of a class,
interface, method, or field. The deletion will not be performed without your
confirmation if the element is still in use.

If the element is in use a log showing the usages will be displayed. Use the list to
inspect and resolve the usages. If you then confirm the deletion, any remaining usages
will remain in the code as undefined references.

To delete a code element:

1. Select the element that is to be deleted in one of the following ways:

• In a Java source editor, select the name.

• In a window such as the Applications window or Structure window, select the
name.

2. Invoke the command in one of the following ways:

• From the Main menu or the context menu, choose Refactor > Delete.

• Press Alt+Delete.

The project files are searched for usages. The Confirm Delete dialog displays
how many usages were found.

3. Click the Show Usages button to inspect and resolve the usages in the log window.

4. Select Preview to inspect the usages of the deleted file in the log window.

5. Click OK.

Refactoring Classes and Interfaces
While developing your Java application you can easily define new classes and
interfaces and re-purpose existing ones. For example, you can move a package, class,
or interface to a different package. You can optionally generate a preview first, which
is a list of the usages that will be replaced. Use the preview to inspect and modify or
exclude selected usages, before completing the move.

When moving types, only primary classes and interfaces — those having the same
name as their file — can be selected to be moved. In effect the file is renamed, and the
definitions of secondary classes and interfaces remain with the primary. Accessibility
will be preserved: if other classes in the original package refer to the class being
moved, it will be given public access. If the class being moved refers to other classes in
the original package, those classes will be made public.

The scope of an operation to move a class or interface is the entire project.

By default, the operation will be restricted to .java files, excluding comments (but
not documentation comment tags that name code elements) and annotations. Usages
that are not ambiguous will be replaced. Usages will be replaced if they are fully
qualified or if they are named in import statements.

You can choose to extend the operation to comments or to other files. When extended
to comments, text replacements will be made in line comments, commented-out code,

Refactoring Java Projects

Working with Java Code 8-29

the bodies of documentation comments, and in annotations. When the operation is
extended to other files, replacements will also be made in project files of types
designated as text files in the File Types page of the Preferences dialog. Replacements
in comments and other files will be made more aggressively than replacements in Java
code.

To move a class or interface:

1. Select the package, class, or interface that is to be moved, in one of the following
ways:

• In a Java Source Editor, select the name.

• In an Applications window or in the Structure window, select the name.

2. Invoke the command in one of the following ways:

• From the Main menu or the context menu, choose Refactor > Move.

• Press Ctrl+Alt-M.

The Move dialog opens.

3. In the Move To field, enter the new package name.

You can also click the Search icon next to the field to navigate to an existing
package.

4. Set the depth of the text substitution.

• Update References In - In the drop-down list, choose where the references will
be updated.

• Search Javadoc for Textual Usages - Extend the operation to the bodies of
documentation.

• Search Text Files - extend the operation to other types of text files in the project.

5. Select Preview if you want to inspect the usages that will be replaced before
committing to the move operation.

You can also click Show Usages to open a display panel within the Move dialog to
see a list of all current usages in the project.

6. Click OK.

If you selected Preview, to avoid all the usages being modified, finish the renaming
operation from the Preview log window. For more information, see How to
Rename a Code Element .

Classes can also be moved in the Applications window by dragging multiple classes
from one package to another.

How to Duplicate a Class or Interface
While developing your Java application you can easily duplicate a class or interface.

Only primary classes and interfaces, those having the same name as their file, can be
selected to be duplicated. The duplicated class or interface is added to the same
package as the original.

Refactoring Java Projects

8-30 Developing Applications with Oracle JDeveloper

Member names in the new class are given the same name as those in the original,
except for those derived from the original class or interface name. When the original
name is embedded in a member name, the new name is substituted.

To duplicate a class or interface:

1. In a Java Source Editor, select the name of the class or interface that is to be
duplicated.

Note:

Only primary classes and interfaces - those having the same name as their file
- can be selected to be moved.

2. From the Main menu, choose Refactor > Duplicate.

The Duplicate type dialog opens.

3. In the Class Name box, enter the new name.

You can also specify a new package with the class, for example, client.frame1.

4. Click OK.

The new class will be added to the project.

How to Extract an Interface from a Class
While developing your Java application you can easily derive a new interface from
selected methods and static fields defined in an existing class.

Optionally, you can also generalize declarations, such as the type specifications of
parameters, variables, and members, by replacing each type name in the declaration
with the new interface name. Not all such declarations can be replaced. For example,
the replacement cannot be done for the declaration of a variable that is used in a
method invocation, if that method was not extracted into the new interface. The
replacements will be done anywhere in the project.

The declaration of the class will be modified to show that it is an implementation of
the new interface.

To extract an interface:

1. Select the class from which the interface will be derived in one of the following
ways:

• In a Java Source Editor, select the class name.

• In an Applications window or in the Structure Window, select the class name.

2. From the Main menu, choose Refactor > Extract Interface.

The Extract Interface dialog opens.

3. In the Package field, enter the name of the package of the new interface.

4. In the Interface field, enter the name of the new interface.

5. In the Members to Extract table, select the members that will be included in the
new interface.

Refactoring Java Projects

Working with Java Code 8-31

6. Select Replace Usages if you want to convert existing declarations that name the
class into declarations naming the interface.

7. Select Preview if you want to inspect the usages of the class before committing to
the extract operation.

8. Click OK.

How to Extract a Superclass
Extracting a superclasses allows you to add additional levels to a hierarchy even after
the code is written.You can create a superclass based on chosen members of a selected
class. The superclass consists of field and method declarations that match the chosen
members.

To extract a superclass:

1. In an Applications window, in the Structure window, or in a Java Source Editor
window, select the class name.

2. From the main menu, choose Refactor > Extract Superclass.

The Extract Superclass dialog opens

3. In the Package field, enter the name of the package to which the new superclass
will belong.

4. In the Class Name field, enter a name for the new superclass.

5. In the Members to Extract table, select the members that will be included in the
new superclass.

If you want a method to be created as an abstract method in the superclass, check
the Abstract box against that method. If you want dependencies of a method to be
included in the superclass, check the Dependencies box.

6. Select Replace Usages if you want to convert existing declarations that name the
class into declarations naming the superclass.

7. Select Preview to view a list of the usages before committing to their replacement.
This option is enabled only if you have selected Replace Usages.

8. Click OK.

How to Use Supertypes Where Possible
While developing your Java application you can easily generalize declarations — such
as the type specifications of parameters, variables, and members — by replacing
references to the selected class with references to one of its supertypes. Not all such
declarations can be replaced. For example, the replacement cannot be done for the
declaration of a variable that is used in a method invocation, if that method is not also
defined in the supertype. The replacements will be done anywhere in the project.

To generalize declarations:

1. Select the class or interface whose declarations will be generalized in one of the
following ways:

• In a Java Source Editor, select the name.

Refactoring Java Projects

8-32 Developing Applications with Oracle JDeveloper

• In an Applications window or in the Structure window, select the name.

2. From the Main menu, choose Refactor > Use Supertype Where Possible.

The Use Supertype dialog displays.

3. In the Supertypes table, select the supertype that the declarations will be
generalized to.

4. Click OK.

How to Convert an Anonymous Class to an Inner Class
You can declare an inner class within the body of a method. You can also declare an
inner class within the body of a method without naming it. This is known as an
anonymous inner class. JDeveloper allows you to convert an unnamed inner class (an
anonymous class) into a named inner class.

To convert an anonymous class into an inner class:

1. In a Java source editor window, select the declaration of the anonymous class.

2. From the main menu, choose Refactor > Convert Anonymous to Inner Class.

The Convert Anonymous to Inner Class dialog opens

3. In the Class Name box, enter the name to be given to the inner class.

4. If you want the inner class to be given the static modifier, check the Static box.

5. To convert the anonymous class into an inner class, click OK.

How to Move an Inner Class
You can move an inner class to a newly created class at the top level. You might do
this because the class is in the wrong package and you want to move it to another
package where it fits better.

To move an inner class:

1. Select the inner class name in the Structure window or in a Java source editor
window.

2. On the main menu select Refactor > Move.

The Move Inner Class dialog displays.

3. If you do not want the new top level class to be created with the names already
shown in the dialog, overwrite them or select new ones.

4. To create a new class at the top level with the details shown in the dialog, click OK.

Refactoring Class Members
While developing your Java application, you can easily move member definitions
from one class to another. For example, you can move a class member (for example, a
method) to another class.

Refactoring Java Projects

Working with Java Code 8-33

Moving a Static Method

Methods declared with the static keyword as a modifier are called static methods
or class methods.

A static method does not use instance variables of any object of the class in which they
are defined. The method signature for a main method is static, which means that you
don't need to create an instance of the class to invoke the main method. If you define
a method to be static, the compiler displays an error message if you try to access any
instance variables.

To move a static method:

1. Select the method name in the Structure window or in a Java Source Editor
window.

2. From the main menu select Refactor > Move.

The Move Members dialog opens.

3. In the Target panel, enter or choose the class to which the member will be moved.

4. For each member that you want to move, ensure that the checkbox to its left in the
Members to Extract list is checked.

5. If you want the dependencies of a member to also be moved, check the
corresponding checkbox in the Dependencies column.

Moving a Non-static Method

A non-static method can't be referenced from a static context. The only way to call a
non-static method from a static method is to have an instance of the class containing
the non-static method. A non-static method requires access to instance-level data in
the class, for example, a non-static field.

To move a non-static method:

1. Select the method name in the Structure window or in a Java Source Editor
window.

2. From the main menu select Refactor > Move.

If there is at least one suitable target to which the member can move, the Move
Member dialog opens. Otherwise, a message box is displayed.

3. In the Targets panel, choose the class to which the member will be moved.

4. If you want new names to be used for the method and the parameter in the new
location, enter new names into the Method Name and Parameter Name boxes.

5. Select how usages of the member will be handled after the move.

• Select Use Delegate to handle usages through a newly created delegating
method.

• Select Replace to replace all usages with new ones that call the moved class
member directly.

Refactoring Java Projects

8-34 Developing Applications with Oracle JDeveloper

How to Change a Method to a Static Method
You can assign the static modifier to a method. You can also specify what action to
take when usages in a non-static context are found while making an element static.

To change a method to a static method:

1. Select the method name in the Structure window or in a Java Source Editor.

2. On the main menu select Refactor > Make Static.

If the class is part of a class hierarchy, the Make Static dialog opens. Otherwise, the
static modifier is added immediately.

3. If the Make Static dialog opens:

• In the Name box, enter or select a name to be used as a reference in the modified
method.

The options listed are derived from local object names.

• If you want to create a method that cannot be overridden, check the Declare
final box.

How to Change the Signature of a Method
You can change the signature of a method. The signature of a method is the
combination of the method's name along with the number and types of the parameters
(and their order.)

To change the signature of a method:

1. Select the method name in the Structure window or in a Java Source Editor.

2. On the main menu select Refactor > Change Method.

The Change Method dialog opens.

3. Make changes to the method name, return type, accessibility and parameters as
required.

If you change the name of the method to one that already exists in the class, you
will later see a second dialog. Through this you can opt to replace all usages of the
method that you are changing to usages of the existing method.

4. If you want to create tasks based on the changes you have made and add them to
the Tasks window, check the Add tasks to the task window box.

Note:

This feature does not apply to constructors.

How to Pull Members Up into a Superclass
While developing your Java application you can easily move the definitions of
members from a class (the source class) to one of its superclasses (the target class). This
operation can be applied to a class only if it has one or more potential target classes in
the project. Members cannot be pulled up into library classes. Also, this refactor

Refactoring Java Projects

Working with Java Code 8-35

command is only available for a class that is declared with a superclass clause or a list
of implemented interfaces.

By default, when a method is pulled up, its definition is moved from the source class
to the target class. You can instead choose to abstract the method, in which case the
method definition will remain in the source class, and a declaration for it will be
added to the target class. Abstracting a method will convert the target class to an
abstract class, if it is not already.

A member that you wish to pull up may have dependencies. A member is a
dependency if it is used in the definition of a member that is to be pulled up. Pulling a
member up without also pulling its dependencies up will introduce undefined
references in the target class. When you select a member to be pulled up, its
dependencies will be indicated. You can choose whether or not to pull up the
dependencies as well.

When a member declared to be private is pulled up, its access changes to protected.

To pull members up:

1. Select the class from which the members will be pulled in one of the following
ways:

• In a Java Source Editor, select the name.

• In an Applications window or the Structure window, select the name.

2. From the main menu, choose Refactor > Pull Members Up.

The Pull Members Up dialog will open.

3. From the Target drop-down menu, choose the superclass that will be the target
class.

4. In the Members to Extract table, select the members you want to pull up.

The members that are the dependencies of the selected members, if any, will be
indicated.

5. In the Abstract column, select the checkbox if you wish the method to abstracted to
the target class.

Note:

Members that are to be abstracted do not have dependencies.

6. In the Dependencies column select the checkbox if you want to also pull up all of
the member's dependencies.

This selection is transitive. It will cause dependencies of dependencies to also be
pulled up.

7. Click OK.

How to Push Members Down into Subclasses
While developing your Java application you can easily move the definitions of
members from a class (the source class) to its immediate subclasses (the target classes).

Refactoring Java Projects

8-36 Developing Applications with Oracle JDeveloper

By default, when a method is pushed down, its definition is moved from the source
class to the target classes. You can instead choose to leave a method declaration in the
source class, converting it to an abstract class, if it is not already.

A member that you wish to push down may have dependencies. A member is a
dependency if its definition uses a member that is to be pushed down. Pushing a
member down without also pushing its dependencies down will introduce undefined
references in the source class. When you select a member to be pushed down, its
dependencies will be indicated. You can choose whether or not to push down the
dependencies as well.

To push members down:

1. Select the class from which the members will be pulled in one of the following
ways:

• In a Java Source Editor, select the name.

• In an Applications window or the Structure window, select the name.

2. From the main menu, choose Refactor > Push Members Down.

The Push Members Down dialog opens.

3. In the Members to Extract table, select the members you want to push down.

The members that are the dependencies of the selected members, if any, will be
indicated.

4. In the Abstract column, select the checkbox if you want an abstract definition of the
member to be left in the source class.

5. In the Dependencies column, select a checkbox to cause all the member's
dependencies to be pushed down with the member.

6. Click OK.

How to Introduce a Field
While developing your Java application, you can easily convert expressions into
named elements. For example, you can convert an expression into a reference to a
field. A new field declaration will be added to the class, and the selected expression
will become its initialization. The original expression will be replaced by a reference to
the new field.

An expression cannot be converted into a field if its type is void.

To introduce a field:

1. In the source editor, select the expression.

2. From the main menu, choose Refactor > Introduce Field.

The Introduce Field dialog opens.

3. From the Type drop-down menu choose a type for the field.

The menu lists all types that are consistent with the expression. This option will
display if only a single type is valid.

Refactoring Java Projects

Working with Java Code 8-37

4. A suggested name displays in the Name text box.

You can modify or replace it, or choose another suggestion from the drop-down
menu.

5. Select an initialization:

• Select Current Method to put the assignment statement for the field
immediately preceding the statement that contains the expression.

• Select Field Declaration to assign the value to the field in its declaration
statement. This option will not be enabled if the expression has a variable or
parameter with local scope.

• Select Constructor to assign the value to the field in the constructor methods of
the class. This option will not be enabled if the expression has a variable or
parameter with local scope.

6. Click OK.

How to Inline a Method Call
You can incorporate the body of a method into the body of its callers and remove the
original method. This is known as inlining a method call.

To inline a method call:

1. In a Java Source Editor, select an instance of the method call that you want to be
inlined.

2. From the main menu select Refactor > Inline.

• If there is only one call to the method in this class, the change is made
immediately.

• If there is more than one call to the method in this class, the Inline dialog opens.

3. If the Inline dialog has opened:

• Choose between inlining only the selected instance of the call or inlining all
instances of the call.

• Click OK.

How to Introduce a Variable
While developing your Java application you can easily convert an expression into a
reference to a variable. A new variable declaration will be added to the method, and
the selected expression will become its initialization. The original expression will be
replaced by a reference to the new member.

An expression cannot be converted into a member if its type is void.

To introduce a member:

1. In the source editor, select the expression.

2. From the main menu, choose Refactor > Introduce Variable.

The Introduce Variable dialog opens.

Refactoring Java Projects

8-38 Developing Applications with Oracle JDeveloper

3. If more than one data type is valid for the field, choose the Type from the drop-
down list.

The menu lists all types that are consistent with the expression. The Type field is
not shown if only a single type is valid.

4. Modify or replace the suggested name for the variable in the Name field.

You can choose a suggested name from the drop-down menu.

5. Select Declare final if you want to add the final modifier to the variable's
declaration.

6. Click OK.

How to Introduce a Parameter
While developing your Java application, you can easily convert a constant expression
in a method body into a new parameter for the method. The expression will be
replaced by the new parameter name, the new parameter will be added to the
method's parameter list, and in all invocations of the method the expression will be
inserted as an additional argument.

Expressions can be introduced as parameters only if they are literals or operations on
literals.

This operation is disallowed for methods that implement an interface. Altering the
signature of such a method would invalidate the implementation.

To introduce a parameter:

1. In the source editor, select the expression.

2. From the main menu, choose Refactor > Introduce Parameter.

3. From the Type drop-down menu, choose a type for the field.

The menu lists all types that are consistent with the expression. This option is not
displayed if only a single type is valid.

4. Modify or replace the suggested name for the variable in the Name field.

You can choose a suggested name from the drop-down menu.

5. Select Declare final if you want to add the final modifier to the variable's
declaration.

6. Click OK.

How to Introduce a Constant
While developing your Java application, you can easily convert a constant expression
into a constant reference. The new constant declaration initialized by the expression
will be added to the class, and the original expression will be replaced by the name of
the constant.

Expressions can be introduced as constants only if they are literals or operations on
literals.

To introduce a constant:

Refactoring Java Projects

Working with Java Code 8-39

1. In the source editor, select the expression.

2. From the main menu, choose Refactor > Introduce Constant.

The Introduce Constant dialog opens.

3. From the Type drop-down menu choose a type for the field.

The menu lists all types that are consistent with the expression. This option is not
shown if only a single type is valid.

4. Modify or replace the suggested name for the variable in the Name field.

You can choose a suggested name from the drop-down menu.

5. Click OK.

How to Extract a Method
While developing your Java application you can easily extract part of the body of one
method to create another. The extracted code is replaced in the original method with a
call to the new method. Local variables and parameters used in the extracted code
become parameters of the new method. An assignment made by a statement in the
extracted code, if any, will be converted in the original member to an assignment that
takes the value of the call to the new method.

To be extractable, a piece of code must satisfy several restrictions:

• It must consist of a single complete expression, or a sequence of complete
statements.

• It cannot make an assignment to more than one variable whose declaration is
external to the selection.

• It cannot have more than one exit point. An exit point is a statement that throws an
exception that is not caught in the selection, a break or continue statement for a
loop outside of the selection, or a return statement.

The new method is added to the same class as the original. The new method is
declared to be private.

Note:

Only the selected code block gets replaced by the extracted method. Other
occurrences of the same code block do not get replaced.

To extract a method:

1. In the source editor, select the expression or the sequence of expressions that you
wish to extract.

2. From the main menu, choose Refactor > Extract Method.

3. Enter a name for the new method.

4. In the Parameters list, specify the substitutions that will be made for the local
variables and parameters that appear in the selected code:

Refactoring Java Projects

8-40 Developing Applications with Oracle JDeveloper

• In the Name column replacement names, which are similar or identical to the
original names, are proposed. You can select and modify the names.

• In the Included column, select the proposed parameters that will become the
parameters of the new method. Those that you deselect will become
uninitialized local variables in the new method.

• Use the Up and Down buttons to order the parameters

5. Select static if you want to declare the new method to be static.

This option is disabled if the method is forced to be static because it is called from a
static method, or if it is forced to be non-static because it uses a non-static member.

6. Click OK.

The new method is added to the class, and the code you selected will be replaced
by a call to the new method.

7. If you deselected any of the proposed parameters in the Parameters list, edit the
new method to initialize its local variables.

How to Extract a Class
You can replace the fields and methods of a class by extracting a new class. All
references to the fields are updated to access the new class. Extracting a class enables
you to manage classes that have become too complex.

To extract a class:

1. In the source editor, select the class that you wish to extract.

2. From the main menu, choose Refactor > Extract Class.

3. Enter a name for the new class.

4. Select Inner Class to make the new class is an inner class.

If you do select this option, a top-level class is created.

5. Select whether you want to generate getter and setter methods for the
extracted fields in the new class.

6. Select the methods to extract for the new class.

7. Select Replace Usages to replace all usages of the extracted class.

How to Replace a Constructor with a Factory Method
You can convert a constructor into a factory method. Constructors create an instance
of a class. Factory methods are static methods that return an instance of the native
class. You can use factory methods for situations in which constructors are too limited.

To convert a constructor into a factory method:

1. Select the constructor name in the Structure window or in a Java Source Editor.

2. From the main menu, select Refactor > Replace Constructor With Factory Method.

3. In the Method Name box, enter a name for the new method.

Refactoring Java Projects

Working with Java Code 8-41

A suggested name based on the current class name already appears in the box.

4. To convert the constructor into a factory method click OK.

How to Encapsulate a Field
Encapsulation makes the fields in a class private and provides access to the fields via
public methods. If a field is declared private, it cannot be accessed by anything outline
the class. This hides the fields within the class.You can change the fields of a class from
being publicly accessible to being accessible only from within the class.

To encapsulate a field:

1. Select the field name (or its parent class) in the Structure window or in the Java
Source Editor.

2. On the main menu select Refactor > Encapsulate Fields.

3. In the Fields table, check the box next to each field that you want to be
encapsulated.

For each field, you can, you can also specify options for method/field accessibilities
and the scope for replacements.

4. In the Replace Accessors box, select how you would like accessors to be replaced as
part of the encapsulation.

5. If you want to create tasks based on the changes you have made and add them to
the Tasks window, check the Add tasks to the task window box.

6. Click OK.

How to Invert a Boolean Expression
While developing your Java application, you can select a boolean field, parameter or
local variable and initialize it with the opposite value. JDeveloper automatically
corrects all references to maintain the same code functionality. JDeveloper looks at all
fields, parameters and local variables and inverts all usages. This refactoring changes
the sense of a Boolean method or variable to the opposite one. A Boolean expression
evaluating to true will be false. Likewise, a Boolean expression evaluating to
false will be true.

For example, if you have a variable that is enabled and you want to change to change
the meaning to disabled, the Invert Boolean menu choice changes usages to disabled.

To invert a boolean method:

1. In the source editor, select the boolean expression.

2. Right-click on the expression and choose Refactor > Invert Boolean.

Table 8-2 contains an example of an inverted boolean expression.

Refactoring Java Projects

8-42 Developing Applications with Oracle JDeveloper

Table 8-2 Invert Boolean Example

Before After

private double a;...public boolean
method() {
 if (enabled){
 a =5;
 return true; }
 false;}

private double a;...public boolean
method() {
 if (disabled{
 a =5;
 return false; }
 return true;}

Refactoring XML Schemas
When a schema's target namespace changes, all the referring schemas are updated to
have the new target namespace.

When you change the base type on a simpletype element that has facets, all facets are
not removed. Instead, the facets that are still valid are retained.

Refactoring Java Projects

Working with Java Code 8-43

Refactoring Java Projects

8-44 Developing Applications with Oracle JDeveloper

9
Building Java Projects

JDeveloper supports several ways to build and compile your projects and applications,
including the Make and Rebuild operations, Apache Ant, and Apache Maven.

Make operations compile source files that have changed since they were last compiled,
or have dependencies that have changed. Rebuild operations, in contrast, compile
source files unconditionally. You can invoke make on individual source files, on
working sets, or on containers such as packages, and projects.

Ant supplies a number of built-in tasks that allow you to allowing to compile,
assemble, test and run Java applications. You use Ant buildfiles written in XML to
build your project. Each buildfile contains one project and at least one (default) target.

Maven support is very similar to Ant support. You can configure WebLogic Maven
plug-ins in your POM to deploy a Java project to a WebLogic server.

This chapter includes the following sections:

• About Building Java Projects

• Building with Make and Rebuild Commands

• Understanding Dependency Checking

• Compiling Applications and Projects

• Cleaning Applications and Projects

• Building with Apache Ant

• Building and Running with Apache Maven

• Understanding Continuous Delivery and Continuous Integration

About Building Java Projects
JDeveloper supports Rebuild operations that compile source files unconditionally. To
compile source files that have changed since they were last compiled, or have
dependencies that have changed, use the Make command. For each project you
compile, you can configure the Java compiler by setting options in the Project
Properties dialog.

Ant provides another way to build applications. You can invoke Ant from
JDeveloper's main menu to build targets defined in the current project's project
buildfile. Ant is integrated into JDeveloper. You can add or create Ant buildfiles for
12c applications and projects and edit them using the XML Source Editor.

Maven is project management tool that provides a consistent, automated build, test
and deployment process for your projects through a project object model (POM), a
project lifecyle, a dependency management system, and a set of plugins that are

Building Java Projects 9-1

shareable by multiple projects. You can obtain a wide array of project information
through Maven including dependency lists and unit test reports.

Building with Make and Rebuild Commands
The Make and Rebuild commands shown in Table 9-1 execute standard operations for
compiling projects in JDeveloper.

Table 9-1 Make and Rebuild Commands

Command Description

Make Project Makes all the projects the project depends on (recursively), and
then makes the project.

Make Project only Makes the project but not any of the projects it depends on.

Make Project Working
Set

Makes all the projects in the working set.

Rebuild Project Rebuilds all the projects the project depends on (recursively),
and then rebuilds the project.

Rebuild Project only Rebuilds the project but not any of the projects it depends on.

Rebuild Project
Working Set

Rebuilds all the projects in the working set.

Make All Makes all the projects.

Clean All Cleans all the projects.

Clean Project Cleans the project the project depends on (recursively), and
then makes the project.

How to Set Compiler Preferences
You can set compiler options in the Compiler page of the Preferences dialog.

To configure the deployment preferences:

1. Choose Tools > Preferences from the main menu.

2. Select the Compiler node. Configure the compile options as required. For more
information, click Help.

3. Click OK.

Compiling with Make
Make operations compile source files that have changed since they were last compiled,
or have dependencies that have changed. Rebuild operations, in contrast, compile
source files unconditionally. You can invoke make on individual source files, on
working sets, or on containers such as packages, projects, and workspaces.

If you want to compile more selectively, you can add an Ant buildfile to a project,
define additional targets, and run Ant to make those targets.

You cancel a compilation currently in progress by clicking the Cancel Build icon in the
main toolbar.

Building with Make and Rebuild Commands

9-2 Developing Applications with Oracle JDeveloper

When you click this icon, an error message prints on the top row of the Compiler Log
window.

To make a source file, do one of the following:

• Right-click in a file's source editor and choose Make.

• Select one or more projects in the Applications window, and click Make in the
toolbar.

• Select one or more projects in the Applications window, and choose a Make item
from the Build menu.

• Select one or more projects in the Applications window, right-click, and choose
Make.

Compiling with Rebuild
Rebuild operations compile all the source files in a project or workspace. Unlike make
operations, which recompile only those source files that have changed or have
dependencies that have changed, rebuild operations are not conditional.

If you want to compile more selectively, you can add an Ant buildfile to a project,
define additional targets, and run Ant to make those targets. Ant supplies a number of
built-in tasks allowing you to compile, assemble, test and run Java applications.

You cancel a compilation currently in progress by clicking the Cancel Build icon in the
main toolbar. When you click this icon, an error message is printed to the top row of
the Compiler Log window.

To rebuild source files, do one of the following:

• Select one or more source files in the Applications window, right-click, and click
Rebuild (for one file), or Rebuild Selected (for multiple files).

• Select one or more projects or workspaces in the Applications window, and click
Rebuild in the toolbar.

• Select one or more projects or workspaces in the Applications window, and choose
a Rebuild item from the Build menu.

• Select one or more projects or workspaces in the Applications window, right-click,
and choose Rebuild.

Understanding Dependency Checking
JDeveloper provides fast yet complete compiling by analyzing dependencies while
building. Dependency checking results in fewer unnecessary compiles of
interdependent source files, and thus accelerates the edit and compile cycle.

When you compile using JDeveloper, dependency checking is performed whenever
you compile with Make. Make uses a dependency file that is automatically created
within JDeveloper.

If you compile from the command line, you create or use a dependency file by
specifying the following parameter:

javac -make <makedepfile>

Understanding Dependency Checking

Building Java Projects 9-3

Compiling Applications and Projects
JDeveloper uses the Java Compiler (Javac) to compile Java source code (.java files)
into Java bytecode (.class files). The resulting bytecode is the machine code for a
Java Virtual Machine (JVM). Compiling a Java source file produces a separate class file
for each class or interface declaration. When you run the resulting Java program on a
particular platform, its JVM runs the bytecode contained in the class files.

Javac compiles the specified Java file and any imported files that do not have a
corresponding class file. Unless dependency checking is specified (with the -make
option), the compiler compiles all of the target Java files. For more information, see
Understanding Dependency Checking.

When you work inside JDeveloper, the compiler used is Javac. You can adjust
compiler options by choosing Project Properties > Compiler > Options. Each option
on the Compiler: Options page contains a description alongside it.

How to Configure Your Project for Compiling
For each project, you can configure the Java compiler by setting options in the Project
Properties. For example, you may not want the compiler to display compiler messages
such as:

• Note: Some input files use unchecked or unsafe operations.

• Note: Recompile with -Xlint:unchecked for details.

To configure project properties for compiling:

1. Right-click a project in the Applications window and choose Project Properties
from the context menu.

You can also double-click a project node in the Applications window.

2. In the Project Properties dialog, expand the Compiler node.

3. Click Options.

4. Under Compiler Options, expand the Javac node.

5. Optionally expand the Warnings node.

You can optionally check here first to see which options are turned on by default.
For example, if -Xlint:all is turned on, all -Xlint warnings are turned on.

If you do not want to display the -Xlint message, go to Compiler > Options and
expand the Javac > Warnings node in the Project Properties dialog. This allows you
to specify which Xlint messages are displayed.

6. Optionally expand the Turn Individual Warnings Off node.

7. Uncheck the -Xlint Unchecked checkbox.

8. Close all dialogs and recompile.

Compiling Applications and Projects

9-4 Developing Applications with Oracle JDeveloper

Note:

If you want to have all your project files automatically saved before compiling,
specify this in the Compiler page of the Preferences dialog.

How to Specify a Native Encoding for Compiling
You can specify an encoding scheme to control how the compiler interprets multibyte
characters. If no setting is specified, the default native-encoding converter for the
platform is used.

Text characters are represented using different encoding schemes. In the Windows
environment, these are code pages, whereas Java refers to them as native encodings.
When moving data from one encoding scheme to another, conversion needs to be
done. Since each scheme can have a different set of extended characters, conversion
may be required to prevent loss of data.

Most text editors, including the JDeveloper source editor, use the native encoding of
the platform on which they run. For example, Japanese Windows uses the Shift-JIS
format. If the source code has been encoded with Shift-JIS and you are compiling it in
a US Windows environment, you must specify the Shift-JIS encoding for the compiler
to read the source correctly.

JDeveloper supports the character encoding schemes included with your currently
installed J2SE.

To set the encoding option, do one of the following:

1. In JDeveloper, select Project > Project Properties.

2. In the Project Properties dialog, select the Compiler node.

3. On the command line, use the javac command with the -encoding option
followed by the encoding name.

4. Choose an encoding name in one of the two following ways:

• Select a name from the Character Encoding dropdown list.

• Select "default" from the Character Encoding dropdown list to use the default
encoding of your environment.

The Java SDK supported encodings are listed at http://download.oracle.com/
javase/6/docs/technotes/guides/intl/ encoding.doc.html

Compiling from the Command Line
There are two ways to compile applications (workspaces) and projects:

• Inside JDeveloper by using the various Build and Compile options on the
application and project nodes

• From the command line by using ojmake and ojdeploy.

You can find both ojmake and ojdeploy in the jdeveloper/jdev/bin directory.

• ojmake can be used for applications and projects that don't involve any
deployment, for example, projects with no deployment profile defined.

Compiling Applications and Projects

Building Java Projects 9-5

http://download.oracle.com/javase/6/docs/technotes/guides/intl/%20encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/%20encoding.doc.html

• ojdeploy can handle the build of any application and project (including any that
involve deployment). You can think of it as a super-set of ojmake.

You can view help for the tools simply by executing ojmake or ojdeploy on the
command line. The help will display in the console.

Note:

When you work from the command line, it is possible to use Javac to compile
Java files, but it's not possible to build applications and projects by executing
Javac manually. You must use ojmake or ojdeploy.

For more information about using ojmake, see Using ojdeploy and ojmake.

For more information about using ojdeploy, see Using ojdeploy.

Cleaning Applications and Projects
Cleaning enables you to remove previous build artifacts and start afresh. You can
clean your application or project using the Clean command. Running this command
cleans the output and deploy directories in your project or application.

Running the Clean command on an application or project removes all class files, all
copied resource files, and all deployed files. You can do this to ensure that there are no
outdated files in the output and deploy directories. For instance, classes get renamed,
moved, or deleted, and obsolete class files belonging to those classes need to be
removed. Similarly, resources and deployments also get renamed, moved or deleted,
and their obsolete copies in the output directory or deployment directory need to be
removed.

The content in the deploy directory of the application is deleted.

The following conditions must be satisfied for the Clean command to run successfully:

• The output directory of the project to be cleaned, or of each of the projects in the
application to be cleaned, must be specified.

• The output location must be specified as a directory, and not a file.

The Clean All and Refresh Application command performs all the functions described
above but it also cleans IDE artifacts such as index files, deploy files, etc. If these
artifacts are not cleaned, you may encounter errors during compilation or at runtime
because these IDE artifacts may be out of sync with the current state of the application.

How to Clean
The Clean command enables you to remove artifacts left over from previous builds in
order to begin a fresh build process.

Cleaning a Project

You can clean a single project within an application.

To clean a project:

1. In the Applications window, select the project to be cleaned.

2. In the Build menu, select Clean <project>.

Cleaning Applications and Projects

9-6 Developing Applications with Oracle JDeveloper

3. In the Cleaning <project> dialog, click Yes.

Cleaning an Application

Cleaning an application cleans the application and all of its projects. When you clean
an application:

• The content in the output and deploy directories of each of the constituent projects
in the application are deleted.

• The content in the deploy directory of the application is deleted.

To clean an application:

1. In the Applications window, select the application you want to clean.

2. In the Build menu, select Clean All.

3. In the Cleaning application dialog, click Yes.

Cleaning and Refreshing an Application

You can clean and refresh and application with a single command.

To clean and refresh an application:

1. In the Applications window, select the application to be cleaned and refreshed.

2. In the Build menu, select Clean All and Refresh Application.

3. In the Cleaning All and Refresh Application dialog, click Yes.

Building with Apache Ant
Apache Ant is a build tool similar in functionality to the Unix make utility. Ant uses
XML formatted buildfiles to both describe and control the process used to build an
application and its components. Ant supports cross-platform compilation and is easily
extensible. Apache Ant is a product of the Apache Software Foundation. For more
information, see the website http://ant.apache.org/index.html.

An Ant buildfile defines targets and dependencies between targets. Each buildfile
contains one project and at least one target. A target is a sequence of programmatic
tasks. When you run Ant to make a target, it first makes other targets on which it
depends, and then executes the target's own tasks.

Ant is integrated and installed as part of JDeveloper, which means you do not need to
add it as an extension. You can add or create Ant buildfiles for applications or for
projects, or you can create and empty buildfile. You can use the XML Source Editor in
JDeveloper to edit Ant buildfiles.

Create an Ant Build File at Application Level
To create an Ant build file at application level:

1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, under General, select Ant.

Building with Apache Ant

Building Java Projects 9-7

http://ant.apache.org/index.html

3. In the Items list, double-click Buildfile from Application. The Create Buildfile
dialog opens where you can change the default filename and directory. For help
with the dialog, press F1.

4. Click OK. A new build.xml file is created and opened in the XML Source Editor.
The generated build.properties file is also created. Both files are listed in
Application Resources in the Applications window.

Create an Ant Build File at Project Level
To create an Ant build file at project level:

1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, under General, select Ant.

3. In the Items list, double-click Buildfile from Project. The Create Buildfile dialog
opens where you can change the default filename and directory. For help with the
dialog, press F1.

4. Click OK. A new build.xml file is created and opened in the XML Source Editor.
The generated build.properties file is also created. Both files are listed in
Application Resources in the Applications window.

Create an Empty Ant Build File
To create an empty Ant build file:

1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, under General, select Ant.

3. In the Items list, double-click Empty Buildfile. The Create Buildfile dialog opens
where you can change the default filename and directory. For help with the dialog,
press F1.

4. Click OK. A new build.xml file is created and opened in the XML Source Editor,
and it is listed in the Applications window under the Resources node.

Example 9-1 Running Ant on buildfile targets:

• On targets in the project buildfile. A project can contain several Ant buildfiles, but
only one can be designated as the project buildfile. You can configure the Run Ant
on <project> toolbar icon and dropdown menu to give easy access to the project
buildfile's targets.

• From the Structure window when editing an Ant buildfile. When an Ant buildfile
is open in an XML source editor, its targets are listed in the Structure window. You
can select these and run them.

• From external tools you define. Use the Create External Tool wizard to define
menu items and toolbar buttons that make Ant targets.

Running Ant on Project Buildfile Targets
You can invoke Ant from JDeveloper's main menu and toolbar to build targets defined
in the current project's project buildfile.

Building with Apache Ant

9-8 Developing Applications with Oracle JDeveloper

A project can contain several Ant buildfiles, one of which can be designated as the
project buildfile. You can configure the Run Ant on <project> toolbar button and
dropdown menu to give easy access to the project buildfile's targets.

To select and configure a project's buildfile, go to the Ant project properties page
(choose Project > Project Properties > Ant).

You can run Ant on targets in the project buildfile:

• From the toolbar, click Run Ant on <project>.

Ant will make the project's designated default target.

• From the main menu, choose Build > Run Ant on <project>.

Ant will make the project's designated default target.

• From the Structure Pane, choose a target.

Using the Ant Tool in the IDE
The Ant Log window displays messages specific to the Ant build. Some features of the
Ant Log window are:

• It displays messages generated by an Ant invocation to build one or more targets.

• Messages generated by Ant tasks are linked to the definitions of those tasks in the
Ant buildfile, while compilation errors and warnings are linked to the source code
that produced them.

• The color coding indicates the output level of messages.

Building and Running with Apache Maven
Apache Maven is a widely used tool for managing and automating the build process.
It is also used for project management, in particular dependency and release
management.

It provides consistent and automated build, test and deployment of applications built
using JDeveloper. One advantage of using it is that a developer who has worked on a
project that uses Maven is usually able to transfer to another project that uses Maven
with very little effort. Most developers who have used Maven before are able to get an
unfamiliar project that uses Maven downloaded, built and deployed quickly.

Maven can manage a project's build, reporting and documentation from a central
piece of information, the project object model (POM). You can build the project using
its POM and a set of plugins that are shared by all projects using Maven, providing a
uniform build system. A Maven lifecycle consists of the processes for building and
processing an artifact, that is a project. The following are different types of Maven
build lifecycles:

• Default - project deployment

• Clean - project cleaning

• Site - project site documentation

Each build lifecycle is defined by a set of build phases where each phase a stage of the
lifecycle. For example, a default build lifecycle can consist of the following phases:

Building and Running with Apache Maven

Building Java Projects 9-9

• validate - verify the project is correct and all necessary information is available

• compile - compile the source code of the project

• test - test the compiled source code using a suitable unit testing framework

• package - take the compiled code and package it in its distributable format, such as
a JAR.

• install - install the package into the local repository, for use as a dependency in
other projects locally

• deploy - copy the final package to the remote repository for sharing with other
developers and projects

In turn, each phase is defined by a set of plugin goals (tasks) that determine
specifically how the phase is accomplished. Goals and phases are run sequentially and
in the order they are invoked. JDeveloper enables you to define the phases and their
goals and invoke them from the POM file context menu. For more information, see
Using the Context Menu in the POM file .

If you are developing an application using Oracle Fusion Middleware, you can use
Maven to:

• Build projects.

• Manage dependencies on Oracle and third party artifacts.

• Download artifacts automatically from an internal or external (public) Maven
repository.

For more information about Maven, see http://maven.apache.org/
index.html.

Understanding Repositories
A Maven repository is sharable location that hosts a collection of artifacts. Artifacts
can be pulled in from central public repository or private repositories. Maven updates
artifacts from specified public or private repositories. Each artifact is pulled into your
local Maven repository as a build executes. The artifacts are organized in a particular
directory structure. These include compiled code (JAR files, WAR files) and metadata
about that code.

There are two types of repositories:

• Local Repository - A cache of a remote repository that is stored on the local
machine. Maven projects are built against the local repository. The local repository
usually only stores a subset of the files available in the remote repository and any
temporary build artifacts. Maven accesses this location for resolving any artifact.
You should not edit the contents in this location.

When you execute a Maven goal to build a project, Maven downloads any
necessary dependencies from the upstream repositories and saves them in your
local repository. Maven accesses this location for resolving any artifact.

• Remote Repository - A repository that contains all the Maven artifacts and plugins.
The remote repository may be a third-party repository (for example, http://
repo.maven.apache.org/), or it may be a private internal repository.

Building and Running with Apache Maven

9-10 Developing Applications with Oracle JDeveloper

http://maven.apache.org/index.html
http://maven.apache.org/index.html

JDeveloper manages Maven repositories and makes them available to you, typically
through HTTP. It may also proxy (cache artifacts from) other, usually external, Maven
repositories to shorten build times and reduce network usage. This means that a
Maven POM is provided for each developer-focused product artifact. You are then
able to configure Maven to point to this Maven repository.

Use the Maven Synchronization tool to facilitate setting up and populating the
repositories. The synchronization tool is a plugin available in the Oracle JDeveloper
and the Oracle WebLogic Server installations. To add this plugin, see Populating the
Repository.

Understanding Maven Plugins
You can extend Maven with plugins. These provide a number of other development
tools for reporting or the build process. Plugins allow running Maven goals. All work
is done by plugins. There are a number of core plugins:

• Build plugins execute during the build and should be configured in the <build/>
element from the POM.

• Reporting plugins execute during the site generation and should be configured in
the <reporting/> element from the POM.

For a list of available Maven plug-ins, see http://maven.apache.org/plugins/
index.html.

Understanding Dependencies
You use a Maven dependency to specify a library containing the jar files required for
building your project. If you build a project with a dependency that does not exist in a
local repository, Maven will search for it and add it to your local repository. If the
project is a Maven project (that is, has an associated POM file) and dependencies are
added to the project, the changes are committed to the POM as well.

Maven downloads and links the dependencies for you on compilation and other goals
that require them. It also brings in the dependencies of those dependencies (transitive
dependencies), allowing your list to focus solely on the dependencies your project
requires.

Dependencies are synchronized between the selections on the Dependencies tab and
the POM file. For example, if a project has a dependency that is not in the POM and
you add another dependency from the project, both dependencies are added to the
POM when you click OK on the Maven: Dependencies dialog.

The dependencies in the POM file are always kept in sync with the .jpr project or
the .jws application associated with the POM file. The dependencies (except from the
repository) can also be added from project properties and application properties
dialogs, they are automatically synced to the associated POM file.

Understanding the Project Object Model
A Maven project object model (POM) file is similar to a JDeveloper .jpr file. The
POM is an XML file that contains information about the project and configuration
details used by Maven to build the project. The XML file contains most of the
information required to build a project. Configuration information that can be
specified in the POM includes the project dependencies, the plugins or goals that can
be executed, and the build profiles.

Building and Running with Apache Maven

Building Java Projects 9-11

http://maven.apache.org/plugins/index.html
http://maven.apache.org/plugins/index.html

Maven uses the concept of "convention over configuration" by assuming a standard
default behavior for projects. For instance, for a Java application, Maven assumes the
location of source code is ${basedir}/src/main/java, resource files are assumed to
be in .../main/resources, and so on. Following convention then, Maven assumes
that ultimately a JAR is to be created in a directory ${basedir}/target. All of this
information is already contained in the POM, relieving you of having to configure
each and every path. The Maven core plugins also employ conventions for compiling
source code, packaging, and other processes. By following convention, Maven can
perform most of the work of building and managing a project for you.

The following are the minimal Maven coordinates that a POM can contain:

• Group ID - a unique identifier for the project that is similar to a package name, for
example, com.acme.corp.

• Artifact ID - the name of the JAR without the extension, for example, MyProject.

• Version - the current version of the artifact produced by this project, for example
1.1.0.

Packaging is another coordinate that you can specify when creating a POM. You use
packaging to specify the project's artifact type (for example, you specify that the
project is packaged as a JAR or a WAR file). If you do not specify a value for
packaging, Maven assumes the default type is a JAR.

For more information about the Maven Project Object Model, see: http://
maven.apache.org/index.html

Understanding the Settings File
The settings.xml file is the main Maven control file. You use this file to configure
Maven execution such as setting the local repository path, setting an alternate remote
repository servers, setting proxies, and more. However, unlike the POM file, the
settings.xml file should remain common to all projects (recommended) until you
explicitly change it.

To configure the settings.xml file:

1. In the main menu, choose Tools > Preferences.

2. Select Maven > Settings in the category tree.

3. Check the command line options you want.

For more information about the settings file, see http://maven.apache.org/
settings.html.

Selecting the POM File
When you use Maven to create and manage your application, a POM is created at the
application level and for each project within the application. You can specify the POM
files to use for the application and each project. When you select the POM file for a
project, the paths and the dependencies of the .jpr will automatically be in sync.

Building and Running with Apache Maven

9-12 Developing Applications with Oracle JDeveloper

http://maven.apache.org/index.html
http://maven.apache.org/index.html
http://maven.apache.org/settings.html
http://maven.apache.org/settings.html

Note:

Typically you do not need to explicitly set the POM files as they are set when
you create the application or project when you select Maven as the build tool
in the application or project creation wizard. The POM files are also set if you
choose to create a POM for your application or project from the gallery.

To set the application POM file:

1. Right-click the application in the Applications Window and choose Application
Properties.

2. Select Maven in the category tree.

If this is the first time you have selected Maven for this application, click Load
Extension.

3. Click the Browse button and select the POM file you want to use.

To set the project POM file:

1. Right-click the project in the Projects window and choose Project Properties.

2. Choose Maven in the category tree.

3. Click the Browse button and select the POM file you want to use.

Installing Maven
Maven is provided by JDeveloper and can be found in the ORACLE_HOME/
oracle_common/modules directory. If you want to install Maven on a server, see
Oracle Fusion Middleware Developing Applications Using Continuous Integration.

Before You Begin
To use Maven, you first create an application and then select options for at least one of
the projects within it.

You can generate POM files for an application and all of its projects using the New
Gallery. This generates an application, a top level Project Object Model file (pom.xml)
for the application, and a default pom.xml file for each project.

To create a Maven application and project for use:

1. From the Main menu, select File > New > From Gallery > Maven > Application
POM.

2. Follow the instructions in the dialog to specify options that create an application
that will be configured for use with Maven technologies.

3. Ensure that you enter the options marked (required) in the wizard:

• Group ID

• Artifact ID

• Version

4. When you complete the wizard, the application displays in the Applications
window with a single Maven project under it.

Building and Running with Apache Maven

Building Java Projects 9-13

Note:

You can also create another type of application, for example, a Custom
application, and import an existing Maven project to it using the New Gallery.

5. In the Applications window, expand a project node and it's Resources node.

6. Double-click the POM file to open it.

By default, the name of the POM file is pom.xml. It is usually located in the
Applications window under Projects > Resources.

7. In the Overview tab, click Repositories.

8. In the Local Repositories field, check for a red underline.

A red underline indicates that the directory being pointed to is an invalid one. It
does not show up for a valid directory.

This field displays the location of your local Maven repository. The repository
holds a local copy of all artifacts and dependencies that your project may need.

By default, the location of the local repository is USER_HOME/.m2/repository. If
the location of the local repository is underlined in red, the location is invalid.
Create a directory using file explorer or using the browse icon next to the Local
Repositories field. Once you select a valid directory, the red underline disappears.

The local repository remains common to all projects (recommended) until you
explicitly change it.

9. Choose File > Save to save any changes.

10. From the Main Menu, choose Tools > Preferences > Maven > Settings.

11. Optionally change the path in the User Settings field.

When you create the Maven application, a file called settings.xml is also
created in USER_HOME/.m2/ by default.

12. Click OK.

13. From the Main menu, select Tools > Preferences > Web Browser and Proxy.

By default, settings.xml does not contain active proxy information, but
JDeveloper has proxy settings enabled.

14. Click the Proxy Settings tab and select either Use System Default Proxy Settings
or Manual Proxy Settings.

Maven uses the proxy to download artifacts from remote repositories.

15. Click OK when you are finished.

How to Create Maven POM Files
If you create a project in a Maven-enabled application, you can add a POM file to the
project.

To create a POM:

Building and Running with Apache Maven

9-14 Developing Applications with Oracle JDeveloper

1. In the Applications Window, select the project or file where you want to locate the
POM.

2. Choose File > New > From Gallery to open the New Gallery.

3. In the Categories list, expand General and select Maven.

4. In the Items list, select Maven POM for Project.

5. Click OK.

6. Change any required and optional options in the dialog as needed.

7. Click OK.

The POM file is created under the Resource node of the project and the file is
opened in the Overview editor by default.

Using the Context Menu in the POM file
You can access a menu of commands such as Run Maven Goal Profile profile and
Run Maven Phase phase by right-clicking the pom.xml file in the Applications
window or the pom.xml Overview or Source tab if you have the POM file open.

You can create and manage a goal profile by specifying the phases or goals to include
in a lifecycle phase:

To create or manage a goal profile:

1. Right-click a POM file.

2. Select Manage Goal Profiles.

3. In the Maven: Phases/Goals preference page, select the goal profile you want (or
click the plus icon to create a new profile).

4. Select the lifecycle phases you want and click the right arrow to move them into
the Selected Phases/Goals column.

Hold down the Shift key to select and move multiple phases at once.

5. Click OK.

You can customize the list of phases and goals by adding or deleting goals from the
Selected Phases/Goals list. For instance, if you want to be able to undeploy a Maven
application, you can add the undeploy goal from the weblogic-maven-plugin
available from the local repository.

To add a goal:

1. Click the plus (+) sign in the Selected Phases/Goals panel.

2. Locate and expand the plugin node containing the specific goals you want to add.

3. Select the goals (press Shift down to select multiple goals in sequence or press Ctrl
to select non-adjacent goals) you want.

4. Click OK.

If the goal you want is not available in the local repository, click Download from
Remote Plugin Repository and specify the name of the goal, the plugin version, and

Building and Running with Apache Maven

Building Java Projects 9-15

select the remote repository containing the plugin. To ensure you have access to the
remote repository, click Verify Plugin.

For information on running Maven goals from the command line, see "Running the
Oracle Maven Synchronization Plug-In" section in Oracle Fusion Middleware Developing
Applications Using Continuous Integration.

For more information on Maven phases and goals, see http://
maven.apache.org/guides/introduction/introduction-to-the-
lifecycle.html.

How to Specify and Manage Remote Repositories
You need access to remote repositories for a number of reasons. For example, your
project might use dependencies from different external vendors. These dependencies
may be available in different remote repositories. JDeveloper allows you to configure
and search for artifacts in remote repositories.

You can manage remote repositories through Tools > Preferences from the main
menu or through a project's POM file. If you add a remote repository through the
Preferences dialog, you can add the repository to the settings.xml file making it
available to all projects in the application. If you add the remote repository to the
project's POM file, it is available only to that project.

To add and manage remote repositories through Tools > Preferences:

1. From the Main menu, click Tools > Preferences > Maven > Repositories.

2. In the Remote Repositories table, click the Add (+) icon.

A new row is added to the table.

3. Select the new row.

4. In the Repository Details section of the Maven - Repositories page, enter a URL to
the remote repository, for example, http://repo1.maven.org./maven2.

5. In the Index Update URL field, enter the base location from where nexus-
maven-repository-index.zip and nexus-maven-repository-
index.properties will be downloaded from.

You must provide the index location to search for artifacts in the repository
without having to actually download them.

Note:

You can check the accessibility to the repository and its index data by clicking
the Test button.

6. Select Include in Settings.XML to add the repository to the settings.xml file.

7. Select the checkbox for the new repository in the Remote Repositories table.

8. Click the Index Selected Repositories icon (located to the right of the Delete
Repository icon).

This downloads the indexing data for the selected remote repository.

To add and manage remote repositories through the POM file:

Building and Running with Apache Maven

9-16 Developing Applications with Oracle JDeveloper

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

1. Double click the pom.xml file for your Maven project in the Applications window.
Details of the POM file are displayed in the IDE. By default, the General tab is
opened.

2. Click the Repositories tab.

3. In the Remote Repositories table, click the Add (+) icon.

A new row is added to the table. Alternatively, you can open the drop-down list
next the Add icon and select Add Repository to add a new row.

Alternatively, you can choose Add From Preferences to add a remote repository
from a list of remote repositories. Select the desired repository and click OK to add
it to the list of remote repositories.

4. Enter the name, ID, and URL of the new repository.

5. Check Repositories to include this repository in the Repositories section of the
POM file.

6. Check Plugin Repositories to include this repository in the Plugin Repositories
section of the POM file.

If you are entering a new remote repository, you can click Add to Preferences to
add the selected repository to the Preferences list.

Once added, you can specify the following details for the selected repository:

• Layout - Whether the directory structure of the repository is legacy (Maven 1) or
the default (Maven 2). The layouts differ in directory structure, timestamp of
snapshots in default, and existence of metadata files in default.

• Do Not Search for Releases - Whether Maven should look for release versions.

• Do Not Search for Snapshots - Whether to depend on snapshot releases. Note that
is not advisable to release or deploy an artifact that has a dependency on a
snapshot version of an artifact.

• Update Policy - How Maven should look for updates in the repository (always,
daily, interval, or never) when searching for release version and for searching for
snapshots.

• Checksum Policy - Which checksum policy to use (warn, fail, or ignore) when
searching for release version and for searching for snapshots.

Populating the Repository
When you create a Maven project, the IDE downloads the most recent artifacts into
your local repository. In a typical development scenario, these dependencies are
downloaded from a shared repository, although JDeveloper can also populate your
local repository from IDE library definitions.

Oracle recommends development teams maintain a shared repository containing the
artifacts the application depends on for compilation. To populate a shared repository
containing JDeveloper and ADF libraries for teams to develop against, you can use the
Maven Synchronization plugin (also referred to as the sync tool).

The Maven Synchronization plugin populates your local or shared repository from
your ORACLE_HOME directory. The plugin is available with JDeveloper. The
Synchronization plug-in consists of two components:

Building and Running with Apache Maven

Building Java Projects 9-17

• oracle-maven-sync-version.pom - Describes the plug-in. The value of
version is the version of the Maven sync POM file, for example, oracle-maven-
sync.12.1.3.0.0.pom.

• oracle-maven-sync-version.jar - Contains the plug-in. The value of
version is the version of the Maven sync JAR file, for example, oracle-maven-
sync.12.1.3.0.0.jar.

Both components are located at ORACLE_HOME/oracle_common/plugins/
maven/com/oracle/maven/oracle-maven-sync/version.

The synchronization plug-in checks for all Maven artifacts in ORACLE_HOME, ensures
that all artifacts are installed in the specified repository, and that the versions are an
exact match. This means that the version numbers and the files are exactly the same at
the binary level, ensuring that all patched files reflect accurately in the Maven
repository, which is essential for a successful deployment.

Maven artifacts like plugins are installed in ORACLE_HOME/maven/artifact.

To run the Maven Synchronization plug-in in a shared repository:

1. Install the Maven Synchronization plug-in:

mvn install:install-file -DpomFile=/oracle-maven-
sync.version.pom -Dfile=oracle-maven-sync.version.jar

2. Run the sync tool to populate the shared repository:

mvn com.oracle.maven:oracle-maven-sync:push -Doracle-maven-
sync.oracleHome=ORACLE_HOME -Dmaven.repo.local=/alt_path

Note:

For initial testing and prototyping of your Maven project, JDeveloper will
populate a local repository for you, however, this is not recommended.

For more information on installing and running the Maven Synchronization plug-in,
see "Populating the Maven Repository Manager" section in Oracle Fusion Middleware
Developing Applications Using Continuous Integration.

Once you have populated the repository, you have access to many archetypes,
including the ADF oracle-adffaces-ejb archetype, which provides the basic
template for Fusion Web applications using the Model and ViewController projects.
When you use this archetype to create an application, three POM files are generated:

• A POM for the EJB project

• A POM for the WAR (JSF) project

• A POM that defines the EAR that packages the EJB and WAR projects

The project POM files contain the ojmake plugin and ojdeploy plugin. Both project
POMs point to the parent POM that refers to a parent project from which the other
projects inherit dependencies, plugins, plugin configurations, repositories, and more.

For information on creating an application using a Maven archetype, see How to
Create Maven Projects Using Maven Archetypes.

Building and Running with Apache Maven

9-18 Developing Applications with Oracle JDeveloper

Synchronizing POM and Project Files

For Maven-enabled projects, when you update a project source path or classpath,
JDeveloper synchronizes the change to the POM file. For example, if you go to the
Libraries and Classpath panel of the Project Properties dialog and add a JAR file,
JDeveloper creates a POM for that JAR file, loads it into your local repository, and
adds a <dependency> element in the project's POM file. Similarly, if you add a
dependency in the POM source file for your project, JDeveloper adds that artifact to
the project file (.jpr).

Customizing Maven Synchronization

Each time a POM file is modified, Maven automatically updates the project files to
keep the project and POM in sync. The reverse is also true, that is whenever a project
is modified, the POM is automatically synced.

Automatic synchronization between the project and POM is a setting in the
application properties Maven page and is set to ON by default. In some cases,
however, you might prefer to control when synchronization occurs, for instance:

• You are making several changes to a project or POM and you want to sync the
repository once after all changes have been made instead of having syncing
occurring at each change

• You have updated the project but do not want the POM to be updated immediately

• Your project is under source control and after making changes, you discover that
the POM file or some project files were not checked causing synchronization to fail
and you want to be able to manually trigger synchronization after checking out all
files

• Libraries or classpath dependencies added to the project are not present in any of
the project's repositories, and you want to manually trigger the deployment of
libraries and classpath dependencies to the local repository

You can switch the synchronization setting to manual mode and trigger syncing to
occur (from POM to project or project to POM) when you want it. You can also set an
audit rule to alert you if the project and POM become out of sync when in manual
mode. You can then elect to run a sync operation from the audit window. For
information on setting an audit rule, see 11.2.7 How to Audit Java Code in JDeveloper.

To switch to manual synchronization:

1. Right-click an application and choose Properties from the context menu.

2. Select Maven in the Properties window.

3. Select Manually manage POM-Project synchronization.

4. Deselect Automatic synchronization.

5. Click OK.

When you are ready to sync the POM and project, go back to the Maven page in the
Properties window and click Sync Now. Depending on what was modified, you can
sync the POM to the project or the project to the POM.

Some project dependencies have dependencies of their own, referred to as transitive
dependencies. When syncing dependencies from the POM to the project, any
transitive dependencies are also synced at the same time.

Building and Running with Apache Maven

Building Java Projects 9-19

How to Match the Default Maven Structure When You Create an Application
You can match the default Maven structure when you create a new Maven
application.

To modify the default Maven structure:

1. Choose File > New > From Gallery to open the New Gallery.

2. In the Categories list, expand General and select Applications.

3. Choose Custom Application, then OK.

4. Choose default options and click Next.

5. On the Project Features tab, scroll down to Maven.

6. Click the shuffle icon to move Maven to the Selected column of the Project
Features tab.

7. Click Next.

8. Select the Modify Normal Project Structure To Match The Default Maven
Structure checkbox.

This is selected by default.

9. Click Finish to create the custom application.

How to Create Maven Projects Using Maven Archetypes
Archetypes are similar to templates that you can use to create applications quickly
using Maven. The archetype provides a consistent means of generating Maven
projects. For more information, go to http://maven.apache.org/guides/ and
see the links for "What is an Archetype" and "Creating Archetypes."

To create a Maven-enabled J2EE application using an archetype:

1. Choose File > New > From Gallery.

2. In the Categories list, expand General and select Maven > Generate from
Archetype.

3. In the Create Project from Archetype dialog's Select an Archetype page, enter
options for the new project. Ensure that you enter the options marked (required) in
the dialog.

4. Click the browse icon next to the Maven Archetype field.

5. In the search field in the Search for Archetype dialog, enter search text and any
filters to find the archetype you want to use.

For example, you could enter j2ee as your search text to find an archetype called
maven-archetype-j2ee-simple. You can also choose to narrow the search to a
particular repository or repositories.

Building and Running with Apache Maven

9-20 Developing Applications with Oracle JDeveloper

http://maven.apache.org/guides/

Note:

The list of available repositories is set in the Maven - Repositories page. For
more information, see How to Specify and Manage Remote Repositories.

To access a remote repository, make sure you have specified proxy
information on the Web Browser and Proxy dialog. For more information, see
How to Use Proxy Settings and .

6. Select the repositories to search in the Repositories panel.

7. Press the Return key.

The Matching Archetypes list populates with all of the archetypes that meet your
search criteria.

8. Drill down to an archetype in the list and select it, for example, maven-archetype-
j2ee-simple.

9. Click OK.

The archetype source is displayed in the Maven Archetype field on the Select an
Archetype page.

10. Click Next.

11. Change the value of a parameter if needed by double-clicking in the Parameter
Value column for the selected parameter, and enter a new value.

12. Click Finish.

A new Maven application is created from the archetype. It displays in the
Applications window, as shown in Figure 9-1.

Figure 9-1 Maven Application in Applications window

When you create a maven project using an archetype, two types of source code are
generated. A src/main and src/test are generated. Project source code and
resources are placed under src/main while test cases for the project are placed under
src/test. You can find Java classes such as JUnit or TestNG tests in this directory
along with classpath resources for tests.

Building and Running with Apache Maven

Building Java Projects 9-21

Note:

You can also import existing Maven projects into JDeveloper by selection
using New Gallery > General > Maven > Import Maven Projects. This
creates a Maven application and associated projects based on the contents of
the imported Maven source.

What Happens When You Create a New Maven Application
The application in Figure 9-1 contains a number of Maven projects.

1. In the Applications window, scroll to the ejbs project under the Maven application
you just created.

2. Expand ejbs, then Resources.

3. Double-click the project file. By default this should be pom.xml. The Editor opens.

4. Click the Dependencies tab.

5. Notice the dependencies on the Dependencies tab, for example, those shown in
Figure 9-2:

Figure 9-2 Maven Dependencies

6. From the Main toolbar, choose Project > Project Properties > Libraries and
Classpath.

7. Notice that the same two dependencies in Figure 9-2 are listed here.

The dependencies are kept in sync between the application/project and its
associated project POM files. Try adding new dependencies in the application/
project or POM file to observe the sync process. The sync is required to manage the
application/project using both JDeveloper build tools and Maven.

8. In the Project Properties dialog, click on Maven.

This POM file is set as default POM for the project.

Building and Running with Apache Maven

9-22 Developing Applications with Oracle JDeveloper

How to Run Maven Goals on POM Files
Maven is based around the concept of a build lifecycle. A build lifecycle is made up of
build phases, wherein a phase is comprised of plugin goals that represent a stage in
the lifecycle. Maven provides some default goals such as clean, compile, build, and
package to manage your project. Every project runs the same core phases which
includes the goals in the phase.

To run Maven goals:

1. From the Main menu, select Tools > Preferences > Maven > Phases/Goals.

You can also right click on a POM file in the Overview or Source tab and choose
Manage Goal Profiles.

2. To optionally set up a profile, a collection of goals that you can save for future use,
click the plus (+) icon next to the Goal Profile field.

• In the Goal Profile field, enter a name for your profile and click OK.

3. In the Available Lifecycle Phases list, select one or more goals.

Note:

The first time you try this, make sure the default set of goals are included in
this list.

4. Click the shuttle button to add the selection to the Selected Phases / Goals list.

5. Click OK.

6. In the Applications window, scroll down to the POM file for the project you want
to run.

7. Right click and Run Maven Phase "compile".

This downloads some artifacts into the local repository from a remote central
repository automatically that are required to execute the compile goal. This is one-
time process. Once you have a copy of those artifacts in your local repository,
Maven no longer needs to download them again.

After downloading, the compile goal executes. The project and the Java class
contained in it are compiled using Maven.

Note:

If Maven reports an error in resolving a dependency or artifact, add the
repository into the POM file using the Repositories page and try again. Make
sure that the repository that the URL points to is up and accessible.

How to Create a Maven POM for a Project
You can create a Maven POM based on an existing project that you select in the
Applications window. Build elements will be added for multiple source directories.
Settings will be added for the Java compiler you have specified for the project.

Building and Running with Apache Maven

Building Java Projects 9-23

To create a Maven POM for a project:

1. In the Applications window, select the project that you want to create the POM
from.

2. Choose File > New to open the New Gallery.

3. In the Categories list, expand General and select Maven.

4. Select Maven POM for Project.

5. Complete the dialog and click OK.

Auditing Maven Applications
While editing pom.xml, empty tags or invalid values can cause errors when running
the build. These errors need to be caught and reported as part of audit. Audit should
handle any errors that are reported when creating a Maven project for the pom.xml.

Some examples for validations:

• Invalid/ empty values for artifact id, group id, version in dependency, plugins etc.
after inheritance is applied.

• Duplicate entries in profile activation rules.

Configuring Test Settings
You can specify how Maven finds test resources in your application. Double-click the
POM file and select Test Settings in the Overview tab. You can manually configure
application's test source and resource paths. In the Test Settings tab, you can specify a
project for testing purposes or point JDeveloper to testing resources.

If there is a separate project for testing, JDeveloper can detect the paths to the various
testing artifacts. If the testing resources are in a project with other source and artifacts,
you must select those explicitly. More

There are two ways to configure test settings:

• If you already have a dedicated JDeveloper project (JUnit Test project) that contains
the test sources and resources, then use that on the Test Settings tab.

• You can also configure the test paths from the project properties dialog for the test
project. The test project sources and resources are automatically synced into the
associated POM file.

Understanding Code Insight
You can use code insight to speed up the process of writing code in your pom.xml
source file.

To see code insight:

1. Open a pom.xml file in the Code Editor.

2. On the Plugins tab, add a plugin element.

3. Add the plugin's <executions> section.

Building and Running with Apache Maven

9-24 Developing Applications with Oracle JDeveloper

Support for code insight is based on values in the Overview tab, which are fetched
from the local repository. For example, for packaging type, code insight displays the
list of values that is shown in the Overview editor for Packaging Type.

The following code insight lists of values are also supported:

• phases, inside plugin

• update policy, checksum policy and layout

• type and scope, inside dependency

Using the WebLogic Maven Plugin in JDeveloper
You can use the plug-in to deploy, redeploy, and update applications built using
Maven to WebLogic Server from within the Maven environment. You can even
undeploy an application. For more information, see "Using the WebLogic Maven Plug-
In for Deployment" section in Oracle Fusion Middleware Deploying Applications to Oracle
WebLogic Server.

Using ojdeploy and ojmake
JDeveloper supports deployment in Ant scripts. It does this by adding a deploy target
to the build.xml file. For more information, see How to Deploy from the Command
Line Using Ant .

You can use ojmake, as well as ojdeploy, in Maven POM files. JDeveloper modifies
the POM file and adds ojdeploy and ojmake deployment plugins when necessary,
as shown below:

<build>
 <plugins>
 <plugin>
 <groupId>com.oracle.adf.plugin</groupId>
 <artifactId>ojmake</artifactId>
 <version>12.1.3-0-0</version>
 <configuration>
 <ojmake>
 ${oracleHome}/jdeveloper/jdev/bin/ojmake
 </ojmake>
 <files>
 ${basedir}/Application2.jws
 </files>
 <usemaven>
 true
 </usemaven>
 </configuration>
 <executions>
 <execution>
 <phase>compile</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>oracle.jdeveloper.deploy.maven</groupId>
 <artifactId>maven-ojdeploy-plugin</artifactId>
 <version>1.0.0</version>

Building and Running with Apache Maven

Building Java Projects 9-25

 <configuration>
 <ojdeploy>/scratch/jdoe/view_storage/pmed_jdev_l/oracle/
jdeveloper/ jdev/bin/ojdeploy</ojdeploy>
 <workspace>/home/jdoe/jdeveloper/mywork/Application1/
Application1.jws </workspace>
 <project>ViewController</project>
 <profile>Application1_ViewController_webapp</profile>
 <usemaven/>
 </configuration>
 <executions>
 <execution>
 <phase>install</phase>
 <goals>
 <goal>deploy</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

JDeveloper provides the ojmake and ojdeploy plug-ins. When you add these plug-ins,
JDeveloper can do the following:

• Use the ojmake and ojdeploy commands with the Maven build tool

• Configure the plug-ins during POM creation

• Configure the plug-ins in the POM (if not already present) when you add
deployment profile to the project

To add the plugins, double-click the project's POM file and click on the Plugins tab.
Select the ojmake and ojdeploy plug-ins in the Build column and configure the
parameters as needed in the Configuration section.

To see the usage, parameters, options, and examples for ojmake, at the command line
for jdeveloper_install/jdeveloper/jdev/bin type ojmake.

For more information about ojdeploy, see Deploying from the Command Line.

Understanding Continuous Delivery and Continuous Integration
Continuous delivery is an extension of practices, from the build process through to the
actual delivery of the software. Continuous delivery takes the next step to automate
release management and deployment of software to end users, starting from where
continuous integration finishes, automation of the building and testing of software.
The purpose is to minimize the time between users expressing a requirement and a
product being delivered to address that requirement. This avoids issues commonly
seen in large software development projects.

Continuous integration is a software engineering practice which attempts to improve
quality and reduce time to deliver software by applying small, frequent quality control
efforts. It is characterized by these practices:

• Use of a version control system

• Developers commit to the main code line every day

• The product is built on every commit

Understanding Continuous Delivery and Continuous Integration

9-26 Developing Applications with Oracle JDeveloper

• The build must be automated and fast

• Automated deployment to a production-like environment

• Automated testing is employed

• Results of all builds are published so everyone can see who broke the build

• Deliverables are easily available to developers, testers, and other stakeholders

For more information on continuous delivery and integration, see Oracle Fusion
Middleware Developing Applications Using Continuous Integration.

Understanding Continuous Delivery and Continuous Integration

Building Java Projects 9-27

Understanding Continuous Delivery and Continuous Integration

9-28 Developing Applications with Oracle JDeveloper

10
Testing and Profiling Java Application

Projects

JDeveloper provides a suite of tools for analyzing the quality and performance of your
Java code. Use these tools to improve both the quality of your code and your own
programming skills.

This chapter includes the following sections:

About Profiling Applications
The profiler gathers statistics on a running program that enable you to diagnose
performance issues and correct code inefficiencies.

The following profiling capabilities are available:

• Telemetry—monitors CPU, memory usage, number of threads and loaded classes.
See Profiling Telemetry.

• Methods—profiles methods execution times and invocation count, including call
trees. See Profiling Methods.

• Objects—profiles size and count of allocated objects including allocation paths. See
Profiling Objects.

• Threads-—profiles threads time and state. See Profiling Threads.

• Locks—profiles locks content data. See Profiling Locks.

About Starting the Profiler
JDeveloper provides the following pathways for starting the profiler:

• Starting and Profiling JDeveloper Applications Simultaneously

• “Attaching the Profiler to a Running JDeveloper Applications ”

• “Profiling External Applications”

Starting and Profiling JDeveloper Applications Simultaneously
You may simultaneously start a JDeveloper application and the profiling of that
application by following these steps:

1. Choose Run > Profile Project

2. On the main window click the Configure Session button and select a profiler mode
by clicking on it. You can change the profiler mode at any point by clicking the
Profile drop down arrow.

Testing and Profiling Java Application Projects 10-1

3. On the main window, click the Profile button.

The application and the profile session are simultaneously started.

Attaching the Profiler to a Running JDeveloper Applications
You may profile a JDeveloper project that is already running by following these steps:

1. Choose Run > Attach to Project

2. On the main window click the Configure Session button and select a profiler mode
by clicking on it. You can change the profiler mode at any point by clicking the
Profile drop down arrow.

If the target application is running outside JDeveloper, select the Setup attach to
project target and make the appropriate selections in the Attach Settings window.
For more information on profiling external applications, see Profiling External
Applications

3. On the main window, click the Attach button.

A profile session tracking the running application is started.

Profiling External Applications
You may profile an application that is not started from within the JDeveloper IDE by
following these steps:

1. Choose Run > Attach to External Process

The Profiling External Process tab opens in the main window.

2. Click the Configure Session button and select Setup attach to process

The Attach Settings window appears.

3. Select the type of application to be profiled from the Profile drop-down menu and
select the process to be profiled. The Attach Settings window explains and
provides detailed instructions for each option. Click OK.

4. On the main window click the Configure Session button and select a profiler mode
by clicking on it. You can change the profiler mode at any point by clicking the
Profile drop down arrow.

5. Click the Attach button.

A profile session tracking the selected application is started.

Profiling Telemetry
The telemetry mode provides the following metrics:

CPU and GC—displays the CPU and GC percentage of use at a given time

Memory—displays in MB the heap size and used heap at a given time

Surviving Generations —displays the number of surviving generations at a given
time. It also displays indicates the GC intervals

Threads and Classes—displays number of loaded classes and threads at a given time

Attaching the Profiler to a Running JDeveloper Applications

10-2 Developing Applications with Oracle JDeveloper

To start a profiling telemetry session, see “About Starting the Profiler”

Figure 10-1 shows a snapshot of a telemetry session

Figure 10-1 Telemetry Session

Profiling Methods
The methods mode provides metrics for methods and classes. The methods report
allows you to view the data by Forward Calls, Hot Spots, and Reverse Calls by
clicking on the appropriate icons. You may also choose to Show Delta Values and
Select Threads.

• Show Delta Values-this action switches from absolute values to incremental
values. The values displayed prior to switching the view are remembered but the
new view displays changes starting at the moment the new selection was made.
Clicking this icon again resets the results back to absolute values.

• Select Threads-this action shows threads available in live results or a saved
snapshot and allows you to select specific threads for displaying results. This
feature is especially useful when tracking EDT slowness in desktop applications or
analyzing worker threads in server applications. The Merge selected threads
option is enabled if some of the threads are selected and it is disabled for the Show
all threads option. This feature merges results from the selected threads to a single
tree.

Additionally, you may select the columns to be displayed; the options are Total Time,
Total Time (CPU), Selected, and Hits/Invocations (depending on the session
configuration).

To start a profiling methods session, see “About Starting the Profiler”

Figure 10-2 shows a snapshot of a methods session.

Profiling Methods

Testing and Profiling Java Application Projects 10-3

Figure 10-2 Methods Session

Profiling Specific Methods
You may narrow down the scope of the methods session to profile specific methods or
classes by following these steps:

1. Click on the icon.

A new settings bar appears.

2. On the Profile dropdown make the appropriate selection.

3. Click the Plus icon to add a class or method.

The Select Class or Select Method window appears.

4. To select a class in the Select Class window, choose the Project, Package, and
Class and click OK.

To select a method in the Select Method window, choose the Project, Package,
Class and Method and click OK

Alternatively, you may right click on a method or a class to select it. This feature is
available in the profile results and snapshot windows.

Profiling Objects
The objects mode provides a list of classes allocated to a project including live

instances and bytes allocation. By clicking the icon on the top-right corner of the
page you access a drop-down menu that allows you select the classes to be profiled.
The All Classes mode shows all classes and object that are live on the Virtual Machine
heap. The Project Classes filter allows to view only the classes defined in the project.

To start a profiling objects session, see “About Starting the Profiler”

Figure 10-3 shows a snapshot of an Objects session

Profiling Objects

10-4 Developing Applications with Oracle JDeveloper

Figure 10-3 Objects Session

Profiling Specific Objects
You may elect to profile specific classes by right clicking on a class and selecting
Profile Class. The Track only live objects and Limit allocations depth checkboxes
appear.

Track only live objects — when selected, it tracks only live objects. If not selected, it
tracks all objects allocated by the application.

Limit allocations depth — limits the stack depth allocations to the number specified.

After selecting a class, click the Apply button on the right while the profiling session is
in progress to submit your changes. This action clears the view to display only the
classes that you selected as shown in Figure 10-4

Figure 10-4 Objects Session - Selected Classes View

Profiling Threads
The threads mode allows you to view detailed information about application thread
activity.

To start a profiling threads session, see “About Starting the Profiler”

Figure 10-5 shows a snapshot of a threads session

Profiling Threads

Testing and Profiling Java Application Projects 10-5

Figure 10-5 Threads Session

Additionally, you may customize the threads you monitor by accessing the Live
Threads drop-down list and choosing from the available options: All Threads, Live
Threads (Default), Finished Threads, and Selected Threads.

Profiling Locks
The locks mode allows you to view details about locked threads and the threads that
are monitoring and holding locks.

To start a profiling locks session, see “About Starting the Profiler”

Figure 10-6 shows a snapshot of a locks session

Figure 10-6 Locks Session

In the session window you can choose Threads or Monitors in the Threads drop-
down list. Choose Threads to view locked threads. Expand the nodes to view the
owners of the locks. Choose Monitors to view the threads that are locking other
threads.

Additional Functions when Running a Profiling Session
While the profiler session is in progress, additional actions related to the actual
profiler mode are available in the toolbar of the profiler window. The following
actions are always available:

Thread dump—creates a textual dump of all active threads and monitors of the
profiled application. It shows what methods have been executed at the point of

Profiling Locks

10-6 Developing Applications with Oracle JDeveloper

capturing the dump, thread by thread. This information is useful to view what the
application is currently doing. The thread dump also contains information about locks,
threads holding the locks, and threads waiting to acquire a lock. This data is essential
when debugging deadlocks. To capture a Thread Dump, click the Thread Dump icon
during the profiling session. To learn more about taking snapshots, see Taking and
Accessing Snapshots of Profiling Data

Heap dump—saves an image of the current heap content of the profiled process
in .hprof format and optionally opens it in heap browser. For more information, see
Capturing Heap Dump Data

GC—requests the JVM of the profiled process to invoke garbage collection. The JVM
behavior for garbage collection is not defined in the JVM specification. It should do the
garbage collection at some point, but there is no guarantee it will do it immediately or
at all.

Additionally, when profiling Methods or Objects, the following actions are available:

Snapshot—creates a snapshot of all currently collected profiling data related to
methods or objects. The snapshot opens in a separate window and can be saved to the
project or to an external file. For more information, see Taking and Accessing
Snapshots of Profiling Data

Reset collected results—clears all currently collected profiling data related to methods
or objects.

The other actions displayed in the toolbar of the profiler window are specific to the
actual profiling mode. If multiple profiling modes are active in a profiling session, the
toolbar displays actions available for the currently displayed modes.

Capturing Heap Dump Data
You can take a heap dump when a profiling session is in progress. When you take a
heap dump you are prompted to save the heap to your project or local file system.
After you save a heap dump you can load the heap dump at any time and browse the
objects on the heap, locate references to individual objects and compare heap dumps
to view the differences between the snapshots. You do not need to have a running
profiling session to load and browse the heap dump.

The application must be running on JDK 1.5.0_12 or higher to take a heap dump.

To take a heap dump using a profiling point:

1. Open the source file containing the code where you want to place the profiling
point.

2. Right-click in the line of code where you want to place the profiling point and
select Add Profiling Point.

3. In the Profiling Point Type list, select one of the following snapshot options and
click Next:

• Take Snapshot

• Timed Take Snapshot

• Triggered Take Snapshot

Capturing Heap Dump Data

Testing and Profiling Java Application Projects 10-7

4. In the Customize Properties page of the wizard, select Heap Dump as the type of
snapshot and modify any additional settings. The Heap Dump option is available
under Settings > Take.

When you use a profiling point to take a heap dump, you specify the point in your
source code where you want to place the profiling point. For example, you may want
to take a heap dump when a thread enters a specific method.

To take a heap dump on OutOfMemory error:

1. From the Main menu, select Tools > Preferences > Profiler.

2. In the On OutOfMemoryError list, select an option from the drop-down list to
specify what the IDE does when an OutOfMemoryError is encountered.

The default behavior is to save the heap dump to the profiled project.

Viewing UI Elements with Heap Walker
The heap dump viewer (Heap Walker) displays logical values of objects such as String
value, File path, URL address, etc. In addition, it also provides a visual snapshot of UI
attributes and elements such as Color, Font, Button, etc.

For most classes and instances represented in the heap dump, the textual and
numerical properties are adequate for describing and examining data structures and
for discovering bugs such as memory leaks, inefficient memory usage and others.
However, for many types of objects, the in-memory representation is not suited for
quickly determining what the object is.

The visual representation feature is ideal for examining UI elements, where displaying
object properties is not precise enough to aid users in identifying the exact location of
the application UI. For example, by just reading position, size and references to nested
elements of an UI container the user may not realize that an object may represent an
Open File dialog created by the application.

Access the image representation of a heap dump element by browsing through the
instance of a given class. Figure 10-7 shows Heap Walker panels including a visual
preview of the application window at the point when the heap has been dumped.

Capturing Heap Dump Data

10-8 Developing Applications with Oracle JDeveloper

Figure 10-7 Heap Walker - Image Preview

Image Preview Use Cases

The Heap Walker image preview is useful in the following use cases:

• Identifying selected UI element. Browse instances of the desired type when you
need to find a particular UI element like Button, Label, etc

• Determining application state at the time of dumping the heap. Bugs reported by
users often do not contain all the necessary information or miss important details.
By displaying the application UI users can immediately see that for example a text
document was being loaded when an out of memory exception was thrown.

• Searching for UI snippets unintentionally kept in memory. Parts of the UI are
sometimes not being released from memory, which can cause serious problems
given that tables, trees or editors often reference very large data models. By
browsing for example Panel elements users can easily discover these snippets,
realize how much memory is being wasted and identify the problem preventing
the UI from being released.

• Discovering duplicities. By browsing Images, for example, users can immediately
see multiple instances of the same image being allocated in memory, which is a
waste of resources.

• Offline UI analysis. Heap Walker is able to recreate the UI structure from a heap
dump. This way an UI developer can analyze the UI building blocks without access
to the actual application, which could be running on a different and incompatible
system

It is important to note the following exceptions to the Image Preview function:

• No support for viewing tree data.

• Foreground, background or font attributes may not show on certain
implementations.

Capturing Heap Dump Data

Testing and Profiling Java Application Projects 10-9

• Custom controls cannot be displayed.

• UI text for certain elements may not fully display in the Instance view.

How to Analyze a Heap Dump Using Object Query Language (OQL)
OQL is a SQL-like query language to query a Java heap that enables you to filter/
select information wanted from the Java heap. While pre-defined queries such as
"show all instances of class X" are already supported by the tool, OQL adds more
flexibility. OQL is based on JavaScript expression language.

When you load a Java heap in the Heap window, you can click the OQL Console tab of
the window to open the OQL editor. The OQL Console contains an OQL editor, a
saved OQL queries window and a window that displays the query results. You can
use any of the sample OQL queries or create a query to filter and select heap data to
locate the information that you want from the Java heap. After you choose or write a
query, you can run the query against the Java heap and view the results.

An OQL query is of the following form:

select <JavaScript expression to select>
[from [instanceof] <class name> <identifier>
[where <JavaScript boolean expression to filter>]]

where class name is fully qualified Java class name (example: java.net.URL) or
array class name. char[] (or [C) is char array name, java.io.File (or
[Ljava.io.File;) is name of java.io.File[] and so on. Note that fully
qualified class name does not always uniquely identify a Java class at runtime. There
may be more than one Java class with the same name but loaded by different loaders.
So, class name is permitted to be id string of the class object. If instanceof keyword is
used, subtype objects are selected. If this keyword is not specified, only the instances
of exact class specified are selected. Both from and where clauses are optional.

In select and (optional) where clauses, the expression used in JavaScript expression.
Java heap objects are wrapped as convenient script objects so that fields may be
accessed in natural syntax. For example, Java fields can be accessed with
obj.field_name syntax and array elements can be accessed with array[index]
syntax. Each Java object selected is bound to a JavaScript variable of the identifier
name specified in from clause.

OQL Examples

Select all Strings of length 100 or more:

select s from java.lang.String s where s.count >= 100

Select all int arrays of length 256 or more:

select a from int[] a where a.length >= 256

Show content of Strings that match a regular expression:

select {instance: s, content: s.toString()} from java.lang.String s
 where /java/(s.toString())

Show path value of all File objects:

select file.path.toString() from java.io.File file

Show names of all ClassLoader classes:

Capturing Heap Dump Data

10-10 Developing Applications with Oracle JDeveloper

select classof(cl).name
 from instanceof java.lang.ClassLoader cl

Show instances of the Class identified by given id string:

select o from instanceof 0xd404b198 o

0xd404b198 is id of a Class (in a session). This is found by looking at the id shown in
that class's page.

OQL built-in objects and functions

Heap object

The heap built-in object supports the following methods:

• heap.forEachClass - calls a callback function for each Java Class

heap.forEachClass(callback);

• heap.forEachObject - calls a callback function for each Java object

heap.forEachObject(callback, clazz, includeSubtypes);

clazz is the class whose instances are selected. If not specified, defaults to
java.lang.Object. includeSubtypes is a boolean flag that specifies
whether to include subtype instances or not. Default value of this flag is true.

• heap.findClass - finds Java Class of given name

heap.findClass(className);

where className is name of the class to find. The resulting Class object has
following properties:

– name - name of the class.

– superclass - Class object for super class (or null if java.lang.Object).

– statics - name, value pairs for static fields of the Class.

– fields - array of field objects. field object has name, signature properties.

– loader - ClassLoader object that loaded this class.

Class objects have the following methods:

– isSubclassOf - tests whether given class is direct or indirect subclass of this
class or not.

– isSuperclassOf - tests whether given Class is direct or indirect superclass of
this class or not.

– subclasses - returns array of direct and indirect subclasses.

– superclasses - returns array of direct and indirect superclasses.

• heap.findObject - finds object from given object id

heap.findObject(stringIdOfObject);

• heap.classes - returns an enumeration of all Java classes

Capturing Heap Dump Data

Testing and Profiling Java Application Projects 10-11

• heap.objects - returns an enumeration of Java objects

heap.objects(clazz, [includeSubtypes], [filter])

clazz is the class whose instances are selected. If not specified, defaults to
java.lang.Object. includeSubtypes is a boolean flag that specifies
whether to include subtype instances or not. Default value of this flag is true. This
method accepts an optional filter expression to filter the result set of objects.

• heap.finalizables - returns an enumeration of Java objects that are pending to
be finalized.

• heap.livepaths - return an enumeration of paths by which a given object is
alive. This method accepts optional second parameter that is a boolean flag. This
flag tells whether to include paths with weak reference(s) or not. By default, paths
with weak reference(s) are not included.

select heap.livepaths(s) from java.lang.String s

Each element of this array itself is another array. The later array is contains an
objects that are in the 'reference chain' of the path.

• heap.roots - returns an Enumeration of Roots of the heap.

Each Root object has the following properties:

– id - String id of the object that is referred by this root

– type - descriptive type of Root (JNI Global, JNI Local, Java Static, etc.)

– description - String description of the Root

– referrer - Thread Object or Class object that is responsible for this root or null

Examples

• Access static field 'props' of class java.lang.System

select heap.findClass("java.lang.System").statics.props
select heap.findClass("java.lang.System").props

• Get number of fields of java.lang.String class

select heap.findClass("java.lang.String").fields.length

• Find the object whose object id is given

select heap.findObject("0xf3800b58")

• Select all classes that have name pattern java.net.*

select filter(heap.classes(), "/java.net./(it.name)")

Functions on individual objects

• allocTrace function

Returns allocation site trace of a given Java object if available. allocTrace returns
array of frame objects. Each frame object has the following properties:

– className - name of the Java class whose method is running in the frame.

Capturing Heap Dump Data

10-12 Developing Applications with Oracle JDeveloper

– methodName - name of the Java method running in the frame.

– methodSignature - signature of the Java method running in the frame.

– sourceFileName - name of source file of the Java class running in the frame.

– lineNumber - source line number within the method.

• classof function

Returns class object of a given Java object. The resulting object supports the
following properties:

– name - name of the class

– superclass - class object for super class (or null if java.lang.Object)

– statics - name, value pairs for static fields of the class

– fields - array of field objects. Field objects have name, signature properties

– loader - ClassLoader object that loaded this class.

Class objects have the following methods:

– isSubclassOf - tests whether given class is direct or indirect subclass of this
class or not

– isSuperclassOf - tests whether a given class is direct or indirect superclass of
this class or not

– subclasses - returns array of direct and indirect subclasses

– superclasses - returns array of direct and indirect superclasses

Examples

– Show class name of each Reference type object

select classof(o).name from instanceof java.lang.ref.Reference o

– Show all subclasses of java.io.InputStream

select heap.findClass("java.io.InputStream").subclasses()

– Show all superclasses of java.io.BufferedInputStream

show all superclasses of java.io.BufferedInputStream

• forEachReferrer function

Calls a callback function for each referrer of a given Java object.

• identical function

Returns whether two given Java objects are identical or not, for example:

select identical(heap.findClass("Foo").statics.bar,
heap.findClass("AnotherClass").statics.bar)

• objectid function

Returns String id of a given Java object. This id can be passed to
heap.findObject and may also be used to compare objects for identity. For
example:

Capturing Heap Dump Data

Testing and Profiling Java Application Projects 10-13

select objectid(o) from java.lang.Object o

• reachables function

Returns an array of Java objects that are transitively referred from the given Java
object. Optionally accepts a second parameter that is comma separated field names
to be excluded from reachability computation. Fields are written in
class_name.field_name pattern.

Examples

– Print all reachable objects from each Properties instance.

select reachables(p) from java.util.Properties p

– Print all reachables from each java.net.URL but omit the objects reachable
via the fields specified.

select reachables(u, 'java.net.URL.handler') from java.net.URL u

• referrers function

Returns an enumeration of Java objects that hold reference to a given Java object.
This method accepts optional second parameter that is a boolean flag. This flag tells
whether to include weak reference(s) or not. By default, weak reference(s) are not
included.

Examples

– Print number of referrers for each java.lang.Object instance

select count(referrers(o)) from java.lang.Object o

– Print referrers for each java.io.File object

select referrers(f) from java.io.File f

– Print URL objects only if referred by 2 or more

select u from java.net.URL u where count(referrers(u)) > 2

• referees function

Returns an array of Java objects to which the given Java object directly refers to.
This method accepts optional second parameter that is a boolean flag. This flag tells
whether to include weak reference(s) or not. By default, weak reference(s) are not
included. For example, to print all static reference fields of java.io.File class:

select referees(heap.findClass("java.io.File"))

• refers function

Returns whether first Java object refers to second Java object or not.

• root function

If the given object is a member of root set of objects, this function returns a
descriptive Root object describing why it is so. If given object is not a root, then this
function returns null.

• sizeof function

Returns size of the given Java object in bytes, for example:

select sizeof(o) from int[] o

Capturing Heap Dump Data

10-14 Developing Applications with Oracle JDeveloper

• retainedsize function

Returns size of the retained set of the given Java object in bytes. Note: Using this
function for the first time on a heap dump may take significant amount of time.

The following is an example usage of the retainedsize function:

select rsizeof(o) from instanceof java.lang.HashMap o

• toHtml function

Returns HTML string for the given Java object. Note that this is called
automatically for objects selected by select expression. But, it may be useful to print
more complex output. For example, to print a hyperlink in bold font:

select "" + toHtml(o) + "" from java.lang.Object o

Selecting Multiple Values

Multiple values can be selected using JavaScript object literals or arrays.

For example, show the name and thread for each thread object

select { name: t.name? t.name.toString() : "null", thread: t }
from instanceof java.lang.Thread t

array/iterator/enumeration manipulation functions

These functions accept an array/iterator/enumeration and an expression string [or a
callback function] as input. These functions iterate the array/iterator/enumeration
and apply the expression (or function) on each element. Note: JavaScript objects are
associative arrays. So, these functions may also be used with arbitrary JavaScript
objects.

• concat function

Returns whether the given array/enumeration contains an element the given
boolean expression specified in code. The code evaluated can refer to the following
built-in variables.

– it - currently visited element

– index - index of the current element

– array - array/enumeration that is being iterated

For example, to select all Properties objects that are referred by some static field
some class:

select p from java.util.Properties p
where contains(referrers(p), "classof(it).name == 'java.lang.Class'")

• count function

Returns the count of elements of the input array/enumeration that satisfy the given
boolean expression. The boolean expression code can refer to the following built-in
variables.

– it - currently visited element

– index - index of the current element

– array - array/enumeration that is being iterated

Capturing Heap Dump Data

Testing and Profiling Java Application Projects 10-15

For example, print the number of classes that have a specific name pattern:

select count(heap.classes(), "/java.io./(it.name)")

• filter function

Returns an array/enumeration that contains elements of the input array/
enumeration that satisfy the given boolean expression. The boolean expression
code can refer to the following built-in variables.

– it - currently visited element

– index - index of the current element

– array - array/enumeration that is being iterated

– result -> result array/enumeration

Examples

– Show all classes that have java.io.* name pattern

select filter(heap.classes(), "/java.io./(it.name)")

– Show all referrers of URL object where the referrer is not from java.net package

select filter(referrers(u), "! /java.net./(classof(it).name)")
from java.net.URL u

• length function

Returns number of elements of an array/enumeration.

• map function

Transforms the given array/enumeration by evaluating given code on each
element. The code evaluated can refer to the following built-in variables.

– it - currently visited element

– index - index of the current element

– array - array/enumeration that is being iterated

– result -> result array/enumeration

Map function returns an array/enumeration of values created by repeatedly calling
code on each element of input array/enumeration.

For example, show all static fields of java.io.File with name and value:

select map(heap.findClass("java.io.File").statics, "index + '=' + toHtml(it)")

• max function

Returns the maximum element of the given array/enumeration. Optionally accepts
code expression to compare elements of the array. By default numerical
comparison is used. The comparison expression can use the following built-in
variables:

– lhs - left side element for comparison

– rhs - right side element for comparison

Examples

Capturing Heap Dump Data

10-16 Developing Applications with Oracle JDeveloper

– Find the maximum length of any string instance

select max(map(heap.objects('java.lang.String', false), 'it.count'))

– Find string instance that has the maximum length

select max(heap.objects('java.lang.String'), 'lhs.count > rhs.count')

• min function

Returns the minimum element of the given array/enumeration. Optionally accepts
code expression to compare elements of the array. By default numerical
comparison is used. The comparison expression can use the following built-in
variables:

– lhs - left side element for comparison

– rhs - right side element for comparison

Examples

– Find the minimum size of any vector instance

select min(map(heap.objects('java.util.Vector', false),
'it.elementData.length'))

– Find vector instance that has the maximum length

select min(heap.objects('java.util.Vector'), 'lhs.elementData.length <
rhs.elementData.length')

• sort function

Sorts a given array/enumeration. Optionally accepts code expression to compare
elements of the array. By default numerical comparison is used. The comparison
expression can use the following built-in variables:

– lhs - left side element for comparison

– rhs - right side element for comparison

Examples

– Print all char[] objects in the order of size.

select sort(heap.objects('char[]'), 'sizeof(lhs) - sizeof(rhs)')

– Print all char[] objects in the order of size but print size as well.

select map(sort(heap.objects('char[]'), 'sizeof(lhs) - sizeof(rhs)'),
'{ size: sizeof(it), obj: it }')

• top function

Returns top N elements of the given array/enumeration. Optionally accepts code
expression to compare elements of the array and the number of top elements. By
default the first 10 elements in the order of appearance is returned. The comparison
expression can use the following built-in variables:

– lhs - left side element for comparison

– rhs - right side element for comparison

Examples

Capturing Heap Dump Data

Testing and Profiling Java Application Projects 10-17

– Print 5 longest strings

select top(heap.objects('java.lang.String'), 'rhs.count - lhs.count', 5)

– Print 5 longest strings but print size as well.

select map(top(heap.objects('java.lang.String'), 'rhs.count - lhs.count', 5),
'{ length: it.count, obj: it }')

• sum function

Returns the sum of all the elements of the given input array or enumeration.
Optionally, accepts an expression as second param. This is used to map the input
elements before summing those.

For example, return the sum of sizes of the reachable objects from each Properties
object:

select sum(map(reachables(p), 'sizeof(it)'))
from java.util.Properties p

// or omit the map as in ...
select sum(reachables(p), 'sizeof(it)')
from java.util.Properties p

• toArray function

Returns an array that contains elements of the input array/enumeration.

• unique function

Returns an array/enumeration containing unique elements of the given input
array/enumeration.

The following example selects a unique char[] instances referenced from strings.
Note that more than one string instance can share the same char[] for the content.

// number of unique char[] instances referenced from any String
select count(unique(map(heap.objects('java.lang.String'), 'it.value')))

// total number of Strings
select count(heap.objects('java.lang.String'))

Other Examples

The following example prints a histogram of each class loader and number of classes
loaded by it.

java.lang.ClassLoader has a private field called classes of type
java.util.Vector and Vector has a private field named elementCount that is
number of elements in the vector. The query selects multiple values (loader, count)
using JavaScript object literal and map function. It sorts the result by count (i.e.,
number of classes loaded) using sort function with comparison expression.

select map(sort(map(heap.objects('java.lang.ClassLoader'),
'{ loader: it, count: it.classes.elementCount }'), 'lhs.count < rhs.count'),
'toHtml(it) + "
"')

The following example shows the parent-child chain for each class loader instance.

select map(heap.objects('java.lang.ClassLoader'),
 function (it) {
 var res = '';
 while (it != null) {

Capturing Heap Dump Data

10-18 Developing Applications with Oracle JDeveloper

 res += toHtml(it) + "->";
 it = it.parent;
 }
 res += "null";
 return res + "
";
 })

Note that the parent field of java.lang.ClassLoader class is used and the
example walks until the parent is null using the callback function to map call.

The following example prints the value of all System properties. Note that this query
(and many other queries) may not be stable - because private fields of the Java
platform classes may be modified or removed without any notification
(implementation detail). But using such queries on user classes may be safe, given that
you have control over the classes.

select map(filter(heap.findClass('java.lang.System').props.table, 'it != null &&
it.key != null && it.value != null'),
 function (it) {
 var res = it.key.toString() + ' = ' + it.value.toString();
 return res;
 });

• java.lang.System has static field by name 'props' of type
java.util.Properties.

• java.util.Properties has field by 'table' of type java.util.Hashtable
$Entry (this field is inherited from java.util.Hashtable). This is the
hashtable buckets array.

• java.util.Hashtable$Entry has key, value and next fields. Each entry points
the next entry (or null) in the same hashtable bucket.

• java.lang.String class has a value field of type char[].

Taking and Accessing Snapshots of Profiling Data
A snapshot captures profiling data at a specific point in time and allows you to access
them via the Snapshot window. See Accessing Snapshots

A snapshot differs from live profiling results in the following ways:

• Snapshots can be examined when no profiling session is running.

• Snapshots can be easily compared.

There are two options for taking snapshots:

• While the profiling session is in progress. See Taking Snapshots During a Profiling
Session

• At the end of the profiling session. See Taking Snapshots at the End of a Profiling
Session

Taking Snapshots at the End of a Profiling Session
When closing a profiled application, or if it finishes on its own, while the profiling
session is in progress, the profiler asks you whether to take a snapshot of the results
collected so far by displaying the Application Finished dialog.

Taking and Accessing Snapshots of Profiling Data

Testing and Profiling Java Application Projects 10-19

Figure 10-8 Application Finished Dialog

Click Yes to save the snapshot.

Taking Snapshots During a Profiling Session
You may take a snapshot of the profiling data at any time during the profiling session
by clicking the Snapshot icon shown in the figure below.

Figure 10-9 Snapshot Icon

To control how the snapshots functionality behaves during a session, go to Tools >
Preferences > Profiler and click the When taking snapshots drop-down menu to see
the following options:

Open New Snapshot—it opens the snapshot right after clicking the Snapshot icon

Save New Snapshot—it saves a new snapshot every time you click the Snapshot Icon

Open and Save New Snapshot—it saves and opens a snapshot right after clicking the
Snapshot icon.

You may take multiple snapshots during a profiling session and you will also be
prompted to save a "final" snapshot at the end of the session.

Starting and Stopping the Application Finished Dialog
When the Application Finished dialog appears at the end of the profiling session, if
you select the Do not show this message again checkbox the dialog would not display
again. If at a later time you want to reactivate the display of this dialog, go to Tools >
Preference > Profiler and click Reset button as shown in the figure below.

Taking and Accessing Snapshots of Profiling Data

10-20 Developing Applications with Oracle JDeveloper

Figure 10-10 Reset Button in the Profiler Preferences Dialog

Accessing Snapshots
You may access you profiling session snapshots by going to Windows > Profiling >
Snapshots. The Snapshots window appears as shown in the figure below.

Figure 10-11 Snapshot Windows

At the bottom of the Snapshots window there are icons that allow you to export, open,
rename, and delete selected snapshots.

Taking and Accessing Snapshots of Profiling Data

Testing and Profiling Java Application Projects 10-21

How to Calibrate the Profiler
You must calibrate the IDE before you can use the IDE to profile an application. You
must run the calibration process for each JDK that you use for profiling. You do this
because instrumenting the bytecode of the application imposes some overhead, and
the time spent in code instrumentation needs to be "factored out" to achieve more
accurate results.

You only have to calibrate the IDE once for each JDK that you use. However, you
should run the calibration process again when anything changes on your local or
remote configuration that could affect system performance. The following could affect
system performance:

• Any hardware upgrade

• Any significant change or upgrade of the operating system

• An upgrade of the Java platform used for profiling

To calibrate the IDE on your local system:

1. Close any other programs that are running.

The IDE runs the calibration if other applications are running, but running any
CPU-intensive programs when performing the calibration might affect the accuracy
of profiling results.

2. Go to Tools > Preferences > Profiler > Manage Calibration Data and click the
Manage button.

The Manage Calibration Data window appears.

3. Select the Java Platform to be used for profiling. Click Calibrate.

You can click Java Platforms to open the Manage Libraries window to add a new
Java platform. The Manage Calibration Data dialog box displays the date that the
most recent calibration was performed.

When you click Calibrate, the IDE collects calibration data on the selected Java
platform. When the calibration process is complete you can start using the IDE to
profile your applications.

Do not share calibration data between various computers or systems.

How to Set Profiling Points
A profiling point is a marker in your source code which can invoke specific profiling
actions. You set a profiling point in your code by using the popup menu in the Source
Editor or by using the toolbar in the Profiling Points window.

You can set the following types of profiling points:

• Reset Results

• Stopwatch

• Take Snapshot

How to Calibrate the Profiler

10-22 Developing Applications with Oracle JDeveloper

• Timed Take Snapshot

• Triggered Take Snapshot

Note: Icons for the Timed Take Snapshot and Triggered Take Snapshot do not display
in code editors. They only display in the Profiling Points window.

You can use a profiling point to reset profiling results, take a snapshot or record the
timestamp or execution time of a code fragment.

Once you set a profiling point it becomes part of the project until you delete it.

To set a profiling point:

1. Locate the class where you want to add the profiling point and open the class in
the Source Editor.

2. In the Source Editor, right-click in the gutter on the line where you want to add
the profiling point.

3. Select Add Profiling Point to open the New Profiling Point wizard.

4. Select a profiling point type and the project.

5. Click Next.

6. Customize the properties of the profiling point, if necessary.

7. Click Finish.

An icon representing the profiling point type appears in the Source Editor where you
inserted the profiling point.

To enable or disable a profiling point, in the Source Editor, right-click in the left
margin of the line containing the profiling point and choose <Profiling point name> >
Enable or Disable.

To view active profiling points:

1. Open the application.

2. From the main menu, select Run > Profile.. The last profile mode session is
displayed. and a Profiling Points section appears.

Alternatively you may select Window > Profiling > Profiling Points.

3. Use the Project or Profiling Point columns to view the defined profiling points.

Unit Testing with JUnit
JUnit is an open source regression testing framework for Java. Use JUnit to write and
run tests that verify Java code.

Use JUnit wizards in JDeveloper to create test fixtures, cases, and suites. In addition to
wizards for creating test components for generic projects, specialized wizards for
business components projects are provided.

Creating a JUnit Test for a Java Project
A JUnit test application consists of the following components:

Unit Testing with JUnit

Testing and Profiling Java Application Projects 10-23

• One or more test cases, which invoke the methods that are to be tested, and make
assertions about the expected results. While test case classes generated by default
have 'Test' in their names, the user can specify any valid Java name.

• Test fixtures, which provide the state in which the tests are run. Any class can serve
as a test fixture, but JDeveloper provides wizards to help you create specialized test
fixture classes. While test fixture classes generated by default have 'Fixture' in their
names, the user can specify any valid Java name.

• A test suite, which invokes the test cases. Default test suite classes have 'AllTests' in
their names.

• A runner, which invokes the test suite and collates and displays the results of the
tests.

How to Create a JUnit Custom Test Fixture
A test fixture is a set of objects, having known values, that provide data for the test
cases. Any class can serve as a test fixture, but JDeveloper provides wizards to help
you create custom test fixture classes and various specialized test fixture classes.

Note:

UnitTestFixture is a public class. If you create an instance of it, there will
be no errors in generated code.

AppModuleAMFixture is a private class. If you create an instance of it, there
will be errors in the generated code.

To create a JUnit custom test fixture class:

1. In the Applications window, select the project.

2. Choose File > New > From Gallery.

3. In the Categories tree, expand General and select Unit Tests.

4. In the Items list, double-click Test Fixture.

5. Complete the wizard to create the test fixture class.

The class created by the wizard will be opened for editing.

6. Modify the file as needed.

In particular, add code that initializes test fixture objects to the setUp() method.
Add code that releases any resources they acquire to the tearDown() method.

How to Create a JUnit JDBC Test Fixture
A test fixture is a set of objects, having known values, that provide data for the test
cases. A JDBC test fixture provides code that establishes a database connection for the
test cases to use.

To create a JUnit JDBC test fixture class:

1. In the Applications window, select the project.

Unit Testing with JUnit

10-24 Developing Applications with Oracle JDeveloper

2. Choose File > New > From Gallery.

3. In the Categories tree, expand General and select Unit Tests (JUnit).

4. In the Items list, double-click Test Fixture.

5. Complete the dialog to create the test fixture class.

The class that was created will be opened for editing.

6. Modify the file as needed. In particular, to the setUp() method add code that
initializes test fixture objects, and to the tearDown() method add code that
releases any resources they acquire.

Creating a JUnit Test Case
A test case class has one or more methods that perform tests by calling JUnit
assertions. The following is a typical test case in JUnit 3.x. It passes test fixture data to
the method being tested, and then compare the result with a known value to confirm
that it is what is expected.

public void testCountChars()
{
 int expected = 4;
 int actual = fixture1.countChars('a');
 assertEquals(expected, actual);
}

@Test
public void testCountChars()
{
 int expected = 4;
 int actual = fixture1.countChars('a');
 Assert.assertEquals(expected, actual);
}

In the test case above, countChars() is being tested, and the result of the test is
checked by assertEquals(), which is one of a variety of assertion methods defined
in the JUnit Assert class. The state of the test fixture, fixture1, is established in the
setUp() method, which will have been called before the test case is called, as shown
below:

protected void setup() throws Exception
{
fixture1 = new StringFixture("Goin' to Kansas City, Kansas City, here I come.");
}

To create a JUnit test case class:

1. In the Applications window, select the project or the particular class that you want
to test.

2. Choose File > New > From Gallery.

3. In the Categories tree, expand General and select Unit Tests.

4. In the Items list, double-click Test Case.

5. In the Select the Class to Test page of the Create Test Case dialog, enter the class
under test or click Browse.

Unit Testing with JUnit

Testing and Profiling Java Application Projects 10-25

6. In the Class Browser dialog, locate the class you want to test or enter the beginning
letters in the Match Class Name field. The Match Class list will be filtered for
easier identification.

Select the class and click OK to close the dialog. Click Next.

7. Select the individual methods you want to test and click Next.

8. In the Setup Test Case Class page, enter the name of the test case, the package, and
the class it extends and select the list of built-in functions JUnit will create stubs for.
Click Next.

9. In the Select Test Fixtures page, select any test fixtures you want to add to the test
case or click Browse.

10. Make sure that all the test fixtures you want to add to the test case are selected in
the list and click Finish.

The class created by the wizard will be opened for editing.

You can create a test case specifically for an EJB application. For more information, see
How to Test EJB Unit with JUnit.

How to Add a Test to a JUnit Test Case
You can add a unit test for a method to an existing JUnit test case class.

To add a test to a JUnit test case class:

1. In the code editor, select a method for which you want to create a new unit test.

2. From the main menu, choose Source > New Method Test.

3. Select Add to Existing TestCase Class.

4. From the Class Name dropdown box, or by using Browse, select the test case class
that you want to add the new test to.

5. To add the new test to the test case, click OK.

Creating a JUnit Test Suite
A test suite is a class that invokes test cases.

The JUnit Test Suite wizard has options to insert a main() method and a call to a
TestRunner class. Within JDeveloper, this will open the JUnit TestRunner log window
to display the test results. Edit the method if you wish to use a different test runner.

In the JUnit 3.x test suite shown below, the suite() method creates a TestSuite
instance and adds the test cases to it. Edit this method if you wish to add or remove
test cases.

public class AllTests {
 public static Test suite() {
 TestSuite suite;
 suite = new TestSuite("project1.AllTests");
 return suite; }

In the JUnit 4 test suite shown below, the test case classes are written with @Suite
and @RunWith annotations.

Unit Testing with JUnit

10-26 Developing Applications with Oracle JDeveloper

@RunWith(Suite.class)
@Suite.SuiteClasses({})
public class AllTests1 {
 public static void main(String[] args) {
 String[] args2 = { AllTests1.class.getName() };
 org.junit.runner.JUnitCore.main(args2);
 }
}

To create a JUnit test suite class:

Before you create a JUnit test case, you must have created a project that is to be tested.

1. In the Applications window, select the project.

2. Choose File > New > From Gallery.

3. In the Categories tree, expand General and select Unit Tests (JUnit).

4. In the Items list, double-click Test Suite.

5. Complete the wizard to create the test suite class. The class created by the wizard
displays for editing.

6. Modify the file as needed. In particular:

• In the suite() method, add the test cases.

• In the main() method, replace the runner invocation, if desired.

How to Create a Business Components Test Suite
The test fixture that is created is a singleton class to reduce the number of connections.
If you want to connect or disconnect for each test case, customize the test case using
the JUnit 4 annotations @Before and @After.

The JUnit BC4J Test Suite wizard will generate tests for each view object in the
application module. If the application module does not have exported methods, the
wizard will also generate a test for the application module itself. A generated view
object class has the format view_objectVOTest.java and is placed into a package
with the format package.view.viewobjectVO, where package is the application
module package. A generated application module test has the format
application_moduleAMTest.java and is placed into a package with the format
package.applicationModule. A generated test fixture class has the format
applicationmoduleAMFixture.java and is placed in the same package as the
application module test.

The generated all test suite class has the format
AllapplicationmoduleTest.java and is placed into the package with the same
name as the application module package name.

A test case XML file is also generated for each application module or view object test.
The XML file contains test methods defined in the application module or view object
test cases. It does not include the test methods from the base classes (if any) because
there may be too many duplicates.

To create a business components test suite:

1. In the main menu, choose File and then New.

You will create a separate project for the business components tests.

Unit Testing with JUnit

Testing and Profiling Java Application Projects 10-27

2. In the New Gallery, expand General, select Projects and then Java Projects, and
click OK.

3. In the Project Name page of the Create Java Project wizard, enter a name and the
directory path for the test project, and click Next.

4. In the Project Java Settings page, enter the package name, the directory of the Java
source code in your project, and output directory where output class files will be
placed, and click Finish.

5. In the Applications window, double-click the application module you want to test.

6. In the overview editor, click the Java navigation tab.

7. In the Java page, click the Edit icon for the Java Class section.

8. In the Select Java Options dialog, select Generate Application Module Class and
click OK.

9. In the Java page of the overview editor, click the Edit icon for the Class Interface
section.

10. In the Edit Client Interface dialog, shuttle the methods you want to test to the
Selected pane, and click OK.

11. In the Applications window, right-click the test project you have created and
choose New.

12. In the New Gallery, expand General, select Unit Tests and then Business
Components Test Suite, and click OK.

13. In the Configure Tests page of the JUnit BC4J Test Suite wizard, select values for
the following and click Next:

• Business Component Project: Select the project that has the application module
you want to test.

• Application Module: Select the application module you want to test.

• Configuration: Choose a local or shared application module.

• Test Base Class-Application Module Extends: You can specify different base
cases. The generated test case classes will extend from that base class where all
public abstract methods in the base class will have simple and default
implementation method bodies.

• Test Base Class-View Object Extends: You can specify which class the view
object extends. The generated test case classes will extend from that base class
where all public abstract methods in the base class will have simple and default
implementation method bodies.

14. In the Summary page, verify the selections and click Finish.

How to Create a Business Components Test Fixture
When you create a business components test suite, a business components test fixture
is created with it. You can also create Business Components test fixtures
independently.

Unit Testing with JUnit

10-28 Developing Applications with Oracle JDeveloper

A generated test fixture class has the format applicationmoduleAMFixture.java
and put into a package with the format package.applicationModule, where
package is the application module package.

To create a business components test fixture:

1. In the main menu, choose File > New > From Gallery.

You will create a separate project for the business components tests.

2. In the New Gallery, expand General, select Projects > Java Project, and click OK.

3. In the Project Name page of the Create Java Project dialog, enter a name and the
directory path for the test project, and click Next.

4. In the Project Java Settings page, enter the package name and the source and
output directories, and click Finish.

5. In the Applications window, double-click the application module you want to test.

6. In the overview editor, click the Java navigation tab and then click the Edit icon for
the Java Class section.

7. In the Select Java Options dialog, select Generate Application Module Class, and
click OK.

8. In the Java page of the overview editor, click the Edit icon for the Class Interface
section.

9. In the Edit Client Interface dialog, shuttle the methods you want to test to the
Selected pane, and click OK.

10. In the Applications window, right-click the test project you have created and
choose New.

11. In the New Gallery, expand General, select Unit Tests and then Business
Components Test Fixture, and click OK.

12. In the Configure Tests page of the JUnit BC4J Test Fixture wizard, select values for
the following and click Next:

• Business Component Project: Select the project that has the application module
you want to test.

• Application Module: Select the application module you want to test.

• Configuration: Choose a local or shared application module.

13. In the Summary page, verify the test fixture class and click Finish.

How to Update a Test Suite with all Test Cases in the Project
You update a test suite with all test cases in a project.

To update a test suite:

1. In a class that has a suite() method, from the context menu, choose Source >
Refresh Test Suite.

2. Ensure that all items in the list of test cases are checked.

Unit Testing with JUnit

Testing and Profiling Java Application Projects 10-29

3. To update the test suite, click OK.

How to Run JUnit Test Suites
When your test suite has been successfully compiled you can run it.

To run a JUnit test suite:

1. In the Applications window, select the test suite class.

2. Right click it, and choose Run.

The test executes and the test runner displays the results.

Unit Testing with JUnit

10-30 Developing Applications with Oracle JDeveloper

11
Auditing and Monitoring Java Projects

This chapter describes the auditing and monitoring capabilities of Oracle JDeveloper.

This chapter includes the following sections:

• About Auditing and Monitoring Java Projects

• Auditing Java Projects

• Monitoring HTTP Using the HTTP Analyzer

About Auditing and Monitoring Java Projects
Use the auditing and monitoring tools that JDeveloper provides to analyze the health
and performance of your applications. These tools help you improve the quality of
your code. You can use the JDeveloper auditing feature to analyze Java code for
conformance to programming standards.

Auditing is concerned with programming standards, rather than syntactic correctness.
You can audit code even when it is not compilable or executable.

You can use the HTTP Analyzer to facilitate debugging your application in terms of
the HTTP traffic sent and received between your projects' web service clients and
services and between your Java applications and web resources.

Auditing Java Projects
Auditing is the static analysis of code for adherence to rules and metrics that define
programming standards. A software code audit is a comprehensive analysis of source
code in a programming project with the intent of discovering bugs, security breaches
or violations of programming conventions.

• A rule is a qualitative test for the presence or absence of some feature. For example,
common Java coding style requires that class names be capitalized. A violation
occurs when a rule is not adhered to.

• A metric is a quantitative measurement of size or complexity. For example, a
method that is too long, or covers too many cases should delegate some of its
functionality to other methods. An over-threshold anomaly occurs when the
specified upper bound is exceeded.

You can create and customize profiles, choose the rules to be used, and set parameters
for individual rules. Browse the audit rules and metrics to learn more about them.

JDeveloper's audit and metrics features are extensible. Audit and metrics are two
facets of a source code analysis and transformation framework that can be customized
and extended. The public API for both audit and metrics is the
oracle.jdeveloper.audit package.

Auditing and Monitoring Java Projects 11-1

To audit Java code:

• Run the auditor on source files to produce an audit report. For more information,
see How to Run Audit to Generate an Audit Report.

• Use Code Assist to audit while editing. Code Assist enables background audits
while you edit. Audit violations are highlighted as you edit. You can apply
automated corrections.

• Audit from the command line to produce an audit report. For more information,
see Auditing Java Code from the Command Line.

• Display the Issues window. The Issues Window is one of the JDeveloper features
that helps you to audit your code. It displays audit violations in the document
selected in the File List and provides information to help you resolve the issues.

An audit report displays rule violations and measurements organized as a tree. A row
of the tree corresponds to either a construct or a violation, and includes any measured
values for the construct or theoretical violation. A construct is a method, class, file,
project, or workspace.

Understanding Audit Rules
Audit rules are static, qualitative, analyses of code.

In an auditing profile, individual rules can be enabled and configured by setting their
properties. When a code construct does not satisfy a rule, a rule violation is reported.
Some rules define automatic fixes that you can choose to apply.

The rules contain the properties shown in Table 11-1.

Table 11-1 Rule Properties

Property Description

Default fix The fix that will be used for violations of this rule are when
Apply Default Fix is applied to a construct.

Pattern A regular expression used as a filter to find unconventional
identifiers.

Severity Use to sort rule violations in the audit report.

Visibility A threshold based on the accessibility keyword. Violations will
be reported only if they occur in classes or methods having at
least the chosen visibility.

Understanding Audit Metrics
Audit metrics are static, quantitative analyses of code. In an auditing profile,
individual metrics can be enabled and configured. Metrics are configured by setting a
threshold: when a code construct exceeds the threshold, an over-threshold
measurement is reported in the audit report.

JDeveloper measures the metrics shown in Table 11-2.

Auditing Java Projects

11-2 Developing Applications with Oracle JDeveloper

Table 11-2 Audit Metrics

Metric Description

Depth of Inheritance Tree
(DIT)

The depth of the inheritance tree of a class. By convention,
java.lang.Object has DIT of 1, a class which directly
extends java.lang.Object has DIT 2, and so on.

Number of Statements
(NOS)

The size, in Java statements, of a method, class, or other
construct.

Cyclomatic complexity
(V(G))

The branching complexity of a method. Constructs which
enclose methods, such as classes and projects, are assigned the
maximum complexity measured for an enclosed method.
Values above 10 are generally considered problematic.

Using the Auditing Tools
You can use auditing tools to view audit reports and to investigate and correct rule
violations and over-threshold measurements. A new tab will be created in the Log
window when auditing starts, and the audit report will be displayed in it.

Auditing is the static analysis of code for adherence to rules and metrics that define
programming standards. Auditing finds defects that make code difficult to improve
and maintain. The JDeveloper auditing tools help you find and fix such defects. Code
can be audited even when it is not compilable or executable.

Using the Audit Window Report Panel
An audit report is a set of rule violations and metrics measurements presented as a
tree organized into constructs. A construct is a method, class, package, file, project, or
workspace. If the audit profile includes rules, the table will have a Severity column
that shows the designated severity of the constructs. If the audit profile includes
metrics, the table will have an additional column for each metric showing the
measurements for the constructs.

To sort the report by the contents of a column, click the column header. To reverse the
sort order, click again.

Using the Audit Window Toolbar
From the Log window toolbar you can perform the operations shown in Table 11-3.

Table 11-3 Audit Window Toolbar Icons

Icon Name Description

Refresh Click to rerun the audit on the same selection with
the same profile.

Cancel Click to terminate a running audit. Note that this
may give partial results.

Export Click to open the Export Results Dialog, from
which you can save the report to a file. You may
save the results in XML, HTML, or plain text.

Auditing Java Projects

Auditing and Monitoring Java Projects 11-3

Table 11-3 (Cont.) Audit Window Toolbar Icons

Icon Name Description

Expand All Click to expand all the container nodes in the
report, exposing all the rows.

Collapse All Click to collapse all the container nodes in the
report, hiding all but the top-level constructs.

Group By Click to open the Group By dialog, from which
you can specify the types of container constructs
that will be shown. Grouping by constructs
enables you to organize the results better, track
defects and violations quickly, and analyze the
results easily.

Show Anomalies Only Toggle the display of measurements that are
within acceptable limits. The threshold is a settable
property of metrics.

Show Suppressed Issues Toggle to show the suppression scheme issues.

Fix Choose a fix for a rule violation from the
dropdown menu. For an individual rule violation,
choose among the fixes defined for that violation's
type. For a group construct, the only choice is
Apply Default Fixes, which applies the default fix
defined for its type, if any.

Show Error Issues Toggle to show just the number of errors in the
selected file, or to list the errors in the file

Show Warning Issues Toggle to show just the number of warnings in the
selected file, or to list the warnings in the file.

Show Incomplete Issues Toggle to show just the number of incomplete
issues in the selected file, or to list the incomplete
issues in the file.

Show Advisory Issues Toggle to show just the number of advisory issues
in the selected file, or to list the advisory issues in
the file.

Using the Audit Window Context Menu
Select one or more constructs (container nodes) or rule violations (leaf nodes) and
right-click to open the context menu. From the context menu you can perform the
operations shown in Table 11-4 on the selected constructs or rule violations.

Table 11-4 Audit Window Context Menu Items

Name Description

Create <construct> Choose to apply the specified fix (constant, static field, instance
field, variable, or method).

Auditing Java Projects

11-4 Developing Applications with Oracle JDeveloper

Table 11-4 (Cont.) Audit Window Context Menu Items

Name Description

About <construct> Rule Choose to display an explanation of the rule that applies to this
rule violation.

Hide <Rule> Issues Choose to remove all violations of the selected rule from the
report.

Show Hidden Issues Choose to restore all previously hidden issues.

Show Anomalies Only Click to toggle the display of measurements that are within
acceptable limits.

Show Error Issues Click to toggle the display of the number of errors in the
selected file, or to list the errors in the file

Show Warning Issues Click to toggle the display of the number of warnings in the
selected file, or to list the warnings in the file.

Show Incomplete Issues Click to toggle the display of the number of incomplete issues
in the selected file, or to list the incomplete issues in the file.

Show Advisory Issues Click to toggle to show the display of the number of advisory
issues in the selected file, or to list the advisory issues in the file.

Show Suppressed Issues(X) Click to toggle the display of measurements that are within
acceptable limits.

Cancel Choose to terminate a running audit.

Refresh Choose to rerun the audit.

Group By Choose to open the Group By dialog, from which you can
specify the types of container constructs that will be shown.

Expand All Click to expand all the container nodes in the report, exposing
all the rows.

Collapse All Click to collapse all the container nodes in the report, hiding all
but the top-level constructs.

Go to Source Choose to open the source file at the point of the rule violation.
If you wish, you can edit the file and correct the violation.

Export Choose to open the Export Results Dialog, from which you can
save the report to a file.

How to Audit Java Code in JDeveloper
JDeveloper's auditing tools help you find and fix defects that make code difficult to
improve and maintain. You can audit code even when it is not compilable or
executable. The focus of an audit is defined by a profile, which is a set of audit rules
and metrics.

To audit Java Code:

1. Create an Audit Profile that specifies the rules, code assists, and metrics used to
analyze Java programs. In an Audit Profile, individual rules and metrics can be

Auditing Java Projects

Auditing and Monitoring Java Projects 11-5

enabled and configured by setting their properties. When a code construct does not
satisfy a rule, a rule violation is reported. For more information, see Working with
Audit Profile.

2. Run the Audit Report.

• From the main menu, choose Build > Audit <project>. For more information,
see How to Run Audit to Generate an Audit Report.

• You can also audit Java code from the command line by invoking ojaudit.exe,
which is included in your JDeveloper installation. For more information, see
Auditing Java Code from the Command Line.

3. Inspect the completed Audit Report for rule violation. For more information, see
Viewing an Audit Report.

An Audit Report displays rule violations and measurements organized as a tree. A
row of the tree corresponds to either a construct or a violation, and includes any
measured values for the construct or theoretical violation. A construct is a method,
class, file, project, or workspace.

4. Fix an audit rule violation manually by editing the source, or for some rules, by
selecting an automated fix. For more information, see How to Fix an Audit Rule
Violation..

5. If you want to run the audit again, you can modify an audit profile by enabling or
disabling rules, code assists, and metrics, or by changing their configuration. For
more information, see Working with Audit Profile.

You can save the finished audit report as an XML file or as a formatted HTML or text
file. For more information, see How to Save an Audit Report. Formats are defined by
XSL stylesheet files in the /jdev//audit/stylesheets directory (this directory is
not created until audit is run). To create a custom format, adapt a copy of one of the
predefined stylesheet files, and add it to the directory.

Auditing Java Code from the Command Line
You can audit a workspace, a project, or a source file from the command line by
invoking ojaudit.exe, which is included in your JDeveloper installation, in the
jdev_install/jdeveloper/jdev/bin directory.

Synopsis

ojaudit option... file...

Table 11-5 contains the parameters you can use during the audit.

Table 11-5 Command Line Parameters

Parameter Description

file Specifies the workspace (.jws), project (.jpr), or source
(.java) file to be audited.

-classpath path Sets the class path for files to audit, if a project is not being
audited.

Auditing Java Projects

11-6 Developing Applications with Oracle JDeveloper

Table 11-5 (Cont.) Command Line Parameters

Parameter Description

-disable name Disables the specified rule or metric in profile. To supply
multiple values, repeat this option. This option requires the use
of -profile.

-enable name Enables the specified rule or metric in the profile. To supply
multiple values, repeat this option.

-encoding code Sets the character encoding for the report. If absent, the
character encoding specified for the project is used (see the
Compiler page of the project's Project Properties dialog).

-fail severity Sets the issue severity that the Auditor will regard as failure.

-fix Applies default fixes to the code. This option modifies source
files.

-help Prints help for the command help and exits.

-listall Lists all audited files in the audit report including those that
have no issues.

-maxfilesize size Specifies the maximum file size, in Mb, to audit.

-metric name Enables the specified metric.

-nometric name Disables the specified metric. This option requires the use of -
profile .

-norule name Disables the specified audit rule. This option requires the use of
-profile.

-notitle Sets an empty audit report title.

-output file Specifies the pathname of the output file. If omitted, output is
written to standard output.

-profile name (required) Specifies the profile to use. It is either one of the
profiles defined in JDeveloper (as set in the Audit > Audit
Profiles page of the Tools > Preferences dialog), or the path
name of an exported Audit profile file.

Case and whitespace are ignored when searching for a
matching profile.

-profilehelp Print defined profile names and exit.

-profileoutput file Sets the output file for the merged profile.

-project file The project context to use for parameters that are source files. If
all parameters are projects or workspaces, this option is not
required.

-quiet Suppresses the copyright message.

-role name Sets the active JDeveloper customization role.

-rule name Enables the specified rule.

Auditing Java Projects

Auditing and Monitoring Java Projects 11-7

Table 11-5 (Cont.) Command Line Parameters

Parameter Description

-seal Seals the specified profiles. This option requires the use of -
profile with an explicit path is also used.

-rulehelp Prints the available rules and exits.

-sourcepath path Set source path for files to audit, if a project is not being audited

-style file The XSLT stylesheet to apply to the report. The name can either
be a style sheet defined in JDeveloper, or a pathname to a style
sheet file. If absent, the output will be an XML file.

Case and whitespace are ignored when searching for a
matching predefined stylesheet.

-stylehelp Print defined style sheet names and exit.

-title text The title to use for the report. If absent when -untitled is
not specified, a default title will be used.

-verbose Causes all execution messages to be displayed.

-version Prints the command's version and exits.

-workingset name Sets the working set for files to audit. This option requires the
use of -workspace.

-workingsethelp Prints the available working sets for the workspace and exits.

-workspace file Sets the workspace context for files to audit.

-xmlinput file Changes the format of an existing XML report. This option
requires the use of -style.

-xmloutput file Sets the output file as a plain XML report. This option requires
the use of -style.

@file Includes options and parameters from the audit file.

Note the following considerations:

• Unless the file specified is a workspace or project, you must specify -project, -
sourcepath, or -classpath.

• If a project depends on other projects in the workspace, you must specify -
workspace.

• The options -profile and -style accept a name or a URL. Case and whitespace
in the name are ignored.

• The options -enable and -disable accept an ID or a label. Case and whitespace
in the name are ignored.

• The options -rule and -metric are synonymous of -enable. The options -
norule and -nometric are synonymous of -disable.

Auditing Java Projects

11-8 Developing Applications with Oracle JDeveloper

Working with Audit Profile
An audit profile defines the focus of an audit by specifying the rules, code assists, and
metrics that will be used to analyze Java code. You can activate and deactivate rules,
code assists, and metrics for an audit profile from the Audit Profiles preferences page.
While several profiles are predefined, you can create others by modifying an existing
profile. You can modify an audit profile by enabling or disabling rules, code assists,
and metrics, or by changing their configuration.

Certain audit profiles are used by default with some JDeveloper processes and
features, as shown in Table 11-6.

Table 11-6 Audit Profile

Profile Description

Code Assist Rules Used by the Source Editor, Issues window, Application
Overview, and File List.

Compile Rules Used at the end of a compile when Audit While Compiling is
selected in the Audit page of the Preferences dialog

Audit Rules Used by the Source Editor, Issues window, Application
Overview, and File List.

This is the initial default for the Audit command. However, this
is not permanent because the Audit dialog remembers
whatever profile was last selected.

Javadoc Rules Used by the Source Editor.

ADF Best Practice Rules Used for ADF applications.

JDeveloper provides predefined profiles, each with different combinations of the
available rules, code assists, and metrics:

• ADF Best Practice Rules

• All Metrics

• All Rules

• Audit Rules

• Code Assist Rules

• Compile Rules

• Javadoc Rules

Create an Audit Profiler

To create an audit profile:

1. From the main menu, choose Tools > Preferences.

2. Choose Audit and click Manage Profiles on the Audit page.

3. From the Profile drop-down list, choose a profile to copy.

Auditing Java Projects

Auditing and Monitoring Java Projects 11-9

As shown in Figure 11-1, the selected profile's property names and current values
display in the right panel. A description of the selected item displays in the
Explanation box. Its properties and settings display in the right pane.

Figure 11-1 Audit Profile Page

4. Select the rules, assists, and metrics to enable in the new profile.

5. Click Save As.

6. Enter a name for the new profile, and click Save.

Note:

Names are not case or space sensitive, though case and space are preserved. If
the new name differs only in case or space from an existing name, a warning
message appears to inform you of this.

The new profile name is shown in the in the Audit Profiles preferences page's
Profile box.

7. Click OK.

Sealing a Profile

By saving the audit profile with the Sealed option selected in the Audit Profile page,
you seal the current audit profile, which means that only the rules selected for that
profile are enabled the next time that specific audit profile is loaded. Any new rules
that are present since the profile was last saved are disabled (regardless of their
default state). New rules can be introduced in a number of ways, such as when new
extensions are installed when JDeveloper is updated. In the course of developing a
project, sealing the audit profile preserves the project environment, preventing new
audit issues from being introduced.

Auditing Java Projects

11-10 Developing Applications with Oracle JDeveloper

Disabling Suppression Schemes

A suppression scheme describes a scheme for suppressing issues (that is, audit
violations) discovered through a project audit. When auditing a project, you can view
suppression issues in the Audit Log window. You can enable (the default state) or
disable suppression schemes from being audited through the Audit Profile dialog.
Disabling suppression schemes can reduce auditing time and reduce output in the Log
window.

To disable a suppression scheme:

1. From the main menu, choose Tools > Preferences.

2. Choose Audit and click Manage Profiles on the Audit page.

3. Click the Suppression Scheme tab. Uncheck the top-level node to disable all the
suppression schemes of a specific category or expand the nodes to disable a specific
scheme.

Check a box to enable a suppression scheme.

4. Click OK in the dialog.

How to Delete an Audit Profile
You can delete an existing audit profile, but not a predefined profile. That any custom
profile you created with the Save As command, you can delete.

To delete an existing audit profile:

1. From the main menu, choose Tools >Preferences.

The Preferences dialog opens.

2. Choose Audit and click Manage Profiles on the Audit page.

3. From the Profile drop-down list, choose a custom profile to be deleted.

4. From the More Actions drop-down list, choose Delete.

The profile is removed from the Profile box. Note that the predefined profiles
provided by the IDE are grayed out and cannot be deleted.

5. Click OK.

How to Import or Export an Audit Profile
You can import or export audit profiles. This enables you to share profiles, for
example, or to maintain a checked in profile used by ojaudit and a nightly build.
Audit profiles are imported or exported as XML files.

To import or export an audit profile:

1. In the Tools menu, select Preferences to open the Preferences dialog.

2. Choose Audit and click Manage Profiles on the Audit page.

3. From the More Actions drop-down list, choose Import or Export, and select the
profile you want to import or export.

Auditing Java Projects

Auditing and Monitoring Java Projects 11-11

How to Run Audit to Generate an Audit Report
When you audit your Java programs, you can generate an audit report. An audit
report is a list of rule violations and over-threshold measurements. In the audit report,
you can investigate these problems, and manually or automatically correct them.

To generate an audit report:

1. In the Applications window, select one or more applications, projects, or Java
source files.

The Audit command also works for selections from other views, such as editors
and the Structure window

2. From the main menu choose Build > Audit <target>, for example, Build > Audit
helloWorld.java.

3. In the Audit <target> dialog, choose a profile to use in one of the two following
ways:

• From the Profile drop-down list choose a profile to use.

• Click Edit to create or modify a profile.

4. Click Run.

An audit report appears in the Log window, and the audit begins. If you wish to
stop the audit, click the stop icon in the log's toolbar.

How to Audit Unserializable Fields
An object is marked serializable by implementing the java.io.Serializable
interface, which signifies that the object can be flattened into bytes and subsequently
inflated in the future.

To turn off serialization on a field of an object, tag the field of the class of the object
with the Java's transient keyword. If a class is marked as serializable, but contains
unserializable fields that are not marked as transient, then the class is not serializable.
You can run an audit to detect these unserializable fields.

To set audit rules:

1. From the main menu, choose Tools > Preferences > Audit > Manage Profiles.

2. Click the Rules tab and expand the nodes, Java SE > Java > Serialization.

3. Check Non-Serializable Field in Serializable Class.

A description of the rule is shown in right panel. You can set the default fix for the
violation, the severity level of the violation, and the style of warning.

4. Click OK.

How to Audit Serializable Fields That Do Not Have serialVersionUID
There is an identifier called serialVersionUID that enables versioning. You can run
an audit that flags all classes that implement java.io.Serializable but do not
also have the serialVersionUID.

To set audit rules:

Auditing Java Projects

11-12 Developing Applications with Oracle JDeveloper

1. From the main menu, choose Tools > Preferences > Audit > Manage Profiles.

2. Click the Rules tab and expand the nodes, Java SE > Java > Serialization.

3. Check Missing Serialization UID.

A description of the rule is shown in right panel. You can set the default fix for the
violation, the severity level of the violation, and the style of warning.

4. Click OK.

Viewing an Audit Report
JDeveloper generates a report of all audit rule violations. Use the audit report to
investigate and correct rule violations and over-threshold measurements. As shown in
Figure 11-2, audit reports are displayed as tabbed panes of the Log window. In this
window, you can choose a fix for a rule violation from a drop-down menu. For an
individual rule violation, choose among the fixes defined for that violation's type.

Figure 11-2 Audit Report

Use refresh to rerun an audit using the same profile. You may wish to perform a
refresh after you have made changes and fixes to your code.

To refresh an audit report:

• Click in the Log Window toolbar, or right-click and choose Refresh.

The Export Audit Results dialog clears, and a new audit begins. If you want to stop the
audit, click in the Log's toolbar.

To inspect an audit rule violation:

1. In the audit report, select the construct you want to view.

2. Right-click and choose Go to Source, or double-click the construct.

An editor for the source file opens with the cursor positioned at the location of the
rule violation or the code element measured

3. Right-click on a violation or anomaly, and select About violation Rule to learn more
about the rule that has been violated. A dialog describing the rules displays, as
shown in Figure 11-3.

Auditing Java Projects

Auditing and Monitoring Java Projects 11-13

Figure 11-3 About Rule Dialog

You can rearrange the audit report columns into left or right positions.

To organize audit report columns:

• Drag the column headers left or right to your preferred position.

How to Organize Audit Report Rows
Audit report rows are rule violations or measurements, or groups of violations and
measurements. The report is organized as a tree. A row of the tree corresponds to
either a construct or a violation, and includes any measured values for the construct or
a theoretical violation. A construct is a method, class, file, package directory, project,
or workspace.

You can choose the constructs that are shown in the report.

To organize audit report rows:

1. Click the Group By icon in the Log window toolbar.

2. Select the constructs you want to see.

3. Click OK.

4. Click a column header to sort rows by that column.

To reverse the sort order, click again.

Using Filters with Reports
You specify filters to prune the set of Java classes whose violations are shown. You can
filter by package names, class names, or both. A filter consists of one or more patterns
separated by commas.

A pattern can contain the following special characters:

• * matches any number of characters

• ? matches any single character

Auditing Java Projects

11-14 Developing Applications with Oracle JDeveloper

• ! at the beginning of a pattern denotes an exclusion pattern

The set of classes that passes a filter is determined by considering the patterns in
order. A non-exclusion pattern adds all classes that match the pattern to the set, an
exclusion pattern removes all classes that match the pattern from the set. Table 11-7
contains the filters you can specify

Table 11-7 Filters

Name Description

Package Enter filter patterns that will apply to all but the last element of
fully qualified class names. If this field is empty it has no effect.

File Enter filter patterns that will apply only to the last element of
fully qualified class names. If this field is empty it has no effect.

Apply Click to apply the given Package and File filters to the report's
rows.

Clear Click to erase the Package and File filters, and to restore the
report's rows.

How to Filter Audit Report Rows

To filter audit report rows:

1. In the Package field of the audit log window, enter a sequence of patterns that will
apply to all but the last element of fully-qualified class names. You can leave this
box empty if you specify a File filter.

2. In the File field, enter a sequence of patterns that will apply only to the last element
of fully-qualified class names. You can leave this box empty if you specify a
Package filter.

3. Click Apply.

The report redisplays to show only the selected rows.

4. Click Clear to delete text from the Package and File boxes.

How to Save an Audit Report
You can save an audit report as an XML file or as a formatted HTML or text file.
Formats are defined by XSL stylesheet files in the directory, jdev_install/jdev/system/
audit/stylesheets (this directory is not created until audit is run). To create a
custom format, adapt a copy of one of the predefined stylesheet files, and add it to the
directory.

To save an audit report:

• Click in the Log Window toolbar, or right-click and choose Export.

The Export Audit Results dialog display. Choose a title, format, and destination for
the report, and click OK.

How to Fix an Audit Rule Violation
You can fix an audit rule violation manually by editing the source, or for some rules,
by selecting an automated fix. For an individual rule violation, choose among the fixes

Auditing Java Projects

Auditing and Monitoring Java Projects 11-15

defined for that violation's type. For a group construct, the only choice is Apply
Default Fixes, which applies the default fix defined for its type, if any.

To fix an audit rule violation manually:

1. In the audit report, select the rule violation (a leaf node in the Constructs tree).

2. Right-click and choose Go to Source.

An editor for the source file opens with the cursor positioned at the location of the
rule violation.

3. Edit the code to correct the cause of the violation.

To apply an automated fix to an audit rule violation:

1. In the audit report, select the rule violation (a leaf node in the Constructs tree).

2. Right-click, and choose an Apply <Rule> Fix menu item, if any.

or

Click in the Log window toolbar, and choose one of Apply <Rule> Fix menu items.

How to Fix a Construct's Audit Rule Violations
You can apply automated fixes to all the rule violations in a construct. Default fixes
will be applied to each rule violation in the construct that has a Default Fix
property with a value other than None.

To fix a construct's audit rule violations:

1. In the audit report, select the construct (a container node in the Constructs tree).

2. You can apply default fixes in one of the two following ways:

• Right-click, and choose Apply Default Fixes.

• Click in the Log window toolbar, and choose Apply Default Values.

How to Hide Audit Rule Violations
You can suppress the display of all the rule violations of a given type in the audit
report. This may make the report easier to read, since it hides all violations of a
particular rule. It is not possible to suppress individual rule violations.

To hide audit rule violations:

1. In the audit report, select a rule violation (a leaf node in the Constructs tree).

2. Right-click, and choose Hide rule Issues.

All of the violations of the audit rule are removed from the audit report. The
removed rules are not tallied in their parent construct's summaries. Empty
constructs are removed if Show Over Threshold Only is enabled. If not, just the
violations are removed.

To restore hidden audit rule violations:

1. In the audit report, right-click to open the context menu.

2. Choose Show Hidden Issues.

Auditing Java Projects

11-16 Developing Applications with Oracle JDeveloper

All of the previously hidden rule violations are restored to the audit report.

How to Hide Audit Report Measurements
Metrics reports display measurements for the constructs in the analyzed code. You can
focus the report on over-threshold measurements by hiding the others. The threshold
is a settable property of metrics.

To show only over-threshold measurements:

• In the Log window toolbar, click the over Show Anomalies Only icon. Click again
to show all measurements.

Removed measurements are not tallied in their parent construct's summaries. Empty
constructs are removed if Show Over Threshold Only is enabled. If not, just the
violations are removed.

Monitoring HTTP Using the HTTP Analyzer
The HTTP Analyzer allows you to monitor HTTP traffic, for example, to:

• Monitor request/response traffic between a web service client and the service.

• Monitor HTTP requests between Java applications and web resources.

The HTTP Analyzer acts as a proxy between code in JDeveloper and the HTTP
resource that the code is communicating with, and helps you to debug your
application in terms of the HTTP traffic sent and received.

When you run the HTTP Analyzer, there are a number of windows that provide
information for you.

How to Use the Log Window
When you open the HTTP Analyzer from the Tools menu, the HTTP Analyzer Log
window opens, illustrated in Figure 11-4. By default its position is at the bottom center
of JDeveloper, alongside the other log windows.

Figure 11-4 HTTP Analyzer Log Window

When HTTP Analyzer runs, it outputs request/response messages to the HTTP
Analyzer log window. You can group and reorder the messages:

• To reorder the messages, select the Sequence tab, then sort using the column
headers (click on the header to sort, double-click to secondary sort).

• To group messages, click the Correlation tab.

Monitoring HTTP Using the HTTP Analyzer

Auditing and Monitoring Java Projects 11-17

• To change the order of columns, grab the column header and drag it to its new
position.

Table 11-8 HTTP Analyzer Log Window Toolbar Icons

Icon Name Function

Analyzer
Preferences

Click to open the HTTP Analyzer Preferences dialog where you
can specify a new listener port, or change the default proxy. An
alternative way to open this dialog is to choose Tools >
Preferences, and then navigate to the HTTP Analyzer page.

Create New
Request

Click to open the HTTP Analyzer Test window, where you enter
payload details, and edit and resend messages.

Start HTTP
Analyzer

Click to start the HTTP Analyzer running. The monitor runs in the
background, and only stops when you click Stop or exit
JDeveloper. If you have more than one listener defined clicking
this button starts them all. To start just one listener, click the down
arrow and select the listener to start.

Stop HTTP
Analyzer

Click to stop the HTTP Analyzer running. If you have more than
one listener running, clicking this button stops them all. To stop
just one listener click the down arrow and select the listener to
stop.

Send
Request

Click to resend a request when you have changed the content of a
request. The changed request is sent and you can see any changes
in the response that is returned.

Open WS-I
log file

Click to open the Select WS-I Log File to Upload dialog, where you
can navigate to an existing WS-I log file. For more information, see
Monitoring and Analyzing Web Services.

Save Packet
Data

Click to save the contents of the HTTP Analyzer Log Window to a
file.

WS-I
Analyze

Click to invoke the WS-I Analyze wizard which allows you to
examine a web service at packet level. For more information, see
Monitoring and Analyzing Web Services.

Select All Click to select all the entries in the HTTP Analyzer Log Window.

Deselect
All

Click to deselect all the entries in the HTTP Analyzer.

Clear
Selected
History
(Delete)

Click to clear the entries in the HTTP Analyzer.

How to Use the Test Window
An empty HTTP Analyzer test window appears when you click the Create New
Request button in the HTTP Analyzer Log window. A test window showing details of
the request/response opens when you choose Test Web Service from the context
menu of a web service container in the Applications window, or when you double-
click a line in the HTTP Analyzer Log Window, illustrated in Figure 11-5. By default,

Monitoring HTTP Using the HTTP Analyzer

11-18 Developing Applications with Oracle JDeveloper

its position is in the center of JDeveloper, in the same place that the source editor
appears.

Figure 11-5 HTTP Analyzer Test Window

The test window allows you examine the headers and parameters of a message. You
can test the service by entering a parameter that is appropriate and clicking Send
Request.

The tabs along the bottom of the test window allow you choose how you see the
content of the message. You can choose to see the message as:

• The SOAP structure, illustrated in Figure 11-5.

• The HTTP code, for example:

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="http://annotation/">
 <env:Header/>
 <env:Body>
 <ns1:getDeptInfo>
 <arg0/>
 </ns1:getDeptInfo>
 </env:Body>
</env:Envelope>

• The hex content of the message, for example:

[000..015] 3C 3F 78 6D 6C 20 ... 3D 22 31 <?xml version="1
[016..031] 2E 30 22 20 65 6E ... 22 55 54 .0" encoding="UT
[032..047] 46 2D 38 22 3F 3E ... 6E 76 65 F-8"?> <env:Enve
[048..063] 6C 6F 70 65 20 78 ... 76 3D 22 lope xmlns:env="

• The raw message, for example:

POST http://localhost:7101/WebService-Annotation-context-root/MyCompanyPort HTTP/
1.1

Monitoring HTTP Using the HTTP Analyzer

Auditing and Monitoring Java Projects 11-19

SOAPAction: ""
Content-Type: text/xml; charset=UTF-8
Host: localhost:7101
Content-Length: 277

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="http://annotation/">
 <env:Header/>
 <env:Body>
 <ns1:getDeptInfo>
 <arg0/>
 </ns1:getDeptInfo>
 </env:Body>
</env:Envelope>

How to Use the Instances Window
When you open the HTTP Analyzer from the Tools menu, the HTTP Analyzer
Instances window appears. By default, its position is at the bottom center of
JDeveloper, as a tab alongside the HTTP Analyzer log window. This window provides
information about the instances of the HTTP Analyzer that are currently running, or
that were running and have been stopped. The instance is identified by the host and
port, and any rules are identified. You can start and stop the instance from this
window.

Figure 11-6 HTTP Analyzer Instances Window

You create a new instance in the HTTP Analyzer page of the Preferences dialog, which

opens when you click .

Table 11-9 HTTP Analyzer Instances Window Toolbar Icons

Icon Name Function

Analyzer
Preferences

Click to open the HTTP Analyzer page of the Preferences dialog
where you can specify a new listener port, or change the default
proxy.

Create New
Request

Click to open a new instance of the HTTP Analyzer Test window,
where you enter payload details, and edit and resend messages.

Start HTTP
Analyzer

Click to start the HTTP Analyzer running. The monitor runs in the
background, and only stops when you click Stop or exit
JDeveloper. If you have more than one listener defined clicking
this button starts them all. To start just one listener, click the down
arrow and select the listener to start.

Monitoring HTTP Using the HTTP Analyzer

11-20 Developing Applications with Oracle JDeveloper

Table 11-9 (Cont.) HTTP Analyzer Instances Window Toolbar Icons

Icon Name Function

Stop HTTP
Analyzer

Click to stop the HTTP Analyzer running. If you have more than
one listener running, clicking this button stops them all. To stop
just one listener click the down arrow and select the listener to
stop.

What Happens When You Run the HTTP Analyzer
When you start the HTTP Analyzer, all Java processes and application server activity
with JDeveloper will send their traffic via the HTTP Analyzer, using the proxy settings
in the HTTP Analyzer page of the Preferences dialog, which opens when you click the
Start HTTP Analyzer button in the Instance or Log window. By default, the HTTP
Analyzer uses a single proxy on an analyzer instance (the default is 8099), but you
can add additional proxies of your own if you need to.

Each analyzer instance can have a set of rules to determine behavior, for example, to
redirect requests to a different host/URL, or to emulate a web service.

How to Specify HTTP Analyzer Settings
By default, the HTTP Analyzer uses a single proxy on an analyzer instance (the default
is 8099), but you can add additional proxies of your own if you need to.

To set HTTP Analyzer preferences:

1. Open the HTTP Analyzer preferences dialog by doing one of the following:

• Click the Start HTTP Analyzer button in the HTTP Analyzer Instances window
or Log window.

• Choose Tools > Preferences to open the Preferences dialog, and navigating to
the HTTP Analyzer page.

For more information at any time, press F1 or click Help from the HTTP Analyzer
preferences dialog.

2. Make the changes you want to the HTTP Analyzer instance. For example, to use a
different host and port number, open the Proxy Settings dialog by clicking
Configure Proxy.

How to Use Multiple Instances
You can have more than one instance of HTTP Analyzer running. Each will use a
different host and port combination, and you can see a summary of them in the HTTP
Analyzer Instances window.

To add an additional HTTP Analyzer Instance:

1. Open the HTTP Analyzer preferences dialog by doing one of the following:

• Click the Analyzer Preferences button in the HTTP Analyzer Instances window
or Log window.

• Choose Tools > Preferences to open the Preferences dialog, and navigating to
the HTTP Analyzer page.

Monitoring HTTP Using the HTTP Analyzer

Auditing and Monitoring Java Projects 11-21

For more information at any time, press F1 or click Help from the HTTP Analyzer
preferences dialog.

2. To create a new HTTP Analyzer instance, that is a new listener, click Add. The new
listener is listed and selected by default for you to change any of the values.

How to Configure External Web Browsers
You can use external web browsers to route messages through the HTTP Analyzer so
that you can see the traffic between the web browser and client. This section describes
how you can use a profile in Firefox so that when you start the HTTP Analyzer and
run an HTML or JSP or JSF page from within JDeveloper, a new instance of Firefox
using the Debugger profile is started.

Note:

The steps below use the command firefox, which is correct for Linux. If you
are using Windows, use firefox.exe.

To configure a Firefox profile for the HTTP Analyzer:

1. First you create a new Firefox profile. By default, starting Firefox from the
command line opens a window on your currently open instance of Firefox, so you
need to use -no-remote to create a separately configured instance Run the following
from the command line

firefox -no-remote -CreateProfile Debugging

2. Start Firefox using this profile

firefox -no-remote -P Debugging

3. Next you configure JDeveloper to start this version of Firefox. From the main
menu, choose Tools > Preferences.

4. In the Preferences dialog, select the Web Browser and Proxy node. For more
information, press F1 or click Help from within the dialog page.

5. In the Browser Command Line, enter or browse to the correct location, and enter
firefox -no-remote -P Debugging. JDeveloper underlines this in red, and
when you close the dialog you will see a Command Line Validation Error warning
which you can safely ignore.

6. Click OK. When you start the HTTP Analyzer and run an HTML or JSP or JSF page
from within JDeveloper, a new instance of Firefox using the Debugger profile is
started.

Click OK. When you start the HTTP Analyzer and run an HTML or JSP or JSF page
from within JDeveloper, a new instance of Firefox using the Debugger profile is
started.

Using SSL with the HTTP Analyzer
You can use the HTTP Analyzer with secured services or applications, for example,
web services secured by policies. JDeveloper comes with a set of preconfigured
credentials, HTTPS Credential, which is always present. You cannot delete or edit
HTTPS Credential, but you can copy it to create a new credential of the same type.

Monitoring HTTP Using the HTTP Analyzer

11-22 Developing Applications with Oracle JDeveloper

When you run the service or application the analyzer uses the supplied credentials for
perform the appropriate action.

The HTTP Analyzer can use the following types of credential:

HTTPS Keystore
HTTPS encrypts an HTTP message prior to transmission and decrypts it upon arrival.
It uses a public key certificate signed by a trusted certificate authority. When the
integrated application server is first started, it generates a DemoIdentity that is
unique to your machine, and the key in it is used to set up the HTTPS channel.

The client keystore identity is used for configuring HTTPS. The server keystore
identity is used when the HTTP Analyzer is acting as a server; it is not used when
connecting to a remote server.

For more information about keystores and keystore providers, see Oracle Fusion
Middleware Understanding Security for Oracle WebLogic Server. When the default
credential HTTPS Keystore is selected, you need to specify the keystores that
JDeveloper and the HTTP Analyzer should use when handling HTTPS traffic. Two
keystores are required to run the HTTP Analyzer:

• The client keystore, containing the certificates of all the hosts to be trusted by
JDeveloper and the Analyzer (client trust) when it makes onward connections.

• The server keystore, containing a key that the Analyzer can use to authenticate
itself to calling clients (server keystore).

The client keystore is only required when mutual authentication is required.

You can create extra HTTPS keystores in addition to the default one provided by
JDeveloper.

Username Token
Username token is a way of carrying basic authentication information. You supply a
username/password to provide authentication.

X509 Certificates
X509 is a PKI standard for single sign-on, where certificates are used to provide
identity, and to sign and encrypt messages. You enter details of an X509 certificate.
When you supply a valid keystore and the password for the keystore, the client key
aliases are populated.

If JDeveloper has any problems finding and opening the keystore, error messages will
be displayed.

STS Configuration
A Secure Token Service (STS) is a web service that issues and manages security tokens
over HTTPS. You enter the Security Token Server provider URL and optionally a
policy URL.

Note:
The client truststore must contain the server public key, otherwise when the
HTTP Analyzer requests the SAML token it will fail.

Monitoring HTTP Using the HTTP Analyzer

Auditing and Monitoring Java Projects 11-23

OAuth Details
OAuth is an open authentication protocol that allows users to approve application to
act on their behalf without sharing their password. You can test resources protected
by OAuth protocol security using a valid OAuth credential, for example, to test
resources that use Twitter feeds.

Note:
To access resources owned by users with a service provider you must first
register with the service provider.

Import from JPS Config
Use to test JRF web services. jps-config.xml contains the security information that
the HTTP Analyzer needs to access the service.

You can import of data from jps-config.xml into a credential record. You provide
the location of jps-config.xml and enter the name of a CSF key and JDeveloper
creates a credential record with the necessary data read from jps-config.xml and
from the underlying wallet file.

Data imported from jps-config.xml is populated in the X509 Certificates tab and
in the Username Token tab.

Once saved, the credential record can be used repeatedly in the HTTP Analyzer and
during web service proxy generation as the source for the keystore, keys and other
required data.

How to Use SSL with the HTTP Analyzer

JDeveloper comes with a set of HTTPS Keystore credentials called HTTPS
Credential. You can:

• Configure the client keystore for HTTPS Credential if mutual authentication is
required.

• Create a new credential of one of the supported types.

• Create a new credential based on an existing credential.

• Delete a credential. Note that you cannot delete HTTPS Credential.

To configure credentials:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Credentials node. For more information, press
F1 or click Help from within the dialog page.

3. Make the appropriate changes:

• Add client information for HTTPS Credential by choosing the HTTPS
Keystore tab.

• Add a new credential by clicking and selecting the appropriate tab.

• Create a new credential based on an existing credential by clicking . A new
credential is created of the same type and with the same values with a default
name of Credential_n incremented by 1.

Monitoring HTTP Using the HTTP Analyzer

11-24 Developing Applications with Oracle JDeveloper

• Delete a credential by selecting it from the list and clicking . Note that you
cannot delete HTTPS Credential.

How to Run the HTTP Analyzer
The HTTP Analyzer allows you to view the content of request and response HTTP
messages.

To monitor HTTP packets:

1. Open the HTTP Analyzer by choosing Tools > HTTP Analyzer. The HTTP
Analyzer docked window opens.

2. Start the HTTP Analyzer by clicking the Start HTTP Analyzer button. By default,
this starts the listener on your localhost's hostname on port 8098. You can add new
listeners, and use different hosts and ports, configure HTTPS, or set up rules to
determine how the analyzer works.

3. Run the class, application, web service and so on that you want to analyze in the
usual way.

Each request and response packet is listed in the HTTP Analyzer Log window, and
detailed in the HTTP Analyzer Test Window.

If you are using the HTTP Analyzer to examine how a web service developed in
JDeveloper works, the HTTP Analyzer starts automatically when you choose Test Web
Service from the context menu of the web service in the Applications window.

How to Debug Web Pages Using the HTTP Analyzer
You can use the HTTP Analyzer when you are debugging Web pages, such as HTML,
JSP, or JSF pages. This allows you to directly examine the traffic that is sent back and
forth to the browse.

To debug Web pages using the HTTP Analyzer:

1. Configure a browser to route messages through the HTTP Analyzer so that you can
see the traffic between the web browser and client.

2. Start the HTTP Analyzer running.

3. Run the class, application, or Web page that you want to analyze in the usual way.

Each request and response packet is listed in the HTTP Analyzer Log window, and
detailed in the HTTP Analyzer Test Window.

How to Edit and Resend HTTP Requests
You can edit the contents of a HTTP request and resend it. You can then examine the
response to see whether the changes you expect have occurred.

To send a request:

1. In the Request pane of the HTTP Analyzer Test window, enter parameter values.

2. Click the Send Request button.

3. The processed value is returned in the Response pane.

To edit and resend a request:

Monitoring HTTP Using the HTTP Analyzer

Auditing and Monitoring Java Projects 11-25

1. In the Request pane of the HTTP Analyzer Test window, click Copy Request. This
opens a new test window, where you can enter a new parameter to send.

Alternatively, you can open a new test window by double-clicking a line in the
HTTP Analyzer Log window.

How to Use Rules to Determine Behavior
You can set rules so that the HTTP Analyzer runs using behavior determined by those
rules. You can set more than one rule in an HTTP Analyzer instance. If a service's URL
matches a rule, the rule is applied. If not, the next rule in the list is checked. If the
service does not match any of the rules the client returns an error. For this reason, you
should always use a Pass Through rule with a blank filter (which just passes the
request through) as the last rule in a list to catch any messages not caught by the
preceding rules.

The types of rule available are:

• Pass Through Rule

• Forward Rule

• URL Substitution Rule

• Tape Rule

Using the Pass Through Rule

The Pass Through simply passes a request on to the service if the URL filter matches.
When you first open the Rule Settings dialog, two Pass Through Rules are defined:

• The first has a URL filter of http://localhost:631 to ignore print service
requests.

• The second has a blank URL filter, and it just which just passes the request to the
original service. This rule should normally be moved to end of the list if new rules
are added.

Using the Forward Rule

The Forward rule is used to intercept all URLs matched by the filter and it forwards
the request on to a single URL.

Using the URL Substitution Rule

The URL Substitution rule allows you to re-host services by replacing parts of URL
ranges. For example, you can replace the machine name when moving between the
integrated application server and Oracle WebLogic Server.

Using the Tape Rule

The tape rule allows you to run the HTTP Analyzer in simulator mode, where a
standard WS-I log file is the input to the rule. When you set up a tape rule, there are
powerful options that you can use:

• Loop Tape, which allows you to run the tape again and again.

• Skip to matching URL and method, which only returns if it finds a matching URL
and HTTP request method. This means that you can have a WSDL and an endpoint
request in the same tape rule.

Monitoring HTTP Using the HTTP Analyzer

11-26 Developing Applications with Oracle JDeveloper

• Correct header date and Correct Content Size, which allow you change the header
date and content size of the message to current values so that the request does not
fail.

An example of using a tape rule would be to test a web service client developed to run
against an external web service.

To test a web service client developed to run against an external web service:

1. Create the client to the external web service.

2. Run the client against the web service with the HTTP Analyzer running, and save
the results as a WS-I log file.

You can edit the WS-I file to change the values returned to the client.

3. In the HTTP Analyzer page of the Preferences dialog, create a tape rule.

Ensure that it is above the blank Pass Through rule in the list of rules.

4. In the Rule Settings dialog, use the path of the WS-I file as the Tape path in the Rule
Settings dialog.

When you rerun the client, it runs against the entries in the WS-I file instead of
against the external web service.

There are other options that allow you to:

• Correct the time and size of the entries in the WS-I log file so the message
returned to the client is correct.

• Loop the tape so that it runs more than once.

• Skip to a matching URL and HTTP request method, so that you can have a
WSDL and an endpoint request in the same tape rule.

Note:

Tape Rules will not work with SOAP messages that use credentials or headers
with expiry dates in them.

How to Set Rules
You can set rules so that the HTTP Analyzer runs using behavior determined by those
rules. Each analyzer instance can have a set of rules to determine behavior, for
example, to redirect requests to a different host/URL, or to emulate a web service.

To set rules for an HTTP Analyzer instance:

1. Open the HTTP Analyzer by choosing Tools > HTTP Analyzer. The HTTP
Analyzer docked window opens.

Alternatively, the HTT Analyzer automatically opens when you choose Test Web
Service from the context menu of a web service container in the Applications
window.

2. Click the Analyzer Preferences button to open the HTTP Analyzer preferences
dialog, in which you can specify a new listener port, or change the default proxy.

Monitoring HTTP Using the HTTP Analyzer

Auditing and Monitoring Java Projects 11-27

Alternatively, choose Tools > Preferences, and then navigate to the HTTP
Analyzer page.

3. Click Configure Rules to open the Rule Settings dialog in which you define rules
to determine the actions the HTTP Analyzer should take. For more help at any
time, press F1 or click Help in the Rule Settings dialog.

4. In the Rule Settings dialog, enter the URL of the reference service you want to test
against as the Reference URL. This will help you when you start creating rules, as
you will be able to see if and how the rule will be applied.

5. Define one or more rules for the service to run the client against. To add a new rule,
click the down arrow next to Add, and choose the type of rule from the list. The
fields in the dialog depend on the type of rule that is currently selected.

6. The rules are applied in order from top to bottom. Reorder them using the up and
down reorder buttons. It is important that the last rule is a blank Pass Through
rule.

Using the HTTP Analyzer with Web Services
This section contains information about using the HTTP Analyzer with web services
developed in JDeveloper. In general, you can use HTTP Analyzer to examine the
content of web services in the same way as using it to examine any packets across
HTTP.

Note:

You cannot use the HTTP Analyzer to test JAX-RPC web services that have
WebLogic Server 9.x policies attached. WebLogic 9.x policies have been
deprecated in JAX-RPC.

Testing Web Services with the HTTP Analyzer

JDeveloper allows you to test web services using the HTTP Analyzer to examine the
network traffic of a proxy connecting to a web service developed in JDeveloper.

To test a web service:

1. Run the web service on the integrated application server and open the HTTP
Analyzer by right-clicking the web service node in the Applications window, and
choosing Test Web Service. JDeveloper automatically:

• Starts the integrated application server, if it is not already running.

• Compiles and binds the web service application to the integrated application
server, which you can see in the Application Servers window.

• Displays a Log window for the integrated application server (if there is not one
already open).

2. Enter a parameter to test the service in the Request pane of the HTTP Analyzer Test
window and click Send Request.

The response from the deployed web service is displayed in the Response pane of
the HTTP Analyzer Test window.

Monitoring HTTP Using the HTTP Analyzer

11-28 Developing Applications with Oracle JDeveloper

You can examine the contents of the HTTP headers of the request and response
packets to see the SOAP structure, the HTTP content, the Hex content or the raw
message contents by choosing the appropriate tab at the bottom of the HTTP Analyzer
Test window.

Using the HTTP Analyzer with RESTful Web Services

You can use the HTTP Analyzer to interact with RESTful web services.
Representational State Transfer (REST) describes any simple interface that transmits
data over a standardized interface (such as HTTP) without an additional messaging
layer, such as SOAP. REST provides a set of design rules for creating stateless services
that are viewed as resources, or sources of specific information, and can be identified
by their unique URIs. A client accesses the resource using the URI, a standardized
fixed set of methods, and a representation of the resource is returned. The client is said
to transfer state with each new resource representation.

When using the HTTP protocol to access RESTful resources, the resource identifier is
the URL of the resource and the standard operation to be performed on that resource
is one of the HTTP methods: GET, PUT, DELETE, POST, or HEAD.

The HTTP Analyzer has support for Hypermedia as the Engine of Application State
(HATEOAS), and so you can examine and test RESTful web services using the HTTP
Analyzer.

Jersey and WADL
Java API for RESTful Web Services (JAX-RS) provides support for creating Web
services according to the REST architectural style. JAX-RS uses annotations to
simplify the development of RESTful Web services. By adding annotations to your
Web service, you can define the resources and the actions that can be performed on
those resources. WebLogic Server supports Jersey 2.x (JAX-RS 2.0 RI). Information
about Jersey 2.x is available at: https://jersey.java.net/download.html.

JAX-RS 2.0 API Specification (Rev a) is available at: https://jax-rs-
spec.java.net/nonav/2.0-rev-a/apidocs/index.html.

A Web Application Description Language (WADL) is an XML file created by Jersey
that provides a description of the resources in the servlet. For more information about
WADL, see https://wadl.dev.java.net/.

Testing a RESTful Service
An outline of testing a RESTful service using WADL is given here, with more detailed
steps in the procedure below. Not all RESTful services work this way. The HTTP
Analyzer reads a WADL created by Jersey for the RESTful web service, and you
examine the WADL in the HTTP Analyzer Test window. From the WADL, you can
open an instance of the HTTP Analyzer Test window directly from a method, and test
the method by entering a parameter and posting it to the service. The HTTP Analyzer
redirects the response to a new URL which it displays, and when you click on it
another instance of the HTTP Analyzer Test window opens with the response. Once
you have finished, you use the WADL to locate the new resource that the HTTP
Analyzer created to test the service and delete it.

The following example provides an example of a WADL document which uses POST,
GET and DELETE.

 <?xml version = '1.0' encoding = 'UTF-8' standalone = 'yes'?>
 <application xmlns="http://research.sun.com/wadl/2006/10">
 <doc xmlns:jersey="http://jersey.dev.java.net/" jersey:generatedBy="Jersey:
1.1.0-ea 04/30/2009 04:46 PM"/>

Monitoring HTTP Using the HTTP Analyzer

Auditing and Monitoring Java Projects 11-29

https://jersey.java.net/download.html
https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html
https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html
https://wadl.dev.java.net/

 <resources base="http://localhost:7101/RESTDemo-ContainerProject-context-root/
jersey/">
 <resource path="buckets">
 <method name="POST" id="createNewBucket">
 <request>
 <representation mediaType="*/*"/>
 </request>
 <response>
 <representation mediaType="*/*"/>
 </response>
 </method>
 <method name="GET" id="getBuckets">
 <response>
 <representation mediaType="application/buckets+xml"/>
 </response>
 </method>
 <resource path="/{id}">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:int"
style="template" name="id"/>
 <method name="DELETE" id="delete">
 <response>
 <representation mediaType="*/*"/>
 </response>
 </method>
 <method name="GET" id="getBucket">
 <response>
 <representation mediaType="*/*"/>
 </response>
 </method>
 </resource>
 </resource>
 </resources>
 </application>

To test a REST web service

Testing a REST web service requires that you:

• examine the RESTful service

• test the service

• work with the resource

To examine the RESTful service:

1. Run the REST web service on the integrated application server.

2. Right-click the web service node in the Applications window, and choose Test
Web Service. JDeveloper automatically:

• Starts the integrated application server, if it is not already running.

• Compiles and binds the web service application to the integrated application
server instance, which is the Integrated WebLogic Server node in the
Application Servers window.

• Displays a Log window for the integrated application server (if there is not one
already open).

Monitoring HTTP Using the HTTP Analyzer

11-30 Developing Applications with Oracle JDeveloper

3. Click the HTTP Content tab in the HTTP Analyzer Test window. RESTful web
services do not use SOAP, so you will not use the SOAP Structure tab.

4. In the Log window for the integrated application server, click the link next to
Target Application WADL. A second instance of the test window opens. Notice
that the URL displays the WADL, and the Method is GET.

5. Click Send Request. The GET method is used to return the content of the WADL
so that it is displayed in the Response pane.

If necessary, use the left arrow to maximize the width of the pane to see the code
more clearly.

6. To view the WADL file at anytime, click Open WADL to the right of the RESTful
web service URL. A read-only version of the WADL file opens in the source
editor, enabling you to view the a summary of the RESTful web service resources
and methods, or the WADL source. For more information, see Accessing the
RESTful Web Service WADL.

To test the RESTful service:

1. In the WADL displayed in the Response pane, press Ctrl+mouse-click to use the
Go to declaration feature to reveal parts of the HTTP message that can be
accessed. Click on a POST method that is now revealed as a link. This opens a new
instance of the test window.

2. Enter a parameter in the Request pane, and click Send Request. The POST
method is used, and the Request pane displays a 201 Created HTTP status
code along with the location of the URL that contains the response.

3. Click on the URL in the Response pane. Another instance of the test window
opens. Notice that the URL displays the redirected URL, and the Method is GET.
Click Send Request, and the response to the parameter you entered is displayed
in the Request pane.

Note:

When you click on the WADL, the correct content-type and accept headers
will be generated.

To work with the resource:

1. Select the test window instance for the WADL, and navigate to the GET method.
Press Ctrl+mouse-click to open a new instance of the test window. Notice that the
URL displays the redirected URL, and the Method is GET.

2. You can update the resource by choosing PUT from the Method list, and click
Send Request.

3. In order to delete this resource, choose DELETE from the Method list, and click
Send Request.

Using the HTTP Analyzer with WebSockets
The HTTP Analyzer will pass unsecured WebSockets requests via a proxy.

Monitoring HTTP Using the HTTP Analyzer

Auditing and Monitoring Java Projects 11-31

The content of the request response stream will be available in the HTTP Analyzer
after you close and reopen the message. The WebSockets messages are those with a
response code of 101.

Using the HTTP Analyze with Fast Infoset
The HTTP Analyzer works with Fast Info set, but it will default to sending soap/xml
instead unless you override the Content-Type in the HTTP headers.

• SOAP 1.1 Change the Content-Type to application/fastinfoset.

• SOAP 1.2 Include the action name, for example

application/soap+fastinfoset;action="http://project1/HelloWorldSOAP12/
helloRequest

Reference: Troubleshooting the HTTP Analyzer
This section contains information to help resolve problems that you may have when
running the HTTP Analyzer.

Running the HTTP Analyzer While Another Application is Running

If you have an application waiting for a response, do not start or stop the HTTP
Analyzer. Terminate the application before starting or stopping the HTTP Analyzer.

Changing Proxy Settings

When you use the HTTP Analyzer, you may need to change the proxy settings in
JDeveloper. For example:

• If you are testing an external service and your machine is behind a firewall, ensure
that the JDeveloper is using the HTTP proxy server.

• If you are testing a service in the integrated application server, for example when
you choose Test Web Service from the context menu of a web service in the
Applications window, ensure that JDeveloper is not using the HTTP proxy server.

If you run the HTTP Analyzer, and see the message

500 Server Error
The following error occurred: [code=CANT_CONNECT_LOOPBACK] Cannot connect due to
potential loopback problems

you probably need to add localhost|127.0.0.1 to the proxy exclusion list.

To set the HTTP proxy server and edit the exception list:

1. Choose Tools > Preferences, and select Web Browser and Proxy.

2. Ensure that Use HTTP Proxy Server is selected or deselected as appropriate.

3. Add any appropriate values to the Exceptions list, using | as the separator.

In order for Java to use localhost as the proxy ~localhost must be in the
Exceptions list, even if it is the only entry.

Monitoring HTTP Using the HTTP Analyzer

11-32 Developing Applications with Oracle JDeveloper

12
Running and Debugging Java Projects

This chapter describes how to use the tools and features provided by JDeveloper to
run and debug Java programs. Debugging is the process of locating and fixing errors
in your programs. The JDeveloper integrated debugger enables you to debug Java
applications, applets, servlets, JavaServer Pages (JSPs), and Enterprise JavaBeans
(EJBs). You can debug a single object or several of them on the same or different
machine, because JDeveloper supports distributed debugging.

JDeveloper provides several debugging windows (for example, Breakpoint, Heap, and
Stack) that enable you to identify problem areas in your code. In addition, the various
JDeveloper debugger and runner icons available from areas in the JDeveloper user
interface are described.

This chapter includes the following sections:

• About Running and Debugging Java Programs

• Understanding the Processes Window

• Configuring a Project for Running

• How to Run a Project or File

• Debugging Java Programs

• Using the Debugger Windows

• Managing Breakpoints

• Examining Program State in Debugger Windows

• Debugging Remote Java Programs

About Running and Debugging Java Programs
JDeveloper offers several techniques to monitor and control the way Java programs
run. When running Java programs, JDeveloper keeps track of processes that are run
and debugged, or profiled. In addition, JDeveloper offers both local and remote
debugging of Java, JSP, and servlet source files.

JDeveloper supports two types of debugging: local and remote. A local debugging
session is started by setting breakpoints in source files, and then starting the debugger.
When debugging an application such as a servlet in JDeveloper, you have complete
control over the execution flow and can view and modify values of variables. You can
also investigate application performance by monitoring class instance counts and
memory usage. JDeveloper will follow calls from your application into other source
files, or generate stub classes for source files that are not available.

Running and Debugging Java Projects 12-1

Remote debugging requires two JDeveloper processes: a debugger and a debuggee
which may reside on a different platform. Once the debuggee process is launched and
the debugger process is attached to it, remote debugging is similar to local debugging.

Understanding the Processes Window
The Processes window keeps track of processes that are run, debugged, or profiled.
When two or more such processes are active at the same time, the Processes window is
automatically displayed. When a process has completed, it is automatically removed
from the Processes window.

• To open the Processes window, choose Window > Processes from the main menu.

• To terminate a process within the Processes window, right-click a process in the
Processes window and choose Terminate from the context menu.

• To view the Run Log, right-click a process in the Processes window and choose
View Log from the context menu.

Configuring a Project for Running
Settings that control the way programs are run - such as the target, launch options,
and the behavior of the debugger, logger, and profiler - are collected in run
configurations.

A project may have several run configurations, each set up for a specific facet of the
project or phase of the development process. A run configuration can be bound to the
project and be available to all who work on the project, or it can be custom
configuration, for your use only.

Note:

Java programs that are run from JDeveloper, for example the Oracle ADF
Model Tester, do not inherit the JDeveloper IDE Java options. Therefore in
most cases you should set the run/debug Java options you want to use in the
run configuration.

How to Choose a Run Configuration
A default run configuration is created for each new project. You can select it or any
other configurations you have created to run a selected project.

To choose a run configuration:

1. From the main menu choose Application > Project Properties.

2. Select Run/Debug.

Note:

If you have not previously accessed the Run/Debug/Profile page, a button
labelled Launch displays. Click the button to access the Run/Debug/Profile
page.

3. In the Run Configurations list, choose a run configuration.

Understanding the Processes Window

12-2 Developing Applications with Oracle JDeveloper

Note:

The last edited run configuration is the active run configuration.

How to Create a Run Configuration
You create a new run configuration by copying an existing one, for example, Default.
Then you modify the settings for the new configuration

To create a run configuration:

1. Select a run configuration as described in How to Choose a Run Configuration.

2. Click New.

3. In the Name box, enter a name for the new run configuration.

4. In the Copy Settings From dropdown box, choose an existing run configuration to
copy from.

5. To create a new run configuration having the same settings as the one it was copied
from, click OK.

6. To create a new run configuration having different settings, choose the new
settings and click OK

How to Run a Project or File
After compiling your project or file, you can run it. For more information about
building a project or file, see Building Java Projects The log window displays any
warning or error messages that may occur during the run.

To run a project or file:

1. In the Applications window, select the project or file you want to run.

2. Run an application in any of these ways:

• For a project only, from the main menu choose Run > Run > <target>.

• Right click and from the context menu, select Run.

• Click the Run icon on the toolbar.

• Press the F11 key.

The main method of your Java application starts.

How to Run a Project from the Command Line
In order to run a project from the operating system command line:

• The project must be a standalone executable.

• You must select the class file containing the application main() method.

To launch an application, enter the following:

java -cp <jdev_install>\jdeveloper\jdev\mywork\Workspace1\Project1\classes
package1.Application1

How to Run a Project or File

Running and Debugging Java Projects 12-3

To launch the executable JAR file from the command line, enter the following:

java -jar <application>.jar

where <application> is your JAR file name.

How to Change the Java Virtual Machine
You may need to change the Java Virtual Machine (VM) for which you are developing
because of operating system considerations. For example, for client-side applications,
you would use the HotSpot Client VM, whereas for executing long-running server
applications, you would use the Server VM.

To change the Java Virtual Machine:

1. Right-click a project in the Applications window and choose Project Properties
from the context menu.

2. Open the Run/Debug/Profile page.

3. Select a run configuration and click Edit.

The Edit Run Configuration dialog displays.

4. On the Launch Settings page, in the Virtual Machine list box, select an available
option.

The selected JVM is used when running and debugging the project.

5. Click Help for additional information.

Macros
A macro helps you to automate a task that you perform repeatedly or on a regular
basis. It is a series of commands and actions that can be stored and run whenever you
need to perform the task. You can record or build a macro and then run it to
automatically repeat the series of steps or actions. MacroHandlers are the classes that
map the macro names to macro values.

Macros can be categorized into two types: Path Macros and Non-path macros. Path
macros are usually identified as location macros and often used as a protocol in URLs
while non-path macros are identified as string macros. The JDEV-runner module
provides you the options to define new macros, select macros for use in expressions,
edit macros, etc.

A simple macro expression looks like:${qualifer:macro.name}

The qualifier in the above expression identifies the macrohandler responsible for
expanding the macro.

Setting the Classpath for Programs
When you run a Java program from the command line, you must provide the Java
Virtual Machine (JVM) with a list of the paths to the class files and libraries that
comprise your application. The form of the classpath changes depending on the
method you use to run the Java program.

Your Java classes can be stored in Java Archive (*.jar) files, or as separate class
(*.class) files in their package directory. There are differences in the ways Java
handles JAR files and package directories.

Setting the Classpath for Programs

12-4 Developing Applications with Oracle JDeveloper

• When you refer to JAR files in your CLASSPATH, you use the fully qualified path
to the JAR file. When you refer to package directories in your CLASSPATH, you use
the path to the parent directory of the package.

• You can refer to both JARs and package directories in a CLASSPATH statement.
When you refer to more than one CLASSPATH in the same statement, each
CLASSPATH is separated with a semicolon(;).

Once you have defined the classpath, you pass the value to the JVM in different ways,
depending on how you run your Java program.

• Set the CLASSPATH environment variable to run a standalone application using
java.exe.

• Set the CLASSPATH environment variable to.use the -classpath option of
java.exe.

• Embed the CLASSPATH in the <APPLET> tag of an.html file to run an applet in an
Internet browser.

You have the option of using either the -classpath option when calling an SDK
tool (the preferred method) or by setting the CLASSPATH environment variable.

Setting the CLASSPATH Environment Variable (for java.exe)
The java.exe file is included as part of the Java2 Standard Edition (J2SE). It is
intended to be used as a development tool, and is not licensed for distribution with
your Java programs. It is used to test your Java applications from the command
prompt.

In order to run a Java application from the command prompt, the system environment
variable CLASSPATH must be defined to include all of the classes necessary to run
your program. This includes any library classes provided with JDeveloper that your
program uses.

Using the JDeveloper Library CLASSPATH
JDeveloper ships hundreds of library classes to help you generate your Java programs.
The classes come from J2SE, third-party developers, and Oracle Corporation. Each of
the libraries is kept separate for easy upgrade. As a result, many archive files may
need to be included in your classpath to ensure that any program you create in
JDeveloper can be run from the command prompt.

Oracle recommends that you list only the paths to each of the libraries that your
project uses. If you list paths that your project does not use, your program will still
run, but for performance reasons, you will want to eliminate any unnecessary
libraries.

Note:

Never use quotation marks in the classpath even when there is a space
character in one of the paths.

Setting the CLASSPATH to Include Your Projects
If you have used the default directory for your output path, you can test your Java
application using java.exe by appending the following directory to your classpath:

Setting the Classpath for Programs

Running and Debugging Java Projects 12-5

C:\<jdev_install>\jdeveloper\jdev\mywork\Workspace1\Project1\classes

Having set this variable, you can use java.exe to run your application from the
output directory mywork.

If you have deployed your Java program to any other directory, you need to add the
path to the parent directory of the application package.

The CLASSPATH variable is a long string that can be difficult to type accurately. To
save time and reduce errors, you can set the CLASSPATH as a system environment
variable.

Setting the CLASSPATH Parameter (for java.exe)
The Java Runtime Engine (java.exe) doesn't use the CLASSPATH environment
variable. The CLASSPATH must be included as a parameter to the java.exe command.
The format for the command is:

java -cp <classpath> package.Application

Where classpath is the complete CLASSPATH to your Java program and the
dependency classes it uses. Quotation marks are optional if there are no spaces in any
of the CLASSPATH directory names.

Debugging Java Programs
The Debugger provides you with a number of features to investigate your code, and
identify and fix problem areas. Two types of debugging are available to analyze your
code - local and remote.

A local debugging session is started by setting breakpoints in source files, and then
starting the debugger. When debugging an application such as a servlet in JDeveloper,
you have complete control over the execution flow and can view and modify values of
variables. You can also investigate application performance by monitoring class
instance counts and memory usage. JDeveloper will follow calls from your application
into other source files, or generate stub classes for source files that are not available.

Remote debugging requires two JDeveloper processes: a debugger and a debuggee
which may reside on a different platform. Once the debuggee process is launched and
the debugger process is attached to it, remote debugging is similar to local debugging.

Table 12-1 contains the special-purpose debugging windows that enable you to
efficiently identify the problematic areas in your code.

Table 12-1 Debugging Windows

Window Description

Breakpoint Displays the breakpoints for the current workspace and project.
For more information, see How to Use the Breakpoints
Window.

Smart Data Displays the data which is being used in the code that you are
stepping through. For more information, see How to Use the
Smart Data Window.

Data Displays the arguments and local variables for the current
context. Note that Full Debug Info must be selected in the
Compiler page of the Project Properties dialog. For more
information, see How to Use the Data Window.

Debugging Java Programs

12-6 Developing Applications with Oracle JDeveloper

Table 12-1 (Cont.) Debugging Windows

Window Description

Watches Displays the watches created for fields or variables. A watch
evaluates an expression according to the current context. If you
move to a new context, the expression is reevaluated for the
new context. For more information, How to Use the Watches
Window.

Inspector Displays a single data item in its own floating window. An
inspector evaluates an expression according to the current
context. For more information, see How to Use the Inspector
Window.

Heap Displays information about the heap in the program you are
debugging and helps you to detect memory leaks in your
program. For more information, see How to Use the Heap
Window.

Stack Displays the call stack for the current thread. For more
information, see Using the Stack Window.

Classes Displays information about the classes which have been loaded
as your application runs, including the name and package of
each class. The debugger can also display the number of live
instances of each class and the amount of memory being
consumed by those instances. For more information, How to
Use the Classes Window.

Monitors Displays information for active monitors in your application, as
well as information about the status of threads accessing those
monitors. This window is useful for examining deadlocks and
other thread synchronization problems. For more information,
see How to Use the Monitors Window.

Threads Displays the threads and the thread groups, highlights the
current thread, and shows the name, status, priority, and group
of each thread. For more information, see How to Use the
Threads Window .

Understanding the Debugger Icons
Table 12-2 contains the various JDeveloper debugger and runner icons. These icons are
available from areas in the JDeveloper user interface, including the Debugger window
and the Log window.

Table 12-2 Debugger and Runner icons

Icon Name Description

Array Represents an array class in any JDeveloper data-
related window.

Add Breakpoint Represents the Breakpoint toolbar button used to
create a breakpoint.

Debugging Java Programs

Running and Debugging Java Projects 12-7

Table 12-2 (Cont.) Debugger and Runner icons

Icon Name Description

Breakpoints menu Represents the View > Debugger > Breakpoints
menu option or the tab icon for the Breakpoints
window.

Class Represents the View > Debugger > Classes
menu option, the tab icon for the Classes window
and a class in the Classes window (grayed if the
class has tracing disabled).

Class Without Line Number
Tables

Appears in the Classes window. Represents a
class which does not have line number tables
(obfuscated class).

Current Execution Point Represents the current execution point shown in
the source editor margin which you can display
by choosing the Run > Show Execution Point
menu option.

Current Thread Represents the current thread in the Threads
window.

Data Represents the View > Debugger > Data menu
option; the View > Debugger > Smart Data
menu option; and the tab icon for the Data
window and Smart Data window.

Debug (Shift + F9) Represents the Run > Debug <project_name>
menu option; the debug toolbar button, a
debugging process contained in the processes
folder in the Processes window, a log page for a
debugging process, the debug layout, and the
Remote Debugging and Profiling Project Wizard.

Debug Listener Node Represents a debug listener node in the Processes
window.

Delete Breakpoint Represents Delete Breakpoint in the toolbar.
Click to remove a breakpoint.

Disable Represents a disabled breakpoint in the source
editor margin and a disabled breakpoint in the
Breakpoints window. The icon also represents
the Disable Breakpoint command in the toolbar.
Click to disable a breakpoint.

Disable All Breakpoints Represents Suspend All Breakpoints command in
the toolbar. Click to run the application without
stopping at the breakpoints, then return to
debugging mode.

Edit Breakpoint Represents the Edit Breakpoint command in the
toolbar, which you can use to edit the selected
breakpoint.

Debugging Java Programs

12-8 Developing Applications with Oracle JDeveloper

Table 12-2 (Cont.) Debugger and Runner icons

Icon Name Description

Enabled Represents an active breakpoint in the source
editor margin and the Enable Breakpoint
command in the toolbar. Click to enable the
selected breakpoint. When the debugger is not
running, the enabled breakpoint icon looks same
as the unverified breakpoint icon.

Garbage Collection Represents the Run > Garbage Collection menu
option and the Garbage Collection command in
the toolbar, which you can click.

Interface Represents an interface in the Classes window.

Heap Represents the View > Debugger > Heap menu
option and the tab icon for the Heap window.

Heap Folder Represents a folder in the Heap window.

Method Represents a method in the Stack window.

Monitors Represents the View > Debugger > Monitors
menu option and the tab icon for the Monitors
window.

Object Represents an object in any JDeveloper data-
related window.

Package Represents a package in the Classes window
(grayed if the package has tracing disabled).

Pause Represents the Run > Pause menu option and
the Pause toolbar button which you can click.

Primitive Represents a primitive item in any JDeveloper
data-related window.

Resume Represents the Run > Resume menu option and
the Resume toolbar button which you can click.

Run Represents a running process in the Processes
window, in a log page for a running process, and
in the toolbar to run the selected node.

Run to Cursor (F4) Represents the Run > Run to Cursor menu
option. Lets you run to a specified location and
execute the code until it reaches that location

Stack Represents the Window > Debugger > Stack
menu option and the tab icon for the Stack
window.

Stack Folder Represents the static folder in the Data window

Debugging Java Programs

Running and Debugging Java Projects 12-9

Table 12-2 (Cont.) Debugger and Runner icons

Icon Name Description

Step to End of Method Represents the Run > Step to End of Method
menu option and the Step to End of Method
toolbar button which you can click.

Step Into (F7) Represents the Run > Step Into menu option and
the Step Into toolbar button which you can click.

Step Out (Shift + F7) Represents the Run > Step > Out menu option
and the Step Out toolbar button which you can
click.

Step Over Represents the Run > Step Over menu option
and the Step Over toolbar button which you can
click.

Terminate Represents the Terminate toolbar button which
you can click to stop debugging your application.

Threads Represents the Window > Debugger > Threads
menu option and the tab icon for the Threads
window.

Thread Group Represents a thread group in the Threads
window.

Unverified Breakpoint Represents an unverified breakpoint in the
source editor margin, and an unverified
breakpoint in the Breakpoints window

Verified Breakpoint Represents the verified breakpoint in the source
editor margin.

Debugging an Application Deployed to Integrated WebLogic Server
When debugging an application deployed to an integrated WebLogic Server, you can
make changes to files and they will be reflected in the running application without
you having to stop and redeploy the application. To debug the application, start the
server in debug mode. Go to ORACLE_HOME/jdeveloper/jdev/bin and run
java -? to see the run configuration options available for the version of the JDK you
are running.

• Modify JSF files

Save and refresh the browser if you are currently viewing the page that you
modified, or navigate to the page if you were not on it. The page will reflect the
changes you just made.

• Save and recompile them. You can see the changes the next time the altered code is
executed without having to re-start the application.

If you are stopped at a break point, you can:

• Modify the class you are currently stopped in including the method that you are
currently stopped in.

Debugging Java Programs

12-10 Developing Applications with Oracle JDeveloper

• Right-click in the editor and rebuild the individual class.

• Select the Stack tab (by default grouped with the Structure tab under the
Applications window). At the top of the stack you will see that the method you are
stopped in is obsoleted.

• Right click on the previous method and select the Pop back to here menu item.
JDev will re-position the cursor to the code that invoked the obsolete method.

When you restart execution, the changes you made to the class or method will be
reflected.

Note:

you can only modify code that is private to the class. Review the console
output after re-compiling. The output will make it clear whether of not the
recompiled code is available for run-time.

How to Debug a Project in JDeveloper
Your code must be compiled with debugging information before you can make use of
some of the debugger features such as viewing arguments and local variables in the
Data window. This saves time when debugging and testing an application.

To set breakpoints and step through your code:

1. In a source editor, set a breakpoint on an executable statement by clicking in the
margin to the left of the statement. For more information, see Managing
Breakpoints.

The unverified breakpoints icon appears in the left margin.

2. Select Run > Debug filename.jpr.

The class runs and stops at the first breakpoint.

3. From the toolbar, click Step Into to trace into a method call or click Step Over to
step over a method call.

4. Look in the Stack window to examine the sequence of method calls that brought
your program to its current state.

5. Double-click a method to display the associated source code in the source editor.

6. In the Smart Data and Data windows, examine the arguments and variables.

7. Display the Threads window to see the status of other threads in your program.

How to Edit and Recompile
While debugging, use the HotSwap feature to fix errors and substitute corrected class
definitions, without stopping and restarting your application. HotSwap is an
enhancement to the Java Platform Debugger Architecture (JPDA) in Java 2 SDK v1.4,
and has been implemented in JDeveloper's Java virtual machine, OJVM.

When the debugger is paused you can recompile classes. When the debugger resumes
after code has been HotSwapped, threads that are currently executing old method
definitions will continue to do so until those methods return. For subsequent method

Debugging Java Programs

Running and Debugging Java Projects 12-11

calls, the class definition will be used. However, existing instances of the class will not
be modified, and class variables will not be reset. Use HotSwap to modify the logic of
class methods. In most cases you cannot use HotSwap to make more substantial
changes, such as adding or removing fields or methods.

Using FastSwap Deployment to Minimize Redeployment
Today's Web application developers expect to make changes to a deployed application
and see those changes immediately by refreshing the browser. On the Java EE side,
developers typically have to go through the following cycle to see their changes in
action.

Edit -> Build -> Deploy -> Test

These steps, along with the many required descriptor elements, makes developing
applications with Java EE seem complex and top-heavy. Among these steps, the build
and deploy cycles are necessitated by Java and by the application server being
employed. IDEs are trying to make the edit and build steps seamless by providing
incremental compilation support. On the server side, the WebLogic Server FastSwap
deployment feature, available in JDeveloper, makes the deploy and test cycles just as
seamless.

How FastSwap Deployment Works

Java EE 5 introduced the ability to redefine a class at run time without dropping its
classloader or abandoning existing instances. This allowed containers to reload altered
classes without disturbing running applications, vastly speeding up iterative
development cycles and improving the overall development and testing experiences.
The usefulness of the Java EE dynamic class redefinition is severely curtailed,
however, by the restriction that the shape of the class – its declared fields and methods
– cannot change. The purpose of FastSwap is to remove this restriction in WebLogic
Server, allowing the dynamic redefinition of classes with new shapes to facilitate
iterative development.

With FastSwap, Java classes are redefined in-place without reloading the classloader,
thereby having the decided advantage of fast turnaround times. This means that you
do not have to wait for an application to redeploy and then navigate back to wherever
you were in the Web page flow. Instead, you can make your changes, auto compile,
and then see the effects immediately.

Supported FastSwap Application Configurations

The following application configurations are supported when using FastSwap
deployment:

• FastSwap is only supported when WebLogic Server is running in development
mode. It is automatically disabled in production mode.

• Only changes to class files in exploded directories are supported. Modifications to
class files in archived applications, as well as archived JAR files appearing in the
application's classpath are not supported. Examples are as follows:

– When a Web application is deployed as an archived WAR within an EAR,
modifications to any of the classes are not picked up by the FastSwap agent.

– Within an exploded Web application, modifications to Java classes are only
supported in the WEB-INF/classes directory; the FastSwap agent does not
pick up changes to archived JARs residing in WEB-INF/lib.

Debugging Java Programs

12-12 Developing Applications with Oracle JDeveloper

Enabling FastSwap In Your Application

To enable FastSwap in your application, create an Oracle WebLogic deployment
descriptor weblogic-application.xml and enable Fast Swap.

FastSwap can also be enabled for a standalone Web application by creating the
WebLogic deployment descriptorweblogic.xml and enabling Fast Swap.

Overview of the FastSwap Process

The following steps describe how the FastSwap deployment process works:

1. Once FastSwap is enabled at the descriptor level, an appropriate classloader is
instantiated when the application is deployed to WebLogic Server.

2. Open a browser to see the application at work. Modify (add/edit/delete) the
methods and/or classes (see Limitations When Using FastSwap) and then compile
them.

Note that the FastSwap agent does not compile Java files.

3. Refresh the browser or send a new request to the application.

The FastSwap agent tries to find all classes that have been modified since the last
iteration by looking at all directories in the classpath. Considering an exploded
application with a single Web application, the following directories are examined
for any class file modifications based on their timestamps:

ExampleApp/APP-INF/classes
ExampleApp/webapp/WEB-INF/classes

The FastSwap agent redefines the modified classes in the application and then
serves the request.

Application Types and Changes Supported with FastSwap

FastSwap is supported with POJOs (JARs), Web applications (WARs) and enterprise
applications (EARs) deployed in an exploded format. FastSwap is not supported with
resource adapters (RARs).

The following types of changes are supported with FastSwap:

• Addition of static methods

• Removal of static methods

• Addition of instance methods

• Removal of instance methods

• Changes to static method bodies

• Changes to instance method bodies

• Addition of static fields

• Removal of static fields

• Addition of instance fields

• Removal of instance fields

Debugging Java Programs

Running and Debugging Java Projects 12-13

The following table lists detailed change types supported with FastSwap:

Table 12-3 Supported Application Types and Changes

Scope Java Change Type Supporte
d

Notes

Java Class Add method Yes Addition of the finalize method is not
supported.

Instance (non-
abstract)

Remove method Yes Addition of the finalize method is not
supported.

a) Add field Yes

b) Remove field Yes

c) Change method body Yes

d) Add constructor Yes

e) Remove constructor Yes

f) Change field modifiers Yes

g) Change method modifiers Yes

Class-level (static) Add method Yes

Remove method Yes

Change body method Yes

Class Hierarchy
Changes

Change list of implemented
interfaces

No

Change extends "SuperClass" No

Abstract Java Class Add abstract method Yes

Delete abstract method Yes

All other supported changes (a–
g) listed in Instance

Yes

"final" Java Class Same supported changes (a–g)
listed in Instance

Yes

"final" Java Method Same supported changes (a–g)
listed in Instance

Yes

"final" Java Field Same supported changes (a–g)
listed in Instance

Yes

Enum Add constants No

Remove constants No

Add/remove methods No

Debugging Java Programs

12-14 Developing Applications with Oracle JDeveloper

Table 12-3 (Cont.) Supported Application Types and Changes

Scope Java Change Type Supporte
d

Notes

Anonymous Inner
Class

Add/remove fields NA Not supported by the Java language

Add/remove methods No

Static Inner Class Same supported changes (a–g)
listed in Instance

Yes

Member Inner
Classes (non-static
inner classes)

Same supported changes (a–g)
listed in Instance

Yes

Local Inner Classes Same supported changes (a–g)
listed in Instance

Yes

Java Interface Add method Yes

Java Reflection Access existing fields/methods Yes

Access new methods No New methods are not seen using Reflection
and some synthetic methods are exposed.

Access new fields No New fields are not seen using Reflection.

Annotations on
Classes

Add or remove method/field
annotations

No

Annotation Type Add or remove methods/
attributes

No

Exception Classes Same supported changes (a–g)
listed in Instance

Yes

EJB Interface Add/remove methods No Changes to EJB interfaces involve
Reflection, which is not fully supported.

EJB 3.0
Session/MDB

EJB Implementation
Class

Add/remove methods No Any support classes referenced by the EJB
classes can be modified.

Add/remove fields No

EJB 3.0 EntityBean Add/remove methods No Any support classes referenced by the EJB
classes can be modified.

Add/remove fields No

EJB Interceptors Add/remove methods No Any support classes referenced by the EJB
classes can be modified.

Add/remove fields No

Limitations When Using FastSwap

The following limitations apply when using FastSwap deployment:

Debugging Java Programs

Running and Debugging Java Projects 12-15

• Java reflection results do not include newly added fields and methods and include
removed fields and methods. As a result, use of the reflection API on the modified
classes can result in undesired behavior.

• Changing the hierarchy of an already existing class is not supported by FastSwap.
For example, either a) changing the list of implemented interfaces of a class; or b)
changing the superclass of a class, is not supported.

• Addition or removal of Java annotations is not supported by FastSwap, since this is
tied to the reflection changes mentioned above.

• Addition or removal of methods on EJB Interfaces is not supported by FastSwap
since an EJB Compilation step is required to reflect the changes at run time.

• Addition or removal of constants from Enums is not supported.

• Addition or removal of the finalize method is not supported.

• When you change a field name, the object state is not retained. This type of change
occurs as follows: the field with the old name is deleted and a field with the new
name is added. As such, any state in the old field is not carried over to the renamed
field. You should expect an instance value to be reset when you change a field
name.

Handling Unsupported FastSwap Changes

When FastSwap is enabled, after you recompile a class, FastSwap attempts to redefine
classes in existing classloaders. If redefinition fails because your changes fall outside
the scope of supported FastSwap changes, the JVM throws an
UnsupportedOperationException in the Log window and in the server log file.
Your application will not reflect the changes, but will continue to run.

To implement your changes, you can redeploy the application or affected modules
(partial redeploy), depending on the application type and the extent of your changes.

How to Debug ADF Components
JDeveloper allows you to debug with breakpoints using the ADF Declarative
Debugger. If an error cannot be easily identified, you can use the ADF Declarative
Debugger in JDeveloper to set breakpoints. When a breakpoint is reached, the
execution of the application is paused and you can examine the data that the Oracle
ADF binding container has to work with, and compare it to what you expect the data
to be. Depending on the types of breakpoints, you may be able to use the step
functions to move from one breakpoint to another.

Table 12-4 contains the windows that JDeveloper provides for debugging ADF
components.

Table 12-4 ADF Component Debugging Windows

Window Description

ADF Data Displays relevant data based on the selection in the ADF
Structure window when the application is paused at a
breakpoint. For more information, see How to Use the Data
Window.

Debugging Java Programs

12-16 Developing Applications with Oracle JDeveloper

Table 12-4 (Cont.) ADF Component Debugging Windows

Window Description

EL Evaluator Evaluates EL Expressions when a breakpoint is reached during
a debugging session. Only JSF applications can use the EL
Evaluator.

ADF Structure Displays a tree structure of the ADF runtime objects and their
relationships when the application is stopped at a breakpoint.
For more information, see Structure Window .

You can control what type of information is displayed in each of the debugger
windows. To see what options are available in each window such as which columns to
display, right-click in a window and choose Preferences from the context menu. Or,
you can choose Tools > Preferences from the main menu and expand the Debugger
node to display a preferences page for each debugger window. You can also save the
debug information as text or HTML output file. For more information. see How to
Export Debug Information to a File.

How to Use JDeveloper Debugger to Execute a Program

To use the JDeveloper debugger to control the execution of a program:

1. Run to a breakpoint. For more information, see Managing Breakpoints.

A breakpoint is a trigger in a program that, when reached, pauses program
execution. This allows you to examine the values of some or all of the program
variables. When your program execution encounters a breakpoint, the program
pauses, and the debugger displays the line containing the breakpoint in the source
editor.

2. Step into a method and execute a single program statement at a time. For more
information, see How to Step Into a Method.

If the execution point is located on a call to a method, the Step Into command steps
into that method and places the execution point on the method's first statement.

3. Step over a method. For more information, see How to Step Over a Method.

If you issue the Step Over command when the execution point is located on a
method call, the debugger runs that method without stopping, instead of stepping
into it. Program statements are executed one at a time.

4. Run to the cursor location. For more information, see How to Run to the Cursor
Location.

This allows you to go to a particular location in the program without having to
single step or set a breakpoint.

5. Pause and resume the debugger. For more information, see How to Pause and
Resume the Debugger .

You can pause your program when the program is running in the debugger. You
can then use the debugger to examine the state of your program with respect to this
program location. When you have finished examining that part of the program,
you can then continue running the program.

Debugging Java Programs

Running and Debugging Java Projects 12-17

6. Terminate a debugging session. For more information, see How to Terminate a
Debugging Session..

When finished, you can modify program values as a way to test hypothetical bug fixes
during a program run. If you find that a modification fixes a program error, exit the
debugging session, fix your program code, and recompile the program to make the fix
permanent.

How to Configure a Project for Debugging
JDeveloper allows you to control how your program is debugged, including enabling
and disabling packages and classes and configuring remote debugging options.

To configure debugger and remote debugger options in JDeveloper:

1. Choose Application > Default Project Properties (to set preferences that apply to
all projects)

2. Choose Application > Project Properties (to set preferences that apply only to the
current project).

3. Select the Run/Debug node.

4. Select a run configuration. For more information, see Configuring a Project for
Running.

5. Click Edit.

6. Select Tool Settings > Debugger.

7. Set the options on the Debugger and Remote pages.

8. Click OK when finished.

How to Set the Debugger Start Options
By setting up the debugger start option, you are specifying how you would like the
debugger to behave when you start a new debugging session. Specifically, decide if
you want the debugger to execute until a breakpoint is reached, or if you want the
debugger to stop when it reaches your project's code (for example, at the beginning of
your application's main method).

To set the debugger start options:

1. From the main menu choose Tools > Preferences > Debugger.

2. Select a Start Debugging option.

Table 12-5 Start Debugging Options

Option Description

Run Until a Breakpoint
Occurs

When you start debugging, the debugger will let the
program you are debugging execute until a breakpoint is
reached.

Debugging Java Programs

12-18 Developing Applications with Oracle JDeveloper

Table 12-5 (Cont.) Start Debugging Options

Option Description

Step Over When you start debugging, the debugger will let the
program you are debugging execute until a method in a
tracing-enabled class is reached, but it will not stop in a class
static initializer method.

Step Into When you start debugging, the debugger will let the
program you are debugging execute until any method,
including a class static initializer method, is reached.

Note:

You can press F7 to display a choice of methods you want to step into. When
there are multiple methods, they are highlighted when you press F7. You can
click the one you want to step into.

This feature is useful there can be multiple method calls on a line, and you
may be interested in a specific one that might not be the first one encountered.

How to Launch the Debugger
You must build the project before debugging it. The project is built using options you
specify on the Compiler page of the Project Properties.

To build a project and start the debugger:

1. In the Applications window, select the project.

2. Right-click and choose Project Properties > Compiler.

3. If not already enabled, select Full Debug Info.

4. Click OK to close the dialog.

5. Use one of the following methods to start the debugger:

• To start the debugger using the current run configuration, from the main menu
choose Run > Debug <target>.

• To start the debugger using your choice of run configuration, select the
dropdown menu beside the Debug icon on the toolbar and click the required
run configuration name.

If the project builds successfully, the debugger starts.

How to Export Debug Information to a File
You can export debug information generated by the JDeveloper debugger to either a
text or HTML output file from within any of the debugger windows.

To export debug information to a file:

1. Start debugging by clicking Debug from the toolbar.

2. Once the debugger has stopped at a breakpoint, locate the debugger window
containing the information you would like to export.

Debugging Java Programs

Running and Debugging Java Projects 12-19

3. Right-click in a debugger window and choose Preferences from the context menu.

4. In the appropriate Preferences - Debugger page below Columns, select which
columns you want to show or hide in the debugger window and output file.

5. Click OK to close the Preferences dialog.

6. In the debugger window, right-click and choose Export.

7. In the Export dialog, enter the name of the file. The output file is saved as a text file
with tabs between columns and new lines between rows. To export to an HTML
file, add the extension as.html or .htm (case-insensitive).

Using the Source Editor When Debugging
When the debugger stops (for example, at a breakpoint after completing a step
command, or when paused), the source file for the current class will open in the source
editor and will be marked with the execution point, as shown in Figure 12-1.

Figure 12-1 Execution Point Icon

If JDeveloper cannot locate the source file for the class while debugging, the Source
Not Found dialog is displayed prompting you for the source file location.

You can use the source editor to debug to:

• Hover over a variable name to see its value.

• Set a breakpoint, click in the source editor's margin.

• Remove a breakpoint, click the breakpoint in the source editor's margin.

Figure 12-2 Breakpoint Icon

Using Context Menu Items
The debugger adds several menu items to the source editor's context menu, including
those shown in Table 12-6.

Table 12-6 Debugger Context Menu Items

Item Function

Run to Cursor Run to the current location of the cursor and execute the code
until it reaches that location.

Watch (Ctrl+F5) Add an expression to the Watches Window.

Inspect Open up a floating Inspector window.

Step Into Method at Cursor Executes Run to Cursor, and then steps into the method that the
cursor is currently on.

Debugging Java Programs

12-20 Developing Applications with Oracle JDeveloper

Using Tooltips
The debugger displays tooltips in the source editor if you hover the mouse over the
name of a data item. By default, the tooltip will show the name, value, and type of the
data item; providing an easy way to quickly inspect a data item without adding it in
Data window or Watches window. If the data item is an array or object, you can
inspect children of the selected item deep in the object hierarchy. The tooltip displays
20 children data items, use the navigation buttons to view remaining data items.

The columns that display in the tooltip depend on the column settings that were
enabled in the Tools > Preferences – Debugger – Tooltip page.

If the project builds successfully, the debugger starts.

Using Java Expressions in the Debugger
Java expressions are used in the Watches window, Inspector window, Breakpoint
Conditions, and Breakpoint Log Expressions. You can specify a Java expression that
you want the debugger to watch or inspect. The expression must be a legal Java
expression that the debugger can evaluate. The debugger accepts Java expressions in
the forms shown in Table 12-7.

Table 12-7 Java Expressions Accepted by Debugger

Java Expression Form

Simple variable name rect

Field access rect.width

Method call myString.length()

Array element myArray[3]

Array length myArray.length

Comparison operation rect.height == 100 myArray.length > 7

Arithmetic operation rect.width * rect.height x + y + z

Logical operation frame1.enabled && frame1.visible

textField1.hasFocus || textField2.hasFocus

Instance of operator <my_value> instanceof java.lang.String

Shift operator x << 2

y >> 1

Binary Operator keyEvent.modifiers &
java.awt.event.InputEvent.CTRL_MASK

Question-colon operation y>5 ? y*7 : y*4

Static field name java.awt.Color.pink

Fully qualified class name java.awt.Color

Debugging Java Programs

Running and Debugging Java Projects 12-21

Moving Through Code While Debugging
The JDeveloper debugger lets you control the execution of your program; you can
control whether your program executes a single line of code, an entire method, or an
entire program block. By manually controlling when the program should run and
when it should pause, you can quickly move over the sections that you know work
correctly and concentrate on the sections that are causing problems. For more
information, see How to Set the Debugger Start Options.

The debugger lets you control the execution of your program by:

• Stepping into a method

• Stepping over a method

• Controlling which classes are traced into

• Locating the execution point for a thread

• Running to the cursor location

• Pausing and resuming the debugger

• Terminating a debugging session

The Step Into and Step Over commands offer the simplest way of moving through
your program code. While the two commands are very similar, they each offer a
different way to control code execution.

The smallest increment by which you step through a program is a single line of code.
Multiple program statements on one line of text are treated as a single line of code –
you cannot individually debug multiple statements contained on a single line of text.
The easiest approach is to put each statement on its own line. This also makes your
code more readable and easier to maintain.

How to Step Into a Method
The Step Into command executes a single program statement at a time. If the
execution point is located on a call to a method, the Step Into command steps into that
method and places the execution point on the method's first statement.

Note:

A warning dialog appears if you attempt to step into a line with multiple
methods. Currently there is no way to turn this warning back on if you turn it
off.

The Step Into action will highlight methods on a line any time it is invoked on a line
with multiple methods. The current execution point determines what line of code the
debugger will step into. Moving the cursor does not alter the execution point or cause
a different set of methods to become available to step into.

This feature is particularly useful when a selected outer method belongs to an
interface and you do not know beforehand where the method that will actually get
called is implemented.

Debugging Java Programs

12-22 Developing Applications with Oracle JDeveloper

If the execution point is located on the last statement of a method, choosing Step Into
causes the debugger to return from the method, placing the execution point on the line
of code that follows the call to the method you are returning from.

The term single stepping refers to using Step Into to run successively though the
statements in your program code.

You can step into a method in any of the following ways:

• Select Run > Step Into.

• Press the F7 key.

• Click the Step Into button from the toolbar.

Figure 12-3 Step Into Button

Note:

Step Into will only cause stepping on an already-started debugging process.

When you set the debugger to start by stepping into, the debugger will let the
program you are debugging execute until a method in a tracing-enabled class is
reached.

As you debug, you can step into some methods and step over others. If you are
confident that a method is working properly, you can step over calls to that method,
knowing that the method call will not cause an error. If you are not sure that a method
is well behaved, step into the method and check whether it is working properly.

How to Step Over a Method
The Step Over command, like Step Into, enables you to execute program statements
one at a time. However, if you issue the Step Over command when the execution point
is located on a method call, the debugger runs that method without stopping (instead
of stepping into it), then positions the execution point on the statement that follows
the method call.

If the execution point is located on the last statement of a method, choosing Step Over
causes the debugger to return from the method, placing the execution point on the line
of code that follows the call to the method you are returning from.

You can step into a method in any of the following ways:

• Select Run > Step Over.

• Press the F8 key.

• Click the Step Over button on the toolbar.

Figure 12-4 Step Over Button

Debugging Java Programs

Running and Debugging Java Projects 12-23

Unlike previous releases of JDeveloper, you cannot start debugging by clicking the
Step Over button. Step Over will cause stepping only on an already-started debugging
process.

When you set it to start by stepping over, the debugger will let the program you are
debugging execute until a method in a tracing-enabled class is reached, but it will not
stop in class static initializer method.

As you debug, you can step into some methods and step over others. If you are
confident that a method is working properly, you can step over calls to that method,
knowing that the method call will not cause an error. If you aren't sure that a method
is well behaved, step into the method and check whether it is working properly.

Controlling Which Classes Are Traced Into
Normally, you should set the tracing include and exclude lists in the project properties
before you start debugging. However, if you need to change the tracing include and
exclude lists, you can do so from the Classes window. Right-click in the Classes
window and choose Tracing from the context menu. The Tracing dialog appears in
which you can adjust the tracing include and exclude lists.

When you specify a package to be included or excluded from tracing, all descending
classes within that package are included or excluded as well unless you've specified
them individually.

To closely examine part of your program, you can enable tracing on only the files you
want to step through in the debugger. For example, you usually don't want to step
through classes that are in the J2SE library because you're not going to troubleshoot on
them; you usually only want to trace into your own classes.

How to Step Through Behavior as Guided by Tracing Lists
If you exclude a class or package, and you instruct the debugger to step into that class,
the debugger runs straight through that code without pausing. The debugger pauses
at the next line of code in a class which has not been excluded. The tracing include and
exclude lists are used for all step commands including Step Into, Step Over, Step Out,
and so on. Using these lists does not prevent you from setting a breakpoint in a class
which has been excluded. If the debugger stops at such a breakpoint, the step
commands will be disabled. To enable tracing for a class, you can adjust the tracing
include or exclude list by adding or removing a class or package:

To adjust the tracing include or exclude list:

1. Right-click a project in the Applications window and choose Project Properties
from the context menu.

2. Select the Run/Debug node.

3. Choose a run configuration and click Edit.

4. In the Edit Run Configuration dialog select Tools Settings > Debugger.

5. In the Tracing Classes and Packages to Include and Tracing Classes and Packages
to Exclude fields, enter the name of the packages or classes you want to include or
exclude in the appropriate field, separated by a semicolon (;). For example:

oracle.xml;org.apache;org.omg;org.w3c;org.xml

You can also click Edit to open the Tracing Classes and Packages to Include/
Exclude dialog, then click Add or Remove. If you click Add, the Class and Package

Debugging Java Programs

12-24 Developing Applications with Oracle JDeveloper

Browser dialog appears. If you click Remove, the selected class or package is
removed from the appropriate tracing List. Navigate to the class or package you
want to add and click OK. The class or package is added to the appropriate tracing
list.

By leaving the include lists blank, you are actually specifying that you would like to
enable tracing in all packages except for those specifically listed in the exclude list. For
example:

include:
exclude:java;javax

How to Locate the Execution Point for a Thread
When you're debugging, the line of code that is the current execution point for the
current thread is highlighted and the execution point icon appears in the left margin of
the source editor.

The execution point marks the next line of source code to be executed by the debugger.

To find the current execution point:

1. Choose Run > Find Execution Point from the main menu.

2. Right-click a thread in the Threads window and choose Go To Source of Thread.

The debugger displays the block of code containing the execution point in the
source editor.

How to Run to the Cursor Location
When stepping through your application code in the debugger, you may want to run
to a particular location without having to single step or set a breakpoint.

To run to a specific program location:

1. In a source editor, position your text cursor on the line of code where you want the
debugger to stop.

2. Run to the cursor location in any of the following ways:

• In the source editor, right-click and choose Run to Cursor.

• Choose the Run > Run to Cursor option from the main menu.

• Press the F4 key. The F4 key works unless you Operating System (OS) intercepts
that key.

Note:

On ADC or SLC machines, F4 key is intercepted and never reaches the
debugger.

Any of the following conditions may result:

• When you run to the cursor, your program executes without stopping, until the
execution reaches the location marked by the text cursor in the source editor.

Debugging Java Programs

Running and Debugging Java Projects 12-25

• If your program never actually executes the line of code where the text cursor is,
the Run to Cursor command will cause your program to run until it encounters a
breakpoint or when your program finishes.

How to Pause and Resume the Debugger
You can pause your program when the program is running in the debugger. You can
then use the debugger to examine the state of your program with respect to this
program location. When you have finished examining that part of the program, you
can then continue running the program.

When you are using the debugger, your program can be in one of two possible states:
running, or paused by the debugger. When your program is waiting for user input, it
is still considered to be running. When your program is in the running mode, Pause is
available. When your program is paused by the debugger, the available debugger
buttons include Resume, Step Over, and Step Into.

You can pause the debugger in the following ways:

• Choose Run > Pause from the main menu.

• Click the Pause icon from the debugger toolbar.

Figure 12-5 Pause Icon

Your program may be paused at a location for which there is no source available. In
this case, the Source Not Found dialog displays, prompting you for the source file
location or whether to generate stub files.

Also, your program may be paused at a location where tracing is disabled because the
class is on the tracing exclude list. For example, your program may be paused in the
java.lang.Object.wait method.

While the debugger is paused, you can force garbage collection to occur. The results of
the garbage collection are immediately reflected in the Classes and the Heap window.
This enables you to find memory leaks in your application.

To resume the debugger when it is paused, choose Run > Resume.

How to Terminate a Debugging Session
Sometimes while debugging, you will find it necessary to restart the program from the
beginning. For example, you might need to restart the program if you step past the
location of a bug.

To terminate the current debugging session:

• Choose the Run > Terminate - <target> menu option, or

• Click Terminate in the debugger toolbar.

Terminating a debugging session closes all debugger windows. However, this action
does not delete any breakpoints or watches that you have set, which makes it easy to
restart a debugging session.

Debugging Java Programs

12-26 Developing Applications with Oracle JDeveloper

How to View the Debugger Log
The Debugger log displays information about the debugging process. You can view
the Debugger log at any time while the debuggee process is still active.

To view the Debugger log while the process is still active:

• Select Window > Debugger > Log

• In the Processes window, right-click the process and select View Log in the context
menu.

Using the Debugger Windows
JDeveloper provides a number of special-purpose debugging windows to help you
analyze your code and identify problem areas. You can control what type of
information is displayed in each of the debugger windows. To see what options are
available in each window such as which columns to display, right-click in a window
and choose Preferences from the context menu. Or, you can choose Tools >
Preferences from the main menu and expand the Debugger node to display a
preferences page for each debugger window. You can also save the debug information
as text or HTML output file.

How to Open Debugger Windows
You open a Debugger window by setting a breakpoint and starting a debugging
session. When the Debugger stops at the breakpoint, select Window > Debugger >
deubugger_window. For example, Window > Debugger > Threads. You can access the
Breakpoints windows by simply starting a debugging session (it is also accessible from
Window > Breakpoints)

Select one of the following Debugger windows depending on the information you
want to see: Classes, Heap, Data, Log, Monitors, Stack, Smart Data, Threads, and
Watches. See the following sections for information on using these windows.

How to Use the Breakpoints Window
Information about set breakpoints can be viewed in the Breakpoints window. For
more information about this window including its context menu options, press F1 in
the Breakpoints window.

To open the Breakpoints window to display a list of set breakpoints:

• Choose Window > Breakpoints from the main menu. The Breakpoints window
appears.

How to Use the Data Window
You use the Data window to display information about variables in your program. In
the current context, which is controlled by the selection in the Stack window. If you
move to a new context, the Data window is updated to show the data for the new
context. If the current class was compiled without debug information, you will not be
able to see the local variables. The debugger analyzes the local variable memory
locations in the stack frame to show you as much information as possible.

The Data window also displays the current return value of a non-void method when
you set a breakpoint in the method and issue a Step to End of Method command or

Using the Debugger Windows

Running and Debugging Java Projects 12-27

Step Out command. The return value is not displayed for Step Over or Step Into
commands.

How to View Array Elements in the Data Window

You can set the number of elements in an array that you want to display in the Data
Window.

To view array elements in Data window:

1. Start debugging the project and open Data window.

2. Select the array in the Data window and expand to view its elements.

If the array contains more than 20 elements, the Data window displays first 20
elements.

• To view the next 20 entries, click Next.

• To view the previous 20 entries, click Previous.

• To view the first 20 entries, click First.

• To view the last 20 entries, click Last.

• To change the default display size of 20, select the array, right-click and select
Adjust Range from the context menu, and enter the new value in the New
Count field. Click OK when you are done.

How to Use the Smart Data Window
Unlike the Data window which displays all arguments, local variables, and static
fields for the current method, the Smart Data window displays only the data that
appears to be relevant to the source code that you are stepping through. Specifically,
the debugger analyzes the source code near the execution point and finds the
variables, fields, and expressions, that are used in the lines of code that you are
stepping through.

For more information, see How to Locate the Execution Point for a Thread.

The Smart Data window also displays the current return value of a non-void method
when you set a breakpoint in the method and issue a Step to End of Method
command or Step Out command. The return value is not displayed for Step Over or
Step Into commands.

By default, the debugger analyzes only one line of code for each location and analyzes
up to two locations. You can adjust these settings in the Tools > Preferences -
Debugger - Smart Data page which you can also access by right-clicking in the Smart
Data window and choosing Preferences from the context menu.

How to Use the Watches Window
A watch enables you to monitor the changing values of variables or expressions as
your program runs. After you enter a watch expression, the Watches window displays
the current value of the expression. As your program runs, the value of the watch
changes as your program updates the values of the variables in the watch expression.

A watch evaluates an expression according to the current context which is controlled
by the selection in the Stack window. If you move to a new context, the expression is
reevaluated for the new context. If the execution point moves to a location where any

Using the Debugger Windows

12-28 Developing Applications with Oracle JDeveloper

of the variables in the watch expression are undefined, the entire watch expression
becomes undefined. If the execution point returns to a location where the watch
expression can be evaluated, the Watches window again displays the value of the
watch expression.

How to Add a Watch from the Source Editor

You can add a watch to an expression in the source editor.

To add a watch from the Source Editor:

1. In the source editor, select the expression you want to watch with your cursor.

2. Right-click and choose Watch from the context menu to add the expression to the
Watches window.

A dialog appears with the expression.

3. Edit the expression, if necessary.

4. Click OK.

You can also add a watch in the following ways:

• Right-click an item in the Data window and choose Watch from the context menu.

• Drag and drop variables, fields, and objects from the Data window to the Watches
window.

How to Watch a Static Field

To watch a static field:

Enter the full name of the class followed by a period (.) and the name of the field. For
example:

java.io.File.separator

To watch the current exception while stopped at an exception breakpoint, enter:

_throw

How to Edit a Watch

You can edit a watch by selecting its expression in the Watches window.

To edit a watch:

1. Select the expression in the Watches window, then right-click and choose Edit
Watch.

The Edit Watch dialog appears.

2. Enter a new expression or modify the existing one and click OK.

How to Delete a Watch

You can edit a watch by selecting its expression in the Watches window.

To delete a watch:

1. Select the expression in the Watches window.

Using the Debugger Windows

Running and Debugging Java Projects 12-29

2. Press the Delete key or right-click and choose Remove Watch from the context
menu.

You can also delete all the watches by choosing Remove All Watches from the
context menu.

Caution:

You cannot restore a deleted watch.

How to Use the Inspector Window
The Inspector window enables you to single out a selected variable, field or object, and
display the same information that is available in the Watch or Data windows. For
more information about this window, including its context menu options, press F1 in
the Inspector window.

The Inspector window is slightly different from the other windows in that it floats by
default, and you can have multiple instances of Inspector windows. Each Inspector
window contains one data item. You can drag one Inspector window into another and
dock them together.

To open the Inspector Window:

1. Set at least one breakpoint in the Source Editor.

2. Click Debug from the toolbar.

3. When the debugger reaches a breakpoint, select a variable in the Source Editor,
right-click, and choose Inspect.

The floating Inspect window appears and contains the variable you selected. If you
want to inspect something else, enter a new expression or variable in the text field,
or select a previous one from the dropdown list.

If no variable or expression is selected, the Inspect dialog appears pre-populated
with the text under the cursor in the editor as the expression to inspect. Click OK to
open the Inspector window.

The Inspector window will appear floating in the center of your screen, but you can
dock the Inspector window with other windows. To prevent docking, press the Ctrl
key while moving the window. An inspector evaluates an expression according to the
current context of the Stack window. For more information, see Using the Stack
Window.

If you move to a new context, the expression is reevaluated for the new context. If the
execution point moves to a new location where any of the variables in the expression
are undefined, the entire expression becomes undefined. If the execution point returns
to a location where the expression can be evaluated, the inspector again displays the
value of that expression.

How to Use the Heap Window
The Heap window displays information about the heap in the program you are
debugging and helps you to detect memory leaks in your program. You can view all
instances of a class as well as why an object has not been garbage collected.

Two types of folders display in the Heap window:

Using the Debugger Windows

12-30 Developing Applications with Oracle JDeveloper

• Class Folder

Displays the name of the class and how many instances of the class exist in
memory, and when expanded lists the specific instances and their addresses in the
heap.

• Reference Path Folder

Contains all the "root" references which point, either directly or indirectly, to a
specific object. Root references are static fields, stack variables, pinned objects. The
garbage collector will not discard an object if there are any root references.
Expanding a root reference will show you the reference path from the root
reference to the specified object.

To use the Heap window:

• Right-click in the Heap window and choose Add New Type from the context
menu. Alternatively, drag a class node from the Classes window into the Heap
window. Or, right click on a class node in the Classes window and choose Display
in Heap from the context menu. Information about the classes appears in the Heap
window.

Using the Stack Window
The Stack window displays the call stack for the current thread. When you highlight a
line in the Stack window, the Data window, Watches window, and all Inspector
windows are updated to show data for the highlighted method.

How to Use the Stack Window

In the Stack window, you can highlight a line in the stack thread to update values in
the Data, Watches, and Inspector windows.

How to View the Stack of a Tread

You can view the stack of a selected thread in the Stack window.

To view the stack of a thread:

1. Start debugging the project and open the Stack window.

2. Select the thread from the dropdown list, above the columns.

The Stack window immediately reflects the stack of the selected thread.

How to Use the Classes Window
The Classes window displays which classes have been loaded and may also include
useful information, such as the number of instances of a class and how much memory
that number of instances requires. In conjunction with the Classes window, the
debugger also includes a garbage collection tool when you want to force a run of the
Java garbage collector. When you run the garbage collector, the impact is shown
immediately in the Classes window. You can only force a run of the garbage collector
when you are using a virtual machine that allows the debugger to do so.

How to Change the View Order

You can change the order in which items in each column of the Classes Window
displays.

To change the ascending or descending view order:

Using the Debugger Windows

Running and Debugging Java Projects 12-31

• Click at the top of a column to change the sort order. You can sort by:

– Name

– Count

– Memory

– File

If the Show Packages check box is selected, by default the classes display in a tree
structure, where each branch represents a package. Also, the icon and entry next to
each class or package indicates whether the class is included or excluded from tracing.
The special icon shown in Figure 12-6 for a class without line number tables is used for
classes to indicate that tracing is not possible because the class has been stripped or
obfuscated.

Figure 12-6 Icon Indicating Tracing Is Not Possible

In the Classes window, choose Preferences from the context menu to select which
columns to view from the following available options:

• Count

• Memory

• File

How to Use the Monitors Window
Java supports multithreading at the language level through the use of
synchronization. Synchronization is the coordinating of activities and data access
among multiple threads. The mechanism that Java uses to support synchronization is
the monitor. The Monitors window displays status and control information for active
monitors.

The Monitors window will also open automatically if the debugger is in a deadlock
state.

How to Use the Threads Window
The Threads window displays the names and status of all the threads and thread
groups in your program. The columns that display in this window depend on those
column settings that are enabled in the Tools > Preferences > Debugger > Threads
page or by choosing Preferences from the Threads window context menu options
which you can access by right-clicking in the Threads window

The step commands including Step Over, Step Into, and Set Next Statement apply to
the current thread. To select a different thread, right-click a thread and choose Select
Thread from the context menu.

When you highlight a thread in the Threads window, the Stack window is
automatically updated to show the stack for the highlighted thread.

Using the Debugger Windows

12-32 Developing Applications with Oracle JDeveloper

How to Set Preferences for the Debugger Windows
You can choose to customize various debugger window settings including the column
resize mode and other options you want to display.

Tip:

If the debugger has trouble connecting to the debuggee (the program you are
debugging), try increasing the connection retry setting.

To set any of the Debugger window preferences:

1. Choose Tools > Preferences > Debugger.

The debugging panel appears with customizable fields.

2. Make your selections from the fields and options provided.

3. To set any options for a specific debugger window, expand the Debugger node and
click the appropriate window node. For example, if you want to change the
columns displayed in the Smart Data window, click Smart Data.

4. Edit any of the available options as desired.

5. Click OK when you are done.

How to Specify Which Columns Display in the Window
You can choose which columns display in each of the debugger windows. *

To specify which columns display in the window:

• Right-click in the window and choose Preferences from the context menu. Under
Columns, select the columns you want to be displayed in the Breakpoints window.

• Or, in the window, right-click on the columns heading and select column names.

Managing Breakpoints
A breakpoint is a trigger in a program that, when reached, pauses program execution
allowing you to examine the values of some or all of the program variables. By setting
breakpoints in potential problem areas of your source code, you can run your program
until its execution reaches a location you want to debug. When your program
execution encounters a breakpoint, the program pauses, and the debugger displays the
line containing the breakpoint in the source editor. You can then use the debugger to
view the state of your program. Breakpoints are flexible in that they can be set before
you begin a program run or at any time while you are debugging. Figure 12-7 displays
an example breakpoint in a Java Application source file.

Managing Breakpoints

Running and Debugging Java Projects 12-33

Figure 12-7 Breakpoint in Source Editor

Breakpoints set on comment lines, blank lines, declarations, and other non-executable
lines of code are invalid and will not be verified by the debugger.

The JDeveloper debugger supports a number of different types of breakpoints:

• Source breakpoints

• Exception breakpoints

• Method breakpoints

• Class breakpoints

• File breakpoints

• Deadlock breakpoints

Deadlock breakpoints are useful in situations when you find it difficult to locate the
source of the deadlock. When a deadlock breakpoint is encountered, the debugger
halts. The deadlock breakpoint is automatically enabled when you start debugging.

Information about set breakpoints can be viewed in the Breakpoints window.

Understanding Verified and Unverified Breakpoints
While debugging, you can place a breakpoint to the left of any line of code in the
source editor. However, for a breakpoint to be valid, it must be set on an executable
line of code. Before a method is first executed, the debugger verifies all valid
breakpoints in the method. Breakpoints set on comment lines, blank lines,
declarations, and other non-executable lines of code are invalid and will not be
verified by the debugger.

Managing Breakpoints

12-34 Developing Applications with Oracle JDeveloper

When a breakpoint has been verified as valid, the icon displayed in the source editor
margin and in the Breakpoints window changes to the icon shown in Figure 12-8.

Figure 12-8 Verified Breakpoint Icon

Understanding Deadlocks
A deadlock occurs when one or more threads in your program are blocked from
gaining access to a resource or waiting on a condition that cannot be satisfied. A
common deadlock in Java is a monitor block cycle deadlock.

A monitor block cycle deadlock occurs when two or more threads are unable to
proceed because each is waiting to enter synchronized code that one of the others has
already entered.

The following example shows a typical Java synchronization deadlock:

synchronized (a)
 {
 ...
 synchronized (b) {
 ...
 }
 ...
 }

At the same time, thread 2 is executing the following code:

synchronized (b)
{
...
 synchronized (a)
 {
 ...
 }
 ...
 }

A deadlock will occur if thread 1 enters the synchronized (a) as thread 2 enters
the synchronized (b). Thread 1 will be blocked from entering synchronized (b)
until thread 2 finishes the synchronized (b) and thread 2 will be blocked from
entering synchronized (a) until thread 1 finishes the synchronized (a). A deadlock is
also called a "deadly embrace." This example is for two threads but the same situation
could occur for 3, 4, 5, and so on threads. The deadlock breakpoint can detect this type
of deadlock.

Another kind of deadlock is where one thread calls the wait method on a particular
object and no other threads call the notify method on that object. The most common
cause of this kind of deadlock is timing. The notifying thread may have called notify
before the waiting thread called wait. The important thing to know about calling wait
is that even if notify was already called many times before, the wait method waits
until notify is called again. Also, notify doesn't return any kind of error if there was no
thread waiting. The deadlock breakpoint cannot detect this type of deadlock.

If you think your program is hanging, click Pause to pause your program in the
debugger, and open the Monitors window. Perhaps you can see that one thread is
waiting, investigate the code. If you can see that another thread probably called notify
before the first thread called wait, there is a deadlock. This kind of deadlock is very

Managing Breakpoints

Running and Debugging Java Projects 12-35

hard to detect. You must know your code well in order to figure out which other
thread should have called notify.

Understanding the Deadlock Breakpoint
The JDeveloper debugger sets a persistent deadlock breakpoint when it starts running.
A deadlock breakpoint is useful in situations when you find it difficult to locate the
source of the deadlock. When the debugger encounters a deadlock breakpoint, the
debugger halts. It can detect a monitor block cycle deadlock as described above. The
Monitors window can be useful when working with deadlocks.

The deadlock breakpoint has the following characteristics:

• It is a persistent breakpoint that is created automatically when you use JDeveloper.

• It cannot be deleted, but it can be disabled.

• It pauses the debugger if a monitor block cycle deadlock is detected. A monitor
block cycle deadlock occurs when two or more threads are unable to proceed
because each is waiting to enter synchronized code that one of the others has
already entered.

The JDeveloper debugger automatically creates a persistent deadlock breakpoint; this
breakpoint will occur whenever a monitor block cycle is detected. You cannot delete a
persistent breakpoint. You cannot create a new deadlock breakpoint, but you can edit
the existing persistent deadlock breakpoint.

Not all Java Virtual Machines support deadlock detection; for example, the HotSpot
VM does not support deadlock detection.

Understanding Grouped Breakpoints
Grouped breakpoints let you enable a set of breakpoints. When the debugger reaches a
certain point in your code, you can instruct the debugger to enable a breakpoint or a
group of breakpoints that was previously disabled.

For example, even though your code might be catching a NullPointerException,
it may not be behaving correctly. In some cases, NullPointerExceptions occur
more frequently than expected which causes the debugger to stop repeatedly for
NullPointerExceptions, including those that are of no consequence to your code.
This situation can be resolved by creating a breakpoint group, adding this breakpoint
to the group, and disabling the breakpoint group so that the debugger does not stop at
this breakpoint when debugging.

Next, you can create a source breakpoint in some code that you know is executed just
before the problematic NullPointerException is thrown. You can set the actions
for this source breakpoint so that when the source breakpoint occurs, it will
automatically enable the breakpoint group which contains the exception breakpoint.

How to Edit Breakpoint Options
JDeveloper allows you to edit the options of a breakpoint after you have added it in
the source code. From the Edit Breakpoint dialog, you can:

• Set a breakpoint option.

• Set the threads to which the breakpoint will apply.

• Set a pass count for the breakpoint.

Managing Breakpoints

12-36 Developing Applications with Oracle JDeveloper

• Put the breakpoint in a breakpoint group.

• Choose what actions the debugger will take when the breakpoint occurs.

To view and modify the options of a breakpoint:

1. If the Breakpoints window is not open, select View > Breakpoints from the main
menu.

2. In the Breakpoints window, select a breakpoint.

3. Right-click and choose Edit, or click the Edit icon on the Breakpoint toolbar.

The Edit Breakpoint dialog appears with a Definition tab, a Conditions tab, and an
Actions tab.

4. Make any necessary changes to the breakpoint options.

5. To accept the changes, click OK.

Editing a Breakpoint
You can right-click to edit a breakpoint located in the source editor. The Edit
Breakpoint dialog shown in Figure 12-9 displays, where you can specify the definition
of the breakpoint. In the dialog, you can edit some of the most important breakpoint
attributes, such as enabled/disabled, condition and more.

• Figure 12-9 Edit Breakpoints Dialog

You can also hover over a breakpoint in the source editor to display the dialog in
Figure 12-9.

How to Set Source Breakpoints
A source breakpoint is the most common type of breakpoint. It is set on a line of the
source code and program execution is paused when it hits that line.

To set a source breakpoint, do one of the following:

• In the source editor, click in the left margin next to a line of executable code.

• In the source editor, right-click in the left margin next to a line of code, then choose
Toggle Breakpoint (F5).

• Choose Window > Breakpoints to display the Breakpoints window. Then, right-
click anywhere in this window and choose Add Breakpoint from the context
menu. From the submenu, select Source Breakpoint as the breakpoint type, then
complete the package, source file name, and line number information in the dialog.
The source filename should not include any directory information, but must
include the extension of the file. For example:

Application1.java or MyWebApp.jsp

Managing Breakpoints

Running and Debugging Java Projects 12-37

You might want to set a least one breakpoint before you start debugging, but it is
not necessary. While your program is running in the debugger, you can set a
breakpoint. The program pauses when it reaches the breakpoint.

How to Control Breakpoint Behavior
You can control how the debugger behaves when a breakpoint occurs.

To control how the debugger behaves when a breakpoint occurs:

1. In the Breakpoints window toolbar, click Add Breakpoint. Or, select a breakpoint
and click Edit.

2. Click the Actions tab in the New/Edit Breakpoint dialog. The Actions tab allows
you to change these behaviors:

• Halt execution (default)

• Beep

• Log breakpoint occurrence (enter a tag or an expression)

• Enable a group of breakpoints

• Disable a group of breakpoints

How to Delete a Breakpoint
When you no longer need to examine the code at a breakpoint location, you can delete
the breakpoint. You can delete breakpoints either using the source editor or in the
Breakpoints window.

To delete a breakpoint, do one of the following:

• In the left margin of the source editor, click the breakpoint you want to delete.

• In the left margin of the source editor, right-click the breakpoint you want to delete,
and choose Toggle Breakpoint.

• In the source editor, place the cursor in the line of code containing the breakpoint,
and press F5.

• To delete all currently set breakpoints, right-click in the Breakpoints window and
select Delete All.

• Select the breakpoint in the Breakpoints window and click Delete Breakpoint on
the toolbar.

Caution:

You cannot undelete a breakpoint.

How to Disable a Breakpoint

When you disable a breakpoint, all the breakpoint settings remain defined, but the
breakpoint is not triggered when your program is run; your program will not stop on
a disabled breakpoint. Disabling a breakpoint is useful if you have defined a
breakpoint that you don't need to use now, but might need to use at a later time.

Managing Breakpoints

12-38 Developing Applications with Oracle JDeveloper

To disable a breakpoint, do one of the following:

• In the source editor, right-click the breakpoint symbol in the left margin and choose
Disable Breakpoint.

• In the Breakpoints window (Window > Debugger > Breakpoints) right-click the
breakpoint you want to disable and choose Disable.

• To disable a group of breakpoints in the Breakpoints window, select the group that
you want to disable, right-click and choose Disable Group.

You can also disable breakpoints from the Breakpoint toolbar. Select the breakpoint
or breakpoint group, and click Disable on the toolbar.

• To disable all current breakpoints, right-click in the Breakpoints window, and
choose Disable All from the context menu.

How to Enable a Breakpoint

You can reenable a disabled breakpoint.

To reenable a disabled breakpoint:

• To enable a breakpoint that is disabled, right-click the disabled breakpoint symbol
(or entry in the Breakpoints window), and choose Enable.

• To enable all breakpoints that have been set, right-click in the Breakpoints window,
and choose Enable All.

• To enable a group of breakpoints, right-click a breakpoint group in the Breakpoints
window, and choose Enable Group.

You can also enable breakpoints from the Breakpoint toolbar. Select the breakpoint
or breakpoint group, and click Enable on the toolbar.

How to Set Instance Breakpoints
Breakpoints typically have effect whenever they are reached. An instance breakpoint
is associated with a specific instance of the class that defines the method where the
breakpoint appears.

An instance breakpoint is a source breakpoint that has been associated with an
instance filter that identifies the selected instances. Instance breakpoints do not persist
between runs of the debugger. Instance filters are shown in the Instance Filters column
of the Breakpoints window.

To set an instance breakpoint:

1. Set the source breakpoint that you will convert to an instance breakpoint. It must
be in a method of the instance's class. For more information, see How to Set Source
Breakpoints ..

2. Set a second breakpoint at some point where the desired instance will be accessible.

3. Define the instance filter:

• Start or resume the debugger.

• When the debugger stops at the second breakpoint, find the desired instance in
the Data window, Smart Data window, or Watches window.

Managing Breakpoints

Running and Debugging Java Projects 12-39

• Right-click the instance, choose Instance Filters, and choose the source
breakpoint that is to become an instance breakpoint.

Repeat for other instances you want to track.

4. Resume the debugger.

The debugger will stop at the instance breakpoint only for the selected instances.

How to Set Exception Breakpoints
Breakpoints are typically attached to a particular line of code; they pause the debugger
when a particular line of code is about to be executed. In addition, you can set a
breakpoint to be activated when a certain type of exception is thrown. Exception
breakpoints are not associated with a particular line of code.

To set an exception breakpoint:

1. In the Breakpoints window, click Add Breakpoint on the Breakpoint toolbar. From
the submenu, choose Exception Breakpoint.

The Create Exception Breakpoint dialog appears.

2. In the Definition tab, enter or choose the name of an exception class.

3. If desired, select or clear the Break for Caught Exceptions or Break for Uncaught
Exceptions checkboxes. Both checkboxes are selected by default.

4. Click OK.

The debugger will now pause if an exception of the specified type is thrown.

By default, the debugger automatically creates a persistent exception breakpoint for
uncaught throws for java.lang.Throwable. This breakpoint will occur whenever
an uncaught exception is thrown. You cannot delete a persistent breakpoint, although
you can disable it.

How to Make a Breakpoint Conditional
When you make a breakpoint conditional, the debugger pauses when a certain
condition is met. When a breakpoint is first set, the debugger pauses the program
execution each time the breakpoint is encountered. However, using the Edit
Breakpoints dialog, you can customize breakpoints so that they are activated only in
certain conditions.

The Conditions tab in the Edit Breakpoint dialog is where you enter an expression that
is evaluated each time the debugger encounters the breakpoint while executing the
program. If the expression evaluates to true, then the breakpoint pauses the program.
If a breakpoint condition cannot be evaluated, the debugger will stop at the location as
if it was an unconditional breakpoint.

When the debugger stops at a line with a conditional breakpoint, a ghost window
appears next to the breakpoint icon showing the breakpoint condition. If the debugger
stopped because the condition was true, the condition is shown with a green
checkmark icon; if it stopped because the condition could not be evaluated, the
condition will be shown with a question mark icon.

For example, suppose you want a breakpoint to pause on a line of code only when the
variable mediumCount is greater than 10.

To set a breakpoint condition:

Managing Breakpoints

12-40 Developing Applications with Oracle JDeveloper

1. Set a breakpoint on a line of code by clicking to the left of the line in the source
editor.

2. Open the Breakpoints window by choosing View > Debugger > Breakpoints.

3. In the Breakpoints window, right-click the breakpoint you just set and choose Edit.

4. In the Edit Breakpoint dialog, click Conditions.

5. Enter an expression in the Condition field, for example, mediumCount > 1

6. Click OK.

You can enter any valid Java language expression in the Edit Breakpoint dialog, but all
symbols in the expression must be accessible from the breakpoint's location, and the
expression cannot contain any method calls. For an exception breakpoint, you may
want to use the exception object in your condition by using _throw.

You can also right-click a breakpoint located in the source editor to set conditions. Or,
with your mouse cursor, hover over a breakpoint icon in the gutter of an editor
window. For more information, see Editing a Breakpoint..

Using Pass Count Breakpoints
The Pass Count field specifies the number of times that a breakpoint must be passed
for the breakpoint to be activated. Pass counts are useful when you think that a loop is
failing on the nth iteration. The debugger pauses the program the nth time that the
breakpoint is encountered during the program run. The default value is 1.

If the Pass Count column is shown in the Breakpoints window, you can see the pass
count value decrement each time the breakpoint line of code is encountered during the
program execution. If the pass count equals 1 when the breakpoint line is encountered,
the breakpoint is activated, and the program pauses at that line.

When pass counts are used together with breakpoint conditions, the breakpoint
pauses the program execution the nth time that the condition is true; the condition
must be true for the pass count to be decremented.

How to Examine Breakpoints with the Breakpoints Window
To see the list of breakpoints, choose Window > Debugger > Breakpoints from the
main menu. Breakpoints that have been verified as valid by the debugger are
indicated by the icon shown in Figure 12-8. You can use the Breakpoints window to
quickly find the breakpoint location in your source code.

To use the Breakpoints window to locate a breakpoint in the source editor:

1. In the Breakpoints window, select a breakpoint.

2. Right-click and choose Go to Source from the context menu.

How to Manage Breakpoint Groups
You can enable or disable several breakpoints with a single action, by creating a
breakpoint group and putting breakpoints into it. Once you've created a breakpoint
group, you can enable, disable, or remove it like a single breakpoint.

Managing Breakpoints

Running and Debugging Java Projects 12-41

How to Create a Breakpoint Group

You create a breakpoint group by first creating a breakpoint, then editing it to create a
breakpoint group. This enables all the breakpoints contained in the selected group.
When a breakpoint is enabled, it means that the conditions and actions are executed
when the breakpoint is encountered.

To create a breakpoint group:

1. In the Breakpoints window, right-click a breakpoint and choose Edit from the
context menu.

The Edit Breakpoint dialog appears.

2. In the Breakpoint Group Name field, enter a group name for this breakpoint.

3. Click OK.

A new group is created in the Breakpoints window, and is indicated by a folder
icon. The breakpoint you just edited is automatically put in the new group.

How to Move a Breakpoint into a Breakpoint Group

To move a breakpoint, you can either drag-and-drop it into the breakpoint group, or
follow these steps.

To move a breakpoint into a breakpoint group:

1. In the Breakpoints window, right-click a breakpoint and choose Edit from the
context menu.

The Edit Breakpoint dialog appears.

2. From the Breakpoint Group Name field, select a breakpoint group from the
dropdown list, or enter a new group name.

3. Click OK.

The breakpoint is added into the specified group.

Enabling Disabling or Removing a Breakpoint Group

To enable, disable, or remove a breakpoint group, in the Breakpoints window, right-
click a breakpoints group, and choose Enable Group, Disable Group, or Delete
Group from the context menu.

You can also enable or disable a group from the Breakpoint toolbar. With the group
name selected in Breakpoints window, click the Enable or Disable icon on the toolbar.
All the breakpoints of the selected group will be enabled or disabled.

Examining Program State in Debugger Windows
Even though you can view your program by running and stepping through it, you
usually need to examine the values of program variables to uncover bugs. For
example, it is helpful to know the value of the index variable as you step though a
loop, or the values of the parameters passed in a method call. When your program is
paused in the debugger, you can examine the values of variables, arguments, fields,
and array items.

Examining Program State in Debugger Windows

12-42 Developing Applications with Oracle JDeveloper

How to Inspect and Modify Data Elements
You can inspect and change the values of data items using the Data, Smart Data,
Inspector, or Watches windows during the course of your debugging sessions.

JDeveloper also allows you to inspect a data item without adding it in Data window.
When the debugger has stopped at a breakpoint in the Source Editor, hover the mouse
over a data item to view the its name, value, and type. If the data item is an object or
an array, you can inspect children of the selected item deep in the object hierarchy.

How to Inspect a Data Item

When you inspect a data item, you evaluate it with different expressions while your
debugging session is running. You can then modify program data values as a way to
test hypothetical bug fixes during a program run. If you find that a modification fixes
a program error, you can exit the debugging session, fix your program code
accordingly, and recompile the program to make the fix permanent.

To inspect a data item:

1. Open the Data window while the debugger is stopped at a breakpoint.

2. Right-click an item in the Data window and choose Inspect from the context menu.

The floating Inspector window opens displaying the item's name, value, and other
related information. The columns which display in this window depend on those
column settings that were enabled in the Tools > Preferences - Debugger -
Inspector page. For more information, see How to Use the Inspector Window.

3. To evaluate the item for an expression, choose Edit Expression from the context
menu.

You can also add a watch expression or further inspect the data item.

4. When you are done, close the Inspector window.

How to Modify the Value of a Variable

You can modify program data values during a debugging session as a way to test
hypothetical bug fixes during a program run. If you find that a modification fixes a
program error, you can exit the debugging session, fix your program code
accordingly, and recompile the program to make the fix permanent.

Note:

Some object types cannot be modified while the program is running. A
warning appears if you attempt to modify such an object type.

When you modify the value of a variable, the modification is effective for that specific
program run only; the changes you make through the Data or Watches windows do
not affect your program source code or the compiled program. To make your change
permanent, you must modify your program source code in the source editor, then
recompile your program.

The new value needs to be type-compatible with the variable you want to assign it to.
A good rule of thumb is that if the assignment would cause a compile-time or run-
time error, it is not a legal modification value.

Examining Program State in Debugger Windows

Running and Debugging Java Projects 12-43

To modify the value of a variable in the Data window:

1. Open the Data window while the debugger is stopped at a breakpoint.

2. Right-click an item in the Data window and choose Modify Value from the context
menu.

The Modify Value dialog appears with the selected item's name and its current
value.

3. Enter a new value for the item.

• If you are modifying a primitive value, you can enter a new value.

• If you are modifying a reference pointer (other than a string), you can enter the
memory address of an existing object or array.

• If you are modifying a string, you can enter either a new string value or the
memory address of an existing string.

4. Click OK to change the value for the item and to close the dialog.

The new value appears in the Data, Smart Data, Inspector, or Watches windows.

How to Modify Expressions in the Inspector Window
You can modify an existing expression in the inspector window.

To modify an expression in the Inspector window:

1. You can type the new expression in the corresponding text box, or in the Inspector
window, right-click and choose Edit Expression from the context menu.

The Edit Expression dialog appears.

2. Enter a new expression.

3. Click OK.

How to Show and Hide Fields in the Filtered Classes List
While debugging, you can use filters to reduce the number of fields that are displayed
when you expand an object in a data-related debugger window. You can perform this
task in the Smart Data window, the Data window, the Inspector window, the Watches
window, and the left-hand side of the Monitors window through the Object
Preferences dialog. Displaying fewer fields narrows your focus when debugging and
may make it easier to locate and isolate potential problems in your program.

For example, you can create filters for classes in the data windows so that the
debugger displays only the fields of interest to you. This drastically reduces clutter
and allows you to find the relevant data more quickly.

To show or hide fields in the filtered classes list:

1. Select an object in a data-related debugger window. Right-click and choose Object
Preferences from the context menu.

Choosing Object Preferences lets you go directly to the Object Preferences dialog
for this specific object from which you can specify filters to control which fields are
displayed and which fields are not displayed when you expand an object.

Examining Program State in Debugger Windows

12-44 Developing Applications with Oracle JDeveloper

2. In the Object Preferences dialog, you can easily traverse the superclass hierarchy of
the selected object, defining or updating the filters for each superclass. Select a class
in the Types window and choose the fields to hide or display in the Value column
of the debugger window.

3. Click the arrows to shuttle filters from the Fields to Show list to the Fields to Hide
list.

4. Click OK when you are done.

Debugging Remote Java Programs
In addition to debugging code locally in the JDeveloper IDE, you can also debug code
which is located on a remote machine or running in a different VM instance. This
means that you can use the debugger to debug code that has already been deployed.
The debugger can simultaneously attach to multiple remote VMs, so you can
seamlessly debug distributed applications, such as JSPs deployed to a web server
accessing EJBs deployed to an application server.

The main difference between remote debugging and local debugging is how you start
the debugging session. For local debugging, JDeveloper automatically launches the
program you want to debug (called a debuggee process) and then attaches the
debugger to that program. For remote debugging, you must manually launch the
program you want to debug. Also, if you are debugging a JSP or a servlet, you must
manually start a browser to invoke your JSP or servlet.

Once the debuggee is launched and the JDeveloper debugger is attached to it, remote
debugging is very similar to local debugging. Remember that you can use remote
debugging when the debuggee process is running on the same machine as JDeveloper
or when the debuggee process is running on a different machine.

Unlike local debugging, you must choose which protocol to use before you start your
remote debugging session. The remote debugging protocols are configured in
Debugger - Remote page of the Edit Run Configuration dialog.

You can also debug Web pages such as JSPs or servlets using the HTTP Analyzer. For
more information, see Auditing and Monitoring Java Projects.

• Select Attach to JPDA to attach to the debugger application at a specified address.
For more information about the Sun Java Platform Debugger Architecture (JPDA)
Connection and Invocation, see http://docs.oracle.com/javase/6/docs/
technotes/guides/jpda/conninv.html

• Select Listen for JPDA to specify that the debugger listen for a debuggee to attach
to the debugger. Also, choose this option if you are debugging remote PL/SQL
programs.

How to Start a Java Process in Debug Mode
After you have configured a project for remote debugging, you can start your remote
debugging session by issuing the appropriate command based on the debugging
protocol and the environment.

To start the Java process, enter the following at the command line:

java [-client|server] -cp <project_directory>\classes -
agentlib:jdwp,<option1>[=<value1>],<option2>[=<value2>]... <java_main_class>

The available options are:

Debugging Remote Java Programs

Running and Debugging Java Projects 12-45

http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/conninv.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/conninv.html

• server(=n/y)

If set to y, then the Java process waits for a Debugger to attach. If set to n (default),
the process attaches itself to the debugger application at the specified address.

• address

Specifies the port for the connection. Defaults to 4000.

• timeout

Time interval after which the connection attempt times out. Defaults to 2 seconds.

• suspend =(y/n)

If set to y (default), the Java process runs after the debugger connects to it. If set to
n, the debuggee process starts right away without waiting for the debugger to
connect to it.

Note:

The options shown are applicable if you are running JDK 1.6 or later. See the
documentation for the version of JDK you are running if earlier than JDK 1.6.

Command line examples:

• java -cp <project_directory>\classes -
agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=
4000

Listen for a debugger connection on port 4000, but begin execution without waiting
for the debugger. Timeout after 2s (default). Implement the Client VM (default).

• java -server -cp <project_directory>\classes -
agentlib:jdwp=transport=dt_socket,server=n,suspend=y,timeout=
3,address=8000

Attach to a debugger connection on port 8000. Begin execution only after
connecting to the debugger. Timeout after 3s. Implement the Server VM.

For more information about the Sun JPDA Connection and Invocation, see http://
www.oracle.com/technetwork/java/javase/documentation/ index-
jsp-135444.html.

How to Use a Project Configured for Remote Debugging
Any project can be configured to perform remote debugging.

To configure a project for remote debugging:

1. Click Debug from the toolbar.

The appropriate Attach to dialog appears.

2. In the Host list box, enter or select the name or IP address of the machine where the
remote debuggee has been started.

3. In the Port list box, enter or select the port number for the remote debuggee.

4. Click OK.

Debugging Remote Java Programs

12-46 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

In the Log window, once the debugger has connected, a successful connection
message appears.

5. If you are remote debugging a JSP or servlet, you will want to access your JSP or
servlet by launching your browser.

If you are remote debugging an EJB, you will want to run an EJB client that will
access your EJB.

6. Continue with your debugging session as usual.

7. To detach the debugger from the remote debugging process without terminating
the debuggee process, choose the Run > Detach menu option. T

This option is appropriate for remote debugging an application server.

8. To terminate the remote debugging process, choose the Run > Terminate menu
option, or select the Terminate icon.

How to Configure JPDA Remote Debugging
This section describes how to configure JDeveloper for Java Platform Debugger
Architecture (JPDA) remote debugging.

To configure your project for remote debugging:

1. Make changes in the JSP section of global-web-application.xml as follows:

<init-param>
 <param-name>debug</param-name>
 <param-value>class</param-value>
</init-param>

2. Start commands for Integrated WebLogic Server (make sure -server is the first
parameter).

value="-server -
agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=4000 -Xms512m -
Xmx750m -XX:PermSize=128m -XX:MaxPermSize=256m -Djava.security.policy=
$ORACLE_HOME/j2ee/home/config/java2.policy -Djava.awt.headless=true -
Dhttp.webdir.enable=false"/>

To configure JDeveloper for remote debugging:

1. Choose Application > Project Properties, select the Run/Debug/Profile node,
select a run configuration and click Edit.

2. Select the Remote Debugging and Profiling check box.

3. On the Debugger - Remote page, verify that Protocol is set to Attach to JPDA.

4. Close the Preferences dialog.

5. Set breakpoints in your code and from the Debug button dropdown list select the
desired run configuration. Complete the connection dialog and verify connection to
the debuggee.

6. Access JSP previously deployed to server via a browser. The breakpoint should be
hit and all work as expected.

Debugging Remote Java Programs

Running and Debugging Java Projects 12-47

Debugging Remote Java Programs

12-48 Developing Applications with Oracle JDeveloper

13
Implementing Java Swing User Interfaces

This chapter describes how to create graphical user interfaces (GUIs) for applications
using the Swing components.

Using the Swing GUI builder in JDeveloper, you can quickly and easily assemble the
elements of a user interface (UI) for a Java application using Swing components. You
construct the UI with components selected from the Components window, such as
buttons, text areas, lists, dialogs, and menus. Then, you set the values of the
component properties and attach event-handler code to the component events.

Included is a description of the UI debugger, which is used to debug user interfaces
specifically for AWT and Swing-based client applications. The UI Debugger offers an
alternative way of debugging a GUI application.

This chapter includes the following sections:

• About Java Swing UI Components and Containers

• Designing Java GUIs

• How to Create a Form

• Understanding the Forms You Can Create

• Working with Layout Managers

• Adding Components

• Working with Containers

• Working with Layout Managers

• How to Create Accessible Forms

• Working with Event Handling

• How to Modify GUI Source Code

• Working with the UI Debugger

About Applications Developed in Earlier Versions
Applications which use Swing which were developed in earlier versions of JDeveloper
can be migrated and opened in this version of JDeveloper, and there is full support for
working with previously designed visual classes. The legacy editor works with any
class that has a jbInit() method.

You can visually edit forms in the old application using the old Java Visual Editor,
however the way it worked and the way the new Swing GUI builder works are
different, and there is no migration from one to another.

Implementing Java Swing User Interfaces 13-1

About Java Swing UI Components and Containers
Java Swing components include everything from buttons, tables, text components, and
split panes. For example, the JCheckbox component is a square box used to display
boolean (true/false) values. Many components are capable of sorting, printing, and
drag and drop, as well as other supported features.

You can see examples of Java Swing in the tutorials, which are available at http://
docs.oracle.com/javase/tutorial/uiswing/.

When you lay out a form to design the UI in JDeveloper, you use a container.
Containers are also components. They hold and manage other components. You
interact with them by getting and setting their properties, calling their methods, and
responding to their events as with any other component. JDeveloper provides tools to
help you generate your containers. See Working with Containers for more
information.

A layout manager automatically arranges the components in a container according to
a particular set of rules specific to that layout manager. It determines the size and
position of the components within a container. For example, the BorderLayout
arranges a container's components in areas named First, Last, Before, After, Center.

Figure 13-1 BorderLayout

Designing Java GUIs
The IDE's GUI Builder enables you to design GUI's (graphical user interfaces) visually.
As you create and modify your GUI, the IDE automatically generates the Java code to
implement the interface.

Whenever you open a GUI form, the IDE displays it with tabs enabling you to switch
between Source and Design views. The Design view enables you to work with GUI
forms visually while the Source view permits editing of the form's source code
directly.

Typically, you add components to a form using the Components window and arrange
them in the GUI Builder workspace. As you work, the GUI Builder automatically
displays guidelines suggesting preferred alignment and anchoring for the components
you add. Using the Properties window in conjunction with the Structure window, you
can then examine and adjust properties of a form's components and layout managers,
manage component event handlers, and define how code is generated.

Notes:

• GroupLayout was added to version 6 of the Java Platform. You can set the version
of GroupLayout in the property sheet for each form.

About Java Swing UI Components and Containers

13-2 Developing Applications with Oracle JDeveloper

http://docs.oracle.com/javase/tutorial/uiswing/
http://docs.oracle.com/javase/tutorial/uiswing/

• To use the GUI Builder, you must work with files that were created with the IDE's
GUI form templates. You cannot use the GUI Builder to edit GUI forms (that is Java
files) that were created outside of the IDE.

About Guarded Blocks
As you work with a form in the Design view, code is generated automatically by the
GUI Builder and is displayed in the Source view with a grey background. This code is
called guarded code and is not directly editable.

Note:

You can freely edit all the code that is not guarded. For example, you can
write code for initialization or customization of the UI (in the constructor just
after the initComponents() call).

All the components have assigned fields so they can be accessed from
anywhere in the Java class.

Guarded text generated by the GUI Builder's includes:

• Blocks of components' variable declarations.

• The initComponents() method, in which form initialization is performed. This
method is called from the form's constructor and though it is not editable
manually, you can affect the way it is generated by editing the Code properties in
the component's property sheet.

• The header (and trailing brace) of all event handlers.

How to Create a Form
You can create forms within an existing project.

To create a new form:

1. In the Applications window, select the project where you want to create the form.

2. From the main menu, select New > From Gallery > Client Tier > Swing/AWT.

3. Select the type of form you want to create.

4. Complete the wizard and click OK.

5. Scroll to the source file for the form in the Applications window, for example,
NewPanel.java.

6. Double-click the source file.

The GUI builder displays where you can edit the form.

Understanding the Forms You Can Create
The following table contains the forms you can build in JDeveloper.

How to Create a Form

Implementing Java Swing User Interfaces 13-3

Form Description

JPanel Form Creates a new Swing panel. Panels are frequently used to group
together several other components into one place. A JPanel itself can
be used as a component within a JFrame or JDialog.

JFrame Form Creates a new Swing frame. Frames are typically used as stand-alone
top level windows as the main user interface to the application. Most
Swing applications are built starting from this form.

JDialog Form Creates a new Swing dialog. Dialogs are modal or modeless windows
that are typically used to prompt users for input.

JInternalFrame Form Creates a new Swing internal frame that can be placed into a
JDesktopPane to provide an MDI user interface.

Bean Form Creates a new form based on any JavaBeans component (either visual
or non-visual). You must specify the bean class in the wizard.

Panel Form Creates a new AWT (Abstract Window Toolkit) panel. Panels are
frequently used to group together several other components into one
place.

AWT is the toolkit used in previous versions of JDeveloper. Swing is
preferred now.

Frame Form Creates a new AWT form. Frames are typically used as stand-alone
top level windows as the main user interface to the application.

Dialog Form Creates a new AWT dialog. Dialogs are modal or modeless windows
that are typically used to prompt users for input

Adding Components
Once you have created a new form, you can add components for display and control.
You can add components a few different ways:

To add a component from the Components window:

1. Select a component in the Components window by clicking its icon.

2. Without releasing the mouse button, drag the component to the desired location
in the form.

3. If you want to add a non-visual component, or a visual component, out of the
visual hierarchy of the designed container, place it in the white area around the
form. It will then appear under the Other Components node in the Structure
window.

To add multiple components from the Components window:

1. Select a component in the Components window by clicking its icon. Release the
mouse button.

2. While holding down the shift key, click each location in the form where you want
to place an instance of the component you selected in the palette.

3. Release the shift key when adding the last component, or press Esc or right click
to cancel adding.

Adding Components

13-4 Developing Applications with Oracle JDeveloper

4. If you want to add a non-visual component, or a visual component but out of the
visual hierarchy of the designed container, place it in the white area around the
form. It will then appear under the Other Components node in the Structure
window.

To add a component using the context menu:

1. In the Structure window, right-click the container to which you want to add a
component.

2. Choose Add From Components and then choose desired component from the
appropriate submenu:

• Containers

• Controls

• Menus

• Windows

• Box Fillers

• AWT

• Beans

How to Set Component Properties
Once you have added a component to a form, you can adjust its behavior and
appearance in the Properties window.

To edit a component's properties:

1. Select the component in the GUI Builder or Structure window to display its
properties in the Properties window. Note that if you select multiple components,
their common properties are displayed and any modifications apply to all of the
selected components.

2. Edit the component's properties in the Properties window by selecting the property
and entering the desired value.

3. If the property you want to edit has an ellipsis (...) button, you can click it to open a
special property editor that provides more advanced editing options (e.g. a color
chooser for a color-type property), or alternate ways of specifying the property
value (e.g. using a resource bundle for a text property), including a possibility to
type directly the code that should represent the property value.

Use this to edit a given property in another way than in the small in-place editor in
the properties window. You can also choose from several ways how to enter the
property value via the combo box at the top.

How to Select Components in Your User Interface
Before attempting to select an existing component in your UI, be sure the selection
arrow in the GUI builder toolbar is depressed. Otherwise, you may accidentally place
a component on your UI.

Adding Components

Implementing Java Swing User Interfaces 13-5

How to Select a Single Components

To select a single component, do one of the following:

• Click the component in the GUI Builder.

• With focus on the GUI Builder, tab to the component (Tab = forward; Shift+Tab =
backward).

• Select the component in the Structure window

How to Select Multiple Components

To select multiple components, hold down the Ctrl key and do one of the following:

• Hold down the Ctrl key and click the components in the GUI builder or in the
Structure window to add/remove components from selection one by one.

• Click and drag around the outside of the components you want to select. As you
drag, you surround the components with a rectangle, or "lasso." When this
rectangle encloses all the components you want to select, release the mouse button.
If necessary, you can then use Ctrl+click to individually add or remove
components from the selected group.

If you need to drag for selection inside a sub-container, you would normally drag
the sub-container away. To prevent that, press and hold Shift during dragging.

• Hold down shift holding Shift and click components in the Structure window to
perform an interval selection. On design canvas clicking with Shift adds to
selection one by one, but does not remove from selection.

How to Align Components
Once you have added components, you can adjust their alignment them to ensure that
your form will appear as desired at runtime.

Most of the time, you can achieve the desired alignments by "snapping" components at
the suggested positions when dragging. Then you can further adjust the alignment
using alignment actions from the toolbar or context menu.

Note:

This applies only to Free Design (the default layout mode), not to other layout
managers.

To align components:

1. Select the components you want to align in the GUI Builder.

2. Click the appropriate align button in the GUI Builder toolbar.

Alternately, you can right-click either component and choose Align > Left in
Column (or Align > Right in Column) from the pop-up menu.

The IDE shifts the component positions so that the specified edges are aligned and
the component anchoring relationships are updated.

Adding Components

13-6 Developing Applications with Oracle JDeveloper

How to Size Components
It is often beneficial to set several related components, such as buttons in modal
dialogs to be the same size so they can be easily recognized as offering similar
functionality. You can also adjust the resizing behavior of components to ensure that
component relationships are maintained at runtime.

The Free Design mode allows you to size components using mouse any way you need.
Do this with consideration, though. Resizing a component from its default size to a
fixed size leads to setting the component with a hardcoded size in pixels that may go
against the cross-platform layout principles. Typically you do not want to resize
buttons or labels, their size should only be defined by their text. It is usually fine to
resize components with no fixed content that are set to "Auto Resizing" because they
can still accommodate their size in runtime (for example, text fields).

When working with null, AbsoluteLayout, or GridBagLayout, you can size
components when you first place them in your UI, or you can resize and move
components later.

Note:

This applies only to Free Design (the default layout mode), not to other layout
managers.

To set components to the same size:

1. Select all of the components you want to be the same size in the GUI Builder.

2. Right-click any one of components, and choose Same Size > Set Width (or Same
Size > Set Height) from the context menu.

To set component resizing behavior:

1. Select the components whose auto resizing behavior you want to set.

2. Right-click any one of the components and choose Auto Resizing > Horizontal (or
Auto Resizing > Vertical) from the context menu.

Alternatively, use the toolbar buttons.

Component auto-resizing behavior is set to resize horizontally at runtime. The
alignment guidelines and anchoring indicators are updated to indicate the new
component relationships.

Working with Containers
Java GUIs are forms comprised of top-level containers within which are grouped sub-
containers as well as the various components used to provide the desired information
and control functionality.

It is often useful to focus work on single subcontainers rather than the entire form the
GUI Builder generally displays. When working with large forms containing complex
nested hierarchies of containers, changing the scope of the GUI Builder's focus enables
you to concentrate on specific parts of your interface.

To change the GUI Builder's focus to a specific container:

Working with Containers

Implementing Java Swing User Interfaces 13-7

1. In the GUI Builder or Structure window, right-click the container you want to
edit.

2. Choose Design This Container from the contextual menu.

The IDE adjusts display of the workspace such that the current container fills the
work area and hides the form's other components. The form's entire hierarchy
remains available in the Structure window.

To return the GUI Builder's display focus to the entire form:

1. Right-click the container in the GUI Builder.

2. Choose Design Parent > [Top Parent] from the contextual menu.

The IDE adjusts the work area display such that the entire form is visible. If the
Design Parent menu item is dimmed, you are already designing the entire form.

Reordering Components Within a Container
The order of components in a container follows the sequence in which components are
added. If the layout manager you have chosen for a container does not use constraints
(FlowLayout, BoxLayout, and GridLayout), the order of components also determines
how they are arranged visually. You can, however, reorder the components using the
Structure window or by dragging them in the form itself.

With layout managers that use constraints (BorderLayout, GridBagLayout,
CardLayout, AbsoluteLayout, and Null Layout), the order of components in the
container does not determine the order in which the components appear. For these
containers, you can only rearrange the component order in the Structure window.
Although GridBagLayout uses constraints to determine how components are
arranged, component order determines the layout when the Grid X and Grid Y
constraints are not used.

Working with Layout Managers
A Java program can be deployed on more than one platform. If you use standard UI
design techniques of specifying absolute positions and sizes for your UI components,
your UI might not look good on all platforms. For this reason, you should not use
AbsoluteLayout and null layout in production UI. These are not suitable for cross-
platform UI, should be used only for prototyping or with awareness of their
restrictions.What looks fine on your development system might be unusable on
another platform. To solve this problem, Java provides a system of portable layout
managers. Layout managers allow you to specify rules and constraints for the layout
of your UI in a way that will be portable.

Layout managers enable you to control the way in which visual components are
arranged in GUI forms by determining the size and position of components within
containers. This is accomplished by implementing the LayoutManager interface.

Use JDeveloper's layout managers to control how components are located and sized in
the container each time it is displayed. A layout manager automatically arranges the
components in a container according to a particular set of rules specific to that layout
manager.

Layout managers give you the following advantages:

• Correctly positioned components that are independent of fonts, screen resolutions,
and platform differences.

Working with Layout Managers

13-8 Developing Applications with Oracle JDeveloper

• Intelligent component placement for containers that are dynamically resized at
runtime.

• Ease of translation with different sized strings. If a string increases in size, the
components stay properly aligned.

The layout manager sets the sizes and locations of the components based on various
factors such as:

• Layout manager's layout rules

• Layout manager's property settings, if any

• Certain properties common to all components, such as preferredSize,
minimumSize, maximumSize, alignmentX, and alignmentY

• Size of the container

Normally, when coding your UI manually, you override the default layout manager
before adding components to the container. To change a layout manager on the
container, right click it in the designer area or in the Structure window, go to Set
Layout menu and select the desired layout manager. For more information, see How
to Set the Layout Manager.

When using the GUI builder (or visual editor), you can change the layout whenever
you like. JDeveloper will adjust the code as needed.

Note:

If you want to change the properties for a layout manager using the GUI
builder, you must explicitly specify a layout for a container so its properties
will be accessible in the Properties window.

Choose a layout manager based on the overall design you want for the container.
Some layouts can be difficult to work with in the GUI builder because they
immediately take over placement and resizing of a component as soon as you add it to
the container. To alleviate this problem during initial layout prototyping, JDeveloper
provides a layout called null, which leaves the components exactly where you place
them and at the size you specify. Starting with null makes prototyping easier in your
container. Later, after adding components to the container, you can switch to an
appropriate portable layout for your design.

If you cannot get what you need with the Free Design mode, experiment with
different layouts to see their effect on the container's components. For example, a
viable alternative of an complex layout is the GridBagLayout. For more information,
see How to Use the GridBag Customizer. If you find the layout manager you've
chosen doesn't give you the results you want, try a different one, or try nesting
multiple panels with different layouts to get the desired effect.

How to Set the Layout Manager
When you create a new container, it is generally created using a default layout so that
you can take advantage of the IDE's Free Design features. If necessary, you can change
the layout of most containers using the GUI Builder or the Structure window.

To set the layout manager from the GUI Builder:

1. Right-click the container whose layout you wish to change.

Working with Layout Managers

Implementing Java Swing User Interfaces 13-9

2. Select Set Layout and a layout menu

To set the layout manager from the Structure window:

1. Right-click the node for the container whose layout you wish to change.

2. In the contextual menu, choose the desired layout from the Set Layout submenu.

When you change layouts, the IDE remembers the properties of the discarded layout
manager. If you then revert back the to the previous layout manager, the form also
returns to its prior state.

Understanding FreeDesign Layout
FreeDesign lays out your form using visual guidelines that automatically suggest
optimal alignment and spacing. As you work, the GUI Builder translates your design
decisions into a functional UI without requiring you to specify a layout manager.
Because Free Design employs a dynamic layout model, whenever you resize the form
or switch locales, the GUI adjusts to accommodate your changes without changing the
relationships between components.

• You can combine FreeDesign containers and containers using other layout
managers together in the same form. Free Design enables you to lay out your form
using visual guidelines that automatically suggest optimal alignment and spacing
of components.

How to Set Layout Properties
You can modify the appearance of your forms by adjusting general layout manager
properties as well as properties specific to components.

You can modify:

• General layout properties which affect all components in a container, such as
alignment of components and gaps between the components.

• Layout properties specific to a component that is managed by a particular layout
manager and which apply to that component alone. These type of properties are
also known as constraints.

To set general layout manager properties:

1. Select the layout manager's node in the Structure window.

2. In the Properties window, select the property you want to edit and enter the
desired value. Note that the properties vary depending on the layout manager
and that some layout managers do not have any properties.

To set layout properties of components:

1. Select the component in the Structure window.

2. In the Properties window, scroll down to Layout, select the property you want to
edit and enter the desired value.

Working with Layout Managers

13-10 Developing Applications with Oracle JDeveloper

Note:

You can edit the custom code of a component in a more natural way by
selecting Customize Code from context menu of the component and then edit
its custom code in more natural way.

Understanding Layouts Provided with JDeveloper
You can choose from the following Layout Managers in the IDE:

• FlowLayout

FlowLayout arranges components in a container like words on a page. It fills the
top line from left to right until no more components can fit, continuing the same
way on each successive line below.

• BorderLayout

BorderLayout arranges components along the edges or the middle of their
container. Using BorderLayout, you can place components in five possible
positions relative to the ComponentOrientation of the container:

– First, which correspond to BorderLayout.PAGE_START

– Last, which correspond to BorderLayout.PAGE_END

– Before, which correspond to BorderLayout.LINE_START

– After, which correspond to BorderLayout.LINE_END

– Center, which corresponds to interior area.

• GridLayout

GridLayout places components in a grid of equally sized cells, adding them to the
grid from left to right and top to bottom.

• GridBagLayout

GridBagLayout is a powerful layout manager that provides precise control over all
aspects of the layout even when the container is resized, using a complex set of
component properties called "constraints." It is particularly useful for
multiplatform Java applications as it enables you to create a free-form layout that
maintains a consistent appearance across platforms.

GridBagLayout places components in a grid of rows and columns in which grid
cells do not all have to be the same size. In addition, components can span multiple
rows, columns, or both.

• CardLayout

CardLayout provides a means of managing two or more components occupying
the same display area. When using CardLayout each component is like a card in a
deck, where all cards are the same size and only the top card is visible at any time.
Since the components share the same display space, at design time you must select
individual components using the Structure window.

• BoxLayout

Working with Layout Managers

Implementing Java Swing User Interfaces 13-11

BoxLayout allows multiple components to be arranged either vertically or
horizontally, but not both. Components managed by BoxLayout are arranged from
left to right or top to bottom in the order they are added to the container.
Components in BoxLayout do not wrap to a second row or column when more
components are added or even when the container is resized.

• AbsoluteLayout

AbsoluteLayout enables components to be placed exactly where you want them in
the form, move them around in the IDE, and resize them using their selection
borders. It is particularly useful for making prototypes since there are no formal
limitations and you do not have to enter any property settings. However, it is not
recommended for production applications since the fixed locations and sizes of
components do not change with the environment.

• Null Layout

The Null Layout is used to design forms without any layout manager at all. Like
the AbsoluteLayout, it is useful for making quick prototypes but is not
recommended for production applications, as the fixed locations and sizes of
components do not change when the environment changes.

Using BorderLayout
BorderLayout arranges a container's components in areas named First, Last, Before,
After, Center.

• The components in First and Last are given their preferred height and are stretched
across the full width of the container.

• The components in Before and After are given their preferred width and are
stretched vertically to fill the space between the first and last areas.

• A component in the Center expands to fill all remaining space.

Figure 13-2 BorderLayout

The BorderLayout that appears in Figure 13-2 is good for forcing components to one
or more edges of a container, and for filling up the center of the container with a
component. It is also the layout you want to use to cause a single component to
completely fill its container.

You will probably find BorderLayout to be the most useful layout manager for the
larger containers in your UI. By nesting a panel inside each area of the
BorderLayout, then populating each of those panels with other panels of various
layouts, you can achieve quite complicated UI designs.

Components are positioned in one of five areas within a BorderLayout, based on the
constraints property. You can set the constraints property for the component in the
Properties window to one of the following values: First, Last, Before, After, Center.

Working with Layout Managers

13-12 Developing Applications with Oracle JDeveloper

For example, to put a toolbar across the top of a BorderLayout container, you could
create a FlowLayout panel of buttons and place it in the First area of the container.
You do this by selecting the panel and choosing First for its constraints property in the
Properties window.

Each of the five areas can contain any number of components (or panel of
components). However, unless the topmost component is not opaque, any lower
components in the same area will be covered by the topmost one.

The following are some general guidelines for working with multiple components and
BorderLayout:

• Make sure the container has no more than five components.

• If you need more components in one area of the BorderLayout, use the Enclose
In context menu option to group the selected components into a sub-panel.

Note:

BorderLayout ignores the order in which you add components to the
container.

By default, a BorderLayout puts no gap between the components it manages.
However, you can use the Properties window to specify the horizontal or vertical gap
in pixels for a BorderLayout associated with a container.

To modify the gap surrounding BorderLayout components, select the
BorderLayout object in the Structure window (displayed immediately below the
container it controls), then modify the pixel value in the Properties window for the
horizontal gap and vertical gap properties.

Using CardLayout
CardLayout places components (usually panels) on top of each other in a stack like a
deck of cards. You see only one at a time, and you can flip through the panels by using
another control to select which panel comes to the top.

Figure 13-3 Card layout

CardLayout is a good layout to use when you have an area that can contain different
components at different times. This gives you a way to manage two or more panels
that need to share the same display space.

Working with Layout Managers

Implementing Java Swing User Interfaces 13-13

By selecting CardLayout in the Structure window you can then you can then specify
the amount of horizontal and vertical gap surrounding stack of components in the
Properties window.

Using FlowLayout
FlowLayout arranges components in rows from left to right, and then top to bottom
using each component's preferredSize. FlowLayout lines up as many
components as it can in a row, then moves to a new row. Typically, FlowLayout is
used to arrange buttons on a panel.

Figure 13-4 FlowLayout

You can choose how to arrange the components in the rows of a FlowLayout
container by specifying an alignment justification of left, right, or center. You can also
specify the amount of gap (horizontal and vertical spacing) between components and
rows. Use the Properties window to change both the alignment and gap properties
when you're in the GUI builder.

Changing the Alignment

To change the alignment, select the FlowLayout object in the Structure window, then
specify a value in the Properties window for the alignment property.

Changing the Gap

The default gap between components in a FlowLayout is 5 pixels.

To change the horizontal or vertical gap, select the FlowLayout object in the
Structure window, then modify the pixel value of the horizontal gap or vertical gap
property in the Properties window.

Changing the Order of Components

To change the order of the components in a FlowLayout container, drag the
component to the new location, or right-click a component and choose Move Up or
Move Down.

Using GridBagLayout
GridBagLayout is an extremely flexible and powerful layout that provides more
control than GridLayout in laying out components in a grid. GridBagLayout
positions components horizontally and vertically on a dynamic rectangular grid. The
components do not have to be the same size, and they can fill up more than one cell.

Working with Layout Managers

13-14 Developing Applications with Oracle JDeveloper

Figure 13-5 GridBagLayout

GridBagLayout determines the placement of its components based on each
component's constraints and minimum size, plus the container's preferred size.

In the following discussion:

• A component's cell refers to the entire set of grid cells the component occupies.

• A component's display area refers to all the space of the cell that it occupies which
is not taken up by the component's external padding (insets).

While GridBagLayout can accommodate a complex grid, it will behave more
successfully (and more predictably) if you organize your components into smaller
panels, nested inside the GridBagLayout container. These nested panels can use
other layouts, and can contain additional panels of components if necessary. This
method has two advantages:

• It gives you more precise control over the placement and size of individual
components because you can use more appropriate layouts for specific areas, such
as button bars.

• It uses fewer cells, simplifying the GridBagLayout and making it much easier to
control.

On the other hand, GridBagLayout requires more containers, and therefore your
program uses more memory than if you used other layout managers.

Adding Components to a GridBagLayout Container

When you add components to the design canvas they appear in one row by default.
You cannot position them using the mouse. Instead, you must use the GridBag
customizer. For more information, see How to Use the GridBag Customizer.

How to Set GridBagConstraints in the Properties Window

Using the Properties window, you can specify some of the GridBagConstraints.

Working with Layout Managers

Implementing Java Swing User Interfaces 13-15

Figure 13-6 Layout Properties in Properties Window

If you want all the buttons in your GridBagLayout container to use the same internal
padding, you can hold down the Ctrl key while you select each one, then edit the
corresponding layout constraint property.

To set layout properties in the Properties window:

1. Select the component(s) within the GridBagLayout container you want to
modify, either in the Structure window or in the GUI builder.

2. In the Properties window, select Layout.

3. Select a value for the constraints property in the Properties window.

4. Set the desired constraints in the property editor, then press OK.

How to Use the GridBag Customizer

The GridBag customizer enables you to visually adjust the placement and constraints
of components in a GridBagLayout.

Working with Layout Managers

13-16 Developing Applications with Oracle JDeveloper

Figure 13-7 Customize Layout Dialog

It includes a property sheet for GridBag constraints, buttons for adjusting the
constraints, and a rough depiction of the layout of the components. The GUI Builder
more closely reflects how the components will look at runtime.

To use the GridBag customizer:

1. Add the components you require to your form and ensure the GridBagLayout is set
for it.

2. To open the customizer, right-click the GridBagLayout node in the Structure
window and choose Customize from the contextual menu.

3. Drag the components in the right pane to reposition them as desired.

As you drag a component, its Grid X and Grid Y properties change to reflect its
new position.

4. Once the approximate layout of the components has been established, select a
component and adjust its constraints as desired in the left pane.

Note that you can either enter the values directly or use the provided buttons to
adjust the component's constraints.

While editing:

• You may need the Redo, Undo, Pad, and Test Layout buttons in the toolbar
above the right pane.

• You can right click the column/row headers and add or remove columns/rows.

Working with Layout Managers

Implementing Java Swing User Interfaces 13-17

• You can also right click an empty cell and add a new component (so you do not
have to close the GridBag customizer dialog in order to access the palette).

If after several rows, your design has fit nicely into a certain number of columns,
and you suddenly have a row that requires an odd number of components, then
consider dropping a panel into that row that takes up the entire row, and use a
different layout inside that panel to achieve the look you want.

5. Once you are satisfied with the layout, click Close to exit the customizer.

Using GridLayout
GridLayout places components in a grid of cells that are in rows and columns.
GridLayout expands each component to fill the available space within its cell. Each
cell is exactly the same size and the grid is uniform. When you resize a GridLayout
container, GridLayout changes the cell size so the cells are as large as possible,
given the space available to the container.

Figure 13-8 GridLayout

You can specify the number of columns and rows in the grid, but only one of the rows
or columns can be zero. You must have a value in at least one so the GridLayout
manager can calculate the other.

For example, if you specify four columns and zero rows for a grid that has 15
components, GridLayout creates four columns of four rows, with the last row
containing three components. Or, if you specify three rows and zero columns,
GridLayout creates three rows with five full columns.

In addition to number of rows and columns, you can specify the number of pixels
between the cells by modifying the horizontal gap and vertical gap properties. The
default horizontal and vertical gap is zero.

To change the property values for a GridLayout container, select the GridLayout
object in the Structure window, then edit the values for the rows, columns, horizontal
gap and vertical gap properties in the Properties window.

Previewing a User Interface
To quickly test how your GUI will display when it is compiled and run, click the
Preview Design button in the GUI Builder toolbar. A dialog box is displayed with the
components arranged as they would actually appear on your form.

When you click in the previewed GUI form, mouse events are delivered to the actual
components and you can see the components "in action." Thus, for example, you can
move sliders, type into text fields, and buttons look "pressed" when you click them,
however, cross-component and event handling code is not executed.

Working with Layout Managers

13-18 Developing Applications with Oracle JDeveloper

How to Create Accessible Forms
To ensure that your GUI forms and the components contained within them meet
accessibility requirements, you can adjust their accessibility properties. A GUI is
considered accessible when it works with various assistive technologies, such as
screen readers.

The following properties can be edited to aid accessibility:

• Accessible Name - Sets the name for the component. By default, the name is set to
the component's text property value.

• Accessible Description - Sets the description for the component.

• Accessible Parent - Sets the name of the accessible parent component.

To edit a form or component's accessibility properties:

1. In the Structure window, select the form or component whose accessibility
properties you want to modify.

2. In the Properties window, scroll down to the Accessibility properties.

3. Click the ellipsis (...) button to open the Property Editor and then enter the desired
value.

Alternately, you can click the current property value to select it and enter a new
value.

Working with Event Handling
Use UI design tools in JDeveloper to attach event handler code to component and
menu events.

In building your Java program, you can think of your code as being divided into two
categories: initialization code and event-handling code.

• Initialization code is executed when the UI components are created. You can think
of this primarily as "start up" code for the components. This initialization code
includes anything in the initComponents() method that all JDeveloper-
designed GUI classes have. JDeveloper generates this code based on your UI
design. For example, JDeveloper generates a button1.setLabel("OK") method
call because you set the text property of a button, using the Properties window, to
"OK".

• Event-handling code is the code that is executed when the user performs an action,
such as pressing a button or using a menu item. JDeveloper creates the stub
(empty) event-handling method for you when you enter an event name in the
Structure window for that component and press Enter. In that stub, you write code
to handle the actual action caused by the event.

Your entire program consists of the initialization code, which says how things should
look when they first appear, and the event-handling code, which says what should
happen in response to user input.

How to Create Accessible Forms

Implementing Java Swing User Interfaces 13-19

How to Attach Event Handling Code to Menu Events
In Swing, a menu item has actionPerformed events and CheckboxMenuItems
have itemStateChanged events. Code that you add to the actionPerformed
event for a menu item is executed whenever the user chooses that menu item or uses
its accelerator keys.

To add code to a menu item's event:

1. Open a JFrame form in the visual editor.

2. Add a menubar to your UI frame and insert menus and menu items into the
menubar. Alternatively, you can open a file that already contains a menu.

3. Select a menu item in the Menu Editor or the Structure window.

4. In the Properties window, expand the Events node and click the desired event
value field.

5. Type the stub name of the event into the event value field and press Enter to create
an event-handling method stub in the source code with the supplied name.

When you enter a name in the event value field, JDeveloper open the Code Editor
and displays the source code in the Structure window. The cursor is positioned in
the body of the newly created event-handling method, ready for you to enter code.

6. Inside the open and close braces, enter the code you want to have executed when
the user clicks the menu command.

How to Attach Event-Handling Code to a Component Event
Using the Events category in the Properties window, you can attach handlers to
component events and delete existing event handlers.

To attach event-handling code to a component event:

1. Select the component in the GUI builder or in the Structure window.

2. In the Properties window, select the Events tab to display the Events for that
component and click the desired event value field.

3. Type the stub name of the event into the event value field and press Enter to create
an event-handling method stub in the source code with the supplied name.

JDeveloper creates an event handler with the new name and switches to that event
handler in the source code. JDeveloper also inserts some additional code into your
class, called an adapter, to make the connection from the event to your event
handling method.

4. Inside the stub of the event handler write the code that specifies the response to
that component event.

How to Quickly Create an Event Handler for a Component's Default Event
You can create an event handler in the GUI builder.

To quickly create an event handler for a component's default event:

Working with Event Handling

13-20 Developing Applications with Oracle JDeveloper

1. Select a component on the Components window and add it to your UI.

2. Double-click the component in the GUI builder. An event stub is created and focus
switches to that event handler in the source code.

3. Add the necessary code to the event handler to complete it.

Note:

The default event is defined by BeanInfo, or as actionPerformed if none
was specified.

How to Modify GUI Source Code
The IDE automatically generates grey guarded blocks of code as you create your GUI
form in the GUI Builder. However, you can modify the way initialization code is
generated and even write custom code to be placed within the initialization code.

You can modify the way initialization code is generated for a component, form, or
component property by editing its Code properties in the Properties window. In
addition, you can write custom code and specify where it should be placed within the
initialization code.

To modify a form component's guarded block:

1. In the Structure window, select the component whose initialization code you want
to edit.

2. Scroll down to Code Generation group of properties that lists individual properties
for adding custom code to be generated for given component in the guarded code.

Alternatively, right click the component itself and from context menu choose
Customize Code which opens a dialog where the custom code of all types can be
edited in a more comfortable way.

Note:

You can freely edit all the other code in the Java class that is not guarded, and
so customize the UI to your needs. All components have fields, so can be
further modified from anywhere. The best place is in the constructor just after
the initComponents() call. In most cases it is sufficient to write the code
here, and it's much easier than trying to get the piece of the code appear inside
initComponents() by entering it in the correct code property in the GUI
builder. That should be left only for really special cases.

Modifying GUI Form Code Outside of the IDE
In the IDE each form is comprised of two files:

• A .java file, which contains the form's Java source code.

• A .form file, which stores the information that is used to generate the .java file
when you make changes to the form in the GUI Builder. This file does not need to
be distributed with your application. If you delete this file, you can no longer use
the GUI Builder to change the form.

How to Modify GUI Source Code

Implementing Java Swing User Interfaces 13-21

You can edit the .java files using external editors (not while the form is being edited
in the IDE), with the following exceptions:

• Do not modify the content of the initComponents() method. The body of this
method is always regenerated when the form is opened in the IDE.

• Do not remove or modify any of the special comments placed in the source by the
IDE's GUI Builder (// GEN-...). They are required for the form to open correctly.
These comments are not visible inside the IDE's Source Editor.

• Do not modify the headers or footers of event handlers.

How to Modify Code Generation for a Property
A property value can be set as custom code.

To modify code generation:

1. Select the component in the GUI Builder or Structure window to display its
properties in the Properties window. Note that if you select multiple components,
their common properties are displayed and any modifications apply to all of the
selected components.

2. Edit the component's properties in the Properties window by selecting the property
and entering the desired value.

3. If the property you want to edit has an ellipsis (...) button, you can click it to open a
special property editor that provides more advanced editing options (e.g. a color
chooser for a color-type property), or alternate ways of specifying the property
value (for example, using a resource bundle for a text property), including a
possibility to type directly the code that should represent the property value.

Use this to edit a given property in another way than in the small in-place editor in
the properties window. You can also choose from several ways how to enter the
property value via the combo box at the top.

Working with the UI Debugger
In addition to JDeveloper's standard Java and PL/SQL debugger facilities, JDeveloper
also provides support for debugging graphical user interfaces (GUIs) specifically for
AWT and Swing-based client applications and applets.

The UI Debugger offers an alternative way of debugging a GUI application.
Traditional debuggers let you examine the data structure and track program flow.
Instead, the UI Debugger lets you examine the GUI structure and the event sequences.
The UI debugger helps you to see the relationship between UI components displayed
on the screen with the actual data. It will also show you the events that are fired by the
UI components, and the listeners that receive the events.

To use the UI Debugger, you need to first download it by choosing Help > Check for
Updates and following the instructions in the wizard.

There are no additional special prerequisites for the using the UI Debugger beyond
those requirements for using the JDeveloper debugger, other than ensuring that the
JDeveloper Runtime library, jdev-remote.jar, is selected in the Project Properties
- Libraries page.

Working with the UI Debugger

13-22 Developing Applications with Oracle JDeveloper

Debugging a GUI application can be a challenge since most traditional debuggers do
not let you easily examine the tree structure of a GUI application, nor do they display
the details of what is displayed by your application.

To start debugging, select a project and choose Run > UI Debug <projectname>.jpr to
start debugging.

Working with UI Debugger Windows
You can use the UI Debugger features which are exposed in JDeveloper via three
dockable windows. The UI Tree and the UI Outline windows appear automatically
when the UI Debugger is started. The Events window appears the first time you track
events. You can toggle all three windows by choosing View > UI Debugger -
<UI_debugger_window>.

Note:

No information is displayed in the UI Debugger windows until you take a
snapshot. Click the Snapshot (F5) button to populate the UI Tree and the UI
Outline windows.

• UI Tree: Displays a hierarchical structure of your application's components and
sub-components and their parent-child relationships. Select a component from the
tree and right-click to display the context menu options. You will notice that the
component is also selected in the UI Outline window.

• UI Outline: Displays an image or outline image of the application's GUI. Select a
component from the graphical representation of the GUI application and right-click
to display the context menu options.

Note:

Since AWT components may not be painted correctly, Oracle recommends
that you work in Outline mode for non-Swing based applications.

• Events: Displays information about those events you've selected to listen to from
the Listeners dialog. The Listener dialog displays when you choose the Events
context menu option from either the UI Tree or UI Outline windows. When you
select an event in this window, its source component is selected in the tree and
outline windows.

How to Start the UI Debugger
Before performing any UI Debugger task, you must first start the UI Debugger.

To start the UI debugger:

1. Select the project in the Applications window that you want to debug.

2. Select a run configuration. For more information, see Configuring a Project for
Running.

3. Choose Run > UI Debug <projectname>.jpr to start the project's default target and
to run the application.

Working with the UI Debugger

Implementing Java Swing User Interfaces 13-23

JDeveloper starts the UI Debugger. The application is launched and the UI Tree
and UI Outline windows automatically appear. However, no information is
displayed in the UI Debugger windows yet.

4. After the application is completely launched, go to the dialog or window you want
to debug and select it.

5. From either UI Debugger windows, click the Snapshot (F5) button.

JDeveloper displays a hierarchical structure of the application in the UI Tree
window and displays a graphical representation of the application's user interface
in the UI Outline window.

Examining the Application Component Hierarchy
The information in the UI Tree and the UI Outline windows and the relationship
between them are always synchronized. Since the information in the UI Tree and the
UI Outline windows is identical (only the way they are presented is different),
whenever you select a component in the UI Tree hierarchy, JDeveloper locates and
highlights the same object in the UI Outline window, and vice versa.

Before examining the application component hierarchy, you must start the UI
Debugger and take a snapshot. Whenever the UI of the application is updated, you
must click Snapshot again to update the information displayed by the UI Debugger
windows.

To examine the application component hierarchy:

• Use the tree of the UI Tree window to explore the hierarchical structure of the
components or use the UI Outline window to locate the components visually.

• Use the Image and Outline checkboxes at the top of the UI Outline window to
toggle respectively the image and the borders of the components.

• Use the icons at the bottom of the UI Outline window to zoom in or zoom out of
the application image. If the image is larger than the window, you can pan across
by clicking and dragging the image.

• Note that the components that are not selected in the UI Outline window are
shaded red.

• Note that hidden components are represented by gray text in the UI Tree.

• Right-click a component in either windows to display the context menu options.
See UI Tree or UI Outline for more information.

How to Display Component Information in the Watches Window
To examine the data associated to a component, you can choose to watch the
component in the JDeveloper Watches window. A watch enables you to monitor the
changing values of variables or expressions as your program runs.

To display component information in the Watches window:

1. If not already done, start the UI Debugger and take a snapshot.

2. Right-click a component either in the UI Tree or the UI Outline window and choose
Watch from the context menu.

Working with the UI Debugger

13-24 Developing Applications with Oracle JDeveloper

The Watches window opens as a tab in the Smart Data window (if it is not already
open), and a tree representing the component's structure is displayed in it.

How to Inspect a UI Component in an Properties window
You can view the state of a UI component in a JDeveloper Properties window.

To display a UI component in an Properties window:

1. If not already done, start the UI Debugger and take a snapshot.

2. Right-click a component either in the UI Tree or the UI Outline window and choose
Inspect from the context menu.

The Inspect window opens as a tab in the Smart Data window (if it is not already
open), and a tree representing the component's structure is displayed in it.

How to Trace Events Generated by Components
Use the event tracing feature to monitor the firing of selected events generated by UI
components. Use this information to determine the content of events, and their
sequence.

To trace events generated by components:

1. If not already done, start the UI Debugger and take a snapshot.

2. Right-click a component either in the UI Tree or the UI Outline window and choose
Trace Events from the context menu.

The Trace Events dialog opens, displaying a list of the listeners that receive the
event types fired by the component.

Note:

Event listeners are listed only for UI components that were visible when the
snapshot was taken. If subsequent execution have added or removed UI
components, the change will not be seen in the list.

3. (Optional) Select Include Children to also show additional event types fired by the
children of the selected component.

4. In the Listeners dialog, select which event listener(s) you want to trace. For
example, if you select FocusListener, all focus events will be traced.

5. Click OK.

6. The events fired by the selected listeners are displayed in the Events window.
Right-click in the window to Clear the contents of the window or to Remove a
specific Listener.

How to Show Event Listeners
Use the show listeners feature to find the recipients of events fired by UI components.
Use this information to determine the extent of UI events.

Working with the UI Debugger

Implementing Java Swing User Interfaces 13-25

Caution:

Event listeners are listed only for UI components that were visible when the
snapshot was taken. If subsequent execution have added or removed UI
components, the change will not be seen in the list.

To trace events generated by components:

1. If not already done, start the UI Debugger and take a snapshot.

2. Right-click a component either in the UI Tree or the UI Outline window and choose
Show Listeners from the context menu.

The Listeners dialog opens for the selected component, displaying a list of listener
types informed by the component, the classes of the registered listeners for each
listener type, and the event methods implemented by each class.

Note:

The debugger's tracing filter is applied to the listener's list. A listener whose
class is excluded by the filter will not be shown.

3. Select a method.

4. Click Go To Source.

An edit window opens, showing the source code for the selected method.

Remote Debugging GUI Applications
JDeveloper supports remote debugging of GUI applications via the command line. To
achieve this, you must manually launch the program you want to debug. Once the
program is launched and the JDeveloper debugger is attached to it, remote debugging
is very similar to local debugging.

Performing remote UI debugging is similar to remote debugging any application. Just
make sure that the following requirements are met first:

• Add the JDeveloper runtime, jdev-remote.jar, to the libraries

• Specify the UI Debugger agent's main class before your application's main class

How to Remote Debug GUI Applications

You can remote debugging a GUI application by entering commands on the command
line.

To remote debug GUI applications:

1. Configure your project for debugging, making sure to enable it for remote
debugging.

2. Start your application manually as follows by executing:

java -XXdebug -cp ...\jdev\lib\jdev-remote.jar
oracle.jdevimpl.runner.uidebug.debuggee.Debuggee <MainClass>

where

Working with the UI Debugger

13-26 Developing Applications with Oracle JDeveloper

• ...\jdev\lib\jdev-remote.jar is the JDeveloper Runtime Library
classpath which you must add to the command.

• oracle.jdevimpl.runner.uidebug.debuggee.Debuggee is the name of
the main class of the UI Debugger's agent.

3. A message similar to the following is printed in the command window:

*** Port is 4000 ***
*** Waiting for JVM debugger connection. ***

4. The UI Debugger uses a socket to interact with your application. The default port
number for the socket is 4030 but you can specify another port number by inserting
-uidport,<port> before the application's main class as follows:

java -XXdebug -cp ...\jdev\lib\jdev-remote.jar
oracle.jdevimpl.runner.uidebug.debuggee.Debuggee -uidport,5678
mypackage1.Application1

In this case, you will also have to specify the port number when you start the UI
Debugger in the JDeveloper IDE.

How to start the JDeveloper IDE for Remote UI Debugging

You can use the JDeveloper IDE to remote UI debug a project.

To start the JDeveloper IDE for remote UI debugging:

1. Select a run configuration that has been set up for remote debugging (Run >
Choose Active Run Configuration).

2. Choose Debug, then UI Debug <project_name>.jpr.

The main method of your Java application is started.

3. The Attach to JPDA dialog appears, prompting you to specify a host name and a UI
debugger port.

Unless you have used the -uidport option, you should leave this value as the
default, 4030.

4. Your UI debugging session will now behave as if it were performing local UI
debugging. You can begin performing any UI debugger task.

Automatic Discovery of Listeners
The list of events that can be tracked by the UI Debugger is not hard-coded but is
dynamically discovered at runtime. It is therefore possible to track events fired by any
listener, provided that they adhere to the following guidelines:

• The component class must have public methods to add and remove a listener.

• The name of the methods must start with add or remove and end with Listener.

• The return type must be void.

• The methods must have only one argument.

• The type of the argument must be an interface that extends
java.util.EventListener.

Working with the UI Debugger

Implementing Java Swing User Interfaces 13-27

• The name of the method must be equal to the name of the interface preceded by
add or remove.

• The return type of each method in the specified interface must be void.

• The method can only have one argument (the event).

• The type of the argument must be a class accessible as a bean.

• The return values of the getters can be anything except void. If the type is a non-
primitive type, the value that will be shown in the UI Debugger will be the string
obtained by calling the object's toString() method.

Examples

• For example, if you want to define a new event listener of type Xxx, your
component must have methods with the following signatures:

public void addXxxListener(XxxListener);
public void removeXxxListener(XxxListener);

• An example of an XxxListener interface could be:

public interface XxxListener extends java.util.EventListener
{
 public void methodOne(XxxEvent xxxEvent);
 public void methodTwo(XxxEvent xxxEvent);
 public void methodThree(XxxEvent xxxEvent);
}

• An example of a XxxEvent class could be:

public class XxxEvent
{
 public int getA(){...}
 public String getB(){...}
 public OtherType getC(){...}

Working with the UI Debugger

13-28 Developing Applications with Oracle JDeveloper

14
Working with JavaBeans

This chapter describes Oracle JDeveloper support for JavaBeans technology.

This chapter includes the following sections:

• About Working with JavaBeans

• Using JavaBeans in JDeveloper

• Understanding Standard Event Adapters

About Working with JavaBeans
JavaBeans Component technology lets you implement your own framework for data
retrieval, persistence, and manipulation of Java objects. You can use JavaBeans
technology to create reusable software components for building Java applets and Java
client applications. In a Java EE application, applets and application clients can
communicate with business-tier components directly or indirectly through web-tier
components. For example, a client running in a browser would communicate with the
business tier through JSP pages or servlets.

Although JavaBeans components are not considered Java EE web components
according to the Java EE specification, JavaBeans components are often used to handle
data flow between server components and application clients or applets on the client
tier, or between server components and a database on the back end.

For more information on JavaBeans, for example, the basic notion of JavaBeans,
creating JavaBeans, and what makes a bean, see http://download.oracle.com/
javase/tutorial/javabeans/. The tutorial also contains lessons on writing a
simple bean, bean properties, manipulating events and other topics.

Using JavaBeans in JDeveloper
JavaBeans are the Java building blocks used in the Swing GUI builder to build a
program. Each JavaBean represents a program element, such as a user interface object,
a data-aware control, or a system facility. You build your program by choosing and
connecting these elements.

In order to speed up your UI design work in the future, create JavaBean components
such as toolbars, status bars, checkbox groups, or dialog boxes that you can add to the
Components window and reuse with no (or only minor) modifications

JavaBeans are objects in the true object-oriented programming (OOP) sense. Because
they are true objects, JDeveloper components exhibit the following:

• Encapsulation of some set of data and data-access functions.

• Inheritance of data and behavior from a superclass.

Working with JavaBeans 14-1

http://download.oracle.com/javase/tutorial/javabeans/
http://download.oracle.com/javase/tutorial/javabeans/

• Polymorphism, allowing them to operate interchangeably with other objects
derived from a common superclass.

Each component encapsulates some element of a program, such as a window or dialog
box, a field in a database, or a system timer. Visual components must ultimately
extend either java.awt.Component or extend some other class that derives from it
such as javax.swing.Panel. Non-visual JavaBeans components do not have this
requirement.

To be recognized and used in JDeveloper, components must conform to the JavaBeans
specification.

To be useful in a program, a JavaBean must provide the means by which it can be
manipulated or interact with other components. JavaBeans meet this requirement by
defining properties, methods, and events.

All components have properties, methods, and events built into them. Some of the
properties, methods, and events that components provide are actually inherited from
ancestor classes, which means they share these elements with other components. For
example, all UI components inherit a property called background that represents the
background color of the component. Each component can also introduce its own
unique properties, methods, and events. For example, the Swing Checkbox component
has a property called selected that indicates whether or not this component
initially appears checked.

How to Implement an Event-Handling Method
In the GUI builder, you see an event primarily as the event-handling method that
must be implemented in the class that contains the component. For example, suppose
you have a button named jButton1 in a container called NewJFrame and you want
something to happen when an end user clicks jButton1.

To implement the event-handling method:

1. Select jButton1 in the NewJFrame editor.

2. In the Properties window, expand the Events node. Possible events are listed, and
actionPerformed is the event generated when a button is pressed.

3. From the field next to actionPerformed select the default name of the handler,
jButton1ActionPerformed.

4. JDeveloper switches to the NewJFrame source view and inserts an event-handling
method into NewJFrame that is called when that event occurs.

The method is called jButton1ActionPerformed() by default.

5. Add code into the method to respond to the button press.

The end user sees all of the potential events from jButton1 listed on the Events page
of the Properties window. As the component writer, you are responsible for creating
the component class in such a way that all the events it generates will appear in the
Properties window. All the end user must do to use your bean is write the code that
fills in the event-handling method.

What Happens When You Create an Event-Handling Method
Behind the scenes, JDeveloper also generates additional code in the Frame1.java file
to handle the other aspects of event listening:

Using JavaBeans in JDeveloper

14-2 Developing Applications with Oracle JDeveloper

• It generates an anonymous inner class for the action adapter that implements the
ActionListener interface.

• It instantiates the class in Frame1.

• It registers itself as a listener for the button1 event by calling
button1.addActionListener().

All of this code is visible in the source, but your primary task is to fill in the event-
handling method that the action adapter calls when the event occurs.

Understanding Standard Event Adapters
a description of the Listener Generation Style property. It has its default value in
Swing GUI Builder preferences where it is already described in the help. This default
value is then used for newly created GUI forms. It can be changed then for each form
separately: open GUI form, select its root node in Structure window and then in Code
Generation properties set the Listener Generation Style property.

You can control how JDeveloper generates the adapter class by selecting the desired
option from the Code Style page of the Project Properties dialog (for more
information, see How to Set Properties for Individual Projects).

How to Create an Event Set
An event set defines a type of event, what it communicates, and what is required to
generate and listen to the event. You can create a set of custom events and create an
EventListener interface and an EventObject class to support those events. The
event-listener interface describes the events of the event set.

To create an event set:

1. In the Applications window, select the project you wish the bean to be added to.

2. From the main menu, choose File > New from Gallery.

3. In the New Gallery, in the Categories tree, expand General and select Java.

4. In the Items list, double-click Event Set.

5. In the Create Event Set dialog, in the Name field, enter the name of the event set.

6. Add, edit, or remove events in the Notifications field.

7. Click OK to add the new event set classes to your project.

How to Make a Component Capable of Firing Events
When you develop a bean, you must think of all the events that the bean should be
able to generate. The means by which components communicate with each other is
called event passing. Components fire events. The event is then delivered to the
components that are to be notified. The notified components can then perform some
action based on the event that took place.

To make a component capable of firing events:

1. Determine what kind of event needs to be fired, and either:

• Select an appropriate existing event set from the AWT or JFC, or

Understanding Standard Event Adapters

Working with JavaBeans 14-3

• Create a new event set.

2. Create event registration methods for the component.

3. Create an event notification/propagation mechanism for the event:
fire<yourEventName>Event()

4. Call the event that is fired and call the event notification mechanism from the key
points in your bean where such an event should be sent.

Understanding Standard Event Adapters

14-4 Developing Applications with Oracle JDeveloper

15
Getting Started with Developing Java EE

Applications

This chapter provides an overview of the Java EE tools and technologies available for
your application development.

This chapter includes the following sections:

• About Developing Java EE Applications.

• Using Web Page Tools.

• Using Enterprise JavaBeans and Java Persistence Components.

• Using Oracle TopLink.

• Understanding Secure Applications.

• Working With Applications That Use XML.

• Working With Applications That Use Web Services.

About Developing Java EE Applications
JDeveloper comes with a complete package of tools and features to create and edit
your Java EE 6 application components. Use the wizards, built in source and visual
editors, Components window and Properties window, and other features to create,
assemble, and reuse your web tier and business components. You can build, test, and
deploy powerful interactive, multitiered applications that perform well on a variety of
different platforms, and are easy to maintain.

For more information on Java EE see the Oracle Technology Network (OTN) Java EE
documentation at: http://www.oracle.com/technetwork/java/javaee/
overview/ index.html

Java EE and Oracle Application Developer Framework
For the web-tier part of your Java EE application, take advantage of the ADF Faces
rich client framework (RCF), which offers a rich library of AJAX-enabled UI
components for web applications built with JavaServer Faces (JSF).

The ADF layer enables a unified approach to bind any user interface to any business
service, with minimal code. When you build a Java EE application, and/or an EJB
project, you can assign ADF data controls on your individual session beans. This adds
a data control file with the same name as the bean.

The data control contains all the functionality of the application module. You can then
use the representation of the data control displayed in JDeveloper Data Controls panel
to create UI components that are automatically bound to the application module.

Getting Started with Developing Java EE Applications 15-1

http://www.oracle.com/technetwork/java/javaee/overview/%20index.html
http://www.oracle.com/technetwork/java/javaee/overview/%20index.html

Using the ADF data control business-tier layer to perform business service access for
your EJB projects ensures that the view and the business service stay in sync. For
example, you could bypass the model layer and call a method on an application
module by class casting the data control reference to the application module instance
and then calling the method directly, but this renders the business services unaware of
any changes.

For more information, see Oracle Fusion Middleware Understanding Oracle Application
Development Framework.

Using Web Page Tools
JDeveloper provides you with a wide range of tools to develop the web tier, or
frontend of your Java EE applications. You can use wizards to walk you through
creating all your HTML, JSP and JavaServer Faces (JSF) /Facelet pages and related
files.

In addition, JDeveloper provides web page tools and step-by-step instructions for
many of the tasks you will use to develop your web pages. You can build web tier
components using all of the supported Java EE web application technologies such as
JSF / Facelets, JavaServer Pages (JSP), Java Servlet, HyperText Markup Language
(HTML), and Cascading Style Sheets (CSS). Web components in a Java EE application
contain presentation logic and run on the integrated server.

For more information, see Developing Applications Using Web Page Tools.

Using Enterprise JavaBeans and Java Persistence Components
You can create EJB projects, entities, Java persistence units, session beans, and
message-driven beans using wizards in the New Gallery. You can build entities from
online or offline database table definitions and from application server data source
connections.

For more information on EJBs, see Developing with EJB and JPA Components.

Using Oracle TopLink
Oracle TopLink is an object-persistence and object-transformation framework that
provides development tools and run-time capabilities that reduce development and
maintenance efforts, and increase enterprise application functionality

Use TopLink to configure TopLink descriptors and map Java classes, EJBs, and JPA
entities to different data sources, including relational databases, enterprise information
systems (EIS), and XML schemas. With the TopLink Editor, you can create this
information without writing Java code. The TopLink Editor supports multiple
standards, including JPA, JAXB, and Java EE.

For more information, see Developing Persistence in Applications Using Oracle .

Understanding Secure Applications
You can secure Java EE applications using only container-managed security or, for
Fusion web applications, Oracle ADF Security. Fusion web applications are Java EE
applications that you develop using the Oracle Application Development Framework
(Oracle ADF).

The Oracle ADF Security framework is the preferred technology to provide
authentication and authorization services to the Fusion web application. The Oracle

Using Web Page Tools

15-2 Developing Applications with Oracle JDeveloper

ADF Security is built on top of the Oracle Platform Security Services (OPSS)
architecture, which provides a critical security framework and is itself well-integrated
with Oracle WebLogic Server.

For more information, see Developing Secure Applications.

Working With Applications That Use XML
JDeveloper provides you with the tools you need to work with the XML files in your
application. There is an XML source editor, an XML validator, and tools for working
with XML schemas. You can also use JDeveloper to create and edit your XSQL files.

You can create your schema documents from scratch, generate schemas from XML
documents or vice-versa in JDeveloper. Once your schema is created, manage your
elements using the XSD Visual Editor and the Components window.

For more information, see Developing Applications Using XML.

Working With Applications That Use Web Services
Web services are set of messaging protocols and programming standards that expose
business functions over the internet using open standards. A web service is a discrete,
reusable software component accessed programmatically to return a response.
JDeveloper provides tools to manage existing web services, and develop and deploy
new web services.

You can create web services from Java classes, the remote interface of EJBs, and an
ADF Business Components service session bean wrapped as an EJB. The Web service
wizards create the deployment files for the application servers. For more information,
see How to Create JAX-WS Web Services (Bottom-up).

JDeveloper also supports a set of standard Java-to-XML type mappings. You can also
create custom serializers for unique object types. For more information, see Using to
Create and Use Web Services.

Working With Applications That Use XML

Getting Started with Developing Java EE Applications 15-3

Working With Applications That Use Web Services

15-4 Developing Applications with Oracle JDeveloper

16
Developing Applications Using Web Page

Tools

This chapter describes how to use the Oracle JDeveloper tools and features such as
page building wizards, visual and source editors, Components window, and
Properties window to build and edit your user interfaces and business services using
HTML, JSP, and JSF/facelets, expression language, scripting, and servlets.

This chapter includes the following sections:

• About Developing Applications Using Web Page Tools

• Developing Applications with JavaServer Faces

• Developing Applications with HTML Pages

• Working with Java Server Pages

• Developing Applications with Java Servlets

• Developing Applications with Script Languages

• Working with JSP and Facelet Tag Libraries

About Developing Applications Using Web Page Tools
Oracle JDeveloper provides you with a wide range of tools to develop the frontend or
view layer of your Java EE applications.

At the forefront of the web tools there are source editors, visual editors, and integrated
component and property tools to add and edit the pages, elements and related
properties in your pages, including your business service and localization
components. You will be able to create and modify your style sheets and tag libraries,
and use the Code Insight code and tag completion tools to efficiently code your
HTML, JSP and JSF/facelet or Java source files.

In addition, there are handy wizards to walk you through creating all your HTML, JSP
and JSF/facelet pages and related files. When you create web pages using the wizards
your configuration files, bean mappings, tag libraries, and jar files are automatically
set up and editable.

This chapter walks you through the web page tools and step-by-step instructions for
many of the tasks you will use to develop your application web pages.

Using the Source Editor
The source editor is your basic code editor for your web pages. Use the source editor
to custom code your pages alongside the visual editor which shows a visual
representation of your page. Figure 16-1 displays the source editor for a JSF page.

Developing Applications Using Web Page Tools 16-1

Figure 16-1 Source Editor with Typical JSF Code

Source Editor Features
The source editor comes with several features to simplify your coding tasks. The
following table lists the primary source editor features.

Table 16-1 Primary Source Editor Features

Features Description

Quick Doc for Tags View your tag definitions while you're coding. Put your curser
on the tag and press Ctrl + d. A small window appears at the
top of your editor with that tag definition detail. Click back in
the editor and the window closes. You can also right-click and
choose Quick TagDoc.

Code Templates Save time by inserting pre-written code into source files instead
of having to type it in manually. Templates can intelligently
modify the inserted code to suit surrounding code. Use
shortcuts to speed up the selection of the required template.

Code Insight View and filter element and parameter options, and get code
completion. The source editor provides Code Insight for tags,
attribute names & values, and embedded CSS & JavaScript
code.

Jump to Managed Bean Quickly jump to your managed bean code from your web page
source. Right-click in the source editor or Structure window
and choose Go to, then select your choice from the list of all
beans referenced from that page.

Toggle Line Comments Adds or removes comment markers from the beginning of each
line in a selected block. Select a single line to comment or
uncomment that line only.

About Developing Applications Using Web Page Tools

16-2 Developing Applications with Oracle JDeveloper

Table 16-1 (Cont.) Primary Source Editor Features

Features Description

Editor Splitting Toggle between code and visual views using the splitter. To
split the file horizontally, grab the splitter just above the vertical
scroll bar on the upper right-hand side of the window and drag
it downward. To split the file vertically, grab the splitter just to
the right of the horizontal scroll bar on the lower right-hand
side of the window and drag it left.

Working in the Visual Editing Environment
The JSP/HTML Visual Editor is used for WYSIWYG editing of your web pages
including JSP, JSF, facelets, and HTML pages.

Your web page elements are visually displayed or structurally represented in the
visual editor. JSP tags including JSTL, and BC4J tags are shown as icon and tag names,
while HTML pages are rendered based on the browser look and feel. You can toggle
back and forth or split the screen to see the source editor during design-time.

The visual editor opens up with the Components window alongside it to drop and
drag to the page, as shown in Figure 16-2.

Figure 16-2 Visual Editor For a JSF Page

Primary Visual Editing Features

The following table describes available visual editing features.

Table 16-2 Primary Visual Editor Features

Features Description

Instant Look and Feel Opening a file in the visual editor renders it in HTML and
associated web formats. You immediately see the results of
your edits.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 16-3

Table 16-2 (Cont.) Primary Visual Editor Features

Features Description

Visual and Non-Visual
Element Support

Add visual components and tags to your page, as well as
scripting languages, expressions, and values.

Stylesheet Associations Add or remove stylesheets to your pages, and modify text
styles.

Move or Resize Page
Elements

Manually drag to resize elements or change page element
properties and in the Properties window or by right-clicking
and choosing to Properties.

Editor Splitting Toggle between code and visual views using the splitter. To
split the file horizontally, grab the splitter just above the vertical
scroll bar on the upper right-hand side of the window and drag
it downward. To split the file vertically, grab the splitter just to
the right of the horizontal scroll bar on the lower right-hand
side of the window and drag it left.

Table and Form Design Drag Table or Form Components onto the page and visually
edit their design.

Modify Element Attributes Select your page elements and go to the Properties window to
add or edit attributes.

Nested Components
Appear in Chronological
Order

View and select your nested components in chronological order
using the associated web formats, just like a browser.
Immediately see your results rendered.

Structure Review View the structure of page elements in the Structure window.

Context Sensitive Editing
Tools

Components window tag library shows components available
in context only.

Context Command Menu Right-click anywhere in the page to bring up a menu of
commands available for that selection.

Total Tool Integration The Visual Editor is integrated with the Java Source Editor, the
Structure window, Components window, Properties window
and Data Binding palette to support the assembly of databound
web pages with simple drag and drop operations. Changes to
any tools is reflected across the all the tools immediately.

Additional Editing Tools and Features

There are also some additional editing tools and features that are available as icons on
the top of the visual editor window.

About Developing Applications Using Web Page Tools

16-4 Developing Applications with Oracle JDeveloper

Table 16-3 Toolbar Icon Features on the Visual Editor

Icon Name Description

Refresh There are two types of refresh for you to
choose from. Use the dropdown menu on the
refresh button.

Refresh Page rebuilds and re-renders the
internal data structures of a page. Use this tool
if you have an included page (like a page
template) that has been changed, and you
want to see the affects in the including page.

Full Refresh is used to first fully restart the
internal design time for a page project (which
includes rebuilding the servlet context from
web.xml and tag libraries, and (for Faces
projects) the Faces context from the faces-
config.xml. With Full Refresh the internal data
structures of the active page are rebuilt and it
is re-rendered.

Design Mode Lets you choose whether or not to see design
affordances such as facet tables or extra
container spacing. True hides affordances and
shows the page as it appears at runtime.

Preferences Brings up the Visual Editor preferences dialog.
These options are also available by going to
Tools > Preferences > JSP and HTML Visual
Editor

Display Customization Lets you choose from a variety of custom
display sizes for the visual editing window,
including a display to match your monitor
resolution and size to fit the window.

Browser Selection Lets you choose which of your available
browsers you prefer to view to use to view
your page.

Keystroke Commands

The following table lists the features that are available with simple keystroke
commands while you are editing your web pages.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 16-5

Table 16-4 Primary Visual Editor Keystroke Command Features

Features Description

Breadcrumbs View and select your nested components in chronological order
using the breadcrumb that appears at the bottom of the visual
editor window.

Component Selection Hovering your curser over a component on the page highlights
that component with an orange outline.

Editing Containers In the Structure window or visual editor window select a
container. Right-click that container and choose Focus This
Container. That container is selected in the editing window.
This feature allows you to more easily view and edit the
individual components in that selected container.

Visual EL Expression View
Preferences

Select whether to resolve expressions for viewing, and how to
view those that are unresolved. Choose the Show toolbar
feature to select your preference for EL rendering, or you can
also go to Tools >Preferences > JSP and HTML Visual Editor.

Expression Builder and
Text Popup

Select your component. Slow double-click or F1 to open a
popup window with a value field for editing your expressions
or text.

Corresponding Element
Display

Page elements are displayed hierarchically in the Structure
window. Double-clicking a node in the Structure window shifts
the focus to the Properties window.

Visual and Code Editor
Splitting

Edit your file simultaneously with the visual and source editors
by opening the page in one of the editors and using the splitter
to open a second page view in the alternate editor.

To split the file horizontally, grab the splitter just above the
vertical scroll bar (on the upper right-hand side of the window)
and drag it downward.

To split the file vertically, grab the splitter just to the right of the
horizontal scroll bar (on the lower right-hand side of the
window) and drag it left.

Easy Edit Focus By default new JSP or HTML pages are opened with the visual
editor in focus. Double-clicking a node in the Applications
window opens or brings the default editor to the foreground.

To locate the node in the Applications window that
corresponds to the file you are currently working on, right-click
and choose Select in Applications Window. Or use the
keyboard shortcut (default keymap, Alt+Home).

Tag Display The scope of tags with embedded body content is structurally
represented with the tag icon and name bounded by, or
contained within, a shaded rectangle. These tag containers are
nested or structurally displayed to represent, for example, an
iterated row in a table. Click the tag to select a cursor for
entering content in the tag container.

Extracting CSS code from
HTML/JSP to a CSS files

Extract a CSS block from a HTML/JSP file to a new CSS file and
all the references are updated automatically. This option is
available to use from the Code editor and the Structure
window. This can also be used for JavaScript.

About Developing Applications Using Web Page Tools

16-6 Developing Applications with Oracle JDeveloper

Table 16-4 (Cont.) Primary Visual Editor Keystroke Command Features

Features Description

Style sheet Linking to
HTML files

Link a style sheet to your HTML files simply by dropping a
<style> or <link> tag from the Components window
common tab into your HTML page.

Mobile Device Display For mobile-enabled JSP documents, the design view emulates
the viewport of the selected device category. The device
category icon is displayed on the toolbar along with the
reference device dropdown list.

How to Expand and Collapse Container Elements

Choose to show more or less detail on your web page by expanding or collapsing
nested JSP and HTML page elements in the visual editor and Structure window, as
shown in Figure 16-3 and Figure 16-4.

Figure 16-3 Container Tags in Nested Rectangles

Figure 16-4 Collapsed HTML Table

To collapse the container element, choose from one of the following options:

• Click the + (plus) sign of the container element.

• Right-click the container element and choose Expand All Below from the context
menu.

How to Change the Default Environment Settings

Use the Preferences page to change the look and feel of your visual editing window.
The following features are available:

• Text foreground and background color, element and tag outline color, and caret
color.

• Synchronization between the visual editor and the Structure Window or the source
editor.

• Display of errors and warnings.

• Display of tag names.

To change the default settings:

1. From the main menu, choose Tools > Preferences.

2. Select JSP and HTML Visual Editor.

3. Select your options and set fields.

4. Click OK.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 16-7

How to Display Invisible Elements

Choose to hide or not hide elements that are not shown by default, such as:

• HTML named anchors, script tags, and line breaks.

• JSP tag library directives and bean tags.

To change the display of invisible elements:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand JSP and HTML Visual Editor and select
Invisible Elements.

3. When finished click OK. You can toggle the display of invisible elements on and
off when you are working. Go the main menu and choose Design > Show and
select Invisible HTML Elements or Invisible JSP Elements.

How to Execute JSP Tags

To get a snapshot of what the page looks like at runtime, run the tag library in a
simulated JSP/Servlet container. Use the Manage Libraries page to configure your tag
libraries to execute in the visual editor.

To set a JSP tag library to execute at design time:

1. From the main menu, choose Tools > Manage Libraries, or select a project and
double-click.

2. In the Manage Libraries dialog, select JSP Tag Libraries.

3. Choose a tag and select Execute Tags in JSP Visual Editor.

4. Click OK.

How to Display JSP Tags by Name Only

If you want to get a simpler view of your page, display JSP tags by name only. Go to
the Preference page and choose to not show embedded EL syntax. For example,
<c:out value="${Row.Deptno}"></c:out> displays as out vs. $
{Row.Deptno}.

To display JSP tags by name only:

1. From the main menu, choose Tools > Preferences.

2. Choose JSP and HTML Visual Editor.

3. Select the Show JSP Tag Name Only checkbox. This checkbox is deselected by
default.

How to Change Keyboard Preferences

Use the Preferences page to customize the default keymap settings, and specify the
shortcut keys assignments.

To customize keymap shortcut keys:

1. From the main menu, choose Tools > Preferences.

About Developing Applications Using Web Page Tools

16-8 Developing Applications with Oracle JDeveloper

2. In the Preferences dialog, select Shortcut Keys.

3. Click More Actions and choose Load Keyboard Scheme.

4. Select one of the preset keymaps and click OK.

5. The shortcuts for that keymap are listed. Make the change you want, and click OK.

How to Select an Element

Select a single element, or a container element along with included elements such as a
table, or multiple elements. A dotted line encloses the selection. In the Structure
window, a selected element is highlighted.

To select an element:

1. In the visual editor or Structure window, position your pointer cursor on the
element.

2. Click the element. If the selected element contains elements, all its contained
elements are selected. If you copy, move, or delete the container, all contained
elements are included.

OR

Right-click the element. When you right-click elements, a context menu of options
displays. For example, to highlight the element code in the page source, right-click
and select Go to Source.

Note:

Double-clicking an element brings up an editor dialog for the tag.

How to Select Multiple Elements

Use the control key to select and manage grouped multiple elements. You can also
deselect an element without losing other selections

To select multiple elements:

1. In the visual editor or Structure window, position your pointer cursor on the
element in an open web page.

2. Click the first element.

3. Press and hold down the Ctrl key.

4. Click any additional element. If you want to deselect one without losing the other
selections, continue to hold down the Ctrl key and click the element again.
Selecting multiple, non-adjacent elements for any reason other than deleting them
might lead to unexpected results. For example, if the elements exist at different
levels in the web page hierarchy, they can lose their relative hierarchical positions if
you move or copy them to another position in the page.

How to Select a Range of Elements

Use shift-click to select a large range of elements in two clicks instead of scrolling
through and selecting each element.

To select a range of adjacent elements:

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 16-9

1. In the visual editor or Structure window, position your pointer cursor on the first
element.

2. Click the element.

3. Scroll to the end of the selection, then hold down Shift and click.

Tip:

For JSP tag libraries, when you pass the mouse pointer over an element, a
tooltip with the tag name displays, to easily know which item you want to
select.

Press Ctr+Shift+Up to select the container element for an element contained
inside another element. This also works to scroll through nested containers.
For example, when you add a link to text you will need to press Ctr+Shift+Up
twice to move to the link target.

How to Select Text

Use your mouse to select and edit words, strings, or groups of text on the page.

To select text:

Choose one of the following options:

• Double-click a single word.

• Triple-click an entire line.

• Select and drag your cursor across the text.

• Click at the start of the selection, scroll to the end of the selection, then hold down
Shift and click.

How to Select Insertion Points in the Visual Editor

There are visual cues on the page to locate the insertion point before, after, or
contained inside a target element.

To select an insertion point in the visual editor:

• When dragging an element, a vertical line | appears to pinpoint your desired
insertion point. Release the mouse button to insert that element in that spot.

• Visual clues for insertions:

– Select the desired location on the page, indicated by a blinking cursor.

– Select the element to contain the inserted element, indicated by a dotted line.

How to Select Insertion Points in the Structure Window

Move your elements around your pages using the Structure window. Elements are
shown in chronological order, i.e., as they were added to the page. Changing their
position in the Structure window changes that order on the page.

To select an insertion point in the Structure window, choose from these options to
drag a page element to an insertion point:

About Developing Applications Using Web Page Tools

16-10 Developing Applications with Oracle JDeveloper

• To insert an element before a target element, drag it towards the top of the element
until you see a horizontal line with an embedded up arrow, then release the mouse
button.

• To insert an element after a target element, drag it towards the bottom of the
element until you see a horizontal line with an embedded down arrow, then release
the mouse button.

• To insert or contain an element inside a target element, drag it over the element
until it is surrounded by a box outline, then release the mouse button. If the
element is not available to contain the inserted element, the element will be
inserted after the target element.

When selecting a target position by clicking, highlight the target element.

Note:

Disallowed insertion points are indicated by a slashed circle.

How to Insert Elements from the Components Window

Use the Components window to add UI and data elements to your web pages. When
you select an insertion point, the point is selected in the Structure window as well as
the page, to help you verify the insertion position visually and hierarchically.

For more information, see Using the Components Window.

To insert a page element:

1. Select the Components window package, or page from the dropdown list. The
Components window is context sensitive and displays only those options that are
relevant to the active file.

2. Choose from one of the following options:

• Select the insertion point and click the element to insert.

• Drag the element from the Components window to the insertion point.

3. Depending on the element, a corresponding insertion dialog appears, prompting
you to select or insert a file, or supply tag attributes. The insertion will fail if the
component is not valid at the current insertion point.

When you insert a page element, the source code for the element is automatically
generated. When you delete an element, code is deleted.

How to Set and Modify Element Properties

The Properties window displays the properties of selected elements. You can set or
modify the property values for any element. Set property values are marked with a
green square. If the Properties window is not in view choose View >Properties
window or use the shortcut Ctrl+Shift+I. To undo changes, from the main menu select
Edit > Undo action. Use the Set to Default button to reset a property to its original
value.

For more information, see Using the Properties Window.

To set element properties:

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 16-11

1. Select an element.

2. Select the property. A brief description displays at the bottom.

Note:

You can also use the Find box at the top of Properties window to search for
the property.

3. Choose from the following options:

• In a text field, type the string value for that property, for example a text value or
a number value, then press Enter.

• In a value field with a down arrow, click the down arrow and choose a value
from the list, then press Enter.

• Click the ellipsis (...), to display an editor for that property, for example, a color
or font selector. Set the values and click OK.

To display an editor for a property double-click the element.

How to Set a Data Source for a Property

As an alternative to working with the Data Control Palette to create databound UI
components, you can set ADF bindings in the visual editor.

Use the Properties window to set or remove data sources for element properties. From
a Value Binding dialog select available data sources defined by the objects or the
application ADF binding context that you specify for an EL expression. Note that
before you specify an ADF binding as a data source you must first create the binding.

To databind an element property:

1. Select an element in the visual editor or Structure window.

2. Select a data source for that property.

3. Click Bind to Data. An EL expression displays in the property value field and an
ellipsis button (...) shows.

4. Click the ellipsis button to display a value binding dialog, and then select the data
source.

5. Click OK.

Tip:

To remove a data source from a JSP element property, toggle the Bind to Data
button off.

How to Set Properties for Multiple Elements

By default the Properties window displays all the properties of your selected elements.
Click Union in the Properties window toolbar to toggle between displaying all the
properties of the selected elements and displaying only properties that the selected
elements have in common (intersection). Values represented in italics are common
properties that have different values.

To set properties for multiple elements:

About Developing Applications Using Web Page Tools

16-12 Developing Applications with Oracle JDeveloper

Choose from one of the following options:

• Hold down the Ctrl key and select each of the elements.

• To change the list of properties displayed by the Properties window, click the
Union button in the toolbar:

• Select and edit your property. If the value is shown in italics, the selected elements
have differing values. Editing the value of a shared property causes all selected
elements to have the same value.

How to Cut Page Elements

Cut web page elements using typical commands, and place them on the clipboard to
paste in another location.

The cut command is the first step in a cut and paste action. You can also delete an
element. Deleting an element removes it without changing the contents of your
clipboard.

To cut page element:

1. Select the page element to cut.

2. Press Ctrl+X or right-click and select Cut. You can also choose Edit > Cut from the
main menu.

The element is removed from the editor and placed into a local clipboard only
accessible by the application and not the system clipboard. If you quit JDeveloper
without pasting the element, the cut version of the element is lost.

How to Delete Page Elements

Delete web page elements to remove them from the system completely. This does not
change the existing clipboard content. If the element selected for deletion contains
included elements, deleting the element also deletes all its contained elements.

To delete page elements:

1. Select one or more page element to delete.

2. Press Delete or Backspace. You can also right-click and select Delete, or choose
Edit > Delete from the main menu.

How to Copy Page Elements

Copy page elements using the typical commands, or use the drag copy feature.

In the visual editor you can also:

• Right-click and drag an element to an insertion point, release the mouse, and then
choose Copy Here from the context menu.

• Hold down Ctrl and drag a copy of the selected element to an insertion point on
the page.

To copy page elements:

1. Select the page element to copy.

2. Press Ctrl+C. You can also right click and select Copy, or choose Edit > Copy from
the main menu.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 16-13

How to Move Page Elements

Most elements can be dragged from one location to another. You can also right-click
drag the element(s) from the original position to an insertion point in the visual editor
or Structure window, and then choose Move Here from the context menu.

How to Resize Page Elements

Resize your page elements using the Properties window or using the context menu for
that element.

To resize page elements:

1. Go to the Properties window under Style Size and select your size preference or
return to default which is 100 percent width of the page.

2. Double-click the element, set size properties in the editor dialog, and then click OK.
You can also Right-click the element, choose Edit Tag, set size properties in the
editor dialog, and then click OK, or Select the element, and then set size properties
in the Properties window.

How to Create and Edit a Data Table

Use the h.dataTable tag to display a data table. The Create Data Table Wizard
inserts this tag on a JSF page. This wizard also provides basic formatting. Once
created, you can further edit the table by setting or changing attribute values. You can
also add or delete columns, and add components.

To create and edit a data table:

1. Open a JSF page in the visual editor.

2. In the Components window, select JSF from the dropdown menu.

3. Double-click or drag Data Table from the Components window. The Create Data
Table Wizard opens.

4. Follow the steps in the wizard.

5. To change or set values for attributes not accessed using the wizard:

• Select the h:dataTable component in the Structure window.

• In the Properties window, click in the field next to the attribute to set the value.
Use the right-click context sensitive Help for information about the different
attributes.

How to Work with Data Table Columns

Use the right-click context menu to access many of the options to edit, move, insert, or
delete your data columns.

To work with columns in a data table:

• To add a single column, right-click an existing column next to where you want to
add the new column, and select either Insert before h:column > Column or Insert
after h:column > Column. A column is added either before or after the selected
column. The new column is now selected.

About Developing Applications Using Web Page Tools

16-14 Developing Applications with Oracle JDeveloper

• To add multiple columns.

– Right-click an existing column next to which you want to add the new columns,
and select DataTable > Insert Columns.

– Complete the dialog.

• To reorder the columns, drag and drop the columns in the Structure window or in
the visual editor.

• To add a component or other object to a column (for example to display data),
right-click the column and select Insert Inside Column.

Note:

You can also select the column in the visual editor or structure window. In the
visual editor dropdown menu, select Insert inside Column > Output Text.

• To delete a column, right-click the column and select Delete.

How to Work with Panel Grids

Use the JSF panelGrid tag to display an HTML table. You can add other components
inside the panel grid. Use the Create PanelGrid Wizard to create the grid.

Add the panel grid using the Components window. Once created you can change
attribute values set in the wizard, by double-clicking on the h:panelGrid component
in the Structure Pane. The properties editor opens. Change any values as needed.

To insert a component into the grid, in the Structure Pane, right-click an existing
component and elect to place the component either before or after the existing
component. If you need to nest components in a cell, you must first place a
panelGroup tag in the cell. You can then elect to place other components inside the
panelGroup tag. Note that you cannot add rows to a panel grid. You can only add
columns using the Columns attribute. Components are then placed in columns along a
row in the order they appear in the Structure window.

To reorder the components, drag and drop the columns in the Structure window or in
the visual editor.

To delete a grid or a component in a grid, right-click the component and select Delete.

To create and edit a panel grid:

1. Open a JSF page in the visual editor.

2. In the Components window, select JSF from the drop-down menu.

3. Select Panel Grid. The Create PanelGrid Wizard opens.

4. Complete the wizard.

How to Paste Markup Code

You can copy and paste source code between JSP and HTML files in the same project
or different projects. Paste source code without interpretation, for example as sample
code, by selecting No in the Confirm Markup Insert dialog.

To paste markup code

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 16-15

1. Copy your source code on the local system clipboard.

2. Choose Edit > Paste Special.

How to View and Edit Web Page Head Content

HTML head content such as style definitions and the browser window title are
invisible elements on web pages.

To show head content choose Design > Show Invisible Elements > Head Content.
For each element of the head section, an icon appears in a bar at the top of the page.

When you select an element in the head section bar, the source code for the element is
highlighted in the code editor.

To edit an element in the head section of a page:

1. In an open web page display the head section elements by choosing Design >
Show > Head Content.

2. Choose from the following options:

• Click an element in the head section bar to select, and set or modify the element
properties in the Properties window.

• Right-click the element and choose Edit Tag from the context menu to open an
editor dialog. To open a cascading style sheet for editing choose Open css/
filename.css from the context menu.

Using the Properties Window
Use the Properties window to view and edit the properties of a component.

When you select a component on your editing page the title bar of the Properties
window displays the name of the component, as shown in Figure 16-5. The main area
displays the component properties and their values. If one or more component is
selected in the active tool, "Multiple" appears in the title bar, and only the properties
shared among the selected components display.

About Developing Applications Using Web Page Tools

16-16 Developing Applications with Oracle JDeveloper

Figure 16-5 Properties Window

The main area of the Properties window displays groups of properties in named
sections that you can expand or collapse. Component properties are displayed in
fields, dropdown lists, or combo boxes. For boolean properties, a checkbox before the
property name indicates its current value. Boolean properties that accept EL
expressions use either a field or dropdown list, depending on whether the current
value is an expression or an explicit value of true or false.

To see a description or more options for a property, right-click a property name, field,
dropdown list, or combo box to display a popup window. Resize the popup window
by dragging the bottom right corner of the window. When you resize the popup
window, the new size is used for all subsequent property popup windows that you
open until you change the size again.

The Properties window has a few icon tools on the top for common tasks, as shown in
Table 16-5.

Table 16-5 Toolbar Icon Features on the Properties window

Icon Name Description

Enable/Disable Auto-
Extend

Use to toggle on and off the automatic expansion
of the Properties window to display the full
contents when the cursor is over the window.
When focus moves to another part of the user
interface, the window returns to the default
position.

Bind to ADF Control Click to bind or rebind a property to an ADF data
control of your choice.

How to Edit Properties

To edit a property value, enter a new value in a field or select a value from a fixed set
of values using a dropdown list. When you edit a property value, a green dot appears

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 16-17

next to the property name to indicate that it has been changed from its default setting.
The following are additional options available to edit properties:

• Click the dropdown arrow at the end of the field or box to use a property editor or
browser tool to select and enter a value for the property.

• Click the dropdown arrow at the end of the field or box to display a popup
window and then choose a command, or choose a property editor or builder tool to
select and enter a value for the property.

• For boolean properties with checkboxes, select or deselect the checkbox to change
the value.

• For boolean properties that can accept EL expressions, enter an expression in the
field or click the down arrow at the end of the field to use a builder tool to enter a
value.

How to Write Custom Property Editors

Write your own property editor to customize the display. If your editor supports tags,
the editor displays those tags as a fixed set of values. If the editor does not support
tags, the system checks to see if custom editing is supported. If neither are supported,
a text editor appears.

When you start up the JDeveloper application you are provided the option of selecting
your role. Choosing Customization Developer gives you these options:

• When you edit a property value, an orange dot appears next to the property name.
(Property values that were modified in Default role have green dots next to the
properties.)

• From the property menu next to a text-only property, choose Remove
Customization to remove existing customization that was previously applied in
the same customization layer context.

Using the Components Window
The Components window displays your component libraries, and provides simple
drag and drop operations. The available components vary depending on the type of
file open. For example, if you are editing an HTML file, the Components window
displays a list of common HTML components, as shown in Figure 16-6.

About Developing Applications Using Web Page Tools

16-18 Developing Applications with Oracle JDeveloper

Figure 16-6 HTML Components in Components window

Using the Components Window

Your file and page components are organized in the Components window as pages.
Select the page you want from the dropdown list at the top.

To insert a component into a file, drag it from the to an insertion point in the editor. In
some cases you click a component and click in the editor to insert.

There are a variety of features available:

• To search for a component by name, enter the name or part of the name in the
binocular icon field and click the green go arrow.

• By default components are displayed in a list view (icon plus name). Change the
display to an icon only view by right-clicking a component and choosing Icon
View or List View.

• To add frequently used components, right-click a component and choose Add to
Favorites. The component is added to the Favorites panel.

• For projects with JSP tag libraries, change the list of JSP tag libraries available for
selection by right-clicking in the Components window and choosing Edit Tag
Libraries.

Using the Overview Editor for JSF Configuration Files
Use the overview editor to add and edit configuration data stored in faces-
config.xml, as shown in Figure 16-7.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 16-19

Figure 16-7 Overview Editor for JSF Configuration File

When you open faces-config.xml its contents are displayed in an editor group.
When you select the Overview tab at the bottom of this group, the overview editor
appears.

The overview editor has three sections:

• The left-hand column displays the main JSF configuration elements.

• The top area of the main panel shows child elements in for element list on the left.

• The bottom area of the main panel shows child elements at the top area.

To access JSF configuration elements:

1. In the Applications window, open the workspace that contains your JSF
application.

2. In the workspace, open your project.

3. Open the WEB-INF node.

4. Double-click the faces-config.xml file to open.

5. At the bottom of the editor, select the Overview tab.

6. Select an element from the element list on the left. The main panel displays
corresponding configurable child elements in a table at the top of the main panel.

How to Add, Delete, or Edit JSF Configuration Elements

Most elements can be managed using simple commands and dialogs that display
when the element is selected.

To Add or Delete JSF configuration elements:

• To add a new child element: Click New. A dialog box opens to create the element.
If no new button displays, the child element is an existing class. Select the class by
clicking Browse... . If no browse button appears, or if the entry is not a class name,
enter a value directly.

• To delete an existing child element: Select the element from the table and click
Delete. The element is removed from the table. If no delete button displays, the
entry can be deleted manually.

About Developing Applications Using Web Page Tools

16-20 Developing Applications with Oracle JDeveloper

How to Work with JSF Configuration Child Elements

Most child elements can be managed using simple commands and dialogs that display
once the element is selected.

To view, add, delete, or edit child elements:

• To view child elements. Select an element from the element list on the left. The
main panel displays. Select a child element from a table at the top of the main
panel. Allowed child elements display in a table at the bottom of the main panel. If
a child element allows child elements, but no children are currently defined, the list
area for those children might be hidden. To display the list area and add children,
click the show arrow to the left of the area title. To hide the list area, click the hide
arrow.

• To add a new child element. Click New. If no new button displays, the child
element must be an existing class. Select the class by clicking Browse... to open the
Class Editor dialog box. If no browse button appears, or if the entry is not a class
name, enter a value directly.

• To edit an existing child element. Select the element from the table. The properties
panel for the element opens to change the value. To delete an existing child
element, select it from the table and click Delete.

• To delete an existing child element. Select it from the table and click Delete. The
element is removed from the table. If no delete button displays, you can delete the
entry manually using right-click delete.

Planning Your Page Flows With JSF Navigation Diagrams
Use the JSF Navigation Diagrammer to diagram your JSF pages, and the navigation
between the pages. When you create a JSF page, the diagrammer is automatically
enabled and synchronized with anything you do in the editing tools.

How to View Your Navigation Diagrams

When you first view the navigation diagram, a diagram file is created for diagram
details including the JSF configuration file that holds all the settings. If you are using
versioning or source control, the diagram file is included as well as the configuration
file it represents.

The pages are represented by icons, and the navigation between pages as lines. The
navigation is mirrored in navigation cases in the faces-config.xml file for the
application.When a JSF navigation diagram is displayed, the Components window
also displays. The JSF Diagram Objects page of the Components window shows
entries for the elements that can be included on a JSF navigation diagram. To add JSF
diagram elements use the Components window.

To view the navigation diagram:

1. In the Applications window, expand your JSF application.

2. Expand the project that contains your application. If you created the application
using a template that included JSF, the project name is ViewController.

3. In the project, expand the WEB-INF node and double-click to open the JSF
configuration file. The default configuration file name is faces-config.xml.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 16-21

4. If the navigation diagram for the application is not displayed, select the Diagram
tab below the window.

When you view the Applications window using Group by Category (default), a single
entry for the JSF configuration file represents both the configuration file and the
associated diagram file. If you view all files using Group by Directory, you see
separate nodes for the two separate files including the configuration file using the full
file name, and the diagram file with the.jsf_diagram extension.

When you first open the JSF configuration file, the configuration file node displayed in
the Applications window indicates that there have been changes, even though no
changes have yet been made. This is because the node displayed in the Applications
window represents both the JSF configuration file and the navigation diagram.
Although the JSF configuration file has not changed, a navigation diagram file has
been created. Similarly, if you make changes to a navigation diagram that do not affect
the JSF configuration file, such as changing the layout, the node in the Applications
window indicates that changes have been made.

If you have a large or complex application, the JSF and related diagram files can be
large and loading can take a long time. Choose not to use the diagram as the default
editor and no related diagram file is created with your JSFs, unless you specifically
request one.

How to Add an Element to a JSF Navigation Diagram

Use the JSF navigation diagram and the Components window to create a diagram
representing the pages in your application, and the navigation cases between them.
The navigation cases you add to the diagram are automatically added in the JSF
configuration file.

To add a navigation diagram element

1. Open the diagram.

2. In the Components window > JSF Diagram Objects > Components page, select
JSF Page.

3. To add the page to the diagram, click on the diagram in the place where you want
the page to appear, or drag JSF Page onto the diagram surface. An icon for the page
is displayed on the diagram with a label for the page name. Initially, before you
have defined the new JSF page, the icon indicates that the physical page has not
been created, as show in Figure 16-8.

Figure 16-8 Icon Showing Page is Not Created.

4. To specify the name of the page, click the icon label in the diagram and edit the
label. The name requires an initial slash, so that the page can be run. If you remove
the slash when you rename the page, it will be reinstated.

5. To define the new page, double-click the icon and use the Create JSF Page dialog.
When you have created the page, the icon on the diagram changes to indicate that
the physical page has been created as shown in Figure 16-9.

About Developing Applications Using Web Page Tools

16-22 Developing Applications with Oracle JDeveloper

6. Save your changes.

Figure 16-9 Icon Showing Page is Created

How to Add a JSF Navigation Case to a JSF Navigation Diagram

Use the Components window to add navigation cases.

The navigation case is shown as a solid line on the diagram, and a default <from-
outcome> value is shown as the label for the navigation case. To edit the <from-
outcome> value, click on the label and enter the new value.

To add a JSF navigation to a diagram:

1. Open the diagram.

2. Define the JSF pages that are to be the source <from-view-id> and the destination
<to-view-id> for the navigation case you want to create.

3. In the Components window > JSF Diagram Objects > Components page, select JSF
Navigation Case.

4. On the diagram, click on the icon for the source JSF page, then click on the icon for
the destination JSF page to create one navigation case. To draw the navigation case
as a straight line between the source and destination pages, click the source page
then click the target page as shown in Figure 16-11.

Figure 16-10 Navigation Case with Straight Line

To draw the navigation case as a line with angles, select either Polyline or
Orthogonal in the editor toolbar as shown in Figure 16-11.

Figure 16-11 Navigation Case with Angled Lines

5. Save the changes to your JSF navigation diagram and save the changes to the JSF
configuration file.

A navigation rule is added to the JSF configuration file if there is not one already for
the source page, and a navigation case is added for the rule.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 16-23

How to Add a Note to a Navigation Diagram

Use the diagram annotations feature in the Components window to add notes to your
navigation diagram.

To add a note to a JSF navigation diagram

1. View the JSF navigation diagram for your project.

2. In the Components window, JSF Diagram Objects, Diagram Annotations page,
select Note.

3. Click on the diagram surface in the place where you want to add the note. A note is
displayed on the diagram with the cursor in place ready for you to enter text.

4. Enter the text and then click outside the note.

5. To select text in the note for editing, click anywhere in the note. To select the note
itself, click on the upper right corner. To edit the text, click in the middle of the
note.

6. Save the changes to your JSF navigation diagram. Notes appear only on the JSF
navigation diagram, not in the JSF application configuration file

How to Attach Notes to Elements in a Navigation Diagram

Use the Annotations feature in the Components window to attach notes to your
navigation diagrams.

To attach a note to an element in a JSF navigation diagram:

1. View the JSF navigation diagram for your project.

2. If the note is not already on the diagram, add the note.

3. In the Components window, JSF Diagram Objects, Diagram Annotations page,
select Note Attachment.

4. Click on the note in the diagram, then click on the element to which you want to
attach the note. A dotted line appears, representing the note attachment for the
selected page as shown in Figure 16-12.

Figure 16-12 Note Attachment Diagram

5. Save the changes to your JSF navigation diagram. Note attachments appear only on
the JSF navigation diagram, not in the JSF configuration file.

How to Set Layout Default Styles on a Navigation Diagram

Use the icons on the editor toolbar to choose your layout style.

To set layout default styles on a navigation diagram

1. Choose a layout style from the editor toolbar. Table 16-6 shows the list of layout
styles.

About Developing Applications Using Web Page Tools

16-24 Developing Applications with Oracle JDeveloper

2. Save your changes.

Table 16-6 Navigation Diagram Layout Styles

Icon Icon Description

Draws straight lines for navigation cases between page icons.

Draws lines with angles for navigation cases between page
icons.

Draws lines with right angles for navigation cases between page
icons.

Arranges the icons in a horizontal layout.

Arranges the icons in a vertical layout. The elements on the
diagram are laid out according to the pattern you chose.

How to Refresh Your Navigation Diagram to Reflect Changes in the Configuration
File.

Refreshing your navigation diagram will show changes you have across the editing
tools.

1. Select Refresh Diagram. The refresh speed for a diagram scales with the number of
nodes in the diagram and the number of connections between the nodes.

2. Save your changes.

How to Use the Navigation Diagrammer to Manage JSF Pages

You can use the navigation diagrammer to add, edit, rename, and delete JSF pages.
Table Table 16-7 shows the effect of various actions you perform in the diagrammer.

Table 16-7 Diagrammer Page Management Actions and Effects

Action Effect

Delete The associated web page is no longer visible in the JSF
navigation diagram. If you created the file, it is still available
from the Web Content folder in the ViewController project in
the Applications window.

Edit When you edit web pages manually, the JSF navigation
diagram and/or the JSF configuration file is not automatically
updated.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 16-25

Table 16-7 (Cont.) Diagrammer Page Management Actions and Effects

Action Effect

Rename If you rename a JSF page on a navigation diagram, this is like
removing a page with the original name from the diagram and
adding a new one with the new name. If you have created the
underlying page, that page remains with its original name in
the file system; on the diagram, the page icon changes to the
icon that indicates the page does not yet exist.

If you have already created a JSF page and it is displayed on the
diagram, if you rename it in the Applications window, this is
equivalent to removing the original file and creating a new file.
The diagram retains the original name, and now displays the
page icon that indicates the page does not exist.

Renaming a page on a JSF navigation diagram affects the
navigation rules and cases in the JSF configuration file.

Editing and Deleting Navigation Cases

When you edit or delete navigation cases, the associated configuration files are also
updated.

Table 16-8 Diagrammer Page Management Actions and Effects

Action Effect

Delete The associated <navigation-case> is removed from the JSF
configuration file.

The associated web page is still visible in the diagram and, if it
has been created, is still available from the Web Content folder
in the ViewController project in the Application Navigator.

Edit When you edit the label for the navigation case on the diagram,
the associated <navigation-case> is updated in the JSF
configuration file.

Once you have created a navigation case in the JSF navigation
diagram, you cannot change the destination of the navigation
case. To change the destination for an existing navigation case,
delete the existing case and create a new one to the correct
destination.

If your diagram file is large and takes a long time to open in the
diagrammer, you have the option to open the JSF configuration
file in another editor.

How to View Navigation Case Properties

Use the Properties window to view and edit you navigation case properties.

The navigation cases are displayed on the diagram as solid lines, with the <from-
outcome> element value displayed as the label.

To view properties of a navigation case:

1. If the Properties window is not displayed, open it from the Window menu.

2. Select the navigation case with properties you want to view. The properties of the
navigation case are shown in the Properties window.

About Developing Applications Using Web Page Tools

16-26 Developing Applications with Oracle JDeveloper

How to Publish a Diagram as a Graphic

You have the option to save your diagrams as .jpg, .png, .svg, or .svgz files to use
in documents, or on web pages. Images saved in .jpg format create the largest files,
followed by .svg, .png, and .svgz.

To publish a diagram as a graphic:

1. Right-click on the surface of the diagram, then choose Publish Diagram.

Alternatively, click on the surface of the diagram, then choose Diagram > Publish
Diagram.

2. Using the Location drop-down list, and select the destination folder for the graphic
file.

3. For file name, enter a name for the graphic file, including the appropriate file
extension.

4. From the file type drop-down list, select the file type for the graphic file.

5. Click Save.

How to Use Code Insight For Faster Web Page Coding
Use Code Insight to speed up your coding and quickly insert code parts, parameters,
and elements from a dynamic list of available options.

Code Insight provides two types of coding assistance: completion insight and
parameter insight. Completion insight completes regularly used code snippets for you.
Parameter Insight with provide you with a quick-pick list of parameter options
available in that instance.

To invoke completion insight, pause after typing the period separator or, in the default
keymap, press Ctrl+Space. To invoke parameter insight, pause after typing an opening
(the left) parenthesis or, in the default keymap, press Ctrl+Shift+Space. To exit either
type of insight at any time, press Esc.

To use Code Insight in a web page in the source editor:

1. Click the Source tab to open the file in the source editor, and place your cursor at
the location where you want to add a tag.

2. Enter the < (open angle bracket) and then either pause or press Ctrl + Space (using
the default keymapping) to invoke Code Insight. A list of valid elements based on
the file is displayed. Narrow the list by typing the first letter of the tag or enter a
tag library prefix followed by a colon (that is, <jsp:).

3. From the list of valid tags, double-click the tag, or highlight the tag and press Enter.
JDeveloper inserts the selected tag in the file, for example, <jsp:include. There
should be no space between the prefix and the tag name.

4. To add an attribute to the tag you inserted, enter a space after the tag name, then
either pause or press Ctrl+Space to open a list of valid attributes. Select the tag by
double-clicking or highlighting and pressing Enter. For example: <jsp:include
page.

5. Enter the attribute value. For example: <jsp:include page="filename.jsp".

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 16-27

6. Add other attribute and values as necessary. Use a space between an attribute
value and the next attribute. For example: <select size="4"
name="ListBox"></select>.

7. When finished adding attributes and values, enter the > (close angle bracket). The
correct end tag (e.g., </select>) is automatically inserted for you if the End Tag
Completion feature is enabled. Whether End Tag Completion is enabled or
disabled, the correct end tag is always automatically inserted for you when you
enter </ (open angle bracket and forward slash characters) to close the tag.

Right-click any tag name in the editor and choose Select in Structure to highlight
that tag in the Structure window. The Structure window also displays any syntax
errors found as you edit. You can double-click an error, element, or attribute to edit
it in the source editor.

To enable the End Tag Completion feature, choose Tools > Preferences > Code
Editor > JSP/XML/HTML to open the panel and select the option.

Code Insight is also available in CSS files. To use Code Insight for your CSS file, place
the cursor inside any <STYLE> tag, then type the open angle-bracket and press Ctrl +
Space. A list of possible completions displays. You can filter the available completions
by typing the first character of the element.

To use Code Insight in a JavaScript or CSS file:

• For JavaScript files, place the cursor inside any <SCRIPT> tag, then type the open
angle-bracket and press Ctrl + Space. For CSS files place the curser inside the
<STYLE> tag and type the open angle-bracket and press Ctrl + Space.

JDeveloper displays a list of possible completions. You can filter the available
completions by typing the first character; for example, if you type the letter d,
JDeveloper will display completions beginning with D (Date, decodeURI, and so on).

Code Insight will also prompt for completion inside JavaScript-specific XML
attributes.

Developing Applications with JavaServer Faces
This section covers JDeveloper support and tools for your user interface development
using JavaServer Faces (JSF) technology within the Java EE platform.

JDeveloper provides full support for developing user interfaces with JSF and facelets
technology in accordance with the JSF 2.0 specification found at http://jcp.org/
aboutJava/communityprocess/final/jsr314/index.html. The JSF content
in this section assumes you are using facelets technology for your JSF development.

To quickstart your JSF application end to end:

1. Build a web application with the easy wizards. See Section 18.2.1.1, "How to Build
Your Application Framework".

2. Create your JSF pages using the New Gallery JSF wizard. See “To create your JSF
pages:”.

3. Choose a Business Service. See How to Choose a Business Services.

4. Create the backing beans for your business services. See How to Add Methods to a
Managed Bean.

Developing Applications with JavaServer Faces

16-28 Developing Applications with Oracle JDeveloper

http://jcp.org/aboutJava/communityprocess/final/jsr314/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr314/index.html

5. Bind the interface components to data. See How to Bind Components with EL
Expressions.

6. Add application resources and managed beans to faces-config.xml. See How
to Edit a JSF Configuration File.

7. Run your JSF pages. See Running and Testing JSF Applications.

Building Your JSF Application
You can build your application from the ground up using the features provided in
JDeveloper. The first thing to do/ is build a framework or application template for
your web pages using the application templates. Choose from a combination of
technologies offered in the New Gallery Wizards. The application you choose
determines the project folders created, and the libraries added to the folders as shown
in Table 16-9.

Table 16-9 Web Application Templates

Application Description

Fusion Web Application
(ADF)

Creates a databound ADF web application. This application
contains one project for the view and controller components
(ADF Faces and ADF Task Flows), and another project for the
data model (ADF Business Components).

Java EE Application Creates a databound web application. This application contains
one project for the view and controller components (JSF), and
another project for the data model (EJB and JPA entities)

Generic Application Creates an application with a single project. The project is not
preconfigured with JDeveloper technologies and can be
customized to include any technologies.

How to Build Your Application Framework

Start by using the wizards to build your customized application framework.

To create a web application and project for a JSF application:

1. From the main menu select File > New > From Gallery > General > Applications.

2. Select an application to create.

3. Complete the steps. The project folders, Model and ViewController, are created
and listed in the Applications window under the new application node. If you
chose Generic Application, only a Project folder is shown.

4. Double-click the ViewController project to open the Project Properties dialog, and
select Dependencies. Make sure the Model project is selected under Project
Dependencies.

How to Create Your JSF Pages and Related Business Services

Once you have created the framework of your application, get your pages up and
running with the page building, editing, and modeling tools. Choose ADF Faces page
templates or quick start layouts. ADF Faces page templates (.jsf file) define an entire
page layout in a page template definition file that allows for reuse and parametization.
The quick start layouts are a a pre-defined page layout that automatically inserts and

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-29

configures the ADF Faces components required to implement the layout look and
behavior.

To create your JSF pages:

1. In the Applications window, select your project for the new JSF 2.0 page or
document. Note that you can also create you JSF pages from the Navigation
Modeler.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Web Tier and select JSF. From this wizard create a
JSF/facelet page or a JSP XML page.

How to Choose a Business Services

For your business services you have the option of using Enterprise JavaBeans (EJB),
JavaBeans, or Oracle TopLink to map your Java classes and EJBs to database tables.
Web Services is available if you don't need to create the backend business service and
want to expose existing business services, including EJB components, stored
procedures in the database, or other services writing Java and other languages.

Open the New Gallery and use the provided wizards and dialogs to create your
business service, or in the case of web services, to expose the entities in your project, as
shown in Table 16-10.

Table 16-10 Business Service New Gallery Options

If you want to use... Then choose this New Gallery option...

Enterprise JavaBeans in the
Model project

EJB in the Business Tier category

Oracle TopLink in the
Model project

TopLink in the Business Tier category

JavaBeans in the Model
project

JavaBeans in the General category

Web services that were
created based on legacy
code, software components
(such as EJB components),
or even PL/SQL in the
database and make it
accessible through HTTP
quickly and easily.

Web Services in the Business Tier category

To create a business service:

1. Create a web application and project. See web application options in Table 16-9.

2. In the Applications window, under your application node, select the Model project
and choose File > New to open the New Gallery.

3. In the Categories list, expand a node and you will see categories related to your
chosen technology scope. Under the Business Tier node, you will see business
service options such as ADF Business Components, EJB, Toplink, and Web
Services. Choose your business service and follow the steps in the wizard.

Developing Applications with JavaServer Faces

16-30 Developing Applications with Oracle JDeveloper

Building your JSF Business Component Framework
The Components window contains your standard JSF components to drag and drop
onto your JSF pages. When you create a JSF page, the backing beans are created and
automatically bound to all of the components and corresponding properties you put
on the page.

For localization, resource bundles are automatically added when you add content
components to your page. You can manage your resource bundles, or create new
resource bundles in the Project Properties feature of your application.

Among the many standard component options provided, there are validating and
converting components that are configurable through the Properties window, as well
as a Message component to help you set up the error message output for your JSF
pages, as shown in Figure 16-13.

Figure 16-13 Core JSF Components Available in Components window

Using the JSF Tag Libraries

The components available on the Components window correspond to the JSF 2.0
facelets tag library. The tag descriptions are detailed in Table 16-11.

For complete information on this and all JavaServer Faces 2.1 component tags and
API, see the Oracle Technology Network (OTN) online documentation libraries.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-31

JavaServer Faces 2.1 Facelets Tag Library Documentation: http://
docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/
facelets/

JavaServer Faces Technology 2.1 JSP Tag Library Documentation:

http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/
vdldocs/jsp/

Table 16-11 Standard JSF Core Tag Library Supported Elements

Component Tag Syntax Description

f:actionListener <f:actionListener

[type]

[binding]

[for]

/>

Registers an action listener on
the UIComponent associated
with the closest parent
component.

f:ajax <f:ajax

[disabled]

[event]

[execute]

[immediate]

[listener]

[oneevent]

[oneerror]

[render]

/>

Registers an AjaxBehavior
instance on one or more
UIComponents implementing
the ClientBehaviorHolder
interface. This tag may be
nested within a single
component (enabling Ajax for
a single component), or it may
be "wrapped" around multiple
components (enabling Ajax for
many components).

f:attribute <f:attribute

[name]

[value]

/>

Adds an attribute to the
UIComponent associated with
the closest parent
UIComponent custom action.

f:convertDateTime <f:convertDateTime

[dateStyle]

[locale]

[pattern]

[timeStyle]

[timeZone]

[type]

[binding]

[for]

Registers a
DateTimeConverter instance
on the UIComponent
associated with the closest
parent UIComponent custom
action.

f:converter <f:converter

[converterID]

[binding]

[for]

/>

Registers a named Converter
instance on the UIComponent
associated with the closest
parent UIComponent custom
action.

Developing Applications with JavaServer Faces

16-32 Developing Applications with Oracle JDeveloper

http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/jsp/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/jsp/

Table 16-11 (Cont.) Standard JSF Core Tag Library Supported Elements

Component Tag Syntax Description

f:convertNumber <f:convertNumber

[currencyCode]

[currencySymbol]

[groupingUsed]

[integerOnly]

[locale]

[maxFractionDigits]

[minIntegerDigits]

[pattern]

[type]

[binding]

[for]

/>

Register a NumberConverter
instance on the UIComponent
associated with the closest
parent UIComponent custom
action.

f:event <f:event

[name]

[listener]

/>

Allows you to install
ComponentSystemEventListe
ner instances on a component
in a page.

f:facet <f:facet/> Registers a named facet on the
UIComponent associated with
the closest parent
UIComponent custom action.

f:loadBundle <f:loadBundle

[basename]

[var]

/>

Loads a resource bundle
localized for the Locale of the
current view, and expose it as
a java.util.Map in the request
attributes of the current
request under the key
specified by the value of the
“var" attribute of this tag. The
Map must behave such that if
a get() call is made for a key
that does not exist in the Map,
the literal string “KEY" is
returned from the Map, where
KEY is the key being looked
up in the Map, instead of a
Missing Resource Exception
being thrown. If the Resource
Bundle does not exist, a
JspException must be thrown.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-33

Table 16-11 (Cont.) Standard JSF Core Tag Library Supported Elements

Component Tag Syntax Description

f:metadata <f:metadata/> Declares the metadata facet for
this view. This must be a child
of the <f:view>. This tag
must reside within the top
level XHTML file for the given
viewId, not in a template. The
implementation must insure
that the direct child of the
facet is a UIPanel, even if there
is only one child of the facet.
The implementation must set
the id of the UIPanel to be the
value of the
UIViewRoot.METADATA_FA
CET_NAME symbolic
constant.

f:param <f:param

[binding]

[id]

[name]

[value]

[disable] />

Adds a child UIParameter
component to the
UIComponent associated with
the closest parent
UIComponent custom action.

f:phaseListener <f:phaseListener

[type]

[binding]

/>

Registers a PhaseListener
instance on the UIViewRoot in
which this tag is nested.

f:selectItem <f:selectItem

[binding]

[id]

[itemDescription]

[itemDisabled]

[itemLabel]

[escape]

[itemValue]

[value]

[noSelectionOption]

/>

Add a child UISelectItem
component to the
UIComponent associated with
the closest parent
UIComponent custom action.

Developing Applications with JavaServer Faces

16-34 Developing Applications with Oracle JDeveloper

Table 16-11 (Cont.) Standard JSF Core Tag Library Supported Elements

Component Tag Syntax Description

f:selectItems <f:selectItems

[binding]

[id]

[value]

[var]

[itemValue]

[itemLabel]

[itemDescription]

[itemDisabled]

[itemLabelEscaped]

/>

Adds a child UISelectItems
component to the
UIComponent associated with
the closed parent
UIComponent custom action.

When iterating over the select
items, toString() must be
called on the string rendered
attribute values.

Version 2 of the specification
introduces several new
attributes, described below.
These are: var, itemValue,
itemLabel, itemDescription,
itemDisabled, and
itemLabelEscaped.

f:setPropertyActionListener <f:setPropertyActionListener

[value]

[target]

[for]

/>

Registers an ActionListener
instance on the UIComponent
associated with the closest
parent UIComponent custom
action. This actionListener will
cause the value given by the
"value" attribute to be set into
the ValueExpression given by
the "target" attribute.

f:subview <f:subview

[binding]

[id]

[rendered]

This handles the Container
action for all JavaServer Faces
core and custom component
actions used on a nested page
via "jsp:include" or any
custom action that
dynamically includes another
page from the same web
application, such as JSTL's
"c:import"

f:validateBean <f:validateBean

[validationGroups}

[disabled]

[binding]

[for]

This is a validator that
delegates the validation of the
local value to the Bean
Validation API. The
validationGroups attribute
serves as a filter that instructs
the Bean Validation API
which constraints to enforce. If
there are any constraint
violations reported by Bean
Validation, the value is
considered invalid

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-35

Table 16-11 (Cont.) Standard JSF Core Tag Library Supported Elements

Component Tag Syntax Description

f:validateDoubleRange <f:validateDoubleRange

[disabled]

[maximum]

[minimum]

[binding]

[for]

/>

Registers a
DoubleRangeValidator
instance on the UIComponent
associated with the closest
parent UIComponent custom
action.

f:validateLength <f:validateLength

[disabled]

[maximum]

[minimum]

[binding]

[for]

/>

registers a LengthValidator
instance on the UIComponent
associated with the closest
parent UIComponent custom
action.

:validateRegex :<validateRegex

[disabled]

[pattern]

[binding]

[for]

/>

This is a validator that uses
the pattern attribute to
validate the wrapping
component. The entire pattern
is matched against the String
value of the component. If it
matches, it's valid.

f:validateRequired <f:validateRequired

[disabled]

[binding]

[for]

/>

This is a validator that
enforces the presence of a
value. It has the same affect as
setting the required attribute
on a UIInput to true.

f:validator <f:validator

[disabled]

[validatorId]

[binding]

[for]

/>

Registers a named Validator
instance on the UIComponent
associated with the closest
parent UIComponent custom
action.

:valueChangeListener <:valueChangeListener

[type]

[binding]

/>

Registers an
ValueChangeListener instance
on the UIComponent
associated with the closest
parent UIComponent custom
action.

f:verbatim <f:verbatim

[escape]

[rendered]

/>

Creates and register a child
UIOutput component
associated with the closest
parent UIComponent custom
action, which renders nested
body content.

Developing Applications with JavaServer Faces

16-36 Developing Applications with Oracle JDeveloper

Table 16-11 (Cont.) Standard JSF Core Tag Library Supported Elements

Component Tag Syntax Description

f:view <f:view

[locale]

[renderKitId]

[beforePhase]

[afterPhase]

/>

Container for all JavaServer
Faces core and custom
component actions used on a
page.

f:viewParam <f:viewParam

[converter]

[converterMessage]

[id]

[required]

[requiredMessage]

[validator]

[validatorMessage]

[value]

[valueChangeListener]

[maxLength]

[for]

/>

Used inside of the metada
facet of a view, this tag causes
a UIViewParameter to be
attached as metadata for the
current view. Because
UIViewParameter extends
UIInput all of the attributes
and nested child content for
any UIInput tags are valid on
this tag as well.

Using Standard JSF Component Tag Attributes

Use the Properties window to view and set your component tag attribute. When you
select an attribute, a brief description of the attribute appears in the text area below the
attribute list. Most of the standard JSF component tag attributes accept value binding
expressions, #{expression}.

When you add a component to the JSF page, the Properties window displays the
supported attributes for the component tag grouped in these categories:

• Common. Used commonly, such as id and title. For localization there are
language translation attributes such as lang and dir.

• Appearance. Defines how things appear on the page such as links and text.

• Style. Used for HTML presentation attributes such as background and font.

• JavaScript. Used for JavaScript attributes for associating client-side scripts with
events, such as onclick, onkeypress, and onmouseover.

How to Create Managed Beans

Managed, or Backing beans are beans that contain logic and properties for UI
components on a JSF page. Use the Managed Bean tab of the Create JSF page dialog to
automatically bind your backing beans, as shown in Figure 16-14. When this option is
selected, a default bean is created (or select a managed bean of your choice) for the
page you are creating, and then automatically binds all the page components to a
corresponding property in that bean. It also creates the associated accessor methods.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-37

Table 16-12 Managed Bean Binding Options

If you want to... Then choose...

Use a default managed bean for a JSF page Automatically Expose UI Components in a
New Managed Bean. Accept the default names,
or enter names of your choice.

Use an existing managed bean of your
choice for a JSF page

Automatically Expose UI Components in an
Existing Managed Bean. Then select a managed
bean from the dropdown list.

Creating a page and choosing to automatically bind components provides the
following features:

• If you elect to create a backing bean, a JavaBean using the same name as the JSF or
JSPX is created, and placed in a the view.backing package. A managed bean entry
is also created in the faces-config.xml file for the backing bean. By default, the
managed bean name is backing_<page_name> and the bean uses the request scope.

• On the newly created or selected bean, a property and accessor method is added
for each component tag you place on the page.

• The component tag is binded to the property using an EL expression as the value
for its binding attribute. Because JDeveloper automatically places a form
component on a JSF or JSPX page on creation, properties and accessor methods for
the form component are automatically created.

• Properties and methods are deleted when you delete components from the page.

Figure 16-14 Create JSF Dialog - Create Managed Bean Tab

Developing Applications with JavaServer Faces

16-38 Developing Applications with Oracle JDeveloper

Creating Managed Beans

For component tags with attributes that require method binding, use the Properties
window to enter method binding expressions and select from existing methods in the
page backing bean (see procedure below for adding methods to backing beans). You
can also enter new method names. JDeveloper creates the new skeleton method in the
page backing bean. Add the logic to the method.

To create managed beans:

1. Create a JSF or JSPX page from the New Gallery.

2. Select the Managed Bean tab.

3. Select Automatically Expose UI Components in a New Managed Bean. A new
backing managed bean is created with the same name as the JSF page. It is located
in the model.backing directory.

4. Add or delete component tags as needed to the JSF page. Edits automatically
updated in the backing bean.

How to Create Managed Beans with the Overview Editor

Create your managed beans for your JSPX pages using the XML Overview Editor.

To create managed beans with the overview editor

1. In the Applications window, double-click to open the faces-config.xml file.
This file is located in the Web Content/WEB_INF directory.

2. At the bottom of the window, select the Overview tab. The editing window
displays.

3. In the element list on the left, select Managed Beans.

4. Click the plus symbol to open the Create Managed Bean dialog.

5. Enter the name and fully qualified class path for the bean.

6. Select a scope, check the Generate Java File check box, and click OK. This creates a
Java file for the managed bean that contains a public constructor method. Manually
add all properties and additional methods. The file is named and placed using the
fully qualified class name set as the value of "Class". The new file appears within
the project Application Sources node in the Applications window.

How to Add Methods to a Managed Bean

Create your bean methods using the Events dropdown menu.

To add methods to a managed bean:

1. Open your backing bean in the source editor.

2. From the method binding toolbar on the top of the editor select a component from
the Components dropdown menu.Applications window

3. From the Events dropdown menu, select the type of method to create. A skeleton
method for the component is added.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-39

4. Replace the // Add event code here... comment with appropriate business logic.

How to Bind Components with EL Expressions

JavaServer Faces provides an expression language (JSF EL) that can be used in JSF
pages to access the JavaBeans components in your page bean and in other beans in
your web application, including the session and the application beans. To bind any
property of a component, add the component to a page and then select the component
and create the bindings from the Properties window.

You can use the Expression Builder dialog box to choose which JavaBeans property
the component property is to be bound to and write your EL Expressions using the
tools, as shown in Figure 16-15.

Figure 16-15 Expression Builder Dialog

The JSF expression language syntax uses the delimiters #{}. An expression can be a
value-binding expression for binding UI components, or their values to external data
sources, or a method-binding expression for referencing backing bean methods.

The syntax supported for a JSF value binding expression is for the most part the same
as the syntax defined in the JavaServer Pages Specification (v 2.0), with the following
exceptions:

• The expression delimiters for a value binding expression are #{ and } instead of $
{and }.

• Value binding expressions do not support JSP expression language functions.

Examples of valid value binding expressions include:

• #{Page1.name}

• #{Foo.bar}

• #{Foo[bar]}

• #{Foo[“bar"]}

Developing Applications with JavaServer Faces

16-40 Developing Applications with Oracle JDeveloper

• #{Foo[3]}

• #{Foo[3].bar}

• #{Foo.bar[3]}

• #{Customer.status == ‘VIP'}

• #{(Page1.City.farenheitTemp - 32) * 5 / 9}

• Reporting Period: #{Report.fromDate} to #{Report.toDate}

Method binding expressions must use one of the following patterns:

• #{expression.value}

• #{expression[value]}

Expression language provides the following operators, in addition to the. and
[]operators:

• Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)

• Logical: and, &&, or, ||, not, !

• Relational: ==, eq, !=, ne, <, lt, >, gt, , ge, >=, le. Comparisons can be made against
other values, or against boolean, string, integer, or floating point literals.

Empty: The empty operator is a prefix operation that can be used to determine
whether a value is null or empty.

• Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation of
A.

Constructing an EL Expression

You can edit your EL expressions from the component field in the Properties window.
Click inside the field to see long expressions. Click Ctrl+Space to invoke Code Insight
from the Properties window field. You can also add or edit EL expressions by slow-
clicking the component and clicking Expression Builder.

To construct an EL expression that uses JSF technology:

1. Open a JSP page in the visual editor.

2. Select the component attribute to bind.

3. In the Properties window, select the attribute name.

4. In the attribute action dialog select Expression Builder.

5. Build your expressions and click OK.

How to Create Composite Components

A composite component is type of template, that acts as a component and contains a
collection of markup tags and other existing components. It is a reusable component
that you create for your application for specific and defined functionality. Your
composite component can have validators, converters, and listeners attached to it like
any other component.

You can use the New Gallery wizard to create your Composite Components.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-41

To create a composite component:

1. Go to File > New > From Gallery.

2. Expand the Web Tier node and select JSF/Facelets.

3. From the Items list, select Composite Component and enter the information as
directed in the Create JSF Composite Component dialog.

Using Automatic Component Binding

Automatic component binding in a page affects how you enter method binding
expressions for the attributes of command and input components such as

• action

• actionListener

• launchListener

• returnListener

• valueChangeListener

• validator

Use the Expression Builder dialog box shown in Figure 16-15 to choose the component
property that will be bound.

When automatic component binding is turned off, you have to select an existing
managed bean or create a new backing bean as you enter method binding expressions
for component attributes. If you create a new backing bean, a managed bean is
configured in application faces-config.xml.

When automatic component binding is turned on, you do not have to select a
managed bean. As you enter method binding expressions for component attributes,
you can select from existing methods in the bean, or if you enter new method skeleton
methods are automatically created.

In addition, when you edit a Java file that is a backing bean, a method binding toolbar
appears in the source editor for you to bind appropriate methods to selected
components in the page.

If you created a JSF page with the file name myfile.jsp and you have selected to
automatically create a default managed bean, then a backing bean is created
as .backing.Myfile.java, and placed in the \src directory of the ViewController
project. The backing bean is configured as a managed bean in the application
resources file (faces-config.xml), and the default managed bean name is
backing_myfile.

When automatic component binding is turned on, any component that you insert in
the page is automatically bound (via its binding attribute) to a property in the backing
bean, as shown in the coded examples below.

...
<h:form binding="#{backing_myfile.form1}">
 <h:inputText binding="#{backing_myfile.inputText1}"/>
 <h:commandButton value="button0"
 binding="#{backing_myfile.commandButton1}"
 action="#{backing_myfile.commandButton_action}"/>
...

Developing Applications with JavaServer Faces

16-42 Developing Applications with Oracle JDeveloper

</h:form>
...

package view.backing;
import javax.faces.component.html.HtmlForm
import javax.faces.component.html.HtmlCommandButton
import javax.faces.component.html.HtmlInputText;

public class Myfile
{
 private HtmlForm form1;
 public void setForm1(HtmlForm form1)
{
this.form1 = form1;
}
 public HtmlForm getForm1()
}
return form1;
}
private HtmlInputText inputText1;
public void setInputText1(HtmlInputText inputText1)
{
public HtmlInputText getInputText1()
{
return inputText1;
}
private HtmlCommandButton commandButton1;
public void setCommandButton1(HtmlCommandButton commandButton1)
{
this.commandButton1 = commandButton1;
}
return commandButton1;
}
public String commandButton_action()
{
// Add event code here...
return null;
}
}

Application resources file: faces-config.xml

...
<managed-bean>
 <managed-bean-name>backing_myfile</managed-bean-name>
<managed-bean-class>view.backing.Myfile</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>
...

Turning the Automatic Bind Option On and Off

While editing, you can turn off or turn on the automatic bind option or change the
managed bean selection

• If automatic bind is on and you change the managed bean selection, all existing and
new component bindings are switched to the new bean.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-43

• If you turn automatic bind off, nothing changes in the existing component bindings
in the page.

• If you turn automatic bind on, all new and existing component bindings are bound
to the chosen managed bean.

To turn off or on automatic component binding

1. Open the JSF page in the visual editor.

2. Choose Design > Page Properties.

3. Click Component Binding.

4. Uncheck or check the Auto Bind option.

How to Set a Page to Auto Bind to Managed Beans

Use the menu bar Design option to enable component binding. All existing bound
components and any new components that you insert are bound to the selected
managed bean

To set automatic binding for a page

1. Open the JSF page in the visual editor.

2. Choose Design > Page Properties.

3. Make sure the Auto Bind option is checked.

4. Click the drop-down arrow and select an existing managed bean, or click New... to
define a new managed bean. .

How to Value Bind a Component to a Property

Use the Properties window to value bind a property.

To value bind a component to a property:

1. In the visual editor, select the component.

2. In the Properties window, click the dropdown menu in an appropriate field. and
choose Expression Builder.

3. Enter an EL Expression that binds to a property on a bean or a value in a resource
bundle.

How to Manually Bind Component Instances to Properties

Use the Properties window to bind component instances to properties.

To manually bind component instances to properties

1. In the visual editor, select the component.

2. In the Properties window, click the down arrow next to the Binding attribute. The
Binding dialog displays.

3. Select a managed bean or click New... to create a new one.

4. Select an existing property using the dropdown menu, or click New... next to
Property to add a new property name.

Developing Applications with JavaServer Faces

16-44 Developing Applications with Oracle JDeveloper

5. When you are finished click OK. If you created a new property, it is inserted as
accessor method code in the bean of your choice.

How to Bind an Existing Method with Auto Component Binding

Use the Properties window to bind existing methods with auto binding.

To bind to an existing method with auto component binding on:

1. In the visual editor, select the component.To bind to an existing method using auto
component binding, the method must already exist on the backing bean associated
with the JSF page.

2. In the Properties window, click the column next to the attribute that accepts
method binding.

3. Click the dropdown menu and select a method name. Only methods on the
backing bean with the proper signature are available for selection.

How to Bind a New Default Method with Auto Binding On

Use the events dropdown menu to bind new default methods with auto binding off.

To bind to a new default method with auto component binding on:

1. Open the associated backing bean.

2. In the source editor, use the method binding toolbar to select the component from
the Component dropdown menu.

3. From the Events dropdown menu, select the appropriate attribute. A default
method at the bottom of the page is inserted. The cursor is placed at the new
method. The binding expression in the JSF page is also created.

4. In the source editor, enter the code for the method.

How to Bind a New Default Method with Auto Binding Off

Use the Properties window to bind new default methods with auto bind off.

To bind a new default method with auto binding off:

1. In the visual editor, select the component. In the Properties window, click the
dropdown menu next to the attribute that accepts method binding.

2. Select a managed bean or click New... to create a new managed bean.

3. Select an existing method using the dropdown menu or click New... next to
Method to add a new method name.

4. Click OK. The binding code in the JSF page is created. If you created a new
method, a default method code is automatically inserted into your backing bean.

5. Open the bean in the source editor and enter the code for the method.

Using Localized Resource Bundles in JSF

All of the content you build in your JSF application components is stored in resource
Bundles. You can add or remove resource bundles easily from your application in the
Default Project Properties dialog.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-45

During development right-click your component to select text resources. The resource
bundles available for the project are displayed. Select the bundles to make available
for the project you are working on. New text is stored in the resource bundle you
select.

You can also assign a key value string to uniquely identify the text object in the
resource bundle. By default the name, or a part of the name you enter for display
value is used. This value is used by translators to correlate your base content with its
localized partner. Existing content strings you have previously added to resource
bundles are available and displayed when you are adding new content. Reusing
existing content strings optimizes localization efforts, ensuring you don't add new
content strings with unique identifiers when a duplicate string with a different
identifier already exists. Recycling content strings across your project and application
using resource bundles reduces translation efforts and costs.

How to Use Localized Resource Bundles in JSF

In your JSF page, you can reference a resource bundle string from any component tag
attribute that accepts value binding expressions, e.g., #{bundle.key}.

Add your resource bundles to your JSF pages dragging the LoadBundle component
from the Components window.

To use localized resource bundles in JSF:

1. Create resource bundles containing the key-value pairs for your localized message
and data stings. Place the localized bundles in the application's classpath.

2. In the Applications window, double-click faces-config.xml to open it in the
JSF Configuration Editor. Switch to the Overview.

3. Click Application, then click the forward arrow to expand Locale Config.

4. Under Locale Config, enter a value for Default Locale. In Supported Locale, click
New to add an ISO locale identifier for a supported locale. You can add more than
one supported locale.

5. Open your JSF page in the visual editor.

6. In the Components window, select JSF Core from the dropdown list, then drag and
drop LoadBundle to the page. A dialog appears to enter the base name of the
resource bundle, and any name for the map variable used in request scope.

In the faces-config.xml:

<faces-config>
 <application>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en-us</supported-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>es</supported-locale>
 </locale-config>
 </application>
...
</faces-config>

In the JSF page:

...

Developing Applications with JavaServer Faces

16-46 Developing Applications with Oracle JDeveloper

<f:loadBundle basename="model.login.ApplicationMessages" var="loginBundle"/>
<f:view>
 <html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"/>
 <title>Sample Application</title>
 <link href="css/mycompany.css" rel="stylesheet" media="screen"/>
 </head>
 <body>
 <H2><h:outputText value="#{loginBundle.someHeadLabel}" /></H2>
 <h:form id="loginForm">
 <h:outputText value="#{loginBundle.useridLabel}" />
 <h:inputText id="userid" value="#{login.userid}"
 required="true" size="15">
 <f:validateLength minimum="4" maximum="7"/>
 </h:inputText>
 <h:commandButton value="#{loginBundle.loginLabel}
 action="someBean.someMethod"} />
...
 </h:form>
 </body>
 </html>
</f:view>

How to Work with Facets

Many components use facets. When you use wizards to create complex components
(such as a table or panel), output tags are automatically created and inserted into the
facets. You can manually edit these components or add other components to facets.
You can also add or delete facets using a context menu in the Structure window.

To add and edit facets:

1. In the Structure window, expand the parent tag (such as h:dataTable) by clicking
the plus sign to the left of the tag. A facet folder displays at the bottom of the tree.

2. Expand the facet folder by clicking the + icon. All facet folders pertaining to that
parent display.

3. To edit a component within a facet folder:

• Expand the folder and select the component.

• Use the Properties window to edit attribute values.

4. To add a component to a facet:

• Right-click the folder.

• Select Insert inside <facet-name>.

• Use the resulting menus to select the appropriate object.

• Use the Properties window to set attribute values.

How to Build JSF Views with Facelets

Facelets technology is supported by JDeveloper.

The following features are available:

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-47

• Reduces UI development and deployment time.

• Faster compilation time.

• Compile time validation.

• High performance rendering.

• Functional extensibility of components and server-side technologies through
customization.

• Support for code reuse through templating and composite components.

Facelets Tag Libraries

JSF uses various tags to express UI components in a web page. Facelets uses the XML
namespace declarations to support the JSF tag library mechanism. All of these libraries
are included in JDeveloper.

Table 16-13 Facelets Tag Libraries Included with JDeveloper

Tag Library URI pref
ix

Example Contains

JSF UI Tag
Library

http://
docs.oracle.com/cd/
E17802_01/j2ee/javaee/
javaserverfaces/2.0/
docs/pdldocs/
facelets/ui/tld-
summary.html

ui: ui:component

ui:insert

This tag Library is
used for
templating

JSF HTML Tag
Library

http://
docs.oracle.com/cd/
E17802_01/j2ee/javaee/
javaserverfaces/2.0/
docs/pdldocs/facelets/

h: h.head

h.body

h.outputText

h.inputText

This tag library
contains
JavaServer Faces
component tags
for all
UIComponent +
HTML RenderKit
Renderer
combinations
defined in the
JavaServer Faces
2.0 Specification.

JSF Core Tag
Library

http://
docs.oracle.com/cd/
E17802_01/j2ee/javaee/
javaserverfaces/2.0/
docs/pdldocs/facelets/

f: f:actionListener

f:attribute

This tag library
contains tags for
JavaServer Faces
custom actions
that are
independent of
any particular
RenderKit.

JSTL Functions
Library

http://
docs.oracle.com/
javaee/5/jstl/1.1/
docs/tlddocs/

fn: fn:toUpperCase

fn:toLowerCase

JSTL 1.1 Functions
Tag Library

Developing Applications with JavaServer Faces

16-48 Developing Applications with Oracle JDeveloper

http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/ui/tld-summary.html
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/ui/tld-summary.html
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/ui/tld-summary.html
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/ui/tld-summary.html
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/ui/tld-summary.html
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/ui/tld-summary.html
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/ui/tld-summary.html
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/pdldocs/facelets/
http://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/
http://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/
http://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/
http://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/

Creating a Facelet

Facelets support EL (expression language) based on the unified EL syntax defined by
JSP 2.1. EL expressions are used to bind UI component objects or values or managed-
bean methods or managed-bean properties. Note that for Unified EL in Facelets there
is no difference between ${} and #{}.

To create a facelet:

1. Choose File > New > New Gallery > Web Tier > JSF/Facelets > Page.

2. Enter the file name and path for your facelet and click OK.

• <context-param>
<param-name> Facelets.VIEW_MAPPINGS </param-name>
<param-value> *.xhtml</param-value>
</context-param>

<context-param>
<param-name>torg.apache.myfaces.trinidad.FACELETS_VIEW_MAPPINGS</param-name>
<param-value>*.xhtml</param-value>
 </context-param>

This is added to ensure you view your Facelets correctly, and not with the default
JSP mappings. The facelets JAR, jsf-Facelets.jar is added to your classpath
via the facelets runtime library.

How to Register a Standard Converter Using a Supplied Tag

To convert and validate your JSF input data there is a converter component to register
a named converter instance, a convert number, and convert date and time in the
Components window.

You can configure your converter and validator properties in the Overview editor for
your faces-config.xml file.

To register a JSF standard converter using a supplied tag:

1. In the visual editor, select the component to register a standard converter.

2. In the Components window, select JSF Core from the dropdown list, then click a
standard converter. (for example, convertDateTime).

3. In the Properties window, set the attributes for the converter.

<h:inputText id="hiredate" value="#{employee.hireDate}"
 <f:convertDateTime dateStyle="full"/>
 <f:convertDateTime dateStyle="full"/>
 </h:inputText>

How to Register a Standard Converter That Does Not Have Tag

Use the Components window or Properties window to register your converter.

To register a JSF standard converter that does not have its own tag:

1. In the visual editor, select the component on which you wish to register a standard
converter.

2. In the Components window, select JSF Core from the dropdown list, then click
Converter. A dialog appears for you to enter the converter registered ID.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-49

3. Select a converter ID from the dropdown list (for example, javax.faces.Integer).
Click OK. This inserts the f:converter tag in the page. Instead of using the
f:converter tag, you can use the Properties window to enter the converter ID
on the component converter attribute.

<h:inputText id="age" ...>
 <f:converter converterId="javax.faces.Integer" />
</h:inputText>

<h:inputText id="age" converter="javax.faces.Integer" />

How to Register a Standard Validator Using a Standard Tag

Use the Components window or Properties window to register your validator with a
standard tag.

To register a JSF standard validator on a component using a standard tag:

1. In the visual editor, select the input component to register a standard validator.

2. In the Components window, select JSF Core from the dropdown list, then click the
standard validator of your choice (for example, ValidateLength).

3. In the Properties window, set the attributes for the validator. You can register more
than one validator on a component. JSF calls the validators in the order they are
added to a component.

<h:inputText id="zip" value="#{employee.zipCode}">
 <f:validateLength minimum="5" maximum="9"/>
</h:inputText>

<h:inputText id="bonus" value="#{employee.bonus}">
 <f:validateLongRange minimum="#{MyBean.miminum}"/>
</h:inputText>

How to Display a Message Next to the Component that Generated the Conversion or
Validation Errors

Use the Properties window and Components window to assign an ID and add the
message.

To display a message next to the component that generated the conversion or
validation error:

1. Open your page in the visual editor.

2. Use the Properties window to assign a unique ID to the component to show a
message.

3. In the Components window, select JSF from the dropdown list, then drag and drop
Message to the page and position it next to the component to show the message. A
dialog appears to enter the unique ID.

4. Enter the ID and click OK.

5. In the Properties window, set the attributes for the message tag.

<h:form>
 <h:inputText id="zip" value="#{employee.zipCode}">
 <f:validateLength minimum="5" maximum="9"/>
 </h:inputText>

Developing Applications with JavaServer Faces

16-50 Developing Applications with Oracle JDeveloper

 <h:message for="zip"/>
 </h:panelGrid>
 <h:commandButton value="Submit" />
</h:form>

How to Register a Custom Converter or Validator in the JSF Application
Configuration

Use the Overview Editor to register your custom converters. The Create Attribute or
Create Property dialog appears for you to specify generic attributes or JavaBeans
properties that may be configured on the custom converter or validator.

To register a custom converter or validator in the configuration file:

1. In the Applications window, double-click the application's faces-config.xml
file to open it in the JSF Overview Editor. In the editor, click the Overview tab.

2. In the Overview page of the configuration editor, click Converters or Validators,
then click New. The Create Converter or Create Validator dialog appears to enter
an identifier and a fully qualified class name. For a custom converter, you can
register it under an identifier or a fully qualified class name for a specific data type.

3. Enter the required information. Click OK.

4. (Optional) To add attributes or properties, click New next to the Attributes or
Properties panel. If you don't see New, expand the panel by clicking the forward
arrow.

How to Edit a Custom Converter or Validator in a Configuration File

Use the Overview Editor to edit your custom converter or validator.

To edit a custom converter or validator:

1. In the Applications window, double-click the application faces-config.xml
file to open it in the Overview Editor. In the editor, click the Overview tab.

2. In the Overview page of the configuration editor, click Converters or Validators.
Select a converter or validator from the displayed list, then click Edit. The converter
or validator properties dialog appears.

3. Enter the necessary changes.

How to Delete a Custom Converter or Validator in a Configuration File

Use the Overview Editor to edit a custom converter.

To delete a custom converter or validator in the JSF application configuration file:

1. In the Applications window, double-click the application faces-config.xml
file to open it in the JSF Configuration Editor. In the editor, click the Overview tab.

2. In the Overview page of the configuration editor, click Converters or Validators.
Select a converter or validator definition from the displayed list, then click Delete.
The converter or validator definition is removed.

How to Register a Custom Converter on a Component Using a Converter Identifier

Use the Components window to register your custom converter on a component.

To register a custom converter on a component using a converter identifier:

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-51

1. In the visual editor, select the component to register a custom converter.

2. In the Components window, select the JSF Core page, then click Converter. A
dialog appears to enter the custom converter ID as registered in the application.

3. Select a registered converter identifier from the dropdown list. Only
implementations of the converter interface are available. Click OK. This inserts the
f:converter tag. You can use the Properties window to enter the registered
converter ID.

<h:inputText id="memberNumber" ... >
 <f:converter converterId="customConverter"/>
</h:inputText>

<h:inputText id="memberNumber" converter="customConverter"/>

How to Register a Custom Converter on a Component Using a Value Binding
Expression

Use the Properties window to register your custom converter on a component with a
value binding expression.

To register a custom converter on a component using a value binding expression:

1. In the visual editor, select the component to register.

2. In the Properties window, select the converter property, then click the dropdown
arrow and choose Expression Builder.

3. Use the Expression Builder to enter a EL expression. Instead of using the converter
property, you can add the f:converter tag to the component. Use the Expression
Builder to enter a value binding expression. The bean property must be an object of
a class that implements the converter interface.

<h:inputText id="age" converter="#{someBean.someProperty}" />

How to Register a Custom Validator Instance on a Component

Use the Components window to register a custom validator instance on a component.

To register a custom validator instance on a component:

1. In the visual editor, select the input component to use.

2. In the Components window, select JSF Core or ADF Faces Core page from the
dropdown list, and then click the Validator component.

3. In the Properties window, select a registered validator identifier from the
dropdown list, or enter a binding expression. Click OK.

<h:inputText id="name"
 value="#{MyBean.name}"
 size="10" ... >
 <f:validator validatorId="customValidator" />
 <f:attribute name="someName" value="someValue" />
</h:inputText>

How to Bind a Component to a New Validator Method

Use the Bind Validator property dialog to bind a component to a new validator
method.

Developing Applications with JavaServer Faces

16-52 Developing Applications with Oracle JDeveloper

To bind a component to a new validator method:

1. In the visual editor, double-click the input component. The Bind Validator Property
dialog displays.

2. From the Managed Bean dropdown list, select a managed bean or click New... to
create a new one.

3. Enter a new method name in Method or accept the default name.

4. Click OK. The default validator method code is inserted in the backing bean, and
the backing bean.java file opens in the source editor. The cursor is placed at the
new method.

5. In the source editor, enter the code for the validator method.

JSF page with automatic component binding off:

<h:selectOneMenu validator="#{nonauto.validatename1}">
 <f:selectItems value=""/
</h:selectOneMenu>

Default validator method code:

...
public void validatename1(FacesContext facesContext, UIComponent uiComponent, Object
object)
{
// Add event code here...
}
...

JSF page with automatic component binding on:

<h:selectOneMenu binding="#{backing_auto.selectOneMenu1}"
 validator="#{backing_auto.selectOneMenu_validator}">
 <f:selectItems value="" binding="#{backing_auto.selectItems2}"/>
</h:selectOneMenu>

Default validator method code:

...
public void selectOneMenu_validator(FacesContext facesContext, UIComponent
uiComponent, Object object)
{
// Add event code here...
}
...

Using the Standard Converter and Validator Tags and Syntax

All of the attributes supported by JDeveloper are shown in Table 16-14 and Table
16-15. Attributes in square brackets ([]) are not required. All accepted, predefined
attribute values are separated with vertical bars (|); the default value is in boldface.
For attributes that do not have a fixed set of accepted values, the values are shown in
italics.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-53

Table 16-14 JSF Standard Converter Tags

Tag Syntax

f:convertDateTime <f:convertDateTime

[dateStyle="default|short|medium|long|full"]

[timeStyle="default|short|medium|long|full"]

[pattern="pattern"]

[type="time|date|both"]

[locale="locale"]

[timezone="timezone"]

/>

f:convertNumber <f:convertNumber

[pattern="pattern"]

[minIntegerDigits="min"]

[maxIntegerDigits="max"]

[minFractionDigits="min"]

[maxFractionDigits="max"]

[groupingUsed="true|false"]

[integerOnly="true|false"]

[type="number|currency|percent"]

[currencyCode="currencyCode"]

[currencySymbol="currencySymbol"]

[locale="locale"]

Table 16-15 JSF Standard Validator Tags

Tag Syntax

f:validateDoubleRange <f:validateDoubleRange

[maximum="max]

[minimum="min"]

/>

f:validateLength <f:validateLength

[maximum="max"]

[minimum="min"]

/>

f:validateLongRange <f:validateLongRange

[maximum='max"]

[minimum="min"]

/>

How to Display Error Messages

Create and define error messages using the Message component and the Properties
window to define the attributes.

To display one error message next to a component that generated an error:

Developing Applications with JavaServer Faces

16-54 Developing Applications with Oracle JDeveloper

1. Open your JSF page in the visual editor.

2. In the Properties window, assign a unique ID to the component to show a message.

3. In the Components window, select JSF from the dropdown list, then drag and drop
Message to the page and position it next to the component for which the message
is to be shown. A dialog appears for you to enter the ID.

4. Click the column next to For* and type the component ID. Then click OK.

5. In the Properties window, set the attributes for the message tag.

<h:panelGrid columns="3>
 <h:outputLabel for="enum" value="Enter employee number: "/>
 <h:inputText id="enum" converter="javax.faces.Long" >
 <f:validateLength minimum="5" maximum="9"/>
 </h:inputText>
 <h:commandButton value="submit"/>
 <h:message for="enum"/>
</h:panelGrid>

Tip:

To enable a component detail message to appear as a tooltip during runtime,
set the message tag tooltip attribute to true. The tag showSummary and
showDetail attributes must also be set to true. If you are using ADF data
controls to create JSF forms and tables, the h:messages tag is automatically
added, which displays all error messages by default. You do not have to add
individual h:message tags manually.

How to Display All Error Messages Generated in a Page

Use the Properties window to set the display attributes for your messages.

To display all error messages generated in a page:

1. Open your JSF page in the visual editor.

2. In the Components window, select JSF from the dropdown list, then drag and drop
Messages to the page and position it at the top of the page.

3. In the Properties window, set the attributes for the Messages tag.

<h:form>
 <h:messages globalOnly="true" layout="table"/>
 ...
</h:form>

Tip:

Set the globalOnly attribute to true if you want to display only global
messages which are not associated with components. If you're using ADF data
controls to create JSF forms and tables, JDeveloper automatically adds the
h:messages tag for you. You do not have to add the tag manually.

How to Replace the Standard Message Texts in JSF

Create your text resource bundles and then use the overview editor to edit your
configuration file and add the bundle classpath. JSF first looks for messages in any
registered resource bundle before looking into the JSF standard bundle. This lets you
override any JSF standard message by using the appropriate key in your resource

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-55

bundle. For a list of messages see the JSF API javax/faces/
Messages.properties.

To replace the standard message texts in JSF:

1. Create a property resource bundle containing the key-value pairs for the
replacement texts, and place this bundle in the application classpath. For more
information, see How to Use Localized Resource Bundles in JSF.

2. In the Applications window, double-click faces-config.xml to open it in the
JSF Configuration Editor. Go to the Overview mode.

3. Click Application.

4. In Message Bundle, add the fully qualified path to the message resource bundle,
e.g., model.login.Resources.

5. In your JSF page, use the h:message tag to display one error message, or
h:messages tag to display all error messages. J

How to Add Information About a Form Field to Which a Message Refers

Use the Overview Editor to add a phase listener to your configuration file.

To add information about a form field to which a message refers:

1. Create a PhaseListener implementation that retrieves and adds a generic
attribute to a message.

2. In the Applications window, double-click faces-config.xml to open it in the
JSF Configuration Editor. Switch to the Overview mode, if necessary.

3. Click Life Cycle, then click New to add a custom phase listener.

4. In Create Phase Listener, enter the fully qualified path to the phase listener
implementation or click Browse... to select one.

5. Open your JSF page and locate the input component of your choice.

6. In the Components window, select JSF Core from the dropdown list, then drag and
drop Attribute to the input component. A dialog appears for you to enter the
required generic attribute information.

How to Change the Appearance of Error Messages a JSF Page

Use the stylesheet to change you message appearance.

To change the appearance of error messages in a JSF page:

1. Open a JSF page in the visual editor.

2. Link a CSS stylesheet to your page.

3. Select the h:message or hmessages: component.

4. In the Properties window, set the CSS class that you want to apply to a particular
type of message. For example, if you want messages with a severity level of
"ERROR" to use a particular stylesheet, set the ErrorClass attribute to the name
of a style class defined in your CSS file. To do this, in the Properties window click
the column next to ErrorClass, then select a style class.

Developing Applications with JavaServer Faces

16-56 Developing Applications with Oracle JDeveloper

Note:

To use one or more inline styles, expand ErrorStyle in the Properties window;
then enter or select a value next to the style you want to specify, for example,
background-color.

In CSS file: mystyles.css:

.error {
 font-style: italic;
 color:red;
}

.prompt {
 color:blue;
}

In the JSF file:

...
<f:view>
 <html>
 <head>
 <link media="screen" rel="stylesheet" href="css/mystyles.css"/>
 </head>
<body>
 <form>
 <h:inputText id="someid" value="{somebean.someproperty}"/
 <h:message for="id" errorClass="error"/>
<h:outputText value="{}" styleClass="prompt"/>
 ...
 </form>
 </body>
 </html>
 </fview>
...

Configuring JSF Applications

Configure your referenced beans using the faces-config.xml. By declaring the
bean in this file, design-time tools can understand beans that are not available at
design time (such as data access) but will be available at runtime.

When you create any JSF or facelet file a WEB-INF/faces-config.xml is
automatically created. You can have more than one JSF configuration file. You might
want to create multiple configuration files for separate areas of your application.
Additionally, if you choose to have packaged libraries containing custom components
or renderers, you need a separate faces-config.xml file for each library. In this
case, the configuration file is stored in the META-INF directory (as opposed to the
WEB-INF directory).

How to Use the Overview Editor to set the <application> Element

Use the Application section of the Overview Editor to configure child elements. For all
elements that take a fully qualified class name as a value, you can use the Browse...
button to launch the Class Browser to find the class. Once you exit a field, the value is
populated to the XML file.

To use the overview editor for configuration files to set the <application> element:

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-57

1. Open the overview editor for JSF configuration files.

2. In the left-hand column, select Application. The main area of the editor displays
each of the child elements to configure. If you do not specify a value for an element,
the default JSF implementation class is used.

3. In the main area, populate the text fields with class names that correspond to the
child elements.

How to Add a Bean to a JSF Configuration File

1. In the Applications window, double-click on the faces-config.xml file.
This file is located in the Web Content/WEB_INF directory.

2. At the bottom of the window, select the Overview tab. The JSF Configuration
Editor window displays.

3. In the element list on the left, select Referenced Beans.

4. Use the New, Edit, and Delete buttons to configure the bean.

How to Create a New JSF Configuration File

Use the New Gallery wizard to create a new JSF configuration file. You can then
include this configuration file in the .jar file that you use to distribute your
components or classes.

To create a new JSF configuration file:

1. In the Applications window, select your project. The project contains a WEB-INF
node, which contains the file web.xml.

2. Right-click the project node and choose New.

3. In the New Gallery, go to Categories, expand the Web Tier, then select JSF/
Facelet.

4. In the Items list, select JSF Page Flow & Configuration.

5. Click OK. The Create JSF Configuration File dialog appears.

6. Set the values to purpose your file. If you are adding a configuration file for your
application:

a. Enter a File Name for the new configuration file.

b. Verify or change the Directory.

c. Check the Add Reference to web.xml checkbox. When selected, a new
web.xml file is added, and is read as part of your application configuration.

d. Click OK. This creates a new configuration file using the entered name.

7. If you are creating a configuration file for custom components or other JSF classes
delivered in a library .jar:

a. Set the file name to faces-config.xml.

b. Change the Directory Name to META-INF.

Developing Applications with JavaServer Faces

16-58 Developing Applications with Oracle JDeveloper

c. Clear the Add Reference to web.xml checkbox.

d. Click OK. This creates a new configuration file using the entered name.

How to Edit a JSF Configuration File

Use one of three editors to edit your JSF configuration file.

To edit a JSF Configuration File:

1. In the Applications window, locate the faces-config.xmlconfiguration file
located in the WEB-INF node.

2. Double-click the file to open it.

3. The JSF navigation diagrammer appears by default. To select an editor, click one of
the tabs at the bottom of the editor window:

• JSF navigation diagrammer, click Diagram.

• Overview editor for JSF configuration files, click Overview.

• XML source editor, click Source.

Converting a Project to Facelets
You can convert a project or file to facelets using the Convert to Facelets feature as
shown in Figure 16-16. This process modifies your project or file in three ways:

• Tag libraries added - All facelets tag libraries with the same namespaces as JSP tag
libraries used by the Project are added.

• Tag usage changed - Each JSP page in this project (.jspx or .jsff), is replaced
with a facelets page.

• File names changed - You specify which file extension to use for facelets in this
conversion. If the file extension is not currently associated with facelets in this
project (javax.faces.FACELETS_VIEW_MAPPINGS context parameter in web.xml)
and in the Preferences (Tools > Preferences > File Types), then the required
mappings are added to web.xml and preferences. All .jspx files are renamed to the
file extension you specify here. All references to your renamed .jspx files are
updated accordingly.

Figure 16-16 Convert to Facelets Dialog

Things to Consider Before Converting

The following should be considered before you convert to facelets:

• JSP tags that cannot be converted are left unchanged in the converted page. Until
these JSP tags are manually converted, the converted page is not executable.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-59

• The JSP pages in XML syntax, which typically have .jspx file extension, are
supported. JSP pages in JSP syntax, which typically have .jsp file extension, need
to be converted to XML syntax in order to use the facelets conversion feature.

• The conversion is not undoable. We recommend that you make a back-up copy of
the Project before running Facelets conversion.

• Converting to facelets modifies your application preferences, which applies to any
project you use in JDeveloper.

• File names are changed unless you choose to preserve the file extension. Changed
file names can cause problems with the version control system in some cases. We
recommend that you test converting a single JSP file before converting many files
in a project to make sure that the version control system works okay with file name
changes.

• If you choose to preserve the JSP file extension (.jspx), all files with .jspx
extension will be recognized as facelets after conversion. If you want to leave some
of the .jspx files unconverted and run them as JSPs, then manually rename
the .jspx files to a new file extension for JSP documents, and ensure that the file
name change does not cause any problem with the version control system.

Previewing your Conversion Status in the Log Windows

The changes being made for the conversion are presented in three sections in the log
windows, one for the tag libraries conversion, tag usage conversion, and file name
conversion, as shown in Figure 16-17.

Note:

To the log window, select Window > Log.

During your preview session, you can choose to cancel the entire conversion process
and back out of any changes being made. To continue the conversion, click Convert.

Figure 16-17 Log Window Showing File Names Being Converted

How to Convert your Project to Facelets

Convert your project to facelets from the project Applications window ViewController
node.

To convert your project to facelets:

Developing Applications with JavaServer Faces

16-60 Developing Applications with Oracle JDeveloper

1. In your project Applications window, right-click the ViewController node.

2. Choose Convert to Facelets.

Running and Testing JSF Applications
JDeveloper has an Integrated WebLogic Server that enables you to run and test web
applications from the IDE. No special connection setup is required. Run either the
entire application project or individual JSF pages.

How to Run and Test Individual Packages

From your JSF page use the context menu to run that page.

To run and test individual pages:

1. In the Applications window or the JSF navigation diagram (faces-config.xml),
select the JSF page to run.

2. Right-click the JSF page and choose Run from the context menu. The JSF page is
displayed in your default browser. If this is the first time you run or start your
domain, and the server has not yet been created, you will be prompted to provide a
new password in the Configure Default Domain dialog.

How to Run and Test an Entire Project

You can run a project using the context menu.

To run a project, you must first specify a default run target. If you have not already
done so, JDeveloper prompts you to enter a default run target the first time you run a
project. You can also specify the default run target by editing the project properties.

When you run a JSF application from the IDE, JDeveloper automatically:

• Compiles the application.

• Starts the Integrated WebLogic Server processes and launches the application in
your default browser using the default address.

For example:

http://127.0.0.1:8988/myproject-ViewController-context-root/faces/home.jsp

Where 127.0.0.1 is your your_machine_IP_address and 8988 is your http_port.

Note that you can change the default application name and web context root in the
project properties.

To run and test an entire project:

1. In the Applications window, select the application project (for example,
ViewController).

2. Right-click the project and choose Run from the context menu. The application is
launched in your default browser.

3. The Configure Default Domain dialog appears if this is the first time you run or
start the domain and the server has not yet been created. Enter your new password.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 16-61

Developing Applications with HTML Pages
JDeveloper provides full support for developing applications with HTML technology
in accordance with the HTML 5 W3C specification at http://www.w3.org/TR/
html5/.

There is a full set of integrated and synchronized design tools and components for
creating and editing HTML pages. For information on the HTML Source Editor and
Visual Editor see Using the Source Editor and Working in the Visual Editing
Environment.

Building Your HTML Pages
To get started with your HTML web pages, you first need to create a web application.
Go to Table 16-9 to see the available application types.

Once you have created your web application framework, you are ready to start
building your HTML pages.

How to Create an HTML Page

Use the New Gallery wizard to create your HTML pages. A simple HTML file is
generated and appears in your active project. The deployment descriptor file web.xml
is also added to your project. The deployment descriptor file is used by the Integrated
WebLogic Server when you run the HTML.

To create an HTML page:

The New Gallery wizard walks you through building your web pages.

1. In the Applications window, select the project to create the HTML page.

2. Choose File > New > From Gallery to open the New Gallery.

3. In the Categories tree, expand Web Tier and select HTML, as shown in Figure
16-18.

4. Leave the Directory field unchanged to save your work in the directory where the
system expects to find web application files, as shown in Figure 16-19. In the File
Name field, enter the name of the file you want to generate then click OK.

Figure 16-18 Create HTML Page From the New Gallery

Developing Applications with HTML Pages

16-62 Developing Applications with Oracle JDeveloper

http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/

Figure 16-19 Create HTML Dialog

Using the HTML Core Components

When you are building your HTML page use the Components window to click or
drop and drag most of the commonly used tags into your page. JDeveloper features a
commonly used set of HTML element tags as well as a set of form tags to add user
input attributes and behaviors, as shown below in Figure 16-20 and Table 16-16.

Figure 16-20 Component Palette for HTML Pages

Table 16-16 HTML Common Components

Tag Name Description

Anchor Inserts a named anchor <A name> invisible
element.

Email Link Inserts an HTML <A> element in your page
with the email address you provide.

Horizontal Rule Inserts HTML <hr> element in your page at the
current cursor location to display a horizontal
line.

Hyper Link Inserts a link to a HTML reference you define.

Image Adds the HTML element to insert an
image into your page.

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 16-63

Table 16-16 (Cont.) HTML Common Components

Tag Name Description

Line Break Inserts a line break.

Link Inserts a link to an external style sheet or any
other external document.

Noscript Provides alternate content when a script is not
executed using an HTML <noscript>
element.

Script Embeds the <script> element and custom
code into the page. Use code for any scripting
language including VBScript, Tcl, and
JavaScript.

Style Embeds an internal style sheet in the document.

Table Inserts a skeleton HTML <table> tag.

How to Save JSP Files as HTML

Save your JSP files to HTML using Menu options from the source editor.

You can save your JSP pages as HTML pages by opening your JSP file in the source
editor and choosing File > Save as HTML.

The Save as HTML option saves a copy of your file with the HTML extension leaving
the original file unchanged. The HTML file preserves text formatting so when viewed
in a browser it looks like the original HTML page. The saved HTML file can be
reopened and viewed as HTML, but no longer understood as code.

Working with HTML Text
Use the Style node in the Properties window to change formatting styles for your
HTML text.

How to Add Text to an HTML Page

Type your text right into your HTML pages in the visual editor.

You can format inserted text using the toolbar in the visual editor. The toolbar applies
manual or inline formatting in the page. For example

<H5>This is a Heading 5 in italics
iUse the Toolbar to:n the color red</H5>

To add text, do one of the following:

• Click the position in the visual editor where you wish to insert text. Begin typing
when the blinking cursor appears.

• Copy and paste text from files in the same project or different projects.

How to Set Text Properties

CSS styles define the formatting for all text in a particular class or redefine the
formatting for a particular tag such as h2. You can use CSS styles and manual or

Developing Applications with HTML Pages

16-64 Developing Applications with Oracle JDeveloper

online HTML formatting within the same page. Manual HTML formatting overrides
formatting applied by a CSS style.

To set text properties:

1. Select the text in which you wish to set a manual or online HTML style.

2. Use the tabular to set text properties.

Working with HTML Images
You can insert, move, and resize your images with the HTML editing tools.

JDeveloper supports the following graphic file formats:

• JPEG/JPG

• GIF

• PNG

How to Insert an Image on a HTML File

Use the Image component on the Components window to insert an image onto your
HTML page.

To insert an image:

1. With a file open in the visual editor, do one of the following:

• Select the insertion point in the visual editor or the Structure window where
you want the image to appear on the page, then click Image on the page of the
Components window.

• Drag the Image element from the page of the Components window to the
desired insertion point on the page or in the Structure window.

2. In the Insert Image dialog that displays, click Browse to choose a file, or type the
path for the image file location. Browsing to the file location opens the Select Image
Source dialog, which displays the directory based on current context. If the image
file is located outside the HTML root of the current project you will be prompted
with an option to add the file to the current context in the Applications window.
Click Yes for a Save Image dialog to add the image to the document root.

3. Set additional image properties in the Insert Image dialog.

4. Click OK. The image appears on your page.

You can also drag an image from your Windows Desktop or Explorer to the
desired location on the page. You will be prompted with an option to add the file to
the directory based on current context in the Applications window. Click Yes for a
Save Image dialog to add the image to the document root. The image will appear
on your page.

How to Delete an Image From an HTML File

Delete images using the usual keyboard delete commands.

To delete an image, do one of the following:

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 16-65

• Select the image and click Delete or Backspace.

• Select the image and from the main menu choose Edit > Cut.

How to Resize an Image in an HTML File

Right-click and use the Properties selection to resize your images in your HTML
pages.

To resize an image, do one of the following:

• Right-click and select Properties, then adjust pixels for width and height.

• Select and use the resize handles at bottom and right sides of the image and in the
bottom right corner to adjust the image width and height.

• Select and modify the image width and height attributes in the Properties window.

Image properties set using the visual editor are marked in the Properties window
with a green square. To return a resized element to its original dimensions delete
the values in the width and height fields in the Properties window, or click the
Reset Size button.

How to Use an Image as an HTML Background

Use the Properties window to set your image as a background on your HTML page.

To use an image as a background:

1. Select the page <body> element in the Structure window. The Properties window
displays the property values for the selected element. If the Properties window is
not in view choose View > Properties window or Ctrl+Shift+I.

2. Scroll to the background property in the Properties window, and then select it with
the mouse or the arrow keys.

3. Enter the property value in the right column in one of the following ways:

• Click in a value field to choose an available background image from the
displayed list.

• Click in a value field to display the ellipsis button. Click the ellipsis to display a
background dialog, and click Browse to choose a file, or type the path for the
image file location. Browsing to the file location opens the Select Image Source
dialog, which displays the directory based on current context. If the image file is
located outside the HTML root of the current project, you will be prompted
with an option to add the file to the current context in the Applications window.
Then click Yes for a Save Image dialog to add the image to the document root.
Click OK. The image will tile as the background image on your page.

How to Move an Image in an HTML File By Dragging

Move images by dragging, cutting and pasting, or using the move command.

To move an image by dragging:

In the visual editor or Structure window do any of the following:

• Drag the image from the original position to an insertion point in the visual editor
or Structure window.

Developing Applications with HTML Pages

16-66 Developing Applications with Oracle JDeveloper

• Right-click drag the image from the original position to an insertion point in the
visual editor or Structure window, and then choose Move Here from the context
menu.

In the visual editor or Structure window do any of the following:

• Cut the image. Then, paste into some other position in the Visual Editor or
Structure Window.

• Cut the image. Then, paste into another file in the same project or a different
project.

Working with HTML Tables
Use the visual editor to create and edit tables and data on your HTML pages. Use the
toolbar, Properties window, and Structure window to edit tables to add text and
images; add, delete, resize, reorder, split, and merge rows and columns; modify table,
row, or cell properties for color and alignment; copy and paste cells, and nest tables in
table cell.

How to Add Text to a Table Cell

Add text to a table cell by typing it directly in the cell in the editor. Using a table cell as
the insertion point, you can add and remove graphics or other UI and data elements to
tables.

To add text to a table cell:

1. Click in a cell to add text. When a blinking cursor appears, do one of the following:

• Type text into the table. Table cells automatically expand as you type.

• Paste text copied from another page.

2. Press Tab to move to the next cell or press Shift+Tab to move to the previous cell.
Pressing Tab in the last cell of a table automatically adds another row to the table.

How to Remove Content from One or More Selected Cells

Use the toolbar menu or backspace key to remove content from your cells. Only the
contents of the cell, not the cell, will be removed from the table. If the entire row or
column is selected, the row or column is removed along with the contents of the cell.

To remove content from one or more cells select cells:

• Click Delete or Backspace.

• From the main menu select Edit > Delete.

How to Format Tables and Cells

Use the Properties window to define properties that apply to the entire table or to
selected cells, rows, or columns in the table. When a property such as background
color or alignment is set with a value for the whole table and a different value for
individual table cells, precedence in formatting is applied in the following order:

1. table cell, <td> tag

2. table row, <tr> tag

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 16-67

3. table, <table> tag

If you specify a background color of green for a single cell and then set the
background color of the entire table to red, the green cell will not change to red, since
the <td> tag takes precedence over the <table> tag.

How to Set Table and Cell Properties

Use the Properties window to set your table and cell properties.

To set table and cell properties:

1. Select the table, row, or cell in the visual editor, or the corresponding <table>,
<tr>, and <td> in the Structure window. The Properties window displays the
property values for the selected element. If the Properties window is not in view,
choose Window > Properties window or use the shortcut Ctrl+Shift+I.

Tip:

To quickly locate a property in a long list, click the search button in the
Properties window toolbar. In the Find text field, type the name of the
property, then press Enter.

2. Enter the property value in the right column in one of the following ways:

• Type the string value for the property in a text field, then press Enter.

• Click In a value field to choose a value from the displayed list.

• Click in a value field to display the ellipsis button. Click the ellipsis to display
an editor for that property. Set the values in the property editor, then press OK.

How to Set Table and Cell Properties Using the Visual Editor Toolbar

Use the visual editor toolbar to quickly set table and cell properties.

To set table and cell properties using the visual editor toolbar:

1. Select the table, row, or cell in the visual editor. You can also select the
corresponding <table>, <tr>, and <td> in the Structure window.

2. Use the Properties window to set common table properties such as: align and
indent/outdent, and so forth.

How to Resize a Table

There are a few choices available to choose from for resizing your tables.

To resize a table, do one of the following:

• Select the table in the visual editor and use the resize handles to drag the table
height, width, or both to the desired size.

• Select the table in the visual editor or the corresponding <table> element in the
Structure window, and then set the table width attribute in the Properties window.

• Double-click the table in the visual editor and in the Edit Table dialog reset the
table width in pixels or percentage of page width.

Developing Applications with HTML Pages

16-68 Developing Applications with Oracle JDeveloper

• Right-click the table in the visual editor or the corresponding <table> element in
the Structure window, and then choose Edit Tag from the context menu to display
an Edit Table dialog.

How to Change the Size of Rows and Columns

Drag your rows and columns to your size preference in the visual editor.

To change the size of rows or columns:

1. In the visual editor, open the page with a table you want to resize the rows or
columns.

2. In the visual editor, open the page with a table you want to resize the rows or
columns. Place your cursor at the border of the row or column you wish to resize,
and click when the horizontal border handle or vertical border handle appears.

3. Drag the row or column border to the desired size, then release the mouse.

How to Add Rows or Columns to a Table

Right-click and use the context menu to add rows or columns to your tables.

To add rows or columns to a table:

1. Select the table cell in the visual editor or the corresponding <td> element in the
Structure window.

2. Right-click the table cell or element and select Table in the context menu.

3. Choose one of the following:

• Select Insert Row to add a row above the row where the table cell is selected.

• Select Insert Column to add a column before the column where the table cell is
selected.

• Select Insert Rows Or Columns. For an Insert Rows or Columns dialog to add
multiple rows or columns and to specify the location for adding the row(s) or
column(s). Then click OK.

How to Remove Rows or Columns in a Table

Right-click and use the context menu to remove your table rows or columns.

To remove rows or columns in a table:

1. Select the table cell in the visual editor or the corresponding <td> element in the
Structure window.

2. Right-click the selected table cell or element and select Table in the context menu.

3. Choose one of the following:

• Select Delete Row to remove the row where the table cell is selected.

• Select Delete Column to remove the column where the table cell is selected.

You can also select one or more rows or columns in the visual editor or the
corresponding <tr> element in the Structure window and do one of the following:

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 16-69

• Click Delete or Backspace.

• From the main menu select Edit > Delete. Note that If you are deleting the last
row in the table the entire table is removed.

How to Merge Table Cells

Right-click and use the context menu to merge your table cells.

To merge table cells:

1. Select the table cells in the visual editor, or the corresponding <td> elements in the
Structure window. The selected cells must be contiguous and form a rectangular
region.

2. Right-click the selected table cells or elements and select Table from the context
menu, then click Merge Cells.

Alternatively, from the main menu select Design and select Table, then click
Merge Cells. The contents of the individual cells are placed in the resulting merged
cell.

How to Split a Table Cell

Use the Design option in the main menu to split your table cells.

To split a table cell:

1. Select the table cell in the visual editor or the corresponding <td> element in the
Structure window.

2. Right-click the selected table cell or element and select Table from the context
menu, then click Split Cells.

Alternatively, from the main menu select Design and select Table, then click Split
Cells.

3. In the Split Cells dialog, choose whether to split the cell into rows or columns, and
then enter the number of rows or columns.

4. Click OK.

How to Change the Display Order in a Table Structure

There are several options to choose from to modify your table structure.

To change the display order of rows, columns, or groups of table cells using the visual
editor:

1. Select the row, column, or group of table cells you want to change the order of in
the HTML table. The selected cells must be contiguous and form a rectangular
region.

2. Drag the row, column, or group of table cells to a new position in the table with
one of the following actions:

• To insert a row or group of cells above a target row, drag it towards the top of
the row until you see a horizontal line with an embedded up arrow, then release
the mouse button.

Developing Applications with HTML Pages

16-70 Developing Applications with Oracle JDeveloper

• To insert a row or group of cells below a target row, drag it towards the bottom
of the row until you see a horizontal line with an embedded down arrow, then
release the mouse button.

• To insert a column or group of cells before a target column, or a column before a
target column, drag it towards the left of the row or column until you see a
vertical line with an embedded left arrow, then release the mouse button.

• To insert a column or group of cells after a target column, drag it towards the
right of the node until you see a vertical line with an embedded right arrow,
then release the mouse button.

How to Change the Display Order of Rows Using the Structure Window

Use the Structure window to drag your rows to your preferred order.

To change the display order of rows using the Structure window:

1. Select the <tr> element you wish to change the order of in the table. The selected
cells must be contiguous and form a rectangular region.

2. Drag the row, column, or group of table cells to a new position in the table with
one of the following actions:

• To insert a row above a target row, drag it towards the top of the row until you
see a horizontal line with an embedded up arrow, then release the mouse
button.

• To insert a row below a target row, drag it towards the bottom of the row until
you see a horizontal line with an embedded down arrow, then release the
mouse button.

How to Increase Row or Column Span in a Table

In the Structure window, select and use the context menu to increase your row or
column span.

To increase row or column span in a table:

1. Select the table cell in the visual editor or the corresponding <td> element in the
Structure window.

2. element in the Structure window. Right-click the table cell or element and select
Table in the context menu.

3. Choose one of the following:

• Select Increase Row Span to expand the selected cell by one row.

• Select Increase Column Span to expand the selected cell by one column.

How to Reduce Row or Column Span in a Table

Right-click and use the context menu to reduce your table row or column span.

To reduce row or column span in a table:

1. Select the table cell in the visual editor or the corresponding <td> element in the
Structure window.

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 16-71

2. Right-click the selected table cell or element and select Table in the context menu.

3. Choose one of the following:

• Select Decrease Row Span to reduce the span of the selected cell by one row.

• Select Decrease Column Span to reduce the span of the selected cell by one
column.

Working with HTML Forms
Use HTML forms on your HTML pages to interact with or gather information from
users of your web pages. Forms are comprised of:

• Form tags, which include form processing information.

• Form fields, which may include text fields, menus, checkboxes, or radio buttons.

• Submit button, which sends the data to the form processing agent.

When you are working on your HTML pages, you can insert your HTML form tags by
dragging them from the Components Form window, onto your HTML page. Figure
16-21 shows the form tags available in the Components window.

Figure 16-21 Components Palette for Forms

How to Create an HTML Form

Drag the Form component from the Components window to your HTML page to
create a form element.

After creating the skeleton form, add form fields and buttons and specify form
processing information. By default, forms are created with a Get form processing
attribute.

When form fields or buttons from the Components window are added to the page, a
<form> element is automatically inserted as a parent element.

To create a new HTML form:

With a file open, do one of the following:

• Select the insertion point in the visual editor or the Structure window where you
want the form to appear, then click Form on the Components window.

Developing Applications with HTML Pages

16-72 Developing Applications with Oracle JDeveloper

• Drag the Form element from the Components window to the insertion point. The
HTML code to create a skeleton form is inserted. Note that a form appears as a
dotted outline in the editor.

How to Delete an HTML Form Element

Use the usual delete or backspace to remove your form elements.

To delete a form element:

Select the form in the visual editor or the corresponding <form> element in the
Structure window, and do one of the following:

• Click delete or backspace.

• From the main menu select Edit > Delete. The form, and any form fields and
buttons within the form are removed. To remove the form element without
deleting form fields or buttons, right-click the form and select Form > Remove
Form Tag.

How to Insert an HTML Form Field or Button

Use the Components window to insert a form field or button on your page.

To insert a form field or button:

1. With a file open in the visual editor, do one of the following:

• Select the insertion point in the visual editor or the Structure window where
you want the field or button to appear, then click the desired element on the
Components window.

• Drag the form field or button element from the Components window to the
desired insertion point on the form or Structure window. Note that If you
attempt to insert a form field or button without first creating the form, you will
get a message “Do you want to add a form element around this component?"
Choose Yes to automatically create form tags for the field or button. Reinstate
the display by selecting Tools > Preferences > JSP HTML visual editor from
the main menu and checking Prompt to Add Form Element.

2. For form fields or buttons with required attributes, set property values using the
displayed editor dialog.

How to Change the Form Method from the Context Menu

Right-click and use the Form selection to change a method in your form.

To change the form method from the context menu:

1. Right-click the form in the visual editor or the corresponding <form> element in
the Structure window, select Form, and then Method.

2. In the sub-menu select Post or Get to change the form method.

How to Set Form Processing Information Using the Properties window

1. Select the form in the visual editor, or the corresponding <form> element in the
Structure window. The Properties window displays the property values for the
selected element. If the Properties window is not in view choose Window >
Properties window or use the shortcut Ctrl+Shift+I.

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 16-73

2. Scroll until the property you want is visible, then select it with the mouse or the
arrow keys. A brief description of the property is displayed at the bottom of the
Properties window.

3. Enter the property value in the right column in one of the following ways:

• Type the string value for the property In a text field, then press Enter.

• Click In a value field to choose a value from the displayed list.

• Click in a value field to display the ellipsis button. Click the ellipsis to display
an editor for that property. Set the values in the property editor, then press OK.

How to Delete a Form Field or Button

Delete fields or buttons using the main menu or keyboard.

To delete a form field or button, do one of the following:

• Select the element and press Delete or Backspace.

• Select the element and from the main menu choose Edit > Cut.

To set form processing information using the Properties window:

1. Select the form in the visual editor, or the corresponding <form> element in the
Structure window. The Properties window displays the property values for the
selected element. If the Properties window is not in view choose Window >
Properties or use the shortcut Ctrl+Shift+I.

2. Scroll until the property you want is visible, then select it with the mouse or the
arrow keys. A brief description of the property is displayed at the bottom of the
Properties window.

3. Enter the property value in the right column in one of the following ways:

• Type the string value for the property In a text field, then press Enter.

• Click In a value field to choose a value from the displayed list.

• Click in a value field to display the ellipsis button. Click the ellipsis to display
an editor for that property. Set the values in the property editor, then press OK.

Tip:

To quickly locate a property in a long list, click the search button in the
Properties window toolbar. In the Find text field, type the name of the
property, then press Enter.

Working with Cascading Style Sheets
Use Cascading Style Sheets (The current standard is CSS2 Revision 1, and we support
CSS3 as well) to control the style and layout of your web pages. CSS defines the
formatting attributes for HTML tags, ranges of text identified by a class attribute, or
text that meets criteria conforming to the Cascading Style Sheets (CSS2) specification.

For more information on CSS2 R1, see the W3C website at, http://
www.w3.org/TR/1998/REC-CSS2/

For more information on CSS3, see the W3C website at, http://www.w3.org/
Style/CSS/current-work.en.html

Developing Applications with HTML Pages

16-74 Developing Applications with Oracle JDeveloper

http://www.w3.org/TR/1998/REC-CSS2/
http://www.w3.org/TR/1998/REC-CSS2/
http://www.w3.org/Style/CSS/current-work.en.html%20
http://www.w3.org/Style/CSS/current-work.en.html%20

There are variety of CSS features to help you create and edit you CSS files. Table 16-17
lists the CSS Source features:

Table 16-17 CSS Source Editing Features

Feature Description

Code insight for CSS Displays a list of HTML selectors, properties, values, pseudo-
classes and pseudo-elements, for the CSS file under the cursor,
to select an appropriate completion. For example, if you place
the cursor just after the opening brace in a style rule, it displays
a list of all possible properties to enter at that point in the file.

Reformat for CSS Correctly reformats your code on that CSS page. Right-click on
your file in the CSS editor or from the Applications window
and choose Reformat.

CSS Error handling Highlights invalid CSS properties, values, and missing
semicolon and braces.

Stylesheet linking to HTML
files

Links a stylesheet to your HTML files simply by dropping a
Link element into your HTML page.

Another option is to choose CSS in the Components window.
The list of available CSS files displays in the Components
window. You can then drag and drop any CSS file from the
Components window to the page.

Style preview Allows you to see what your styles look like while you're
coding.

Code colors Helps you easily spot properties, values, and keywords.

CSS Refactoring Refactors across the application when you rename CSS files,
class and ID attributes, or move, copy, and safe delete files.

Brace Matching for CSS
Code Editor

Highlights the matching braces, brackets, and parentheses in
the code editor based upon the cursor position.

Toggle Line Comments Adds or removes comment markers from the beginning of each
line in a selected block. Select a single line to comment or
uncomment that line only.

ADF Skin Editor Creates and modifies ADF skins. ADF skin is a type of CSS file
that applies to an ADF application.

Drag and Drop Linking Links a CSS file to an HTML or JSP page.

Quick docs Opens the description from the W3C standard.

Selecting and Grouping CSS Elements

When a CSS file is open for editing, CSS selectors are displayed in the Structure
window using icons:

Elements

Element is the HTML element or tag defined by the CSS selector. Property and value
are separated by a colon and surrounded by curly braces. For example: body
{color:black;.}

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 16-75

Classes

Class represents different styles defined for the same type of HTML element. For
example p.right {text-align:right;} to define right-aligned paragraph text,
and p.left {text-align:left;} to define left aligned paragraph text. You can
also omit the tag name in the selector to define a style that will be used by all HTML
elements that have a certain class. For example center {text-align:center;}
defines all HTML elements with class="center" to be center-align.

IDs

ID represents a style unique to one HTML element. For example p#para1
{color:green;} defines the p element that has the id value="para1" and
*#ver905 {background-color:red;} defines the first HTML element with id
value="ver905".

Working with Grouped Elements

You can use the Categories dropdown list in the Structure window toolbar to show
CSS selectors by categories, as shown in Figure 16-22.

Figure 16-22 CSS Selector For Sorting Options

There are three group types from which to choose

No Category

When No Category is selected, your Structure window display is in the order of
appearance in the CSS file. This is the default setting.

Type Category

When you select Type Category, your Structure window display is arranged by the
CSS selector types of element, class or ID.

Element Category

When you select Element Category, your Structure window display is arranged by
HTML element or tag.

Select a CSS selector in the Structure window to highlight the selector in the editing
window and edit associated properties and values in the Properties window.

Select the Separate Grouped Selectors icon to separate or ungroup the selector
categories in the Structure window.

Select an element group and right click and select Comment Out, to comment out the
selected element in your CSS file.

Developing Applications with HTML Pages

16-76 Developing Applications with Oracle JDeveloper

How to Create a Simple Cascading Style Sheet

Use the New Gallery to create your simple CSS page.

To create a simple Cascading Style Sheet:

1. In the Applications window, select your project.

2. Choose File > New > From Gallery > HTML > CSS File.

3. Leave the Directory Name field unchanged to save your work in the directory
where your web application files are.

4. In the File Name field, enter the name of the file to generate then click OK. A
simple CSS file is generated and appears in your active project in the CSS folder
under Web Content.

How to Set or Modify CSS Selector Properties and Values

Use the Properties window to set your CSS properties and values.

To set or modify CSS selector properties and values:

1. In the Structure window of the CSS file, select the CSS selector element, class or ID
to set a property.

2. In the Properties window, scroll until the property is visible. To quickly locate a
property in a long list, click the search button in the Properties window toolbar. In
the Find text field, type the name of the property, then press Enter. Enter the
property value in the right column in one of the following ways:

• Type the string value for the property In a text field, then press Enter.

• Click a button in a value field to choose a value from the displayed list.

• Click in a value field to display the ellipsis button. Click the ellipsis to display
an editor for that property. Set the values in the property editor, then press OK.
The selector value is modified and pages linked to the CSS file reflect the style
changes.

• Type the string value for the property In a text field, then press Enter.

How to Format Text with CSS Properties

You can also use CSS to automatically update text and page formatting within a page
or across several web pages. CSS styles define the formatting for all text in a class or
redefines the formatting for a particular tag such as h2.

You can use CSS styles and manual or online HTML formatting within the same page.
Manual HTML formatting overrides formatting applied by a CSS style.

To format CSS text properties:

1. Select the text to format.

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 16-77

2. Use the Font field in the Properties window to set text properties.

How to Edit a CSS File

Use the CSS Source Editor to set and modify your CSS properties.

To edit a CSS File in the Source editor:

1. In the Applications window, double-click the CSS file to open it in the default
Source editor window.

2. Enter the CSS selector (HTML element, class, or ID) to define.

3. Enter the { (open curly bracket) and press Ctrl+Space (using the default
keymapping) to invoke Code Insight.

4. Double-click a property name from the list of valid properties. The selected
property is inserted in the file, followed by a colon and a space. For example,
{background-color:

To enter a value for the property you have inserted press Ctrl+Space to open a list
of valid values and double-click a value to insert it. The selected value is inserted,
followed by a semicolon. For example: body {text: blue;

Add other properties and values as necessary. Be sure to use a semicolon between a
property value and the next property. For example: p {text-align:center;
color:red;

5. When you've finished adding properties and values, enter the} (close curly
bracket).

Note:

The Structure window displays any CSS syntax errors found as you edit.

Double-click an error or element in the Structure window to edit it.

Working with Java Server Pages
This section covers JDeveloper support and tools for your user interface development
using JavaServer Faces (JSP) technology within the Java EE platform.

JDeveloper provides a complete user interface development environment for Java
Server pages (JSP) development in accordance with the JSP 2.1 specification defined at
http://jcp.org/aboutJava/communityprocess/final/jsr245/
index.html.

Building Your JSP Application
You can build your application from the ground up using the features provided in
JDeveloper. The first thing to do is build a framework, or application template for
your web pages. Start by using the application project templates. Choose from a
combination of options in the New Gallery.

JSP Core Components

JDeveloper comes with a Components window with standard JSP components that
you can easily drag and drop onto your JSP pages, as shown in Figure 16-23 and Table
16-18.

Working with Java Server Pages

16-78 Developing Applications with Oracle JDeveloper

http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html

Figure 16-23 JSP Core Components Window

Table 16-18 JSP Core Components

Tag Description

Attribute Defines the value of a tag attribute in the body
of an XML element instead of in the value of an
XML attribute.

Body Specifies the body of the tag.

Declaration Declares a method or variable valid in the
scripting language used in the JSP page.

EL Expression Contains an expression in the JSP Expression
Language (EL) to provide easy access to
application data stored in JavaBeans
components.

Element Dynamically defines the value of the tag of an
XML element. This action can be used in JSP
pages, tag files and JSP documents

Expression Contains an expression valid in the scripting
language used in the JSP page. The expression
is evaluated, converted to a String, and inserted
into the response where the expression appears
in the JSP page.

Fallback Displays a text message if the dialog to initiate
the download of plug-in software fails. A
translation error will occur if the element is
used elsewhere.

Working with Java Server Pages

Developing Applications Using Web Page Tools 16-79

Table 16-18 (Cont.) JSP Core Components

Tag Description

Forward Forwards the request object containing the
client request information from one JSP page to
another resource. The target resource can be an
HTML file, another JSP page, or a servlet, as
long as it is in the same application context as
the forwarding JSP page.

GetProperty Gets a bean property value using the property's
getter methods and insert the value into the
response.

Hidden Comment Documents the JSP page without inserting the
comment in the response.

Include Sends a request to an object and include the
result in a JSP file.

Include Directive Inserts a static file of text or code in a JSP page
at translation time, when the JSP page is
compiled.

Page Directive Defines attributes that apply to the entire JSP
page.

Param Passes one or more name/value pairs as
parameters to an included resource.

Params Provide key value information.

Plugin Executes an application or JavaBean in the
specified plugin.

Scriptlet Inserts a code fragment valid in the page
scripting language.

SetProperty Sets a property value or values in a JavaBean

Taglib Directive Defines a tag library and prefix for the custom
tags used in the JSP page.

UseBean Locates or instantiate a JavaBean with a specific
name and scope.

How to Create JSP Pages

The New Gallery wizard walks you through all of the necessary steps to build the web
pages for of your application. After you create the page, a simple JSP is generated and
appears in your active project. The deployment descriptor file web.xml is also added
to your project. The deployment descriptor file is used by the Integrated WebLogic
Server when you run the JSP.

To create a new JSP page:

1. In the Applications window, select the project to create the new JSP.

2. Choose File > New to open the New Gallery.

Working with Java Server Pages

16-80 Developing Applications with Oracle JDeveloper

3. In the Categories tree, expand Web Tier and select JSP.

How to Register a Servlet Filter in a JSP Page

The Create Servlet Filter wizard available from the Web Tier category in the New
Gallery creates a new filter you can use to process requests or responses to or from
your JavaServer Page.

A new servlet filter is generated and appears in your active project. The deployment
descriptor file web.xml is updated with the <filter> element. The deployment
descriptor file is used by the embedded web server in JDeveloper when you run the
JSP.

To register a servlet filter in a JSP page:

1. In the Applications window, select the project in which you want to create the new
servlet listener, usually the project which includes your JSP.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Web Tier and select Servlets.

4. In the Items list, double-click Servlet Filter to open the Create Servlet Filter wizard.
This starts the Create Servlet Filter wizard which will create the servlet filter for
you based on information you specify, including the implementation class and
initialization parameters.

5. Click Next if the Welcome page displays.

6. Enter the Filter Name, Filter Classname and Package. Then click Next.

7. Select Map to Servlet or JSP, and select the name of the JSP from the dropdown
list. Then click Next.

8. Click New, and enter the name and value for each initialization parameter. Then
click Finish.

Understanding Flow Control in JSPs
Web applications implement flow control by directing the display content of the web
browser in response to specific user actions. Generally it makes sense to create
separate JSP pages or sets of pages for each task in the workflow. The user makes
choices in one page and clicks a link to submit their choices on the Request object. The
link they click directs the Request object to the page responsible for handing the
action.

The following flow-control approaches are supported in JDeveloper:

• In all-in-one JSP page development, JDeveloper helps to reduce the amount of Java
code visible in your JSP pages through tag libraries that provide JSP tags which
encapsulate complex behavior such as implementing databound, performing data
actions (such as query, browse, edit, and update), and generating reports.

• If you use JSP includes, you can benefit from the Oracle Business Components Data
Tag library that implements a set of JSP page-level tags (known as component tags)
that handle common actions such as navigation, querying, browsing, editing, and
scrolling.

• If you fully separate the JSP display content and JSP action-handler classes,
JDeveloper supports two Java EE frameworks.

Working with Java Server Pages

Developing Applications Using Web Page Tools 16-81

– JavaServer Faces page navigation.

– JDeveloper provides full support to allow you to visually design page flows for
web applications based on either framework.

• When you want to build applications for the web and benefit from a framework
that implements many of the Java EE design patterns for interactive applications,
JDeveloper provides the Oracle Application Development Framework (Oracle
ADF). One of its central features is a data binding layer that uses a standard
declarative way to bind data from a business service, such as web services, EJB,
JavaBeans, and Oracle ADF Business Components, to UI components, such as
Oracle ADF Faces components and standard HTML elements.

How to Handle JSP Flow Control

You decide the way your application handles the Request object. JDeveloper supports
various options for implementing JSP page flow control:

• You can write JSP pages that use a combination of HTML generating code and Java
scriplet code to link back to themselves and handle the actions. In this case, the
entire action handling code is contained in the JSP page that also displays the
content. This mixes HTML and flow control logic within the same file.

• You can cleanly separate JSP pages and their actions by implementing the
controller outside of the JSP page.

Debugging and Deploying JSPs
JDeveloper supports deploying Web applications on any Java EE application server
through the creation of a Web Module Archive (WAR). There is additional support for
deployment to Integrated WebLogic Server.

How to Debug a JSP

You can debug your JSP pages in a couple of clicks.

JDeveloper performs the following functions when debugging a JSP:

• Translates the JSP into a servlet and compiles it.

• Starts the Integrated WebLogic Server process.

• Runs the resulting classes directly from the output project directory.

• Invokes the JSP in your default Web browser. For example, your browser is
launched as follows:

http://<your_machine_IP_address>:<http_port>/<context_root>/
<path_to_JSP>

for example:

http://127.0.0.1:8988/Project1-context-root/untitled1.jsp

To debug a JSP:

1. In the Applications window, select the JSP file you want to run.

2. Debug a JSP in any of these ways:

• Choose Debug | Debug <source_file>.jsp from the main menu.

Working with Java Server Pages

16-82 Developing Applications with Oracle JDeveloper

• Right-click the JSP file and choose Debug from the context menu. The JSP is
launched.

3. Debug your JSP as you would any other Java application.

How to Create a Web Deployment Descriptor

The are a few ways to create a web deployment descriptor. You can use the New
Gallery, or add a JSP page. New deployment descriptors are added to the WEB-INF
folder in the project, and it will be opened in an XML editor window.

To create a web deployment descriptor:

1. In the Applications window, select the project for which you want to create a web
deployment descriptor.

2. Add a JSP file to the project. The web.xml file is added to the WEB-INF project
folder the first time you create a JSP file.

Or, to add the web deployment descriptor file yourself:

In the New Gallery Categories tree, expand General and select Deployment
Profiles. In the Items list, select web.xml (Web Deployment Descriptor). Click
OK. If the item is not enabled, check to make sure the project does not already have
a web deployment descriptor: a project may have only one instance of a descriptor.

How to Edit Web Deployment Descriptor Properties

Right-click to open the properties dialog and edit your descriptor properties.

To edit web deployment descriptor properties:

1. In the Applications window, select the web deployment descriptor in the WEB-INF
folder.

2. Right-click and choose Properties.

3. Select items in the left pane to open dialog pages in the right pane. Configure the
descriptor by setting property values in the pages of the dialog. Click OK when
you are done.

How to Edit a Web Deployment Descriptor as an XML File

The descriptor file is in XML format in the WEB-INF folder. You can open the file in
the XML source editor or the Overview editor.

To edit a web deployment descriptor as an XML file:

1. In the Applications window, select the web deployment descriptor in the WEB-INF
folder.

2. Right-click and choose Open. The file opens in an XML editor.

Running a JSP
The Integrated WebLogic Server handles running your JSPs in JDeveloper. You can
run your JSP pages right from the page.

Working with Java Server Pages

Developing Applications Using Web Page Tools 16-83

How to Run a JSP

After building your JSP, you can run it in a couple of clicks. You can also edit your JSP
while you are running it.

To run a JSP:

1. In the Applications window, select the JSP file you want to run.

2. Run the JSP in any of these ways:

• Choose Run > Run <source_file>.jsp from the main menu.

• Right-click the JSP file and choose Run from the context menu.

The JSP is launched.

3. The Configure Default Domain dialog appears if this is the first time you run or
start the domain when the server has not yet been created. Enter your new
password.

Several things automatically happen when you run your JSPs:

• The JSP is translated into a servlet and compiled.

• The resulting classes are run directly from the output project directory.

• The web.xml file is modified to include the servlet name and class information.

• The JSP is invoked in your default Web browser. Your browser is launched using
this format:

http://<your_machine_IP_address>:<http_port>/<context_root>/
<path_to_JSP> for example,

http://127.0.0.1:8988/Project1-context-root/untitled1.jsp.

Dynamically Modifying JSP Files While They are Running

You can modify and view changes that you make to your JSP files as they are running,
without having to restart WebLogic Server. To view changes in your browser, you can
either reload the page from the browser or run the page again.

Running JSPs with ADF Business Components Application Modules

If you are running JSPs with business components application modules in both the
Integrated WebLogic Server and in a remote server instance, and have two JSPs
contained in two different projects that depend on the same middle tier project, you
need to declare that middle tier is running inside of a WebLogic Server instance with
the jbo.server.in_wls=true property.

Working with Timestamps on Source JSPs

When developing, compiling, and running JSPs, if the timestamp of a source JSP file is
ever changed to an earlier timestamp, the JSP will not automatically be recompiled by
JDeveloper or by WebLogic Server. It must be forced to recompile. To force
recompilation, right-click on the JSP and select Rebuild, use Build->Rebuild, Build-
>Rebuild All, Build->Clean, or Build->Clean All.

Timestamps can go backwards in time when using source control systems (restoring
an older version) or using timestamp preserving copy commands like xcopy or mv.

Working with Java Server Pages

16-84 Developing Applications with Oracle JDeveloper

Understanding JSP Segments
A JSP fragment is a JSP page that can be included in another JSP page.

JSP segments use .jspf as a filename extension. By default JSP fragment files are
placed with the rest of the static content in the web application folder. JSP segments
that are not complete pages should always use the .jspf extension.

JSP segments are defined using JSP syntax as the body of a tag for an invocation to a
SimpleTag handler, or as the body of a <jsp:attribute> standard action specifying
the value of an attribute that is declared as a fragment, or to be of type JspFragment in
the TLD.

Developing Applications with Java Servlets
A servlet is a platform-independent, server-side Java component used to extend the
capabilities of a web server. Using servlets, you can dynamically tailor content,
function, and the look and feel of your web pages. Servlets process client requests and
can respond by returning any MIME type to the requesting client, including images,
XML, and HTML. Servlets run inside web servers, so they do not require a graphical
user interface. They are typically used to dynamically generate HTML content and
present it to the requesting client. You can think of a servlet as the server-side
counterpart to an applet.

Servlets are based on a standard API and protocol defined by JavaSoft. To run a
servlet, your environment needs a web server that supports the JavaSoft servlet API,
such as Oracle WebLogic Server, JavaSoft Java Server, and Apache Tomcat, among
others. JDeveloper provides support for servlet filters and listeners, annotations and
deployment descriptors, web fragments for pluggability and extensibility, and
asynchronous support (Servlet API 3.0). When you use the Create Filter wizard and
Create Listener wizard, it updates the web.xml with filter and listener entries. The
web.xml can also be manually edited to include or modify these entries.

For more information, see the Oracle Fusion Middleware Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

Understanding Servlet Support in JDeveloper
Servlets are often used to process HTTP requests submitted by a client, and to provide
dynamic content by returning results of a database query to a client. This type of Java
servlet is known as an HTTP servlet. A typical runtime scenario for an HTTP servlet is
as follows:

• A client sends an HTTP request to the servlet. The client could be a web browser or
some other application.

• The servlet processes the request and responds by returning data to the client. In
the case of HTML servlets, these servlets generate and send dynamic HTML
content back to the client. If the servlet is designed to do so, it may request data
from a database server on behalf of the client, then package and return the results
to the client in an HTML form. This can be done using JDBC or by working with
Oracle ADF Business Components.

• The client user can then interactively view and respond to the generated HTML
content, perhaps making additional requests through the generated HTML form.

Developing Applications with Java Servlets

Developing Applications Using Web Page Tools 16-85

What You May Need to Know About Servlet Filters

A filter is a reusable piece of code that can transform the content of HTTP requests,
responses, and header information. Filters do not usually create a response; instead
you use filters to modify the requests or responses, or to perform some other action
based on the requests or responses, including:

• Examining a request before calling a servlet.

• Modifying the request or response headers or data (or both) by providing a custom
version of the object that wraps the real request or response objects.

• Performing some action before the servlet is invoked, after it completes, or both
(for example, logging).

• Intercepting a servlet after the servlet is called.

• Blocking a servlet from being called.

By default, the Create Servlet Filter wizard available from the Web Tier Servlets
category in the New Gallery creates a filter that dynamically intercepts requests and
responses to transform or use the information contained in the requests or responses.

What You May Need to Know About Servlet Listeners

A listener can be used to monitor and react to events on a servlet's life cycle by
defining listener objects whose methods get invoked when life cycle events occur.
Application event listeners are classes that implement one or more of the servlet event
listener interfaces. Servlet event listeners support notification for state changes in the
ServletContext and HttpSesion objects, specifically:

• Servlet context listeners are used to manage resources or state held at a VM level
for the application.

• HTTP session listeners are used to manage state or resources associated with a
series of requests made into a web application from the same client or user.

You can have multiple listener classes listening to each event type and specify the
order in which the container invokes the listener beans for each event type.

The Create Servlet Listener wizard available from the Web Tier > Servlets category in
the New Gallery creates a new listener you can use with your servlet or other web
components; you can run this wizard multiple times to create additional listeners.

How to Generate an HTTP Servlet

JDeveloper will create the servlet for you based on information you specify, including
the methods and parameters for the servlet.

A simple servlet is generated and appears in your active project. The deployment
descriptor file web.xml is also added to your project. The deployment descriptor file
is used by the Integrated WebLogic Server in JDeveloper when you run the servlet.

Note that the deployment descriptor file will take precedence over any annotations
you have made to your servlet. For example, while you can create a class with an
annotation such as @Servlet, the deployment descriptor file will override it if the
values are different. Be sure to reconcile any differences between the annotations and
their declarations in the deployment descriptor file.

To generate the HTTP Servlet:

Developing Applications with Java Servlets

16-86 Developing Applications with Oracle JDeveloper

1. In the Applications window, select the project in which you want to create the new
servlet.

2. From the main menu, choose File > New > From Gallery > Web Tier > Servlets, or
right-click and choose New. The New Gallery opens.

3. In the Items list, double-click HTTP Servlet to launch the Create HTTP Servlet
wizard.

Implementing Basic Methods for an HTTP Servlet
When you use the Create HTTP Servlet wizard to create an HTTP servlet, the wizard
creates a Java class for the servlet. This class contains an initialization method and the
HTTP methods you specified for the servlet when using the wizard. To customize the
servlet, you must implement the servlet's HTTP methods.

The following methods are available from the Create HTTP Servlet wizard:

• doGet handles GET, conditional GET, and HEAD requests.

• doPost handles POST requests.

• doPut handles PUT requests.

• doDelete handles DELETE requests.

• service handles Service requests.

JDeveloper creates skeleton code for these methods. These methods take two objects as
arguments HttpServletRequest and HttpServletResponse. You can also pass
in additional parameters and get them programmatically by calling the
ServletRequest.getParameter method within your servlet's Java code.

How to Use the HTTPServletRequest Object

The first HTTP argument in a basic servlet method is an HttpServletRequest
object. This object provides methods to access

• HTTP header data, including cookies found in the request.

• The HTTP method used to make the request.

• The arguments sent by the client as part of the request.

The methods you call when implementing your servlet methods depend on the kind
of HTTP request the servlet will receive. Table 16-19 summarizes the relationship
between the possible kinds of HTTP requests and the corresponding methods you
should use when implementing your servlet methods.

Developing Applications with Java Servlets

Developing Applications Using Web Page Tools 16-87

Table 16-19 Types of HTTP Requests

Possible Client HTTP
Requests

Corresponding Client Data Access Methods and
Techniques to Use in Your Servlet Code

Any HTTP request Use the getParameter method to get the value of a named
parameter. Use the getParameterNames method to get the
parameter names. Alternatively, you can manually parse the
request. You should use either the getParameter method or
one of the methods that allow you to parse the data yourself.
You can not use them together in a simple request. To retrieve
cookies from the request, you can use the getCookies
method.

HTTP GET request Use the getQueryString method to return a String to be
parsed.

HTTP POST, PUT, and
DELETE requests

In general, use the BufferedReader returned by the
getReader method for text data. For binary data, use the
ServletInputStream returned by the getInputStream
method.

How to Use the HTTPServletResponse Object

The second HTTP argument in a basic servlet method is an HttpServletResponse
object. This object encapsulates the information from the servlet to be returned to the
client. This object supports the following ways of returning data to the client:

• A writer for text data (via the getWriter method)

• An output stream for binary data (via the getOutputStream method)

You can also send a cookie in the response using the addCookie method.

To change the HTTP Response Type:

By default, the Create HTTP Servlet wizard creates a servlet that dynamically
generates HTML content (MIME type: text/html). You can change to another MIME
type by selecting the desired type from the Generate Content Type dropdown in the
Create HTTP Servlet wizard. The wizard adds the setContentType method in the
servlet's Java file with the selected type to set. For example, if you choose the XML
content type, the wizard generates:

public class HelloWorld extends HttpServlet
{
 private static final String CONTENT_TYPE = "text/xml; charset=windows-1252";
 private static final String DOC_TYPE;
 public void init(ServletConfig config) throws ServletException
 {
 super.init(config);
 }
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();
 if (DOC_TYPE != null)
 {
 out.println(DOC_TYPE);

Developing Applications with Java Servlets

16-88 Developing Applications with Oracle JDeveloper

 }
 out.close();
 }
}

How to Create a Servlet Filter
The Create Servlet Filter wizard available from the Web Tier - Servlets category in the
New Gallery creates a new filter you can use to process requests or responses to or
from your servlet or JavaServer Page.

The Create Servlet Filter wizard creates the servlet filter for you based on information
you specify, including the implementation class and initialization parameters.

There is an option when you enter servlet details for your new servlet filter to select
the registration vehicle for your servlet. You can either add a servlet entry to the
Configuration file, or select Annotations to create annotations in the source code.

A new servlet filter is generated and appears in your active project. The deployment
descriptor file web.xml is updated with the <filter> element. The deployment
descriptor file is used by the Integrated WebLogic Server in JDeveloper when you run
the servlet or JSP.

Note also that you can use the annotation @ServletFilter to declare a filter class.

To create a servlet filter:

1. In the Applications window, select the project in which you want to create the new
servlet listener, usually the project which includes your servlet or JSP.

2. Choose File > New > From Gallery > Web Tier > Servlets .

3. In the Items list, double-click Servlet Filter to open the Create Servlet Filter wizard.

How to Create a Servlet Listener
The Create Servlet Listener wizard available from the Web Tier - Servlets category in
the New Gallery creates a new listener you can use with your servlet or other web
components.

A new servlet listener is generated and appears in your active project. The deployment
descriptor file web.xml is updated with the <listener> element. The deployment
descriptor file is used by the Integrated WebLogic Server in JDeveloper when you run
the servlet.

The Create Servlet Listener wizard creates the servlet listener for you based on
information you specify, including the implementation class and interface.

There is an option when you enter servlet details for your new servlet filter to select
the registration vehicle for your servlet. You can either add a servlet entry to the
Configuration file, or select Annotations to create annotations in the source code.

The annotation @ServletContextListener, added to a class definition, can also be used
to declare a class of servlet listener:

@ServletContextListener

public class MyListener {

public void contextInitialized (ServletContextEvent sce) {

}

Developing Applications with Java Servlets

Developing Applications Using Web Page Tools 16-89

.....

}

To create a servlet listener:

1. In the Applications window, select the project in which you want to create the new
servlet listener, usually the project which includes your servlet or other web
component.

2. Choose File > New > From Gallery > Web Tier > Servlets.

3. In the Items list, double-click Servlet Listener to open the Create Servlet Listener
wizard.

Registering a Servlet Filter in a JSP Page
The Create Servlet Filter wizard available from the Web Tier category in the New
Gallery creates a new filter you can use to process requests or responses to or from
your JavaServer Page.

A new servlet filter is generated and appears in your active project. The deployment
descriptor file web.xml is updated with the <listener> element. The deployment
descriptor file is used by the Integrated WebLogic Server in JDeveloper when you run
the JSP.

To register a servlet filter in a JSP page:

1. In the Applications window, select the project in which you want to create the new
servlet listener, usually the project which includes your JSP.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Web Tier and select Servlets.

4. In the Items list, double-click Servlet Filter to open the Create Servlet Filter wizard.

This will start the Create Servlet Filter wizard which will create the servlet filter for
you based on information you specify, including the implementation class and
initialization parameters. Press F1 or click Help to obtain context-sensitive help in
the wizard panels.

5. Click Next if the Welcome page displays.

6. Enter your servlet information and click Next.

7. Select Map to Servlet or JSP, and select the name of the JSP from the dropdown
list. Then click Next. Alternatively, select Map to URL Pattern, then select a URL
pattern to which the filter will map, to associate it with groups of servlets or static
content.

8. Click New, and enter the name and value for each initialization parameter. Then
click Finish.

How to Run a Servlet
A servlet is a Java program that runs in a Java EE application server. Think of a servlet
as the server-side counterpart to a Java applet. The Integrated WebLogic Server is
responsible for running servlets in JDeveloper.

Developing Applications with Java Servlets

16-90 Developing Applications with Oracle JDeveloper

As an alternative to running your servlets inside the Integrated WebLogic Server, your
servlet can contain a main() routine that lets you run the servlet class as an application.
That declaration is: public static void main(String[] args)

This is useful when you want to test servlet classes without running under the Oracle
WebLogic Server.

To run a servlet:

After building your servlet, you can run it by executing the run command in one of the
following ways:

1. In the Applications window, select the Java file containing your servlet that you
want to run.

2. Run a servlet in any of these ways:

• Choose Run from the main menu.

• Right-click the Java file containing your servlet and choose Run.
<servletname>.java (and the desired option for running when more than one
way to run exists) from the context menu.

• Select the Java file containing your servlet and click Run on the toolbar.

3. If you set up your servlet to run as an application, use the dialog to select the way
you want to start the target servlet:

• As an Application: The servlet is launched as a standalone Java application.

• In Integrated WebLogic Server: the embedded server is started and the servlet
is run in the server.

Select the option you desire, then click OK.

JDeveloper performs the following functions when a servlet is run in Integrated
WebLogic Server:

• Compiles the servlet source code.

• Starts the embedded Integrated WebLogic Server process.

• Runs the resulting classes directly from the output project directory.

• Edits the embedded Integrated WebLogic Server web.xml file to include the servlet
name and class information.

• Invokes the servlet in your default Web browser. For example, your browser is
launched as follows:

http://<your_machine_IP_address>:<http_port>/<context_root>/
servlet/<servlet_full_class_name>

For example:

http://127.0.0.1:8988/Project1-context-root/servlet/
package1.Servlet1

How to Debug a Servlet
You can debug a servlet using the embedded Integrated WebLogic Server in
JDeveloper. The Debug command attempts to debug the selected Java file containing

Developing Applications with Java Servlets

Developing Applications Using Web Page Tools 16-91

your servlet. In JDeveloper, you can set breakpoints within servlet source code and the
debugger will follow calls from servlets into JavaBeans.

To debug a servlet:

1. Select the servlet Java file in the Applications window and select Debug | Debug
<project_name> from the JDeveloper main menu, or click the Debug icon.
Alternatively, right-click the servlet Java file and choose Debug.

When you debug a servlet, JDeveloper opens the default Web browser and invokes
the servlet.

2. Debug your servlet by setting breakpoints as you would any other Java application.

3. When you are finished running and testing the servlet, you can terminate the
server by choosing Run | Terminate - Integrated WebLogic Server from the main
menu.

JDeveloper performs the following functions when a debugging a servlet:

• Compiles the servlet source code.

• Starts the Integrated WebLogic Server process.

• Runs the resulting classes directly from the output project directory.

• Invokes the servlet in your default Web browser. For example, your browser is
launched as follows:

http://<your_machine_IP_address>:<http_port>/<context_root>/
servlet/<servlet_full_class_name>

For example:

http://127.0.0.1:8988/Project1-context-root/servlet/
package1.Servlet1

How to Deploy a Servlet
JDeveloper supports deploying your Servlet applications on any Java EE application
server through the creation of a Web Module Archive (WAR).

For more information, see the Oracle Fusion Middleware Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

Developing Applications with Script Languages
JDeveloper provides scripting functionality, including support for basic JavaScript
when working with JSP and HTML pages.

JDeveloper supports script languages, specifically JavaScript and JSON, through the
1.8.1 and 1.8.5 standards, which include native support for JSON encoding and
decoding. JDeveloper offers the script developer tools including code insight,
breadcrumb support, and the JDeveloper structure pane. JDeveloper JavaScript Code
Insight completes labels, variables, parameters and functions when typing inside a
script region, or inside an HTML event handler. Breadcrumb support displays the
location of a selected JavaScript function in the hierarchy as you work on the file. And
the Structure Pane shows the hierarchy of functions defined in the file, and also of the
variables defined in the functions.

Developing Applications with Script Languages

16-92 Developing Applications with Oracle JDeveloper

JDeveloper also provides the following kinds of support during script language
development:

• Audit support . Warnings are shown as yellow lines and errors as red lines in the
code editor. Also, warnings and errors are indicated on the right hand side in the
file overview margin.

• Quick JsDoc support on JavaScript identifiers. This is similar to the quick JavaDoc
available when developing in Java.

• Code hover support. Pressing the shift key over JavaScript identifiers displays the
definition in a ghost popup pane.

• Brace matching and all other editing support, as available in other languages like
Java.

How to Work with JavaScript Code Insight
The JDeveloper JavaScript Code Insight completes labels, variables, parameters and
functions when typing inside a script region, or inside an HTML event handler.

The JavaScript Code Insight feature displays a dynamic list of possible completions for
a given JavaScript function at the bottom of the editing pane. As you type, the Code
Insight feature will display a list of possible values appropriate to the global values
you have already typed. To see a list of possible entries that have already been used or
defined in your project, click on the drop-down arrow and then select Show.

JavaScript Code Insight is available when editing an .html, .jsp, or .jspx source
file, or an included .js file for both user-defined and built-in JavaScript functions.
The assist window displays any referenced .js files as well as any .js file in the
project not yet included.

The JavaScript Code Insight feature creates code templates for the following elements.

To invoke Code Insight:

Type the JavaScript element or its abbreviation:

• case

• for

• foreach

• if

• ife (if-else)

• sw (switch)

• wh (while)

• fori (for loop with range)

• try

• trycf

• tryf

• al (alert)

Developing Applications with Script Languages

Developing Applications Using Web Page Tools 16-93

• fn (function)

• fne (function-expression)

• dne (do-while loop)

JavaScript Code Insight is DOM-based and browser-aware, displaying one or more
browser icons for Internet Explorer, Mozilla, or Safari, to indicate browser support for
a method or variable. Furthermore, JavaScript Code Insight supports the HTML 5
standard.

How to Use Breadcrumb Support
When you are editing a JavaScript file in the Source Editor and have the cursor located
in a function, JDeveloper displays a breadcrumb trail in the lower margin of the
Source Editor window.

This breadcrumb trail shows the position of this function in the JavaScript hierarchy,
along with its subelements such as methods, parameters, and such. JDeveloper also
displays breadcrumbs for if, if-else, do, while, for, and try/catch/finally
(just as it does for Java).

To explore available functions within the hierarchy:

• From the breadcrumb trail, click on a dropdown (at the file level) to go into the
functions defined within that parent.

Working with Script Languages
Working with script languages not only includes the direct use of script elements
inside an HTML or JSP page, but also involves using references to script files which
are associated with the overall application.

The JDeveloper code editor provides a syntax highlighting feature which assists in
determining the proper code for a script or script-language element.

Other elements of working with script languages include creating a JavaScript Object
Notation (JSON) file.

How to Create a Script

You can create a client-side script to include or embed in an HTML or JSP page.

To create a script in JDeveloper:

1. If not already done, open a JSP or HTML page by double-clicking its icon from the
Applications window.

2. In the Components window, select the HTML palette, Common page from the
dropdown list.

3. In the Source editor or Structure window, place your cursor in the location where
you want to create the script and select the Script element. Alternatively, drag the
Script element to the desired location on the HTML or JSP page.

4. In the Script dialog, either enter the location of an external script file, or select the
scripting language (text/javascript, text/tcl, text/vbscript) and enter
the script code. For additional assistance, press F1 or click Help in the dialog.

5. Click OK.

Developing Applications with Script Languages

16-94 Developing Applications with Oracle JDeveloper

A script element that references the external script file is embedded in the page similar
to the following:

<script language="JavaScript" src="foo.js"></script>

or

The script code is embedded in the page and visible from the Source editor similar to
the following:

<SCRIPT type="text/vbscript">

<!--

>Sub foo()

...

End Sub

' -->

</SCRIPT>

How to Add Script Language Elements to an HTML or JSP Page

JDeveloper provides basic JavaScript support when working with HTML and JSP
pages. In addition to drag and drop support, you can change the text presentation of
the JavaScript code in the Java Code Editor and associate file extensions for JavaScript
file recognition in JDeveloper.

To insert a JavaScript into a JSP or HTML page:

1. Choose File > New.

2. Select the Web Tier category.

3. In the Items list, select JavaScript File.

4. In the Create JavaScript File dialog, enter a name and location for the JavaScript
(.js) file.

5. In the Java Code Editor for the JavaScript file, enter the JavaScript code and save it.

The JavaScript file appears in the Applications window below the HTML or JSP
project's Web Content folder.

6. If not already done, open the HTML or JSP page in the JSP/HTML Visual Editor.

7. From the Applications window, drag a JavaScript onto the page where appropriate.
If you drag a JavaScript from the Components window, you are prompted to copy
the JavaScript file to the current project's document root.

JDeveloper creates a script element that references the JavaScript file.

Note:

You can also import a JavaScript file into the project.

Developing Applications with Script Languages

Developing Applications Using Web Page Tools 16-95

How to Set Syntax Highlighting

Syntax highlighting is a JDeveloper feature that lets you more easily identify syntax
elements (such as brace matching) while you are editing Java, JavaScript, and JSON
files.

To set syntax highlighting options for JavaScript in the Code Editor:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Syntax Colors node.

4. For the Language category, select JavaScript.

The display on the page changes to reflect the JavaScript style settings.

5. Change any of the available style settings as appropriate.

6. Click OK.

For detailed help on any field, press F1 or click Help.

When you return to work in the Java Code Editor, JavaScript syntax is highlighted
according to these style settings.

How to Associate JavaScript File Extensions

By default, JDeveloper recognizes files with the .js file extension as JavaScript. You
can associate any other file extension for JDeveloper to recognize.

To add or remove file extensions for JavaScript file recognition in JDeveloper:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select File Types.

3. In the Recognized File Type list, select the JavaScript Source node.

4. The .js file extension is associated.

Click Add to create a JavaScript file extension.

In the Add Extension dialog, enter the file extension you want to associate to a
JavaScript file.

5. Click Remove to delete a file association.

6. Click OK.

For detailed help on any field, press F1 or click Help.

When you open a file with any of these extensions, JDeveloper recognizes the file as
JavaScript.

How to Create a JSON File

You can create a JSON (JavaScript Object Notation) file in JDeveloper. A JSON file
allows you to pass structured data easily between applications or between files within

Developing Applications with Script Languages

16-96 Developing Applications with Oracle JDeveloper

an application, in a lightweight format that is easily readable by humans and easily
interpreted by dozens of programming languages.

To create a JSON file:

1. Select File > New > Web Tier > HTML > JSON File.

2. Supply the following data about your file:

File Name

The name of your JSON file. By default, this is untitled.json. The .json
extension makes it possible for other parsers to read the JSON format of the data
inside your file.

Directory

The pathname in your local file system for storing the JSON file.

Browse

Opens the file system browser for selecting a path in your local file system.

3. Click OK.

The JSON file is now available to be edited in JDeveloper. Use the normal functions of
the JavaScript editor to add content.

How to Use Structure Pane Support
While you are editing a JavaScript file, JDeveloper tracks the location in the structure
of the project or application you are building and displays it in the Structure Pane.

The Structure Pane shows the hierarchy of functions defined in the file, and also of the
variables defined in the functions.

To find a location in the code editor from the Structure Pane:

• Double-click any element in the Structure pane to take your focus to the
corresponding place in the code editor. If there are errors in the file, they also show
up in the Structure Pane.

Refactoring JavaScript Code
JDeveloper provides support for renaming references to a function or variable.
JDeveloper also replaces all occurrences of function names with the new name when
you perform delete operations. This method of renaming and replacing function
names is known as refactoring.

Refactoring is an editing technique that modifies code structure without altering
program behavior. A refactoring operation is a sequence of simple edits that
transforms a program's code but keeps it in a state where it compiles and runs
correctly. JDeveloper provides a collection of automated refactoring operations for
JavaScript code and files.

Use refactoring when you modify a program's source code to make it easier to
maintain, extend, or reuse. Perform the modification as a series of refactoring steps.
After each step you can rebuild and revalidate the program to insure that no errors
have been introduced.

JDeveloper supports these refactoring operations for JavaScript code and files:

Developing Applications with Script Languages

Developing Applications Using Web Page Tools 16-97

• Renaming references to a function, variable, or label. Each occurrence of the
function or variable name is replaced by the new name.

• Safe deletion. The definition of the function is replicated, and all occurrences of the
function name in the replicated definition are replaced by the new name.

Finding Usages of Code Elements

You can search within a JavaScript file for specific usages of code elements such as
functions, variables and labels. This allows you, when refactoring, to determine where
an element is used so that you can safely change it, or choose not to.

To search in a JavaScript file for a function, variable or label:

1. Place the cursor inside the function, variable or label you wish to search for and
click the right mouse button.

2. Select Find Usages.

JDeveloper will search through the JavaScript file for the element you have selected.

You can make two optional selections while searching for the element:

Search Comments for Textual Usages
Select this if you want JDeveloper to search inside comments for the variable, label or
function name. This can be useful if you have commented out a section of code that
you plan to restore at a later date, or if you simply want to ensure that the comments
reflect the updated name of the element involved in the refactoring.

New tab
Select this if you want JDeveloper to display the results of the search in a new tab. If
you do not select this, JDeveloper displays the results in the Log window.

Note:

The Log Window is not displayed by default when you start JDeveloper. To
display the Log Window, select Windows > Log.

Renaming a JavaScript Code Element

While working with JavaScript code you can easily rename the definition and all
references to a function or variable. If you wish, you can first generate a preview — a
list of the usages that will be replaced. Use the preview to inspect and modify or
exclude selected usages, before causing the rest to be renamed.

The scope of a renaming operation is the full scope of the element in the project.
Function usages are replaced anywhere they appear in the project. Variables are
renamed only in the lexical scope of their definitions; other elements with the same
name are not modified.

By default, the operation will be run on JavaScript files, excluding comments (but not
documentation comment tags that name code elements) and annotations. Usages that
are not ambiguous will be replaced.

To rename a code element:

1. Select the element that is to be renamed:

Developing Applications with Script Languages

16-98 Developing Applications with Oracle JDeveloper

• In a JavaScript editor, select the function or variable name.

• In a script in an JSP or HTML page, select the function or variable name.

2. Invoke the command:

• From the Main menu or the context menu, choose Refactor > Rename.

• Press Ctrl+Alt+R.

3. In the Rename To box, enter the new name. The name must be valid and not
already in use.

4. Select Search Comments for Textual Usages to extend the operation to comments,
the bodies of documentation comments, and to annotations.

5. Select Preview if you wish to inspect the usages that will be replaced before
committing to the renaming operation.

6. Click OK. If you selected Preview, finish the renaming operation from the Preview
Log window. Otherwise, all usages will be modified.

Deleting a JavaScript Code Element

While developing your JavaScript code, you can safely delete the definition of a
function, label or variable. The deletion will not be performed without your
confirmation if the element is still in use.

If the element is in use, a log showing the usages will be displayed. Use the list to
inspect and resolve the usages. If you then confirm the deletion, any remaining usages
will remain in the code as undefined references.

To delete a code element:

1. Select the element that is to be deleted:

• In a JavaScript editor, select the function, label or variable name.

• In a script in a JSP or HTML page, select the function, label or variable name.

2. Invoke the command:

• From the Main menu or the context menu, choose Refactor > Delete Safely.

• Press Alt+Delete.

The Delete Safely dialog will open while the project files are searched for usages.

3. If the dialog closes, the element has been deleted. If it remains open after
performing its search, the element has unresolved usages.

• Click View Usages to inspect and resolve the usages. When finished, invoke the
command again to delete the element.

• Click OK to delete the element's definition.

How to Preview a Refactoring Operation

When performing a refactoring operation that may modify many usages, it is useful to
preview the refactoring to identify those usages that should be modified by hand or be
excluded. You have the option, before committing these operations, of having usages

Developing Applications with Script Languages

Developing Applications Using Web Page Tools 16-99

listed in the Preview Log window, from which you can inspect and resolve them.
Once you have confirmed the modifications, you can commit the operation.

The log displays a collapsible tree of packages and Java files. Under each file, the log
displays lines of code containing modified usages. For more information about the
Preview window, press F1.

In the case of a very lengthy refactoring operation (for example, one involving many
calls to the same JavaScript function in a long source file), JDeveloper displays the
processing status in the status bar (below the Log window).

To view a usage in an Edit window:

• Double-click the entry in the log.

To exclude a usage from the refactoring operation:

• Right-click the usage, and then select Exclude.

To commit the refactoring operation:

1. If you have made any edits that affect usages, click the Refresh button in the log
toolbar to rerun the usages search.

2. Click the Do Refactoring button in the log toolbar.

How to Reformat JavaScript Code

Often when editing JavaScript, you can lose sight of the initial scheme for
indentations, braces, and other visual cues that help you maintain a sense of the scope
of the operation you are editing and where it fits in the overall structure of the
function. To aid clarity, JDeveloper can reformat your JavaScript code, causing parallel
elements to line up and make it easier for you to find visual cues to the parts of the
function you are editing. In addition, reformatting removes extraneous line breaks and
other whitespace from the JavaScript, rendering it more compact, which can improve
the efficiency of deployment by reducing file size.

To reformat a section of JavaScript code:

1. Place the cursor inside the section of code to be reformatted and click the right
mouse button, or select a snippet of JavaScript code to be reformatted.

2. Select Reformat.

The selected section of JavaScript code is reformatted. When you save the file, the code
will be saved in the new format.

How to Change Code Formatting Preferences

You can customize the code editor look and feel, general behavior, and Code Insight
and Java Insight options.

To change code formatting preferences

• From the main menu, select Tools > Preferences > Code Editor.

Note:

From this dialog, you can also choose options for editing Java files in the Java
source editor. Your selections apply to JavaScript as well as Java files.

Developing Applications with Script Languages

16-100 Developing Applications with Oracle JDeveloper

How to Use Code Folding

You can also reformat a .js file if you have made modifications that affect readability
or file size. In addition, code folding can help with readability, as it lets you
concentrate only on specific areas of the file by "folding" selected logical elements
(such as function definitions) of the file. When folded, only the initial few key words of
the code element (such as the name of the function being defined) are displayed; the
rest are indicated by ellipsis (...) after the initial keywords.

To use code folding:

• Click on the - sign to the left of the first column of text in the JavaScript editor.

This folds the code in the selected element, and changes the - sign to a +.

• Click on the + sign to unfold the code, displaying the full contents of the area you
previously folded.

Note that all JavaScript code formatting and highlighting features, as well as code
folding, also apply if you are editing or creating a JSON file.

How to Refactor and Move a File

When you move a file, references to that file need to change throughout your
application. JDeveloper helps with this task during refactoring by changing references
in the <script src=...> tag.

To refactor and move a JavaScript function:

1. Right-click on the file in the Applications window to be refactored and moved, and
then select Refactor Move.

2. Enter the new name for the file into which you wish the function to be moved.

3. Click on Do Refactoring in the Rename log window.

On completion of the refactor, JDeveloper updates the <script src=...> tag in all
HTML files affected by the refactoring.

Working with JSP and Facelet Tag Libraries
JDeveloper supports JSP 2.0, 2.1, and1.2, as well as Facelet 2.0 custom tag libraries,
which enable the development of reusable modules called custom actions. Form
processing, accessing databases or email, and flow control are examples of tasks that
can be performed by custom actions. To invoke a custom action, add a custom tag
inside a JSP page. A collection of custom tags forms a custom tag library. A tag library
descriptor (.tld) file is an XML document that describes your tag library and each tag
in it. The taglib.xml file is the document that describes your facelets tags.

After you create a custom tag library, you can reuse it in other applications you are
developing. JDeveloper includes a tag library as part of a deployment descriptor when
you use it in an application.

Using Tag Libraries with Your Web Pages
There are several tools to simplify the task of creating new JSP or facelet custom tag
libraries as well as importing and registering custom tag libraries from another source.
Custom tag libraries are supported by JDeveloper Code (tag) Insight and can be added
to the Components window. When working with custom tag libraries you can create

Working with JSP and Facelet Tag Libraries

Developing Applications Using Web Page Tools 16-101

custom tag libraries and tags. Register custom tag libraries in order to invoke Code
(Tag) Insight for the tags while you are editing pages in the Java Code Editor. Add
customized pages to the Components window to display the available tags on the
Components window while you are editing pages.

The tags are common to many JSP or facelet applications. There is support for core
iteration and control-flow features, text inclusion, internationalization-capable
formatting tags, and XML-manipulation tags. Such standardization lets you learn a
single tag and use it on multiple containers for easy recognition and optimization
across containers. Using the expression language (EL) and a set of four standard tag
libraries, JSTL lets you develop dynamic, Java-based web sites.

With JSTL, using the Business Components Data Tag library is simpler since tags such
as <jbo:showvalue> and <jbo:rowsetiterate> are no longer required. Instead
of spending time on coding these common operations, you can focus on developing
tags and web pages that are specific to your own web application project.

You can manage your libraries, including locating the source for your tag libraries by
going to Tools > Manage Libraries > JSP Tag Libraries or Facelets Tag Libraries.

For a complete list of included tag libraries see the JDeveloper Tag Library Reference
under the Javadoc and Tag Library Reference node in the Help Table of Contents.

Tag support includes these standard tag libraries that you can use to create JSP or
Facelet pages:

• JSTL Core. This tag library provides tags related to expressions, flow control, and a
generic way to access URL-based resources whose content can then be included or
processed within the JSP page.

• JSTL Format. This tag library provides tags that support I18N and localized
formatting and parsing.

• JSTL SQL. This tag library provides tags that allow direct database access from
within JSPs.

• JSTL XML. This tag library provides tags that allow parsing and XSL
transformation of XML documents.

• Facelets 2.1. This tag library provides tags that allow you to create, manage and
handle UI components within a web page. For more information see the Facelets
Tag Library documentation at: http://docs.oracle.com/javaee/6/
javaserverfaces/2.1/docs/vdldocs/facelets/

• Trinidad Components 2.0. For more information, see the Apache Trinidad page at:
http://myfaces.apache.org/trinidad/index.html.

• ADF Faces Components 12. For more information, see the Oracle Fusion Middleware
Tag Reference for Oracle ADF Faces.

How To Add, Delete or Edit Project Level Tag Libraries

Manage your libraries from the Application option on the main menu.

To add, delete, or edit project level tag libraries

1. Choose Application > Project Properties > JSP Tag Libraries

2. Add, delete, or edit project tag libraries as necessary.

Working with JSP and Facelet Tag Libraries

16-102 Developing Applications with Oracle JDeveloper

http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://myfaces.apache.org/trinidad/index.html

How to Browse to a JSP Tag Library Descriptor (TLD) File

You can right-click from anywhere on a JSP page to get to the tag library browse
option.

To browse to a JSP tag library descriptor (TLD) file:

1. In the Java Code Editor, right-click anywhere in the tag library declaration for the
TLD file you want to browse. The tag library declaration begins with <%@ taglib.

2. From the context menu, choose Browse Tag Library. The JSP tag library descriptor
file opens in another Java Code Editor window.

How to Browse Pages or Individual JSP Tags

Browse tags and pages from the Configure Palette option from the Tools option on the
main menu.

How to Work with Custom Tag Libraries
To create a custom tag library, create the tag library descriptor file and then create
simple tags or component tags. A tag library descriptor file (TLD) is an XML
document that describes your tag library and each tag in it. It is used by a container to
validate the tags. Once you create tags, you can add attributes and scripting variables
to them.

How to Create a Custom JSP or Facelets Tag Library

Use the New Gallery tag library wizards to create your custom tags. You can choose to
create a project based or deployable library type, depending on whether you want to
share the library or keep it within one project. The second step in the wizard lets you
name and add location details for you tag library, as shown in Figure 16-24.

Figure 16-24 Facelets Tag Library Wizard

To create a custom JSP or facelets tag library:

Working with JSP and Facelet Tag Libraries

Developing Applications Using Web Page Tools 16-103

1. In the Applications window, select the project in which you want to create the new
tag library.

2. Choose File > New > From Gallery to open the New Gallery.

3. In the Categories tree, expand Web Tier and select JSP or JSF/Facelet.

4. In the Items list, double-click JSP or Facelet Tag Library to open the Create Tag
Library wizard.

5. After completing the required information for creating a new tag library, click
Finish.

How to Add your Custom Tag Library to the Components Window

To make your registered custom tag libraries available in the Components window of
your projects, go to Application > Project Properties > JSP Tag Libraries/Facelet Tag
Libraries > Add. Check Show Tag Library in Palette.

When you create a custom tag library with the New Gallery wizard, it is added to the
Components window only if you select the Project Based option in the Create Facelets
Tag Library wizard. If you select, or leave the default choice of Deployable at creation
time, you will need to perform additional steps to register your library and add it to
your project through the Project Properties Add Tag Libraries feature. The tag library
will then show in your Components window.

To add a unregistered custom tag library to the Components window:

1. Deploy your new custom tag library.

2. Register your deployed library. To register your deployed library, see How to
Register a JSP or Facelet Tag Library. After your library is registered it shows up in
the Project Properties and Add Tag library options.

3. Add the tag library to your project. The library now shows in your Components
window.

How to Register a JSP or Facelet Tag Library

Register your tag libraries to tell facelets that they exist.

To register a JSP or facelet custom tag library:

1. Choose Tools > Manage Libraries to open the Manage Libraries dialog.

2. Select the JSP Tag Libraries or Facets Tag Libraries tab.

3. Select the User folder and click New to add a new JSP tag library descriptor file to
the JSP Tag Libraries or Facelets Tag Libraries tree.

4. Enter the custom tag library descriptor (TLD) file, the location of the JAR or ZIP
archive file, the URI, and prefix for the new tag library. The prefix that you enter
will be updated on the JSP Tag Libraries or Facelets Tag Libraries tree after you
click OK.

5. Click OK to close the Manage Libraries dialog.

How to Edit a TLD File in the XML Source Editor

You can edit your TLD file and change your element attributes.

Working with JSP and Facelet Tag Libraries

16-104 Developing Applications with Oracle JDeveloper

To edit a TLD file in the XML Source Editor:

1. In the Applications window, double-click or right-click a file and choose Open.
Click the Source tab if not selected by default for that file. While you are typing,
you can invoke Code Insight by pausing after typing the < (opening bracket) or by
pressing Ctrl+Space (if you are using the default keymapping). Code Insight opens
a list with valid elements, based on the grammar.

2. After selecting an element, enter a space and then either pause or press Ctrl+Space
to open a list of valid attributes from which you can select. After you enter the
opening quote for the attribute value, either the required type of value or a list of
available values is provided.

Tip:

To edit a TLD file with the Components window, choose View > Components
window to open the Palette and select Tag Lib or one of the available pages
from the dropdown list. Then choose elements from the page.

How to Add a Scripting Variable to a Tag

Scripting variables are variables that are available to the JSP page when any JSP page
is called. Scripting variables may be any scripting variables but when you are dealing
in reference of JSP page it means page level variables declared by the JSP page. You
can access scripting variables in scriptlet, declaration, expressions.

To add a scripting variable to a tag:

1. In the Applications window, select the Tag.java or WebTag.java file.

2. Right-click the tag and choose Add Scripting Variable. The Add New Tag
Scripting Variable dialog opens.

3. After completing the required information for adding a scripting variable, click
OK. The new variable.java file that defines the attributes is created and opened in
the Java Code Editor. The new scripting class is also added to the pre-existing tag
handler class.

How to Deploy Your Custom JSP/Facelets Tag Library as a JAR File

Use the deploy to context menu to deploy your custom tag libraries.

To deploy your custom JSP tag library or facelets tag library as a JAR File:

1. In the Applications window, select the Deploy file you want to deploy.

2. Right-click the file and choose Deploy to JAR File. By default, the tag library is
deployed in the current project directory.

Working with JSP and Facelet Tag Libraries

Developing Applications Using Web Page Tools 16-105

Working with JSP and Facelet Tag Libraries

16-106 Developing Applications with Oracle JDeveloper

17
Developing with EJB and JPA Components

This chapter describes how to use JDeveloper tools to build the business tier of a Java
EE enterprise application using Enterprise JavaBeans (EJB) 3.x and Java Persistence
API (JPA) components.

This chapter includes the following sections:

• About Developing with EJB and JPA Components

• Support For EJB Versions and Features

• Building EJB 3.x Applications and Development Process

• How to Work with an EJB Business Services Layer

• Using Java EE Design Patterns in Oracle JDeveloper

• Using Java EE Contexts and Dependency Injection (CDI)

• Building a Persistence Tier

• Implementing Business Processes in Session Beans

• Modeling EJB/JPA Components on a Diagram

• Deploying EJBs as Part of an Web Application

• Deploying EJB Modules and JPA Persistence Units

• Running and Testing EJB/JPA Components

About Developing with EJB and JPA Components
JDeveloper includes step-by-step wizards for creating EJB projects, entities, persistence
units, session beans, and message-driven beans. You can build entities from online or
offline database definitions and from application server data source connections.
There is also seamless integration with JPA and TopLink technology to provide a
complete persistence package.

Support For EJB Versions and Features
JDeveloper supports EJB 3.x, as well as versions 1.0 through 2.1. However, the EJB
wizards do not support the creation of EJBs earlier than version 2.x, but will instead
prompt you to import such older EJBs into version 3.1. The current JDeveloper
documentation, including this chapter of the User Guide and the embedded online
help, focus on EJB 3.1 development tasks.

Developing with EJB and JPA Components 17-1

Note:

Previous versions of the JDeveloper 10g documentation tell how to work with
EJB 2.1 and earlier. Be aware that EJB application development interfaces may
change from version to version, and some historical help content will be
outdated for the current version.

For the EJB 3.1 specification and documentation, refer to the "Java Platform, Enterprise
Edition (Java EE) Technical Documentation" page at http://docs.oracle.com/
javaee/.

Note:

If you are using EJB 3.x, you may be using annotations instead of some
deployment files. Include deployment descriptors to override annotations or
specify options not supported by annotations.

Supported New EJB 3.1 Features

The EJB 3.1 specification provides simplified programming and packaging model
changes.

• Singleton Session Bean – Singleton session beans provide a formal programming
construct that guarantees a session bean will be instantiated once per application in
a particular Java Virtual Machine (JVM), and that it will exist for the life cycle of the
application. With singletons, you can easily share state between multiple instances
of an enterprise bean component or between multiple enterprise bean components
in the application.

• Simplified No Interface Client View – The No-interface local client view type
simplifies EJB development by making local business interfaces optional. A bean
that does not have a local business interface exposes a no-interface view, which
provides the same enterprise bean functionality without having to write a separate
business interface.

• Packaging and Deploying EJBs Directly in a WAR File – EJB 3.1 provides the
ability to place EJB components directly inside of Web application archive (WAR)
files, removing the need to produce archives to store the Web and EJB components
and combine them together in an enterprise application archive (EAR) file.

• Portable Global JNDI Names – The Portable Global JNDI naming option in EJB 3.1
provides a number of common, well-known namespaces in which EJB components
can be registered and looked up from using the pattern java:global[/<app-
name>]/<module-name>/<bean-name>. This standardizes how and where EJB
components are registered in JNDI, and how they can be looked up and used by
applications.

• Asynchronous Session Bean Invocations – An EJB 3.1 session bean can expose
methods with asynchronous client invocation semantics. Using the
@Asynchronous annotation in an EJB class or specific method will direct the EJB
container to return control immediately to the client when the method is invoked.
The method may return a future object to allow the client to check on the status of
the method invocation, and retrieve result values that are asynchronously
produced.

Support For EJB Versions and Features

17-2 Developing Applications with Oracle JDeveloper

http://docs.oracle.com/javaee/
http://docs.oracle.com/javaee/

• EJB Timer Enhancements – The EJB 3.1 Timer Service supports calendar-based EJB
Timer expressions. The scheduling functionality takes the form of CRON-styled
schedule definitions that can be placed on EJB methods, in order to have the
methods be automatically invoked according to the defined schedule. EJB 3.1 also
supports the automatic creation of a timer based on metadata in the bean class or
deployment descriptor, which allows the bean developer to schedule a timer
without relying on a bean invocation to programmatically invoke one of the Timer
Service timer creation methods. Automatically created timers are created by the
container as a result of application deployment.

Supported New and Changed EJB 3.0 Features

The key differences between EJB 3.0 and previous versions are:

• Simplified EJBs - EJB 3.0 eliminated the need for home and component interfaces
and the requirement for bean classes for implementing
javax.ejb.EnterpriseBean interfaces. The EJB bean class can be a pure Java
class (POJO), and the interface can be a simple business interface. The bean class
implements the business interface.

• Use of Annotations Instead of Deployment Descriptors - Metadata annotation is
an alternative to deployment descriptors. Annotations specify bean types, different
attributes such as transaction or security settings, O-R mapping and injection of
environment or resource references. Deployment descriptor settings override
metadata annotations.

• Dependency Injection - The API for lookup and use of EJB environment and
resource references was simplified, and dependency injection is used instead.
Metadata annotation is used for dependency injection.

• Enhanced Life-cycle Methods and Callback Listener Classes - Unlike previous
versions of EJB, you do not have to implement all unnecessary callback methods.
Instead, you designate any arbitrary method as a callback method to receive
notifications for life-cycle events. A callback listener class is used instead of
callback methods defined in the same bean class.

• Interceptors - An interceptor is a method that intercepts a business method
invocation. An interceptor method is defined in a stateless session bean, stateful
session bean, or a message-driven bean. An interceptor class is used instead of
defining the interceptor method in the bean class.

• Simple JNDI Lookup of EJB - Lookup of EJB is simplified and clients do not have
to create a bean instance by invoking a create() method on EJB and can now
directly invoke a method on the EJB.

Session Beans

• Simplified Beans - Session beans are pure Java classes and do not implement
javax.ejb.SessionBean interfaces. The home interface is optional. A session
bean has either a remote, local, or both interfaces and these interfaces do not have
to extend EJBObject or EJBLocalObject.

• Metadata Annotations - Metadata annotations are used to specify the bean or
interface and run-time properties of session beans. For example, a session bean is
marked with @Stateless or @Stateful to specify the bean type.

Support For EJB Versions and Features

Developing with EJB and JPA Components 17-3

• Life-cycle Methods and Callback Listeners - Callback listeners are supported with
both stateful and stateless session beans. These callback methods are specified
using annotations or a deployment descriptor.

• Dependency Injection - Dependency injection is used either from stateful or
stateless session beans. Developers can use either metadata annotations or
deployment descriptors to inject resources, EJB context or environment entries.

• Interceptors - Interceptor methods or interceptor classes are supported with both
stateful and stateless session beans.

Message-Driven Beans (MDBs)

• Simplified Beans - Message-driven beans do not have to implement the
javax.ejb.MessageDriven interface; they implement the
javax.jms.MessageListener interface.

• Metadata Annotations - Metadata annotations are used to specify the bean or
interface and run-time properties of MDBs. For example, an MDB is marked with
@MessageDriven for specifying the bean type.

• Life-cycle Methods and Callback Listeners - Callback listeners are supported with
MDBs. These callback methods are either specified using annotations or the
deployment descriptor.

• Dependency Injection - Dependency injection is used from an MDB. You either
use metadata annotations or deployment descriptors to inject resources, EJB
context, or environment entries used by an MDB.

• Interceptors - Interceptor methods or interceptor classes can be used with MDBs.

Entities - Java Persistence API (JPA)

• Simplified Beans (POJO Persistence) - EJB 3.0 greatly simplified entity beans and
standardizes the POJO persistence model. Entity beans are concrete Java classes
and do not require any interfaces. The entity bean classes support polymorphism
and inheritance. Entities can have different types of relationships, and container-
managed relationships are manually managed by the developer.

• Entity Manager API - EJB 3.0 introduced the EntityManager API that is used to
create, find, remove, and update entities. The EntityManager API introduces the
concept of detachment/merging of entity bean instances similar to the Value Object
Pattern. A bean instance may be detached and may be updated by a client locally
and then sent back to the entity manager to be merged and synchronized with the
database.

• Metadata Annotations - Metadata annotations greatly simplified development of
entities by removing the requirement of deployment descriptors. The entity
annotation is used to specify a class to be an entity bean. Annotations are used to
specify transaction attributes, security permissions, callback listeners and
annotated queries.

• Query Language Enhancements - EJB 3.0 greatly improved the query capability for
entities with Java Persistence Query Language (JPQL). JPQL enhances EJB-QL by
providing additional operations such as bulk updates and deletes, JOIN operations,
GROUP BY HAVING, projection and sub-queries. Also dynamic queries can be
written using EJB QL.

Support For EJB Versions and Features

17-4 Developing Applications with Oracle JDeveloper

• Life-cycle Methods and Callback Listeners - Callback listeners are supported with
entity beans. Callback methods are either specified using annotations or a
deployment descriptor.

Building EJB 3.x Applications and Development Process
JDeveloper includes a complete set of features to set up the EJB business layer of an
enterprise application.

You can start by using the step-by-step wizard to create the framework for your EJB
web application, setting up the model layer of your enterprise application. You can
then use wizards to create entities that correspond to database tables. You can then use
a wizard to create session beans and facades and to build a persistence unit. Oracle
ADF provides components to enable data controls. When you are ready, you can use
the JDeveloper integrated server capabilities to test it.

EJB 3.x Application Development Process
JDeveloper includes tools for developing EJB applications, as described in the
following sections.

• Creating Entities

• Creating Session Beans and Facades

• Deploying EJBs

• Testing EJBs Remotely

• Registering Business Services with Data Controls

Creating Entities

Use the entity wizards to create entities or to create entities from tables using online,
offline, or application server data source connections. Use the Entities from Tables
wizard to reverse-engineer entities from database tables. In the entity wizards you can
select or add a persistence unit and a database connection, or you can select a database
to emulate. You can also select database tables for your entity. For more information,
see How to Create JPA Entities.

You can create entities from existing tables, or manually in the Java Source Editor. If
you create entities from existing tables, the mapping is done automatically. If you
create entities manually using O-R mapping metadata, you have more control over the
mapping, but you must code the annotations by hand. For more information, see
Metadata Annotations for O-R Mapping .

Creating Session Beans and Facades

You can use session beans to implement the session facade design pattern. A session
facade aggregates and presents data, provides a place for business logic, and has a
transactional context via the container. For more information, see Implementing
Business Processes in Session Beans and Using Session Facades .

When you create a session bean with the wizard, you have the option of generating
session facade methods for every entity in the same project. You can choose which
core transactional methods to generate, get() and set() accessors, and finder
methods on the entities. If you create new entities or new methods on entities, you can
update your existing session facade by right-clicking it in the Applications window
and choosing Edit Session Facade.

Building EJB 3.x Applications and Development Process

Developing with EJB and JPA Components 17-5

Deploying EJBs

JDeveloper provides Oracle WebLogic Server as a container for deployed EJBs. A
JDeveloper server-specific deployment profile is generated by default. You can also
create a WebLogic-specific deployment profile. For more information, see Deploying
EJB Modules and JPA Persistence Units .

Testing EJBs Remotely

JDeveloper can also create a sample client for use with a remote server. You generate
the sample client in the same manner as a local client, providing the remote connection
details. For more information, see How to Test EJB/JPA Components Using a Remote
Server.

Registering Business Services with Oracle ADF Data Controls

ADF provides components for enabling data controls for your entities. Your Java EE
application integrates selective components as you manually add a data control for
your entities. For more information, see "Using ADF Data Controls" in Oracle Fusion
Middleware Developing Applications with Oracle ADF Data Controls.

How to Work with an EJB Business Services Layer
Create a model business services layer for a web-based EJB 3.x application.

To create a web-based application:

• Select File > New > Application.

The General category in the New Gallery provides a list of available applications.
For EJB projects you can choose to build either a custom application or the Java EE
Web application. The Java EE Web Application creates an EJB/JPA data-bound
web application.

Tip: Frequently-used selections are automatically saved to the New menu for easy
access.

To create JPA entities:

1. In the Applications window, right-click the project in which you want to create a
JPA entity and choose New.

2. In the New Gallery, expand Business Tier, select EJB and then select Entity or
Entities from Tables and click OK.

Tip: Frequently-used selections are automatically saved to the New menu for easy
access.

3. When you get to the Persistence Unit page, click Next to automatically create a
default persistence unit, persistence.xml, or click New to create a new
persistence grouping within the existing META-INF/persistence.xml file.

4. Follow the remaining steps in the Entity or Entities from Tables wizard to create
JPA entities.

For more information at any time, press F1 or click Help from within the wizard.

To implement a session facade:

1. In the Applications window, right-click the project in which you want to create a
session facade and choose New.

How to Work with an EJB Business Services Layer

17-6 Developing Applications with Oracle JDeveloper

2. In the New Gallery, expand Business Tier, select EJB and then select Java Service
Facade (JPA/Toplink) and click OK.

Tip: Frequently-used selections are automatically saved to the New menu for easy
access.

3. Follow the steps in the Java Service Facade wizard.

When you get to the EJB Name and Options page, be sure to check Generate
Session Facade Methods. This automatically adds the session facade methods to
your session bean. Note that you can create and edit session facade methods for all
entities in your project by right-clicking your session bean and choosing Edit
Session Facade. JDeveloper automatically recognizes new entities in your project
and new methods on the entities.

For more information at any time, press F1 or click Help from within the wizard.

To register the business services model project with the data control:

• Right-click your session bean in the Applications window and choose Create Data
Control.

This creates a file called DataControls.dcx which contains information to
initialize the data control to work with your session bean.

To run and test your application:

• You have now created the basic framework for the model layer for a web-based EJB
application. Use this framework to test your application as you continue building
it. For more information, see Running and Testing EJB/JPA Components.

To deploy your application:

The integrated server runs within JDeveloper. You can run and test EJBs using this
server and then deploy your EJBs with no changes to them. You do not need to create
a deployment profile to use this server, nor do you have to initialize it. Create the
deployment descriptor, ejb-jar.xml using the Deployment Descriptor wizard, and
then package your EJB modules for deployment with your application.

Using Java EE Design Patterns in Oracle JDeveloper
The Java EE design patterns are a set of best practices for solving recurring design
problems. Patterns are ready-made solutions that can be adapted to different
problems, and leverage the experience of successful Java EE developers.

JDeveloper can help you implement the following Java EE design patterns in your EJB
applications:

• MVC - The MVC pattern divides an application into three parts, the Model, View,
and Controller. The model represents the business services of the application, the
view is the portion of the application that the client accesses, the controller controls
the flows and actions of the application and provides seamless interaction between
the model and view. The MVC pattern is automatically implemented if you choose
the Fusion Web Application (ADF) or Java EE Web Application template when you
begin your project.

• Session Facade - The session facade pattern contains and centralizes complex
interactions between lower-level EJBs (often JPA entities). It provides a single

Using Java EE Design Patterns in Oracle JDeveloper

Developing with EJB and JPA Components 17-7

interface for the business services of your application. For more information, see
Implementing Business Processes in Session Beans.

• Business Delegate - The business delegate pattern decouples clients and business
services, hiding the underlying implementation details of the business service. The
business delegate pattern is implemented by the data control, which is represented
in JDeveloper by the Data Control Palette. For more information, see "Using ADF
Data Controls" in Oracle Fusion Middleware Developing Applications with Oracle ADF
Data Controls.

Using Java EE Contexts and Dependency Injection (CDI)
Contexts and Dependency Injection (CDI) for the Java EE platform is a set of services
that, used together, make it easy for developers to use enterprise beans along with
JavaServer Faces technology in web applications.

The most fundamental services provided by CDI are as follows:

• Contexts: The ability to bind the life cycle and interactions of stateful components
to well-defined but extensible life cycle contexts.

• Dependency Injection: The ability to inject components into an application in a
typesafe way, including the ability to choose at deployment time which
implementation of a particular interface to inject. Dependency injection is used
either from stateful or stateless session beans, as well as with message-driven
beans. Developers can use either metadata annotations or deployment descriptors
to inject resources, EJB context, or environment entries used by EJBs.

• Interceptors: A method that intercepts a business method invocation. An
interceptor method is defined in a stateless session bean, stateful session bean, or a
message-driven bean. An interceptor class is used instead of defining the
interceptor method in the bean class.

For more information about CDI, see "Introduction to Contexts and Dependency
Injection for the Java EE Platform" in the Java EE 6 Tutorial.

The following CDI features are surfaced in JDeveloper for EJB 3.x:

• beans.xml File

• Interceptor Binding Type

• Qualifier Type

• Scope Type

• Stereotype

beans.xml File
Any application that uses CDI (Contexts and Dependency Injection) must have a
beans.xml file. If an application is part of an EJB project (based on the project's .jpr
file), the beans.xml file is generated in the project's META-INF directory. For all
other application types, such as Web applications, the beans.xml file is generated in
the project's WEB-INF directory. The beans.xml file can be empty.

For more information about managed beans, see "About Beans" in the Java EE 6
Tutorial.

To create a beans.xml file:

Using Java EE Contexts and Dependency Injection (CDI)

17-8 Developing Applications with Oracle JDeveloper

http://docs.oracle.com/javaee/6/tutorial/doc/giwhb.html
http://docs.oracle.com/javaee/6/tutorial/doc/giwhb.html
http://docs.oracle.com/javaee/6/tutorial/doc/gjebj.html

1. Select a project in the Applications window and from the File menu, choose New >
From Gallery.

2. From the New Gallery, expand Business Tier and Contexts and Dependency
Injection, and then select beans.xml (Contexts and Dependency Injection) and
click OK.

3. In the Applications window, browse to the Web Content folder and double-click
the beans.xml file to open it in the Java source editor.

4. Use the following options on the general tab to define one or more of the following
child elements in the beans.xml file:

• interceptors – Interceptors are used to perform cross-cutting tasks, such as
logging or auditing, that are separate from the business logic of the application
and which are repeated often within an application. Interceptors allow you to
specify the code for these tasks in one place for easy maintenance. For more
information about interceptors, see "Using Interceptors in CDI Applications" in
the Java EE 6 Tutorial.

• decorators – Decorators are outwardly similar to interceptors; however, they
actually perform business logic by intercepting business methods of beans. This
means that instead of being reusable for different kinds of applications as are
interceptors, their logic is specific to a particular application. For more
information about decorators, see "Using Decorators in CDI Applications" in the
Java EE 6 Tutorial.

• alternatives – When you have more than one version of a bean that is used for
different purposes, you can choose between them by using alternatives. For
example, you might have a full version of a bean and also a simpler version that
you use only for certain kinds of testing. For more information about
alternatives, see "Using Alternatives in CDI Applications" in the Java EE 6
Tutorial.

Interceptor Binding Type
Interceptor bindings are Java annotations that associate an interceptor with any
managed bean that is not itself an interceptor or decorator, or with any EJB session or
message-driven bean.

For more information about interceptors, see "Using Interceptors in CDI Applications"
in the Java EE 6 Tutorial.

To create an interceptor binding type:

1. Select a project in the Applications window and from the File menu, choose New >
From Gallery.

2. From the New Gallery, expand Business Tier and Contexts and Dependency
Injection, and then select Interceptor Binding Type and click OK.

3. In the Create Interceptor Binding Type dialog, enter a name and select the package
where, and click OK.

4. In the Applications window, select the newly created file to open it in the Java
source editor.

The following example contains the annotations for a CDI interceptor binding type:

Using Java EE Contexts and Dependency Injection (CDI)

Developing with EJB and JPA Components 17-9

http://docs.oracle.com/javaee/6/tutorial/doc/gkhjx.html
http://docs.oracle.com/javaee/6/tutorial/doc/gkhqf.html
http://docs.oracle.com/javaee/6/tutorial/doc/gjsdf.html
http://docs.oracle.com/javaee/6/tutorial/doc/gkhjx.html

package demo;

import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.TYPE;
import java.lang.annotation.Inherited;
import java.lang.annotation.Retention;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Target;

import javax.interceptor.InterceptorBinding;

@Retention(RUNTIME)
@Target({ METHOD, TYPE })
@InterceptorBinding
@Inherited
public @interface InterceptorBinding1 {
}

Qualifier Type
A qualifier type is a Java annotation that can be used to provide various
implementations of a particular bean type.

For more information about qualifiers, see "Using Qualifiers" in the Java EE 6 Tutorial.

To create a qualifier type:

1. Select a project in the Applications window and from the File menu, choose New >
From Gallery.

2. From the New Gallery, expand Business Tier and Contexts and Dependency
Injection, and then select Qualifier Type and click OK.

3. In the Create Qualifier Type dialog, enter a name for the qualifier type and click
OK to create it in the current package. You can also click Browse to select another
package.

4. In the Applications window, select the newly created qualifier type Java file to
open it in the Java source editor.

The following example contains the annotation for a CDI qualifier type:

package demo;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.TYPE;
import java.lang.annotation.Retention;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Retention(RUNTIME)
@Target({ METHOD, FIELD, PARAMETER, TYPE })
@Qualifier
public @interface Qualifier1 {
}

Using Java EE Contexts and Dependency Injection (CDI)

17-10 Developing Applications with Oracle JDeveloper

http://docs.oracle.com/javaee/6/tutorial/doc/gjbck.html

Scope Type
For a web application to use a bean that injects another bean class, the bean needs to
be able to hold state over the duration of the user's interaction with the application.
The way to define this state is to give the bean a scope, such as @RequestScoped,
@SessionScoped, or @ApplicationScoped.

For more information about scopes, see "Using Scopes" in the Java EE 6 Tutorial.

To create a scope type:

1. Select a project in the Applications window and from the File menu, choose New >
From Gallery.

2. From the New Gallery, expand Business Tier and Contexts and Dependency
Injection, and then select Scope Type and click OK.

3. In the Scope Type dialog, enter a name for the scope type and click OK to create it
in the current package. You can also click Browse to select another package.

4. In the Applications window, select the newly created file to open it in the Java
source editor.

The following example contains the annotations for a CDI scope type:

package demo;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.TYPE;
import java.lang.annotation.Inherited;
import java.lang.annotation.Retention;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Target;

import javax.inject.Scope;

@Retention(RUNTIME)
@Target({ METHOD, FIELD, TYPE })
@Scope
@Inherited
public @interface Scope1 {
}

Stereotype
A stereotype is a type of annotation, applied to a bean, that incorporates other
annotations. Stereotypes can be particularly useful in large applications where you
have a number of beans that perform similar functions.

For more information about stereotypes, see "Using Stereotypes in CDI Applications"
in the Java EE 6 Tutorial.

To create a stereotype:

1. Select a project in the Applications window and from the File menu, choose New >
From Gallery.

2. From the New Gallery, expand Business Tier and Contexts and Dependency
Injection, and then select Stereotype and click OK.

Using Java EE Contexts and Dependency Injection (CDI)

Developing with EJB and JPA Components 17-11

http://docs.oracle.com/javaee/6/tutorial/doc/gjbbk.html
http://docs.oracle.com/javaee/6/tutorial/doc/gkhqc.html

3. In the Create Stereotype dialog, enter a name and select the package where, and
click OK.

4. In the Applications window, select the newly created file to open it in the Java
source editor.

The following example contains the annotations for a CDI stereotype:

package demo;

import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.TYPE;
import java.lang.annotation.Retention;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Target;

import javax.enterprise.inject.Stereotype;

@Retention(RUNTIME)
@Target({ METHOD, FIELD, TYPE })
@Stereotype
public @interface Stereotype1 {
}

Building a Persistence Tier
The persistence tier is the part of your EJB application that contains all of the persistent
data object that represent tables in a database. These business components are called
JPA entities since the entity model introduced in EJB 3.x is defined in the Java
Persistence API.

About JPA Entities and the Java Persistence API
JPA entities adopt a lightweight persistence model designed to work seamlessly with
Oracle TopLink and Hibernate.

The major enhancements with JPA entities are:

• JPA Entities are POJOs

• Metadata Annotations for O-R Mapping

• Inheritance and Polymorphism Support

• Simplified EntityManager API for CRUD Operations

• Query Enhancements

JPA Entities are POJOs

JPA entities are now POJOs (Plain Old Java Objects) and there are no component
interfaces required for them. JPA entities support inheritance and polymorphism as
well.

The following example contains the source code for a simple JPA entity.

@Entity
@Table(name = "EMP")
public class Employee implements java.io.Serializable
{

Building a Persistence Tier

17-12 Developing Applications with Oracle JDeveloper

 private int empNo;
 private String eName;
 private double sal;
 @Id
 @Column(name="EMPNO", primaryKey=true)
 public int getEmpNo()
 {
 return empNo;
 }
public void setEmpNo(int empNo)
{
 this.empNo = empNo;
}
 public double getSal()
{
 return sal;
}
...
}

Note that the bean class is a concrete class, not an abstract one, as was the case with
CMP 2.x entity beans.

Metadata Annotations for O-R Mapping

The O-R mapping annotations allow users to describe their entities with O-R mapping
metadata. This metadata is then used to define the persistence and retrieval of entities.
You no longer have to define the O-R (object Relational) mapping in a vendor-specific
descriptor.

The example above uses the @Entity, @Table, and @Column annotations to specify
at the class level that this is an entity, and to specify the underlying database table and
column names for the entity. You can also use mapping annotations to define a
relationship between entities, as shown in the example below:

@ManyToOne(cascade=PERSIST)
@JoinColumn(name="MANAGER_ID", referencedColumnName="EMP_ID")
public Employee getManager()
{
 return manager;
}

Inheritance and Polymorphism Support

Inheritance is very useful in many scenarios. The two types of inheritance that are
commonly used and supported by for JPA entities are:

• Single table per class hierarchy

• Joined sub class strategy

The inheritance can be expressed using annotations.The following example contains
code that uses the joined sub class strategy.

@Entity
@Table(name="EJB_PROJECT")
@Inheritance(strategy=JOINED, discriminatorValue="P")
@DiscriminatorColumn(name="PROJ_TYPE")
public class Project implements Serializable
{
...
}

Building a Persistence Tier

Developing with EJB and JPA Components 17-13

@Entity
@Table(name="EJB_LPROJECT")
@Inheritance(discriminatorValue="L")
public class LargeProject extends Project
{
...
}
@Entity
@Table(name="EJB_PROJECT")
@Inheritance(discriminatorValue="S")
public class SmallProject extends Project
{
...
}

Simplified EntityManager API for CRUD Operations

The javax.persistence.EntityManager API is used for CRUD (Create, Read,
Update, and Delete) operations on entity instances. You no longer have to write code
for looking up instances and manipulating them. You can inject an instance of
EntityManager in a session bean and use persist() or find() methods on an
EntityManager instance to create or query entity bean objects, as show below.

@PersistenceContext
private EntityManager em;
private Employee emp;
 public Employee findEmployeeByEmpNo(int empNo)
 {
 return ((Employee) em.find("Employee",empNo));
 }
public void addEmployee(int empNo, String eName, double sal)
{
 if (emp == null) emp = new Employee();
 emp.setEmpNo(empNo);
 ...
 em.persist(emp);
}
}

Query Enhancements

Queries are defined in metadata. You may now specify your queries using
annotations, or in a deployment descriptor. JPA entities support bulk updates and
delete operations through JPQL (Java Persistence Query Language). For more
information, see Annotations for EJB/JPA.

How to Create JPA Entities
JDeveloper offers you two easy wizards to create your JPA entities. You can create
entities from online or offline databases, add a persistence unit, define inheritance
strategies, and select from available database fields. The Entities from Tables wizard
allows you to create entities from online or emulated offline databases, as well as from
an application server data sources.

Building a Persistence Tier

17-14 Developing Applications with Oracle JDeveloper

Note:

When running the Entities from Tables wizard, if you configure the Attach an
ID generator to each generated entity... field on the General Options page, you
will need to manually configure the ID generator for the @SequenceGenerator
or the @SequenceGenerator option, depending on which one you select. For
additional instructions, refer to the Javadoc generated into each entity class.

To create entities or entities from tables:

1. From the main menu, choose File > New.

2. In the New Gallery, expand Business Tier, select EJB and then select Entity or
Entities from Tables and click OK.

Tip: Frequently-used selections are automatically saved to the File menu for easy
access.

3. Follow the steps in the Create Entities from Tables or Create Entity wizard to
create JPA entities.

For more information at any time, press F1 or click Help from within the wizard.

To create EJBs in an existing project:

1. In the Applications window, select the project in which you want to create a JPA
entity and choose New.

2. In the New Gallery, expand Business Tier, select EJB and then select Entity or
Entities from Tables and click OK.

Or, from the main menu, choose File > New to open the New Gallery, and then
follow step 2.

Tip: Frequently-used selections are automatically saved to the File menu for easy
access.

3. Follow the steps in the Create Entities from Tables or Create Entity wizard.

To create EJBs in a new project:

1. From the main menu, choose File > New > Projects.

2. In the New Gallery, choose the type of project you want to create and click OK.

3. In the Applications window, right-click the new project and choose New (or select
the project and on the main menu choose File > New).

In the New Gallery, expand Business Tier, select EJB and then select Entity or
Entities from Tables and click OK.

Tip: Frequently-used selections are automatically saved to the File menu for easy
access.

Using the Serializable Interface

When creating an EJB using the Entities from Tables wizard, you can have the entity
implement java.io.Serializable (on the General Options page of the wizard).
When this is selected, a default serialVersionUID field is generated into the entity
class, for example:

Building a Persistence Tier

Developing with EJB and JPA Components 17-15

public class Departments implements Serializable {
 private static final long serialVersionUID = -1771169464233198257L;
...

Each time JDeveloper audits the class, it calculates the serialVersionUID that the
VM would derive for the class, and compares it to the current serialVersionUID
class property. If they are the same, then the class either has not changed, or has not
changed in any meaningful way that affects serialization.

If the new serialVersionUID differs from the current serialVersionUID field,
then JDeveloper flags it with an audit warning, and you must determine what to do
about it.

About SDO For EJB/JPA
JDeveloper provides support for the SDO (Service Data Objects) data application
development framework.

Use the SDO 2.0 framework and API to easily modify business data regardless of how
it is physically accessed. SDO encapsulates the backend data source, offers a choice of
static or dynamic programming styles, and supports both connected and disconnected
access. SDO handles XML parser operations, and automatically integrates the data
parsing logic with the application. For more information, "Integrating Service-Enabled
Application Modules" in Oracle Fusion Middleware Developing Fusion Web Applications
with Oracle Application Development Framework.

The SDO architecture supported by JDeveloper offers the following:

• Simplifies the Java EE data programming model

• Abstracts data in a service oriented architecture (SOA)

• Unifies data application development by creating a standard way of passing data
between clients

• Supports and integrates XML

• Incorporates Java EE patterns and best practices

SDO is a unified framework for data application based on the concept of disconnected
data graphs. A data graph is a collection of tree-structured or graph-structured data
objects. To enable development of generic or framework code that works with Data
Objects, it is important to be able to introspect on Data Object metadata, which
exposes the data model for the Data Objects. As an alternative to Java reflection, SDO
provides APIs to access metadata stored in XML schema definition (XSD) files that
you create, based on the entity or data model information detailed in your EJB beans.

Using an EJB/POJO-based ADF-BC Service for Deployment to the SOA Platform
The SDO feature in JDeveloper can be used as an EJB service or as an ADF-BC service.
If you choose to use an ADF-BC service you need add the listener reference to your
weblogic-application.xml file. For more information, see How to Create an SDO
Service Interface for JPA Entities.

For more information and specifications on SDO, see the OSOA (Open Service
Oriented Architecture) at http://www.oasis-opencsa.org/sdo

Building a Persistence Tier

17-16 Developing Applications with Oracle JDeveloper

http://www.oasis-opencsa.org/sdo

How to Create an SDO Service Interface for JPA Entities
You can easily create a service interface API to access JPA entity data through either
an EJB session bean or a plain old Java object (POJO). This service class exposes
operations for creating, retrieving, updating, and deleting the JPA entities in your
JDeveloper Java EE application.

To create a SDO service interface:

1. Start with an EJB session bean, or an ordinary Java class (POJO), that exposes
CRUD methods for one or more JPA entities.

You can use the wizard to create your session beans. For more information, see
How to Create a Session Bean.

2. In the Structure window, right-click your EJB session Bean or POJO and choose
Create Service Interface.

3. Select the methods you want to make available in your service API.

By default all of the methods in your session bean interface are selected. Click the
checkbox to select or deselect a method.

4. In this release, when you create a service interface, your original session bean file
and the remote (or local) interface are modified. New methods are added that
match the original ones, but they reference newly defined SDO data objects instead
of JPA entities. These SDO data objects match the JPA entities and are defined in
XSD files, which are also added to your project, and their names are appended with
SDO, such as DeptSDO or EmployeeSDO. Select Backup File(s) to create a backup
of your original session bean file.

5. Click OK.

How to Configure an EJB/POJO-based ADF-BC Service for Deployment to the SOA
Platform

To use an EJB/POJO SDO ADF-BC service from a fabric composite using SDO
external bindings, you need to set up the Weblogic application deployment listener to
invoke the ServiceRegistry logic. Set this up by adding the listener reference to
your weblogic-application.xml file.

To add the listener reference:

Add the code in the example belo] to the weblogic-application.xml which by
default is located in <workspace-directory>/src/META-INF.

<listener>
<listener-class> oracle.jbo.client.svc.ADFApplicationLifecycleListener
</listener-class>
</listener>

Once this listener is added, JDeveloper automatically registers the SDO service
application name _JBOServiceRegistry_ into the fabric service registry in the
composite.xml.

File Types Created to Support Your SDO Architecture

When you create your SDO service interface, the necessary files to support your
service interface are automatically created. These files include the following:

Building a Persistence Tier

Developing with EJB and JPA Components 17-17

• SessionEJBBeanWS.wsdl - This file describes the capabilities of the service that
provides an entry point into an SOA application or a reference point from an SOA
application. The WSDL file provides a standard contract language and is central for
understanding the capabilities of a service.

• SessionEJBBeanWS.xsd - This is an XML schema file that defines your service
interface methods in terms of SDO data types. All of the entities that were
contained in your session bean interface will have a corresponding DataObject
element in this schema file. At runtime, these DataObjects are registered with
the SDO runtime by calling XSDHelper.INSTANCE.define() method. A static
type-specific DataObject is defined for each SDO type.

How to Generate Database Tables from JPA Entities
When you deploy a JPA entity to the JDeveloper integrated server, database tables are
automatically created for every entity that does not have a corresponding existing
mapped table. One database table will be generated per unmapped JPA entity.

Note:

Primary key referential integrity constraints will be generated, but other
constraints may not be.

To generate database tables from JPA entities:

1. Create your JPA entity using the modeling tools or the Create Entity wizards. For
more information, see How to Create JPA Entities.

2. Modify the entities as necessary, adding fields and constraints.

3. Name the tables:

• EJB 3.x - Annotate the bean class to provide a table name. For more information,
see the Enterprise JavaBean specification at http://www.oracle.com/
technetwork/java/docs-135218.html.

4. Deploy the persistence unit. For more information, see Deploying EJB Modules and
JPA Persistence Units .

Annotations for EJB/JPA
Annotations simplify your development tasks by reducing the number of deployment
descriptors needed for your application components. Annotations are also used to
generate artifacts such as interfaces.

An annotation is a metadata modifier that is added to a Java source file. Annotations
are compiled into the classes by the Java compiler at compile time, and can be
specified on classes, fields, methods, parameters, local variables, constructors,
enumerations, and packages. Annotations can be used to specify attributes for
generating code, for documenting code, or for providing services like enhanced
business-level security or special business logic during runtime.

Every type of annotation available for your EJB/JPA classes can also, alternatively, be
added to an XML deployment descriptor file. At runtime the XML will override any
annotations added at the class level.

Building a Persistence Tier

17-18 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technetwork/java/docs-135218.html
http://www.oracle.com/technetwork/java/docs-135218.html

Annotations are marked with the @ symbol, such as this stateless session bean
annotation:

@Stateless public class MySessionBean

For more information on annotations for EJB 3.x, see http://
download.oracle.com/javase/1.5.0/docs/guide/language/
annotations.html

Note:

Annotations are new to EJB 3.x, and not available for previous versions of EJB.

During design time, JDeveloper displays a list of available annotations through the
Properties window. You can change any suitable Java class to an EJB or JPA
component using the annotation feature. For more information, see How to Annotate
Java Classes.

EJB 3.x

Annotations are available to indicate the bean type. Adding your bean type annotation
to a regular class turns it into an EJB.

The following types of annotations are available:

• Is Stateless Session Bean. Choose TRUE or FALSE to annotate your class as a
stateless session bean.

• Is Stateful Session Bean. Choose TRUE or FALSE to annotate your class as a
stateful session bean.

• Is Singleton Session Bean. Choose TRUE or FALSE to annotate your class as a
singleton session bean.

• Is Message Driven Bean. Choose TRUE or FALSE to annotate your class as a
message driven bean.

JPA 2.0

Annotations support a new Java Persistence API as an alternative to entity beans.

The following types of annotations are available:

• Is JPA Entity. Choose TRUE or FALSE to annotate your class as a JPA entity.

• Is JPA Mapped Superclass. Choose TRUE or FALSE to annotate your class as a JPA
mapped superclass.

• Is JPA Embeddable. Choose TRUE or FALSE to annotate your class as JPA
embeddable.

Once you transform your regular Java class into an EJB/JPA component, or if you
used one of the EJB/JPA wizards to create the component, the Properties window
displays a different set of contextual options, which you can use to add or edit
annotations for the various members within the component class.

Building a Persistence Tier

Developing with EJB and JPA Components 17-19

http://download.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
http://download.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
http://download.oracle.com/javase/1.5.0/docs/guide/language/annotations.html

How to Annotate Java Classes
During design time, JDeveloper provides you with the list of available annotations to
insert into your classes. The options change depending on what type of class you are
working on, and what member you have selected.

You can annotate any regular Java class to turn it into an EJB/JPA component. Once
the class is defined with annotations as an EJB/JPA, you can easily customize the
component with a variety of member-level annotations available to choose from in the
JDeveloper Properties window.

Note:

Annotations are only available for EJB 3.x, and not available for previous
versions of EJB.

To annotate your Java class as an EJB/JPA component:

1. In the Applications window, select the class you want to transform.

2. In the Structure window, double-click the class name.

If your class is already open in the Java source editor, put your curser in the class
definition line.

3. Open the Properties window, select the EJB/JPA tab and choose the type of
component you want to create. Select True.

After your Java class is annotated as an EJB/JPA component, the EJB/JPA tab
disappears from the Properties window and a new tab appears, specific to the
component type you chose. To change the component back to a regular Java class,
remove the annotation from the code to reset the EJB/JPA component types displayed
in the Properties window.

Note:

EJB or JPA components created through the wizards already contain the class
type annotations. For more information, see Building EJB 3.x Applications and
Development Process..

Once your Java class is transformed into an EJB/JPA component using a class-level
annotation, use the Properties window to add or edit annotations to member fields or
methods within that component.

To add or edit annotations in an EJB/JPA component:

1. In the Applications window, select the class you want to annotate.

2. In the Structure window, double-click the member you want to annotate.

As an alternative, if your class is already open in the Java source editor, put your
curser in the location where you intend to insert your annotation.

3. In the Properties window, choose the tab corresponding to your EJB/JPA type.

Building a Persistence Tier

17-20 Developing Applications with Oracle JDeveloper

4. Choose from any of the annotations available for the specific member you have
selected.

Representing Relationships Between Entities
When you create entities from database tables, foreign keys are interpreted as
relationships between entities. You can further define these relationships, create new
relationships, or map existing relationships to existing tables using the JDeveloper
modeling tools. With the modeling tools you can represent relationships as lines
between entities, and change the relationships by changing the line configurations. For
more information, see Modeling with EJB Diagrams .

Java Persistence Query Language
Java Persistence Query Language (JPQL) offers a standard way to define relationships
between entity beans and dependent classes by introducing abstract schema types and
relationships in the deployment descriptor. JPQL also defines queries for navigation
using abstract schema names and relationships.

The JPAQL query string consists of two mandatory clauses: SELECT and FROM, and
an optional WHERE clause. For example:

select d from Departments d where d.department_name = ?1

There are two kinds of methods that use JPQL, finder methods and select methods.

• Finder methods are exposed to the client and return either a single instance, or a
collection of entity bean instances.

• Select methods are not exposed to the client, they are used internally to return an
instance of cmp-field type, or the remote interfaces represented by the cmr-
field.

JPA Object-Relational Mappings
The Java Persistence API lets you declaratively map Java objects to relational database
tables in a standard, portable way that works both inside a Java EE 5 application
server and outside an EJB container. This approach greatly simplifies Java persistence
and provides an object-relational mapping approach.

With Oracle TopLink you can configure the JPA behavior of your entities using
metadata annotations in your Java source code. At run-time the code is compiled into
the corresponding Java class files.

To designate a Java class as a JPA entity, use the @Entity annotation, as shown in the
example below:

@Entity
public class Employee implements Serializable {
...
}

You can selectively add annotations to override defaults specified in your deployment
descriptors.

For more information on JPA Annotations, see the TopLink JPA Annotation Reference at
http://www.oracle.com/technetwork/middleware/ias/toplink-jpa-
annotations-096251.html.

Building a Persistence Tier

Developing with EJB and JPA Components 17-21

http://www.oracle.com/technetwork/middleware/ias/toplink-jpa-annotations-096251.html
http://www.oracle.com/technetwork/middleware/ias/toplink-jpa-annotations-096251.html

How to Use Java Service Facades
A Java service facade implements a lightweight testing environment you can run
without an application server. With EJB 3.x, the Java service facade is similar to an EJB
session facade, because you can generate facade methods for entities in the same
persistence unit, without the container.

Separating workflow with Java service facades eliminates the direct dependency of the
client on the participant JPA objects and promotes design flexibility. Although changes
to participants may require changes in the Java service facade, centralizing the
workflow in the facade makes such changes more manageable. You change only the
Java service facade rather than having to change all the clients. Client code is also
simpler because it now delegates the workflow responsibility to the session facade.
The client no longer manages the complex workflow interactions between business
objects, nor is the client aware of interdependencies between business objects.

You can make the Java service class able to run by generating a sample POJO Java
client with a main() method that will display the running output in the Message
pane, or you can generate a servlet-based client that will display the results in a well-
formatted table in your browser.

Use the JDeveloper Java Service Facade wizard to create a Java class as a service
facade to entities. To create a new Java service facade, from the main menu, select File
> New, then in the New Gallery, expand Business Tier and select EJB, and then Java
Service Facade and click OK.

You can also create a data control from a service facade. In the Applications window,
right-click the name of the service facade, then select Create Data Control. From the
Bean Data Control Interface Chooser dialog, you can choose to implement
oracle.binding.* data control interfaces. The interfaces are
TransactionalDataControl, UpdatableDataControl, and
ManagedDataControl. For more information, select the Help button in the dialog.

How to Define a Primary Key for an Entity
A primary key is a unique identifier with one or more persistent attributes. It identifies
one instance of a class from all other instances of the same type. Use primary keys to
define relationships and to define queries.

Each JPA entity instance must have a primary key. To accommodate your database
schema, you can define simple primary keys from persistent fields or composite
primary keys from multiple persistent fields. You can also define automatic primary
key value generation to simplify your JPA entity implementation.

The simplest way to specify a simple primary key is to use annotations for a single
primitive, or JDK object type entity field as the primary key. You can also specify a
simple primary key at deployment time using the mapping descriptor XML (orm.xml
file).

To configure a simple primary key using annotations:

1. In your JPA entity implementation, annotate the primary key field using the @Id
annotation, as shown in the example below:

import javax.ejb.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.Column;

Building a Persistence Tier

17-22 Developing Applications with Oracle JDeveloper

@Entity
@Table(name = "EMP")
public class Employee implements java.io.Serializable {
private int empNo;
private String eName;
private String birthday;
private Address address;
private int version;

public Employee() {
{

@Id
@Column(name="EMPNO")
public int getEmpNo() {
return empNo;
}
...
}

2. Package and deploy your application.

To configure entity mappings using a mapping descriptor (orm.xml):

Create a mapping file (orm.xml) for the persistence unit.

1. Open the persistence.xml file in the Overview editor.

2. Select the General tab, expand the JPA Mapping Descriptors section, and click
Create New JPA Mapping Descriptor.

3. Open the orm.xml file in the Overview editor.

4. To add the desired entity, select the General tab, then select Mapped Classes,
then Entities, and then click the + button.

The orm.xml file is created and an entry is added for a single entity. When adding
mappings to that entity, you will now be prompted to save those mappings using
either annotations or XML (or both).

Configuring ID mapping in an orm.xml file

1. In the Overview editor, double click the orm.xml file you created in To configure
entity mappings using a mapping descriptor (orm.xml):.

2. In the Structure pane, expand it until you have reached your entity. Then right-
click the desired ID field and choose Map As -> ID. When prompted, choose XML
to persist the metadata in the orm.xml file, which should look similar to the one
shown in the example below:

<?xml version="1.0" encoding="windows-1252" ?>
<entity-mappings xmlns="<a target="_blank" href="http://www.eclipse.org/
eclipselink/xsds/persistence/orm"">http://www.eclipse.org/eclipselink/xsds/
persistence/orm"
 xmlns:xsi="<a target="_blank" href="http://www.w3.org/2001/
XMLSchema-instance"">http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="<a target="_blank" href="http://
www.eclipse.org/eclipselink/xsds/persistence/orm">http://www.eclipse.org/
eclipselink/xsds/persistence/orm <a target="_blank"
href="http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"">http://
www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"
 version="2.4">

Building a Persistence Tier

Developing with EJB and JPA Components 17-23

 <entity class="model1.Departments">
 <attributes>
 <id name="departmentId"/>
 </attributes>
 </entity>
</entity-mappings>

Implementing Business Processes in Session Beans
A session bean represents a single client inside the application server. To access an
application deployed on the server, the client invokes the session bean methods. The
session bean performs work for its client, shielding the client from complexity by
executing business tasks inside the server. A session bean is similar to an interactive
session. A session bean is not shared and has only one client, in the same way that an
interactive session can have only one user. Like an interactive session, a session bean is
not persistent as it does not save data to the database. When the client terminates, its
session bean appears to terminate and is no longer associated with the client.

Create your session beans and session bean facades using the JDeveloper Session Bean
wizard. For more information, see How to Create a Session Bean.

There are three types of session beans:

• Stateful. A stateful session bean maintains conversational state on behalf of the
client. A conversational state is defined as the session bean field values plus all
objects reachable from the session bean fields. Stateful session beans do not directly
represent data in a persistent data store, but they access and update data on behalf
of the client. The lifetime of a stateful session bean is typically that of its client.

• Stateless. Stateless session beans are designed strictly to provide server-side
behavior. They are anonymous because they contain no user-specific data. The EJB
architecture provides ways for a single stateless session bean to serve the needs of
many clients. All stateless session bean instances are equivalent when they are not
involved in serving a client-invoked method. The term stateless means that it does
not have any state information for a specific client. However, stateless session
beans can have non-client specific state, for example, an open database connection.

• Singleton. Singleton session beans offer similar functionality to stateless session
beans but differ from them in that there is only one singleton session bean instance
per application, as opposed to a pool of stateless session beans, any of which may
respond to a client request. Like stateless session beans, singleton session beans can
implement web service endpoints. With singletons, you can easily share state
between multiple instances of an enterprise bean component or between multiple
enterprise bean components in the application. Singleton session beans maintain
their state between client invocations but are not required to maintain their state
across server crashes or shutdowns.

Using Session Facades
With JDeveloper you can select to automatically generate your session facade methods
any time you create a session bean through the Create Session Bean wizard. This
creates a session bean that functions as a session facade for your business workflow.
For more information, see How to Create a Session Bean.

The session facade is implemented as a session bean. The session bean facade
encapsulates the complexity of interactions between the business objects participating
in a workflow by providing a single interface for the business services of your

Implementing Business Processes in Session Beans

17-24 Developing Applications with Oracle JDeveloper

application.The session facade manages the relationships between numerous business
objects and provides a higher level abstraction to the client.

Session facades can be stateful, stateless, or singleton, which you define while creating
a session facade in the wizard.

For more information on session facades, see the Oracle Technology Network at
http://www.oracle.com/technetwork/java/sessionfacade-141285.html

Use the wizard to automatically implement a session facade when you create a session
bean, and to choose the methods you want to implement. Once you've created EJB
entities, any session beans you create in the same project are aware of the entities and
the methods they expose.

How to Create a Session Bean
Use the session bean wizard to create a new session bean or session facade bean. Or
you can create a session bean using the modeling tools.

To create a session bean or session facade using a wizard:

1. From the main menu, choose File > New.

2. In the New Gallery, expand Business Tier, select EJB and then select Session
Bean and click OK.

Tip: Frequently-used selections are automatically saved to the File menu for easy
access.

Note:

You must have already created a persistence unit before you can generate a
session facade bean. To generate a persistence unit follow the same steps, but
select JPA Persistence Unit instead of Session Bean.

3. To make the bean a session facade select Generate Session Facade Methods on
the EJB Name and Options page.

For more information at any time, press F1 or click Help from within the wizard.

4. Complete the remaining steps in the Create Session Bean wizard.

To add or remove session bean facade methods:

1. In the Applications window, select the session bean you want to edit.

2. Right-click and choose Edit Session Facade.

3. In the Specify Session Facade Options dialog, select a method on the list to expose
it through the facade, or deselect a method so it will not be exposed.

For more information on session facades, see Core J2EE Pattern - Sessions Facade at
http://www.oracle.com/technetwork/java/sessionfacade-141285.html

You can also create a session facade manually by creating a local reference between a
session bean and an entity.

To create a local reference:

1. Create a session bean, if you have not already done so.

Implementing Business Processes in Session Beans

Developing with EJB and JPA Components 17-25

http://www.oracle.com/technetwork/java/sessionfacade-141285.html
http://www.oracle.com/technetwork/java/sessionfacade-141285.html

2. Create a local reference between the beans:

• In the bean class - If you are using EJB 3.x, annotate the bean class to create a
reference.

• Using the EJB Module Editor - If you are using EJB 2.1 (and previous), select
an EJB node in the Applications window, then double-click Methods in the
Structure pane to open the EJB Module Editor. Select EJB Local References.

To create a session bean on an EJB diagram:

1. From the Applications window, open your EJB diagram.

If you do not have an EJB diagram, from the main menu, select File > New. In the
New Gallery, expand Business Tier, select EJB Diagram and then click OK.

2. In the Components window, click Session Bean.

If the Components window is not visible, from the View menu, choose
Components.

3. Click inside the EJB diagram (note that you do not drag and drop).

How to Create Session Beans in EJB Modules
You can create session beans in both new and existing EJB modules.

To create session beans in an existing EJB module:

1. In the Applications window, right-click an EJB project and choose New > Session
Bean.

Or, select the project and on the main menu choose File > New > From Gallery. In
the New Gallery, expand Business Tier, select EJB, and then select Session Bean
and click OK.

2. Follow the steps in the Create Session Bean wizard.

To create session beans in a new EJB module:

1. In the Applications window, select File > New > Project.

2. In the New Gallery, select the type of project you want to create and click OK.

3. In the Applications window, right-click the new project and choose New > From
Gallery. In the New Gallery, expand the category for Business Tier, select EJB, and
then select Session Bean and click OK.

Or, select the project, and choose New > Session Bean.

4. Follow the steps in the Create Session Bean wizard.

How to Create Message-Drive Beans in EJB Modules
You can create EJBs in both new and existing modules.

To create message-driven beans in an existing EJB module:

1. In the Applications window, right-click an EJB project and choose New >
Message-Driven Bean.

Implementing Business Processes in Session Beans

17-26 Developing Applications with Oracle JDeveloper

Or, select the project and on the main menu choose File > New > From Gallery. In
the New Gallery, expand Business Tier, select EJB, and then select Message-
Driven Bean and click OK.

2. Follow the steps in the Create Message-Driven Bean wizard.

To create message-driven beans in a new EJB module:

1. In the Applications window, select File > New > Project.

2. In the New Gallery, select the type of project you want to create and click OK.

3. In the Applications window, right-click the new project and choose New > From
Gallery. In the New Gallery, expand the category for Business Tier, select EJB, and
then select Message-Driven Bean and click OK.

Or, select the project, and choose New > Message-Driven Bean.

4. Follow the steps in the Create Message-Driven Bean wizard.

How to Add, Delete, and Edit EJB Methods
Once an EJB has been added to your project, you can add, delete, or edit the methods
in it. Adding methods as described below ensures that changes are synchronized with
remote and home interfaces, when defined.

To add methods:

1. In the Applications window, select an EJB.

2. In the Structure pane, right-click the EJB, then choose Enterprise Java Beans
(EJB), then choose New Method.

3. In the Bean Method Details dialog, add details, as necessary.

4. When finished, click OK.

To delete methods:

1. In the Applications window, select an EJB.

2. In the Structure pane, double-click the method to locate it in the source file.

3. In the source file, delete the method.

To edit methods:

1. In the Applications window, select an EJB.

2. In the Structure pane, right-click the EJB, then choose Enterprise Java Beans (EJB),
then choose Properties.

3. In the Bean Method Details dialog, edit details, as necessary.

4. When finished, click OK.

How to Add a Field to an EJB
You can add fields to EJBs on an EJB diagram or through the EJB Module Editor.

1. In the Applications window, select an EJB.

Implementing Business Processes in Session Beans

Developing with EJB and JPA Components 17-27

2. In the Structure pane, right-click the EJB, then choose Enterprise Java Beans (EJB)
node, then choose New Field.

3. In the Field Details dialog, add details as necessary.

4. When finished, click OK.

How to Remove a Field From an EJB
You can remove fields from EJBs, as described below.

To remove a field on an EJB Diagram:

1. Click in the fields compartment (the first compartment) on an EJB.

2. Highlight the field and press the Delete key.

To remove a field using the Applications window:

1. In the Applications window, select an EJB.

2. In the Structure pane, double-click the field to locate it in the source file.

3. In the source file, delete the field.

Customizing Business Logic with EJB Environment Entries
Environment entries are name-value pairs that allow you to customize the bean's
business logic. Since environment entries are stored in an enterprise bean's
deployment descriptor, a bean's business logic can be changed without changing its
source code.

For example, an EJB that calculates an order might give a discount depending on the
number of items ordered, a certain status (silver, gold, platinum), or for a promotion.
Before deploying the bean's application you could assign the discount a certain
percentage. When the application runs, a method would call the environment entry to
find out the discount value. If you wanted to change that percentage in a different
deployment, you would not need to change the source code, you would just need to
change the value in the environment entries for the deployment descriptor.

Environment entries are annotated in the source code.

For the complete EJB 3.x Java Community Process specifications and documentation,
see http://www.oracle.com/technetwork/java/docs-135218.html.

Exposing Data to Clients
Depending on how your develop your application, there are different methods of
exposing data to clients.

• If you're using the Oracle ADF framework, the preferred method of exposing data
to clients is to implement the session facade design pattern and drop the session
bean onto the data control palette. This option vastly simplifies data coordination
and is only available in the JDeveloper Studio release. For more information, see
Implementing Business Processes in Session Beans and Using Session Facades .

• If you are not using the Oracle ADF framework, you typically create a managed
bean to coordinate connection to a JSF/JSP page. For more information, see
Developing Applications with JavaServer Faces.

Implementing Business Processes in Session Beans

17-28 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technetwork/java/docs-135218.html

How to Identify Resource References
A resource reference is an element in a deployment descriptor that identifies the
component's coded name for the resource. Resource references are used to obtain
connector and database connections, and to access JMS connection factories, JavaMail
sessions, and URL links.

To add or modify EJB 3.x resource referencess, go to your source code to annotate
resource references.

How to Specify a Primary Key for ADF Binding
For certain ADF Faces features, a designated primary key is required. For example, if
you have an ADF Faces table that uses an af:tableSelectMany component, you
will need to specify a primary key to be able to implement sorting. When you create
EJB/JPA entities from tables (using EJB 3.x), the primary key is specified by default.
But if you have to specify a primary key, do the following:

To specify an attribute as primary key:

1. Create an ADF Data Control to create the XML definitions for each entity. For more
information, see "Using ADF Data Controls" in Oracle Fusion Middleware Developing
Applications with Oracle ADF Data Controls.

2. In the Applications window, select an EJB entity XML file.

3. In the Structure pane, select an entity attribute and then from the View menu,
choose Properties.

4. In the Properties window, find the attribute you want as the primary key and set
the PrimaryKey value to true.

How to Use ADF Data Controls for EJBs
JDeveloper automatically provides a complete set of data control components when
you build an ADF Fusion web application. When you build a Java EE application,
and/or an EJB project, you assign ADF data controls on your individual session beans.
This adds a data control file with the same name as the bean.

For more information, see "Using ADF Data Controls" in Oracle Fusion Middleware
Developing Applications with Oracle ADF Data Controls.

Modeling EJB/JPA Components on a Diagram
For information about modeling EJB and JPA components on a diagram, see Modeling
with EJB Diagrams .

Deploying EJBs as Part of an Web Application
EJB 3.1 has removed the restriction that enterprise bean classes must be packaged in
an ejb-jar file. Therefore, EJB classes can be packaged directly inside a Web application
archive (WAR) using the same packaging guidelines that apply to Web application
classes. Simply put your EJB classes in the WEB-INF/classes directory or in a JAR
file within WEB-INF/lib directory. Optionally, if you are also using the EJB
deployment descriptor, you can package it as WEB-INF/ejb-jar.xml.

Modeling EJB/JPA Components on a Diagram

Developing with EJB and JPA Components 17-29

Deploying EJB Modules and JPA Persistence Units
An EJB module is a software unit comprising one or more EJBs, a persistence unit, and
an optional EJB deployment descriptor. A JDeveloper project contains only one EJB
module. At deploy-time, the module is packaged as an ejb.jar file.

Deploying JPA Entity Beans
Entity beans were once only packaged in the EJB JAR file along with the session and
message-driven beans. However, with JPA entities and the persistence unit
technology, at deploy-time, they are packaged in their own JAR file,
persistenceunit.jar.

This way your entity beans (JPA entities) are contained separately, in a JPA persistence
archive JAR, which includes a persistence.xml file. The JPA persistence unit does
not have to be part of the EJB module package, but can be bundled inside the
ejb.jar file.

About EJB Modules
JDeveloper project can contain only one EJB module. When you create your first
session or message-driven bean in a project, a module is automatically established, if
one does not already exist. You are given the option of choosing the EJB version and
the persistence manager for your new EJB module.

When you deploy your project you convert the aggregate of session and message-
driven beans, plus deployment descriptor into an a EJB JAR file (.jar file), ready for
deployment to an application server or as an archive file. By confining the persistence
unit to its own JAR file, the persistence unit can easily be reused in other applications.
For more information, see About Deploying Applications.

About JPA Persistence Units
A JPA persistence unit is comprised of a persistence.xml file, one or more
optional orm.xml files, and the managed entity classes that belong to the persistence
unit. A persistence unit is a logical grouping of the entity manager, data source,
persistent managed classes, and mapping metadata. A persistence unit defines an
entity manager's configuration by logically grouping details like entity manager
provider, configuration properties, and persistent managed classes.

Each persistence unit must have a name. Only one persistence unit of a given name
may exist in a given EJB-JAR, WAR, EAR, or application client JAR. You can package a
persistence unit in its own persistence archive and include that archive in whatever
Java EE modules require access to it.

The persistence.xml file contains sections or groupings, these groupings
correspond to your entities, and run-time data related to the entities. When you create
a new entity using the entity wizards, and if you have an existing persistence unit in
the project, the entity will be inserted into its own section in the persistence.xml. If you
do not have an existing persistence unit, one will be created automatically, with a
section included for the entity definitions.

The JAR file or directory, whose META-INF directory contains the persistence.xml file,
is called the root of the persistence unit. An EJB 3.x application that uses entities must
define at least one persistence unit root either explicitly or using the JDeveloper
default persistence unit. When you deploy your persistence unit, a JAR file is created

Deploying EJB Modules and JPA Persistence Units

17-30 Developing Applications with Oracle JDeveloper

called persistenceunit.jar. For more information, see About Deploying
Applications.

How to Create a JPA Persistence Unit
You can create a persistence unit for your entities using the Persistence Unit wizard.
Or, when you create a JPA entity, a default persistence unit is created for you, if you
do not already have one.

To create a JPA persistence unit:

1. Select a project in the Applications window and from the File menu, choose New >
From Gallery.

2. From the New Gallery, expand Business Tier and EJB, and then select JPA
Persistence Unit and click OK.

3. Complete the steps in the New Persistence Unit wizard.

How to Remove EJBs in a Module
To remove an EJB from an EJB module, select the EJB in the Applications window and
press Delete.

How to Import EJBs into JDeveloper
You can import existing EJBs from a JAR file or from a deployment descriptor.

To import an EJB module, or a subset of EJBs within an EJB module into a project:

1. From the File menu, choose Import.

2. In the Import dialog, choose EJB JAR (.jar) File.

3. Follow the steps in the Import wizard.

To import an EJB deployment descriptor (ejb-jar.xml) file:

1. From the File menu, choose Import.

2. In the Import dialog, choose EJB Deployment Descriptor (ejb-jar.xml) File.

3. Follow the steps in the Import wizard

Note:

If you import a deployment descriptor using this wizard, and then use the
wizard to import more files, the wizard caches the last used descriptor file,
JAR file, and descriptor source directory in the IDE preferences file for
convenience. This makes it easier to do tasks such as splitting an EJB module
into multiple modules, importing multiple JAR files residing in the same
directory, etc.

To import a WebLogic deployment descriptor (weblogic-ejb-jar.xml) file:

1. From the File menu, choose Import.

2. In the Import dialog, choose EJB Deployment Descriptor (ejb-jar.xml) File.

Deploying EJB Modules and JPA Persistence Units

Developing with EJB and JPA Components 17-31

3. Follow the steps in the Import wizard.

To avoid conflicts, if an EJB with the same name already exists in your existing
module, that EJB will not be imported.

Running and Testing EJB/JPA Components
To test your EJBs you need to run a client program that can create or find EJB instances
and call their remote interface methods. JDeveloper provides a sample client utility
that will help you create clients quickly. You can run and test EJBs using either the
integrated server or a remote server; the sample client utility can be used to create a
client for either type.

How to Test EJB/JPA Components Using the Integrated Server
The integrated Oracle WebLogic Server runs within JDeveloper. You can run and test
EJBs quickly and easily using this server, and then deploy your EJBs with no changes
to them. You do not need to create a deployment profile to use this server, nor do you
have to initialize it.

To run a sample session bean client on the integrated Oracle WebLogic Server:

1. In the Applications window, right-click a session bean and choose Run.

Note in the Message pane that Oracle WebLogic Server has been launched.

2. Right-click a session bean and choose Session Bean Client from the context menu.

3. On the Create Sample Client dialog, specify whether you want to create a Servlet
Client or a Java Client.

4. The default choice is to create a client for the integrated Oracle WebLogic Server,
so click OK.

The client is created and opens in the code editor.

If your bean serves as a facade over JPA entities, code is generated to instantiate
the query methods. If you exposed methods on your bean, the generated client
contains methods that can be uncommented to call them.

5. After your bean has been successfully started from the Applications window,
right-click the sample client and choose Run.

For Java clients, the Message pane shows you the running output log. For servlet
clients, the results are shown in a well-formatted table in your browser.

To run a sample MDB client on the integrated Oracle WebLogic Server:

Before you can successfully run a sample MDB client on the integrated Oracle
WebLogic Server, you must first create a corresponding JMS queue resource in the
WebLogic Server domain.

1. Follow the JMS "Queue and Topic Destination Configuration" instructions in
Oracle Fusion Middleware Administering JMS Resources for Oracle WebLogic Server.

2. Use the following guidelines when creating your JMS module resources:

a. Create a new test JMS module (for example, "TestJmsModule") with a new
queue resource (for example, "DefaultQueue"), and

Running and Testing EJB/JPA Components

17-32 Developing Applications with Oracle JDeveloper

b. Use a JNDI name that matches your generated MDBs Mapped Name, such as
"weblogic.wsee.DefaultQueue".

c. Add a default subdeployment resource, (for example, "DefaultQueue") and
target it to the JMS server that is associated with the domain's DefaultServer
instance.

3. Follow the steps in “To run a sample session bean client on the integrated Oracle
WebLogic Server:”, but in Applications window, select your MDB to create and
run the sample client.

How to Test EJB/JPA Components Using a Remote Server
To test EJBs on a remote server you need to deploy the EJB and then create a sample
client. If you deploy first, the framework picks up the deployed applications, which
populates the client pick list.

Note:

You cannot mix different EJB versions in the same module.

To run a sample client on a remote server:

1. If necessary, create a connection to a running application server. For detailed
instructions, see How to Create a Connection to the Target Application Server.

2. Create a project-level EJB JAR deployment profile:

a. In the Applications window, right-click your project node and choose Deploy
> New Deployment Profile.

b. In the Create Deployment Profile dialog, choose a profile type of EJB JAR file
and enter a name for the profile. When you click OK the Edit EJB JAR
Deployment Profile Properties dialog opens. Accept the defaults and click
OK.

3. Create an application-level, EAR-type deployment profile:

a. Choose Application > Deploy > New Deployment Profile.

b. In the Create Deployment Profile dialog, choose a profile type of EAR File
and enter a name for the profile. When you click OK the Edit EAR
Deployment Profile Properties dialog opens.

4. Add the new EJB JAR profile to the EAR profile file:

a. In the Edit EAR Deployment Profile Properties dialog, choose Application
Assembly in the navigation pane.

b. Expand the Java EE Modules tree, and select the EJB JAR profile you created
in Step 2 and click OK.

5. Deploy the application to the application server connection. Choose Application
> Deploy application-deployment-profile.

6. In the [Deploy] dialog box, choose Deploy to Application Server and click Next.

Running and Testing EJB/JPA Components

Developing with EJB and JPA Components 17-33

7. On the Select Server page, choose the application server connection and click
Finish. You can track the deployment in the Deployment Log window

8. In the Applications window, right-click a session bean and choose Session Bean
Client.

9. On the Create Sample Client dialog, specify whether you want to create a Servlet
Client or a Java Client.

10. The default choice is to create a client for the integrated Oracle WebLogic Server,
so click OK.

The client is created and opens in the code editor.

11. In the Applications window, right-click the new client and choose Run.

For Java clients, the Message pane shows you the running output log. For servlet
clients, the results are shown in a well-formatted table in your browser.

How to Test EJB Unit with JUnit
JDeveloper provides support for JUnit regression testing for your EJBs. JUnit is an
open source Java regression testing framework that comes as an optional feature in
JDeveloper. To use this feature you'll need to install the JUnit extension.

Use JUnit to write and run tests that verify your code. After you install the JUnit
extension, you can use the simple wizard to select your session bean or Java class files,
to select the methods that you want to test within those files, and then to start the
JUnit test.

To run a JUnit test on an EJB:

1. Install the Junit extension from the JDeveloper Help menu. For more information,
see How to Install JUnit.

2. Right-click the EJB session bean or an ordinary Java class (POJO) in the
Applications window (or you can navigate to it from within the wizard) and
choose New > From Gallery.

3. From the New Gallery, expand Business Tier and EJB, and then select EJB JUnit
TestCase and click OK.

4. Start the JUnit wizard.

5. Complete the steps in the wizard.

Running and Testing EJB/JPA Components

17-34 Developing Applications with Oracle JDeveloper

18
Developing Persistence in Applications

Using Oracle TopLink

This chapter describes how to use the visual tools in JDeveloper to implement
persistence using Oracle TopLink. You can configure TopLink descriptors and
mappings for Java classes, EJBs, and JPA entities to data source elements (such as
database tables or XML schema elements).

This chapter includes the following sections which describe the general process for
creating TopLink mappings and integrating them in a JDeveloper project:

• About Developing Persistence in Applications Using TopLink

• Developing TopLink JPA Projects

• Developing Native TopLink Mappings

• Developing Native TopLink Relational Projects

• Developing Native TopLink XML Projects

• Developing Native TopLink EIS Projects

• Developing Native TopLink Sessions

• Developing Native TopLink Applications

For more information, see the following:

• Getting Started with Developing Java EE Applications

• Developing Applications Using Web Page Tools

• Developing with EJB and JPA Components

• Oracle Fusion Middleware Understanding Oracle TopLink

• Oracle Fusion Middleware Solutions Guide for Oracle TopLink

• Java Persistence API (JPA) Extensions Reference for Oracle TopLink

• Oracle Fusion Middleware Developing Persistence Architectures Using Oracle TopLink
Database Web Services

• Oracle Fusion Middleware Developing Persistence Architectures Using Oracle Toplink
Document Data Bindings

• Oracle Fusion Middleware Java API Reference for Oracle TopLink

Developing Persistence in Applications Using Oracle TopLink 18-1

About Developing Persistence in Applications Using TopLink
Oracle TopLink is an object-persistence and object-transformation framework that
provides development tools and run-time capabilities.

TopLink links object-oriented programs with data structures. TopLink transforms
object-oriented data into either relational data or XML documents. Using TopLink,
you can integrate persistence and object-transformation into your application.

Using the tools in JDeveloper, you can configure and map Java classes, EJBs, and JPA
entities to different data sources, including relational databases, enterprise information
systems (EIS), XML schemas, and JSON documents. TopLink supports multiple
standards, including JPA, JAXB, and Java EE.

Oracle TopLink provides a complete, JPA 1.0 and 2.0-compliant JPA implementation.
It provides complete compliance for all of the mandatory features, many of the
optional features, and some additional features.

Developing TopLink JPA Projects
The Java Persistence API (JPA) is a lightweight framework for Java persistence based
on Plain Old Java Objects (POJOs). JPA is part of the EJB 3.x specification. JPA
provides an object-relational mapping approach that enables you to declaratively
define how to map Java objects to relational database tables in a standard, portable
way. In addition, this API enables you to create, remove and query across lightweight
Java objects within both an EJB 3.0-compliant container and a standard Java SE 5 and
Java SE 6 environment.

Oracle TopLink provides a complete, JPA 1.0 and 2.0-compliant JPA implementation.
It provides complete compliance for all of the mandatory features, many of the
optional features, and some additional features.

TopLink offers support for deployment within an EJB 3.x container or outside the
container. This includes Web containers, other non-EJB 3.x Java EE containers, and the
Java SE environment.

Through its pluggable persistence capabilities TopLink can function as the persistence
provider in any compliant EJB 3.x container.

The TopLink implementation of JPA is provided by EclipseLink. For more
information, see http://wiki.eclipse.org/EclipseLink.

How to Specify the JPA Version
You can specify which version of JPA (1.0 or 2.0) to use at the project level. If you
create a new mappings file, a new persistence unit, or a new persistence descriptor
(persistence.xml), and the JPA version has not been selected yet, you have the
opportunity to select the version. If one of those items has already been created in the
project, the version for the project is used.

To Specify the JPA Version:

1. In a project that has not yet been associated with a JPA version, create any of the
following:

• Entity. See How to Create Entities.

• JPA mappings descriptor (orm.xml). See How to Create JPA Mapping
Descriptors.

About Developing Persistence in Applications Using TopLink

18-2 Developing Applications with Oracle JDeveloper

http://wiki.eclipse.org/EclipseLink

• JPA persistence descriptor (persistence.xml. See How to Create and
Configure a JPA Persistence Descriptor (persistence.xml).)

2. Select the JPA version:

• On the Version page of the Create Entity wizard or the Create Entities from
Tables wizard, select JPA 1.0 (Java EE 5) or JPA 2.0 (Java EE 6).

• In the New Persistence Unit dialog or the New JPA Persistence Descriptor
dialog, under JPA Version, select JPA 1.0 or JPA 2.0.

Note: Java EE 7 is supported.

How to Create Entities
Starting with EJB 3.x, a JPA entity is a Plain Old Java Object (POJO) that represents
persistent data stored in a relational database or other data store. Typically, an entity
represents a table in a relational database, and each entity instance corresponds to a
row in that table. In JDeveloper, you can create an entity by specifying all the pertinent
information, including details about the table structure in the database. You can also
create entities from existing database tables.

If no persistence configuration (persistence.xml) yet exists in the project, a new
one is created.

When you create entities from tables, mappings are automatically created, which can
later be modified.

To create an entity:

1. In the Applications window, right-click the project in which you want to create an
entity and choose New.

2. In the New Gallery, expand Business Tier, select TopLink/JPA and then select
Entity, and click OK.

3. Complete the fields in the Create Entity wizard.

To create entities from existing database tables:

1. In the Applications window, right-click the project in which you want to create
entities and choose New.

2. In the New Gallery, expand Business Tier, select TopLink/JPA and then select
Entities From Tables, and click OK.

3. Complete the fields in the Create Entities From Tables wizard.

How to Create and Configure a JPA Persistence Descriptor (persistence.xml)
Use the persistence configuration file (persistence.xml) to configure the
persistence context.

To create a persistence configuration:

1. In the Applications window, right-click the project in which you want to create a
JPA persistence descriptor and choose New.

Developing TopLink JPA Projects

Developing Persistence in Applications Using Oracle TopLink 18-3

2. In the New Gallery, expand Business Tier, select TopLink/JPA and then select
JPA Persistence Descriptor, and click OK.

3. Complete the fields in New JPA Persistence Descriptor dialog to create a default
persistence unit for the new JPA persistence descriptor file (persistence.xml)
and click OK.

The following example contains a sample persistence configuration:

<?xml version="1.0" encoding="windows-1252" ?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="myPersistenceUnit">
 <properties>
 <property name="toplink.target-database" value="Oracle11g"/>
 <property name="toplink.target-server" value="WebLogic_10"/>
 </properties>
 </persistence-unit>
 <persistence-unit name="myPersistenceUnitName">
...
 </persistence-unit>
</persistence>

To configure a persistence configuration (persistence.xml) file:

1. In the Applications window, select the JPA Persistence descriptor
(persistence.xml).

2. In the Structure window, select JPA Persistence Descriptor.

3. On the JPA Persistence descriptor (persistence.xml) page, complete the
General and Metadata Preferences tabs.

How to Create Persistence Units
To create a persistence unit:

1. In the Applications window or Structure window, double-click the persistence
descriptor (persistence.xml).

2. On the General page, click Create New Persistence Unit to create a new
persistence unit.

3. Complete each field on the New Persistence Unit dialog.

4. On the Metadata Preferences page, specify how to persist new mapping metadata.
You can specify annotations or JPA mapping descriptors. In order to make this
choice, you must first create at least one orm.xml mapping descriptor file. (See
How to Create JPA Mapping Descriptors.)

The following example contains a sample persistence unit:

...
 <persistence-unit name="myPersitenceUnitName"
 transaction-type="RESOURCE_LOCAL">
 <mapping-file>META-INF/orm.xml</mapping-file>
 <exclude-unlisted-classes/>
 <properties>
 <property name="eclipselink.jdbc.driver"

Developing TopLink JPA Projects

18-4 Developing Applications with Oracle JDeveloper

 value="oracle.jdbc.OracleDriver"/>
 <property name="eclipselink.jdbc.url"
 value="jdbc:oracle:thin:@localhost:1521:XE"/>
 <property name="eclipselink.jdbc.user" value="scott"/>
 <property name="eclipselink.target-database" value="Oracle11g"/>
 <property name="eclipselink.logging.level" value="FINER"/>
 <property name="eclipselink.jdbc.native-sql" value="true"/>
 <property name="eclipselink.target-server" value="WebLogic_10"/>
 </properties>
 </persistence-unit>
...

How to Configure Persistence Units
The tabs of the Persistence Unit page (accessed by first selecting persistence.xml
in the Applications window and then expanding the JPA descriptor in the Structure
view) enable you to configure a persistence unit.

Configuring Persistence Units encompasses many steps, such as configuring:

• General information

• Connection information

• TopLink information

• Schema generation information

• Properties

• Metadata information

To configure the general information for a JPA persistence unit:

1. In the Applications window, double-click the JPA persistence descriptor
(persistence.xml).

2. In the overview editor for persistence.xml, click the General navigation tab.

3. Under Persistence Units, double-click the name of the persistence unit you want
to configure.

4. In the overview editor for the persistence unit, click the General navigation tab
and then complete the fields to specify how the persistence unit connects to the
application server and database.

To configure the connection information for a JPA persistence unit:

1. In the Applications window, double-click the JPA persistence descriptor
(persistence.xml).

2. In the overview editor for persistence.xml, click the General navigation tab.

3. Under Persistence Units, double-click the name of the persistence unit you want
to configure.

4. In the overview editor for the persistence unit, click the Connection navigation
tab and then complete the fields to select a persistence provider and configure its
general properties (such as JPA mapping descriptors, Java archives, and mapped
classes).

To configure the TopLink session-specific information for a JPA persistence unit:

Developing TopLink JPA Projects

Developing Persistence in Applications Using Oracle TopLink 18-5

1. In the Applications window, double-click the JPA persistence descriptor
(persistence.xml).

2. In the overview editor for persistence.xml, click the General navigation tab.

3. Under Persistence Units, double-click the name of the persistence unit you want
to configure.

4. In the overview editor for the persistence unit, click the Session Customization
navigation tab and then complete the fields to specify TopLink-specific
information for the persistence unit. You can specify entity customizer classes, set
TopLink session overrides, and customize entity manager properties, for example,
validation mode, pessimistic locking mode, and query timeout mode.

To configure the DDL generation options:

Although most JPA persistence providers provide this support, these options are
TopLink-specific.

1. In the Applications window, double-click the JPA persistence descriptor
(persistence.xml).

2. In the overview editor for persistence.xml, click the General navigation tab.

3. Under Persistence Units, double-click the name of the persistence unit you want
to configure.

4. In the overview editor for the persistence unit, click the Schema Generation
navigation tab and then complete the fields to specify how the TopLink generates
the DDL scripts.

To configure the non-TopLink specific properties for the persistence unit:

1. In the Applications window, double-click the JPA persistence descriptor
(persistence.xml).

2. In the overview editor for persistence.xml, click the General navigation tab.

3. Under Persistence Units, double-click the name of the persistence unit you want
to configure.

4. In the overview editor for persistence unit, click the Properties navigation tab and
then complete the fields to specify the general, non-TopLink specific properties.

To configure metadata overrides for a persistence unit:

1. In the Applications window, double-click the JPA persistence descriptor
(persistence.xml).

2. In the overview editor for persistence.xml, click the General navigation tab.

3. Under Persistence Units, double-click the name of the persistence unit you want to
configure.

4. In the overview editor for the persistence unit, click the Metadata Preferences
navigation tab and then complete the fields to specify the information for the
mapping descriptor.

This tab is available only if the persistence unit contains a JPA mapping descriptor.

Developing TopLink JPA Projects

18-6 Developing Applications with Oracle JDeveloper

About Using JPA Mappings
TopLink JPA supports the following types of mappings for an entity:

• Basic - A basic mapping defines a direct association between an entity field/
property and a column on the database.

• Element collection - An element collection mapping maps an association collection
of basic values or embeddables to the database.

• Embedded - An embedded mapping is used to specify a persistence property of an
entity whose value is an instance of an embeddable class.

• Embedded ID - An embedded ID mapping designates a persistent field or
property of an entity or mapped superclass which is a composite primary key that
is an embeddable class. The referenced embeddable class must be an Embeddable.

• ID - An ID mapping designates the primary key property or field of an entity and
may be applied in an entity or mapped superclass.

• Many-to-many - By default, JPA automatically defines a many-to-many mapping
for a many-valued association with many-to-many multiplicity.

• Many-to-one - By default, JPA defines a many-to-one mapping for a single-valued
association to another entity that has many-to-one multiplicity.

• One-to-many - A many-to-one mapping defines a many-valued association with
one-to-many multiplicity. Bidirectional and unidirectional mappings are
supported.

• One-to-one - A one-to-one mapping defines a single-valued association to another
entity that has one-to-one multiplicity. Bidirectional and unidirectional mappings
are supported.

• Transformation - A transformation mapping is used to map an attribute to one or
more database columns. A read transformer and multiple write transformers can
be configured.

• Transient - By default, all fields of an entity are assumed to be persistent. Use a
transient mapping to specify a field or property of an entity that is not persistent,
for example a field or property that is used at run time but that is not part of the
entity's state.

• Variable one-to-one - A variable one-to-one mapping is used to represent a pointer
reference between a Java object and an implementer of an interface. This mapping
is usually represented by a single pointer (stored in an instance variable) between
the source and target objects.

Using Metadata Annotations

An annotation is a simple, expressive means of decorating Java source code with
metadata that is compiled into the corresponding Java class files for interpretation at
run time by a JPA persistence provider to manage persistent behavior.You can use
annotations to configure the persistent behavior of your entities.

Developing TopLink JPA Projects

Developing Persistence in Applications Using Oracle TopLink 18-7

Using XML

You can use XML mapping metadata on its own, or in combination with annotation
metadata, or you can use it to override the annotation metadata.

Defaulting Properties

Each annotation has a default value. A persistence engine defines defaults that apply
to the majority of applications. To override the default value, you need only to supply
the appropriate values. A configuration value is not a requirement, but the exception
to the rule. This is known as configuration by exception.

Configuring an Entity

You can configure an entity's identity, as well as the locking technique and sequence
generation option for the entity.

Declaring Basic Property Mappings

Simple Java types are mapped as part of the immediate state of an entity in its fields or
properties. Mappings of simple Java types are called basic mappings. A basic mapping
defines a direct association between an entity field/property and a column on the
database. By default, TopLink persistence provider automatically configures a basic
mapping for simple types. However, you can use the @Basic annotation to override
defaults.

Mapping Relationships

TopLink persistence provider requires that you map relationships explicitly. Use such
annotations as @OneToOne, @ManyToOne, @OneToMany, @ManyToMany, @MapKey,
and @OrderBy to specify the type and characteristics of entity relationships that fine-
tune how the database implements relationships.

Mapping Inheritance

By default, TopLink persistence provider assumes that all persistent fields are defined
by a single entity class. Use the @Inheritance, @MappedSuperclass,
@DiscriminatorColumn, and @DiscriminatorValue annotations if your entity
class inherits some or all persistent fields from one or more superclasses.

Mapping Embedded Objects

An embedded object does not have its own persistent identity. It is dependent upon an
entity for its identity. By default, TopLink persistence provider assumes that every
entity is mapped to its own table. Use the following annotations to override this
behavior for entities that are owned by other entities:

• @Embeddable

• @Embedded

• @AttributeOverride

• @AttributeOverrides

• @AssociationOverride

• @AssociationOverrides

Developing TopLink JPA Projects

18-8 Developing Applications with Oracle JDeveloper

How to Use JPA Mappings
The following procedures describe how to accomplish various tasks when working
with JPA mappings.

To configure mappings using annotations:

1. In the Applications window, select the persistence configuration
(persistence.xml).

2. In the Structure view, open the nodes down to the level of the mappings. That is,
expand the project, expand the mapped classes, then expand the entity.

3. Do either of the following:

• Select the field or property (for example, CountryID). In the Overview editor
for the mapping, edit the details of the mapping, as desired.

• Right-click the field or property, point to Map As, then choose a new mapping.
In the Overview editor for the mapping, edit the details of the mapping, as
desired.

4. To view the Java source, right-click the mapped field or property in the Structure
view, and click Go to Source.

To configure mappings using a mapping descriptor file (orm.xml):

1. In the Applications window, select the mapping descriptor (orm.xml).

2. In the Structure view, open the nodes down to the level of the mappings. That is,
expand the project, expand the mapped classes, then expand the entity.

3. Do either of the following:

• Select the field or property (for example, CountryID). In the Overview editor
for the mapping, edit the details of the mapping, as desired.

• Right-click the field or property, point to Map As, then choose a new mapping.
In the Overview editor for the mapping, edit the details of the mapping, as
desired.

4. To view the XML source:

a. Right-click the mapped field or property in the Structure view, and click Go
to Source.

b. If the Overview editor for the mapping is displayed, click the Source tab to
see the XML source.

How to Create JPA Mapping Descriptors
The JPA mapping descriptor (typically named orm.xml) can be used as an alternative
to annotations. Information in the JPA mapping descriptor overrides the Java
annotations.

To create JPA mapping descriptors:

1. In the Applications window, right-click the project in which you want to create a
JPA persistence descriptor and choose New.

Developing TopLink JPA Projects

Developing Persistence in Applications Using Oracle TopLink 18-9

2. In the New Gallery, expand Business Tier, select TopLink/JPA and then select
JPA Mapping (XML), and click OK.

3. Complete the fields in New JPA Mappings dialog and click OK.

To create JPA mapping descriptors associated with a persistence unit:

1. In the Applications window, double-click the persistence configuration
(persistence.xml).

2. In the overview editor for persistence.xml, click the General navigation tab.

3. In the Persistence Units area, double-click the persistence unit.

4. Click the General tab for the persistence unit,

5. In the JPA Mapping Descriptors area, click the Create New JPA Mapping
Descriptor button.

6. Complete the fields in the dialog and click OK.

7. In the JPA Mapping Descriptors area, double-click the name of the new mapping
descriptor and then specify the details for the descriptor (such as mapped classes,
development database, and other defaults).:

To configure the general information for a JPA mapping descriptor:

1. In the Applications window, double-click the JPA mapping descriptor (orm.xml).

2. In the overview editor for the mapping descriptor, click the General navigation
tab, and then complete the fields to select a persistence provider and configure its
general properties (such as mapped classes, development database, and other
defaults).

To associate entities, embeddables, or mapped classes with a JPA mapping descriptor:

1. In the Applications window, double-click the JPA mapping descriptor (orm.xml).

2. in the Overview editor for the descriptor, click the General navigation tab.

3. In the Mapped Classes area, do any of the following:

• Under Entities, click the Add Classes as Entities icon.

• Under Embeddables, click the Add Classes as Embeddable Classes icon.

• Under Mapped Superclasses, click the Add Classes as Mapped Superclasses
icon.

4. In the Manage Entity Classes dialog, the Manage Embeddable Classes dialog, the
Manage Mapped Superclasses Classes dialog, do the following:

a. Select the project.

b. Under Available Classes, expand the node and select the items to add.

c. Click the Add Selected Classes to List or Add All Classes to List icon to
move the selected items to the Selected Classes list. Then click OK.

Developing TopLink JPA Projects

18-10 Developing Applications with Oracle JDeveloper

How to Configure Persistence Unit Defaults

You can configure the settings that apply to persistence units and associated entities
that include this mapping descriptor. These values will be overridden by any
configuration settings at the persistence unit-level.

To configure persistence unit defaults:

1. In the Applications window, double-click the JPA mapping descriptor (orm.xml).

2. In the overview editor for the mapping descriptor, click the Persistence Unit
Defaults navigation tab and then complete the fields to configure the access type,
entity listeners, multitenancy, delimited identifiers, and other defaults.

How to Set Access Type Defaults and Overrides

You can specify whether the persistent state of managed class attributes is accessed on
fields or properties. Field values are accessed directly, and property values are
accessed using get() and set() methods.

You can set defaults or specify specific access types at various levels in the
configuration. Using defaults and overrides is sometimes called "mixed access."

By default, a single access type (field or property) applies to an entity hierarchy,
although the default can be overridden, as described in the following sections.

The order of precedence of access type settings is described in the following list, from
highest precedence to lowest. For managed classes (entities, embeddables, and
mapped superclasses), the setting for a class or an attribute lower in an inheritance
hierarchy overrides the setting higher in the hierarchy.

1. Mapped attribute. A setting at this level overrides the default settings on managed
classes, mapping descriptors (orm.xml), and persistence units.

2. Managed classes. A setting at this level overrides the default settings for mapping
descriptors (orm.xml) and persistence units. It can be overridden by settings on
mapped attributes.

The access type of an embeddable class is determined by the access type of the
entity class, mapped superclass, or embeddable class in which it is embedded
(including as a member of an element collection) independent of whether the
access type of the containing class has been explicitly specified or defaulted. You
can override the inherited access type by specifying a different type for the
embeddable class.

3. Mapping descriptors (orm.xml). A setting at this level overrides the default
settings for the persistence unit. It can be overridden by settings on managed
classes and mapped attributes.

4. Persistence units. A setting at this level can be overridden by settings for mapping
descriptors, managed classes, and mapped attributes.

To configure access type for managed classes in the persistence unit:

1. In the Applications window, double-click the JPA mapping descriptor (orm.xml).

2. In the overview editor for the mapping descriptor, click the Persistence Unit
Defaults navigation tab.

Developing TopLink JPA Projects

Developing Persistence in Applications Using Oracle TopLink 18-11

3. Under Access Type, select Field Accessing or Method Accessing to define the
default for all the managed classes in the persistence unit that have XML entries in
the mapping descriptor.*

To configure access type for managed classes in the mapping descriptor:

1. In the Applications window, double-click the JPA mapping descriptor (orm.xml).

2. In the overview editor for the mapping descriptor, click the General navigation
tab.

3. In the Defaults area, under Access Type, select Field or Property.

To configure access type for a managed class (entity, embeddable class, or mapped
superclass):

1. In the Applications window, double-click the Java source file for the managed
class).

2. In the Overview editor for the class, click the General navigation tab.

3. Under Access Type, select Field or Property

To specify method accessing for attribute mappings:

1. In the Applications window, double-click the JPA mapping descriptor (orm.xml).

2. In the Structure window, expand the managed class containing the attribute
mapping you want to configure, then double-click the attribute.

3. Select Use Method Accessing, then select the desired set() and/or get()
method.

How to Generate Unique IDs for Primary Keys
Define generators to determine the generator strategy for an entity and the named
generator be used to assign a unique ID to an entity. The scope of a generator name is
global to the persistence unit across all generator types. A generator defined using
XML in a mapping descriptor overrides a generator of the same name defined using
an annotation on an entity.

To configure generators in the JPA mapping descriptor (orm.xml):

1. In the Applications window, double-click the JPA mapping descriptor (orm.xml).

2. In the overview editor for the mapping descriptor, click the Generators tab to
configure sequence generators and table generators.

To configure generators for entities

1. In the Applications window, double-click the source file for the entity, for example
Departments.java.

2. In the overview editor for the entity, click the Generators tab to configure sequence
generators and table generators.

How to Configure Queries
You can define the JPQL and native queries in this mapping descriptor for use in
associated persistence units.

To configure queries:

Developing TopLink JPA Projects

18-12 Developing Applications with Oracle JDeveloper

1. In the Applications window, double-click the JPA mapping descriptor (orm.xml).

2. In the overview editor for the mapping descriptor, click the Queries navigation tab
to define named queries, named native queries, and named stored procedure
queries.

How to Specify Derived Identifiers in Mappings
In one-to-one and many-to-one mappings, you can specify that the identity (Id) for an
entity is derived from the Id of its parent entity (the target of the mapping).

To specify that an identifier Is derived:

1. In the Applications window, click the configuration file that specifies the
mappings, persistence.xml or the JPA mapping descriptor (orm.xml).

2. In the Structure window, expand the class containing the one-to-on or many-to-one
mapping for which you want to specify a derived identifier, then click the attribute.

3. Select Derived Identity, then select one of the following:

• None - Do not derive an Id.

• Id - Select if the Id is a single value, in which case the source object's Id is the
same as the target object's Id.

• Maps Id - Select an attribute to provide the mapping for an EmbeddedId
primary key, an attribute within an EmbeddedId primary key, or a simple
primary key of the parent entity.

Using TopLink Extensions
The Java Persistence API (JPA), part of the Java Enterprise Edition 5 (Java EE 5) EJB 3.0
specification, greatly simplifies Java persistence. It provides an object relational
mapping approach that allows you to declaratively define how to map Java objects to
relational database tables in a standard, portable way that works both inside a Java EE
5 application server and outside an EJB container in a Java Standard Edition (Java SE)
5 application.

TopLink JPA provides extensions to what is defined in the JPA specification. These
extensions come in persistence unit properties, query hints, annotations, TopLink's
own XML metadata, and custom API.

Developing Native TopLink Mappings
Using the tools in JDeveloper, you can use native TopLink to configure and map Java
classes, EJBs, and JPA entities to different data sources, including relational databases,
enterprise information systems (EIS), and XML schemas. TopLink supports multiple
standards, including JPA, JAXB, and Java EE.

Designing Native TopLink Applications
You can use native TopLink to perform a variety of persistence and data
transformation functions on any enterprise architecture that uses Java, including:

• Java EE

• Spring

Developing Native TopLink Mappings

Developing Persistence in Applications Using Oracle TopLink 18-13

• Java web servers such as Oracle WebLogic Server or Apache Tomcat

• Java clients such as Java SE and web browsers

Using Native TopLink in Application Design
Native TopLink can be used in the following ways:

• Relational Database Usage: You can use native TopLink to persist Java objects to
relational databases that support SQL data types accessed using JDBC.

• Oracle XML Database (XDB) Usage: You can use TopLink to persist XML
documents to an Oracle XML database using TopLink direct-to-XMLType
mappings.

• Enterprise Information System (EIS) Usage: You can use native TopLink to persist
Java objects to an EIS data source using a JCA adapter. In this scenario, the
application invokes EIS data source-defined operations by sending EIS interactions
to the JCA adapter. Operations can take (and return) EIS records. Using TopLink
EIS descriptors and mappings, you can easily map Java objects to the EIS record
types supported by your JCA adapter and EIS data source. This usage is common
in applications that connect to legacy data sources and is also applicable to web
services.

• XML Usage: You can use native TopLink for in-memory, nonpersistent Java object-
to-XML transformation with XML Schema (XSD) based XML documents and JAXB.
You can use the TopLink JAXB compiler with your XSD to generate both JAXB-
specific artifacts (such as content and element interfaces, implementation classes,
and object factory class) and TopLink-specific artifacts (such as sessions and project
XML files).

Creating Native TopLink Metadata
Native TopLink metadata is the bridge between the development of an application
and its deployed runtime environment. You can capture the metadata using:

• JDeveloper Mapping Editor, which creates TopLink sessions.xml and
project.xml files that you pass to the TopLink runtime environment.

• JPA annotations, persistence.xml, orm.xml, TopLink JPA annotation
extensions, and TopLink property extensions. The TopLink JPA persistence
provider interprets these sources of metadata to create an in-memory session and
project at runtime.

• Java and the TopLink API (this approach is the most labor-intensive).

The metadata enables you to pass configuration information into the runtime
environment, which uses the information in conjunction with the persistent classes
(Java objects or JPA entities) and the code written with the TopLink API, to complete
the application.

Using native TopLink JPA, you also have the option of specifying your metadata using
TopLink sessions.xml and project.xml while accessing your persistent classes
using JPA and an EntityManager.

The TopLink metadata architecture provides many important benefits, including the
following:

Developing Native TopLink Mappings

18-14 Developing Applications with Oracle JDeveloper

• By using the metadata, TopLink does not intrude in the object model or the
database schema.

• Allows you to design the object model as needed, without forcing any specific
design.

• Allows DBAs to design the database as needed without forcing any specific design.

• Does not rely on code-generation (which can cause serious design, implementation,
and maintenance issues).

• Is unobtrusive: adapts to the object model and database schema, rather than
requiring you to design their object model or database schema to suit TopLink.

Creating Project Metadata
A native TopLink project contains the mapping metadata that the TopLink runtime
uses to map objects to a data source. The project is the primary object used by the
TopLink runtime. The principal contents of project metadata include the following:

• Descriptors

• Mappings

• Data Source Login Information

Using JPA, TopLink runtime constructs an in-memory project based on the employed
annotations, persistence.xml, orm.xml, and TopLink JPA extensions.

Creating Session Metadata
The native TopLink Session configuration file (sessions.xml) allows you to easily
manage all of the sessions for a specific project. You can fully customize the
information for each session, including your data source login information, JTA
transaction usage, and caching.

A TopLink session contains a reference to a particular project.xml file, plus the
information required to access the data source. The session is the primary object used
by your application to access the features of the TopLink runtime.

The agent responsible for creating and accessing session metadata differs, depending
on whether or not you are creating a CMP project. In a POJO project, your application
acquires and accesses a session directly. In a CMP project, your application indirectly
accesses a session acquired internally by the TopLink runtime.

Using TopLink JPA, the TopLink runtime constructs an in-memory session based on
any combination of JPA annotations, persistence.xml, orm.xml, and TopLink JPA
annotation and persistence.xml property extensions. The use of a sessions.xml file
is optional.

Using Native TopLink Descriptors
TopLink uses descriptors to store the information that describes how a particular class
can be represented by a data source. Descriptors own mappings that associate class
instance variables with a data source and transformation routines that are used to
store and retrieve values. As such, the descriptor acts as the connection between a Java
object and its data source representation.

Two objects – a source (parent or owning) object and a target (child or owned) object
are related by aggregation if there is a strict one-to-one relationship between them,

Developing Native TopLink Mappings

Developing Persistence in Applications Using Oracle TopLink 18-15

and all the attributes of the target object can be retrieved from the same data source
representation as the source object. This means that if the source object exists, then the
target object must also exist, and if the source object is destroyed, then the target object
is also destroyed.

JDeveloper enables you to create the following TopLink descriptor types:

• Relational Descriptors

• EIS Descriptors

• XML Descriptors

Relational Descriptors

Relational descriptors describe Java objects that you map to tables in a relational
database. Using relational descriptors in a relational project, you can configure
relational mappings. In a relational project, you can designate the descriptor as an
aggregate, enabling you to configure an aggregate mapping, one that associates data
members in the target object with fields in the source object's underlying database
tables.

When you designate a relational descriptor as an aggregate, TopLink lets you specify a
mapping type for each field in the target class, but defers associating the field with a
database table until you configure the aggregate object mapping in the source
descriptor. In other words, the target class descriptor defines how each target class
field is mapped, but the source class descriptor defines where each target class field is
mapped. This lets you share an aggregate object among many parent descriptors
mapped to different tables.

EIS Descriptors

Describes Java objects that you map to an EIS data source by way of a JCA adapter.
EIS descriptors enable you to configure EIS mappings when creating an EIS project.

XML Descriptors

Describes Java objects that you map, in memory, to complex types in XML documents
defined by an XML schema document (XSD). Using XML descriptors in an XML
project, you can configure XML mappings in memory, to XML elements defined by an
XSD.

Using Native TopLink Mappings
Native TopLink transforms the data from an object representation to a representation
specific to a data source. This transformation is called mapping and it is the core of a
TopLink project. A mapping corresponds to a single data member of a domain object.
It associates the object data member with its data source representation and defines
the means of performing the two-way conversion between the object and data source.
A TopLink map belongs to a TopLink session, the facade through which applications
access TopLink functionality. The available mapping types may vary, depending on
the TopLink map and TopLink descriptor.

Relational Mapping Types

The relational mappings transform any object data member type to a corresponding
relational database representation in any supported relational database. Use them to
map simple data types including primitives (such as int), JDK classes (such as String),
and large object (LOB) values. You can also use them to transform object data

Developing Native TopLink Mappings

18-16 Developing Applications with Oracle JDeveloper

members that reference other domain objects by way of association where data source
representations require object identity maintenance (such as sequencing and back
references) and possess various types of multiplicity and navigability. The appropriate
mapping class is chosen primarily by the cardinality of the relationship

Table 18-1 illustrates the relational mapping types build maps using the TopLink
concepts of directionality, transformers, converters, and EJB 2.n CMP relational
mapping.

Table 18-1 Relational Mapping Types

Mapping Type Description

Direct-to-field Map a Java attribute directly to a database field.

Direct-to-XMLType Map Java attributes to an XMLType column in an Oracle
Database.

One-to-one Map a reference to another persistent Java object to the
database.

Variable one-to-one Map a reference to an interface to the database.

One-to-many Map Java collections of persistent objects to the database.

Many-to-many Use an association table to map Java collections of persistent
objects to the database.

Direct collection Map Java collections of objects that do not have descriptors

Direct map Direct map mappings store instances that implement
java.util.Map.

Aggregate object Create strict one-to-one mappings that require both objects to
exist in the same database row.

Transformation Create custom mappings where one or more fields can be used
to create the object to be stored in the attribute.

EIS Mapping Types

Native TopLink enterprise information system (EIS) mappings provide support for
accessing legacy data sources and enterprise applications through Java EE Connector
architecture (JCA) adapter. TopLink EIS mappings use the JCA Common Client
Interface (CCI) to access the EIS through its resource adapter. This provides the ability
to directly map from an existing Java object model to any transactional data source,
such as mainframes with flat file/hierarchical data. An EIS mapping transforms object
data members to the EIS record format defined by the object's descriptor.

Table 18-2 illustrates the EIS mapping types that TopLink provides:

Table 18-2 EIS Mapping Types

Mapping Type Description

Direct mapping Map a simple object attribute directly to an EIS record.

Composite direct collection
mapping

Map a collection of Java attributes directly to an EIS record.

Developing Native TopLink Mappings

Developing Persistence in Applications Using Oracle TopLink 18-17

Table 18-2 (Cont.) EIS Mapping Types

Mapping Type Description

Composite object mapping Map a Java object to an EIS record in a privately owned one-to-
one relationship. Composite object mappings represent a
relationship between two classes.

Composite collection
mapping

Map a Map or Collection of Java objects to an EIS record in a
privately owned one-to-many relationship.

One-to-one mapping Define a reference mapping that represents the relationship
between a single source object and a single mapped persistent
Java object.

One-to-many mapping Define a reference mapping that represents the relationship
between a single source object and a collection of mapped
persistent Java objects.

Transformation mapping Create custom mappings where one or more EIS record fields
can be used to create the object to be stored in a Java class's
attribute.

XML Mapping Types

The XML mappings transform object data members to the XML elements of an XML
document whose structure is defined by an XML schema document (XSD). You can
map the attributes of a Java object to a combination of XML simple and complex types
using a wide variety of XML mapping types. TopLink stores XML mappings for each
class in the class descriptor. TopLink uses the descriptor to instantiate objects mapped
from an XML document and to store new or modified objects as an XML document.

Table 18-3 indicates the XML mapping types you can use to map the attributes of a
Java object to a combination of XML simple and complex types:

Table 18-3 XML Mapping Types

Mapping Type Description

XML Direct Mapping Map a simple object attribute to an XML attribute or text node.

XML Composite Direct
Collection Mapping

Map a collection of simple object attributes to XML attributes or
text nodes.

XML Composite Object
Mapping

Map any attribute that contains a single object to an XML
element. The TopLink runtime uses the descriptor for the
referenced object to populate the contents of that element.

XML Composite Collection
Mapping

Map an attribute that contains a homogenous collection of
objects to multiple XML elements. The TopLink runtime uses
the descriptor for the referenced object to populate the contents
of those elements.

XML Any Object Mapping The XML Any Object mapping is similar to the XML Composite
Object mapping except that the reference object may be of
different types (including String), not necessarily related to
each other through inheritance or a common interface.

Developing Native TopLink Mappings

18-18 Developing Applications with Oracle JDeveloper

Table 18-3 (Cont.) XML Mapping Types

Mapping Type Description

XML Any Collection
Mapping

The XML Any Collection mapping is similar to the XML
Composite Collection mapping except that the referenced
objects may be of different types (including String), not
necessarily related to each other through inheritance or a
common interface.

XML Transformation
Mapping

Create custom mappings where one or more XML nodes can be
used to create the object to be stored in a Java class's attribute.

Understanding the TopLink Editor
Use the TopLink editor to configure and map Java classes to different data sources,
including relational databases, enterprise information systems (EIS), and XML
schemas without using code. The TopLink editor supports multiple mapping
standards, including EJB 3.1 JPA.

The TopLink editor displays the information or properties specific to the element
selected in the Applications window or the Structure view. For example, selecting
TopLink project elements in the Applications window, such as a the TopLink map or
the sessions configuration file (sessions.xml), enables you to configure their properties
in the TopLink editor. Likewise, selecting TopLink maps, descriptors, and mapped or
unmapped attributes in the Structure view results in the display of their respective
properties in the TopLink editor.

Managing TopLink Maps

The TopLink map contains the information about how classes map to database tables
or XML schema. Use the TopLink editor to edit each component of the mappings,
including:

• Database information, such as driver, URL, and login information.

• Mapping defaults, such as identity map and cache options.

To configure a TopLink map, choose Applications window context menu for a
TopLink map (for example, tlMap) Open or choose the Structure view for TopLink
map. The TopLink editor displays the properties for the object map depending on its
type, such as relational, or EIS. When using the TopLink editor for relational object
maps, for example, you can configure the sequencing policy.

TopLink mappings use descriptors to store the information that describes how an
instance of a particular class can be represented in the data source. To configure a
map's descriptors, choose Structure view for tlMap descriptor. For example, using the
editor, you can improve application performance by creating named queries and also
prevent users from overwriting each other's work by configuring locking policies.

TopLink mappings define how an object's attributes are represented in the data
source. The Structure view enables you to configure the mappings for the descriptor's
attributes by choosing Structure view for tlMap.

Developing Native TopLink Mappings

Developing Persistence in Applications Using Oracle TopLink 18-19

Managing TopLink Sessions

The TopLink Sessions configuration file (sessions.xml) enables you to manage all of
the sessions for a specific project. For more information about TopLink sessions, see
Oracle Fusion Middleware Developer's Guide for Oracle TopLink.

By choosing Structure view for sessions.xml Open, you can use the TopLink editor to
fully customize the information for each session, such as data source login
information, JTA transaction usage, and caching. You can also use the TopLink editor
to create and configure individual sessions and the session brokers that manage them.
To manage session brokers, Structure view for sessions.xml session broker.

Managing Persistence Configurations

The TopLink editor enables you to configure the persistence.xml file, which
packages entities in TopLink JPA projects. By choosing Applications window for
persistence.xml Open, you can create persistence units.

The Structure window displays JPA descriptors and persistence units. By choosing
Structure view for persistence.xml persistence unit, you can configure the persistence
unit.

The TopLink Structure View Toolbar

The Structure view displays detailed information about the TopLink element selected
in the Applications window or TopLink editor. For example:

• When working with an EJB or Java class, the Structure view displays the related
TopLink descriptor and its mapping attributes.

• When working with a TopLink sessions configuration file, the Structure view
displays sessions and session brokers.

• When working with a persistence configuration, the Structure view displays JPA
descriptors and persistence units.

The Structure view contains a toolbar that provides access to modify descriptors,
mapping, sessions, and persistence units. This toolbar is context-sensitive; the buttons
displayed vary depending on the element that you select in the Structure view.

Table 18-4 Icons in the TopLink Structure View Toolbar

Icon Name Function

Add or
Remove
Descriptors

Adds or removes descriptors from the TopLink map

Automap Attempts to automap the selected descriptor or attribute to a
similarly named database field.

Aggregate
Descriptor

Changes the descriptor type to aggregate descriptor, meaning that
the descriptor's definitions for table, primary key and other options
are from the owning descriptor.

Class
Descriptor

Changes the descriptor type to class descriptor.

Map As Selects a mapping type for the selected attribute.

Developing Native TopLink Mappings

18-20 Developing Applications with Oracle JDeveloper

Table 18-4 (Cont.) Icons in the TopLink Structure View Toolbar

Icon Name Function

New
Persistence
Unit

Click to create a new persistence unit.

Create a
New
Database or
Server
Session

Click to create a session within the sessions configuration file.

Create
Session
Broker

Click to create a new session broker.

Create a
New
Named
Connection
Pool

Click to create a new named connection pool, a connection pool
used for any purpose, but typically for security purposes.

Add the
Sequence
Connection
Pool

Click to add a connection pool exclusively used for sequencing.
TopLink uses the sequence connection pool whenever it needs to
assign an identifier to a new object.

TopLink Project Elements in the Applications Window

The Applications window displays each element associated with your TopLink
project, including the TopLink Map, deployment descriptors, and sessions
configuration information.

TopLink project elements in the Applications window may include:

• TopLink folder

• Sessions configuration file (sessions.xml)

• TopLink map (tlMap)

TopLink Editor Tabs in the Editor Window

The TopLink Editor displays your TopLink mapping information. The information in
the editor will vary, depending on the TopLink element you selected in the
Applications window or Structure view.

TopLink Project Elements in the Structure View

The Structure view displays detailed information about the TopLink element selected
in the Applications window or TopLink Editor:

• When working with an EJB or Java class, the Structure view displays the related
TopLink descriptor and its mapping attributes.

• When working with a TopLink sessions configuration file, the Structure view
displays your sessions and session brokers.

Developing Native TopLink Mappings

Developing Persistence in Applications Using Oracle TopLink 18-21

• When working with a persistence configuration, the Structure view displays your
JPA descriptors and persistence units.

When you select an item in the Structure view, the following properties appear in the
TopLink Editor:

• TopLink map (tlMap)

• Descriptor

• Mapped Java attribute (one-to-one mapping)

• Unmapped attribute

You can perform specific functions for an item by selecting the item in the
Applications window and then:

• Right-clicking the object in Structure view and selecting the function from the pop-
up menu.

• Selecting the object in Structure view and clicking a button in the Structure toolbar.

Using the TopLink Structure View Toolbar

The TopLink Editor Structure view contains a toolbar that offers quick access to
modify descriptors and mappings. This toolbar is context-sensitive; the actual buttons
displayed will vary, depending on which element in the Structure view is selected.

TopLink Mapping Status Report in Message Log

Error and status messages from the TopLink Editor appear in the Issues window.

Configuring TopLink Preferences

You can configure which persistence provider to use, which JPQL editor to use, and
query types and formats.

To configure TopLink Editor preferences:

1. From the main menu, choose Tools > Preferences.

2. In the Categories list, expand TopLink Customization.

3. Configure JPA and Query options.

4. Complete each field and click OK.

How to Create a Native TopLink Mapping Project

JDeveloper stores the native TopLink descriptors (for more information, see Using
Descriptors) and mappings (for more information, see Using Mappings) in a TopLink
map (.mwp file), and sessions in the sessions.xml file. The TopLink map contains the
information about how classes map to database tables. Use the TopLink Editor to edit
each component of the mappings, including:

• Database information, such as driver, URL, and login information.

• Mapping defaults, such as cache options.

When you select a TopLink map (or an element in a TopLink map), its attributes
display in the TopLink Editor.

Developing Native TopLink Mappings

18-22 Developing Applications with Oracle JDeveloper

TopLink maps persistent entities to the database in the application using the
descriptors and mappings you build with JDeveloper Mapping Editor. The Mapping
Editor supports such approaches to project development as:

• Importing classes and tables for mapping.

• Importing classes and generating tables and mappings.

• Importing tables and generating classes and mappings.

• Creating both class and table definitions.

Although JDeveloper Mapping Editor offers the ability to generate persistent entities
or the relational model components for an application, these utilities are intended only
to assist in rapid initial development strategies–not complete round-trip application
development.

To add a Native TopLink Object Map to an existing project:

1. In the Applications window, right-click the project to which you want to add a
TopLink map and choose New.

2. In the New Gallery, expand Business Tier, select TopLink/JPA then select
TopLink Object Map, and click OK.

3. Complete each field and click OK.

How to Use Converter Mappings

TopLink no longer uses the following direct mapping types:

• Type conversion

• Object type

• Serialized object

Instead, TopLink uses a direct-to-field mapping with a specialized converter. To
generate backward-compatible deployment XML files, use the Generate Deprecated
Direct Mappings option on the General page of the TopLink Map options.

How to Automap TopLink Descriptors

The TopLink Automap wizard can automatically map your Java class attributes to a
similarly named database field. The Automap wizard only creates mappings for
unmapped attributes; it does not change previously defined mappings.

You can use the Automap wizard for an entire project or for specific classes or
descriptors.

To automap TopLink descriptors:

1. In the Applications window, select a TopLink map.

2. In the Structure window, right-click the TopLink map (or a specific Java class or
TopLink descriptor) and choose Automap.

3. Follow the steps in the Automap Wizard.

Developing Native TopLink Mappings

Developing Persistence in Applications Using Oracle TopLink 18-23

Data Source Login Information

For TopLink mappings, you can configure a session login in the session metadata that
specifies the information required to access the data source.

Developing Native TopLink Relational Projects
The TopLink Editor provides complete support for creating relational projects that
map Java objects to a conventional relational database accessed using JDBC. Use a
TopLink relational project for transactional persistence of Java objects to a
conventional relational database or to an object-relational database that supports data
types specialized for object storage, both accessed using JDBC.

To create relational projects for an object-relational database, you must create the
project using Java code. You can create a relational project for transactional persistence
of Java objects to an object-relational database that supports data types specialized for
object storage (such as Oracle Database) accessed using JDBC.

How to Create Relational Projects and Object Maps
To create relational projects for an object-relational database, you must create the
project using Java code. You can create a relational project for transactional persistence
of Java objects to an object-relational database that supports data types specialized for
object storage (such as Oracle Database) accessed using JDBC.

To create a new native TopLink object map for a relational project:

1. If you are creating a new project for the relational project, create a new project, as
follows:

a. From the main menu, elect File > New > Project.

b. In the New Gallery, select Projects > Custom Project.

2. In the Applications window, right-click the project in which you want to create a
TopLink object map and choose New > From Gallery.

3. In the New Gallery, expand Business Tier, select TopLink/JPA and then select
TopLink Object Map.

4. Click OK.

5. In the Data Source area of the New TopLink Object Map dialog, select Database,
then specify your database information.

6. Click OK.

The new project includes the TopLink map and a TopLink sessions configuration
file (sessions.xml).

How to Create Relational Descriptors
Relational descriptors describe Java objects that you map to tables in a relational
database. In a relational project, you can designate the descriptor as a class descriptor
or an aggregate descriptor.

A class descriptor is applicable to any persistent object, but not an aggregate object.
Using a class descriptor, you can configure any relational mapping except aggregate
collection and aggregate object mappings.

Developing Native TopLink Relational Projects

18-24 Developing Applications with Oracle JDeveloper

An aggregate object is an object that is strictly dependent on its owning object.
Aggregate descriptors do not define a table, primary key, or many of the standard
descriptor options as they inherit these from their owning descriptor. If you want to
configure an aggregate mapping to associate data members in a target object with
fields in a source object's underlying database tables, you must designate the target
object's descriptor as an aggregate.

You can configure inheritance for a descriptor designated as an aggregate, however, in
this case, all the descriptors in the inheritance tree must be aggregates. Aggregate and
class descriptors cannot exist in the same inheritance tree.

You can change a class descriptor to an aggregate descriptor, or remove the aggregate
designation from a relational descriptor and return it to its default type. For more
information, see How to Configure Relational Descriptors..

Note:

When you change a class descriptor to an aggregate descriptor, the
descriptor's existing information is permanently lost. If you convert the
descriptor back to a class descriptor, you will have to configure it again.

To create new TopLink descriptors:

1. In the Applications window, right-click the TopLink map and then select Add or
Remove Descriptors.

2. Select the packages and classes from which to create TopLink descriptors and click
OK.

The descriptors are added to the TopLink map in the Structure window.

How to Configure Relational Descriptors
You can configure a relational descriptor as a Class type or an Aggregate type. By
default, when you add a Java class to a relational project, JDeveloper automatically
creates a relational class descriptor for it.

You can change a class descriptor to an aggregate descriptor.

To configure a TopLink relational class descriptor to an aggregate descriptor:

1. In the Applications window, select the TopLink map.

2. In the Structure window, right-click the descriptor and from the Descriptor Type
submenu, select Aggregate.

The selected descriptor is now an aggregate descriptor.

3. To convert an aggregate descriptor to a class descriptor, right-click the descriptor
and from the Descriptor Type submenu, select Class.

Developing Native TopLink XML Projects
Use an XML project for nontransactional conversions between Java objects and XML
documents using JAXB (Java Architecture for XML Binding) which defines
annotations to control the mapping of Java objects to XML.

Developing Native TopLink XML Projects

Developing Persistence in Applications Using Oracle TopLink 18-25

The TopLink runtime performs XML data conversion based on one or more XML
schemas. In an XML project, the TopLink Editor directly references schemas in the
deployment XML and exports mappings configured with respect to the schemas you
specify.

TopLink provides an extra layer of functions on top of JAXB. In particular, TopLink
provides the TopLink JAXB compiler, which generates both JAXB- and TopLink-
specific files.

The JAXB complier generates implementation classes that are named according to the
content, element, or implementation of the name attribute in the XSD. The generated
implementation classes are simple domain classes with private attributes for each
JAXB property. Public get and set methods return or set attribute values.

The JAXB complier generates TopLink project files, session.xml files, and TopLink
project XML files. The TopLink JAXB compiler generates a single class called
DescriptorAfterLoads if any implementation class contains a mapping to a type
safe enumeration.

TopLink can validate both complete object trees and subtrees against the XML schema
that was used to generate the implementation classes. In addition, TopLink will
validate both root objects (objects that correspond to the root element of the XML
document) and non-root objects against the schema used to generate the object's
implementation class.

JAXB provides a standard Java object-to-XML API. JAXB defines annotations to
control the mapping of Java objects to XML. For more information, see http://
www.oracle.com/technetwork/java/index-jsp-137051.html.

JAXB also defines a default set of mappings which TopLink uses to marshal a set of
objects into XML, and unmarshall an XML document into objects. TopLink provides
an extra layer of functions on top of JAXB. It allows for the creation and subsequent
manipulation of TopLink mappings from an existing object model, without requiring
the recompilation of the JAXB object model.

How to Create XML Projects and Object Maps
To create a new native TopLink object map for an XML project:

1. If you are creating a new project for the XML project, create it as follows:

a. From the main menu, elect File > New > Project.

b. In the New Gallery, select Projects > Custom Project.

2. In the Applications window, right-click the project in which you want to create
the TopLink XML object map and choose New > From Gallery.

3. In the New Gallery, expand Business Tier, select TopLink/JPA and then select
TopLink Object Map.

4. Click OK.

5. In the Data Source area of the New TopLink Object Map dialog, select XML.

6. Click OK.

JDeveloper adds the TopLink map and TopLink sessions configuration file
(sessions.xml).

Developing Native TopLink XML Projects

18-26 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technetwork/java/index-jsp-137051.html
http://www.oracle.com/technetwork/java/index-jsp-137051.html

How to Create XML Descriptors
To create new TopLink descriptors for an XML project:

1. Right-click the TopLink map in the Applications window and select Add or
Remove Descriptors.

2. Select the packages and classes from which to create TopLink descriptors and click
OK.

JDeveloper adds the descriptors to the TopLink element in the Structure window.

3. Complete the fields on the XML Descriptor page to configure the descriptor.

How to Add XML Schemas
If you have an existing data model (XML schema document), but you do not have a
corresponding object model (Java classes for domain objects), use this procedure to
create your TopLink project and automatically generate the corresponding object
model.

To add an XML schema:

1. In the Applications window, select the TopLink map.

2. In Structure window, right-click the Schemas element and select Import Schema.

3. Complete the fields on the dialog to specify the XML schema to import.

4. Click OK.

JDeveloper adds the schema (tlmap) to the TopLink map

Using the TopLink JAXB compiler simplifies JAXB application development with
TopLink by automatically generating both the required JAXB files and the TopLink
files from your XML schema (XSD) document. Once generated, you can fine-tune XML
mappings without having to recompile your JAXB object model.

Developing Native TopLink EIS Projects
Use a TopLink EIS project for transactional persistence of Java objects to a
nonrelational data source accessed using a Java EE Connector Architecture (JCA)
adapter and EIS records.

Oracle recommends using EIS projects to integrate TopLink with a legacy or
nonrelational data source. TopLink provides support for mapping Java objects to EIS
mapped, indexed, and XML records, through J2C, using the TopLink mappings. J2C
provides a Common Client Interface (CCI) API to access nonrelational EIS. This
provides a similar interface to nonrelational data sources as JDBC provides for
relational data sources.

EIS includes legacy data sources, enterprise applications, legacy applications, and
other information systems. These systems include such sources as Customer
Information Control System (CICS), Virtual Storage Access Method (VSAM),
Information Management System (IMS), ADABASE database, and flat files. Oracle
recommends using EIS projects to integrate TopLink with a legacy or nonrelational
data source. Other methods of accessing EIS data sources include:

Developing Native TopLink EIS Projects

Developing Persistence in Applications Using Oracle TopLink 18-27

• Using a specialized JDBC driver that allows connecting to an EIS system as if it
were a relational database. You could use a TopLink relational project with these
drivers.

• Linking to or integrating with the EIS data from a relational database, such as
Oracle Database.

• Using a proprietary API to access the EIS system. In this case it may be possible to
wrap the API with a JCA CCI interface to allow usage with a TopLink EIS project.

How to Create EIS Projects and Object Maps
Use an EIS project for transactional persistence of Java objects to a nonrelational data
source accessed using a Java EE Connector Architecture (JCA) adapter and EIS
records.

An EIS mapping transforms object data members to the EIS record format defined by
the object's descriptor.

To create a new native TopLink object map for an EIS project:

1. If you are creating a new project for the EIS project, create it as follows:

a. From the main menu, elect File > New > Project.

b. In the New Gallery, select Projects > Custom Project.

2. In the Applications window, right-click the project in which you want to create a
TopLink object map and choose New > From Gallery.

3. In the New Gallery, expand Business Tier, select TopLink/JPA and then select
TopLink Object Map.

4. Click OK.

5. In the Data Source area of the New TopLink Object Map dialog, select EIS, then
specify your EIS platform.

6. Click OK.

JDeveloper adds the TopLink map and TopLink sessions configuration file
(sessions.xml).

How to Create EIS Descriptors
EIS descriptors describe Java objects that you map to an EIS data source by way of a
JCA adapter.

To create an EIS descriptor:

1. Select the TopLink map in the Structure window.

2. Click the Add or Remove Descriptors from the Selected TopLink Map button.

3. Select the classes from which to create an EIS descriptor and click OK.

JDeveloper adds the EIS descriptors to the Structure window.

4. Complete the property tabs for the EIS Descriptor.

Developing Native TopLink EIS Projects

18-28 Developing Applications with Oracle JDeveloper

Using EIS Data Sources
For each EIS project, you must specify one of the following JCA data source platforms
that you will be using:

• Oracle Advanced Queuing (AQ)

• Attunity Connect

• IBM MQSeries

• Java Message Service (JMS)

• Sun Blackbox

• XML file

This platform configuration is overridden by the session login, if configured.

Developing Native TopLink Sessions
Each TopLink map belongs to a TopLink session. A session is the facade through
which an application accesses TopLink functionality. A session associates data source
platform information, data source login information, and mapping metadata for a
particular application. You can reuse mapping metadata in different applications by
defining different sessions.

TopLink session provides the primary access to the TopLink runtime. It enables
applications to perform persistence operations with the data source that contains
persistent objects. A session associates data source platform information, data source
login information, and mapping metadata for a particular application. You can reuse
mapping metadata in different applications by defining different sessions.

TopLink provides different session types, each optimized for different design
requirements and data access strategies. You can combine different session types in
the same application.

The TopLink Editor provides the following TopLink sessions:

• Server and Client Sessions – Server sessions provide session management to a
single data source (including shared object cache and connection pools) for
multiple clients in a three-tier architecture using database or EIS platforms. This is
the most flexible, scalable, and commonly used session. You acquire a client session
from a server session at run time to provide access to a single data source for each
client.

• Database Session – A database session provides a client application with a single
data source connection, for simple, standalone applications in which a single
connection services all data source requests for one user.

• Session Broker and Client Sessions – A session broker provides session
management to multiple data sources for multiple clients by aggregating two or
more server sessions (can also be used with database sessions).

You acquire a client session from a session broker at run-time to provide access to
all the data sources managed by the session broker for each client.

Developing Native TopLink Sessions

Developing Persistence in Applications Using Oracle TopLink 18-29

Other session types are can be configured directly in Java code. For more information
about session types, see the Oracle® Fusion Middleware Developer's Guide for Oracle
TopLink.

How to Create a New Native TopLink Sessions Configuration File
Each native TopLink sessions configuration (sessions.xml file) can contain multiple
sessions and session brokers. In addition, you can specify a classpath for each sessions
configuration that applies to all the sessions it contains.

To create a new sessions configuration file:

1. Select File > New.

2. In the Categories list, select Business Tier > TopLink/JPA.

3. In the Items list, select TopLink Sessions Configuration.

4. Click OK.

The Create TopLink Sessions Configuration dialog appears.

5. Complete each field on the dialog and click OK.

In the Applications window, JDeveloper adds the sessions.xml file in the
folder where it was created and the default session to the sessions configuration
node in the Structure view.

How to Create Native TopLink Sessions
A native TopLink session provides the primary access to the TopLink runtime. It is the
means by which your application performs all persistence operations with the data
source that contains persistent objects.

A session associates data source platform information, data source login information,
and mapping metadata for a particular application. You can reuse mapping metadata
in different applications by defining different sessions.

To create a new TopLink session:

1. In the Applications window, right-click a TopLink sessions configuration file and
select Open.

The TopLink sessions configuration file appears in the TopLink Editor, showing
the existing sessions and session brokers in this sessions configuration file.

2. Click Create a New Session.

3. Complete each field in the New Session dialog and click OK.

JDeveloper adds the new session to the sessions configuration node in the Structure
view.

Acquiring Sessions at Runtime
After you create and configure sessions, you can use the TopLink session manager to
acquire a session instance at run time. The TopLink session manager enables
developers to build a series of sessions that are maintained under a single entity. The
session manager is a static utility class that loads TopLink sessions from the

Developing Native TopLink Sessions

18-30 Developing Applications with Oracle JDeveloper

sessions.xml file, caches the sessions by name in memory, and provides a single
access point for TopLink sessions.

The session manager has two main functions: it creates instances of the sessions and it
ensures that only a single instance of each named session exists for any instance of a
session manager.

The session manager instantiates sessions as follows:

• The client application requests a session by name.

• The session manager looks up the session name in the sessions.xml file. If the
session name exists, the session manager instantiates the specified session;
otherwise, it raises an exception.

• After instantiation, the session remains viable until you shut down the application.

Once you have a session instance, you can use it to acquire additional types of sessions
for special tasks. This is particularly useful for EJB applications in that an enterprise
bean can acquire the session manager and acquire the desired session from it.

How to Create Session Brokers
The session broker is a mechanism that enables client applications to transparently
access multiple databases through a single TopLink session. A session broker may
contain both server sessions and database sessions. Oracle recommends that you use
the session broker with server sessions because server sessions are the most scalable
session type.

After you create and configure a session broker with server sessions, you can acquire a
client session from the session broker at run time to provide a dedicated connection to
all the data sources managed by the session broker for each client.

To create a new session broker:

1. In the Applications window, open the sessions configuration file (sessions.xml).

The sessions configuration displays in the TopLink Editor.

2. Click Create a New Session Broker.

3. Complete each field in the dialog, select the sessions to add to the session broker,
and then click OK.

How to Create Data Source Logins
The TopLink sessions configuration file (sessions.xml) overrides any login information
that you specified in the TopLink map. You can create data source logins for relational
database or EIS data sources.

To create a data source:

1. In the Applications window, select the TopLink sessions configuration
(sessions.xml).

2. Expand the sessions node in the sessions.xml Structure view and then select the
TopLink session.

The TopLink session information appears in the TopLink Editor.

Developing Native TopLink Sessions

Developing Persistence in Applications Using Oracle TopLink 18-31

3. Select the Login tab.

4. If a login type has not yet been set for the session, select the type from the list:

• Database - Select to configure connection information at the session level for a
non-CMP TopLink application. The TopLink runtime uses this information
whenever you perform a persistence operation using the session in your non-
CMP TopLink application.

• EIS - Select to configure connection information at the session level for an XML
application. The TopLink runtime uses this information whenever you perform
a persistence operation using the session in your EIS application.

• XML - Use this page to specify the data source login settings for the TopLink
XML session.

For information about the options on the Login pages for Database, EIS, and XML,
display the page (as described above) and press F1 to consult the online help.

How to Create Connection Pools
A connection pool is a service that creates and maintains a shared collection (pool) of
data source connections on behalf of one or more clients. The connection pool provides
a connection to a process on request, and returns the connection to the pool when the
process is finished using it. When it is returned to the pool, the connection is available
for other processes.

Because establishing a connection to a data source can be time-consuming, reusing
such connections in a connection pool can improve performance. TopLink uses
connection pools to manage and share the connections used by server and client
sessions. Reusing connections to a single data source reduces the number of
connections required and allows your application to support many clients.

To create a new connection pool.

1. In the Applications window, select the TopLink sessions configuration
(sessions.xml).

2. Expand the sessions node in the sessions.xml Structure window and then
select the TopLink session.

3. Right-click the session and select New > Named Connection Pool from the
context menu.

4. Enter a name for the connection pool and click OK.

JDeveloper adds the connection pool to the Structure window.

5. Select the newly created connection pool.

Its properties appear in the Connection Pool page in the Editor window.

Developing Native TopLink Applications
Oracle TopLink is an advanced, object-persistence and object-transformation
framework that provides development tools and run-time capabilities that reduce
development and maintenance efforts, and increase enterprise application
functionality.

Developing Native TopLink Applications

18-32 Developing Applications with Oracle JDeveloper

Using TopLink the Cache
The TopLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values.

TopLink uses the cache to:

• Improve performance by holding recently read or written objects and accessing
them in-memory to minimize database access.

• Manage locking and isolation level.

• Manage object identity.

TopLink uses two types of cache:

• Session Cache – A shared cache that services clients attached to a given session.
When a client session reads objects from, or writes them to, a data source, TopLink
saves a copy of the objects in the parent server session's cache and makes them
accessible to all other processes in the session.

TopLink adds objects to the session cache from the following:

– The data store, when TopLink executes a read operation.

– The unit of work cache, when a unit of work successfully commits a transaction.

• Unit of Work Cache – Services operations within the unit of work. It maintains and
isolates objects from the session cache, and writes changed or new objects to the
session cache after the unit of work commits changes to the data source. TopLink
updates the sessions cache when a unit of work commits to the data source.

Object Identity

TopLink preserves object identity through its cache using the primary key attributes of
a persistent entity, which may or may not be assigned through sequencing. Oracle
recommends that you always maintain object identity. Disable object identity only if
absolutely necessary, for example, for read-only objects.

Querying and the Cache

A query that is run against the shared session cache is known as an in-memory query.

By default, a query that looks for a single object based on primary key attempts to
retrieve the required object from the cache first, searches the data source only if the
object is not in the cache. All other query types search the database first, by default.
You can specify whether a given query runs against the in-memory cache, the
database, or both.

Handling Stale Data

Stale data is an artifact of caching, in which an object in the cache is not the most
recent version committed to the data source.

Explicit Query Refreshes

For systems that require several objects be current, you can specify that these objects
be explicitly refreshed from the database without incurring the full cost of distributed
cache coordination. To do this:

Developing Native TopLink Applications

Developing Persistence in Applications Using Oracle TopLink 18-33

1. Configure a set of queries that refresh the required objects.

2. Establish an appropriate refresh policy.

3. Invoke the queries as required to refresh the objects.

Cache Invalidation

Use a cache invalidation policy to specify how or when a cached object becomes
invalid. Using cache invalidation ensures that an application does not use stale data.
You can configure the cache to invalidate objects at a certain time of day, mark an
object as invalid after a specified time period after the object was read, or you can set
the set the invalidation policy to invalidate an object only explicitly. You can set an
invalidation policy to apply to all objects by configuring it at the project level, to
certain objects by applying it at the descriptor level, or to the results returned by a
query by applying it at the query level.

Cache Coordination

Cache coordination enhances performance by avoiding data source access. By
enabling the instances of a session to broadcast object changes to one another so that
each session's cache is kept current or notified that the cache must update an object
from the data source the next time that it is read, it also reduces stale data. In addition,
cache coordination reduces the optimistic lock exceptions in distributed environments
as well as the number of failed or repeated transactions in an application. Use cache
coordination for applications that are read-based, regularly request and update the
same objects, and have changes performed by a single Java application with multiple,
distributed sessions.

As an alternative to cache coordination, you can tune the TopLink cache for each read-
only, read-mostly, and write-mostly classes using identity type, cache invalidation, or
cache isolation. You can perform this tuning before cache coordination.

Cache Isolation

Isolated client sessions provide a mechanism for disabling the shared server session
cache. Any classes marked as isolated only cache objects relative to the life cycle of
their client session. These classes never utilize the shared server session cache. This is
the best mechanism to prevent caching as it is configured on a per-class basis allowing
caching for some classes, and denying it for others.

Cache Locking and Transaction Isolation

By default, TopLink optimizes concurrency to minimize cache locking during read or
write operations. Use the default TopLink transaction isolation configuration unless
you have a very specific reason to change it.

How to Configure the TopLink Cache
The TopLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values.

In JDeveloper, you can configure the TopLink cache for a specific TopLink map. The
cache options will apply globally to all descriptors. You can override the map-level
cache configuration by defining cache configuration at the descriptor level.

To configure the TopLink cache at the TopLink map level:

1. In the Applications window, select the TopLink map.

Developing Native TopLink Applications

18-34 Developing Applications with Oracle JDeveloper

2. In the Structure window, double-click the TopLink map.

3. Select the Defaults tab.

4. Under Caching, set the caching options. You can select the following types of
caching: Full, None, Soft, Weak, Weak with Hard Subcache, and Weak with Soft
Subcache. For information on these caching types and their options, press F1 and
consult the online help.

To configure the TopLink cache at the descriptor level:

1. In the Applications window, select the TopLink map.

2. In the Structure window, expand the map to display its descriptors, then select the
descriptor you want to configure.

3. Select the Caching tab.

4. Set the caching options. You can select the following types of caching: Full, None,
Soft, Weak, Weak with Hard Subcache, and Weak with Soft Subcache. For
information on these caching types and their options, press F1 and consult the
online help.

Using Queries
TopLink enables you to create, read, update, and delete persistent objects or data
using queries in both Java EE and non-Java EE applications for both relational and
nonrelational data sources. For more information about queries, see the Oracle® Fusion
Middleware Developer's Guide for Oracle TopLink.

Querying a data source means performing an action on, or interacting with, the
contents of the data source. To do this, perform the following:

• Define an action in a syntax native to the data source being queried.

• Apply the action in a controlled fashion.

• Manage the results returned by the action (if any).

For TopLink, you must also consider how the query affects the TopLink cache.

TopLink Query Languages

TopLink enables you to express a query using any of the following query languages:

• SQL Queries

• EJBQL Queries

• JPQL Queries

• XML Queries

• EIS Interactions

• Query-by-Example

• TopLink Expressions

Developing Native TopLink Applications

Developing Persistence in Applications Using Oracle TopLink 18-35

TopLink Query Types

• Named Queries – An instance of DatabaseQuery stored by name in a Session or
a descriptor's DescriptorQueryManager where it is constructed and prepared
once. Such a query can then be repeatedly executed by name.

• Call Queries – An instance of Call that you create and then either execute directly,
using a special Session API to perform limited data source actions on data only, or
execute indirectly in the context of a DatabaseQuery. TopLink supports Call
instances for custom SQL, stored procedures, and EIS interactions.

• Descriptor Query Manager – The DescriptorQueryManager defines a
default DatabaseQuery for each basic data source operation (create, read, update,
and delete), and provides an API with which you can customize either the
DatabaseQuery or its Call.

• EJB 2.n CMP Finders – A query defined on the home interface of an enterprise
bean that returns enterprise beans. You can implement finders using any TopLink
query type, including JPAQLCall and EJBQLCall, a call that takes JPA/EJB QL.

In most cases, you can compose a query directly in a given query language or,
preferably, you can construct a DatabaseQuery with an appropriate Call and specify
selection criteria using a TopLink Expression. Although composing a query directly in
SQL appears to be the simplest approach (and for simple operations or operations on
unmapped data, it is), using the DatabaseQuery approach offers the compelling
advantage of confining your query to your domain object model and avoiding
dependence on data source schema implementation details.

How to Create Queries
Some queries are implicitly constructed for you based on passed in arguments and
executed in one step (for example, session queries) and others you create explicitly,
configure, and then execute, such as database queries.

To create a query:

1. In the Applications window, select the TopLink map.

2. In the Structure window, select the descriptor.

3. On the Queries tab, create the query.

The Queries tab allows you to create and manage queries associated with a
TopLink descriptor. Available actions are:

• Named Queries: Create named queries of types ReadObjectQuery,
ReadAllQuery, and ReportQuery.

• Custom Calls: Create custom queries.

• Query Keys: Query keys are schema-independent aliases for database field
names and are supported in relational database projects only.

• Settings: Set query time-outs and cache refresh options.

Developing Native TopLink Applications

18-36 Developing Applications with Oracle JDeveloper

Using Basic Query API
The TopLink basic query API includes support for the following, most commonly
used queries:

• Session Queries

• DatabaseQuery Queries

• Named Queries

• SQL Calls

• EJBQL Calls

• EIS Interactions

• Collection Query Results

• Report Query Results

Using Advanced Query API
The TopLink query API also allows the use of the following, more advanced query
API calls and techniques:

• Redirect Queries

• Historical Queries

• Fetch Groups

• Read-Only Queries

• Interfaces

• Inheritance Hierarchy

• Additional Join Expressions

• EJB Finders

• Cursor and Stream Query Results

For more information about advanced query API, see the Oracle® Fusion Middleware
Developer's Guide for Oracle TopLink.

Redirect Queries

A redirect query is a named query that delegates query execution control to your
application. Redirect queries allow you to define the query implementation in code as
a static method. To perform complex operations, you can combine query redirectors
with the TopLink query framework.

Historical Queries

To make a query time-aware, you specify an AsOfClause that TopLink appends to
the query. Use the AsOfClause class if your historical schema is based on time
stamps or the AsOfSCNClause class if your historical schema is based on database
system change numbers. You can specify an AsOfClause at the time you acquire a

Developing Native TopLink Applications

Developing Persistence in Applications Using Oracle TopLink 18-37

historical session so that TopLink appends the same clause to all queries, or you can
specify an AsOfClause on a query-by-query basis.

Fetch Groups

You can use a fetch group with a ReadObjectQuery or ReadAllQuery. When you
execute the query, TopLink retrieves only the attributes in the fetch group. TopLink
automatically executes a query to fetch all the attributes excluded from this subset
when and if you call a getter method on any one of the excluded attributes.

Read-Only Queries

In cases where you know that data is read-only, you can improve performance by
specifying a query as read-only: this tells TopLink that any object returned by the
query is immutable.

You can configure an object-level read query as read-only. When you execute such a
query in the context of a UnitOfWork, TopLink returns a read-only, non-registered
object. You can improve performance by querying read-only data in this way because
the read-only objects need not be registered or checked for changes.

Interfaces

When you define descriptors for an interface to enable querying, TopLink supports
querying on an interface, as follows:

• If there is only a single implementor of the interface, the query returns an instance
of the concrete class.

• If there are multiple implementors of the interfaces, the query returns instances of
all implementing classes.

Inheritance Hierarchy

When you query on a class that is part of an inheritance hierarchy, the session checks
the descriptor to determine the type of the class, as follows:

• If you configure the descriptor to read subclasses (the default configuration), the
query returns instances of the class and its subclasses.

• If you configure the descriptor not to read subclasses, the query returns only
instances of the queried class, but no instances of the subclasses.

• If you configure the descriptor to outer-join subclasses, the query returns instances
of the class and its subclasses.

• If you configure the descriptor to outer-join subclasses, the query returns instances
of the class and its subclasses.

Additional Join Expressions

You can set the query manager to automatically append an expression to every query
it performs on a class. For example, you can add an expression that filters the database
for the valid instances of a given class. Use this to do the following:

• Filter logically deleted objects

• Enable two independent classes to share a single table without inheritance

• Filter historical versions of objects

Developing Native TopLink Applications

18-38 Developing Applications with Oracle JDeveloper

EJB Finders

To create a finder for an entity bean that uses the TopLink query framework, you must
define, declare, and configure it. For predefined finders, you do not need to explicitly
create a finder. For default finders, you only need to define the finder method.

Cursor and Stream Query Results

Cursors and streams are related mechanisms that let you work with large result sets
efficiently. A stream is a view of a collection, which can be a file, a device, or a Vector.
A stream provides access to the collection, one element at a time in sequence. This
makes it possible to implement stream classes in which the stream does not contain all
the objects of a collection at the same time.

Large result sets can be resource-intensive to collect and process. To improve
performance and give the client more control over the returned results, configure
TopLink queries to use a cursor or stream. Cursors & streams are supported by all
subclasses of DataReadQuery and ReadAllQuery.

How to Create TopLink Expressions
TopLink expressions let you specify query search criteria based on your domain object
model. When you execute the query, TopLink translates these search criteria into the
appropriate query language for your platform.

TopLink provides the following two public classes to support expressions:

• The Expression class represents an expression that can be anything from a
simple constant to a complex clause with boolean logic. You can manipulate,
group, and integrate expressions.

• The ExpressionBuilder class is the factory for constructing new expressions.
You can specify a selection criterion as an Expression with DatabaseQuery
method setSelectionCriteria and in a finder that takes an Expression.

A simple expression usually consists of the following parts:

• The attribute, which represents a mapped attribute or query key of the persistent
class.

• The operator, which is an expression method that implements boolean logic, such
as GreaterThan, Equal, or Like.

• The constant or comparison, which refers to the value used to select the object.

To create basic expressions for use in named queries:

1. In the Applications window, select the TopLink map.

2. In the Structure window, select the descriptor.

3. Select the named query and in the Selection Criteria area, edit the expression.

Understanding TopLink Transactions
A database transaction is a set of operations (create, update, or delete) that either
succeed or fail as a single operation. The database discards, or rolls back, unsuccessful
transactions, leaving the database in its original state. Transactions may be internal

Developing Native TopLink Applications

Developing Persistence in Applications Using Oracle TopLink 18-39

(that is, provided by TopLink) or external (provided by a source external to the
application, such as an application server).

In TopLink, transactions are contained in the unit of work object. You acquire a unit of
work from a session and using its API, you can control transactions directly or
through a Java 2 Enterprise Edition (Java EE) application server transaction controller
such as the Java Transaction API (JTA).

As a transaction is committed, the database maintains a log of all changes to the data.
If all operations in the transaction succeed, the database allows the changes; if any part
of the transaction fails, the database uses the log to roll back the changes.

Transactions execute in their own context, or logical space, isolated from other
transactions and database operations. The transaction context is demarcated; that is, it
has a defined structure that includes the following:

• A begin point, where the operations within the transaction begin. At this point, the
transaction begins to execute its operations.

• A commit point, where the operations are complete and the transaction attempts to
formalize changes on the database.

The degree to which concurrent (parallel) transactions on the same data are allowed to
interact is determined by the level of transaction isolation configured. ANSI/SQL
defines four levels of database transaction isolation. Each offers a trade-off between
performance and resistance from the following unwanted actions:

• Dirty read: a transaction reads uncommitted data written by a concurrent
transaction.

• Nonrepeatable read: a transaction rereads data and finds it has been modified by
some other transaction that was committed after the initial read operation.

• Nonrepeatable read: a transaction rereads data and finds it has been modified by
some other transaction that was committed after the initial read operation.

TopLink Transactions and the Unit of Work
The unit of work isolates changes in a transaction from other threads until it
successfully commits the changes to the database. Unlike other transaction
mechanisms, the unit of work automatically manages changes to the objects in the
transaction, the order of the changes, and changes that might invalidate other TopLink
caches. The unit of work manages these issues by calculating a minimal change set,
ordering the database calls to comply with referential integrity rules and deadlock
avoidance, and merging changed objects into the shared cache. In a clustered
environment, the unit of work also synchronizes changes with the other servers in the
coordinated cache.

Like any transaction, a unit of work transaction provides the following:

• Unit of Work Transaction Context – Unit of work operations occur within a unit of
work context, in which writes are isolated from the database until commit time.
The unit of work executes changes on copies, or clones, of objects in its own
internal cache, and if successful, applies changes to objects in the database and the
session cache.

• Unit of Work Transaction Demarcation – In a TopLink application, your
application demarcates transactions using the unit of work. If your application
includes a Java EE container that provides container-managed transactions, your

Developing Native TopLink Applications

18-40 Developing Applications with Oracle JDeveloper

application server demarcates transactions using its own transaction service. You
can configure TopLink to integrate with the container's transaction service by
specifying a TopLink external transaction controller.

• Unit of Work Transaction Isolation – The unit of work does not directly
participate in database transaction isolation. Because the unit of work may execute
queries outside the database transaction, the database does not have control over
this data and its visibility. However, by default, TopLink provides a degree of
transaction isolation regardless of database transaction isolation configured on the
underlying database. Each unit of work instance operates on its own copy (clone)
of registered objects. In this case, because the unit of work provides an API that
allows querying to be done on object changes within a unit of work, the unit of
work provides read committed operations. Changes are committed to the database
only when the unit of work commit method is called.

Developing Native TopLink Applications

Developing Persistence in Applications Using Oracle TopLink 18-41

Developing Native TopLink Applications

18-42 Developing Applications with Oracle JDeveloper

19
Developing Secure Applications

This chapter describes how you can develop, deploy, and administer secure Java EE
applications in Oracle JDeveloper.

This chapter includes the following sections:

• About Developing Secure Applications

• Securing Applications in Phases

• About Web Application Security and JDeveloper Support

• Handling User Authentication in Web Applications

• Securing Application Resources in Web Applications

• Configuring an Application-Level Policy Store

• Migrating the Policy Stores

• Securing Development with JDBC

About Developing Secure Applications
The Fusion Middleware Suite lets you develop, deploy, and administer secure
applications. You can secure Java EE applications using only container-managed
security or, for Fusion web applications, you can use Oracle ADF Security. s are Java
EE applications that you develop using the Oracle Application Development
Framework (Oracle ADF).

Understanding Java EE Applications and Oracle Platform Security Services for Java
(OPSS)

A Java EE application can be enhanced to use OPSS. In this scenario, you work with
JDeveloper's declarative editors to configure users and roles. You secure application
resources using Java EE container-managed security.

Understanding Fusion Web Applications and ADF Security
This scenario is a fully declarative implementation that adds ADF Security to enable
fine-grained security policies for Oracle ADF resources. You work with JDeveloper's
declarative editors to configure a file-based identity store, policy store, and credential
store; and, because your application utilizes Oracle ADF, you also run a wizard to
configure security for web pages associated with ADF resources (such as ADF task
flows and ADF page definitions) and then use the jazn-data.xml policy editor to
define security policies.

Developing Secure Applications 19-1

Understanding Container-managed Security
The Java EE security model is a role-based, declarative model based on container-
managed security, where resources are protected by roles that are assigned to users.
This model allows decoupling an application from its underlying security
infrastructure since security can be specified separately from the application logic in
an application deployment descriptor. The container, where an application runs,
provides security for the application according to a specifications in the deployment
descriptor. This model also allows embedding security data (annotations) in the
application code that can be referenced in deployment descriptors.

For more information about container-managed security, see the Oracle Fusion
Middleware Security Guide.

Additional Functionality
The Oracle ADF Security framework is the preferred technology to provide
authentication and authorization services to the Fusion web application. A prime
reason is that Oracle ADF Security is built on top of the Oracle Platform Security
Services (OPSS) architecture, which provides a critical security framework and is itself
well-integrated with Oracle WebLogic Server.

For more information about Oracle ADF security, see the “Enabling ADF Security in a
Fusion Web Application" chapter of the Oracle Fusion Middleware Developer's Guide for
ADF.

For more information on OPSS, see the Oracle Fusion Middleware Application Security
Guide.

Securing Applications in Phases
When developing secure applications in JDeveloper it is often useful to think of
development and deployment (to the production environment) as different phases,
each with different needs. This is because during development and testing, JDeveloper
supports easy to manage file-based security through integration with Oracle Platform
Security Services (OPSS).

JDeveloper simplifies the application development life-cycle for security, and allows
you to store the data in a flat file, for easy development. The jazn-data.xml file is
JDeveloper's default file-based security provider for integration with OPSS. The
jazn-data.xml file stores the users, groups, roles, and policies that you define the
Fusion web application built using the Oracle Application Development Framework
(Oracle ADF) and Oracle ADF Security. JDeveloper provides a dedicated editor for
this file that simplifies creating the security data stores.

A feature of OPSS is the abstraction of users defined by the production environment's
enterprise roles into application roles that are specific to the functions of your
application. During development the application developer adds application roles and
security policies that use application roles to the policy store of the jazn-data.xml
file. Then, to simplify testing, the developer may add a few users to the identity store
and directly assign these test users to application roles. Therefore, for testing the
application, the jazn-data.xml can also be used as the identity store.

During development, your application does not ned to be aware of the enterprise roles
defined in the production environment. After deployment an administrator will use
Oracle Enterprise Manager Fusion Middleware Control to map the production-level
enterprise roles to the application roles of your application's policy store. This

Securing Applications in Phases

19-2 Developing Applications with Oracle JDeveloper

mapping will allow a user who is a member of a given enterprise role to have access to
the resources that are accessible from the associated application role.

After you complete the application, you migrate the policy store to the production
environment provider on Oracle WebLogic Server. At that point, you will replace your
test user identity store with enterprise users configured in the Oracle WebLogic Server
embedded LDAP server. In contrast to the jazn-data.xml file, the LDAP server
supports a distributed application server configuration that may be employed in a
production environment. For details about the LDAP server, see Oracle Fusion
Middleware Administering Security for Oracle WebLogic Server.

Therefore, working with the file-based provider and OPSS in JDeveloper helps
separate the demands of the production environment through:

• Declaratively defining test users and application roles

• Declaratively defining security policies for Oracle ADF resources

• Easily migrating from application-level security provider to system-jazn-
data.xml security provider during deployment

• Delaying the mapping of enterprise roles until deployment

About Web Application Security and JDeveloper Support
Java EE declarative security in Oracle WebLogic Server is implemented with Oracle
Platform Security Services (OPSS), Oracle's implementation of the JAAS standard.
OPSS extends Java EE security to provide application developers, system integrators,
security administrators, and independent software vendors with a portable,
integrated, and comprehensive security platform framework for Java SE and Java EE
applications.

To learn more about OPSS and its features, see Oracle Fusion Middleware Security Guide.

JDeveloper provides tools to support configuring Java EE security for web
applications and for deploying secure web applications to an application server
instance. A developer, while developing an application, can configure OPSS services
from JDeveloper through wizards and editors.

JDeveloper provides specific editors to create and edit Oracle Platform Security
configurations (jps-config.xml), JAAS configurations (jazn-data.xml), and
Web application deployment descriptors (web.xml). JDeveloper also supports direct
deployment of web applications to application servers. For more information, see
Securing Applications in Phases.

When you develop web applications you may choose to use Oracle Application
Development Framework (Oracle ADF) to work with data-aware components in the
user interface. When your user interface contains ADF resources, such as ADF task
flows and ADF page definitions, then you have the option to secure the web pages
that rely on those resources through the ADF Security framework. JDeveloper tools
support iterative development of security so you can easily create, test, and edit
security policies that you create for ADF resources. You can proceed to create test
users in JDeveloper and run the application in Integrated to simulate how end users
will access the secured resources. For more information, see. How to Secure ADF
Resources Using ADF Security in Fusion Web Applications.

For more information on web application security, see Oracle Fusion Middleware
Programming Security for Oracle WebLogic Server.

About Web Application Security and JDeveloper Support

Developing Secure Applications 19-3

Handling User Authentication in Web Applications
Authentication in declarative security is enforced when a user requests a protected
web application area.

About Authentication Type Choices
Authentication in declarative security is enforced when a user requests a protected
web application area. If the user has not been authenticated before, the container will
retrieve credentials from the user. Users stay authenticated throughout the server
session.

The supported types of authentication are: FORM based authentication, BASIC
authentication, and CLIENT-CERT authentication. The type of authentication is
specified in the web.xml deployment descriptor using the <login-config>
element.

BASIC authentication

BASIC authentication uses the browser login dialog for the user to enter his user name
and password. This dialog form cannot be customized and thus varies in its look and
feel depending on the type of browser used. The user credentials are stored in the
browser session for the authenticated realm. A realm is a repository that contains a set
of permissions for the authenticated user. The default realm in Oracle Platform
Security Services is jazn.com.

The code snippet below demonstrates how BASIC authentication is specified in the
web.xml file:

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>jazn.com</realm-name>
</login-config>

FORM authentication

FORM based authentication allows the application developer to specify a custom login
dialog. The username parameter must have a name of j_username, the password
field must be named j_password. The login form action must have a value of
j_security_check for the Java EE container to authenticate the request.

The code snippet below demonstrates how FORM authentication is specified in the
web.xml file:

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>loginform.jsp</form-login-page>
 <form-error-page>error.jsp</form-error-page>
 </form-login-config>
</login-config>

CLIENT-CERT authentication

CLIENT-CERT authentication uses the X.509 certificate to authenticate users. This type
of authentication is also known as public key encryption.

For more information about authentication type choices, see the Oracle Fusion
Middleware Security Guide.

Handling User Authentication in Web Applications

19-4 Developing Applications with Oracle JDeveloper

For more information about authentication type using Oracle WebLogic Server, see
Oracle Fusion Middleware Programming Security for Oracle WebLogic Server.

Encrypting Passwords for a Target Domain
As password encryption is specific to a domain, you must manually add the password
handling to the weblogic-jdbc.xml file. To encrypt a password, use the encrypt
utility (weblogic.security.Encrypt) for the domain to which you want to
deploy.

Note:

Passwords are domain-specific, so each time you want to deploy to a different
domain you must re-encrypt the password for the target domain

The XML code you need to add to the weblogic-jdbc.xml should look something like
this:

<password-encrypted>toystore</password-encrypted>

You can either put the clear text password or the encrypted password string in
between the tags. This element goes inside of the <jdbc-driver-params> element,
which will already be present in the weblogic-jdbc.xml if it has been edited using
the Overview Editor.

weblogic.security.Encrypt

The weblogic.security.Encrypt utility encrypts cleartext strings for use with .
The utility uses the encryption service of the current directory, or the encryption
service for a specified domain root directory.

Note:

An encrypted string must have been encrypted by the encryption service in
the domain where it will be used. If not, the server will not be able to decrypt
the string.

You can only run the weblogic.security.Encrypt utility on a machine that has
at least one server instance in a domain; it cannot be run from a client. Table 19-1
defines the arguments for the weblogic.security.Encrypt utility.

Note:

It is recommended that you run the utility from the Administration Server
domain directory or on the machine hosting the Administration Server and
specifying a domain root directory.

Syntax

java [-Dweblogic.RootDirectory= dirname]
[-Dweblogic.management.allowPasswordEcho=true]
weblogic.security.Encrypt [password]

Handling User Authentication in Web Applications

Developing Secure Applications 19-5

Table 19-1 Arguments for the weblogic.security.Encrypt utility

Argument Definition

weblogic.RootDirectory Optional. domain directory in which the
encrypted string will be used. If not specified,
the default domain root directory is the current
directory (the directory in which the utility is
being run).

weblogic.management.
allowPasswordEcho

Optional. Allows echoing characters entered
on the command line. weblogic.security.
Encrypt expects that no-echo is available; if no-
echo is not available, set this property to true.

password Optional. Cleartext string to be encrypted. If
omitted from the command line, you will be
prompted to enter a password.

Examples

The utility returns an encrypted string using the encryption service of the domain
located in the current directory:

java weblogic.security.Encrypt xxxxxx {3DES}Rd39isn4LLuF884Ns

The utility returns an encrypted string using the encryption service of the specified
domain location:

java -Dweblogic.RootDirectory=./mydomain weblogic.security.Encrypt xxxxxx
{3DES}hsikci118SKFnnw

The utility returns an encrypted string in the current directory, without echoing the
password:

java weblogic.security.Encrypt Password: {3DES}12hsIIn56KKKs3

How to Create an Identity Store
An identity store is a data store of users, enterprise roles (user groups), and login
credentials. The credentials are verified during authentication and used to authorize
the user's access to application functions.

Understanding Users, Roles, and Realms

A user is an end user accessing a service; it could be an individual or a software
component. A enterprise role is a collection of users that you group with the purpose
of conferring the same set of permissions. A realm is a collection of authenticated users
and enterprise roles.

For more information about users, enterprise roles, and realms, see the Oracle Fusion
Middleware Security Guide.

Understanding Identity Stores in JDeveloper

When you develop secure applications in JDeveloper, you work with a file-based data
store to define the users you wish to allow to log on. The advantage of defining a file-
based identity store through the jazn-data.xml file is that it supports easy testing
yet remains compatible with deployment to your production environment through

Handling User Authentication in Web Applications

19-6 Developing Applications with Oracle JDeveloper

migration to the system-jazn-data.xml file. It also avoids the complexity of
setting up and maintaining an Oracle Internet Directory service for the LDAP-based
identity store.

When you create a Fusion web application with Oracle ADF, the identity store will be
created automatically when you run the Configure ADF Security wizard.

Note:

The LDAP-based identity store is a design time feature in JDeveloper, and is
not available at runtime. JDeveloper's Integrated overrides any LDAP identity
store configuration.

For more information about identity stores, see the Oracle Fusion Middleware Security
Guide.

To create an identity store:

1. Double-click the jps-config.xml file in the Descriptors > META-INF folder in
the Application Resources panel of the Applications window.

2. Select the Identity Store tab in the jps-config.xml Overview Editor.

3. Click the Add a New Identity Store icon at the top of the page. The Create Identity
Store dialog opens.

4. Choose the desired type of identity store option:

• To create a file based identity store, choose XML-Based Identity Store, and
enter the name for the store. By default, the file name is idstore.xml.

• To create an LDAP based identity store, choose LDAP-Based Identity Store,
and enter the name for the store. By default, the file name is idstore.oid.

Note: The LDAP-based identity store is a design time feature in JDeveloper, and
is not available at runtime. The Integrated in JDeveloper overrides any LDAP
identity store configuration.

5. When you are done, click OK to close the dialog.

How to Add Test Users to the Identity Store
The identity store is an XML file and is used while authenticating users. There can be
an identity store at either the domain or application level.

To add users to the identity store:

1. Open the application in the Applications window.

2. Choose Application > Secure > Users to open the overview editor for the jazn-
data.xml file.

3. On the Users page, click the New User icon.

4. Enter the new user name and password.

5. Select the user from the Users list and enter further details, such as display name
and description.

Handling User Authentication in Web Applications

Developing Secure Applications 19-7

6. Save your changes to the jazn-data.xml file.

Managing Enterprise Roles in the Identity Store
An enterprise role is a set of users that you group with the intention of conferring the
same permission grants. You add enterprise roles to the identity store. You add
application roles to the policy store.

Note:

Before adding a user to an enterprise role, ensure that you have created users
in the identity store

How to Add Roles to the Identity Store

You can add roles to the identity store using the overview editor for the jazn-
data.xml file.

To add roles to the identity store:

1. Open your application in the Applications window.

2. Choose Application > Secure > Groups to open the Enterprise Roles page of the
overview editor for the jazn-data.xml file.

3. Under Enterprise Roles, click the New Role icon. The new role appears in the
Enterprise Roles list.

4. Select the role from the Enterprise Roles list and enter further details, such as
display name and description.

How to Manage Users Assigned to User Roles

You can manage roles in the identity store using the overview editor for the jazn-
data.xml file.

To manage users assigned to enterprise roles:

1. Open the Enterprise Roles page of the overview editor for jazn-data.xml file.

2. Select the role from the Enterprise Roles list, and then click the Members tab.

3. In the Members section, add or remove other members or roles.

How to View Assigned Enterprise Roles

You can view assigned roles in the identity store using the overview editor for the
jazn-data.xml file.

To view assigned enterprise roles:

1. Open the Enterprise Roles page of the overview editor for the jazn-data.xml
file.

2. Select the role from the Roles list, and then click the Assigned Roles tab.

How to Create a Credential Store
A credential store is a wallet-based file for storage of system credentials required by
Oracle Platform Security Services (OPSS) in connecting to external systems such as

Handling User Authentication in Web Applications

19-8 Developing Applications with Oracle JDeveloper

databases. In JDeveloper, the credential store is the cwallet.sso file. The file
contains all your OPSS-based credentials, and will be used in JDeveloper to store
credentials that you define for Oracle ADF security. This file is normally not edited
directly.

JDeveloper checks for the existence of a credential store service instance and creates
the store the first time the you create a connection, for example, a database connection,
in the Application Resources panel of the Applications window.

For more information about credential stores, see the Oracle Fusion Middleware Security
Guide.

To create a credential store:

1. Double-click the jps-config.xml file in the Descriptors > META-INF folder in
the Application Resources panel of the Applications window.

2. Select the Credential Store tab in the jps-config.xml Overview Editor.

3. Click the Add the Credential Store icon at the top of the page. The Create
Credential Store dialog opens.

4. Enter the name of credential store file, and click OK.

Note:

You can create only one credential store in an application.

How to Add a Login Module
A login module is a component that authenticates users and populates a subject with
principals. Login modules can be plugged in and used by applications without
changing application code. An application can use more than one login module.

The login authentication process occurs in two distinct phases:

1. The login module attempts to authenticate a user requesting, as necessary, a name
and a password or some other credential data; only if this phase succeeds, the
second phase is invoked.

2. The login module assigns relevant principals to a subject, which is eventually
used to perform some privileged action.

All login modules in a domain are configured in the file jps-config.xml using the
following elements:

• serviceProvider — to define a service provider for the login module.

• serviceInstance — to define one or more instances of the service provider

• jpsContext — to specify which instances to use

In JDeveloper, you can choose a pre-defined login module for your application, or
create a new custom login module. Table 19-2 contains the pre-defined login modules
that are available in JDeveloper:

Handling User Authentication in Web Applications

Developing Secure Applications 19-9

Table 19-2 Predefined Login Modules

Module Description

saml.loginmodule Used for SAML token assertion and implements the
oracle.security.jps.internal.jaas.module.saml.
JpsSAMLLoginModule class.

krb5.loginmodule Used for Kerberos token assertion and implements
com.sun.security.auth.module.Krb5LoginModule
class.

wss.digest.loginmodule Used to authenticate the digest based user name token based on
WSS Digest specification and implements
oracle.security.jps.internal.jaas.module.digest
.WSSDigestLoginModule. This is supported only for JSE use
cases

certificate.authenticator.
loginmodule

Used to assert the X509 certificates and implements
oracle.security.jps.internal.jaas.module.x509.X
509LoginModule class.

user.authentication.
loginmodule

Used to authenticate the user based on valid user name and
password, and implements
oracle.security.jps.internal.jaas.module.authen
tication.JpsUserAuthenticationLoginModule class

user.assertion.loginmodule Used to authenticate the user based on valid user name and
password, and implements
oracle.security.jps.internal.jaas.module.assert
ion.JpsUserAssertionLoginModule class.

idstore.loginmodule Used to authenticate JSE bases use cases and implements
oracle.security.jps.internal.jaas.module.
idstore.IdStoreLoginModule class

For more information about login modules, see the Oracle Fusion Middleware Security
Guide.

To add a login module:

1. Double-click the jps-config.xml file in the Descriptors > META-INF folder in
the Application Resources panel of the Applications window.

2. Select the Login Modules tab in the jps-config.xml Overview Editor.

3. Click the Choose from a list of pre-defined Login Modules icon at the top of the
page. The Add Login Modules dialog appears.

4. Select the checkbox of login modules you want to add. You can add more than
one login module in an application.

5. Click OK when you are done.

How to Authenticate Through a Custom Login Module
A key Oracle Platform Security component is the login service. Conceptually, the login
service is an adapter that ties the JAAS login module SPI

Handling User Authentication in Web Applications

19-10 Developing Applications with Oracle JDeveloper

(javax.security.auth.spi.LoginModule) to the Oracle Platform Security for
Java framework (OPSS).

The primary role of the login service is to enable JAAS login module implementations
to be configured and used in OPSS.

To add a custom login module:

1. Double-click the jps-config.xml file in the Descriptors > META-INF folder in
the Application Resources panel of the Applications window.

2. Select the Login Modules tab in the jps-config.xml Overview Editor.

3. Click the Create New Login Module button at the top of the page.

4. Enter the Login Module Name then click OK.

5. Enter the classname for the login module. To search for an existing classname
available to the project, click the Search button.

6. Select the Login Control Flag. This can be: REQUISITE, REQUIRED, SUFFICIENT,
or OPTIONAL.

7. Select the Log Level. This can be: FINE, FINER, FINEST, CONFIG, INFO,
WARNING, SEVERE.

8. Click Debug to define whether the login module will output debug messages.

9. Select Add All Roles to define whether all directly or indirectly granted roles of the
user are added to the subject after authentication using the login module.

10. Enter the names and values for any other properties required by the login modules.

How to Add a Key Store
A keystore is a repository of private keys and digital certificates.

If you have keys and certificates and wish to use them for secure services in your
application, JDeveloper allows you to import a Java Key Store, Oracle Wallet (from a
*.sso or *.p12 file), or PCKS12 file (from a *.p12 file). You cannot create a keystore
in JDeveloper.

For more information about key stores and key store providers, see the Oracle Fusion
Middleware Understanding Security for Oracle WebLogic Server guide.

To add a key store:

1. Double-click the jps-config.xml file in the Descriptors > META-INF folder in
the Application Resources panel of the Applications window.

2. Select the Key Stores tab in the jps-config.xml Overview Editor.

3. Click the Add a Key Store icon at the top of the page.

The Add Key Store dialog appears.

4. Import the keystore file and complete the required fields.

You can import a Java Key Store (from a *.jks file), Oracle Wallet (from a *.sso
or *.p12 file), or PCKS12 (from a *.p12 file) file as a key store.

Handling User Authentication in Web Applications

Developing Secure Applications 19-11

5. Click OK when you are done.

How to Enable an Anonymous Provider
The anonymous provider is an alternative to public pages in that unauthenticated
user access can have permissions assigned that are more fine grained than allowing
access to the whole (public) page.

Enabling the anonymous provider creates an anonymous JpsContext, which contains
the anonymous service instance and the anonymous login module. Anonymous
credentials will be used at runtime when the application user has not been
authenticated and the application allows some resources to be accessible without
authentication.

For more information about the anonymous provider, see the Oracle Fusion Middleware
Security Guide.

To enable an anonymous provider for a web application:

1. Double-click the jps-config.xml file in the Descriptors > META-INF folder in
the Application Resources panel of the Applications window.

2. Select the Anonymous Provider tab in the jps-config.xml Overview Editor.

3. Select Enable Anonymous Provider.

4. Select the Security Contexts tab and ensure that anonymous is automatically
chosen as the Anonymous Provider.

How to Add Credentials to Users in the Identity Store
Credentials contain the authentication password for a user. The credentials appear in
obfuscated form by default. Before adding credentials in the identity store, the
member users must first be defined for the identity store.

To add credentials to users in the identity store:

1. Open the application in the Applications window.

2. Choose Application > Secure > Users to open the Users page of the overview
editor for jazn-data.xml.

3. Select a user in the Users list, and add credentials to the Password field.

How to Choose the Authentication Type for the Web Application
Authentication in declarative security is enforced when a user requests a protected
web application area. If the user has not been authenticated before, the container will
retrieve credentials from the user. Users stay authenticated throughout the server
session.

The supported types of authentication are: FORM based authentication, BASIC
authentication, and CLIENT-CERT authentication. The type of authentication is
specified in the web.xml deployment descriptor using the <login-config>
element.

For more information on authentication types, see About Authentication Type
Choices.

To select the authentication type for the web application:

Handling User Authentication in Web Applications

19-12 Developing Applications with Oracle JDeveloper

1. Double-click the web.xml for the application in the Applications window.

2. Click the Security tab of the web.xml Overview Editor.

3. Expand the Login Authentication section and select the desired authentication
type.

Securing Application Resources in Web Applications
Web pages and other resources of the web application should be secured. Depending
on the type of application, you can secure your application in one of the two following
ways:

• For a Java EE web application, use Oracle Platform Security Services (OPSS) to
secure your web application.

• For an application developed using Oracle Application Development Framework
(ADF), use Oracle ADF Security to secure your application.

Using OPSS Security

The following tasks outline the process of securing an application using Java EE
security:

1. Specifying an authentication mechanism for users.

2. Managing users and groups in the realm.

3. Creating security roles for the application.

4. Mapping roles to users and groups.

Using Oracle ADF Security

You can use the Oracle ADF Security framework to provide authentication and
authorization services to the Fusion web application.

For more information about Oracle ADF security, see the “Enabling ADF Security in a
Fusion Web Application" chapter of the Oracle Fusion Developer's Guide for ADF.

How to Secure Application Resources Using the jazn-data.xml Overview Editor
JDeveloper enables you to secure your application resource types. The resource types
can be known, that is, recognized by JDeveloper, or you can create your own resource
type.

A resource type represents the type of a secured artifact, such as a flow, a job, or a web
service, and, essentially, it is a template for creating resources of a particular type. All
resources have an associated type and are filtered or grouped according to type.

To secure an application resource:

1. Open the application in the Applications window.

2. In the main menu, choose Application > Secure > Resource Grants to open the
Resource Grants page in the overview editor for the jazn-data.xml file.

3. In the Resource Type dropdown list, select the resource type you want to secure,
for example, Task Flow. The list will display all the resource types available in the
selected projects. You can also create a new resource type.

Securing Application Resources in Web Applications

Developing Secure Applications 19-13

4. Click the Select Source Project icon to select the source project. Instances of the
selected resource type from the selected source projects will be displayed in the
Resources list.

5. Add the grantees (application roles, enterprise roles, or code sources) that will be
granted the resource permissions. You can grant resource permissions to users,
application roles, enterprise roles, and code sources. Click the Add Grantee icon in
the Granted To list to add grantees.

6. In the Actions list, select the actions that will be allowed on the resource.

7. Save your changes to the jazn-data.xml file.

How to Secure ADF Resources Using ADF Security in Fusion Web Applications
Security policies that you define in a Fusion web application support fine-grained
access control for ADF security-aware resources, including ADF task flows and ADF
page definitions. To enable ADF security policies, you begin by running the Configure
ADF Security wizard on the user interface project.

After you enable ADF Security you must grant users access rights so that they may
view the web pages of the Fusion web application. Access rights that you grant users
are known as a security policy that you specify for the page's corresponding ADF
security-aware resource. Ultimately, it is the security policy on the ADF resource that
controls the user's ability to enter a task flow or view a web page:

• Do not define security policies for the individual web pages of a bounded task
flow. When the user accesses the bounded task flow, security for all pages will be
managed by the permissions you grant to the task flow. And, because the
individual web pages (with associated page definitions) will be inaccessible by
default, ADF Security prevents users from directly accessing the pages of the task
flow. This supports a well-defined security model for task flows that enforces a
single entry point for all users.

• Do define security policies for the individual web page only when the page is not a
constituent of a bounded task flow. Page-level security is checked for pages that
have an associated page definition binding file only if the page is directly accessed
or if it is accessed in an unbounded task flow.

ADF security policies are maintained in the file-based jazn-data.xml policy store.
Defining and updating ADF security policies in JDeveloper is supported by the
overview editor for this file. The resulting declarative ADF security policies are easy to
read.

The detailed steps for securing Oracle ADF resources are in the “Enabling ADF
Security in a Fusion Web Application" chapter of the Oracle Fusion Developer's Guide for
ADF.

To define security policies for ADF resources:

1. Enforce ADF Security for the application by running the Configure ADF Security
wizard.

2. Add application role names to the policy store.

3. Grant permission on the entire set of web pages contained in an ADF bounded
task flows.

Securing Application Resources in Web Applications

19-14 Developing Applications with Oracle JDeveloper

4. Grant permission on top-level web pages that are associated with an ADF page
definition file and that are not associated with a bounded task flow.

If your application contains top-level web pages that are not associated with an
ADF resource because they do not contain data-aware components, you can
optionally secure these pages too.

5. If necessary, grant permission on rows of data that are defined by an ADF entity
object.

6. Provision the identity store by adding the users who will login to test security.

7. Associate the test users you created with one or more application roles.

Configuring an Application-Level Policy Store
A Policy Store is the repository of application and enterprise policies. A policy
specifies the permissions granted to code running from a specific location.

An Application Policy Store is a repository of application policies together with
application roles, application policies, principals, and permissions. Application roles
can include application users and roles, and roles specific to the application (such as
administrative roles). A policy can use any of these roles or users as principals.
Similarly, a System Policy store is a repository of system policies, principals, and
permissions. A system policy store does not contain roles.

When you create a Fusion web application with Oracle ADF, the policy store will be
created automatically when you run the Configure ADF Security wizard.

The difference between an application policy store and a system policy store is in their
scope. An application policy store is constrained within an application limiting it's
accessibility, where as a system policy store can be accessed openly.

For more information on policy stores, see the Oracle Fusion Middleware Security Guide.

A Principal is an identity assigned to an entity; the entity could be a user or a role. A
Permission is a set of operations allowed for a group of entities; the entity could be a
principal too. A Grant, or a custom policy, includes permissions and principals. In
JDeveloper, you cannot create a principal or a permission without creating a grant.

How to Add Application Roles to an Application Policy Store
Application roles are specific to an application and defined in the application policy
store. They are used by the application directly (either a Java SE or Java EE
application) and are not necessarily known to the Java EE container. In the file-based
policy store in a jazn-data.xml file, these application roles are defined in <app-
role> elements under <policy-store>, and then written to system-jazn-
data.xml at the domain level during deployment.

To add application roles to the application policy store:

1. Open the application in the Applications window.

2. Choose Application > Secure > Application Roles to open the Application Roles
page of the overview editor for the jazn-data.xml file.

3. Click the Add icon to create a new application role as a peer or child of the
currently selected role, or to create a new role category. The new application role or
category is listed in the Roles list.

Configuring an Application-Level Policy Store

Developing Secure Applications 19-15

4. Enter details of the role or role category in the Name, Display Name, and
Description fields.

5. Save your changes to the jazn-data.xml file.

For more information, see the Oracle Fusion Middleware Securing Resources Using Roles
and Policies for Oracle WebLogic Server guide.

How to Add Member Users or Enterprise Roles to an Application Role
Deployment users and roles are defined in the security provider that you use. For the
file-based provider, deployment users and roles are defined in the jazn-data.xml
file.

Note:

Before adding member users or member roles to an application role, the
member users and member roles must first be defined for the identity store.

To add users or enterprise roles to an application role:

1. Open the application in the Applications window.

2. Choose Application > Secure > Application Roles to open the Application Roles
page in the overview editor for the jazn-data.xml file.

3. From the Application Roles list, select the application role, and then click the
Members tab.

4. To add a user, under Member Users and Roles, click the Add User or Role icon,
and select Add User.

5. To add an enterprise role, under Member Users and Roles, click the Add User or
Role icon, and select Add Enterprise Role.

6. Save your changes to the jazn-data.xml file.

How to Create Custom Resource Types
You can create custom resource types and specify them in the jazn-data.xml file.

A resource type represents the type of a secured artifact, such as a flow, a job, or a web
service, and, essentially, it is a template for creating resources of a particular type. All
resources have an associated type and are filtered or grouped according to type.

To create a custom resource type:

1. Open your application in the Applications window.

2. Choose Application > Secure > Resource Grants to open the Resource Grants page
of the overview editor for the jazn-data.xml file.

3. In the Resource Grants page, click the New Resource Type icon next to the
Resource Type field.

4. In the Create Resource Type dialog, specify the properties of the resource, such as
name, display name, and associated actions. The Actions list in the Create Resource

Configuring an Application-Level Policy Store

19-16 Developing Applications with Oracle JDeveloper

Type dialog is used to populate the checkable items list in the Resource Grants
page for resources of this type.

5. Save the jazn-data.xml file.

How to Add Resource Grants to the Application Policy Store
You can add application resource grants to an application policy store by updating the
Resource Grants page of the overview editor for jazn-data.xml.

A resource is an instance of a resource type that represents a concrete resource; it
defines an application resource that can be secured by a policy, such as software
components managed by a container (for example, URLs, EJBs, JSPs) or an application
business (for example, Reports, Transactions, Revenue Charts).

To add a resource grant for the application policy store:

1. Open your application in the Applications window.

2. Choose Application > Secure > Resource Grants to open the Resource Grants page
of the overview editor for the jazn-data.xml file.

3. To define the security policy, select an item in the Security Policy field. The
application security policy is selected by default. To define global resource grants,
select Global.

4. Select the resource type from the Resource Type dropdown menu, or click the
New Resource Type icon to create one.

5. For the resource types that are filtered by project, the Source Project selector is
enabled. You may need to change the source project selection to find the desired
resources.

6. The resources that belong to the selected resource type are listed in the Resources
list.

7. Manage the entities that the resource permissions have been granted to, by clicking
the Add Grantee icon in the Granted To list. You can grant to an application role, a
user, an enterprise role, or a code source.

8. View and select the actions allowed on the resource in the Actions list.

How to Add Entitlement Grants to the Application Policy Store
Using the Entitlement Grants page of the overview editor for jazn-data.xml, you
can define a set of resource permissions and grant those permissions to multiple
application roles without having to grant each permission to each application role
individually.

An entitlement is a collection of permissions. Typically, it encapsulates the list of
permissions needed to perform a given business function or task.

To add entitlement grants to an application policy store:

1. Open your application in the Applications window.

2. In the main menu, choose Application > Secure > Entitlement Grants to open the
Entitlement Grants page in the overview editor for the jazn-data.xml file.

3. To add an entitlement, click the Add Entitlement icon in the Entitlements list.

Configuring an Application-Level Policy Store

Developing Secure Applications 19-17

4. To add a member resource, click Resources, and in the Member Resources list,
click the Add Member Resource icon.

5. To select the application role to grant the entitlement to, select Grants and then
click the Add Role Grant icon. In the Select Application Roles dialog, you can
select an application role or create a new one.

6. Save the jazn-data.xml file.

Tips:

• You can view grants to resources that are members of an entitlement group
in the Resource Grants page by clicking the Show Grants from
Entitlements icon in the Granted To column. This option is selected by
default.

• You can also add member resources to new or existing entitlements from
the context menu in the Resource Grants page.

How to Create a Custom JAAS Permission Class
A new permission class is useful when you want to create your own JAAS permission
for a logical artifact type to secure. For example, although Oracle ADF already
provides built-in permission classes for the artifacts on which it enforces security
(including task flows, page definitions, entity objects, and entity attributes), you might
create a custom permission class for a set of UI components that you want to secure in
the user interface. Once this class is created, you can add enforcement checks using
Java, Expression Language (EL), or embedded Groovy expressions, and then you can
grant the new custom permission class to application roles by editing the jazn-
data.xml file directly. For example, you could define a security policy to limit access
to a menu that your application displays and then associate the rendering of the menu
with the user's granted custom permission using the EL value
userGrantedPermission on the component's rendered property.

To create a custom JAAS-compliant permission class:

1. Open your application in the Applications window.

2. From the main menu, select File > New to open the New Gallery.

3. In the New Gallery, under Categories, select Business Tier > Security.

4. Under Items, select JAAS Permission.

5. In the Create JAAS Permission dialog, enter the details of the custom permission
class. For any help from within the dialog, click Help or press F1.

How to Add Grants to the System Policy Store
Currently, this release does not provide an editor to add system permission grants to a
system policy store; you will need to manually add grants in the source code for jazn-
data.xml.

To add a grant to the system policy:

1. Open your application in the Applications window.

Configuring an Application-Level Policy Store

19-18 Developing Applications with Oracle JDeveloper

2. In the Applications window, double-click the jazn-data.xml to open the
overview editor.

3. Click Source to open the source editor.

4. In the source code, inside the <jazn-data> element, create a <jazn-policy>
element.

5. Inside the <jazn-policy> element create a <grant> element that defines the
<grantee> with the desired application role and the <permission> with the
fully qualified class name of the permission class, the name that you want to use as
the target for the grant, and the action that you want to grant to the application role
principal.

6. Save changes to the jazn-data.xml file.

Migrating the Policy Stores
JDeveloper is configured by default to deploy the security objects from your
application repositories to Integrated each time you run the application. You can
change this behavior by selecting security deployment options in the Application
Properties dialog to:

• Decide whether to overwrite the domain-level policies with those from the
application jazn-data.xml file.

• Decide whether to overwrite the system credentials from the application's
cwallet.sso file.

• Decide whether to migrate the identity store portion of the jazn-data.xml file to
the domain-level identity store.

If you make no changes to the deployment settings, each time you run the application,
JDeveloper will overwrite the domain-level security policies and system credentials.
Additionally, JDeveloper will migrate new user identities you create for test purposes
and update existing user passwords in the embedded LDAP server that Integrated
uses for its identity store. However, if you prefer to run the application without
updating the existing security objects in Integrated , you have this option.

How to Migrate the Policy Stores
When you are ready to deploy the application to standalone Oracle WebLogic Server,
you can use the same configuration settings to control how JDeveloper handles
migration of the security objects.

To configure deployment of security objects:

1. Choose Application > Secure > Configure Security Deployment to open the
Application Properties dialog.

2. In the Application Properties dialog, under Security Deployment Options, select
the security objects that you want to deploy with the application.

By default, each time your run the application, JDeveloper will overwrite the
application policies and credentials at the domain level with those from the
application. If you prefer not to overwrite either of these repositories, deselect
Application Policies or Credentials. When deselected, JDeveloper will merge only
new policies or credentials into the domain-level stores. For further details, see the
sections below.

Migrating the Policy Stores

Developing Secure Applications 19-19

By default, each time you run the application, JDeveloper will migrate new user
identities you create for test purposes and update existing user passwords in the
embedded LDAP server that Integrated uses for its identity store. You can disable
migration of the application identity store by deselecting Users and Groups. For
further details, see the sections below.

3. Click OK.

Migrating Application Policies
Application policies, specified in jazn-data.xml, can be migrated to a domain
policy store when the application is deployed to a server in the Oracle WebLogic
Server environment. If desired, the policies can also be removed from the domain
policy store when the application is undeployed, or updated when the application is
redeployed.

If Application Policies is selected in the Application Properties dialog, a
jps.policystore.migration property is set to OVERWRITE in the packaged
weblogic-application.xml when you deploy the application using JDeveloper. If
Application Policies is unselected, the jps.policystore.migration setting will
not be added to the packaged weblogic-application.xml, and will be removed if
it is already present. This causes the default operation MERGE to be used by Oracle
WebLogic Server. Merge will only migrate policies the first time the application is
deployed if they do not already exist. If the policies for the application already exist,
they will not be remigrated.

To find out more about automatic and manual migration of application policies, see
the Oracle Fusion Middleware Security Guide.

Migrating Credentials
When you migrate your application policies, you might also want to migrate your
credentials. Application credentials, specified in cwallet.sso, can be migrated to a
domain credential store when the application is deployed or redeployed to a managed
server in the WebLogic environment. Thus, credential migration includes the
passwords for all connections created within JDeveloper, including those created for
web services. (This is not related to user credentials specified in the identity store of
the jazn-data.xml file. See Migrating Users and Groups below for details about
identity store migration.)

If Credentials is selected in the Application Properties dialog, a
jps.policystore.migration property is set to OVERWRITE in the packaged
weblogic-application.xml when you deploy the application in JDeveloper. If
Credentials is unselected, the jps.policystore.migration setting will not be
added to the packaged weblogic-application.xml, and will be removed if it is
already present. This causes the default operation MERGE to be used by Oracle
WebLogic Server. Merge will only migrate credentials the first time the application is
deployed if they do not already exist. If the credentials for the application already
exist, they will not be remigrated.

The credential migration is possible only when the server is running in development
mode only. In production mode, credential overwrite is prohibited. Application
credentials must be manually migrated when you deploy using tools outside of
JDeveloper.

Migrating the Policy Stores

19-20 Developing Applications with Oracle JDeveloper

Migrating Users and Groups
Users and roles, specified in jazn-data.xml, can be migrated to a domain identity
store when the application is deployed to a server in the WebLogic environment.

If Users and Groups is selected in the Application Properties dialog, JDeveloper will
make calls when you deploy the application to create Oracle WebLogic Server users
and groups corresponding to the application's jazn-data.xml users and role. If the
user already exists in the domain store, only the description and password will be
remigrated during deployment. If a group exists in the domain store with the same
name as the roles in the jazn-data.xml file, it will be replaced entirely. If Users and
Groups is unselected, JDeveloper will not try to migrate the identity store from the
application jazn-data.xml.

Note:

Before migrating users and groups ensure that administrator roles (admin)
and users (weblogic) are not used in the application jazn-data.xml file so
that the domain identity store is not overwritten. When your application is
ready for deployment to a production environment, you should remove the
identities from the jazn-data.xml file or disable the migration of identities
by deselecting Users and Groups from the Application Properties dialog.

Securing Development with JDBC
A JDBC database connection created in JDeveloper derives its encryption properties
from the database client install on your machine. To create a secure connection using
JDBC:

• Configure encryption support using the OCI driver by setting parameters in the
sqlnet.ora file on your client machine.

• Use the thin JDBC driver to create a secure JDBC connection in JDeveloper. To do
this, select Enter Custom JDBC URL in step 3 (Connection page) of the Create
Database Connection Wizard, then enter your encryption parameters as part of a
custom JDBC URL, as shown below:

jdbc:oracle:thin:@(description
=(address=(protocol=tcp)(host=myhost)(port=1521))(connect_data=
(sid=ORCL)(SQLNET.ENCRYPTION_CLIENT=REQUIRED)(SQLNET.ENCRYPTION_TYPES_
CLIENT=DES40)(SQLNET.CRYPTO_CHECKSUM_CLIENT=REQUESTED)
(SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENTMD5=MD5)))

Securing Development with JDBC

Developing Secure Applications 19-21

Securing Development with JDBC

19-22 Developing Applications with Oracle JDeveloper

20
Developing Applications Using XML

This chapter describes how to create and update applications using the XML tools and
editors provided by JDeveloper.

This chapter includes the following sections:

• About Developing Applications Using XML

• Using the XML File Editors.

• Working with XML Schemas

• How to Import and Register XML Schemas

• How to Generate Java Classes from XML Schemas with JAXB

• Working with XSD Documents and Components

• Localizing with XML

• Developing Databound XML Pages with XSQL Servlet

About Developing Applications Using XML
JDeveloper provides you with the tools you need to work with the XML files in your
application. There is an XML source editor, an XML validator, and tools for working
with XML schemas. You can create your JSPX, XSD, XSQL, and configuration files
using the wizards, and edit your files in the XML editor.

Using the XML File Editors
There are three different editors for your XML files. Each editor has a specific function.

Table 20-1 XML File Editors

Editor Description

XML Editor A specialized schema-driven editor for editing XML languages,
including .xsql, .xsl, .xsd, .xhtml, and .wsdl files. To
open the editor, double-click a file type in the Applications
window. The Source tab displays the source code for the file,
which you can edit.

Overview Editor View and edit XML (.xml) files. Visually displays aspects of
your deployment-related XML files such as filters, security and
references. For more information, see Developing Applications
Using Web Page Tools.

Developing Applications Using XML 20-1

Table 20-1 (Cont.) XML File Editors

Editor Description

XSD Visual Editor Create or edit XML schemas. Visually displays the structure,
content, and semantics of an XML document. For more
information, see Working with XSD Documents and
Components.

Understanding XML Editing Features
Table 20-2 summarizes the editing features that are available when you're working
with XML files.

Table 20-2 XML Editing Features

Feature Purpose

Code Insight While you are typing, you can invoke Code Insight by pausing
after typing < (opening bracket) or by pressing Ctrl+Space if
you are using the default keymapping.

Code Insight opens a list with valid elements based on the
grammar. After selecting an element, enter a space and then
either pause or press Ctrl+Space to open a list of valid attributes
from which you can select. After you enter the opening quote
for the attribute value, either the required type of value or a list
of available values is provided.

XML Validation In an open XML Source Editor window, or in the Applications
window, right-click an XML file and choose Validate XML. The
Validate XML command will validate the XML against a
schema registered with JDeveloper defined in the XML file.

To register a schema with JDeveloper choose Tools >
Preferences > XML Schemas. This command on the context
menu is disabled whenever an XML file does not have an XML
namespace defined.

Quick Form Check Right-click on an XML file and choose Make to check for well-
formedness of the file.

XML Schemas Preferences Use the options on the XML Schemas page in the Preferences
dialog to view all the currently registered XML schemas, to add
new schemas, to support additional namespaces and elements,
to remove user-defined schemas, and to unload schemas from
memory.

To get to the Preferences dialog choose Tools > Preferences >
XML Schemas.

XML Preferences You can customize these features on the XML Preferences page.
Choose Tools > Preferences > Code Editor > XML and JSP/
HTML to display XML Preferences.

If Required Attribute Insertion is selected, the required
attributes of an element will also be inserted for you.

If End Tag Completion is selected, the end tag will be
automatically inserted when you close the start tag, for example
if you have <foo and you type the >,</foo> is added
automatically.

Using the XML File Editors

20-2 Developing Applications with Oracle JDeveloper

Table 20-2 (Cont.) XML Editing Features

Feature Purpose

Components Window Choose Window > Components to open the Components
window and select one of the available pages from the
dropdown list. For example, while editing XSD files, you can
select elements from the XML Schema pages on the window.

Properties Window The Properties window displays attributes of elements in the
file. You can edit the values of attributes in the Properties
window to update your file.

Structure Window A file's elements are displayed hierarchically in the Structure
window, which also displays any XML syntax errors found as
you type and edit. You can double-click on an element or error
to edit it in the XML editor.

Validate XML In an open XML editor window, or in the Applications
window, right-click an XML file and choose Validate XML. The
Validate XML command will validate the XML against the
schema defined in the XML file. It validates the XML
constraints and definitions but not XSDs. This context-menu
command is disabled whenever an XML file does not have an
XML namespace defined.

F2 Key After creating an XML schema, select an element in the
Structure window and press F2. The element now has focus in
the XML design editor. You are automatically able to input new
text for the element into the XML design editor.

Expand/Collapse
Attributes

You can expand or collapse attributes that display under the
complexType element. This is convenient because the list of
attributes that display under the element can be large.

Understanding the XML Editor Toolbar
Table 20-3 contains the icons that display on the XML Editor toolbar.

Table 20-3 XML Editor Toolbar Icons

Icon Name Description

Search (Crtl + F) Enter search text in the XML Editor. Click the down
arrow to view and set additional parameters for the
search, including Match Case to perform a case-
sensitive search, Whole Word to locate complete word
matches only, and Highlight Occurrences to use
shading to show the location of the match.

Find Next (F3) Click to locate the first occurrence of the text that meets
the specified parameters in the file.

Find Previous (Shift +
F3)

Click to locate the previous occurrence of the text that
meets the specified parameters in the file.

How to Set Editing Options for the XML Editor
The XML Editor has the following editing features:

Using the XML File Editors

Developing Applications Using XML 20-3

• Required Attribute Insertion - Required attributes that are associated with a tag
are added automatically to your code, when you add the tag.

• End Tag Completion - Automatically adds end tags when you close a start tag. For
example, in an XML file, if you type <foo>, </foo> is added automatically.

To customize editing options for the XML Editor:

1. Choose Tools > Preferences.

2. Expand the Code Editor node.

3. Select the JSP/XML/HTML node.

4. On the Code Editor - JSP/XML/HTML page, select an option.

5. Click OK.

Working with XML Schemas
XML schemas define the elements of your XML files. JDeveloper provides an XSD
Visual Editor that gives a visual representation of the structure, content, and semantics
of an XML document. Use the XSD Visual Editor to author a new XML schema (.xsd
file) or to edit an existing XML schema.

You can insert components into the XSD document using the Components window or
by right-clicking on a location in the XSD document.

The XML Schema component displays at the top of an XSD file, as shown in Figure
20-1. Right-click the element and select Properties to display a dialog for configuring
the schema namespaces.

Figure 20-1 XML Schema Component

JDeveloper supports various refactoring operations on XML Schemas, such as
changing the schema's target namespace and changing the base type on a simpletype
element that has facets. For more information, see Refactoring XML Schemas .

Working with Attributes in the XSD Visual Editor
You can create an XML schema's attributes and set properties and facets from using
the XSD Visual Editor. Figure 20-2 contains an example XML schema in the Design tab
of the XSD Visual Editor.

Working with XML Schemas

20-4 Developing Applications with Oracle JDeveloper

Figure 20-2 Schema in XSD Visual Editor

You can edit attributes in attribute2 in the attribute editor, which is displayed in
Figure 20-2 as the union element. In this editor, you can:

• Display all available attributes under an element. To hide or display details, click
the plus and minus signs next to the attribute.

• Display all facets and type details of an attribute display in the attribute node.

• Display the default "Insert Into" menu with the valid schema components (for
example, union) when you right-click on an attribute node.

• Expand an attribute node within to display a subtler containing child nodes like list
or union.

What Happens When You Create an XML Schema in the XSD Visual Editor
As you create an XML Schema in the XSD visual editor, JDeveloper automatically
updates the XML source in the design tab, as well as updating the contents of the
Structure window. The following is the source for the example.xsd file shown in
Figure 20-2.

<?xml version="1.0" encoding="windows-1252" ?>
 xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://
www.example.org"
 targetNamespace="http://www.example.org"
<elementFormDefault="qualified">
 <xsd:complexType name="UnionTest">
 <xsd:sequence>
 <xsd:element name="element1">
 <xsd:complexType>
 <xsd:attribute name="attribute1">
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="element2">
 <xsd:complexType>
 <xsd:attribute name="attribute2">
 <xsd:simpleType>
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:union/>
 </xsd:simpleType>
 <xsd:pattern value="abcd"/>

Working with XML Schemas

Developing Applications Using XML 20-5

 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>
</xsd:schema>

Selecting XSD Components
The selection of any component or attribute in the editor is indicated by highlighting
the selected item in blue. In Figure 20-3, the selected simpleType component
defines a simple type and specifies the constraints and information about the values of
attributes or text-only components, in this case restricting the string type.

Figure 20-3 simpleType Component

Choice Component
The choice component allows only one of the components contained in the <choice>
declaration to be present within the containing component, as shown in Figure 20-4.
Set attribute maxOccurs to >1 to have more than one item from the choice in the
parent.

Figure 20-4 Choice Component

?xml version="1.0" encoding="windows-1252" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://
www.example.org"
 targetNamespace="http://www.example.org" elementFormDefault="qualified">
 <xsd:element name="choice">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="one"/>
 <xsd:element name="two"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

All Component
The all component shown in Figure 20-5 specifies that the child components can
appear in any order and that each child component can occur zero or one times.

Figure 20-5 All Component

<?xml version="1.0" encoding="windows-1252" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://

Working with XML Schemas

20-6 Developing Applications with Oracle JDeveloper

www.example.org"
 targetNamespace="http://www.example.org" elementFormDefault="qualified">
 <xsd:element name="all">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="one"/>
 <xsd:element name="two"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Sequence Component
The sequence component shown in Figure 20-6 specifies that the child components
must appear in a sequence. Each child component can occur from 0 to any number of
times.

Figure 20-6 Sequence Component

<?xml version="1.0" encoding="windows-1252" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://
www.example.org"
 targetNamespace="http://www.example.org" elementFormDefault="qualified">
 <xsd:element name="all">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="one"/>
 <xsd:element name="two"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Cardinality and Ordinality
In the example of cardinality shown in Figure 20-7, components are displayed with the
attributes shown in Table 20-4.

Figure 20-7 Cardinality Component

Table 20-4 Cardinality Display

Component Display

Required components
(minOccurs=">0")

Display with a solid line.

Working with XML Schemas

Developing Applications Using XML 20-7

Table 20-4 (Cont.) Cardinality Display

Component Display

Optional components
(minOccurs="0")

Display with a dotted line.

Unbounded components
(maxOccurs="unbounded")

Display an infinity symbol in the component stack number.
Any component that can appear more than once is displayed as
a "stack" of components.

In the numbers to the left of the component, the number before
the colon indicates the minimum number of times the
component can occur (minOccurs). The number after the colon
indicates the maximum number of times the component can
occur (maxOccurs).

In Figure 20-7, the maximum is unbounded so an infinity
symbol is displayed.

Range of components Display in the component stack number. In Figure 20-7, the
component must appear at least 2 times in the instance
document, but no more than 7.

ComplexType Component
In Figure 20-8, the complexType component extends a base type, and inherits an
attribute and children from that base type. The yellow background represents a
reference to the baseType defined elsewhere in the schema and illustrated below the
complexType component. The component attributes are displayed as:

• Inherited, marked with a square.

• Optional, marked with a square.

• Required, marked with an orange asterisk.

• Prohibited, marked with an orange X.

Figure 20-8 complexType Component

Attribute Group Component
The attribute group component groups a set of attribute declarations so that they can
be incorporated as a group into complex type definition.

Figure 20-9 displays three attribute groups.

Working with XML Schemas

20-8 Developing Applications with Oracle JDeveloper

Figure 20-9 Attribute Group Component

If you add an element to a schema that has multiple attributeGroups, you can add
choose one or more attributeGroups for the element by clicking on the element's
attribute and choosing from a drop-down list.

Union Component
The union component defines a simple type as a collection (union) of values from
specified simple data types. In Figure 20-10, the union represents all strings that begin
with the letter "i".

Figure 20-10 Union Component

List Component
The list component defines a simple type component as a space separated list of values
of a specified data type. In Figure 20-11, the component represents a series of short
value objects.

Figure 20-11 List Component

Working with XML Schema Substitution Groups
One element can substitute for another element in an XML Schema group. If you have
a set of XML Schemas that use the substitution group feature, ensure that the XML
Schema that defines the head of the substitution group is loaded before loading
additional schemas that place elements into that substitution group.

For example, you might have an XML Schema named A.xsd that contains

<element name="A"/>

and another XML Schema named B.xsd that contains

<element name="B" substitutionGroup="namespaceForA:A" />

Ensure that one of the following is true:

• You call SchemaGrammarProvider.add(A.xsd) before calling
SchemaGrammarProvider.add(B.xsd). Or,

Working with XML Schemas

Developing Applications Using XML 20-9

• B.xsd contains an import or include statement with a schemaLocation attribute
that contains a valid path to A.xsd.

How to Import and Register XML Schemas
Use the options on the XML Schemas page in the Preferences dialog to view all the
currently registered XML schemas, add new schemas to support additional
namespaces and elements, remove user-defined schemas, and unload schemas from
memory.

JDeveloper automatically validates the schema when you add or modify it.

To import and register an XML schema:

1. From the main menu, choose Tools > Preferences.

2. Select the XML Schemas node.

3. Click Add to open the Add Schema dialog where you can specify a new schema to
add to the list of user schemas.

4. Enter the name and location of the XML Schema file you are adding in the Add a
Schema from the file system or a URL field.

5. Enter the file extension to register the schema for a specific file type in the
Extension field.

JDeveloper uses the extension to efficiently load the schema into memory and to
display automatically created Components window pages based on the items in
the schema.

6. Click OK.

JDeveloper automatically validates the schema when you add it.

7. Confirm that the new schema has been added in the User Schemas for XML
Editing list and click OK.

Tips:

You can only remove user-defined schemas with the Remove button.

If a schema changes, you must use the Clear Cache button to unload all
currently loaded schemas from memory. JDeveloper will then reload any
needed schemas including the modified schema.

How to Generate Java Classes from XML Schemas with JAXB
In JDeveloper you can use JAXB (Java Architecture for XML Binding) to generate Java
classes from XML schemas. JAXB is an easy way to incorporate XML data and
processing functions in Java applications without having to know XML. You can
generate a JAXB 1.0 or 2.0 content model, including the necessary annotations, from an
XML schema.

When the JAXB binding compiler is run against an XML schema, JAXB packages,
classes, and interfaces are generated. You can then use the generated JAXB packages
and the JAXB utility packages in a binding framework to unmarshal, marshal, and
validate XML content.

How to Import and Register XML Schemas

20-10 Developing Applications with Oracle JDeveloper

To generate Java classes from XML schemas with JAXB:

1. From the main menu choose File > New > From Gallery >Business Tier >
TopLink/JPA and select either JAXB 1.0 or 2.0 Content Model from XML Schema
to open the compilation dialog.

2. Select the schema file and optionally the JAXB customization file to use and the
package to which the generated classes will be added.

The JAXB package and generated classes are added to the Application Resources
folder.

Working with XSD Documents and Components
Use the XSD Visual Editor or Design structure window to work with XML Schema
files (.xsd files) and components. By default, new schema files are opened with the
XSD Visual Editor in focus.

Double-clicking a file in the Applications window opens or brings the default editor
on the Design tab to the foreground. Clicking the Source tab opens the file in the XML
Source Editor. Changes made in one editor are automatically updated in the other
editor

How to Display a Schema in Both Editors
Edit a schema file (.xsd) simultaneously in the visual and source editors by opening
the page in one of the editors and using the splitter to open a second page view in the
alternate editor.

To display a schema file in both editors:

• To split the file horizontally, grab the splitter just above the vertical scroll bar (on
the upper right-hand side of the window) and drag it downward.

• To split the file vertically, grab the splitter just to the right of the horizontal scroll
bar (on the lower right-hand side of the window) and drag it left.

How to Create an Image of the XSD Visual Editor Design Tab
You can create the design tab of the XSD Visual Editor as an image. You can then
share the image as a file or print out or image with others.

Supported image formats are .svg, .svgz, .jpg, and .png.

To save the XSD editor design tab as an image:

1. In the Applications window, double click the .xsd file you want to display in the
XSD Visual Editor.

2. Click the Design tab in the XSD Visual Editor.

A design view of the .xsd file displays, similar to Developing Databound XML
Pages with XSQL Servlet.

Working with XSD Documents and Components

Developing Applications Using XML 20-11

Figure 20-12 Design Tab in XSD Visual Editor

3. Right-click anywhere on the Design tab and choose Publish Diagram.

4. Enter a name, the path where you want to save the diagram, and the image type.

Note:

If the diagram you are attempting to save is too large, a message displays to
save in .svg format.

If you right-click on a node in the XSD Visual Editor, only the current node
and its child nodes are saved as an image.

How to Navigate with Grab Scroll in the XSD Visual Editor
In the XSD Visual Editor, you can quickly navigate an XML Schema that displays with
scroll bars using a grab scroll operation. Use the grab scroll to invoke a small hand
cursor to grab an XML Schema page and drag it inside the editor window.

To navigate using grab scroll in an XML Schema:

1. In the XSD Visual Editor, press and hold down the spacebar.

The pointer turns into an open hand cursor.

2. Press and hold down the left mouse button.

The hand closes and grabs the XML Schema page.

3. Use your mouse to move the XML Schema page inside the editor window.

4. Release the XML Schema page by releasing the left mouse button.

5. Close grab scroll by releasing the spacebar.

How to Expand and Collapse the XSD Component Display
While working in the XSD Visual Editor or Design structure window, you can expand
or collapse XSD components to display children components or collapse container
components to create a higher level view of the schema.

• Click the + (plus) sign of the parent component to expand one level beyond the
parent component.

• Click the - (minus) sign of the parent component to collapse all levels below the
parent component.

Working with XSD Documents and Components

20-12 Developing Applications with Oracle JDeveloper

• Press Ctrl + *, using the * on the numeric keypad of the keyboard to expand all
parent components in the schema. Keep in mind that this view can be very large.

How to Zoom In and Out in the XSD Visual Editor
Zooming enables you to magnify (zoom in) or shrink (zoom out) on the display of an
XML Schema in the XSD Visual Editor. After placing your cursor in the area of the
XML Schema you want to magnify

• Press Ctrl+Plus to zoom in. You can also use the Plus key on the numeric keypad of
the keyboard

• Press Ctrl+Minus to zoom out. You can also use the Minus key on the numeric
keypad of the keyboard.

How to Select XSD Components
One of the most common actions you perform in the editor is to select components.
you will select components to:

• Edit properties

• Move components

• Delete components

• Choose a target position to insert another component

Escalating a Single Component

You can select a single component without children.

To select a single component, click the component.

If the selected component contains children, selecting the component also selects all its
children. If you copy, move, or delete the parent, all its children are also copied,
moved, or deleted.

Tip:

Double-clicking an XSD component in the XSD Visual Editor displays the
Properties window for the component.

Selecting Multiple Components

You can select a component along with its children, or multiple components.

To select multiple components:

1. Click the first component.

2. Press and hold down the Ctrl key.

3. Click any additional components.

If you want to deselect one without losing the other selections, continue to hold
down the Ctrl key and click the component again.

Working with XSD Documents and Components

Developing Applications Using XML 20-13

Note:

Selecting multiple, non-adjacent components for any reason other than
deleting them can lead to unexpected results. For example, if the components
exist at different levels in the schema hierarchy, they can lose their relative
hierarchical positions if you move or copy them to another position in the
schema page.

In the XSD Visual Editor it is possible to select a container component (and
thereby select its children) and also explicitly select one or more of the
children. That means that any explicitly selected child is selected twice. If you
do this and then copy and past the selection, the double-selected child will be
pasted twice, once as a child to the copied parent and once as a peer to the
copied parent.

What Happens When You Select a Component in the XSD Visual Editor
When you select a component in the XSD Visual Editor, the component displays in
blue. When a container component is selected and any of its children, all are blue.

When selected in the Structure window, the component is highlighted. However,
when you select any components with children, the children are also selected. If you
delete or move the parent, all the children are deleted or moved.

Whenever you select an component, you are also selecting a position in which another
component can be inserted. For more information, see How to Select Target Positions
for XSD Components.

Tips:

When you pass the mouse pointer over a component, a tooltip with the
component's name is displayed.

When you select a component in the XSD Visual Editor, it is also selected in
the Design and Source view of Structure window, and vice versa. You can
look at the selection in both tools to clarify what is selected and where the
insertion position is.

The status bar explicitly states the insertion point for a selected component.

How to Select Target Positions for XSD Components
While inserting, copying, or moving XSD components in the XSD Visual Editor or
Structure window (Design or Source view), you need to select a target position in
relation to the node on which you are performing the activity. The possible target
positions on a node are before, after, and inside.

To select a target position, do one of the following:

• Select the target position by clicking the node.

• When dropping a component at a target position, do one of the following:

– To insert a component before a target node, drag it towards the top of the node
until you see a solid horizontal line (in the Visual Editor) or horizontal line with
an embedded up arrow (in the Structure window), then release the mouse
button.

Working with XSD Documents and Components

20-14 Developing Applications with Oracle JDeveloper

– To insert a component after a target node, drag it towards the bottom of the
node until you see a solid horizontal line (in the Visual Editor) or a horizontal
line with an embedded down arrow (structure), then release the mouse button.

– To insert a component inside a target node, drag it over the node until it is
surrounded by a box outline, then release the mouse button. This target position
is available only on nodes that can contain child nodes.

• When using the context menu to select a target position, right-click the target node,
choose an option, and then select a component. Table 20-5 summarizes the options.

Table 20-5 Target Position Options

Option Description

Insert before
<component>

Inserts a component before the selected node.

Insert inside
<component>

Inserts a component inside (under) the selected node

Insert after <component> Inserts a component after the selected node

Not all options are always available. Choosing an option displays a submenu from
which you can choose a component list and then select the component you desire.
Depending on the node you select, the submenu may also contain one or more
components that are eligible for insertion inside the selected node.

Note:

When you select a target position in the Design or Source views in the
Structure window, the selection is also reflected in the XSD Visual Editor, and
vice versa. This enables you to verify the insertion position visually as well as
hierarchically. The selection is also explicitly stated in the status bar at the
bottom of the JDeveloper window.

How to Insert XSD Components
In the XSD Visual Editor and Structure window you can also insert XSD components
by copying or by cutting and pasting. If you are cutting and pasting, you can insert
multiple components at a time.

Note:

Pasting multiple components that were copied from different places in the
XML schema hierarchy can lead to unexpected results.

Inserting XSD Components Using the Components Window

You can insert XSD components by dragging from the Components window or by
using a context menu. You can also select the target position in the visual editor or
Structure window and then click the component in the Components window.

To insert XSD components using the Components Window:

Working with XSD Documents and Components

Developing Applications Using XML 20-15

1. In the XSD Visual Editor or Structure window, locate the position where you wish
to insert a component. You may have to expand nodes in the Structure window to
uncover the node you want.

2. In the Components window, select an XSD component list from the dropdown list
box, and then drag the component from the list and drop into the desired target
position in the XSD Visual Editor or Structure window.

Inserting XSD Components Using the Context Menu

You can also right-click to display a context menu with options for inserting XSD
components.

To insert XSD components using the context menu:

1. In the XSD Visual Editor or Structure window, right-click the node to display a
context menu. You may have to expand nodes to uncover the node you want.

2. Choose an option in the context menu, and then select a component.

How to Cut XSD Components
When you cut a component, it is removed from the editor and placed into a local
clipboard accessible only by JDeveloper, not to the system clipboard. If you quit
without pasting the component, the cut version of the component is lost.

You can cut, copy, and paste between files of the same project or different projects.

Deleting a component removes it without changing the contents. If you get in the habit
of using the cut command to remove items permanently, there is a chance that one day
you will inadvertently replace something in the clipboard that you would rather have
kept. For more information, see How to Delete XSD Components .

To cut one or more components:

1. Select the XSD component you want to cut in the visual editor or the Structure
window.

2. Do one of the following:

• Press Ctrl+X.

• Right-click and select Cut.

• Choose Edit > Cut from the main menu.

How to Copy XSD Components
You can copy XSD components in the visual editor or the Structure window. You can
cut, copy, and paste between files of the same project or different projects.

To copy one or more components:

1. Select the XSD component in the visual editor.

2. Do one of the following:

• Press Ctrl+C.

• Right-click and select Copy.

Working with XSD Documents and Components

20-16 Developing Applications with Oracle JDeveloper

• Choose Edit > Copy from the main menu.

• Hold down the Ctrl key and drag a copy of the selected component to a target
position.

How to Delete XSD Components
You can remove components from your XML Schema in the XSD Visual Editor or
Structure (Design or Source view) window. When you delete a component, JDeveloper
deletes the associated lines from the source code.

To delete one or more XSD components:

1. Select one or more XSD components to delete in the visual editor. For more
information, see How to Select XSD Components .

2. Do one of the following:

• Press the Delete key.

• Press Ctrl+X.

• Right-click and select Delete.

• Choose Edit > Delete from the main menu.

How to Paste XSD Elements
The elements you cut or copy from the XSD Visual Editor or Structure window can be
pasted into any other XSD file in the application. For more information, see How to
Select Target Positions for XSD Components.

You can cut, copy, and paste between files of the same project or different projects.

To paste an element:

1. Open the file.

2. Select the insertion point where you want to paste the element.

3. Do one of the following:

• Press Ctrl+V.

• Right-click and select Paste.

• Choose Edit > Paste.

How to Move XSD Components
You can work in the visual editor or the Structure window to move components or
work in both at once, moving components between the editors.

You can move one or multiple components at a time. However, selecting and moving
multiple, non-adjacent components or multiple components from different levels in
the schema hierarchy can lead to unexpected results.

Moving Components by Dragging

You can move an XSD component to a new insertion point in the XSD Visual Editor or
Structure (Design or Source view) window by dragging.

Working with XSD Documents and Components

Developing Applications Using XML 20-17

To move components by dragging:

Do either of the following:

• Drag the component(s) from the original position to a target position in the visual
editor or Structure window. For more information, see How to Select Target
Positions for XSD Components.

• Right-click and drag the component(s) from its original position to an insertion
point. Choose Move Nodes Here from the context menu.

Moving Components by Cutting and Pasting

You can move an XSD component to a valid insertion point in another file in the same
project or a different project by cutting and pasting. For more information, see How to
Select XSD Components .

To move components by cutting and pasting:

Do either of the following:

• Cut the component(s). Then, paste it into some other position in the visual editor or
Schema structure window.

• Cut the component(s). Then, paste it into another file in the same project or a
different project.

Note:

The selected components and all of its child components are moved to the
new target position.

How to Set and Modify XSD Component Properties
The Properties window displays the properties of XSD components selected. Use the
Properties window to set or modify the property values for any component in your
XML Schema. Set property values are marked with a green square.

Choose Edit > Undo Change Attribute from the main menu.

To change a property back to its default setting, click on the down arrow next to the
property, and choose Reset to Default.

To set a component's properties:

1. With an XML Schema open, select a component.

The Properties window displays the property values. If the Properties window is
not in view, choose View > Properties window or use the shortcut Ctrl+Shift+I.

2. Scroll until the property is visible, then select it with the mouse or arrow keys.

A brief description of the property is displayed at the bottom of the Properties
window.

Tip:

To quickly locate a property in a long list, click the search button in the
Properties window toolbar. In the Find text field, enter the name of the
property, then press Enter.

Working with XSD Documents and Components

20-18 Developing Applications with Oracle JDeveloper

3. In the right column, enter one of the property values shown in Table 20-6.

Table 20-6 Property Values

Field Description

Text field Enter the string value for that property, for example a text
value or a number value, then press Enter.

Value field with a down
arrow

Click the down arrow and choose a value from the list, then
press Enter

Value field with an ellipsis
(...)

Click the ellipsis to display an editor for that property. Set
the values in the property editor, then press OK.

Tips:

Double-click an XSD component or right-click the component and choose
Properties to display a property editor for the component.

In the property editor select an attribute and view a brief description in the
status area below the editor.

Click Help in the property editor for a link to a component reference topic.

How to Set Properties for Multiple XSD Components
If you have multiple components selected, by default the Properties window displays
all the properties of the selected components. Click the Union button in the Properties
window toolbar to toggle between displaying all the properties of the selected
components (union) and displaying only the properties that the selected components
have in common (intersection). Values represented in italic font indicate common
properties that have differing values.

To set properties for multiple components:

1. Hold down the Ctrl key and select each of the components.

2. Select and edit the desired property in the Properties window.

If the value is shown in italic font, the selected components have differing values.
Editing the value of a shared property will cause all selected components to have
the same value.

Localizing with XML
JDeveloper has tools to support full localization for your application based on XML-
based XLIFF technology. XLIFF supports a full localization process by providing tags
and attributes that hold the data your translators and vendors will use when you
internationalize your application.

For more information on XLIFF, see the OASIS open standard website at, http://
www.oasis-open.org/home/index.php

To create a new XLIFF file:

• Choose File menu >New > From Gallery > General > XML > XML Localization
File.

Localizing with XML

Developing Applications Using XML 20-19

http://www.oasis-open.org/home/index.php
http://www.oasis-open.org/home/index.php

What You May Need to Know About XLIFF Files
The main elements in an XLIFF file are the trans-unit elements. These elements store
localizable text and its translations. These elements represent segments (usually
sentences in the source file that can be translated reasonably independently). The
trans-unit elements contain source, target, alt-trans, and a handful of other elements.

There are also elements for review comments, the translation status of individual
strings, and metrics such as word counts of the source sentences. The XLIFF file
consists of one or more file elements. Each of these contains a header and a body
section. The header contains project data, such as contact information, project phases,
pointers to reference material, and information on the skeleton file.

JDeveloper uses Resource Bundles to hold all of the localization information, including
the XLIFF files. When you create content in a JSF page, a resource bundle is
automatically created for you in that project.

Developing Databound XML Pages with XSQL Servlet
You will find a complete development environment to simplify the task of developing
databound XML pages with XSQL servlet. XSQL servlet lets you create and use XSQL
pages as clients. These pages are written in XML with embedded SQL queries and
other data manipulation language (DML) statements. In addition, you can use action
handlers to provide more functionality than SQL, such as writing the XML data to a
file.

Table 20-7 shows the logical layers in an XSQL Servlet application.

Table 20-7 XSQL Servlet Logical Layers

Layer Description

Client XSQL pages take care of querying and getting data by using
XML with embedded SQL. To present the data, you need to
convert the XML data to another form, such as HTML, wireless
markup language (WML), and so on. You can write XSL style
sheets to convert XML to any of these languages.

XSQL Servlet in a Web
Servlet

The servlet uses the XML SQL Utility to talk to a database.

Business Logic Tier You can optionally use a Business Components for Java tier to
access and modify data.

Database You can use any database supporting JDBC 2.0 drivers.

Supporting XSQL Servlet Clients
Support for XSQL Servlet includes the following:

• XSQL tags on the Components window

• Create XSQL pages automatically

• Includes XSQL libraries

• Provides XSQLConfig.xml on the classpath; you can modify it as needed

Developing Databound XML Pages with XSQL Servlet

20-20 Developing Applications with Oracle JDeveloper

• Provides business component action handler tags so XSQL pages can use a
business logic tier to access data

How Can You Use XSQL Servlet?
XSQL servlets offer a simple and productive way to get XML in and out of the
database. Using simple scripts you can:

• Generate simple or complex XML documents

• Apply XSL style sheets to generate any text format

• Parse XML documents and store the data in the database

• Create complete dynamic web applications without programming a single line of
code

For example, the emp.xsql file below:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="emp.xsl"?>
<FAQ xmlns:xsql="urn:oracle-xsql" connection = "scott">
 <xsql:query doc-element="EMPLOYEES" row-element="EMP">
 select e.ename, e.sal, d.dname as department
 from dept d, emp e
 where d.deptno = e.deptno
 </xsql:query>
</FAQ>

Generates the XML in below:

<EMPLOYEES>
 <EMP>
 <ENAME>Scott</ENAME>
 <SAL>1000</SAL>
 <DEPARTMENT>Boston</DEPARTMENT>
 </EMP>
 <EMP>
...
 </EMP>
</EMPLOYEES>

For more information on XSQL Servlet, see your Oracle10i documentation.

How to Create an XSQL File
Using the wizard to create an XSQL file adds a skeleton file named untitled#.xsql
to your project, which opens in the XML Editor. You can type code in this editor, add
tags by selecting them from the Components window, and modify the file with your
own style sheet information.

To create an XSQL file:

1. In the Applications window, select the project in which you want to create the
new XSQL page.

2. Choose File > New > From Gallery.

3. In the Categories tree, expand General and select XML.

4. In the Items list, double-click XSQL File.

Developing Databound XML Pages with XSQL Servlet

Developing Applications Using XML 20-21

How to Edit XML Files with XSQL Tags
The XML Editor supports syntax highlighting in the Structure window view, and the
Properties window. You can also select tags from the Components window to insert in
your pages while you are editing.

To use the XML Editor to edit an XSQL file:

1. In the Applications window, double-click right-click an XSQL file.

2. Select the Source tab of the editor.

3. Choose View > Components window to open the Components window and select
the XSQL tag page from the dropdown list in the window. You can then select
XSQL tags from the window.

4. While you are typing, you can invoke Code Insight by pausing after typing the <
(opening bracket) or by pressing Ctrl+Space (if you are using the default
keymapping). Code Insight opens a list with valid tags.

5. After selecting a tag, enter a space and then either pause or press Ctrl+Space to
open a list of valid attributes from which you can select. After you enter the
opening quote for the attribute value, Tip Insight displays the type of value that is
required.

6. While you are editing, or after you finish, you can right-click in the file and choose
Auto Indent XML to correctly indent the file.

7. You can also right-click in any tag and choose Locate in Structure to highlight that
tag in the Structure window.

How to Check the Syntax in XSQL Files
You can check your XSQL file to determine if it is a well-formed XML document and if
not, to find any errors. Errors display in the XML Validation Errors tab of the Log.

To check the syntax in an XSQL file:

• In the Applications window, or in an open XML Editor window, right-click an
XSQL file and choose Validate XML.

Note:

The Validate XML command on this context menu is disabled whenever an
XML file does not have an XML namespace defined.

How to Create XSQL Servlet Clients that Access the Database
You can create XML-based clients for XSQL servlets using XSQL tags. XSQL servlets
allow you to easily get data in and out of the database in XML format. This procedure
shows how to use the XSQL Query tag to display data.

To create an XSQL servlet client that directly accesses the database:

1. Select a project in the Applications window and choose File > New > Gallery.

2. In the Categories list, select General and select XML.

Developing Databound XML Pages with XSQL Servlet

20-22 Developing Applications with Oracle JDeveloper

3. In the Items list, double-click XSQL File.

This adds a skeleton XSQL file named untitled#.xsql to your project.

4. In the Applications window, double click the new XSQL file to open the editor.

5. Place your cursor in the blank line after the <page xmlns:xsql="urn:oracle-
xsql"> tag.

6. Choose View > Components window to open the Components window if it is not
displayed.

7. Select XSQL Tags from the dropdown list in the Components window if it is not
displayed.

8. Select the Query tag from the Components window.

The Query tag executes a SQL statement and includes its result set in XML format

9. In the dialog that displays, you can enter values and change default values for the
attributes. Press F1 or click Help in the dialog to get help on the tag and its
attributes.

10. After entering attributes, click Next.

11. In the Connection Selection dialog, select your connection if it is not selected, then
click Next.

12. In the Query dialog, type the SQL statement that you want to execute, then click
Next.

For example, you might type select * from customer to display all the records
in the customer database, based on the attributes you entered.

13. Click Finish.

Notice that the Query tag and attributes you entered appear in the XSQL page.

14. Choose File > Save All to save your work thus far.

15. Right-click the XSQL file in the Applications window, and choose Run
<filename>.xsql to view the raw XML data in your web browser.

You can format the XML data with a style sheet. The XML data also can be passed on
to another application through a messaging service.

Creating XSQL Servlet Clients for Business Components
You can create XML-based clients for business components using XSQL servlet. The
following procedure shows how to bind an XSQL client to a business components
project you have already created, using the ViewObject Show tag to display the
view object's data in XML format. You could also use the ViewObject Update tag to
process inserts, updates, and deletes to a view object.

To create an XSQL servlet client for business components:

1. Select a project in the Applications window and choose File > New > From Gallery
to open the New Gallery.

2. In the Categories tree, expand General and select Projects.

Developing Databound XML Pages with XSQL Servlet

Developing Applications Using XML 20-23

3. In the Items list, double-click Empty Project to open the New Project dialog.

4. Complete the New Project dialog and click OK to add the empty project to your
application.

5. Select the new project in the Applications window and choose File > New.

6. In the Categories list, select General and select XML.

7. In the Items list, double-click XSQL Page.

This adds a skeleton XSQL file named untitled#.xsql to your project.

8. In the Applications window, right-click the new XSQL file, and choose XML Editor
to open the source file if it is not open.

9. Place your cursor in the blank line after the <page
xmlns:xsql="urn:oracle-xsql"> tag.

10. Choose View > Components window to open the Components window if it is not
displayed.

11. Select XSQL tags from the dropdown list in the Components window if it is not
displayed.

12. Select the ViewObject Show tag from the Components window.

The ViewObject Show tag shows the view object's data in XML format. The
ViewObject Update processes inserts, updates, and deletes to a view object
based on an optionally transformed XML document.

13. In the View Object Selection dialog, select the appropriate view object, then click
Next.

14. Change or accept the default values for the attributes. After entering attributes,
click Next.

15. Click Finish.

Notice that the tag and attributes you entered appear in the XSQL page.

16. Choose File > Save All to save your work.

17. Right-click the XSQL file in the Applications window, and choose Run
<filename>.xsql to view the raw XML data in your web browser.

You can format the XML data with a style sheet. The XML data also can be passed on
to another application through a messaging service.

Note:

To use XSQL pages with the Business Components XSQL action handlers, the
XSQL Runtime and the JBO HTML libraries need to be in your project's
classpath, in addition to any JBO libraries that are needed based on your
intended connection mode. JDeveloper includes them in the classpath
automatically.

Developing Databound XML Pages with XSQL Servlet

20-24 Developing Applications with Oracle JDeveloper

What You May Need to Know About XSQL Error JBO-27122
You may get the XSQL error JBO-27122 while querying view objects with circular
ViewLink accessors.

Consider a scenario in which there are foreign key relationships between multiple
tables. For example, in the HR schema in the Oracle 10i Release 2 database samples,
there is such a relationship between countries, departments, employees and locations
tables. If you created a simple Business Components project on top of these tables and
further created an XSQL client in which you access the view object called
CountriesView1, you will get an error such as the one displayed in [the example
below.

<?xml version="1.0" encoding="windows-1252" ?>
- <!--
| Uncomment the following processing instruction and replace
| the stylesheet name to transform output of your XSQL Page using XSLT
<?xml-stylesheet type="text/xsl" href="YourStylesheet.xsl" ?>

-->
- <page>
- <xsql-error action="xsql:action">
 <message>JBO-27122: SQL error during statement preparation. Statement: SELECT
Employees.EMPLOYEE_ID, Employees.FIRST_NAME, Employees.LAST_NAME, Employees.EMAIL,
Employees.PHONE_NUMBER, Employees.HIRE_DATE, Employees.JOB_ID, Employees.SALARY,
Employees.COMMISSION_PCT, Employees.MANAGER_ID, Employees.DEPARTMENT_ID,
Employees.DN FROM EMPLOYEES Employees WHERE (Employees.DEPARTMENT_ID = :1)</message>
 </xsql-error>
 </page>

The reason you are getting this error is because of the way the underlying
writeXML() method works in combination with the fact that you are using the
default values for the max-levels parameter. This causes an infinite loop because of the
circular references created by the foreign keys as mentioned above - internally causing
an ORA-1000 MaxOpenCursors exceeded error.

The way to work around this is to modify your code as shown below:

<xsql:action handler="oracle.jbo.xsql.ViewObject"
 name="YourViewUsageName"
 appmodule="a.b.c.YourModuleName"
 configname="YourModuleNameLocal">
 <view-attribute-list viewdefname="a.b.c.YourViewName"
 include-only"Attr1 Attr2 Attr3"
 :
</xsql:action>

You can have multiple <view-attribute-list> elements for each view definition
that you want to control the attribute list for. As soon as you have one <view-
attribute-list> element, then use the new API for writeXML() that will only
include the attributes that are listed in the <view-attribute-list> elements.

In order to show the details for a VO, you need to include the name of the view link
accessory attribute in the list of attribute names in the "include-only" list for that view
definition. The following example contains a working example based on the
CountriesView.

<?xml version="1.0" encoding='windows-1252'?>
<!--

Developing Databound XML Pages with XSQL Servlet

Developing Applications Using XML 20-25

| Uncomment the following processing instruction and replace
| the stylesheet name to transform output of your XSQL Page using XSLT
<?xml-stylesheet type="text/xsl" href="YourStylesheet.xsl" ?>
-->
<page xmlns:xsql="urn:oracle-xsql">
 <xsql:action
 handler="oracle.jbo.xsql.ViewObject"
 name="CountriesView1"
 configname="HrModuleLocal"
 appmodule="hr.HrModule">
 <view-attribute-list viewdefname="hr.HrModule.CountriesView"
 include-only="CountryId CountryName CurrencyName" />
 </xsql:action>

</page>

How to Create a Custom Action Handler for XSQL
An action handler in an XSQL page is a Java class that gets invoked to perform a
specific task. There are prebuilt action handlers for various tasks such as setting
cookies, applying style sheets, performing queries against databases, and so on.
However, if you choose to perform some operation which is not provided by the built-
in action handlers, then you can write what is called a custom action handler. A
custom action handler is a Java class that can be invoked from an XSQL page just as
easily as a predefined action handler.

To create an action handler:

1. Add the XSQL configuration file to your project.

2. In the XSQL configuration file, register the new action handler by specifying the
element name and handler class.

3. In the XSQL file, add the new element and its attributes.

4. In the XSQL file, add connection information to the <page> tag.

5. Add a Java file to the project.

6. In the Java file, create a class that extends the XSQLActionHandlerImpl class.

The XSQL action handlers for BC4J are packaged as part of the JBO HTML library in
JDeveloper, which includes the relevant: <JdevHome>/BC4J/jlib/bc4jhtml.jar
archive in the build.

// Copyright (c) 2000, 2009, Oracle and/or its affiliates. All
 rights reserved. import oracle.xml.xsql.*;
import org.w3c.dom.Node;
import java.util.Date;
/**
 * A Class class.
 * <P>
 * @author Pas Apicella
public class JavaDate extends XSQLActionHandlerImpl
{
 public void handleAction (Node root)
 {
 addResultElement(root, "CURRENTDATE", (new Date()).toString());
 }
}

Developing Databound XML Pages with XSQL Servlet

20-26 Developing Applications with Oracle JDeveloper

How to Deploy XSQL Servlets
XSQL servlet generates executable packages that contain the information and logic
required to deploy the database to the servlet client environments. The database
deployment package can be incorporated into a setup and deployment solution or can
be shipped to clients as a separate application. When you deploy an XSQL servlet, you
must specify a master database, the deployment scenario, and then generate a self-
contained executable that is ready for deployment.

The following is a custom application. As you create it, you will add appropriate
features for developing an XSQL application (that it, when you choose Java and XSQL
as part of creating the application).

To deploy an XSQL servlet:

1. If necessary, create a new application and project.

For more information, see Creating Applications and Projects.

2. If the XSQL file is not already open in the source editor, in the Applications
window, double-click the name of the XSQL file you just created to open it.

3. Open the New Gallery by choosing File > New.

4. In the New Gallery, in the Categories tree, under General, select XML.

5. In the Items list, double-click XSQL File.

6. In the Components window, drag and drop Query (XSQL) onto the page. This
opens a Query wizard, with information about the db connection and enter the
SQL query. When you finish the wizard, it adds a <xsql:query> tag to the XSQL
file.

7. Click Next. On the second page of the wizard, if you have not already created a
database connection, create a new one. Otherwise choose the existing database
connection to use.

The schema and tables you plan to query should be in the database. For more
information about setting up a database connection, see Configuring Database
Connections. Click Next.

8. Add a SQL query to the file, for example, the query shown below:

SELECT DISTINCT d.department_id as h_deptno, department_name as "Department_name"
FROM departments d, employees e
WHERE d.department_id = e.department_id
ORDER BY d. department_name

9. Click Finish. The query and associated XSQL tags are entered in the XSQL file.

10. Now you can test the XSQL query by running it in Integrated WebLogic Server,
which provides everything you need to develop, test and debug web applications
from within the IDE. For more information, see Running Java EE Applications in
the Integrated Application Server.

11. In the context menu of the XSQL file in the Applications window or in the source
editor, click Run. If necessary, the Integrated WebLogic Server will create the
default domain and start. The first time you start Integrated WebLogic Server, a

Developing Databound XML Pages with XSQL Servlet

Developing Applications Using XML 20-27

dialog is displayed where you have to enter a password for the default user
weblogic on the default domain. You only need to do this once.

When you click OK in the dialog the default domain is created. This may take a
few minutes and you can follow the progress in the Log window.

When the XSQL file runs in Integrated WebLogic Server, the default browser
displays the results of the SQL query.

12. Once you have tested the XSQL file successfully in Integrated WebLogic Server, the
next step is to deploy and run the application in an application server.

13. The syntax used by JDeveloper and Oracle WebLogic Server to run XSQL is
different, so in your XSQL source file you have to change the connection
information as follows:

connection="java:comp/env/jdbc/database-connection-nameDS"

with

connection="jdbc/database-connection-nameDS"

Note:

If you want to run the application in the Integrated WebLogic Server, you
need to change the connection information back again.

14. In order to deploy the application, you first have to create a deployment profile
and deploy the application to it. In the Applications window, right-click the project
containing your XSQL servlet, then choose New. In the New Gallery, expand
General and select Deployment Profiles.

15. Choose a profile, for example, a WAR deployment profile and click OK and
continue to create the deployment profile. For more information, see How to Create
and Edit Deployment Profiles.

16. To deploy the application to the deployment profile, right-click on the project
containing your XSQL servlet files and choose Deploy > profile where profile is the
name of the deployment profile you just created.

In the Deployment dialog, choose Deploy to WAR (or the appropriate option if
you have chosen a different type of deployment profile) and click Finish.

17. The application is now ready to deploy to an application server, for example,
Oracle WebLogic Server. The steps you need to perform are:

• Create a data source on the target application server using the connection
information in the XSQL file. For more information, see Setting Up JDBC Data
Sources on .

• Create a connection to the application server. For more information, see How to
Create a Connection to the Target Application Server.

• Deploy the application by right-clicking on the project containing your XSQL
servlet files and choosing Deploy > profile where profile is the name of the
deployment profile.

Developing Databound XML Pages with XSQL Servlet

20-28 Developing Applications with Oracle JDeveloper

In the Deployment dialog, choose Deploy to application server and on the next
page choose the application server connection and click Finish.

Once the application is deployed, you can view the results of the query in a
browser window by navigating to http://targethost:port/web-context-
root/filename.xsql.

How to View Output from Running XSQL Files as Raw XML Data
After creating an XSQL file and adding tags, you can view the raw XML data or
format the XML data with a style sheet.

To view an XSQL file as raw XML data:

• Select the XSQL file in the Applications window, right-click and choose Run to
open the source file in your web browser.

JDeveloper starts the Integrated WebLogic Server, launches your default web
browser, and displays the raw XML data that is produced after the XSQL servlet
processes the XSQL page.

How to Create an XSL Style Sheet for XSQL Files
In JDeveloper, you can create an XSL style sheet that you can apply to your XSQL files
in order to format the data for HTML, WML or another output. When you create an
XSL style sheet, it is added to the selected XSQL project.

To create an XSL style sheet:

1. In the Applications window, select the project in which you want to create the new
XSL file.

2. Choose File > New > From Gallery.

3. In the Categories tree, expand General and select XML.

4. In the Items list, double-click XSL Style Sheet.

5. In the File Name field, enter the name of the file you want to generate.

6. Leave the Directory Name field unchanged to save your work in the directory
where JDeveloper expects to find web application files.

A skeleton XSL file is generated and appears in your active project.

You can edit it in the XML Editor to create your own custom style sheet. An
example of an XSL style sheet that transforms XML data into wireless markup
language (WML) is provided below. When you are finished, you can specify the
style sheet name in your XSQL file to format the raw XML data.

The style sheet in the example below demonstrates the conversion of XML to
WML. It uses the default DeptView in a BC4J application.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!-- Root template -->
<xsl:output type="wml" media-type="text/x-wap.wml"
doctype-public="-//WAPFORUM//DTD WML 1.1//EN"
doctype-system="http://www.wapforum.org/DTD/wml_1.1.xml"
indent="yes" />

Developing Databound XML Pages with XSQL Servlet

Developing Applications Using XML 20-29

<xsl:template match="* >/"><xsl:apply-templates/></xsl:template>
<xsl:template match="text()>@*"><xsl:value-of select="."/></xsl:template>
<xsl:template match="/">

<wml>
 <card id="C1">
 <p mode="nowrap">
 <big>DEPTLIST</big>
 </p>
 <xsl:for-each select="page/DeptView/DeptViewRow">
 <p>
 <xsl:value-of select="Deptno"/>
 xsl:value-of select="Dname"/>
 <xsl:value-of select="Loc"/>
 </p>
 </xsl:for-each>
 </card>
</wml>

</xsl:template>
</xsl:stylesheet>

How to Format XML Data with a Style Sheet
After creating an XSQL file and adding tags, you can format the XML data with an
XSL style sheet or view the raw XML data. You can use a style sheet you previously
created or create a new one in JDeveloper and apply it. By applying a style sheet, you
can convert the XML data into HTML or another markup language, such as wireless
markup language (WML).

To format the XML data with a style sheet:

1. In the Applications window, double-click the XSQL file to which you want to add a
style sheet.

2. In the source file, locate the xml-stylesheet line and comment, which looks like
this:

<!--
Uncomment the following processing instruction and replace
the stylesheet name to transform output of your XSQL Page using XSLT
<?xml-stylesheet type="text/xsl" href="YourStylesheet.xsl" ?>
-->

3. Uncomment the <?xml-stylesheet?> line by moving it below the --> closing
comment bracket.

4. In this line, replace YourStyleSheet.xsl with the name of your style sheet; for
example, your style sheet could be named stylesheet1.xsl.

Next, add the file that you just specified to your project, if you used one created
outside of this project.

5. In the Applications window, select the project and choose Project > Add to Project
project name.

In the Add to Project dialog, navigate to the directory and select the style sheet file
you specified.

6. Click Open.

Developing Databound XML Pages with XSQL Servlet

20-30 Developing Applications with Oracle JDeveloper

7. Choose File > Save All to save all your changes.

The file you added displays in the Applications window and opens in the XML
Editor. You can close the open files.

8. Right-click the XSQL file in the Applications window and choose Run to open the
file in your web browser.

You can see the formatted XML data in the browser.

How to Modify the XSQL Configuration File
The XSQL configuration file, XSQLConfig.xml, is on the classpath, so your XSQL
pages always have access to it. The connection information is added to the
XSQLConfig.xml file when you create a new connection in JDeveloper.
XSQLConfig.xml is located in the system directory and gets copied to the WEB-INF
directory when a project containing an XSQL file is compiled. You can add the file to
your project if you need to modify it; for example, to register custom action handlers.

Note:

When you migrate an XSQL project in JDeveloper, the XSQLConfig.xml file
is not updated for you. You can update your connections after migrating the
project by recreating the connection or editing an existing connection in
JDeveloper.

To modify the XSQL configuration file for your project:

1. With the project selected in the Applications window, choose Project > Add to
Project <project name>.

2. Navigate to the system directory in your JDeveloper installation directory, select
XSQLConfig.xml and click Open.

3. Make any changes or additions in the XML Editor.

4. Choose File > Save to save your revised file.

Using XML Metadata Properties in XSQL Files
The custom properties shown in Table 20-8 affect XML generation when using the
writeXML method of a view object or row.

Table 20-8 Metadata Properties

Property Name Value Valid For

XML_ELEMENT a legal element name view objects and view
attributes

XML_ROW_ELEMENT a legal element name view objects

XML_CDATA any value (not empty) view attributes

XML_EXPLICIT_NULL any value (not empty) view objects and view
attributes

Developing Databound XML Pages with XSQL Servlet

Developing Applications Using XML 20-31

Using XML_ELEMENT

If the XML_ELEMENT custom property is present for a view object, its value is used
as the XML element name for the view object in XML, when it is generated using the
writeXML method and "consumed" by the readXML method.

If the XML_ELEMENT custom property is present for a view attribute, its value is
used as the XML element name for the attribute in XML, when it is generated using
the writeXML method and "consumed" by the readXML method.

For example, for a view object named DeptView with an attribute named Sal, setting:

• XML_ELEMENT="Departments" in the view object properties

• XML_ELEMENT="Salary" in the view attribute properties for Sal

produces XML like:

<Departments>
 <DeptViewRow>
 <Empno>1010</Empno>
 <Ename>Steve</Ename>
 <Salary>1234</Salary>
 </DeptViewRow>
</Departments>

instead of the default:

<DeptView>
 <DeptViewRow>
 <Empno>1010</Empno>
 <Ename>Steve</Ename>
 <Sal>1234</Sal>
 </DeptViewRow>
</DeptView>

Using XML_ROW_ELEMENT

If the XML_ROW_ELEMENT custom property is present for a view object, its value is
used as the XML element name for each row of query results produced by the view
object in XML, when it is generated using the writeXML method and "consumed" by
the readXML method.

For example, for a view object named DeptView with an attribute named Sal, setting:

• XML_ELEMENT="Departments" in the view object properties

• XML_ROW_ELEMENT="Department" in the view object properties

• XML_ELEMENT="Salary" in the view attribute properties for Sal

produces XML like:

<Departments>
 <Department>
 <Empno>1010</Empno>
 <Ename>Steve</Ename>
 <Salary>1234</Salary>
 </Department>
</Departments>

instead of the default:

Developing Databound XML Pages with XSQL Servlet

20-32 Developing Applications with Oracle JDeveloper

<DeptView>
 <DeptViewRow>
 <Empno>1010</Empno>
 <Ename>Steve</Ename>
 <Sal>1234</Sal>
 </DeptViewRow>
</DeptView>

Using XML_CDATA

If the XML_CDATA custom property is set to a not empty value for a view attribute,
then its value will be output as a CDATA section instead of as plain text.

Using XML_EXPLICIT_NULL

If the XML_EXPLICIT_NULL custom property is set to a not empty value for a view
object, then any attribute with a null value will generate an XML element that looks
like:

<AttributeName null="true"/>

instead of omitting the <AttributeName> element from the XML result, which is the
default.

If the XML_EXPLICIT_NULL custom property is set to a not empty value for a view
attribute, then in the case that the indicated attribute has a null value, the system will
generate an XML element that looks like:

<AttributeName null="true"/>

instead of omitting the <AttributeName> element from the XML result, which is the
default.

Developing Databound XML Pages with XSQL Servlet

Developing Applications Using XML 20-33

Developing Databound XML Pages with XSQL Servlet

20-34 Developing Applications with Oracle JDeveloper

21
Developing and Securing Web Services

This chapter describes how JDeveloper enables you to develop, deploy, test, and
monitor web services; secure web services using policies; and manage the Web Service
Definition Language (WSDL) files. Learn how to discover web services using
Universal Description, Discovery and Integration (UDDI) and create web service
clients.

This chapter includes the following sections:

• About Developing and Securing Web Services

• Using JDeveloper to Create and Use Web Services

• Working with Web Services in a UDDI Registry

• Creating JAX-WS Web Services and Clients

• Creating RESTful Web Services and Clients

• Creating WebSockets

• Attaching Policies

• Deploying Web Services

• Testing and Debugging Web Services

• Monitoring and Analyzing Web Services

About Developing and Securing Web Services
Web services consist of a set of messaging protocols and programming standards that
expose business functions over the Internet using open standards. A web service is a
discrete, reusable software component that is accessed programmatically over the
Internet to return a response.

If you use web services in your application, you use JDeveloper to perform the
following tasks:

• Configure JDeveloper to develop and run web services

• Create web service clients by performing one or more of the following tasks:

– Find web services in a Universal Description, Discovery and Integration (UDDI)
registry

– Create a client and proxy classes to access an existing web service to incorporate
it into an application

• Create web services by performing one or more of the following tasks:

Developing and Securing Web Services 21-1

– Create web services from the underlying Java implementation (bottom up)

– Create Simple Object Access Protocol (SOAP) web services from the WSDL (top-
down)

• Manage WSDL files for SOAP services

• Secure web services using policies

• Test and debug web services

• Deploy web services to the Integrated WebLogic Server or Oracle WebLogic Server

• Monitor and analyze deploy web services

• Publish web services to a UDDI registry

The following sections provide more information about developing and securing web
services using JDeveloper:

• Developing Java EE Web Services Using JDeveloper

• Securing Java EE Web Services Using JDeveloper

• Discovering and Using Web Services

Developing Java EE Web Services Using JDeveloper
JDeveloper supports the web service technologies and standards defined in Table 21-1
for developing and securing Java EE web services.

Table 21-1 Java EE Web Service Technologies and Standards Supported by JDeveloper

Web Service Technology Web Service Standard Description

Simple Object Access
Protocol (SOAP)

Java API for XML-Based
Web services (JAX-WS) 2.2

You can create SOAP web services, using JAX-WS,
from Java classes and the remote interface of EJBs.
The web service creation wizards create the
deployment files for you, so once you have created
your web service the final step is to deploy it to
application servers.

Alternatively, you can create a JAX-WS web service
starting with a WSDL, as a top-down web service.

The JAX-WS implementation in WebLogic Server is
extended from the JAX-WS Reference
Implementation (RI) developed by the Glassfish
Community (see http://jax-ws.java.net/
index.html).

For more information, see Creating JAX-WS Web
Services and Clients.

About Developing and Securing Web Services

21-2 Developing Applications with Oracle JDeveloper

http://jax-ws.java.net/index.html
http://jax-ws.java.net/index.html

Table 21-1 (Cont.) Java EE Web Service Technologies and Standards Supported by JDeveloper

Web Service Technology Web Service Standard Description

Representational State
Transfer (REST)

Java API for RESTful Web
Services (JAX-RS) 2.0

REST describes any simple interface that transmits
data over a standardized interface (such as HTTP)
without an additional messaging layer, such as
SOAP.

Using JAX-RS, you can develop web services that are
based on REST, referred to as “RESTful web
services," from Java classes.

WebLogic Server supports the following JAX-RS
Reference Implementations (RIs):

• Jersey 2.5.1 (JAX-RS 2.0 RI)—This
implementation is offered as a shared library and
provides a production quality implementation of
the JSR-339 JAX-RS 2.0 specification, defined at:
http://jcp.org/en/jsr/detail?id=339.

The Jersey 2.5.1 (JAX-RS 2.0 RI) shared library is
auto-deployed to the Integrated WebLogic Server.

Note: RESTful web services and clients that are built
using Jersey 2.5.1 (JAX-RS 2.0 RI) are secured using
OWSM policies. For more information about securing
RESTful web services and clients built using Jersey
2.5.1 (JAX-RS 2.0 RI), see "Securing RESTful Web
Services and Clients" in Oracle Fusion Middleware
Developing and Securing RESTful Web Services for
Oracle WebLogic Server.

For more information, see Creating RESTful Web
Services and Clients.

Note: Support for the
Jersey 1.18 (JAX-RS 1.1RI)
client APIs of WebLogic
Server is deprecated.
However, support is
maintained for backward
compatibility. For more
information about
compatibility with earlier
Jersey/JAX-RS releases,
see Oracle Fusion
Middleware Developing and
Securing RESTful Web
Services for Oracle
WebLogic Server

For guidelines to consider when choosing between SOAP and REST technologies, see
“How Do I Choose Between SOAP and REST?" in Oracle Fusion Middleware
Understanding WebLogic Web Services for Oracle WebLogic Server.

Securing Java EE Web Services Using JDeveloper
To secure Java EE web services using JDeveloper you can attach one of the policy
types defined in the following table.

About Developing and Securing Web Services

Developing and Securing Web Services 21-3

http://jcp.org/en/jsr/detail?id=339

Table 21-2 Types of Policies for Securing Java EE Web Services

Type of Policy Description

Oracle Web Services Manager
(OWSM) Policy

Policy provided by OWSM. For more information about OWSM and the
predefined policies, see Understanding Oracle Web Services Manager.

You can attach OWSM security policies only to Java EE web services.

You manage OWSM policies from Oracle Enterprise Manager Fusion
Middleware Control. For more information, see Oracle Fusion Middleware
Securing Web Services and Managing Policies with Oracle Web Services Manager.

WebLogic Web Service Policy Policy provided by WebLogic Server. You can attach WebLogic web service
policies to JAX-WS web services only. For more information about the
WebLogic web service policies, see Oracle Fusion Middleware Securing
WebLogic Web Services for Oracle WebLogic Server.

You manage WebLogic web service policies from WebLogic Administration
Console.

Note: For Java EE 7, Java API for RESTful Web
Services (JAX-RS) 2.0 adds support of the Jersey
2.5.1 Java API for RESTful Web Services (JAX-RS)
2.0 Reference Implementation (RI) as a pre-built
shared library. RESTful web services and clients
that were built using Jersey 2.5.1 (JAX-RS 2.0 RI)
are secured with Oracle Web Services Manager
(OWSM) security policies.

It is recommended that you use OWSM policies over WebLogic web service policies
whenever possible. You cannot mix your use of OWSM and WebLogic web service
policies on the same web service.

For more information, see:

• How to Attach Policies to JAX-WS Web Service and Clients

• How to Attach Policies to RESTful Web Services and Clients

Discovering and Using Web Services
You can quickly create a client to an existing web service in order to use it in your
application. For more information, see:

• How to Create JAX-WS Web Service Clients

• How to Create RESTful Web Service Clients

In addition, JDeveloper incorporates a UDDI browser and you can define connections
to UDDI registries, for example, to one within your organization. For more
information, see Working with Web Services in a UDDI Registry.

Using JDeveloper to Create and Use Web Services
This following information will help you understand more about web services, and
how you can use JDeveloper to create, configure, and use them.

Using JDeveloper to Create and Use Web Services

21-4 Developing Applications with Oracle JDeveloper

• How to Use Proxy Settings and JDeveloper

• How to Set the Context Root for Web Services

• How to Configure Connections to Use with Web Services

• How to Work with Type Mappings

• How to Choose Your Deployment Platform

• How to Work with Web Services Code Insight

How to Use Proxy Settings and JDeveloper
By default, JDeveloper does not use a proxy when connecting to the Internet. If you
have problems making connections from JDeveloper, you may need to change the
proxy server settings you use.

When you use the HTTP Analyzer, the analyzer itself is a proxy and any traffic to be
monitored by it is routed through it, just as though it was a normal proxy server. If
you already have a proxy set in JDeveloper, the analyzer will make sure that the traffic
goes through the original proxy after it has been passed through the analyzer.

Note:

JDeveloper does not support NTLM proxy servers.

The following sections describe how to enable and disable proxy setting using
JDeveloper:

• Using the Default Browser Proxy Settings

• Configuring Custom Proxy Settings

• Disabling the Use of a Proxy Server When Accessing the Internet

Using the Default Browser Proxy Settings

You may find it convenient to use the proxy settings that are configured for the default
browser.

To use the default browser proxy settings:

1. Choose Tool > Preferences, and select Web Browser and Proxy.

For more information at any time, click F1 or Help from the Web Browser and
Proxy dialog.

2. Select the Web Browsers tab and select the desired default browser from the list.

3. Select the Proxy Settings tab to configure proxy settings.

4. Select Use System Default Proxy Settings.

5. Click OK.

Configuring Custom Proxy Settings

You can configure custom proxy settings. This is useful if you need to exclude specific
IP addresses or host names from the list.

Using JDeveloper to Create and Use Web Services

Developing and Securing Web Services 21-5

For example, if you are connecting to an IP address behind a proxy server, and your
machine is also behind the same proxy server, then make sure that the web proxy
preferences exclude the IP address you are trying to connect to.

To configure custom proxy setting:

1. Choose Tool > Preferences, and select Web Browser and Proxy.

For more information at any time, click F1 or Help from the Web Browser and
Proxy dialog.

2. Select the Proxy Settings tab to configure proxy settings.

3. Select Manual Proxy Settings and enter the host and port name of the proxy
server.

4. List any host names or IP addresses that you want to exclude in the No Proxy for
field.

5. Click OK.

Disabling the Use of a Proxy Server When Accessing the Internet

You can disable the use of a proxy when accessing the Internet. This is the default
behavior.

To disable the use of a proxy server when accessing the Internet:

1. Choose Tool > Preferences, and select Web Browser and Proxy.

For more information at any time, click F1 or Help from the Web Browser and
Proxy dialog.

2. Select the Proxy Settings tab to configure proxy settings.

3. Select No Proxy.

4. Click OK.

How to Set the Context Root for Web Services
The context root (also referred to as context path) appears as part of the web service
endpoint for a generated web service, so it is important that it is set to an appropriate
value.

The web service context root is the string that comes after the host:port portion of
the web service URL. For example, if the deployed WSDL of a WebLogic web service
is as follows: http://hostname:7001/financial/GetQuote?WSDL

The context path for this web service is financial.

At the project level, you can set the context root that will be assigned to the deployed
Java EE web application on Integrated WebLogic Server. The context root value
defaults to:

applicationname-projectname-context-root

To set the context root for web services:

1. In the Applications window, right-click the project and choose Project Properties
to open the Project Properties dialog.

Using JDeveloper to Create and Use Web Services

21-6 Developing Applications with Oracle JDeveloper

For more information at any time, click F1 or Help from the Project Properties
dialog.

2. Select Java EE Application.

3. Select whether you want to use personal project settings or common project
settings:

• To use personal project settings, select Use Custom Settings and click the
Customize Settings button.

• To use common project settings, select Use Project Settings.

4. Update the Java EE Web Context Root field to define the context root that will be
assigned to the application when running or deploying the contents of the project
as a Java EE web application on Integrated WebLogic Server.

5. Click OK.

How to Configure Connections to Use with Web Services
You can develop simple web services that you can test using the Integrated WebLogic
Server. However, to develop more complex web services, and to deploy web services,
you will need the appropriate connections.

• To deploy a web service to Oracle WebLogic Server, you need an application server
connection as described in Deploying Web Services.

• To find web services using a Universal Description, Discovery and Integration
(UDDI) registry, you need to create a connection to the registry. For more
information, see How to Define UDDI Registry Connections.

How to Work with Type Mappings
Objects that can be passed to and from web services have to be able to be serialized to
an XML type, and then deserialized back to their original type. Objects that are
automatically handled are Java primitive types and certain Java standard types. If you
want to create a web service using objects that are not automatically serialized, you
can write your own custom serializer.

The objects that can be passed to and from web services are objects that conform to the
JavaBean conventions. For the purposes of web services, a JavaBean is any Java class
that conforms to the following restrictions:

• Must have a public default (zero argument) constructor.

• Must expose all attributes of interest as accessors.

• Order of the accessors for the properties (setMethod() and getMethod()) must
not matter.

• Accessors must be written in mixed case with a lower case first letter. For example,
if an attribute is called name the accessors must be called getName and setName.

For more information, refer to the JavaBean spec at http://www.oracle.com/
technetwork/java/javase/tech/index-jsp-138795.html.

For web services, each property of the object must be of one of the Java types that
maps to an XML schema simple type. For a list of XML Schema data types and their

Using JDeveloper to Create and Use Web Services

Developing and Securing Web Services 21-7

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138795.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138795.html

corresponding Java data types, see “XML-to-Java Mapping for Built-in Data Types" in
Oracle Fusion Middleware Developing JAX-WS Web Services for Oracle WebLogic Server. In
addition, a service method can accept and return a single piece of XML element data,
passed as an org.w3c.dom.Element.

JAX-WS web services use Java Architecture for XML Binding (JAXB), described at
http://jcp.org/en/jsr/detail?id=222, to manage all of the data binding
tasks. Specifically, JAXB binds Java method signatures and WSDL messages and
operations and allows you to customize the mapping while automatically handling
the runtime conversion. This makes it easy for you to incorporate XML data and
processing functions in applications based on Java technology without having to know
much about XML.

You can use the JAXB binding language to define custom binding declarations or
specify JAXB annotations to control the conversion of data between XML and Java.

WebLogic Server provides two data binding and JAXB providers:

• EclipseLink MOXy, the default in this release of WebLogic Server, is a fully
compliant JAXB implementation. In addition to offering the standard JAXB
features, EclipseLink MOXy provides useful extensions, such as the ability to use
an external metadata file to configure the equivalent of JAXB annotations without
modifying the Java source it refers to, and XPath based mapping. The JAXB
enhancements can be used in the annotations on a service endpoint interface (SEI)
or one of the value types used by the SEI. Users of JAXB in standalone mode can
also take advantage of these features.

Some of the additional extensions offered by EclipseLink MOXy include:

– Extensions for mapping JPA entities to XML

– Bidirectional mapping

– Virtual properties

– Ability to bootstrap from metadata and generate in-memory domain classes
(Dynamic MOXy)

For a web service, the EclipseLink MOXy extensions can be leveraged on the server
side only, and only in the Java to WSDL scenario, in which the SEI and value types
can use the extended EclipseLink functionality. For more information about these
extensions and EclipseLink MOXy, see The EclipseLink MOXy (JAXB) User's Guide at
http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy.

No configuration is required to use the EclipseLink MOXy providers.

• Glassfish RI JAXB, which is the default Glassfish JAXB implementation, and was
the default JAXB offering in WebLogic Server in previous releases. The Glassfish RI
JAXB proprietary features will not work with EclipseLink MOXy. If desired, you
can enable the Glassfish RI JAXB data binding and JAXB providers at the server or
application level. For more information, see “Using the Glassfish RI JAXB Data
Binding and JAXB Providers" in Oracle Fusion Middleware Developing JAX-WS Web
Services for Oracle WebLogic Server.

For more information about using JAXB with JAX-WS web services, see “Using JAXB
Data Binding" in Oracle Fusion Middleware Developing JAX-WS Web Services for Oracle
WebLogic Server.

Using JDeveloper to Create and Use Web Services

21-8 Developing Applications with Oracle JDeveloper

http://jcp.org/en/jsr/detail?id=222
http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy

How to Choose Your Deployment Platform
The first time you create a web service in a project this dialog appears, and the version
you select is used for all web services you create in the project.

For SOAP web services, this dialog also appears when you right-click an existing
WSDL and select Create Web Service, and then choose to create a new web service
project from that WSDL.

The first time you create a web service in a project, you are offered a choice of
deployment platforms, as defined in Table 21-3 andTable 21-4 for SOAP and RESTful
web services, respectively. The platform you choose determines the options available
to you in the wizard, and the libraries that are added to the WAR/EAR file for
deployment.

Note: Java EE 7 is supported.

Table 21-3 lists the deployment platforms available for SOAP web services.

Table 21-3 Deployment Platforms for SOAP Web Services

Deployment Platform Description

Java EE 6 with support for JAX-WS
Annotations

Generates a web service that takes advantage of the JAX-WS web
services API, released as part of Java EE 1. 6. This option provides
support for deploying to WebLogic Server with Java annotations using
the JAX-WS annotation specification.

Java EE 6 with support for JAX-WS RI Generates a JAX-WS web service for deploying to any container that
supports the JAX-WS Reference Implementation. You can see more
about the JAX-WS Reference Implementation at http://jax-
ws.java.net/index.html.

Table 21-4 lists the deployment platforms available for RESTful web services.

Table 21-4 Deployment Platforms for RESTful Web Services

Deployment Platform Description

JAX-RS 1.0 Style Generates a RESTful web service that is compatible with Jersey 1.18
(JAX-RS 1.1 RI).

JAX-RS 2.0 Style Generates a RESTful web service that is compatible with Jersey 2.5.1
(JAX-RS 2.0 RI).

The Jersey 2.5.1 (JAX-RS 2.0 RI) shared library is auto-deployed to the
Integrated WebLogic Server.

Note: You can attach OWSM policies to RESTful web services and
clients that are built using Jersey 1.18 (JAX-RS 1.1 RI) RESTful web
services and clients that are built using Jersey 2.5.1 (JAX-RS 2.0 RI) are
secured using OWSM policies. For more information about securing
RESTful web services and clients built using Jersey 2.5.1 (JAX-RS 2.0 RI),
see "Securing RESTful Web Services and Clients" in Oracle Fusion
Middleware Developing and Securing RESTful Web Services for Oracle
WebLogic Server.

Using JDeveloper to Create and Use Web Services

Developing and Securing Web Services 21-9

http://jax-ws.java.net/index.html
http://jax-ws.java.net/index.html

How to Work with Web Services Code Insight
When typing annotations in a Java class, the web services Code Insight completes
annotations. The tool is also available for WSDL documents in the XML editor (when
typing in the Source tab).

You can configure how fast Code Insight responds. You can access the Code Insight
page in JDeveloper from Tools > Preferences > Code Editor > Code Insight.

When you create a JAX-WS web service from a Java class by adding annotations in the
source editor, the Code Insight features of Quick Fixes and Code Assists are available
to help you.

For example, when you create a web service from a Java class by manually adding the
@WebService annotation, a ragged line appears under the annotation. Click the
Audit Fix icon and choose Configure Project for Web Services.

From the Select Deployment Platform dialog, select one of the following JAX-WS
platforms for your service:

• Java EE 6, with support for JAX-WS Annotations. In this case, JDeveloper adds:

– import javax.jws.WebService; statement to the class

– web.xml file to the project

• Java EE 6, with support for JAX-WS RI. In this case, JDeveloper adds:

– import javax.jws.WebService; statement to the class

– sun-jaxws.xml and web.xml files to the project

Note: Java EE 7 is supported.

Other examples include:

• You can add policy annotations to a JAX-WS web service and use JDeveloper to
complete the policy you want. For example, if you enter @Pol, then click Alt+Enter
you can choose whether to use @Policy, for a single policy, or @Policies for
multiple policies. The appropriate import statement is also added to the class.

• If you are working on a WSDL document in the source editor, you can use code
completion to help you enter schema elements. For example, if you enter < and
wait a second, a popup appears from which you can select the entry you want.

• If the WSDL and web service source files get out-of-sync, you can regenerate the
web service from source.

• If you rename a Java class in the Java class, click the Audit fix icon and select how
you would like to reconcile the discrepancy.

Working with Web Services in a UDDI Registry
Universal Description, Discovery and Integration (UDDI) is one of the standards and
protocols that underpin web services. It provides a common standard for publishing
and discovering information about web services. It contains a UDDI browser that
searches a UDDI registry using search criteria that you specify to find web services

Working with Web Services in a UDDI Registry

21-10 Developing Applications with Oracle JDeveloper

that are described by WSDL. For more information about UDDI including the
specification, see the UDDI OASIS standards at http://uddi.xml.org/.

The following sections describe how to work with web services in a UDDI registry:

• How to Define UDDI Registry Connections

• What You May Need to Know About Choosing the View for your UDDI Registry
Connection

• How to Search for Web Services in a UDDI Registry

• How to Generate Proxies to Use Web Services Located in a UDDI Registry

• How to Display Reports of Web Services Located in a UDDI Registry

• How to Publish Web Services to a UDDI Registry

How to Define UDDI Registry Connections
You can define connections to UDDI registries, for example, to browse your
organization's internal UDDI registry. In addition, all defined UDDI registry
connections are accessible to any workspace or project.

For more information about UDDI including the specification, see the UDDI OASIS
standards at http://uddi.xml.org/.

The following sections describe how to define UDDI registry connections.

• Creating UDDI Registry Connections

• Editing the UDDI Registry Connections

• Changing the View of UDDI Registry Connections

• Refreshing the UDDI Registry Connections

• Deleting the UDDI Registry Connections

Creating UDDI Registry Connections

You can create a new connection to a UDDI registry that is public or private (within
your organization). The UDDI registry connection is listed in the Resources window,
in the Connections panel.

To create a UDDI registry connection:

1. In the Applications window, select the project.

2. Choose File > New > From Gallery to open the New Gallery.

3. In the Categories tree, expand Business Tier and select Web Services.

4. In the Items list, select UDDI Registry Connection and click OK to launch the
Create UDDI Registry Connection wizard.

For more information at any time, press F1 or click Help from within the Create
UDDI Registry Connection wizard.

Working with Web Services in a UDDI Registry

Developing and Securing Web Services 21-11

http://uddi.xml.org/
http://uddi.xml.org/

Editing the UDDI Registry Connections

You can edit an existing UDDI registry connection. For example, to change the name
of the connection or the URL of the inquiry endpoint.

To edit the UDDI registry connection:

1. In the main menu, choose Window > Resources. By default, the Resources window
is displayed to the right of the JDeveloper window.

2. In the Resources window, under IDE Connections, expand UDDI Registry.

3. From the context menu of the UDDI registry connection you want to edit, choose
Properties.

The Edit UDDI Registry Connection wizard is launched.

For more information at any time, press F1 or click Help from within the Edit
UDDI Registry Connection wizard.

Changing the View of UDDI Registry Connections

You can change the order that web services are listed in the UDDI registry from
Category view to Business view, or from Business View to Category view. For more
information, see What You May Need to Know About Choosing the View for your
UDDI Registry Connection.

To change the view of UDDI registry connections:

1. In the main menu, choose Window > Resources. By default, the Resources window
is displayed to the right of the JDeveloper window.

2. In the Resources window, under IDE Connections, expand UDDI Registry.

3. From the context menu of the UDDI registry connection you want to edit, choose
Render Business Perspective or Render Category Perspective.

Refreshing the UDDI Registry Connections

You can refresh a UDDI registry connection to ensure that information stored under
the connection is up-to-date.

To refresh the UDDI registry connection:

1. In the main menu, choose Window > Resources. By default, the Resources window
is displayed to the right of the JDeveloper window.

2. In the Resources window, under IDE Connections, expand UDDI Registry.

3. From the context menu of the UDDI registry connection you want to refresh,
choose Refresh.

Deleting the UDDI Registry Connections

When no longer needed, you can delete a UDDI registry connection from the
Resources window.

To delete a UDDI registry connection:

1. In the main menu, choose Window > Resources. By default, the Resources window
is displayed to the right of the JDeveloper window.

Working with Web Services in a UDDI Registry

21-12 Developing Applications with Oracle JDeveloper

2. In the Resources window, under IDE Connections, expand UDDI Registry.

3. From the context menu of the UDDI registry connection you want to delete, choose
Delete.

4. A message is displayed asking whether you want to delete the connection. Click
Yes.

What You May Need to Know About Choosing the View for your UDDI Registry
Connection

When you create the connection, as described in How to Define UDDI Registry
Connections, you are prompted whether the web services in the registry are displayed
in Business View or Category View. The view you choose will determine how you
search for services in the registry.

Choosing the Business View

A UDDI registry contains four data structure types that group information about web
services:

• Business Entities: Defines the top-level data structure that contains information
about the business providing the web service. When you find a web service, the
business is added to the UDDI browser in the Resources window.

• Business Services: Contains descriptive information for a family of services,
including the name and brief description, and category information.

• Binding Templates: Contains information about a web service entry point and
references to interface specification.

• tModel: Represents the technical specification of the web service. When the Find
Web Services wizard finds a web service, it also displays other web services that
are compatible with the same tModel.

If you choose Business View, services are listed under Business Entities and Business
Services.

Choosing Category View

If you choose Category View, you can search for web services based on one or more of
the following categories:

• ISO 3166: Search by location using the International Organization for
Standardization (ISO) 3166 standard codes.

• NAICS: Specify the type of industry using the North American Industry
Classification System (NAICS).

• SIC: Specify the type of industry using the Standard Industrial Classification (SIC).

• UDDI Types: Search by UDDI type.

• UDDI WSDL Types: Search by UDDI WSDL type.

• UNSPSC: Search by type of service using the United Nations Standard Products
and Services Code (UNSPC).

When you search by name, you can enter all or part of a name and you can use
wildcards. The results are tModels where the name of the tModel matches the search

Working with Web Services in a UDDI Registry

Developing and Securing Web Services 21-13

criteria. When a number of web services have the same tModel, they are listed in the
wizard so that you can choose the one that best fits your requirements.

How to Search for Web Services in a UDDI Registry
You can search a UDDI registry connection in the Resources window for a web
service.

Note:

If you are creating a top-down web service, you can use the Find Web Service
Wizard to search a UDDI registry connection from within the Create Java Web
Service from WSDL wizard.

To search for a web service in a UDDI Registry:

1. Create a UDDI registry connection, if required. For more information, see Creating
UDDI Registry Connections.

2. In the Resources window, search for the web service. For more information, see
Working with the Resources Window.

How to Generate Proxies to Use Web Services Located in a UDDI Registry
You can create a proxy to a web service in a UDDI registry connection in the Resources
window.

Note:

You can only generate a proxy to a web service if the service uses a WSDL
link. To determine this, open the web service report, and check that the
Overview Description in the tModel Instances section of the report is wsdl
link.

To generate a proxy to use web services located in a UDDI registry:

1. Open the Resources window.

In the main menu, choose Window > Resources. By default, the Resources window
is displayed to the right of the JDeveloper window.

2. Navigate to the web service you want, or search for it.

3. Navigate to the service endpoint (port).

4. Right-click the service, and choose Generate Web Service Proxy to launch the Web
Service Proxy wizard.

For more information at any time, press F1 or click Help from within the wizard.

How to Display Reports of Web Services Located in a UDDI Registry
You can display a report of a web service in a UDDI registry.

To display a report of the web service located in a UDDI registry:

Working with Web Services in a UDDI Registry

21-14 Developing Applications with Oracle JDeveloper

1. Open the Resources window.

In the main menu, choose Window > Resources. By default, the Resources window
is displayed to the right of the JDeveloper window.

2. Navigate to the web service you want, or search for it.

3. Right-click the service, and choose View Report.

A report of the web service is displayed in the source editor.

How to Publish Web Services to a UDDI Registry
You can publish a web service to a UDDI registry through a connection to the registry
in the Application Server window. Before you can publish a service to a UDDI
registry, you must already have a connection to the registry in the Resource Catalog.
For more information, see Creating UDDI Registry Connections.

To publish a web service to a UDDI registry:

1. Deploy the web service to Oracle WebLogic Server.

Note:

If you deploy the web service to the Integrated WebLogic Server, then the
UDDI registry to which you are publishing must be local to the Integrated
WebLogic Server.

2. In Application Server window, expand the application server node.

3. Expand the web services node and locate the node (which represents the WSDL) of
the web service you want to publish.

4. Right-click the WSDL node and choose Publish WSDL to UDDI to launch the
Publish WSDL to UDDI Registry dialog.

For more information at any time, press F1 or click Help in the Publish WSDL to
UDDI Registry dialog.

Creating JAX-WS Web Services and Clients
To create JAX-WS web services and clients using JDeveloper, you can:

• Create JAX-WS web services from Java classes and the remote interface of EJBs, as
described in How to Create JAX-WS Web Services (Bottom-up).

• Create a JAX-WS web service starting with a WSDL, as a top-down web service, as
described in How to Create JAX-WS Web Services from WSDL (Top-down).

• Create a JAX-WS client and proxy classes to access a service using the Create Web
Service Client and Proxy wizard, as described in How to Create JAX-WS Web
Service Clients.

• Enable atomic transactions for a web service implementation, as described in How
to Use Web Service Atomic Transactions.

• Use SOAP over JMS transport to communicate using JMS destinations instead of
HTTP connections, as described in How to Use SOAP Over JMS Transport.

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-15

• Enable Fast Infoset for a web service implementation, as described in How to Use
Fast Infoset for Optimizing XML Transmission.

• Enable MTOM for a web service implementation, as described in How to Use
MTOM for Optimizing Binary Transmission.

• Create, display, and save WSDL files, as described in How to Manage WSDL Files.

• Edit or delete JAX-WS web services, as described in How to Edit JAX-WS Web
Services and How to Delete JAX-WS Web Services, respectively.

How to Create JAX-WS Web Services (Bottom-up)
Web services can be created using two development methods: top-down or bottom-
up. Bottom-up development refers to the process of developing a web service from the
underlying Java implementation using SOAP.

The following sections describe how to generate different types of web services from
the bottom up:

• Creating Java Web Services

• Using Web Service Annotations

• Using the Properties Window

• Creating Database Web Service Providers

• Regenerating Web Services from Source

• Using Handlers

• Handling Overloaded Methods

For information about:

• Using top-down development—starting from the WSDL—see How to Create JAX-
WS Web Services from WSDL (Top-down).

• Using web services atomic transactions, see How to Use Web Service Atomic
Transactions.

• Using SOAP over JMS transport, see How to Use SOAP Over JMS Transport.

Creating Java Web Services

You can create web services from:

• Java classes

• Remote interface of EJBs

The web service creation wizards create the deployment files for you, so once you
have created your web service the final step is to deploy it.

Before you begin:

If you have not already done so, set an appropriate context root for your web service.
For more information, see How to Set the Context Root for Web Services.

To create the Java web service:

Creating JAX-WS Web Services and Clients

21-16 Developing Applications with Oracle JDeveloper

1. In the Applications window, select the project containing the Java class or EJB from
which you want to create a web service.

2. Choose File > New > From Gallery to open the New Gallery.

3. In the Categories list, expand Business Tier and select Web Services.

4. In the Items list, select Java Web Service and click OK to launch the Create Java
Web Service wizard.

For detailed help about completing the wizard, press F1 or click Help from within
the wizard.

Alternatively, you can launch the Create Java Web Service wizard by right-clicking on
the Java class from which you want to create a web service and selecting Create Web
service.

Note:

The Select Deployment Platform page is only displayed the first time a web
service is created in a project. Thereafter, all additional web services in the
same project will use the same version. For more information, see How to
Choose Your Deployment Platform.

When using the Create Java Web Service wizard, if you enter a class name for
a Java class that does not exist, the wizard provides the option to generate a
default Java class, with a single String helloWorld(String) method, to
be used as the implementation class for the web service. If you decline to
generate the default Java class, you will be prompted to select a valid class
name.

Using Web Service Annotations

The JSR-181 specification specifies web services metadata, which allows you to use
annotations declaratively to make creating and managing web services easier. You use
the annotations for methods and classes in order to expose these methods as web
service endpoints.

You can add annotations to a class manually, choose to have JDeveloper add them to
the class when creating the web service, or add them when editing the web service
using the Edit Web Services dialog.

For more information, see the following references:

• JSR-181 specification at http://jcp.org/en/jsr/detail?id=18

• JAX-WS specification at: http://jcp.org/aboutJava/communityprocess/
mrel/jsr224/index2.html

• JAX-RS specification at: http://jax-rs-spec.java.net

• For JWS annotations available with see “JWS Annotation Reference" in Oracle
Fusion Middleware WebLogic Web Services Reference for Oracle WebLogic Server.

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-17

http://jcp.org/en/jsr/detail?id=18
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html
http://jax-rs-spec.java.net

Note:

If you delete the annotations using the Edit Web Services dialog, any
annotations that you entered manually are also deleted.

To use web service annotations:

1. Open the Java class in the source editor.

2. On the line where you want to add the annotation, type @ and pause for a couple of
seconds.

Code Insight displays possible values. For more information, see How to Work
with Web Services Code Insight.

Using the Properties Window

You can add the @WebService annotation and supporting files to your web service
project automatically using the Properties window.

To create a JAX-WS web service in the Properties window:

1. With the web service class open in the source editor, choose Window > Properties
to open the Properties window.

For more information at any time, press F1 or click Help from within the Properties
window.

2. With the cursor in the public class, navigate to the JAX-WS node in the Properties
window.

3. Select Web Service Bean Class.

The Select Deployment Plan Platform dialog box is displayed. For information
about selecting the deployment platform, see How to Choose Your Deployment
Platform.

4. Select a deployment platform and click OK.

The javax.jws.WebService annotation is imported and added to the public
class of the web service, and the required deployment files (for example, web.xml)
are added to your project.

Creating TopLink Database Web Service Providers

The Create TopLink DB Web Service Provider wizard enables you to build a JAX-WS
web service provider for a TopLink database to perform one of the following tasks:

• Access stored procedures and functions

• Execute an SQL query

• Perform CRUD operations on a table

Based on the type of service selected, the wizard generates a web service Provider and
WSDL document that can be deployed to an application server, such as Oracle
WebLogic Server. Deploying TopLink web service Providers is similar to deploying
other J2EE Web applications. For more information, see Deploying Web Services.

It should be noted that:

Creating JAX-WS Web Services and Clients

21-18 Developing Applications with Oracle JDeveloper

• The wizard generates a JAX-WS web service Provider.

• If you edit the TopLink web service provider, ensure that the database connection
still exists; otherwise an error message is returned. If you have deleted the database
connection, create a new one with the same name as the original connection.

To create the TopLink DB web service Provider from a project:

1. In the Applications window, select the project.

2. Choose File > New > From Gallery to open the New Gallery.

3. In the Categories list, expand Business Tier and select Web Services. In the Items
list, double-click TopLink DB Web Service Provider to launch the Create TopLink
Web Service Provider wizard.

For detailed help about completing the wizard, press F1 or click Help from within
the wizard.

Regenerating Web Services from Source

There are times that you may need to regenerate your web service. For example, if the
source from which the service was originally generated has changed.

Note:

When you regenerate the web service, JDeveloper discards any changes that
you have made to the WSDL since it was last generated.

After you regenerate the web service, you may need to regenerate the client to the web
service. Otherwise, you may get compilation errors (when the client is in the same
project as the web service), or run-time errors (when the client is in a different project
to the web service).

If you are not using annotations and change the name of the method in the underlying
class, when you regenerate the service you will receive an error message indicating
that no methods were selected. Because methods are tracked using namespaces, if you
modify the namespace JDeveloper is not able to determine what needs to be
regenerated. To correct this error, double-click the web service container to open the
Web Services Editor, go to the Methods page, and select the methods on which to base
the web service.

To regenerate a web service from source:

1. In the Applications window, right-click the web service container you want to
regenerate.

2. Choose Regenerate Web Service from Source from the context menu.

The service is automatically regenerated, and any changes you made to the WSDL
since it was last generated are lost.

Using Handlers

JDeveloper allows you to specify the handler classes to edit with the web service
message. The handlers can use initialized parameters, SOAP roles, or SOAP headers.
For more information about creating SOAP handlers, see “Creating and Using SOAP

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-19

Message Handlers" in Oracle Fusion Middleware Developing JAX-WS Web Services for
Oracle WebLogic Server.

To define handlers:

1. Create a web service. For more information, see Creating Java Web Services .

Alternatively, open the web service editor. For more information, see How to Edit
JAX-WS Web Services.

2. In the Handler Details page, enter the values you want to use.

For more information at any time, press F1 or click Help from within the dialog.

Handling Overloaded Methods

If the Java class on which you base a web service has overloaded methods, JDeveloper
handles them automatically.

For JAX-WS web services, you can use the @WebMethod annotation to change the
name of an overloaded method. For example:

public class SimpleImpl {
 @WebMethod(operationName="sayHelloOperation")
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
...
}

In the example, the sayHello() method of the SimpleImpl JWS file is exposed as a
public operation of the web service. The operationName attribute specifies,
however, that the public name of the operation in the WSDL file is
sayHelloOperation.

For more information about @WebMethod, see “Specifying That a JWS Method Be
Exposed as a Public Operation (@WebMethod and @OneWay Annotations)" in Oracle
Fusion Middleware Developing JAX-WS Web Services for Oracle WebLogic Server.

How to Create JAX-WS Web Services from WSDL (Top-down)
JDeveloper allows you to develop top-down web services, that is, starting with the
WSDL. JDeveloper will generate a service implementation and its deployment
descriptors. You can browse to a WSDL in the file system, or locate a web service in a
UDDI registry connection in the Resources window.

To create a JAX-WS web service from WSDL (top-down):

1. In the Applications window, select the project in which you want to create the web
service.

2. Choose File > New > From Gallery to open the New Gallery.

3. In the Categories list, expand Business Tier and select Web Services. In the Items
list, double-click Java Web Service From WSDL to launch the Create Java Web
Service from WSDL wizard.

For detailed help about completing the wizard, press F1 or click Help from within
the wizard.

Creating JAX-WS Web Services and Clients

21-20 Developing Applications with Oracle JDeveloper

The JAX-WS web service is created and the Java implementation class is opened
automatically in the editor.

Note:

You can also create a web service from a WSDL by right-clicking an existing
WSDL and selecting Create Web Service from the context menu. You will also
have the option to create a new web service project from that WSDL

How to Create JAX-WS Web Service Clients
JDeveloper makes it easy to use a web service in your application by allowing you to
create JAX-WS client and proxy classes to access the service using the Create Web
Service Client and Proxy wizard. You can launch the wizard when you locate or create
a web service. Alternatively, you can launch the wizard directly and enter the URL for
the web service or use the Find Web Service wizard to locate a web service in a UDDI
registry.

JDeveloper automatically generates the correct type of proxy for an RPC or document
style web service.

Note:

JAX-WS web services do not support RPC style.

For more information about:

• Developing web service clients, see “Developing Basic JAX-WS Web Service
Clients" in the Oracle Fusion Middleware Developing JAX-WS Web Services for Oracle
WebLogic Server.

• Administering web services and clients, see Oracle Fusion Middleware Administering
Web Services.

The following sections describe how to create and use JAX-WS web service clients:

• Creating the Client and Proxy Classes

• Developing a JAX-WS Web Service Client Application

• Referencing Web Services Using the @WebServiceRef Annotation

• Regenerating Web Service Client and Proxy Classes

• Editing the Web Service Clients

• Deleting the Web Service Clients

See also the following sections describing how to view and manage the WSDL used to
create the web service client:

• Viewing the WSDL Used to Create the Web Service Client

• Refreshing the Local Copy of the WSDL and Regenerating the Web Service Client
Proxy and Classes

• Updating the Web Service WSDL Used by the Client at Run Time

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-21

Creating the Client and Proxy Classes

Use JDeveloper to automatically create a client and proxy classes to access a web
service and call its methods in your application. Using the wizard, you can also
generate asynchronous methods, attach policies, and define SOAP handlers, as
required.

You can create a client and proxy classes to access a web service using the Create Web
Service Client and Proxy wizard. The wizard generates a new service class (JAX-WS)
and service interface for each exposed port and lists them in the Applications window.
It opens the generated client file port-nameClient.java in the source editor. Once
generated, you can call the methods in your application.

Note:

In some cases, you may encounter errors when you run a web service client
that you have created for a web service accessed on the Internet or using a
UDDI registry. Because web services standards are still evolving, it is possible
that the web services that you locate may not conform to the latest standards,
or the standards to which they conform may not be compatible with those
supported by the server on which the client is running. If a web service client
that you have created in JDeveloper returns an error, examine the error
message and consider creating a client to another web service that provides a
similar service, but that is compatible with the server and will run without
problems.

You can access the Create Web Service Client and Proxy wizard using one of the
following methods. For help in completing the wizard, press F1 or click Help from
within the wizard.

Creating Client and Proxy Classes to Access a Web Service

You can generate client and proxy classes for a web service that is defined outside of
JDeveloper by launching the Create Web Service Client Proxy wizard and specifying
the WSDL for the web service.

To create client and proxy classes to access a web service:

1. In the Applications window, select the project you want to use.

2. Choose File > New > From Gallery to open the New Gallery.

3. In the Categories list, select Web Services.

4. In the Items list, double-click Web Service Client and Proxy to launch the Create
Web Service Client and Proxy wizard.

For more information at any time, press F1 or click Help from within the Create
Web Service Client and Proxy wizard.

Creating Client and Proxy Classes to Access a Web Service Defined in JDeveloper

You can generate client and proxy classes for a web service that is currently defined in
JDeveloper from the Applications window.

To create a client and proxy classes to access a web service defined in JDeveloper:

Creating JAX-WS Web Services and Clients

21-22 Developing Applications with Oracle JDeveloper

Right-click the web service container in the Applications window, and choose Create
Client for Web Service Annotations.

The Create Web Service Client and Proxy wizard opens and is pre-populated with the
selected web service project.

Note:

When you create the client and proxy classes for an EJB web service that uses
JavaBean parameters, the JavaBean must implement the
java.io.Serializable interface.

Developing a JAX-WS Web Service Client Application

JDeveloper generates a number of files that define a proxy to the web service. Using
the generated files, you can develop the following types of web service client
applications:

• Standalone client application

• Java Standard Edition (SE) client application

• Java EE component deployed to Oracle WebLogic Server

Note:

In addition to the procedures described below, you can use web service
injection (using the @WebServiceRef method) to define a reference to a web
service and identify an injection target in your web service client. For more
information see Referencing Web Services Using the @WebServiceRef
Annotation

Developing a Standalone Client Application

A standalone client application, in its simplest form, is a Java program that has the
Main public class that you invoke with the java command. It runs completely
separate from .

To develop a standalone client application:

1. Open the client proxy class, called port_nameClient.java, in the source
editor.

This file opens automatically when you create the web service client proxy
initially. To re-open the class, right-click on the client proxy container and select
Go to Client Class or simply double-click on the file in the Applications window.

2. Locate the comment // Add your code to call the desired methods,
and add the appropriate code to invoke the web service.

3. Run the client.

Developing a Java Standard Edition (SE) Client Application

Include the generated proxy classes as part of a Java Standard Edition (SE) application
and reference them to access the remote web service.

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-23

To develop a Java SE client application:

1. Copy the generated client proxy classes to your Java SE application source
directory.

2. Using the main client proxy class, called port_nameClient.java, as your
guide, add appropriate methods to access the web service from your application.

3. Run the application.

Developing a Java EE Component Client Application Deployed to

This type of web service runs inside a Java Platform, Enterprise Edition (Java EE)
Version 6 component deployed to , such as an EJB, servlet, or another web service. A
JEE web service client application, therefore, runs inside a container.

To develop a Java EE component client application deployed to WebLogic Server:

1. Open the main client proxy class, called port_nameClient.java, in the source
editor.

This file opens automatically when you create the web service client proxy
initially. To re-open the class, right-click on the client proxy container and select
Go to Client Class or simply double-click on the file in the Applications window.

2. Replace the main method with your own method(s) to access the web service and
perform required operations. You can use the code generated in the main method
as a guide.

3. Deploy the full set of client module classes that JDeveloper has generated.

4. Reference the client proxy class in your Java EE application.

Referencing Web Services Using the @WebServiceRef Annotation

When you use the javax.xml.ws.WebServiceRef annotation, you can inject a
reference to a web service into any container-managed Java class.

To add a @WebServiceRef annotation to your Java class quickly and easily, right-
click within the Java class editor at the location you want to inject the web service
reference, and select one of the following options:

• Select Create Proxy and Insert Reference from the context menu.

This command invokes the Create Web Service Client and Proxy wizard, enabling
you to generate a web service client and proxy classes. Then, the
javax.xml.ws.WebServiceRef and web service proxy classes are imported
automatically and a reference to the selected web service is injected at the specified
location.

• Select Insert Proxy Reference from the context menu, then select an existing web
service proxy from the drop-down list.

The javax.xml.ws.WebServiceRef and web service proxy classes are
imported automatically and a reference to the selected web service is injected at the
specified location. If no web service proxy classes are currently available, then this
option is greyed out.

The following excerpt provides an example of the code that is automatically added to
the Java class:

Creating JAX-WS Web Services and Clients

21-24 Developing Applications with Oracle JDeveloper

import java.xml.ws.WebServiceRef;
import ratingservice.CreditRatingService;
...
/**
 ** Injectable field for service WebServiceClient
**/
@WebServiceRef
CreditRatingService creditRatingService1;
...

For more information, see “Defining a Web Service Reference Using the
@WebServiceRef Annotation" in Oracle Fusion Middleware Developing JAX-WS Web
Services for Oracle WebLogic Server.

Enabling Web Service Atomic Transactions in a Web Service Client

For more information about web service atomic transactions, see How to Use Web
Service Atomic Transactions.

You can enable web service atomic transactions in a web service client's injectable
target.

To enable web service atomic transactions in a web service client's injectable target:

1. Open the web service client in the source editor.

2. Right-click on the @WebServiceRef annotation or injectable target and select Add
Transactional from the menu.

The @Transactional annotation is added to the web service client.

3. You can specify the version and flow type values as follows:

@Transactional(version=Transactional.Version.[WSAT10|WSAT11|WSAT12|DEFAULT],
 value=Transactional.TransactionFowType.[MANDATORY|SUPPORTS|NEVER])

For more information about the configuration options, see Table 21-5.

Regenerating Web Service Client and Proxy Classes

There are times that you may need to regenerate the web service client and proxy
classes. For example, if the web service has been updated since they were last
generated.

Note:

When you regenerate the web service client and proxy classes, JDeveloper
discards any changes that you have made to the class, WSDL, or supporting
files since the client was last generated.

To regenerate the web service client and proxy classes:

You can regenerate the web service client and proxy classes quickly and easily using
the set of properties last defined in the Web Service Client and Proxy Editor wizard
and the current locally stored WSDL, as follows:

• In the Applications window, right-click the web service client node that you want
to regenerate and choose Regenerate Web Service Proxy from the context menu.

The web service client class, WSDL, and supporting proxy files are regenerated.

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-25

Editing the Web Service Clients

You can edit a web service client using the Web Service Client and Proxy editor.

To edit a web service client:

• Double-click on the web service client container within the Applications window.

• Right-click on the client within the Applications window, and select Properties....

For help in completing the wizard, press F1 or click Help from within the wizard.

Deleting the Web Service Clients

Once no longer needed, you can delete web service clients.

To delete a web service client:

1. In the Applications window, right-click on the web service client container, and
select Delete.

The Delete Proxy? dialog displays.

2. Ensure that the appropriate files are selected in the dialog box. Click Select All or
Deselect All to select or deselect all proxy files.

3. Choose OK.

The files are permanently erased.

How to Use Web Service Atomic Transactions
WebLogic web services enable interoperability with other external transaction
processing systems, such as Websphere, JBoss, Microsoft .NET, and so on, through the
support of the following specifications:

• WS-AtomicTransaction (Versions 1.0, 1.1, and 1.2) at http://docs.oasis-
open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-
cs-01.html

• WS-Coordination (Versions 1.0, 1.1, and 1.2) at http://docs.oasis-
open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-
spec-cs-01.html

These specifications define an extensible framework for coordinating distributed
activities among a set of participants. The coordinator is the central component,
managing the transactional state (coordination context) and enabling web services and
clients to register as participants. For more information about web service atomic
transactions, see “Using Web Services Atomic Transactions" in Oracle Fusion
Middleware Developing JAX-WS Web Services for Oracle WebLogic Server.

To enable atomic transactions for a web service implementation at the class level or
synchronous method level (for two-way methods only) use one of the following
methods:

• Adding @weblogic.wsee.wstx.wsat.Transactional annotation directly in
the Java class; the JDeveloper Code Insight feature can help you. For more
information, see Enabling Web Service Atomic Transactions in a Java Class.

Creating JAX-WS Web Services and Clients

21-26 Developing Applications with Oracle JDeveloper

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html

• Using the Properties window, as described in Enabling Web Service Atomic
Transactions in the Properties Window .

To enable atomic transactions for web service clients use one of the following
methods:

• Right click on the @WebServiceRef annotation or web service injectable target,
and select Add Transactional from the menu to add the @Transactional
annotation.

• Pass the weblogic.wsee.wstx.wsat.TransactionalFeature as a parameter
when creating the web service proxy or dispatch. For more information, see “Using
Web Services Atomic Transactions" in Oracle Fusion Middleware Developing JAX-WS
Web Services for Oracle WebLogic Server.

When enabling web service atomic transactions, configure the following information:

• Version: Version of the web service atomic transaction coordination context that is
used for web services and clients. For clients, it specifies the version used for
outbound messages only. The value specified must be consistent across the entire
transaction. Valid values include WSAT10, WSAT11, and WSAT12, and DEFAULT.
The DEFAULT value for web services is all three versions (driven by the inbound
request); the DEFAULT value for web services clients is WSAT10.

• Flow type: Flag that specifies whether the coordination context is passed with the
transaction flow. The following table summarizes the valid values and their
meaning on the web service and client. The table also summarizes the valid value
combinations when configuring web service atomic transactions for an EJB-style
web service that uses the @TransactionAttribute annotation.

Table 21-5 Transaction Configurations

Value Web Service Client Web Service Valid EJB
@TransactionAttrib
ute Values

NEVER JTA transaction: Do
not export transaction
coordination context.

No JTA transaction:
Do not export
transaction
coordination context.

Transaction flow exists:
Do not import transaction
coordination context. If the
CoordinationContext
header contains
mustunderstand="true
", a SOAP fault is thrown.

No transaction flow: Do
not import transaction
coordination context.

NEVER,
NOT_SUPPORTED,
REQUIRED,
REQUIRES_NEW,
SUPPORTS

SUPPORTS
(Default)

JTA transaction:
Export transaction
coordination context.

No JTA transaction:
Do not export
transaction
coordination context.

Transaction flow exists:
Import transaction context.

No transaction flow: Do
not import transaction
coordination context.

SUPPORTS, REQUIRED

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-27

Table 21-5 (Cont.) Transaction Configurations

Value Web Service Client Web Service Valid EJB
@TransactionAttrib
ute Values

MANDATOR
Y

JTA transaction:
Export transaction
coordination context.

No JTA transaction:
An exception is
thrown.

Transaction flow exists:
Import transaction context.

No transaction flow:
Service-side exception is
thrown.

MANDATORY,
REQUIRED, SUPPORTS

You can enable web service atomic transactions from a Java class, the Properties
window, or a web service client's injectable target, as described in the following
sections.

• Enabling Web Service Atomic Transactions in a Java Class

• Enabling Web Service Atomic Transactions in the Properties Window

• Enabling Web Service Atomic Transactions in a Web Service Client's Injectable
Target

Enabling Web Service Atomic Transactions in a Java Class

You can enable web service atomic transactions in a Java class.

To enable web service atomic transactions in the Java class:

1. Open the web service class in the source editor.

2. Start typing the annotation, for example, @Transactional. When you pause, or
click Ctrl+Shift+Space, a popup appears from which you can choose the correct
entry to complete the statement.

3. You can specify the version and flow type values as follows:

@Transactional(version=Transactional.Version.[WSAT10|WSAT11|WSAT12|DEFAULT],
 value=Transactional.TransactionFowType.[MANDATORY|SUPPORTS|NEVER])

Enabling Web Service Atomic Transactions in the Properties Window

You can enable web service atomic transactions in the Properties window.

To enable web service atomic transactions in the Properties window:

1. With the web service class open in the source editor, choose Window > Properties
to open the Properties window.

For more information at any time, press F1 or click Help from within the Properties
window.

2. With the cursor in the public class, @WebService, or two-way method line of the
class, navigate to the JAX-WS Extensions node in the Properties window.

3. Select Add Transactional.

Creating JAX-WS Web Services and Clients

21-28 Developing Applications with Oracle JDeveloper

The Properties window is refreshed to display options to enable or disable the
feature, and to set the flow type and version. For more information about the
configuration options, see Table 21-5.

4. Select a flow type from the Flow Type drop-down list. Valid values include:
Supports, Never, and Mandatory. This field defaults to Supports.

5. Select a version from the Version drop-down list. Valid values include: WS-AT
1.0, WS-AT 1.1, WS-AT 1.2, and Default. The Default value for web services
is all three versions (driven by the inbound request); the Default value for web
services clients is WS-AT 1.0.

The @Transactional annotation is imported and added to the public class.

Enabling Web Service Atomic Transactions in a Web Service Client's Injectable
Target

You can enable web service atomic transactions in a web service client's injectable
target.

To enable web service atomic transactions in a web service client's injectable target:

1. Open the web service client in the source editor.

2. Right-click on the @WebServiceRef annotation or injectable target and select Add
Transactional from the menu.

The @Transactional annotation is added to the web service client.

3. You can specify the version and flow type values as follows:

@Transactional(version=Transactional.Version.[WSAT10|WSAT11|WSAT12|DEFAULT],
 value=Transactional.TransactionFowType.[MANDATORY|SUPPORTS|NEVER])

For more information about the configuration options, see Table 21-5.

How to Use SOAP Over JMS Transport
Typically, web services and clients communicate using SOAP over HTTP/S as the
connection protocol. You can, however, configure a WebLogic web service so that
client applications use JMS as the transport.

Using SOAP over JMS transport, web services and clients communicate using JMS
destinations instead of HTTP connections, offering the following benefits:

• Reliability

• Scalability

• Quality of service

As with web service reliable messaging, if WebLogic Server goes down while the
method invocation is still in the queue, it will be handled as soon as WebLogic Server
is restarted. When a client invokes a web service, the client does not wait for a
response, and the execution of the client can continue. Using SOAP over JMS transport
does require slightly more overhead and programming complexity than HTTP/S.

For each transport that you specify, WebLogic Server generates an additional port in
the WSDL. For this reason, if you want to give client applications a choice of
transports they can use when they invoke the web service (JMS, HTTP, or HTTPS),
you should explicitly configure each transport.

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-29

Note:

SOAP over JMS transport is not compatible with the following web service
features: reliable messaging and HTTP transport-specific security.

You can enable SOAP over JMS transport from a Java class, the Properties window, or
a web service client, as described in the following sections.

• Developing Web Services Using JMS Transport

• Enabling JMS Transport in the Properties Window

• Developing Web Service Clients Using JMS Transport

For more information about SOAP over JMS transport, see “Using SOAP Over JMS
Transport" in Oracle Fusion Middleware Developing JAX-WS Web Services for Oracle
WebLogic Server.

Developing Web Services Using JMS Transport

To develop web services using JMS transport, use one of the following methods:

• Adding @com.oracle.webservices.api.jms.JMSTransportService
annotation directly in the Java class, as described in “Using the
@JMSTransportService Annotation" in Oracle Fusion Middleware Developing JAX-WS
Web Services for Oracle WebLogic Server.

• Using the Properties window, as described in Enabling JMS Transport in the
Properties Window.

Enabling JMS Transport in the Properties Window

To simplify configuration, you can enable JMS transport in the Properties window.

To enable JMS transport in the Properties window:

1. With the web service class open in the source editor, choose Window > Properties
to open the Properties window.

For more information at any time, press F1 or click Help from within the
Properties window.

2. With the cursor in the public class, @WebService, or two-way method line of the
class, navigate to the JMS node in the Properties window.

3. Select JMS.

The Properties window is refreshed to display options to configure SOAP over
JMS transport. For more information about the configuration options, see Table
21-6.

4. Configure the JMS transport properties, as required.

When enabling JMS transport, you can configure the properties defined in the
following table.

Creating JAX-WS Web Services and Clients

21-30 Developing Applications with Oracle JDeveloper

Table 21-6 Configuration Properties for SOAP Over JMS Transport

Name Description

Activation Properties Activation configuration properties passed to the JMS provider. To edit the
activation properties, click ... to open the Edit Property: Activation Properties
dialog and specify values in the Value column for the activation properties.

For a list of activation properties that are supported, see “Configuring JMS
Transport Properties" in Oracle Fusion Middleware Developing JAX-WS Web Services
for Oracle WebLogic Server.

Binding Version Version of the SOAP JMS binding. This value must be set to SOAP JMS 1.0 for
this release, which equates to
com.oracle.webservices.api.jms.JMSConstants.SOAP11_JMS_BINDI
NG.

This value maps to the SOAPJMS_bindingVersion JMS message property.

Delivery Mode Delivery mode indicating whether the request message is persistent. Valid values
are Persistent and Non-Persistent. This value defaults to Persistent.

Destination Name JNDI name of the destination queue or topic. This value defaults to
com.oracle.webservices.jms.RequestQueue.

Destination Type Destination type. Valid values include: Queue or Topic. This value defaults to
Queue.

This value overrides the destinationType value specified as an entry in the
Activation Properties field, if applicable.

Topics are supported only for one-way communication.

Enable WSDL Access Boolean flag that specifies whether to publish the WSDL through HTTP. This flag
defaults to true.

Header Property JMS header properties. Each property is specified using name-value pairs,
separated by semicolons (;). For example: name1=value1;...;nameN=valueN.

Message Property JMS message properties. Each property is specified using name-value pairs,
separated by semicolons (;). For example: name1=value1;...;nameN=valueN.

Connection Factory JNDI name of the connection factory that is used to establish a JMS connection.
This value defaults to com.oracle.webservices.jms.ConnectionFactory.

Context Parameters JNDI properties. Each property is specified using name-value pairs, separated by
semicolons (;). For example: name1=value1;...;nameN=valueN.

The properties are added to the java.util.Hashtable sent to the
InitialContext constructor for the JNDI provider.

Context Factory Name of the initial context factory class for the JNDI lookup. This value maps to
the java.naming.factory.initial property. This value defaults to
weblogic.jndi.WLInitialContextFactory.

URL JNDI provider URL. This value defaults to t3://localhost:7001.

This value maps to the java.naming.provider.url property.

MDB per Destination Boolean flag that specifies whether to create one listening message-driven bean
(MDB) for each requested destination. This value defaults to true.

If set to false, one listening MDB is created for each web service port, and that
MDB cannot be shared by other ports.

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-31

Table 21-6 (Cont.) Configuration Properties for SOAP Over JMS Transport

Name Description

Message Type Message type to use with the request message. Valid values are Bytes and Text.
This value defaults to Bytes.

For more information about configuring the message type, see “Configuring the
JMS Message Type" in Oracle Fusion Middleware Developing JAX-WS Web Services
for Oracle WebLogic Server.

Priority JMS priority associated with the request and response message. Specify this value
as a positive Integer from 0, the lowest priority, to 9, the highest priority. The
default value is 0.

Reply to Name JNDI name of the JMS destination to which the response message is sent.

For a two-way operation, a temporary response queue is generated by default.
Using the default temporary response queue minimizes the configuration that is
required. However, in the event of a server failure, the response message may be
lost.

This attribute enables the client to use a previously defined, “permanent" queue or
topic rather than use the default temporary queue or topic, for receiving replies.
For more information about configuring the JMS response queue, see
“Configuring the JMS Response Queue" in Oracle Fusion Middleware Developing
JAX-WS Web Services for Oracle WebLogic Server.

The value maps to the JMSReplyTo JMS header in the request message.

Run as Principle Name Principal used to run the listening MDB.

Run as Role Role used to run the listening MDB.

Target Service Port component name of the web service. This value is used by the service
implementation to dispatch the service request. If not specified, the service name
from the WSDL or javax.jws.WebService annotation is used.

This value maps to the SOAPJMS_targetService JMS message property.

Time to Live Lifetime, in milliseconds, of the request message. A value of 0 indicates an infinite
lifetime. If not specified, the JMS-defined default value (0) is used.

On the service side, this value also specifies the expiration time for each MDB
transaction.

Developing Web Service Clients Using JMS Transport

To develop web service clients using JMS transport, use one of the following methods:

• Update the web service client to enable and configure JMS transport, using one of
the following methods:

– Adding @com.oracle.webservices.ap.jms.JMSTransportClient
annotation, as described in “Using the @JMSTransportClient Annotation" in
Oracle Fusion Middleware Developing JAX-WS Web Services for Oracle WebLogic
Server.

– Adding
@com.oracle.webservices.ap.jms.JMSTransportClientFeature
feature client API, as described in “Using the JMSTransportClientFeature Client
API" in Oracle Fusion Middleware Developing JAX-WS Web Services for Oracle
WebLogic Server.

Creating JAX-WS Web Services and Clients

21-32 Developing Applications with Oracle JDeveloper

– Configure the JMS URI as the target endpoint address for synchronous clients,
as described in “Configuring the JMS URI as the Target Endpoint Address" in
Oracle Fusion Middleware Developing JAX-WS Web Services for Oracle WebLogic
Server.

• Update the asynchronous web service client to enable and configure JMS transport,
as described in “Using AsyncClientTransportFeature to Configure Asynchronous
Clients" in Oracle Fusion Middleware Developing JAX-WS Web Services for Oracle
WebLogic Server.

For more information about these methods, see “Invoking a WebLogic Web Service
Using JMS Transport" in Oracle Fusion Middleware Developing JAX-WS Web Services for
Oracle WebLogic Server.

How to Use Fast Infoset for Optimizing XML Transmission
Fast Infoset is a compressed binary encoding format that provides a more efficient
serialization than the text-based XML format. Fast Infoset optimizes both document
size and processing performance.

When enabled, Fast Infoset converts the XML Information Set in the SOAP envelope
into a compressed binary format before transmitting the data. Fast Infoset optimizes
encrypted and signed messages, MTOM-enabled messages, and SOAP attachments,
and supports both HTTP and JMS transports.

The Fast Infoset specification, ITU-T Rec. X.891 and ISO/IEC 24824-1 (Fast Infoset) is
defined by both the ITU-T and ISO standards bodies. The specification can be
downloaded from the ITU Web site: http://www.itu.int/rec/T-REC-X.
891-200505-I/en

The Fast Infoset capability is enabled on all web services, by default. For web service
clients, Fast Infoset is enabled if it is enabled on the web service and advertised in the
WSDL.

The following sections describe how to enable and disable Fast Infoset explicitly on
web services and clients:

• Configuring Fast Infoset on Web Services

• Configuring Fast Infoset on Web Service Clients

Configuring Fast Infoset on Web Services

The Fast Infoset capability is enabled on all web services, by default.

You can explicitly enable (for example, to ensure the feature is not disabled by a global
policy attachment), disable. and configure Fast Infoset for a web service using the
following methods:

• Adding the com.oracle.webservices.api.FastInfosetService
annotation directly in the Java class; the JDeveloper Code Insight feature can help
you. For more information, see Configuring Fast Infoset in a Java Class.

• Using the Web Services wizard, as described in Configuring Fast Infoset in the Web
Service Wizard.

• Using the Properties window, as described in Configure Fast Infoset in the
Properties Window .

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-33

http://www.itu.int/rec/T-REC-X.891-200505-I/en
http://www.itu.int/rec/T-REC-X.891-200505-I/en

Configuring Fast Infoset in a Java Class

You can enable Fast Infoset in a Java class.

To configure Fast Infoset in the Java class:

1. Open the web service class in the source editor.

2. Start typing the annotation, for example, @FastInfosetService. When you
pause, or click Ctrl+Shift+Space, a popup appears from which you can choose the
correct entry to complete the statement.

3. You can specify explicitly whether the feature is enabled or disabled using the
enabled attribute, as shown in the following example.

package examples.webservices.hello_world;
import javax.jws.WebService;
import com.oracle.webservices.api.FastInfosetService;

@WebService(name="HelloWorldPortType", serviceName="HelloWorldService")
@FastInfosetService(enabled=true)

public class HelloWorldImpl {
 public String sayHelloWorld(String message) {
 try {
 System.out.println("sayHelloWorld:" + message);
 } catch (Exception ex) { ex.printStackTrace(); }
 return "Message from FI Enabled Service: '" + message + "'";
 }
}

Configuring Fast Infoset in the Web Service Wizard

You can enable Fast Infoset in the web service wizard when creating a new web
service or in the web service editor when updating a web service that already exists.

For more information about creating web services using the Create Java Web Service
Wizard, see Creating Java Web Services .

To configure Fast Infoset in the web service wizard:

In the Create Java Web Service wizard or web service editor, navigate to the Message
Format page and select the Enable Fast Infoset checkbox. For more information at any
time, press F1 or click Help from within the dialog.

Configure Fast Infoset in the Properties Window

You can enable Fast Infoset in the Properties window.

To configure Fast Infoset in the Properties window:

1. With the web service class open in the source editor, choose Window > Properties
to open the Properties window.

For more information at any time, press F1 or click Help from within the
Properties window.

2. With the cursor in the public class or @WebService line of the class, navigate to
the JAX-WS Extensions node in the Properties window.

3. Select Enable Fast Infoset.

The @FastInfosetService annotation is imported and added to the public class.

Creating JAX-WS Web Services and Clients

21-34 Developing Applications with Oracle JDeveloper

Configuring Fast Infoset on Web Service Clients

For web service clients, Fast Infoset is enabled if it is enabled on the web service and
advertised in the WSDL.

You can explicitly enable, disable. and configure Fast Infoset for a web service client
by passing the com.oracle.webservices.api.FastInfosetClientFeature as
a parameter when creating the web service proxy or dispatch.For more information
about configuring the content negotiation strategy, see "Configuring the Content
Negotiation Strategy" in Oracle Fusion Middleware Developing JAX-WS Web Services for
Oracle WebLogic Server.

The following code excerpt provides an example of using the
com.oracle.webservices.api.FastInfosetClientFeature feature class to
enable and configure Fast Infoset on a web service at design time.

package examples.webservices.hello_world.client;

import javax.xml.namespace.QName;
import java.net.MalformedURLException;
import java.net.URL;
import com.oracle.webservices.api.FastInfosetClientFeature;
import com.oracle.webservices.api.FastInfosetContentNegotiationType;

public class Main {

public static void main(String[] args) {
 HelloWorldService service;
 FastInfosetContentNegotiationType clientNeg =
 FastInfosetContentNegotiationType.PESSIMISTIC;
 FastInfosetClientFeature feature =
FastInfosetClientFeature.builder().fastInfosetContentNegotiation(clientNeg).enabled(t
rue).build();
 try {
 service = new HelloWorldService(new URL(args[0] + "?WSDL"), new QName("http://
hello_world.webservices.examples/", "HelloWorldService"));
 } catch (MalformedURLException murl) { throw new RuntimeException(murl); }
 HelloWorldPortType port = service.getHelloWorldPortTypePort(feature);

 String result = null;
 result = port.sayHelloWorld("Hi there!");
 System.out.println("Got result: " + result);
 }
}

To disable Fast Infoset on the client, set the enabled flag to false or set the content
negotiation strategy to NONE on the Feature class.

Disabling Fast Infoset on Web Services and Clients

At design time, to disable Fast Infoset explicitly:

• On a web service, set the enabled flag to false on the annotation. For more
information, see Configuring Fast Infoset in a Java Class.

• On a web service client, set the enabled flag to false or set the content
negotiation strategy to NONE on the annotation or Feature class. For more
information, see "Configuring the Content Negotiation Strategy" and “Example
Using FastInfosetClientFeature Class at Design Time" in Oracle Fusion Middleware
Developing JAX-WS Web Services for Oracle WebLogic Server.

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-35

The following code excerpt provides an example of using the
com.oracle.webservices.api.FastInfosetService annotation to disable
Fast Infoset on a web service at design time.

package examples.webservices.hello_world;
import javax.jws.WebService;
import com.oracle.webservices.api.FastInfosetService;

@WebService(name="HelloWorldPortType", serviceName="HelloWorldService")
@FastInfosetService(enabled=false)

public class HelloWorldImpl {
 public String sayHelloWorld(String message) {
 try {
 System.out.println("sayHelloWorld:" + message);
 } catch (Exception ex) { ex.printStackTrace(); }
 return "Message from FI Enabled Service: '" + message + "'";
 }
}

How to Use MTOM for Optimizing Binary Transmission
SOAP Message Transmission Optimization Mechanism/XML-binary Optimized
Packaging (MTOM/XOP) defines a method for optimizing the transmission of XML
data of type xs:base64Binary or xs:hexBinary in SOAP messages. When the
transport protocol is HTTP, Multipurpose Internet Mail Extension (MIME)
attachments are used to carry that data while at the same time allowing both the
sender and the receiver direct access to the XML data in the SOAP message without
having to be aware that any MIME artifacts were used to marshal the base64Binary
or hexBinary data.

The binary data optimization process involves the following steps:

1. Encode the binary data.

2. Remove the binary data from the SOAP envelope.

3. Compress the binary data.

4. Attach the binary data to the MIME package.

5. Add references to the MIME package in the SOAP envelope.

MTOM/XOP support is standard in JAX-WS via the use of JWS annotations. The
MTOM specification does not require that, when MTOM is enabled, the Web service
runtime use XOP binary optimization when transmitting base64binary or
hexBinary data. Rather, the specification allows the runtime to choose to do so. This
is because in certain cases the runtime may decide that it is more efficient to send the
binary data directly in the SOAP Message; an example of such a case is when
transporting small amounts of data in which the overhead of conversion and transport
consumes more resources than just inlining the data as is.

The following Java types are mapped to the base64Binary XML data type, by
default: javax.activation.DataHandler, java.awt.Image, and
javax.xml.transform.Source. The elements of type base64Binary or
hexBinary are mapped to byte[], by default.

The following sections describe how to enable MTOM on web services and clients:

• Enabling MTOM on Web Services

Creating JAX-WS Web Services and Clients

21-36 Developing Applications with Oracle JDeveloper

• Enabling MTOM on Web Service Clients

• Configuring MTOM on Web Services and Clients

Enabling MTOM on Web Services

You can enable MTOM for a web service using the following

• Adding the javax.xml.ws.soap.MTOM annotation directly in the Java class; the
JDeveloper Code Insight feature can help you. For more information, see
Configuring Fast Infoset in a Java Class.

• Using the Web Services wizard, as described in Configuring Fast Infoset in the Web
Service Wizard.

• Using the Properties window, as described in Configure Fast Infoset in the
Properties Window .

Enabling MTOM in a Java Class

You can enable MTOM in a Java class.

To enable MTOM in the Java class:

1. Open the web service class in the source editor.

2. Start typing the annotation, for example, @MTOM. When you pause, or click Ctrl
+Shift+Space, a popup appears from which you can choose the correct entry to
complete the statement.

The following provides an example of enabling MTOM on a web service:

package examples.webservices.mtom;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.xml.ws.soap.MTOM;

@MTOM
@WebService(name="MtomPortType",
 serviceName="MtomService",
 targetNamespace="http://example.org")
public class MTOMImpl {
 @WebMethod
 public String echoBinaryAsString(byte[] bytes) {
 return new String(bytes);

 }
}

Enabling MTOM by Attaching a WebLogic Web Service Policy

You can enable MTOM by attaching a WebLogic web service policy, as described in
"Enabling MTOM on the Web Services by Attaching a WS-Policy File" in Oracle Fusion
Middleware Developing JAX-WS Web Services for Oracle WebLogic Server.

Enabling MTOM in the Web Service Wizard

You can enable MTOM in the web service wizard when creating a new web service or
in the web service editor when updating a web service that already exists.

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-37

For more information about creating web services using the Create Java Web Service
Wizard, see Creating Java Web Services .

To enable MTOM in the web service wizard, in the Create Java Web Service wizard or
web service editor, navigate to the Message Format page and select the Enable
MTOM checkbox. For more information at any time, press F1 or click Help from
within the dialog.

Enabling MTOM in the Properties Window

You can enable MTOM in the Properties window.

To enable MTOM in the Properties window:

1. With the web service class open in the source editor, choose Window > Properties
to open the Properties window.

For more information at any time, press F1 or click Help from within the
Properties window.

2. With the cursor in the public class or @WebService line of the class, navigate to
the JAX-WS node in the Properties window.

3. Select Enable MTOM.

The @FastInfosetService annotation is imported and added to the public class.

Enabling MTOM on Web Service Clients

To enable MTOM on the client of the Web service, pass an instance of the
javax.xml.ws.soap.MTOMFeature as a parameter when creating the Web service
proxy or dispatch, as illustrated in the following example. Relevant code is shown in
bold.

package examples.webservices.mtom.client;

import javax.xml.ws.soap.MTOMFeature;

public class Main {
 public static void main(String[] args) {
 String FOO = "FOO";
 MtomService service = new MtomService()
 MtomPortType port = service.getMtomPortTypePort(new MTOMFeature());
 String result = null;
 result = port.echoBinaryAsString(FOO.getBytes());
 System.out.println("Got result: " + result);
 }
}

Configuring MTOM on Web Services and Clients

At design time, you can configure the following

• Set an attachment threshold to specify when the xs:binary64 data is sent inline
or as an attachment. By default, the attachment threshold is 0 bytes. For more
information, see "Setting an Attachment Threshold" in Oracle Fusion Middleware
Developing JAX-WS Web Services for Oracle WebLogic Server.

• Enable HTTP chunking on the transport layer to minimize excessive buffering on
the client side when processing MTOM attachments. For more information, see
"Enabling HTTP Chunking" in Oracle Fusion Middleware Developing JAX-WS Web
Services for Oracle WebLogic Server

Creating JAX-WS Web Services and Clients

21-38 Developing Applications with Oracle JDeveloper

How to Manage WSDL Files
JDeveloper provides a number of ways that you can manage WSDL files for a web
service, as described in the following sections:

• Creating WSDL Documents

• Displaying the WSDL for a Web Service

• Adding a WSDL to a Web Service Project

• Saving a WSDL to Your Local Directory

• Viewing the WSDL Used to Create the Web Service Client

• Refreshing the Local Copy of the WSDL and Regenerating the Web Service Client
Proxy and Classes

• Updating the Web Service WSDL Used by the Client at Run Time

Creating WSDL Documents

You can create a WSDL document, for example, to create a top-down web service.

To create a WSDL document:

1. In the Applications window, select the project containing the Java class or EJB from
which you want to create a web service.

2. Choose File > New > From Gallery to open the New Gallery.

3. In the Categories list, expand Business Tier and select Web Services. In the Items
list, double-click WSDL Document to open the Create WSDL Document dialog.

For detailed help about completing the wizard, press F1 or click Help from within
the dialog.

Displaying the WSDL for a Web Service

You can display the WSDL for a web service. The WSDL file is generated based on the
annotations defined in the web service to a temporary directory and displayed.

Update “Managing WSDL Files" to indicate that when a user views a locally saved
WADL file, the original WSDL location is saved as a read-only field in the editor.

To display the WSDL to a web service project

In the Applications window, right-click the web service for which you want to display
the WSDL and select Show WSDL for Web Service Annotations from the context
menu.

The WSDL is generated to a temporary directory and displayed.

Adding a WSDL to a Web Service Project

You can generate a WSDL file for a web service and add it to the project using the
procedures described below. The WSDL file is generated automatically and added to
the WEB-INF/wsdl directory for Web applications and to the META-INF/wsdl
directory for EJB applications within the project. In addition, the @WebService

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-39

annotation is updated with the wsdlLocation attribute to reference the location of
the local WSDL. For example:

@WebService(wsdlLocation="WEB-INF/wsdl/CreditRatingService.wsdl")

To add a WSDL to a web service project

In the Applications window, right-click the web service for which you want to add a
WSDL and select Generate WSDL and Add to Project from the context menu. The
WSDL is automatically generated and added to the project in the WEB-INF/wsdl
directory.

Note:

If a WSDL file already exists in the WEB-INF/wsdl or META-INF/wsdl
directory, you are prompted whether or not to overwrite the existing WSDL
file.

Saving a WSDL to Your Local Directory

When viewing a remote WSDL for a web service, you can save the WSDL to your local
directory.

Note:

If you want to use the WSDL within a web service project, you need to copy it
to a location that is accessible by the project directory (for example, WEB-INF/
wsdl for Web applications and META-INF/wsdl for EJB applications) and
update the @WebService annotation to reference the WSDL location.

To save a WSDL to your local directory:

1. Display the WSDL file for the web service.

2. Choose Tools > Copy WSDL Locally.

3. In the Select Destination for WSDL dialog, navigate to the location that you want to
save the WSDL, or enter the location in the Directory name text box, and click
Select.

The WSDL is saved to the location specified.

Viewing the WSDL Used to Create the Web Service Client

You can view the WSDL that was used to generate the web service client. Please note:

• If available, the local copy of the WSDL file is displayed. When generating the web
service client, you have the option to copy the WSDL of the source web service to
your local directory. See Creating the Client and Proxy Classes.

Creating JAX-WS Web Services and Clients

21-40 Developing Applications with Oracle JDeveloper

Note:

In most cases, the local copy of the WSDL will match the WSDL of the remote
web service. If the remote web service is modified, the local WSDL may
become out-of-sync with the remote WSDL. To ensure the web service client
will be able to access the remote web service, you can regenerate the local
WSDL using the remote WSDL, as needed. See Regenerating Web Service
Client and Proxy Classes.

• If the local version is not available, the remote WSDL is displayed.

To view the WSDL used to create the web service client:

1. Right-click on the web service client container within the Applications window.

2. Select Go To WSDL from the pop-up menu.

The WSDL is displayed.

Refreshing the Local Copy of the WSDL and Regenerating the Web Service Client
Proxy and Classes

You can refresh the local copy of the WSDL from the original WSDL location. The web
service client and proxy classes are regenerated once the WSDL is refreshed.

To refresh the local copy of the WSDL:

1. In the Applications window, right-click the web service client node that you want
to regenerate and choose Properties from the context menu.

The Web Service Client and Proxy Editor wizard is displayed.

2. Select Web Service Description. (It should be selected by default.)

3. Select Refresh Copied WSDL from Original WSDL Location if you wish to
refresh the local WSDL using the WSDL at the original location.

4. Click OK.

The local copy of the WSDL is refreshed and the web service client and proxy
classes are regenerated.

Updating the Web Service WSDL Used by the Client at Run Time

In some cases, you may need to update your application to reference imported XML
resources, such as WSDLs and XSDs, from a source that is different from that which is
part of the description of the web service. Redirecting the XML resources in this way
may be required to improve performance or to ensure your application runs properly
in your local environment.

For example, a WSDL may be accessible during client generation, but may no longer
be accessible when the client is run. You may need to reference a resource that is local
to or bundled with your application rather than a resource that is available over the
network.

You can modify the location of the WSDL that will be used by the web service at
runtime using one of the following methods:

• XML Catalog File

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-41

• Web Service Injection (@WebServiceRef) and a Deployment Plan

Using an XML Catalog File

When you create or regenerate a web service client, a jax-ws-catalog.xml file is
created automatically in the META-INF directory. The file complies with the OASIS
XML schema, as described in the Oasis XML Catalogs specification at http://
www.oasis-open.org/committees/download.php/14809/xml-
catalogs.html.

You can update the web service WSDL by modifying the uri attribute of the <system>
element in the jax-ws-catalog.xml file. The specified value will be used at run time.

The following provides a sample XML catalog (jax-ws-catalog.xml) file for a remote
WSDL:

<catalog xmln="urn:oasis:names:tc:entity:xmlns:xml:catalog"
 prefer="system">
 <system systemId="http://foo.org/hello?wsdl"
 uri="http://foo.org/hello?wsdl" />
</catalog>

The following provides a sample XML catalog (jax-ws-catalog.xml) file for a local
WSDL:

<catalog xmln="urn:oasis:names:tc:entity:xmlns:xml:catalog"
 prefer="system">
 <system systemId="http://foo.org/hello?wsdl"
 uri="../org/foo/HelloService.wsdl" />
</catalog>

In the preceding examples:

• The <catalog> root element defines the XML catalog namespace and sets the
prefer attribute to system to specify that system matches are preferred.

• The <system> element associates a URI reference with a system identifier.

Note:

When creating the client and proxy classes for multiple web services on a local
system that share the same endpoint, to ensure that URL is unique for each
web service in the jaxws-catalog.xml file, the service QName is appended
as anchor text. For example:

http://foo.org/helloworld?wsdl

Might become:

http://foo.org/helloworld#%7Bhttp%3A%2F%2Fexample.com%2F
%7DHelloService?wsdl

Using Web Service Injection (@WebServiceRef) and a Deployment Plan

This method involves the following steps:

1. Using the @WebServiceRef annotation to define a reference to a web service and
identify an injection target.

2. Updating the deployment plan and modifying the value of the web service WSDL
that is referenced at run time.

Creating JAX-WS Web Services and Clients

21-42 Developing Applications with Oracle JDeveloper

http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Step 1: How to Use the @WebServiceRef Annotation

The @WebServiceRef annotation injects an endpoint for the web service interface
that is defined in the web.xml file. The following example demonstrates how to use
the @WebServiceRef annotation to define a reference to a web service and identify
an injection target.

...
@WebService
public class LoansApprover {
 /**
 ** Credit rating service injected from web.xml
 **/
 @WebServiceRef(name = "CreditRatingService")
 CreditRating creditRating;

 /**
 ** @return Loan application with approval code if approved.
 **/
 public LoanApprovalReponse approveLoan(LoanApplication la) {
 ...
 }
}

The web service class for the CreditRatingService is hard-coded in the web.xml
file, as shown in the following example:

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee">
 ...
 <service-ref>
 <service-ref-name>CreditRatingService</service-ref-name>
 <service-interface>
 com.somecreditrating.xmlns.rating.CreditRating_Service
 </service-interface>
 </service-ref>
</web-app>

Step 2: How to Update the Deployment Plan

To modify the value of the WSDL that is used at run time, you can generate and
update a deployment plan.

A deployment plan is an optional XML document that you use to configure an
application for deployment to a specific environment. A deployment plan defines or
overrides deployment property values that would normally be defined in an
application's deployment descriptors. To update the configuration for your
application, you add or update variables in the deployment plan, defining both the
location of the descriptor properties and the value to assign to the properties. For more
information, see the Oracle Fusion Middleware Deploying Applications to Oracle WebLogic
Server.

The following example illustrates a deployment plan that overrides the value of the
CreditRatingService web service WSDL, where:

• The variable-definition element defines the CreditRatingService
variable and the value to assign to it.

Creating JAX-WS Web Services and Clients

Developing and Securing Web Services 21-43

• As part of the module-override element for the LoanApplication-
LoanApprover-context-root.war, a variable-assignment element defines the
CreditRatingService variable and the exact location within the descriptor
where the property is overridden.

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://www.bea.com/ns/weblogic/deployment-plan"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/deployment-plan
 http://www.bea.com/ns/weblogic/deployment-plan/1.0/deployment-plan.xsd"
 global-variables="false">
 <application-name>production</application-name>
 <variable-definition>
 <variable>
 <name>CreditRatingService</name>
 <value>http://www.somecreditrating.com/xmlns/rating?WSDL</value>
 </variable>
 </variable-definition>
 <module-override>
 <module-name>production.ear</module-name>
 <module-type>ear</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-application</root-element>
 <uri>META-INF/weblogic-application.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>application</root-element>
 <uri>META-INF/application.xml</uri>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>wldf-resource</root-element>
 <uri>META-INF/weblogic-diagnostics.xml</uri>
 </module-descriptor>
 </module-override>
 <module-override>
 <module-name>
 LoanApplication-LoanApprover-context-root.war
 </module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 <variable-assignment>
 <name>CreditRatingService</name>
 <xpath>
 /web-app/service-ref/[service-ref-name="CreditRatingService"]/wsdl-file
 </xpath>
 <operation>add</operation>
 </variable-assignment>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>weblogic-webservices</root-element>
 <uri>WEB-INF/weblogic-webservices.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>webservices</root-element>
 <uri>WEB-INF/webservices.xml</uri>

Creating JAX-WS Web Services and Clients

21-44 Developing Applications with Oracle JDeveloper

 </module-descriptor>
 <module-descriptor external="true">
 <root-element>webservice-policy-ref</root-element>
 <uri>WEB-INF/weblogic-webservices-policy.xml</uri>
 </module-descriptor>
 </module-override>
 <config-root>
 D:\prom-demo\jdeveloper\mywork\LoanApplication\deploy\production\.\plan
 </config-root>
</deployment-plan>

How to Edit JAX-WS Web Services
You can edit a JAX-WS web service that you have created in JDeveloper, for example
to change the exposed method or a file location.

When you edit a JAX-WS web service, the previously generated WSDL file is
overwritten, and any changes you have made to it will be lost. If you have already
deployed the web service and you edit it, you must redeploy it.

To edit a JAX-WS web service:

1. In the Applications window, right-click the web service and choose Web Service
Properties. The reentrant web service wizard is displayed.

2. Make your changes to the web service. Click OK. The web service files are
regenerated.

For detailed help about completing the wizard, press F1 or click Help from within
the wizard.

After editing the web service files, you must redeploy the web service. For more
information, see Deploying Web Services.

How to Delete JAX-WS Web Services
You can delete a JAX-WS web service if it is no longer needed.

When you delete a web service from JDeveloper, the web service container and the
files it contains (a WSDL file and possibly some interfaces) are deleted. The entries for
the web service in web.xml are removed, although the file is not deleted. The
WebServices.deploy file is unchanged as it may be used for other web services.

To delete a web service

In the Applications window, right-click the web service and choose Delete. The
Confirm Delete dialog displays listing the file usages. Click OK.

Creating RESTful Web Services and Clients
Representational State Transfer (REST) describes any simple interface that transmits
data over a standardized interface (such as HTTP) without an additional messaging
layer, such as SOAP. REST provides a set of design rules for creating stateless services
that are viewed as resources, or sources of specific information, and can be identified
by their unique URIs. A client accesses the resource using the URI, a standardized
fixed set of methods, and a representation of the resource is returned. The client is said
to transfer state with each new resource representation.

Creating RESTful Web Services and Clients

Developing and Securing Web Services 21-45

When using the HTTP protocol to access RESTful resources, the resource identifier is
the URL of the resource and the standard operation to be performed on that resource
is one of the HTTP methods: GET, PUT, DELETE, POST, or HEAD.

JAX-RS is a Java programming language API that uses annotations to simplify the
development of RESTful web services. JAX-RS annotations are runtime annotations.
When you deploy the Java EE application archive containing JAX-RS resource classes
to WebLogic Server, the runtime configures the resources, generates the helper classes
and artifacts, and exposes the resource to clients.

WebLogic Server supports the following JAX-RS Reference Implementations (RIs):

• Jersey 1.18 (JAX-RS 1.1 RI)—This is the default implementation and provides a
production quality implementation of the JSR-311 JAX-RS 1.1 specification, defined
at: http://jcp.org/en/jsr/summary?id=311.

Note: Although support for the Jersey 1.18 (JAX-RS 1.1RI) client APIs of
WebLogic Server is deprecated, support is maintained for backward
compatibility. For more information about compatibility with earlier Jersey/
JAX-RS releases, see Oracle Fusion Middleware Developing and Securing RESTful
Web Services for Oracle WebLogic Server.

• Jersey 2.5.1 (JAX-RS 2.0 RI)—This implementation is offered as a shared library
and provides a production quality implementation of the JSR-339 JAX-RS 2.0
specification, defined at: http://jcp.org/en/jsr/detail?id=339.

The Jersey 2.5.1 (JAX-RS 2.0 RI) shared library is auto-deployed to the Integrated
WebLogic Server.

Note: You can attach OWSM policies to RESTful web services and clients that are built
using Jersey 1. x JAX-RS RI. RESTful web services and clients that are built using
Jersey 2.5.1 (JAX-RS 2.0 RI) are also secured using OWSM policies. For more
information about securing RESTful web services and clients built using Jersey 2.5.1
(JAX-RS 2.0 RI), see "Securing RESTful Web Services and Clients" in Oracle Fusion
Middleware Developing and Securing RESTful Web Services for Oracle WebLogic Server.

For complete details about developing RESTful web services and clients using JAX-RS,
see:

• Oracle Fusion Middleware Developing and Securing RESTful Web Services for Oracle
WebLogic Server

• Jersey RI documentation at: https://wikis.oracle.com/display/Jersey/
Main

The following sections describe how to create RESTful web service and clients quickly
and easily using JDeveloper:

• How to Create RESTful Web Services

• How to Create RESTful Web Service Clients

How to Create RESTful Web Services
You can develop RESTful web services quickly and easily using JDeveloper. All of the
standard Java source editor features will work with RESTful web service calls, such as
code insight, import assistance, and so on.

The following sections describe how to develop RESTful web services:

Creating RESTful Web Services and Clients

21-46 Developing Applications with Oracle JDeveloper

http://jcp.org/en/jsr/summary?id=311
http://jcp.org/en/jsr/detail?id=339
https://wikis.oracle.com/display/Jersey/Main
https://wikis.oracle.com/display/Jersey/Main

• “Example of a Simple RESTful Web Service”

• “Creating a RESTful Web Service”

• “Defining the Relative URI of the Root Resource and Subresources”

• “Mapping Incoming HTTP Requests to Java Methods”

• “Customizing Media Types for the Request and Response Messages”

• “Extracting Information from the Request Message”

• “Mapping HTTP Request and Response Entity Bodies Using Entity Providers”

• “Accessing the RESTful Web Service WADL”

For more information about:

• Developing RESTful web services, see “Securing RESTful Web Services and
Clients" in Oracle Fusion Middleware Developing and Securing RESTful Web Services for
Oracle WebLogic Server.

• Administering RESTful web services, see Oracle Fusion Middleware Administering
Web Services.

Example of a Simple RESTful Web Service

The following is an example of a simple RESTful web service. In this example:

• The helloWorld class is a resource with a relative URI path defined as /
helloworld. At runtime, if the context root for the WAR file is defined as
http://examples.com, the full URI to access the resource is http://
examples.com/helloworld. For more information, see Defining the Relative
URI of the Root Resource and Subresources.

• The sayHello method supports the HTTP GET method. For more information,
see Mapping Incoming HTTP Requests to Java Methods.

• The sayHello method produces content of the MIME media type text/plain.
For more information, see Customizing Media Types for the Request and Response
Messages.

Additional examples are listed in “Learn More About RESTful Web Services" in Oracle
Fusion Middleware Developing and Securing RESTful Web Services for Oracle WebLogic
Server.

package samples.helloworld;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;

// Specifies the path to the RESTful web service
@Path("/helloworld")
public class helloWorld {

 // Specifies that the method processes HTTP GET requests
 @GET
 @Path("hello")
 @Produces("text/plain")
 public String sayHello() {

Creating RESTful Web Services and Clients

Developing and Securing Web Services 21-47

 return "Hello World!";
 }
}

Creating a RESTful Web Service

You can create a new RESTful web service class or generate a RESTful web service
from an existing Java class using the Create RESTful Service wizard.

The wizard creates the deployment files for you, so once you create your web service
the final step is to deploy it. You can test them using the HTTP Analyzer. For more
information, see How to Examine Web Services using the HTTP Analyzer .

As described in How to Choose Your Deployment Platform, when creating a RESTful
web service using the Create RESTful Service wizard, you are prompted to select the
deployment platform and you can choose the Jersey 1.0 or 2.0 style.

The JAX-RS Jersey library is automatically added to your project. If required by your
application, you can add to your project the JAX-RS Jersey Jackson or JAX-RS Jersey
Jettison libraries, which are bundled with the product. (The JAX-RS Jersey Rome
library is not bundled with the product.) For information about adding a library to
your project, see “How to Manage Libraries”.

Note: As support for the server-side Jersey 1.x APIs is unavailable, use the
corresponding JAX-RS 2.0 standard. If required, use Jersey 2.x APIs. Support
for the Jersey 1.18 (JAX-RS 1.1RI) client APIs of WebLogic Server is
deprecated. However, support is maintained for backward compatibility. For
more information about compatibility with earlier Jersey/JAX-RS releases see,
Oracle Fusion Middleware Developing and Securing RESTful Web Services for
Oracle WebLogic Server.

The Jersey 2.5.1 (JAX-RS 2.0 RI) shared library is auto-deployed to the Integrated
WebLogic Server.

Note: You can attach OWSM policies to RESTful web services and clients that
are built using Jersey 1.18 (JAX-RS 1.1 RI). RESTful web services and clients
that are built using Jersey 2.5.1 (JAX-RS 2.0 RI) are secured using OWSM
policies. For more information about securing RESTful web services and
clients built using Jersey 2.5.1 (JAX-RS 2.0 RI), see "Securing RESTful Web
Services and Clients" in Oracle Fusion Middleware Developing and Securing
RESTful Web Services for Oracle WebLogic Server.

To create the RESTful web service:

1. In the Applications window, select the project within which you want to create a
new RESTful web service or that contains the Java class from which you want to
create a RESTful web service or within which you want to create a new RESTful
web service.

2. Choose File > New > From Gallery to open the New Gallery.

3. In the Categories list, expand Business Tier and select Web Services.

4. In the Items list, select RESTful Service and click OK to launch the Create
RESTful Service wizard.

Creating RESTful Web Services and Clients

21-48 Developing Applications with Oracle JDeveloper

For detailed help about completing the wizard, press F1 or click Help from within
the wizard.

Alternatively, you can launch the Create RESTful Service wizard by right-clicking on
the Java class from which you want to create a RESTful web service and selecting
Create RESTful Service.

Defining the Relative URI of the Root Resource and Subresources

Add the javax.ws.rs.Path annotation at the class level of the resource to define
the relative URI of the RESTful web service. Such classes are referred to a root
resource classes. For more information about the root resource class, see the following
sections in Oracle Fusion Middleware Developing and Securing RESTful Web Services for
Oracle WebLogic Server:

• “Defining the Root Resource Class"

• “How to Define the Relative URI of the Resource Class (@Path)"

You can add @Path on methods of the root resource class as well, to define
subresources to group specific functionality. For more information, see “How to
Define the Relative URI of Subresources (@Path)" in Oracle Fusion Middleware
Developing and Securing RESTful Web Services for Oracle WebLogic Server.

You can define the URI as a constant or variable value (referred to as a “URI path
template"):

• To define the URI as a constant value, pass a constant value to the @Path
annotation. Preceding and ending slashes (/) are optional.

• To define the URI as a URI path template, pass one or more variable values
enclosed in braces in the @Path annotation. Then, you can use the
javax.ws.rs.PathParam annotation to extract variable information from the
request URI, defined by the @Path annotation, and initialize the value of the
method parameter, as described in Extracting Information from the Request
Message.

For more information, see “How to Define the Relative URI of the Resource Class
(@Path)" in Oracle Fusion Middleware Developing and Securing RESTful Web Services for
Oracle WebLogic Server.

Using JDeveloper, you can specify the @Path annotation using one of the following
methods:

• When creating the RESTful web service using the Create RESTful Service wizard,
as described in Defining the @Path Annotation in the RESTful Service Wizard.

• In the Java class, as described in Defining the @Path Annotation in the Java Class.

• In the Properties window, as described in Defining the @Path Annotation in the
Properties Window.

Defining the @Path Annotation in the RESTful Service Wizard

You can define the relative URI of the root resource and subresources when creating
your RESTful service using the Create RESTful Service wizard. For more information
about invoking the wizard, see Creating a RESTful Web Service.

To define the @Path annotation in the RESTful service wizard:

Creating RESTful Web Services and Clients

Developing and Securing Web Services 21-49

In the Create RESTful Service wizard, navigate to one of the following pages,
depending on whether you are creating a new RESTful service class or generating one
from an existing Java class:

• Create New RESTful Service

• Create RESTful Service From Java Class

Define the relative URIs, as follows:

• To define the relative URI for the root resource class, enter a value in the Root Path
field.

• To define the relative URI for the subresource, enter a value in the Path field of the
HTTP Methods table.

For more information at any time, press F1 or click Help from within the dialog.

Defining the @Path Annotation in the Java Class

You can define the relative URI of the root resource and subresources when creating
your RESTful service by adding the @Path annotation directly in the Java class; the
Code Insight feature can help you. For more information, see How to Work with Web
Services Code Insight.

To define the @Path annotation in the Java class:

1. Open the RESTful service class in the source editor.

2. Perform one or more of the following tasks:

• Add the @Path annotation at the class level of the resource to define the
relative URI of the RESTful service.

• Add the @Path annotation to the method of a resource to define a subresource.

You can use the Code Insight to help you. Start typing the annotation, for
example, @Path. When you pause, or click Ctrl+Shift+Space, a popup appears
from which you can choose the correct entry to complete the statement.

Note:

Ensure that you select javax.ws.rs.Path from the popup. For example, do
not select java.nio.file.Path inadvertently.

For more information about defining the @Path annotation, see “Defining the Relative
URI of the Root Resource and Subresources" in Oracle Fusion Middleware Developing and
Securing RESTful Web Services for Oracle WebLogic Server.

Defining the @Path Annotation in the Properties Window

You can define the relative URI of the root resource and subresources using the
Properties window.

To define the @Path annotation in the Properties window:

1. With the RESTful service class open in the source editor, choose Window >
Properties to open the Properties window.

Creating RESTful Web Services and Clients

21-50 Developing Applications with Oracle JDeveloper

For more information at any time, press F1 or click Help from within the
Properties window.

2. To define the relative URI of the resource class:

a. Position your cursor at the class level of the resource.

b. In the Properties window, expand JAX-RS and click RESTful Resource Class.

The service is updated to add the @Path annotation above the resource class
and import javax.ws.rs.Path.

c. Enter a value in the Path field to define the URI. The URI can be defined as a
constant value or URI path template.

For more information, see “How to Define the Relative URI of the Resource Class
(@Path)" in Oracle Fusion Middleware Developing and Securing RESTful Web Services
for Oracle WebLogic Server.

3. To define the relative URI of a subresource:

a. Position your cursor at the method of the resource.

b. If you have not already mapped the resource method to an HTTP method, in
the Properties window, expand JAX-RS and select an HTTP method from the
Method Type drop-down menu. Valid HTTP methods include: GET, POST,
PUT, or DELETE.

The service is updated to include the method annotation above the resource
method and the appropriate API is imported. For more information, see
Mapping Incoming HTTP Requests to Java Methods.

c. Enter a value in the Method Path field to define the relative URI of the
subresource. The URI can be defined as a constant value or URI path
template.

For more information, see “How to Define the Relative URI of Subresources
(@Path)" in Oracle Fusion Middleware Developing and Securing RESTful Web Services
for Oracle WebLogic Server.

What Happens at Runtime: How the Base URI is Constructed

The base URI of the RESTful web service is constructed as follows:

http://myHostName/contextPath/servletURI/resourceURI

For a complete description of the base URI path structure, see “What Happens at
Runtime: How the Base URI is Constructed" in Oracle Fusion Middleware Developing and
Securing RESTful Web Services for Oracle WebLogic Server.

For the contextPath, or context root, at the project level you can set the value that
will be assigned to the deployed Java EE web application on Integrated WebLogic
Server. For more information, see How to Set the Context Root for Web Services. In
this scenario, the contextPath defaults to:

applicationname-projectname-context-root

Mapping Incoming HTTP Requests to Java Methods

JAX-RS uses Java annotations to map an incoming HTTP request to a Java method.
Table 21-7 lists the annotations available, which map to the similarly named HTTP
methods.

Creating RESTful Web Services and Clients

Developing and Securing Web Services 21-51

Table 21-7 javax.ws.rs Annotations for Mapping HTTP Requests to Java Methods

Annotation Description Idempotent

@GET Transmits a representation of the resource identified by the URI to the
client. The format might be HTML, plain text, JPEG, and so on. For more
information, see “How to Transmit a Representation of the Resource
(@GET)" in Oracle Fusion Middleware Developing and Securing RESTful Web
Services for Oracle WebLogic Server.

Yes

@PUT Creates or updates the representation of the specified resource identified by
the URI. For more information, see “How to Create or Update the
Representation of the Resource (@PUT)" in Oracle Fusion Middleware
Developing and Securing RESTful Web Services for Oracle WebLogic Server.

Yes

@DELETE Deletes the representation of the resource identified by the URI. For more
information, see “How to Delete a Representation of the Resource
(@DELETE)" in Oracle Fusion Middleware Developing and Securing RESTful
Web Services for Oracle WebLogic Server.

Yes

@POST Creates, updates, or performs an action on the representation of the
specified resource identified by the URI. For more information, see “How to
Create, Update, or Perform an Action on a Representation of the Resource
(@POST)" in Oracle Fusion Middleware Developing and Securing RESTful Web
Services for Oracle WebLogic Server.

No

@HEAD Returns the response headers only, and not the actual resource (that is, no
message body). This is useful to save bandwidth to check characteristics of
a resource without actually downloading it. For more information, see
http://docs.oracle.com/javaee/6/api/index.html?
javax/ws/rs/HEAD.html.

The HEAD method is implemented automatically if not implemented
explicitly. In this case, the runtime invokes the implemented GET method, if
present, and ignores the response entity, if set.

Yes

@OPTIONS Returns the communication options that are available on the request/
response chain for the specified resource identified by the URI. The Allow
response header will be set to the set of HTTP methods supported by the
resource and the WADL file is returned. For more information, see
http://docs.oracle.com/javaee/6/api/index.html?
javax/ws/rs/OPTIONS.html.

The OPTIONS method is implemented automatically if not implemented
explicitly. In this case, the Allow response header is set to the set of HTTP
methods supported by the resource and the WADL describing the resource
is returned.

Yes

@HttpMethod Indicates that the annotated method should be used to handle HTTP
requests. For more information, see http://docs.oracle.com/
javaee/6/api/index.html?javax/ws/rs/HttpMethod.html.

N/A

Using JDeveloper, you can map HTTP requests to Java methods using one of the
following methods:

• When creating the RESTful web service using the Create RESTful Service wizard,
as described in Mapping HTTP Requests to Java Methods in the RESTful Service
Wizard.

• In the Java class, as described in Mapping HTTP Requests to Java Methods in the
Java Class.

Creating RESTful Web Services and Clients

21-52 Developing Applications with Oracle JDeveloper

http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/HEAD.html
http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/HEAD.html
http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/OPTIONS.html
http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/OPTIONS.html
http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/HttpMethod.html
http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/HttpMethod.html

• In the Properties window, as described in Mapping HTTP Requests to Java
Methods in the Properties Window.

Mapping HTTP Requests to Java Methods in the RESTful Service Wizard

You can map HTTP requests to Java methods when creating your RESTful web service
using the Create RESTful Service wizard. For more information about invoking the
wizard, see Creating a RESTful Web Service.

To map HTTP requests to Java methods in the RESTful service wizard:

In the Create RESTful Service wizard, navigate to one of the following pages,
depending on whether you are creating a new RESTful service class or generating one
from an existing Java class:

• Create New RESTful Service

• Create RESTful Service From Java Class

Perform one of the following tasks:

• If creating a new RESTful service class, select the HTTP method(s) for which you
want to create Java methods. In each case, enter a value in the Nos column to
indicate the desired number of Java methods that you want to be mapped to HTTP
methods.

• If generating a RESTful service from an existing class, map HTTP requests to Java
methods in the Configure HTTP Methods table by selecting an HTTP method from
the Type drop-down list. Valid HTTP methods include: GET, POST, PUT, or
DELETE.

For more information at any time, press F1 or click Help from within the dialog.

Mapping HTTP Requests to Java Methods in the Java Class

You can map HTTP requests to Java methods when creating your RESTful service by
adding one of the HTTP request annotations defined in Table 21-7 directly in the Java
class; the Code Insight feature can help you. For more information, see How to Work
with Web Services Code Insight.

To map HTTP requests to Java methods in the Java class:

1. Open the RESTful service class in the source editor.

2. Add an HTTP request annotation from Table 21-7 to one or more methods in the
Java class.

You can use the Code Insight to help you. Start typing the annotation, for
example, @GET. When you pause, or click Ctrl+Shift+Space, a popup appears from
which you can choose the correct entry to complete the statement.

For more information about defining the HTTP request annotation, see “Mapping
Incoming HTTP Requests to Java Methods" in Oracle Fusion Middleware Developing and
Securing RESTful Web Services for Oracle WebLogic Server.

Mapping HTTP Requests to Java Methods in the Properties Window

You can map HTTP requests to Java methods in the Properties window.

To map HTTP requests to Java methods in the Properties window:

Creating RESTful Web Services and Clients

Developing and Securing Web Services 21-53

1. With the RESTful service class open in the source editor, choose Window >
Properties to open the Properties window.

For more information at any time, press F1 or click Help from within the
Properties window.

2. Position your cursor at the method of the resource.

3. In the Properties window, expand JAX-RS and select an HTTP method from the
Method Type drop-down menu. Valid HTTP methods include: GET, POST, PUT,
or DELETE.

The service is updated to include the method annotation above the resource
method and the appropriate API is imported.

For more information about defining the HTTP request annotation, see “Mapping
Incoming HTTP Requests to Java Methods" in Oracle Fusion Middleware Developing and
Securing RESTful Web Services for Oracle WebLogic Server.

Customizing Media Types for the Request and Response Messages

Add the javax.ws.rs.Consumes or javax.ws.rs.Produces annotation at the
class or method level of the resource to customize the media type of the request and
response messages, respectively. More than one media type can be declared in each
case.

Using JDeveloper, you can customize messages types for the request and response
messages using one of the following methods:

• When creating the RESTful web service using the Create RESTful Service wizard,
as described in Customizing Media Types in the RESTful Service Wizard.

• In the Java class, as described in Customizing Media Types in the Java Class.

• In the Properties window, as described in Customizing Media Types in the
Properties Window.

Customizing Media Types in the RESTful Service Wizard

You can customize media types when creating your RESTful web service using the
Create RESTful Service wizard. For more information about invoking the wizard, see
Creating a RESTful Web Service.

To customize media types in the RESTful service wizard:

In the Create RESTful Service wizard, navigate to one of the following pages,
depending on whether you are creating a new RESTful service class or generating one
from an existing Java class:

• Create New RESTful Service

• Create RESTful Service From Java Class

Customize the media types, as follows:

• To customize media types for the root resource class, click ... next to the Consumes
or Produces field, select one or more media types from the Select Media Types
dialog box, and click OK. The number of media types configured is reflected in the
field.

• To customize media types for the methods:

Creating RESTful Web Services and Clients

21-54 Developing Applications with Oracle JDeveloper

– If creating a new RESTful service class, in the Select HTTP Methods table click
in the Consumes or Produces column corresponding to the method for which
you want to configure media types, select the media types from the Select
Media Types dialog box, and click OK. The number of media types configured
is reflected in the table entry.

– If generating a RESTful service from an existing class, in the Configure HTTP
Methods table click in the Consumes or Produces column corresponding to the
method for which you want to configure media types, select the media types
from the Select Media Types dialog box, and click OK. The number of media
types configured is reflected in the table entry.

For more information at any time, press F1 or click Help from within the dialog.

Customizing Media Types in the Java Class

You can customize media types when creating your RESTful service by adding the
@Produces or @Consumes annotation at the class or method level of the resource to
customize the media types of the request and response messages, respectively, directly
in the Java class; the Code Insight feature can help you. For more information, see
How to Work with Web Services Code Insight.

To customize media types in the Java class:

1. Open the RESTful service class in the source editor.

2. Add the @Produces or @Consumes annotation at the class or method level.

You can use the Code Insight to help you. Start typing the annotation, for
example, @Produces. When you pause, or click Ctrl+Shift+Space, a popup
appears from which you can choose the correct entry to complete the statement.

For more information about customizing media types, see “Customizing Media Types
for the Request and Response Messages" in Oracle Fusion Middleware Developing and
Securing RESTful Web Services for Oracle WebLogic Server.

Customizing Media Types in the Properties Window

You can customize media types in the Properties window.

To customize media types in the Properties window:

1. With the RESTful service class open in the source editor, choose Window >
Properties to open the Properties window.

For more information at any time, press F1 or click Help from within the
Properties window.

2. Position your cursor at the class or method level of the resource.

3. In the Properties window, expand JAX-RS, click ... next to the Consumes Type or
Produces Type field, select one or more media types from the Edit Property
dialog box, and click OK. The number of media types configured is reflected in
the field.

The service is updated to include the method annotation and the appropriate API
is imported.

For more information about customizing media types, see “Customizing Media Types
for the Request and Response Messages" in Oracle Fusion Middleware Developing and
Securing RESTful Web Services for Oracle WebLogic Server.

Creating RESTful Web Services and Clients

Developing and Securing Web Services 21-55

Extracting Information from the Request Message

The javax.ws.rs package defines a set of annotations, shown in Table 21-8, that
enable you extract information from the request message to inject into parameters of
your Java method.

Table 21-8 javax.ws.rs Annotations for Extracting Information From the Request Message

Annotation Description

@CookieParam Extract information from the HTTP cookie-related headers to initialize the value of a
method parameter. For more information, see http://docs.oracle.com/
javaee/6/api/index.html?javax/ws/rs/CookieParam.html.

@DefaultValue Define the default value of the request metadata that is bound using one of the following
annotations: @CookieParam, @FormParam, @HeaderParam, @MatrixParam,
@PathParam, or @QueryParam. For more information, see “How to Define the
DefaultValue (@DefaultValue)" in Oracle Fusion Middleware Developing and Securing RESTful
Web Services for Oracle WebLogic Server.

@FormParam Extract information from an HTML form of the type application/x-www-form-
urlencoded. For more information, see http://docs.oracle.com/javaee/6/api/
index.html?javax/ws/rs/FormParam.html.

@HeaderParam Extract information from the HTTP headers to initialize the value of a method parameter.
For more information, see http://docs.oracle.com/javaee/6/api/index.html?
javax/ws/rs/HeaderParam.html.

@MatrixParam Extract information from the URI path segments to initialize the value of a method
parameter. For more information, see http://docs.oracle.com/javaee/6/api/
index.html?javax/ws/rs/MatrixParam.html.

@PathParam Define the relative URI as a variable value (referred to as “URI path template"). For more
information, see “How to Extract Variable Information from the Request URI
(@PathParam)" in Oracle Fusion Middleware Developing and Securing RESTful Web Services for
Oracle WebLogic Server.

@QueryParam Extract information from the query portion of the request URI to initialize the value of a
method parameter. For more information, see “How to Extract Request Parameters
(@QueryParam)" in Oracle Fusion Middleware Developing and Securing RESTful Web Services
for Oracle WebLogic Server.

Using JDeveloper, you can extract information from the request message using one of
the following methods:

• When creating the RESTful web service using the Create RESTful Service wizard,
as described in Extracting Information from the Request Message in the RESTful
Service Wizard.

• In the Java class, as described in Extracting Information from the Request Message
in the Java Class.

In the Properties window, you can enable encoding of a parameter value that is bound
using one of the following annotations: @FormParam, @MatrixParam, @PathParam,
or @QueryParam. For more information, see Enabling the Encoding Parameter Values
in the Properties Window.

Creating RESTful Web Services and Clients

21-56 Developing Applications with Oracle JDeveloper

http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/CookieParam.html
http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/CookieParam.html
http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/FormParam.html
http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/FormParam.html
http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/HeaderParam.html
http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/HeaderParam.html
http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/MatrixParam.html
http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/MatrixParam.html

Extracting Information from the Request Message in the RESTful Service Wizard

You can extract information from the request when creating your RESTful web service
using the Create RESTful Service wizard. For more information about invoking the
wizard, see Creating a RESTful Web Service.

To extract information from the request message in the RESTful service wizard:

When using the RESTful service wizard, you can extract information from the request
message when generating a RESTful service from an existing Java class only.

1. In the Create RESTful Service wizard, navigate to the Create RESTful Service
From Java Class page.

2. Select a method in the Configure HTTP Methods table. Ensure that you have
selected an HTTP method from the Type column for the method.

A list of the method parameters is shown in the Configure Parameters table.

3. In the Configure Parameters table:

• In the Annotation drop-down list, select the annotation to use to extract
information from the request message. A list of valid annotations is defined in
Table 21-8.

• In the Parameter field, enter the name of the parameter that will be used to
store the extracted value.

• In the Default field, enter the default value for the parameter, if no value is
passed with the request message.

• Click Encode to enable encoding of the parameter value. This field is enabled
for the following annotations only: @FormParam, @MatrixParam,
@PathParam, or @QueryParam.

4. Click Next to advanced to the next screen or Finish to generate the RESTful
service.

For more information at any time, press F1 or click Help from within the dialog.

Extracting Information from the Request Message in the Java Class

You can extract information from the request message when creating your RESTful
service by adding one or more of the annotations defined in Table 21-8 to the class or
method level of the resource directly in the Java class; the Code Insight feature can
help you. For more information, see How to Work with Web Services Code Insight.

To extract information from the request message in the Java class:

1. Open the RESTful service class in the source editor.

2. Add one of the annotations from Table 21-8 at the class or method level.

You can use the Code Insight to help you. Start typing the annotation, for
example, @PathParam. When you pause, or click Ctrl+Shift+Space, a popup
appears from which you can choose the correct entry to complete the statement.

3. Add the javax.ws.rs.Encode annotation at the class or method level to enable
encoding of a parameter value that is bound using one of the following
annotations: @FormParam, @MatrixParam, @PathParam, or @QueryParam. If
specified at the class level, parameters for all methods in the class will be encoded.

Creating RESTful Web Services and Clients

Developing and Securing Web Services 21-57

For more information, see “Enabling the Encoding Parameter Values (@Encode)"
in Oracle Fusion Middleware Developing and Securing RESTful Web Services for Oracle
WebLogic Server.

For more information about extracting information from the request message, see
“Extracting Information From the Request Message" in Oracle Fusion Middleware
Developing and Securing RESTful Web Services for Oracle WebLogic Server.

Enabling the Encoding Parameter Values in the Properties Window

In the Properties window, you can enable the encoding of parameter values that are
bound using one of the following annotations: @FormParam, @MatrixParam,
@PathParam, or @QueryParam. For more information about the @Encode
annotation, see “Encoding Parameter Values (@Encode)" in Oracle Fusion Middleware
Developing and Securing RESTful Web Services for Oracle WebLogic Server.

To enable the encoding of parameter values in the Properties window:

1. With the RESTful service class open in the source editor, choose Window >
Properties to open the Properties window.

For more information at any time, press F1 or click Help from within the
Properties window.

2. Position your cursor at the class or method level of the resource.

3. In the Properties window, expand JAX-RS and click Encode Values.

The service is updated to include the @Encode annotation and import the
javax.ws.rs.Encoded API.

Note: If you enable encoding at the class level, encoding is enabled on all
associated methods, and the Encode Values checkbox is not available at the
method level.

Mapping HTTP Request and Response Entity Bodies Using Entity Providers

A subset of Java types are supported automatically by HTTP request and response
entity bodies. For return types that are not supported automatically, you must define
an entity provider to map HTTP request and response entity bodies to method
parameters and return types. For a list of supported Java types and more information
about creating an entity provider, see “Mapping HTTP Request and Response Entity
Bodies Using Entity Providers" in Oracle Fusion Middleware Developing and Securing
RESTful Web Services for Oracle WebLogic Server.

When creating a RESTful web service from an existing Java class using the Create
RESTful Service wizard (by right-clicking on the Java class and selecting Create
RESTful Service), if the class contains methods that utilize types that are not
supported automatically, the following warning message is displayed:

The return types for the following methods are not supported automatically for
HTTP response entities and require entity providers to map between
representations and Java types. Check and correct the code after the service is
generated.
methodName

The following code excerpt provides an example of a class that contains a method
(getClass) that returns a custom type, and that requires you to write an entity
provider.

Creating RESTful Web Services and Clients

21-58 Developing Applications with Oracle JDeveloper

public class Class1
{
 public String hello() { return "Hello"; }
 public Class2 getClass(String name) { return new Class2(); };
}

public class Class2
{
 public Class2() { }
}

Note:

Jersey JSON provides a set of JAX-RS MessageBodyReader and
MessageBodyWriter providers distributed with the jersey-json module. For
more information, see “JSON Support" in the Jersey User Guide at:
http://jersey.java.net/documentation/1.18/json.html

If required by your application, you can add to your project the JAX-RS Jersey
Jackson, which is bundled with the product. For information about adding a
library to your project, see How to Manage Libraries.

Accessing the RESTful Web Service WADL

The Web Application Description Language (WADL) is an XML-based file format that
describes your RESTful web services application. By default, a basic WADL is
generated at runtime and can be accessed from JDeveloper.

To access the RESTful web service WADL:

1. Right-click the service in the Applications window and choose Test Web Service.

JDeveloper automatically:

• Starts the integrated application server, if it is not already running.

• Compiles and binds the web service application to the integrated application
server instance, which is the IntegratedWebLogicServer node in the Application
Servers window.

• Displays a Log window for the integrated application server (if the log window
is not already open).

2. Click the Target Application WADL provided in the integrated application server
log window. For example:

Creating RESTful Web Services and Clients

Developing and Securing Web Services 21-59

http://jersey.java.net/documentation/1.18/json.html

Note:

You can view the WADL from the HTTP Analyzer window by clicking the
WADL URI in the HTTP Analyzer window.

A read-only version of the WADL file opens in the source editor, as shown in Figure
21-1.

Figure 21-1 Example of WADL File

The figure shows the WADL file structure, including the resources, subresources, and
methods in the RESTful web service. You can press Test to invoke the HTTP Analyzer.

You can toggle between the following views:

• Preview—Enables you to:

– View a summary of resources and subresources in the RESTful web service.

– View the methods mapped for each resource, and the request and response
representations and status.

– Test each method by clicking the Test button to invoke the HTTP Analyzer.

• Source—View the source of the WADL.

How to Create RESTful Web Service Clients
JDeveloper makes it easy to use a RESTful web service in your application by allowing
you to create client and proxy classes to access the service using the Create RESTful
Proxy Client wizard. You can launch the wizard when you locate or create a RESTful
web service. Alternatively, you can launch the wizard directly and enter the URL for
the RESTful web service or use the Find Web Service wizard to locate a RESTful web
service in a UDDI registry.

As described in How to Choose Your Deployment Platform, when creating a RESTful
web service client using the Create RESTful Proxy Client wizard, you are prompted to

Creating RESTful Web Services and Clients

21-60 Developing Applications with Oracle JDeveloper

select the deployment platform, and you can choose the Jersey 1.18 (JAX-RS 1.1) or
Jersey 2.5 (JAX-RS 2.0 RI).

The Jersey JAX-RS library is automatically added to your project. If required by your
application, you can add to your project the Jersey JAX-RS Jackson or Jersey JAX-RS
Jettison libraries, which are bundled with the product. (The Jersey JAX-RS Rome
library is not bundled with the product.) For information about adding a library to
your project, see How to Manage Libraries.

The Jersey 2.5.1 (JAX-RS 2.0 RI) shared library is auto-deployed to the Integrated
WebLogic Server.

Please note:

• For Jersey 1.18 (JAX-RS 1.1 RI), the RESTful web service client API is provided by
the Jersey JAX-RS RI specifically; they are not part of the JAX-RS standard.
Although support for the Jersey 1.18 (JAX-RS 1.1RI) client APIs of WebLogic Server
is deprecated, support is maintained for backward compatibility. For more
information about compatibility with earlier Jersey/JAX-RS releases, see Oracle
Fusion Middleware Developing and Securing RESTful Web Services for Oracle WebLogic
Server.

For Jersey 2.5.1 (JAX-RS 2.0 RI), a standard client API is supported.

• You can attach OWSM policies to RESTful web services and clients that are built
using Jersey 1.18 (JAX-RS 1.1 RI) . RESTful web services and clients that are built
using Jersey 2.5.1 (JAX-RS 2.0 RI) are also secured using OWSM policies. For more
information about securing RESTful web services and clients built using Jersey
2.5.1 (JAX-RS 2.0 RI), see "Securing RESTful Web Services and Clients" in Oracle
Fusion Middleware Developing and Securing RESTful Web Services for Oracle WebLogic
Server.

The following sections describe how to develop RESTful web services:

• “Example of a Simple RESTful Client”

• “Creating RESTful Web Service Clients”

For more information about:

• Developing RESTful web service clients, see “Developing RESTful Web Services
and Clients" in Oracle Fusion Middleware Developing and Securing RESTful Web
Services for Oracle WebLogic Server.

• Securing RESTful web service clients, see “Securing RESTful Web Services" in
Oracle Fusion Middleware Developing and Securing RESTful Web Services for Oracle
WebLogic Server.

• Administering RESTful web service clients, see Oracle Fusion Middleware
Administering Web Services.

Example of a Simple RESTful Client

This example provides a simple RESTful client that calls the RESTful service defined in
the Simple RESTful Service Client above. It uses classes that are provided by the Jersey
1.18 (JAX-RS 1.1 RI) specifically; they are not part of the JAX-RS standard.

Creating RESTful Web Services and Clients

Developing and Securing Web Services 21-61

Note:

Alternatively, you can create an instance of the
com.sun.jersey.api.client.Client class. However, you will not be
able to take advantage of the Oracle extensions, such as securing the RESTful
client using Oracle Web Services Manager (OWSM) policies, as described in
Attaching Policies to RESTful Web Service Clients.

For the Jersey 2.5.1 (JAX-RS 2.0 RI), a standard client API is supported.

package samples.helloworld.client;

import weblogic.jaxrs.api.client.Client;
import com.sun.jersey.api.client.WebResource;

public class helloWorldClient {
 public helloWorldClient() {
 super();
 }

 public static void main(String[] args) {
 Client c = Client.create();
 WebResource resource = c.resource(
 "http://localhost:7101/RESTfulService/jersey/helloWorld");
 String response = resource.get(String.class);
 }
}

Creating RESTful Web Service Clients

You can create a new RESTful web service client from an existing remote or local
WADL using the Create RESTful Proxy Client wizard.

To create a RESTful web service client:

1. In the Applications window, select the project containing the Java class from which
you want to create a RESTful web service.

2. Choose File > New > From Gallery to open the New Gallery.

3. In the Categories list, expand Business Tier and select Web Services.

4. In the Items list, select RESTful Client and Proxy and click OK to launch the
Create RESTful Proxy Client wizard.

For detailed help about completing the wizard, press F1 or click Help from within
the wizard.

Creating WebSockets
WebLogic Server supports the WebSocket protocol (RFC 6455), which provides full-
duplex communications between two peers over the TCP protocol.

The WebLogic Server implementation of the WebSocket protocol and its
accompanying API enable you to develop and deploy applications that communicate
bidirectionally with clients. To initiate the WebSocket connection, the client sends a
handshake request to the server. The connection is established if the handshake
request passes validation, and the server accepts the request. When a WebSocket

Creating WebSockets

21-62 Developing Applications with Oracle JDeveloper

connection is created, a browser client can send data to a WebLogic Server instance
while simultaneously receiving data from that server instance.

Although you can use the WebSocket protocol for any type of client-server
communication, the implementation is most commonly used to communicate with
browsers running Web pages that use the World Wide Web Consortium (W3C)
JavaScript WebSocket API. As part of the HTML5 specification (http://
www.w3.org/TR/html5/), the WebSocket protocol is supported by most browsers.
The WebLogic Server implementation of the WebSocket protocol also supports Java
clients.

The JSR 356 Java API for WebSocket reference implementation RI, supported by
WebLogic Server, enables you to create, configure, and deploy WebSocket endpoints
in web applications. The API includes the following packages:

• javax.websocket.server—Create and configure server endpoints.

• javax.websocket—Create clients and configure client and server endpoints.

For more information about the WebSocket protocol and its support on WebLogic
Server, see:

• "Using the WebSocket Protocol in WebLogic Server" in Oracle Fusion Middleware
Developing Applications for Oracle WebLogic Server

• Tyrus Project: https://tyrus.java.net/

• JSR 356 specification: https://java.net/projects/websocket-spec

• WebSocket protocol (RFC 6455): http://tools.ietf.org/html/rfc6455

The following sections provide more information about configuring WebSockets using
JDeveloper:

• How to Configure WebSockets in the Properties Window

• How to Configure WebSockets Using Annotations

• How to Test the WebSocket Connection

How to Configure WebSockets in the Properties Window
You can configure WebSockets in the Properties window.

To configure WebSockets in the Properties window:

1. Create a WebSocket project.

For more information about creating a project with preconfigured features, see
How to Create a Project.

2. Create a Java class.

For more information, see How to Create a New Java Class or Interface.

3. With the Java class open in the source editor, choose Window > Properties to open
the Properties window.

For more information at any time, press F1 or click Help from within the Properties
window.

Creating WebSockets

Developing and Securing Web Services 21-63

http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://docs.oracle.com/javaee/7/api/javax/websocket/server/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/websocket/package-summary.html#package_description
https://tyrus.java.net/
https://java.net/projects/websocket-spec
http://tools.ietf.org/html/rfc6455

4. With the cursor in the public class, navigate to the Web Socket node in the
Properties window.

5. Select:

• Web Socket Client to configure a WebSocket client. In this case, the service is
updated to include the @ClientEndpoint annotation and import the
javax.websocket.ClientEndpoint API.

Web Socket Service to configure a WebSocket service. In this case, the service is
updated to include the @ServiceEndpoint annotation and import the
javax.websocket.server.ServerEndpoint API. By default, the URI
template endpoint name is set to service.

6. Optionally, configure the WebSocket endpoint properties defined in the following
table. When you configure a property, the attribute is added to the
@ClientEndpoint or @ServiceEndpoint annotation for WebSocket clients and
services, respectively.

Table 21-9 WebSocket Server Endpoint Properties

Property Annotation Attribute Description

URI Template value Relative URI path at which the server endpoint will be
deployed.

Note: This property is available for WebSocket services
only.

Custom Configurator configurator Custom implementation of
ServerEndpointConfiguration.Configurator.

Decoders decoders List of message decoder class names.

Encoders encoders List of message encoder class names.

Supported Sub Protocols subprotocols List of supported subprotocols.

How to Configure WebSockets Using Annotations
The Java API for WebSocket (JSR-356) enables you to create, configure, and deploy
WebSocket endpoints in web applications. The WebSocket client API specified in
JSR-356 also enables you to access remote WebSocket endpoints from any Java
application.

The process for creating and deploying a WebSocket endpoint is as follows, as
described in "Using the WebSocket Protocol in WebLogic Server" in Oracle Fusion
Middleware Developing Applications for Oracle WebLogic Server:

1. Create an endpoint class.

The Java API for WebSocket enables you to create the following kinds of endpoints:

• Annotated endpoints

• Programmatic endpoints

For more information, see "Creating an Endpoint" in Oracle Fusion Middleware
Developing Applications for Oracle WebLogic Server.

Creating WebSockets

21-64 Developing Applications with Oracle JDeveloper

2. Implement the lifecycle methods of the endpoint.

Add a method to your endpoint class to handle an event and annotation that
method to designate it as a handler. For more information, see "Handling Life
Cycle Events for a WebSocket Connection" in Oracle Fusion Middleware Developing
Applications for Oracle WebLogic Server.

3. Add your business logic to the endpoint.

4. Deploy the endpoint inside a web application.

For more information, see "Deploying a WebSocket Application" in Oracle Fusion
Middleware Developing Applications for Oracle WebLogic Server.

5. Create a WebSocket client application.

For more information, see "Writing a WebSocket Client" in Oracle Fusion Middleware
Developing Applications for Oracle WebLogic Server.

For more information about and examples of creating and configuring WebSocket
service and client applications using the WebSocket API, see "Using the WebSocket
Protocol in WebLogic Server" in Oracle Fusion Middleware Developing Applications for
Oracle WebLogic Server.

How to Test the WebSocket Connection
When you run the WebSocket application, you can test the connection by clicking the
Target URL provided in the integrated application server log window. If the
WebSocket connection is accessible, the following message is displayed:

Connected successfully

Attaching Policies
The following sections describe how to attach policies to web services and clients, and
configure the policy repository to use custom web service policies.

• What You May Need to Know About OWSM Policies

• What You May Need to Know About Oracle WebLogic Web Service Policies

• How to Attach Policies to JAX-WS Web Service and Clients

• How to Attach Policies to RESTful Web Services and Clients

• How to Use a Different OWSM Policy Store

• How to Use Custom Web Service Policies

What You May Need to Know About OWSM Policies
OWSM policies can be attached to JAX-WS web services at the port level and RESTful
web services at the servlet level.

Attaching Policies

Developing and Securing Web Services 21-65

Note:

You can attach OWSM policies to RESTful web services and clients that are
built using Jersey 1.x JAX-RS RI. RESTful web services and clients that are
built using Jersey 2.5.1 (JAX-RS 2.0 RI) are secured using OWSM policies. For
more information about securing RESTful web services and clients built using
Jersey 2.5.1 (JAX-RS 2.0 RI), see "Securing RESTful Web Services and Clients"
in Oracle Fusion Middleware Developing and Securing RESTful Web Services for
Oracle WebLogic Server.

JDeveloper is preconfigured to use the OWSM policy store set at the default location in
the WS Policy page of the Preferences dialog, which you can access in one of the
following ways:

• Tools > Preferences > WS Policy Store

• Application > Application Properties > WS Policy Store

You can specify another policy store location to use your organization's custom
OWSM policies. For more information How to Use a Different OWSM Policy Store.

For more information about OWSM policies, see the Oracle Fusion Middleware Securing
Web Services and Managing Policies with Oracle Web Services Manager.

Note:

A web service Provider must be deployed with a WSDL file in order to ensure
any attached OWSM policies are enforced. You can the WSDL to the web
service provider using the wsdlLocation element to the
@WebServiceProvider annotation.

What You May Need to Know About Oracle WebLogic Web Service Policies
Oracle WebLogic web service policies can be attached to JAX-WS web services at the
port or operation level. With Oracle WebLogic web service policies it is possible to
specify the usage direction of the policies, for example, to be applied on the inbound
(request) message or outbound (response) message, or both.

You can configure JDeveloper to use the custom Oracle WebLogic web service policies
of your organization. For more information, see How to Use Custom Web Service
Policies.

Jersey 2. x (JAX-RS 2.0 RI) web services are secured using Oracle Web Services
Manager (OWSM) security policies.

For more information, see Oracle Fusion Middleware Securing WebLogic Web Services for
Oracle WebLogic Server.

How to Attach Policies to JAX-WS Web Service and Clients
This section describes how to attach policies to JAX-WS web services and clients
created in JDeveloper. You can use the following types of policies:

• Oracle Web Service Manager (OWSM) policies—You can attach security policies
only.

Attaching Policies

21-66 Developing Applications with Oracle JDeveloper

• Oracle WebLogic web service policies

You cannot mix the two types of policies in the same web service, so you should
decide which to use at the planning stage. Once you have added policies of one type to
your web service, you cannot switch to the other type without deleting the policies
that are currently attached. For example, if you have configured OWSM policies and
later decide that you want to use Oracle WebLogic web service policies, you must
delete the OWSM policies before you can attach the Oracle WebLogic web service
policies.

The following sections describe how to use policies with web services:

• Attaching Policies to JAX-WS Web Services

• Attaching OWSM Policies to JAX-WS Web Service Clients

• Overriding OWSM Policy Configuration Properties for the JAX-WS Web Service
Clients

• Invoking JAX-WS Web Services Secured Using WebLogic Web Service Policies

• Editing or Removing Policies from JAX-WS Web Services

Before you begin:

A detailed examination of all the tasks to be performed to use policies is outside the
scope of this guide, but in general the steps you need to perform are:

1. Decide on the policies you intend to use. For more information, see “Determining
Which Predefined Policies to Use" in the Oracle Fusion Middleware Securing Web
Services and Managing Policies with Oracle Web Services Manager.

2. Attach the policies to a class or service. For more information, see Attaching
Policies to JAX-WS Web Services.

3. Configure a server with the correct key stores or other information that the policies
need to work, and deploy the web service to the server. For more information, see
“Securing Web Services" in the Oracle Fusion Middleware Securing Web Services and
Managing Policies with Oracle Web Services Manager.

4. Test the web service to ensure that the policies work as expected. For more
information, see How to Test Web Services in a Browser.

Attaching Policies to JAX-WS Web Services

JDeveloper allows you to attach Oracle Web Service Manager (OWSM) policies or
Oracle WebLogic web service policies to web services.

After you attach a policy to a web service, you need to configure the policies. For more
information, see “Securing Web Services" in the Oracle Fusion Middleware Securing Web
Services and Managing Policies with Oracle Web Services Manager.

You can attach policies to web services as described in the following sections:

• Attaching Policies in the Web Service Wizard

• Attaching Policies Using Annotations

• Attaching Policies in the Properties Window

Attaching Policies

Developing and Securing Web Services 21-67

Attaching Policies in the Web Service Wizard

You can attach policies to web services by setting the policies to attach in the web
service wizard when creating a new web service or in the web service editor when
updating a web service that already exists.

For more information about creating web services using the Create Java Web Service
Wizard, see Creating Java Web Services .

To attach policies in the web service wizard:

In the Create Java Web Service wizard or web service editor, navigate to the Configure
Policies page. For more information at any time, press F1 or click Help from within the
dialog.

When attaching OWSM policies, you can view more information about the policy and
its assertions as follows:

• Click the Show Descriptions checkbox to display a description of each of the
policies.

• Click View to review the policy assertions in the policy file.

• Click the Show Selected Policies checkbox to display only those policies that are
currently selected.

Attaching Policies Using Annotations

You can attach policies to web services by adding policy annotations directly in the
Java class. The Code Insight feature can help you, as described inHow to Work with
Web Services Code Insight.

To attach policy annotations in the Java class:

1. Open the web service class in the source editor.

2. You can use the Code Insight to help you.

Start typing the annotation, for example, @SecurityPolicy. When you pause,
or click Alt+Enter, a popup appears from which you can choose the correct entry
to complete the statement.

Annotations for Attaching OWSM Policies

You can attach a single policy using the
weblogic.wsee.jws.jaxws.owsm.SecurityPolicy annotation in the Java class,
for example:

@SecurityPolicy(uri = "oracle/wss11_message_protection_service_policy")

You can attach multiple policies as a composite using the
weblogic.wsee.jws.jaxws.owsm.SecurityPolicies annotation containing a
number of @SecurityPolicy elements, for example:

@SecurityPolicies({
 @SecurityPolicy(uri = "oracle/wss_http_token_service_policy"),
 @SecurityPolicy(uri = "oracle/wss_oam_token_service_policy")
})

Attaching Policies

21-68 Developing Applications with Oracle JDeveloper

Note:

To display a list of valid policies, enter uri="", place your cursor within the
empty quotes, and click Ctrl+Alt+Spacebar.

For more information about using the policy annotations, see “Attaching Policies to
Java EE Web Services and Clients Using Annotations" in Oracle Fusion Middleware
Securing Web Services and Managing Policies with Oracle Web Services Manager.

Annotations for Attaching WebLogic Web Service Policies

You can attach a single policy using the weblogic.jws.Policy annotation in the
Java class, for example:

@Policy(uri = "policy:Wssp1.2-2007-Https-UsernameToken-Plain.xml")

You can attach multiple policies as a composite using the weblogic.jws.Policies
annotation containing a number of @Policy elements, for example:

@Policies({
 @Policy(uri = "policy:Wssp1.2-2007-Https-BasicAuth.xml"),
 @Policy(uri = "policy:Wssp1.2-2007-Https-UsernameToken-Plain.xml")
})

Note:

To display a list of valid policies, enter the uri="" argument, place your cursor
within the empty quotes, and click Ctrl+Alt+Spacebar.

For more information about the policy annotations, see “Updating the JWS File with
@Policy and @Policies Annotations" in Oracle Fusion Middleware Securing WebLogic Web
Services for Oracle WebLogic Server.

Attaching Policies in the Properties Window

You can attach policies to web services using the Properties window.

To attach policies in the Properties window:

1. With the web service class open in the source editor, choose Window > Properties
to open the Properties window.

For more information at any time, press F1 or click Help from within the
Properties window.

2. With the cursor in the public class or @WebService line of the class, navigate
to the Policies node where you can choose to use OWSM Policies or Oracle
WebLogic web service policies.

3. Select Secure with OWSM Policies or Secure with WLS Policies.

The Properties window is refreshed to display options to select single or multiple
policies for the policy type selected (OWSM or WLS).

Attaching Policies

Developing and Securing Web Services 21-69

Note:

You cannot use both types of policy in the same web service. If you choose the
wrong type, delete the lines containing the policy statements from the JAX-WS
class so that you can choose again.

4. Select a single policy from the Single Policy list, or click ... to attach multiple
policies from the Edit Property: Multiple Policies dialog.

When using the Edit Property: Multiple Policies dialog box to attach multiple
OWSM policy files, click View to review the policy assertions in the policy file.

Attaching OWSM Policies to JAX-WS Web Service Clients

JDeveloper allows you to attach OWSM policies to JAX-WS web service clients.

After you attach an OWSM policy to a web service client, you need to configure the
policies. For more information, see “Securing Web Services" in the Oracle Fusion
Middleware Securing Web Services and Managing Policies with Oracle Web Services
Manager.

Note:

For information about updating client applications to invoke web services that
use WebLogic web service policies, see “Updating a Client Application to
Invoke a Message-Secured Web Service" in Oracle Fusion Middleware Securing
WebLogic Web Services for Oracle WebLogic Server.

You can attach OWSM policies to web service clients by:

• Attaching OWSM Policies in the Web Service Client and Proxy Wizard

• Attaching OWSM Policies Using Annotations

• Attaching OWSM Policies Using Feature Classes

Attaching OWSM Policies in the Web Service Client and Proxy Wizard

You can attach policies to web service clients by setting the policies to attach in the
web service client and proxy wizard when creating a new web service client or in the
web service client editor when updating a web service client that already exists.

For more information about creating web services using the Create Web Service Client
an Proxy wizard, see Creating the Client and Proxy Classes.

To attach OWSM policies in the web service client:

In the Create Web Service Client an Proxy wizard or client editor, navigate to the
Client Policy Configuration page. For more information at any time, press F1 or click
Help from within the dialog.

When attaching OWSM policies, you can view more information about the policy and
its assertions as follows:

• Click the Show Descriptions checkbox to display a description of each of the
policies.

• Click View to review the policy assertions in the policy file.

Attaching Policies

21-70 Developing Applications with Oracle JDeveloper

• Click the Show Selected Policies checkbox to display only those policies that are
currently selected.

• Click the Show only the compatible client policies for selection checkbox to view
the policies that are compatible with the associated web service.

Attaching OWSM Policies Using Annotations

You can attach policies to web service clients by adding policy annotations directly to
the injection target (@WebServiceRef), using one of the following annotations:

• @weblogic.wsee.jws.jaxws.owsm.SecurityPolicy annotation to attach a
single policy

• @weblogic.wsee.jws.jaxws.owsm.SecurityPolicies annotation to attach
multiple policies

The following shows an example of attaching OWSM security policies to web service
clients using annotations.

package wsrm_jaxws.example;
import java.xml.ws.WebService;
import java.xml.ws.WebServiceRef;
import weblogic.wsee.jws.jaxws.owsm.SecurityPolicy;
import weblogic.wsee.jws.jaxws.owsm.SecurityPolicies;
import oracle.wsm.security.util.SecurityConstants.ClientConstants;
...
@WebServiceRef(name="MyServiceRef")
@SecurityPolicies({
 @SecurityPolicy(uri="policy:oracle/wss10_message_protection_client_policy"),
 @SecurityPolicy(uri="policy:oracle/authorization_policy")
})
Service service;
...

For more information, see “Attaching Policies to Java EE Web Services and Clients
Using Annotations" in Oracle Fusion Middleware Securing Web Services and Managing
Policies with Oracle Web Services Manager.

Note:

Attaching OWSM policies using Feature classes, as described in Overriding
OWSM Policy Configuration Properties Using RequestContext, takes
precedence over annotations.

To attach OWSM policies using annotations:

1. Open the web service client in the source editor.

2. Position your cursor in the injection target line, right-click the mouse, and select
Add JEE Client Policy Annotations from the context menu.

The Client Policy Configuration window is displayed that contains a list of
OWSM security policies.

3. Select the security policies that you wish to attach to the client.

When attaching OWSM policies, you can view more information about the policy
and its assertions as follows:

Attaching Policies

Developing and Securing Web Services 21-71

• Click the Show Descriptions checkbox to display a description of each of the
policies.

• Click View to review the policy assertions in the policy file.

• Click the Show Selected Policies checkbox to display only those policies that
are currently selected.

• Click the Show only the compatible client policies for selection checkbox to
view the policies that are compatible with the associated web service.

4. Click OK.

The client code is updated with the appropriate annotations.

Attaching OWSM Policies Using Feature Classes

You can attach policies to web services by manually adding one of the following
feature classes to the web service client:

• weblogic.wsee.jws.jaxws.owsm.SecurityPolicyFeature class to attach
a single policy

• weblogic.wsee.jws.jaxws.owsm.SecurityPoliciesFeature to attach
multiple policies

The following example shows how to use the SecurityPolicyFeature class to
attach an OWSM policy to a web service client.

...
JAXWSService jaxWsService = new JAXWSService ();
weblogic.wsee.jws.jaxws.owsm.SecurityPolicyFeature securityFeature = new
weblogic.wsee.jws.jaxws.owsm.SecurityPolicyFeature {
new weblogic.wsee.jws.jaxws.owsm.SecurityPolicyFeature("policy:oracle/
wss_username_token__over_ssl_client_policy") };

JAXWSServicePort port = jaxWsService.getJaxWsServicePort(securityFeature);
...

The following example shows how to use the SecurityPoliciesFeature class to
attach multiple OWSM policy to a web service client.

...
weblogic.wsee.jws.jaxws.owsm.SecurityPoliciesFeature
securityFeature = new weblogic.wsee.jws.jaxws.owsm.SecurityPoliciesFeature
(new String[] { "policy:oracle/wss_username_token_over_ssl_client_policy",
"policy:oracle/authorization_policy"});

For more information, see “Attaching Policies to Java EE Web Service Clients Using
Feature Classes" in Oracle Fusion Middleware Securing Web Services and Managing Policies
with Oracle Web Services Manager.

Note:

Attaching OWSM policies using Feature classes takes precedence over
annotations (described in Overriding OWSM Policy Configuration Properties
Using Annotations).

Attaching Policies

21-72 Developing Applications with Oracle JDeveloper

Overriding OWSM Policy Configuration Properties for the JAX-WS Web Service
Clients

JDeveloper allows you to override configuration properties for policies attached to
JAX-WS web service clients.

You can attach OWSM policies to web service clients by:

• Overriding OWSM Policy Configuration Properties in the Web Service Client and
Proxy Wizard

• Overriding OWSM Policy Configuration Properties Using Annotations

• Overriding OWSM Policy Configuration Properties Using RequestContext

Overriding OWSM Policy Configuration Properties in the Web Service Client and Proxy Wizard

When attaching policies to web service clients using the web service client and proxy
wizard, on the Client Policy Configuration page, select Override Properties... to
display the Set Override Properties dialog. The configuration properties for the
selected policies are displayed. Set the values as desired, and click OK.

In the Create Web Service Client an Proxy wizard or client editor, navigate to the
Client Policy Configuration page, select Override Properties.... The Set Override
Properties dialog displays enabling you to edit the configuration properties for the
selected policies. For more information at any time, press F1 or click Help from within
the dialog.

For more information about creating web services using the Create Web Service Client
an Proxy wizard, see Creating the Client and Proxy Classes.

Overriding OWSM Policy Configuration Properties Using Annotations

You can override the default configuration properties of an OWSM security policy
programmatically at design time using the @Property annotation when attaching an
OWSM security policy using the @SecurityPolicy annotation. For more
information, see “Attaching Policies to Java EE Web Services and Clients Using
Annotations" in Oracle Fusion Middleware Securing Web Services and Managing Policies
with Oracle Web Services Manager.

The following example shows how to attach a policy to a web service client using
annotations. In this example, the @Property annotation is used to override the
keystore recipient alias configuration property when attaching the client policy.

package wsrm_jaxws.example;
import java.xml.ws.WebService;
import java.xml.ws.WebServiceRef;
import weblogic.wsee.jws.jaxws.owsm.SecurityPolicy;
import weblogic.wsee.jws.jaxws.owsm.SecurityPolicies;
import oracle.wsm.security.util.SecurityConstants.ClientConstants;
...
@WebServiceRef(name="MyServiceRef")
@SecurityPolicies({
 @SecurityPolicy(uri="policy:oracle/wss10_message_protection_client_policy",
 properties = {
 @Property(name="ClientConstants.WSS_KEYSTORE_LOCATION",
 value="c:/mykeystore.jks")
 }
),
 @SecurityPolicy(uri="policy:oracle/authorization_policy")

Attaching Policies

Developing and Securing Web Services 21-73

})
Service service;
...

Overriding OWSM Policy Configuration Properties Using RequestContext

You can attach policies to web services by manually adding one of the following
feature classes to the web service client:

• weblogic.wsee.jws.jaxws.owsm.SecurityPolicyFeature class to attach
a single policy

• weblogic.wsee.jws.jaxws.owsm.SecurityPoliciesFeature to attach
multiple policies

For more information, see “Overriding Client Policy Configuration Properties at
Design Time" in Oracle Fusion Middleware Securing Web Services and Managing Policies
with Oracle Web Services Manager.

Invoking JAX-WS Web Services Secured Using WebLogic Web Service Policies

When creating or editing a web service client from a WSDL that advertises a
WebLogic web service policy, you can configure credentials to invoke the web service.

To invoke web services secured using WebLogic web service policies:

1. Perform one of the following tasks:

• Create a web service client. For more information, see Creating the Client and
Proxy Classes.

• Edit a web service client. For more information, see Editing the Web Service
Clients.

2. Navigate to the Select Credential page of the wizard.

3. Select an existing set of credentials from the dropdown list or click New to define a
new set of credentials.

For help in completing the wizard, press F1 or click Help from within the wizard.

4. Complete the wizard.

The client class is updated to include methods for setting the client credentials. Once
added, you can modify the credential values, as required.

The following provides an example of the code that is generated and included in the
client class:

@Generated("Oracle JDeveloper")
public static void setPortCredentialProviderList(
 Map<String, Object> requestContext) throws Exception
{
 // Values used from credential preference: TestCredential
 String username = "weblogic";
 String password = "weblogic1";
 String clientKeyStore = "/C:/temp/ClientIdentity.jks";
 String clientKeyStorePassword = "ClientKey";
 String clientKeyAlias = "identity";
 String clientKeyPassword = "ClientKey";
 String serverKeyStore = "/C:/temp/ServerIdentity.jks";
 String serverKeyStorePassword = "ServerKey";

Attaching Policies

21-74 Developing Applications with Oracle JDeveloper

 String serverKeyAlias = "identity";
 List<CredentialProvider> credList = new ArrayList<CredentialProvider>();

 // Add the necessary credential providers to the list
 credList.add(getUNTCredentialProvider(username, password));
 credList.add(getBSTCredentialProvider(clientKeyStore, clientKeyStorePassword,
 clientKeyAlias, clientKeyPassword, serverKeyStore,
 serverKeyStorePassword, serverKeyAlias, requestContext));
 credList.add(getSAMLTrustCredentialProvider());
 requestContext.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credList);
}

For information about how to program your web service client to invoke a web service
that is secured using WebLogic web service policies, see “Updating a Client
Application to Invoke a Message-secured Web Service" in the Oracle Fusion Middleware
Securing WebLogic Web Services for Oracle WebLogic Server.

Editing or Removing Policies from JAX-WS Web Services

You can edit policies and remove them entirely from web services with either of the
following:

• Web service editor, as described in Editing or Removing Policies Using the Web
Service Editor.

• Source editor, as described in Editing or Removing Policies Using Annotations in
the Java Class.

• Properties window, as described in Editing or Removing Policies Using the
Properties Window.

Editing or Removing Policies Using the Web Service Editor

You can edit or remove policies using the web service editor.

To edit or remove policies using the web service editor:

1. Right-click the web service in the Applications window, and choose Web Service
Properties.

For more information at any time, press F1 or click Help from within the dialog.

2. Navigate to the Configure Policies page, where you can change the policies for the
type of policies selected, change to using a different type of policies (for example,
from OWSM policies to Oracle WebLogic web service policies), or choose No
Policies. The web services is changed when you navigate away from this page of
the editor.

Editing or Removing Policies Using Annotations in the Java Class

You can edit or remove policies using annotations in the Java class in the source
editor.

To edit or remove policies using annotations in the Java class, pen the web service
class in the source editor, where the Code Insight feature is available to help you. For
more information, see How to Work with Web Services Code Insight. Edit or remove
the annotations, as required.

Editing or Removing Policies Using the Properties Window

You can edit or remove policies using the Properties window.

Attaching Policies

Developing and Securing Web Services 21-75

To edit or remove policies using the Properties window:

1. With the JAX-WS web service class open in the source editor, choose Window >
Properties to open the Properties window.

For more information at any time, press F1 or click Help from within the
Properties window.

2. With the cursor in the public class or @WebService line of the class, navigate
to the Policies node:

• To edit multiple policies, click ... to open the Edit Property: Multiple Policies
dialog.

• To edit a single policy, delete the name from the Single Policy list and choose
another.

• To change from one type of policy to another, delete all the policies so that you
can start again.

How to Attach Policies to RESTful Web Services and Clients
This section describes how to attach policies to RESTful web services and clients
created in JDeveloper.

• Attaching Policies to RESTful Web Services

• Attaching Policies to RESTful Web Service Clients

• Editing or Removing Policies from RESTful Web Services and Clients

Attaching Policies to RESTful Web Services

To secure RESTful web services, you can attach one of the OWSM predefined security
policies described in “Which OWSM Policies Are Supported for RESTful Web
Services?" in Oracle Fusion Middleware Securing Web Services and Managing Policies with
Oracle Web Services Manager.

For more information about:

• Securing RESTful web services, see “Securing RESTful Web Services and Clients
Using OWSM Policies" in Oracle Fusion Middleware Developing and Securing RESTful
Web Services for Oracle WebLogic Server.

• Supported security policies, see “Predefined Policies" in Oracle Fusion Middleware
Securing Web Services and Managing Policies with Oracle Web Services Manager.

• Configuring the security policies, see “Securing Web Services" in the Oracle Fusion
Middleware Securing Web Services and Managing Policies with Oracle Web Services
Manager.

To attach policies to RESTful web services:

1. In the Applications window, right-click the web.xml file located in the Web
Content > WEB-INF folder.

2. Select Secure RESTful Application.

The Select Policy From List dialog opens.

Attaching Policies

21-76 Developing Applications with Oracle JDeveloper

3. Select the security policy from the list.

You can attach only one authentication policy and one authorization policy.

4. Click OK.

The security policy configuration is saved to the wsm-assembly.xml deployment
descriptor file. If the wsm-assembly.xml file does not exist, it will be created.

Attaching Policies to RESTful Web Service Clients

To secure RESTful web services, you can attach one of the OWSM predefined security
policies described in “Which OWSM Policies Are Supported for RESTful Web
Services?" in Oracle Fusion Middleware Securing Web Services and Managing Policies with
Oracle Web Services Manager.

You can attach OWSM policies to the RESTful client using one of the methods
described in the following sections:

• Attaching OWSM Policies in the RESTful Client and Proxy Wizard

• Attaching OWSM Policies in the Client Policy Configuration Dialog

• Attaching OWSM Policies to RESTful Clients Programmatically

For more information about:

• Securing RESTful web services, see “Securing RESTful Web Services and Clients
Using OWSM Policies" in Oracle Fusion Middleware Developing and Securing RESTful
Web Services for Oracle WebLogic Server.

• Supported security policies, see “Predefined Policies" in Oracle Fusion Middleware
Securing Web Services and Managing Policies with Oracle Web Services Manager.

• Configuring the security policies, see “Securing Web Services" in the Oracle Fusion
Middleware Securing Web Services and Managing Policies with Oracle Web Services
Manager.

Attaching OWSM Policies in the RESTful Client and Proxy Wizard

You can attach policies to web service clients by setting the policies to attach in the
RESTful client and proxy wizard when creating a new RESTful client.

For more information about creating web services using the Create RESTful Proxy
Client wizard, see Creating RESTful Web Service Clients.

To attach OWSM policies to the RESTful client in the RESTful Client and Proxy
Wizard:

In the Create RESTful Proxy Client wizard, navigate to the Client Policy Configuration
page. For more information at any time, press F1 or click Help from within the dialog.

When attaching OWSM policies, you can view more information about the policy and
its assertions as follows:

• Click the Show Descriptions checkbox to display a description of each of the
policies.

• Click View to review the policy assertions in the policy file.

Attaching Policies

Developing and Securing Web Services 21-77

• Click the Show Selected Policies checkbox to display only those policies that are
currently selected.

• Click the Show only the compatible client policies for selection checkbox to view
the policies that are compatible with the associated web service.

Attaching OWSM Policies in the Client Policy Configuration Dialog

You can attach policies to web service clients by setting the policies to attach in the
Client Policy Configuration dialog.

To attach OWSM policies to the RESTful client in the Client Policy Configuration
dialog:

1. In the Applications window, right-click the RESTful web service client file located
in the Application Sources folder.

2. Select Secure RESTful Client.

The Client Policy Configuration dialog opens.

3. Select the security policy from the list.

You can attach only one authentication policy and one authorization policy.

4. Click OK.

The customizeClientConfiguration method is updated in the client to
include the policy attachment.

For more information at any time, press F1 or click Help from within the dialog.

When attaching OWSM policies, you can view more information about the policy and
its assertions as follows:

• Click the Show Descriptions checkbox to display a description of each of the
policies.

• Click View to review the policy assertions in the policy file.

• Click the Show Selected Policies checkbox to display only those policies that are
currently selected.

• Click the Show only the compatible client policies for selection checkbox to view
the policies that are compatible with the associated web service.

Attaching OWSM Policies to RESTful Clients Programmatically

OWSM security policies can only be attached programmatically to RESTful web
service clients, as described in “Attaching Policies to RESTful Web Service Clients
Using Feature Classes" in Oracle Fusion Middleware Securing Web Services and Managing
Policies with Oracle Web Services Manager.

Using the com.sun.jersey.api.client.config.ClientConfig, you can
attach OWSM policies and override configuration properties, as shown in the
following example. The following code attaches the oracle/
wss_http_token_client_policy policy to the client, and overrides the
CO_CSF_KEY configuration property with the value weblogic-csf-key.

package samples.helloworld.client;

import weblogic.jaxrs.api.client.Client;
import com.sun.jersey.api.client.WebResource;

Attaching Policies

21-78 Developing Applications with Oracle JDeveloper

import com.sun.jersey.api.client.config.ClientConfig;
import com.sun.jersey.api.client.config.DefaultClientConfig;
import oracle.wsm.metadata.feature.PolicyReferenceFeature;
import oracle.wsm.metadata.feature.AbstractPolicyFeature;
import oracle.wsm.metadata.feature.PolicySetFeature;
import oracle.wsm.metadata.feature.PropertyFeature;
...
 public static void main(String[] args) {
 ClientConfig cc = new DefaultClientConfig();
 cc.getProperties().put(AbstractPolicyFeature.ABSTRACT_POLICY_FEATURE,
 new PolicySetFeature(
 new PolicyReferenceFeature((
 "oracle/wss_http_token_client_policy"), new
 PropertyFeature(SecurityConstants.ConfigOverride.CO_CSF_KEY,
 "weblogic-csf-key"))));
 Client c = Client.create(cc);
...

Overriding OWSM Policy Configuration Properties for the RESTful Web Service
Clients

JDeveloper allows you to override configuration properties for policies attached to
RESTful web service clients.

You can override OWSM policy configuration properties for RESTful web service
clients by:

• Overriding OWSM Policy Configuration Properties in the Web Service Client and
Proxy Wizard

• Overriding OWSM Policy Configuration Properties Using Annotations

Overriding OWSM Policy Configuration Properties in the Web Service Client and Proxy Wizard

When attaching policies to RESTful web service clients using the RESTful client and
proxy wizard or client editor, navigate to the Client Policy Configuration page, select
one or more policies to attach, and click Override Properties.... The Set Override
Properties dialog displays enabling you to edit the configuration properties for the
selected policies. For more information at any time, press F1 or click Help from within
the dialog. Set the values as desired, and click OK.

For more information about creating RESTful web service clients using the Create
RESTful Proxy Client wizard, see Creating RESTful Web Service Clients.

Overriding OWSM Policy Configuration Properties for RESTful Clients Using Feature Classes

When creating a RESTful web service client, when attaching an OWSM security policy
programmatically, you can override the default configuration properties of an OWSM
security policy using the oracle.wsm.metadata.feature.PropertyFeature
class. For more information, see “Attaching Policies to RESTful Web Service Clients
Using Feature Classes" in Oracle Fusion Middleware Securing Web Services and Managing
Policies with Oracle Web Services Manager.

Editing or Removing Policies from RESTful Web Services and Clients

You can edit policies and remove them entirely from your RESTful web services and
clients, as described in the following sections:

• Editing or Removing Policies from RESTful Web Services

• Editing or Removing Policies from RESTful Web Service Clients

Attaching Policies

Developing and Securing Web Services 21-79

Editing or Removing Policies from RESTful Web Services

To edit or remove policies from RESTful web services:

1. In the Applications window, right-click the web.xml file located in the Web
Content > WEB-INF folder.

2. Select Secure RESTful Application.

The Select Policy From List dialog opens.

3. Select the security policy from the list.

You can attach only one authentication policy and one authorization policy.

4. Click OK.

The security policy configuration is saved to the wsm-assembly.xml
deployment descriptor file. If the wsm-assembly.xml file does not exist, it will
be created.

Editing or Removing Policies from RESTful Web Service Clients

Use any of the methods described in Attaching Policies to RESTful Web Service
Clients to edit or remove policies from the RESTful web service client.

How to Use a Different OWSM Policy Store
The OWSM policy store is installed as part of JDeveloper. You can configure a
different policy store, for example, to use a shared policy store. You can use a policy
store that is available on the local file store or on a remote application server.

To use a different OWSM policy store:

1. Choose Tools > Preferences to open the Preferences dialog, and navigate to the WS
Policy Store page.

For more information at any time, press F1 or click Help from within the
Preferences dialog.

2. To specify a policy store that is in the local file store, click File Store and enter the
location of the policy store in the Override Location text box, or click Browse to
browse to its location.

3. To configure a policy store on a remote application server, click App Server
Connection and select a remote application server connection from the
Connections drop-down list.

To add a new remote application server connection, click New.

Attaching Policies

21-80 Developing Applications with Oracle JDeveloper

Note:

The remote application server that you select must be configured with the
OWSM Policy Manager. To verify that the OWSM Policy Manager has been
properly configured, use the following URL: http://<host>:<port>/
wsm-pm/validator. Enter the username and password for the server when
prompted. If the OWSM Policy Manager is operational, then a list of the
predefined policies is displayed with descriptions. For more information
about troubleshooting the OWSM Policy Manager, see “Diagnosing Problems
with Oracle OWSM" in the Oracle Fusion Middleware Administering Web
Services.

How to Use Custom Web Service Policies
You can use custom policies from within JDeveloper. The process is different based on
whether you are using custom OWSM policies or Oracle WebLogic web service
policies, as described in the following sections:

• Using Custom OWSM Policies

• Using Custom Oracle WebLogic Web Service Policies

Using Custom OWSM Policies

To use custom OWSM policies, perform one of the following steps:

• Add a custom policy in the default policy store location at:

JDEV_USER_HOME\system12.1.2.0.x.x.x\DefaultDomain\store\gmds
\owsm

If not set, JDEV_USER_HOME defaults to C:\Users\user-dir\AppData
\Roaming\JDeveloper.

Within this directory, policies must be included using one of the following
directory structures:

– Predefined OWSM policies: policies/oracle/policyname

– Custom user policies: policies/policyname

Note:

When exporting policy files from the OWSM repository for use in JDeveloper,
this directory structure is not maintained. You must ensure that when adding
the exported policy to the JDeveloper environment that you extract the
policies from the zip archive into the JDeveloper policy store using the
required directory structure noted above. Otherwise, the policies will not be
available in the JDeveloper environment. For more information about
exporting policies from the OWSM repository, see “Understanding the
Different Mechanisms for Importing and Exporting Policies" in the Oracle
Fusion Middleware Securing Web Services and Managing Policies with Oracle Web
Services Manager.

• Specify a different policy store. For more information, see Using Custom Oracle
WebLogic Web Service Policies.

Attaching Policies

Developing and Securing Web Services 21-81

If you elect to use a policy store on a remote application server, you can import
custom OWSM policies to the MDS repository on the remote application server
using Fusion Middleware Control or WLST. For more information about importing
policies to the OWSM MDS on the remote application server, see “Understanding
the Different Mechanisms for Importing and Exporting Policies" in the Oracle
Fusion Middleware Securing Web Services and Managing Policies with Oracle Web
Services Manager.

For more information about creating custom policies, see “Creating Custom
Assertions" in Oracle Fusion Middleware Developing Extensible Applications for Oracle Web
Services Manager.

Using Custom Oracle WebLogic Web Service Policies

To use custom Oracle WebLogic web service policies, perform one of the following
steps:

• Place the custom policy JAR in the classpath and enable the WebLogic Server
property weblogic.wsee.policy.LoadFromClassPathEnabled to true.

• Place the custom policy JAR in WEB-INF/policies (Web application) or META-
INF/policies (EJB).

• Place the custom policy XML file in WEB-INF (Web application) or META-INF
(EJB).

To access the policies:

• When using the @Policy annotation, ensure that you add the policy prefix; for
example, policy:mypolicy.xml.

• Click the Add Custom Policies button on the Configure Policies page of the Java
Web Service Editor and select the custom policy files using the Select Custom
Policy Files dialog box.

Deploying Web Services
JDeveloper provides tools that help you create and deploy web services to Oracle
WebLogic Server, where they run within a Java EE container. You can:

• Deploy web services to Integrated WebLogic Server, as described in How to
Deploy Web Services to Integrated WebLogic Server.

• Deploy web services to Oracle WebLogic Server or other application server, as
described in How to Deploy Web Services to a Standalone Application Server.

• Deploy web services to an archive file, as described in Deploying to a Java JAR.

• Define a different WebLogic Server domain to be the Integrated WebLogic Server
on which to run web services and deploy web services to it, as described in
Running Java EE Applications in the Integrated Application Server.

• Undeploy a web service, as described in How to Undeploy Web Services.

How to Deploy Web Services to Integrated WebLogic Server
You can deploy a web service generated in JDeveloper to Integrated WebLogic Server.
For more information, see Running Java EE Applications in the Integrated Application
Server.

Deploying Web Services

21-82 Developing Applications with Oracle JDeveloper

To deploy a web service to Integrated WebLogic Server:

1. If not already started, start the Integrated WebLogic Server.

Note:

The first time you start the Integrated WebLogic Server, a dialog is displayed
prompting you to enter a password for the administrator ID for the default
domain. When you click OK, the default domain is created and the Integrated
WebLogic Server is started. You only need to do this once.

2. In the Applications window, right-click the project containing the web service, and
choose Deploy > Web Services.

3. In the Deploy Web Services dialog, on the Deployment Action page, select Deploy
to Application Server and click Next.

4. On the Select Server page, select IntegratedWebLogicServer and click Next.

5. On the WebLogic Options page, configure the WebLogic Server deployment
options, specifying:

• Whether to deploy the application to all or select instances in the domain. By
default the application is deployed to all instances.

• Whether the application is registered as a shared library. By default, it is
registered as a standalone application.

6. Click Next to view the Summary page or Finish to deploy the web services.

How to Deploy Web Services to a Standalone Application Server
You can deploy a web service generated in JDeveloper to one of the following
standalone application servers:

• Oracle WebLogic Server

• JBoss 5.x

• Tomcat 6.x

• WebSphere Server 7.x

To deploy a web service to a standalone application:

1. Ensure that the standalone application server is running.

2. In the Applications window, right-click the project containing the web service and
choose Deploy to > connection. From the list of available connections choose the
application server connection that you specified when you created the web service.

How to Undeploy Web Services
If you have deployed the web service to Integrated WebLogic Server you do not need
to undeploy it as the integrated server resets itself to the new application and project
whenever it is started.

If you have deployed the web service to a server using an application server
connection, you can undeploy it from the Resources window.

Deploying Web Services

Developing and Securing Web Services 21-83

To undeploy a web service:

1. In the Application Server window, select the application server connection you
have been using and expand Web Services.

2. Right-click application-name_project-name_ws and choose Undeploy.

Testing and Debugging Web Services
Developer provides a number of ways that you can test and debug web services:

• Run a JAX-WS web service deployed to Integrated WebLogic Server in a browser
to check that it returns what you expect, as described in How to Test Web Services
in a Browser.

• Use the debugger, which enables you to debug web services that you create locally,
on the Integrated WebLogic Server, and remotely, on Oracle WebLogic Server, as
described in How to Debug Web Services.

• Install and use JUnit, as described in How to Test Web Services with JUnit.

• View web service message logs, as described in How to View Web Service Message
Logs for an Application Server.

In addition to the methods described in this section, you can use the HTTP Analyzer
to examine the content of web services over HTTP, similar to examining other packet
information. For more information, see Monitoring and Analyzing Web Services.

How to Test Web Services in a Browser
Once you have created and deployed a web service, you can test it to ensure that it
returns what you expect by running it in the browser using the Web Services Test
Client. For more information about using the Web Services Test Client to test web
services, see “Testing Web Services" in Oracle Fusion Middleware Administering Web
Services.

How to Debug Web Services
The debugging tools allow you to debug web services created using the web service
wizards. This is similar to debugging Java programs; you can debug a web service
locally or remotely by running a client against the service in debug mode. You set
breakpoints in the client, which is the proxy to the web service, to investigate the
functionality of the service.

JDeveloper lets you debug a web service that is running in the Integrated WebLogic
Server locally, or a web service that is deployed remotely.

As you debug your web service, JDeveloper also provides a number of special-
purpose debugging windows to help you analyze your code and identify problem
areas. You can open the debugger windows by choosing Window > Debugger, then
choosing a window from the menu. The Data window is particularly useful for
debugging web services. For more information, see Using the Data Window for
Debugging Web Services.

You can use the HTTP Analyzer to examine and monitor HTTP request and response
packets. It acts as a proxy between code in JDeveloper and the HTTP resource that the
code is communicating with, and helps you to debug your application in terms of the
HTTP traffic sent and received. For more information, see How to Examine Web
Services using the HTTP Analyzer .

Testing and Debugging Web Services

21-84 Developing Applications with Oracle JDeveloper

Debugging Web Services Locally

Once the web service is running in Integrated WebLogic Server, you can create a
proxy client to the web service. This client contains methods to run against each
exposed method in the web service, and you can add your own code and set
breakpoints to examine how the web service runs.

You can quickly debug a web service created in JDeveloper by debugging it locally
using one of the following methods:

• Insert breakpoints in the web service class, then run a proxy client against it. This
allows you to debug the service class itself.

• Insert breakpoints in the client.

Before locally debugging a web service, you should turn off the proxy settings.
Remember to turn the proxy settings back on when you have finished debugging.

To debug a web service locally:

1. First, turn off the proxy settings, as described in Disabling the Use of a Proxy
Server When Accessing the Internet.

2. Run the web service in debug mode. In the Applications window, right-click the
web service, and choose Debug.

The Integrated WebLogic Server is started (or restarted) in debug mode, and the
web service is deployed to it. The results are displayed in the log window.

3. Create a web service client, as described in How to Create JAX-WS Web Service
Clients.

A proxy container is generated and displayed in the Applications window, with a
Java class called webservicePortClient.java displayed in the source editor.

4. In the source editor, locate the comment // Add your own code to call
the desired methods, and enter some code.

5. If you are debugging the client to the web service, add one or more breakpoints,
right-click and choose Debug.

Alternatively, if you have set breakpoints in the web service class, choose either
Debug or Run from the context menu.

The debugger operates as for any Java class. For more information, see Running
and Debugging Java Projects .

Debugging Web Services Remotely

JDeveloper lets you debug a web service that is deployed remotely.

The web service could be running on Oracle WebLogic Server on the local machine, or
it could be running on a service located on a remote machine. In either case, you will
need a connection to the server, and the server must be running in debug mode.

When you remotely debug a web service, you have to start the server in debug mode
and deploy the web service to it. You can then create a client to the service and set
breakpoints in it, and run the client in debug mode.

To debug a web service remotely:

Testing and Debugging Web Services

Developing and Securing Web Services 21-85

1. Run the remote server in debug mode.

2. Deploy the web service. For more information, see Deploying Web Services.

3. Create a web service client, as described in How to Create JAX-WS Web Service
Clients.

4. In the source editor, locate the comment // Add your own code to call
the desired methods, and enter some code.

5. Add one or more breakpoints, right-click and choose Debug.

The debugger operates as for any Java class. For more information, see Running
and Debugging Java Projects .

Using the Data Window for Debugging Web Services

JDeveloper provides a number of special-purpose debugging windows to help you
analyze your code and identify problem areas. The Data window is particularly useful
for debugging web services.

The Data window displays information about variables in your program for the
current context. By default, the Data window displays local variable information while
debugging a program. For web services, the Data window also provides additional
information derived from the web service. For example, the returned values for the
following method calls are displayed when debugging a proxy class (this is not an
exhaustive list):

• com.sun.xml.ws.client.RequestContext.getEndpointAddressStrin
g()

• javax.xml.ws.Binding.getBindingID()

• javax.xml.ws.BindingProvider.getResponseContext()

To open the Data debugger window choose Window > Debugger > Data. For more
information about accessing and using the other debugging windows, see Using the
Debugger Windows.

While debugging, you can use filters to reduce the number of fields that are displayed
when you expand an object in the Data window through the Object Preferences dialog.
Displaying fewer fields narrows your focus when debugging and may make it easier
to locate and isolate potential problems in your program. For more information, see
How to Show and Hide Fields in the Filtered Classes List.

How to Test Web Services with JUnit
JDeveloper provides support for JUnit regression testing for your web services. JUnit
is an open source Java regression testing framework that is available as an optional
feature in JDeveloper. You can use JUnit to write and run tests that verify your code.
For detailed information about JUnit, visit the JUnit web site, http://
www.junit.org.

To use JUnit, you need to install the JUnit extension. After you install the JUnit
extension, you can create a JUnit test class for the web services that you want to test.

To run a JUnit test on a web service:

1. Install the JUnit extension from the JDeveloper Help menu. For more information,
see How to Install Extensions with Check for Updates.

Testing and Debugging Web Services

21-86 Developing Applications with Oracle JDeveloper

http://www.junit.org
http://www.junit.org

2. Right-click a web service in the Applications window and choose Create JUnit
class for Web Service. This will create a JUnit test class.

3. Edit the generated class.

The generated test class can run in the JUnit runtime; however, in order to gather
meaningful results, you need to instrument the test class (for example, with
assertions) to reflect your environment. There is one generated test method in the
generated JUnit class per web service method, which can each be run in the JUnit
test harness.

By default, when the generated test is run, JUnit sets up the web service endpoint in a
web service endpoint publisher. You can, however, remove the web service endpoint
publisher from the generated JUnit test class and set the web service endpoint to any
application server where the web service is pre-deployed.

How to View Web Service Message Logs for an Application Server
If you have attached a log policy to a web service that is deployed on an application
server, the log policy writes the SOAP message to a message log. The web service
message log can be accessed using the Application Servers window.

The application server log files are available under the Log Files folder under each
application server node for both integrated and remote servers. Under each Log Files
folder there is a OWSM Logs folder that contains the web service log files.

To view the message log of a web service deployed to an application server

1. If necessary, open the Application Servers window by choosing Window >
Application Servers.

2. Expand the application server that the web service is deployed on.

3. Expand the Log Files folder to access the OWSM Logs folder.

4. Expand the OWSM Logs folder, then right-click a log file (for example,
diagnostic.log) and choose View from the context menu.

The log contents are displayed in read-only mode in the editor.

Monitoring and Analyzing Web Services
You can analyze web services in a number of ways, for example to check whether they
conform to Web Services-Interoperability Organization (WS-I) Basic Profile 1.1 or to
investigate the contents of SOAP packets.

The WS-I was formed by Oracle and other industry leaders to promote the
interoperability of web services technologies across a variety of platforms, operating
systems, and programming languages. JDeveloper provides tools that allow you to
test the interoperability of web services by checking that the services conform to the
WS-I Basic Profile 1.1. For more information about WS-I, see the web site of The Web
Services-Interoperability Organization (WS-I) at http://www.ws-i.org.

You can analyze a web service for conformity to WS-I standards. The service can either
be one you have created that is listed in the Applications window, or it can be a web
service that you have located using a UDDI registry that is listed in the Resources
window. Alternatively, you can create a client and proxy classes to access a deployed
web service and use the HTTP Analyzer to create a log file that you then use to
analyze whether the web service conforms to WS-I standards.

Monitoring and Analyzing Web Services

Developing and Securing Web Services 21-87

http://www.ws-i.org

In order to monitor a web service against the WS-I Basic Profile, or analyze the log file
resulting from monitoring a service, you need to download and register a WS-I
compliant analyzer. Before you can register a WS-compliant analyzer, you need to
install the WS-I Testing Tools extension

The following sections describe how to monitor and analyze web services:

• How to Download and Register a WS-I Analyzer

• How to Analyze Web Services in the Applications Window

• How to Create and Analyze Web Service Logs

• How to Analyze Web Services Running in the Integrated Server

• How to Examine Web Services using the HTTP Analyzer

How to Download and Register a WS-I Analyzer
In order to use a WS-I compliant analyzer to analyze a web service, you need to
download one to your machine and register it with JDeveloper.

To download and register a WS-I analyzer:

1. Download and install a WS-I analyzer from http://www.ws-i.org.

2. Install the WS-I Testing Tools extension from the JDeveloper Help menu. For more
information, see How to Install Extensions with Check for Updates.

3. In JDeveloper choose Tools > Preferences and select WS-I Testing Tools.

4. Enter details of where your WS-I compliant analyzer is installed.

For detailed help in using this dialog, press F1 or click Help from within the dialog.

How to Analyze Web Services in the Applications Window
You can produce a report of a web service that is listed in the Applications window, or
that you have located using a UDDI registry and that is listed in the Resources
window to see whether it conforms with WS-I Basic Profile 1.1 standards. Before you
can do this you must have downloaded a WS-I compliant analyzer to your machine
and registered it with JDeveloper.

The parts of the WS-I Basic Profile that check the content of messages sent between a
web service and a client cannot be used until the client is run against the service.
When invoked from the Applications window, the WS-I analyzer can only analyze the
description of the service in its WSDL document.

To analyze a web service:

1. With the web service selected in the navigator, choose WS-I Analyze WSDL... from
the context menu.

2. The WS-I Analyze Web Service wizard is displayed.

For detailed help in using the wizard, press F1 or lick Help from within the wizard.

3. Once the wizard has run, a report of the analysis called wsi-report.html is
displayed in JDeveloper. The report may take a few moments to appear, depending
on whether you are analyzing a local web service or one deployed elsewhere on the
Web.

Monitoring and Analyzing Web Services

21-88 Developing Applications with Oracle JDeveloper

http://www.ws-i.org

How to Create and Analyze Web Service Logs
You can use the HTTP Analyzer to produce a log from running a web service client.
Then you can use a WS-I compliant analyzer that you have downloaded and
registered with JDeveloper to check whether the web service complies with WS-I
standards.

Because you are running the analyzer against a client to the web service, discovery,
description and messages of the service are reported on.

Note:

If you are working within a firewall, make sure that the proxy server
exceptions do not include the IP address of the machine on which the web
service is running.

To create and analyze a web service:

1. Create a client to the web service you want to analyze.

• To an external web service.

• For a web service that you have created and deployed to Oracle WebLogic
Server, create a client stub or proxy.

• For a web service that you have just created in JDeveloper, ensure that the web
service is running on the embedded server by selecting Run from the web
service context menu. In the navigator, select Create Client for Web Service
Annotations from the web service context menu. You need to make sure that
the web service endpoint in the WSDL is exactly the same as the _endPoint
variable in the generated proxy.

2. Start the HTTP Analyzer. Choose Tools > HTTP Analyzer, and in the monitor click

Start .

3. Run the client in one of the following ways:

• Select Run from the context menu of the client in the source editor.

• Select Run from the context menu of the client in the navigator.

4. Once you have received the response you expect from the web service, stop the
HTTP Analyzer by clicking Stop .

5. Click WS-I Analyzer to launch the WS-I Analyze wizard, and follow the
instructions in the wizard. The message log records the progress, and the results
are displayed in the HTTP Analyzer.

What You May Need to Know About Performing an Analysis of a Web Service

There are a number of reasons why you may find you have problems when
performing an analysis of a web service. Some of these are outside the scope of the
JDeveloper documentation, but there are two issues you might come across:

• When the Message section of the wsi-report.html is missing all inputs

Monitoring and Analyzing Web Services

Developing and Securing Web Services 21-89

• When the Discovery section of the wsi-report.html is missing all inputs

When the Message section of the wsi-report.html is missing all inputs

This can happen when the WSDL for an external web service has an endpoint that
contains the machine name in upper or mixed case, and the client generated by
JDeveloper has the _endPoint variable with the machine name in lower case. This is
similar to the case discussed in How to Analyze Web Services Running in the
Integrated Server.

The workaround is to import the WSDL into JDeveloper so that it is listed in the
navigator, then edit the WSDL so that the machine name is lower case. Then you can
generate the client (and associated proxy classes) and run it with the HTTP Analyzer
running.

To import the WSDL into the navigator:

1. Create a new WSDL document, accepting the defaults.

2. Open the WSDL document in a browser. View the source of the document, and
copy the XML source of the WSDL.

3. Replace the contents of the WSDL document you have just created with the source
from the WSDL document of the web service you want to use.

When the Discovery section of the wsi-report.html is missing all inputs

The Discovery section of wsi-report.html reports on the REGDATA artifacts that are
used by web services you locate in a UDDI registry. If you have created a report of a
web service that you have not located using a UDDI registry, then it all the Inputs in
this section of the report will be missing.

How to Analyze Web Services Running in the Integrated Server
The WS-I compliant analyzer correlates messages in the log file against a set of
standard assertions, and in particular the soap:address subelement of the service
element in the WSDL document must exactly match that specified in the wsi-
log.xml messageEntry's senderHostAndPort or receiverHostAndPort,
otherwise the messages will not be analyzed for WS-I compatibility.

Changing the Endpoint Address

When the web service is run in the Integrated Server (by choosing Run from the web
service context menu), and you create the log by running the HTTP Analyzer while
running a generated client against the web service, you may need to change the web
service endpoint in the WSDL or the _endPoint variable in the generated client
before creating the log file of the client running.

To make sure the web service endpoint is the same as the _endPoint variable in the
proxy:

1. Edit the WSDL document of the web service by double-clicking on the WSDL
document in the navigator.

2. Navigate to the soap:address subelement, and edit the endpoint using one of
the following values:

• IP_address:integrated_port_no (the default integrated port number is
8988)

Monitoring and Analyzing Web Services

21-90 Developing Applications with Oracle JDeveloper

• hostname (lower-case)

Changing the Endpoint Address Without Modifying the WSDL

For JAX-WS web services, you can change the endpoint address without modifying
the WSDL, as shown in the following example:

import java.net.URI;
import java.net.URL;
import java.util.Map;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.WebServiceRef;
import project2.proxy.Hello;
import project2.proxy.HelloService;

public class HelloPortClient
{
 @WebServiceRef
 private static HelloService helloService;

 public static void main(String [] args) {
 helloService = new HelloService();
 Hello hello = helloService.getHelloPort();
 setEndpointAddress(hello, "http://some.new.addr/endpoint");
 hello.sayHello("Bob");
 }

 public static void setEndpointAddress(Object port, String newAddress) {
 assert port instanceof BindingProvider :
 "Doesn't appear to be a valid port";
 assert newAddress !=null :"Doesn't appear to be a valid address";

 //
 BindingProvider bp = (BindingProvider)port;
 Map <String, object> context = bp.getRequestContext();
 Object oldAddress = context.get(
 BindingProvider.ENDPOINT_ADDRESS_PROPERTY);
 context.put(
 BindingProvider.ENDPOINT_ADDRESS_PROPERTY, newAddress);
 }
}

How to Examine Web Services using the HTTP Analyzer
You can use the HTTP Analyzer to examine the network traffic of a client connecting
to a JAX-WS or RESTful web service. For more information, see Using the HTTP
Analyzer with Web Services.

The HTTP Analyzer enables you to:

• Observe the exact content of the request and response TCP packets of your web
service.

• Edit a request packet, resend the packet, and see the contents of the response
packet.

• Test web services that are secured using policies; encrypted messages will be
decrypted.

You can use the results to debug a locally or remotely deployed web service.

Monitoring and Analyzing Web Services

Developing and Securing Web Services 21-91

Note:

In order to use the HTTP Analyzer, you may need to update the proxy
settings. For more information, see How to Use Proxy Settings and .

To examine the packets sent and received by the client to a web service:

1. Create the web service.

2. Either run the web service in the Integrated WebLogic Server by right-clicking the
web service container in the navigator and choose Run web_service.

or

Deploy and run the web service on Oracle WebLogic Server. For more information,
see Deploying Web Services.

3. Start the HTTP Analyzer by selecting Tools > HTTP Analyzer. It opens in its own
window in JDeveloper.

4. Run the HTTP Analyzer by clicking Start HTTP Analyzer .

5. Run the client proxy to the web service. The request/response packet pairs are
listed in the HTTP Analyzer Test window.

The test window allows you examine the headers and parameters of a message.
You can test the service by entering a parameter that is appropriate and clicking
Send Request.

6. You can examine the contents of the HTTP headers of the request and response
packets to see the SOAP structure (for JAX-WS web services), the HTTP content,
the WADL structure (for RESTful services), the Hex content or the raw message
contents by choosing the appropriate tab at the bottom of the HTTP Analyzer Test
window.

7. You can test web services that are secured using policies by performing one of the
following tasks:

• Select an existing credential from the Credentials list.

JDeveloper delivers with a set of preconfigured credentials, HTTPS
Credential.

• Click New to create a new credential. In the Credential dialog, define the
credentials to use in the HTTP Analyzer Test window. You can define one of the
following credentials: HTTPS, username token, X509, or STS. For more
information, see Using SSL with the HTTP Analyzer.

Monitoring and Analyzing Web Services

21-92 Developing Applications with Oracle JDeveloper

22
Deploying Applications

This chapter describes how to deploy JDeveloper applications to the JDeveloper
integrated application server, or to a target application server, for example to Oracle
WebLogic Server or to a third-party server.

This chapter includes the following sections:

• About Deploying Applications

• Running Java EE Applications in the Integrated Application Server

• Connecting and Deploying Java EE Applications to Application Servers

• Deploying Java Applications

• Deploying Java EE Applications

• Post-Deployment Configuration

• Testing the Application and Verifying Deployment

• Deploying from the Command Line

• Deploying Using Java Web Start

• Deploying Using Weblogic SCA Spring

• Troubleshooting Deployment

About Deploying Applications
Deployment is the process of packaging application files as an archive file and
transferring it to a target application server. You can use JDeveloper to deploy Java or
Java EE applications directly to the application server (such as Oracle WebLogic
Server or IBM WebSphere), or indirectly to an archive file as the deployment target,
and then install this archive file to the target server.

For application development, you can use JDeveloper to run an application in the
integrated application server.

If you are using extensions, refer to the appropriate developer's guide for deployment
information specific to the product. For example, if you are deploying an ADF Fusion
Web application, see the "Deploying Fusion Web Applications" chapter in Oracle
Fusion Middleware Developing Fusion Web Applications with Oracle Application
Development Framework.

You can deploy applications in the following ways:

• Directly to an application server through an application server connection.

Deploying Applications 22-1

• To an archive file. You can deploy applications indirectly by choosing an archive
file as the deployment target. The archive file can subsequently be installed on the
target Java EE application server.

• To a test environment using the JDeveloper integrated application server, a Java EE
runtime service used for running and testing JDeveloper applications and projects
as Java EE applications and modules within a Java EE container.

Note:

Normally, you use JDeveloper to deploy applications for development and
testing purposes. If you are deploying applications for production purposes,
you can use Enterprise Manager or scripts to deploy to production-level
application servers.

For more information about deployment to later-stage testing or production
environments, refer to the appropriate developer's guide for deployment
information specific to the product.

Figure 22-1 shows the flow diagram that describes the overall deployment process.
Note that preparing the target application server for deployment is outside the scope
of this guide; you should refer to the appropriate documentation for a third-party
application server.

About Deploying Applications

22-2 Developing Applications with Oracle JDeveloper

Figure 22-1 Deployment Overview Flow Diagram

Java and Java EE applications are based on standardized, modular components and
can be deployed to the following application servers:

• Oracle WebLogic Server

Oracle WebLogic Server provides a complete set of services for those modules and
handles many details of application behavior automatically, without requiring
programming.

• Oracle Glassfish Server

You can deploy to Oracle GlassFish Server

• A third-party application server, that is an application server provided by a vendor
other than Oracle:

– Apache Tomcat

– IBM WebSphere

– JBoss

– GlassFish Server Open Source Edition

About Deploying Applications

Deploying Applications 22-3

For information about which server versions are compatible with JDeveloper, see
the JDeveloper Certification Information at http://www.oracle.com/technetwork/
developer-tools/jdev/documentation/index.html.

You can also deploy applications to Oracle Java Cloud Service. For more information,
see Developing Applications to Deploy to Oracle Java Cloud Service.

You can use JDeveloper to:

• Run applications in the integrated application server

You can run and debug applications using Integrated WebLogic Server and then
deploy to a standalone WebLogic Server or to a third party server.

• Deploy directly to the standalone application server

You can deploy applications directly to the standalone application server by
creating a connection to the server and choosing the name of that server as the
deployment target.

• Deploy to an archive file

You can deploy applications indirectly by choosing an EAR file as the deployment
target. The archive file can subsequently be installed on a target application server.

Deployment can be an iterative process where refinements to the application, or
corrections to issues in the deployed application, require redeployment to either the
test deployment environment, archive file, or application server. The process of
deploying an application from JDeveloper can involve a number of processes.

Developing Applications with the Integrated Application Server
JDeveloper is bundled with an integrated application server called Integrated
WebLogic Server and a default connection called IntegratedWebLogicServer is
defined for it. The integrated application server is a Java EE runtime for services using
deployment optimized for the iterative code development cycle. You can use it for
running and testing JDeveloper applications and projects as Java EE applications and
modules within a Java EE container, as well as for post-run services such as launching
a browser or tester. JDeveloper has a default connection to the integrated application
server and does not require any deployment profiles or descriptors. In most cases,
deploying to the integrated application server is a one-click operation, for example,
running a web service by choosing Run from the right-mouse menu of the web service
in the Applications window, or running an application by clicking Run on the
JDeveloper main menu.

If you want to debug the application use the features described in Running and
Debugging Java Projects .

Developing Applications to Deploy to Standalone Application Servers
Typically, for deployment to standalone application servers, you test and develop
your application by running it in the integrated application server. You can then test
the application further to more closely simulate the production environment by
deploying it to standalone Oracle WebLogic Server in development mode or to a third-
party application server.

In general, you use JDeveloper to prepare the application or project for deployment
by:

About Deploying Applications

22-4 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

• Creating a connection to the target application server. For more information, see
How to Create a Connection to the Target Application Server.

• Creating deployment profiles (if necessary). For more information, see How to
Create and Edit Deployment Profiles.

• Creating deployment descriptors (if necessary, and that are specific to the target
application server). How to Create and Edit Deployment Dependencies.

• Updating application.xml and web.xml to be compatible with the application
server (if required). Viewing or Modifying Deployment Descriptor Properties.

• Migrating application-level security policy data to a domain-level security policy
store. For more information, see Setting Up JDBC Data Sources on .

You must already have an installed application server. For Oracle WebLogic Server,
you can use the Oracle 11g Installer or the Oracle Fusion Middleware 11g Application
Developer Installer to install one. For other applications servers, follow the
instructions in the applications server documentation to obtain and install the server.

You must prepare the application server by creating a global JDBC data source for
applications that require a connection to a data source.

After the application and application server have been prepared, you can:

• Use JDeveloper to:

– Directly deploy to the application server using the deployment profile and the
application server connection.

– Deploy to an EAR file using the deployment profile.

• Use Enterprise Manager, scripts, or the application server's administration tools to
deploy the EAR file created in JDeveloper. For more information, see the Oracle
Fusion Middleware Administering Oracle ADF Applications.

Developing Applications to Deploy to Oracle Java Cloud Service
Developing an application for deployment to Oracle Java Cloud Service is similar to
developing an application for deployment to an application server.

You must:

• Ensure that the application is written in code that is valid to run on Oracle Java
Cloud Service.

• Create a connection to your Oracle Java Cloud Service instance.

For more information, see Developing Applications for Oracle Java Cloud Service -
SaaS Extension at:

http://docs.oracle.com/cloud/latest/javacs_gs/CSJSU/GUID-5891AC7A-0110-49D3-
BDD2-2EA33D00460D.htm#CSJSU7037

More information about Oracle Cloud services is available at http://docs.oracle.com/
cloud/latest/index.html.

Understanding the Archive Formats
A Java EE archive file contains a Java EE module or application. A module consists of
one or more JDeveloper projects of a common component type, which have been

About Deploying Applications

Deploying Applications 22-5

http://docs.oracle.com/cloud/latest/javacs_gs/CSJSU/GUID-5891AC7A-0110-49D3-BDD2-2EA33D00460D.htm#CSJSU7037
http://docs.oracle.com/cloud/latest/javacs_gs/CSJSU/GUID-5891AC7A-0110-49D3-BDD2-2EA33D00460D.htm#CSJSU7037
http://docs.oracle.com/cloud/latest/index.html
http://docs.oracle.com/cloud/latest/index.html

configured for deployment. An application is comprised of one or more modules. An
archive also contains a deployment descriptor, which is an XML file that describes the
configuration of the module or application to the server, and is specific to the type of
server. A deployment descriptor can be server specific or generic for Java EE servers.

JAR, EJB JAR, and WAR files each contain a module consisting of one or more
components. An Enterprise Archive (EAR file) contains an application consisting of
one or more modules.

When you create a web (servlet, JSP, JSF, and ADF Faces) or EJB application and
deploy it via an application server connection, JDeveloper packages it as a WAR or
EJB JAR, which you can optionally wrap in an EAR file. If your application consists of
components of differing types, the components will be packaged into multiple
modules, which you can deploy independently or assembled as an EAR file.

Understanding Deployment Profiles
Deployment profiles are application or project properties that govern the deployment
of a project or application. A deployment profile names the source files, deployment
descriptors, and other auxiliary files that will be packaged, the type and name of the
archive file to be created, dependency information, platform-specific instructions, and
other information.

Understanding Deployment Descriptors
Deployment descriptors define the content and organization of the deployed
applications. Deployment descriptor files that are required by an application depend
on the technologies the application uses and on its target application server.

Configuring Deployment Using Deployment Plans
You can control how an application is deployed using a deployment plan which
allows you to make configuration adjustments in the application deployment
descriptors web.xml, weblogic.xml, application.xml, and weblogic-
application.xml.

Deployment plans are controlled using a descriptor called plan.xml. Only Weblogic
deployment descriptor configuration can be customized using plan.xml. The
primary use case for deployment customization is to modify Weblogic specific
application configuration for different servers being deployed without requiring
modification of the base Weblogic descriptor. For more information, see the section on
Deployment Plans in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic
Server.

Deploying from the Java Edition
If you are using the Java edition of JDeveloper, which contains only the core Java and
XML features, the only deployment actions you can perform are:

• Creating a simple JAR archive which you can then manually deploy to a server.

JDeveloper Java Edition provides the facility to package applications into a JAR
file. The deployment dialog in Java Edition allows for only limited configuration of
standard JAR options such as specifying JAR name, file groupings, or
dependencies on other deployment profiles. Any application that requires more
configuration than this must be deployed from the Studio edition of JDeveloper.

About Deploying Applications

22-6 Developing Applications with Oracle JDeveloper

• Creating deployment profiles as part of extension development. For more
information about creating extensions to JDeveloper, see Oracle Fusion Middleware
Developing Extensions for Oracle JDeveloper

Running Java EE Applications in the Integrated Application Server
JDeveloper is installed with Integrated WebLogic Server, an integrated application
server which you can use to test and develop your application. For most development
purposes, the integrated application server will suffice. When your application is
ready to be tested, you can select the run target and then choose the Run command
from the main menu.

Note:

The first time you start the integrated application server by running or
debugging a project, file, or web service, a dialog is displayed where you enter
a password for the administrator ID on the default domain. When you click
OK, the default domain is created. You only need to do this once.

When you run the application target, JDeveloper detects the type of Java EE module to
deploy based on artifacts in the projects and application. JDeveloper then creates an
in-memory deployment profile for deploying the application to the integrated
application server. JDeveloper copies project and application files to an "exploded
EAR" directory structure. This file structure closely resembles the EAR file structure
that you would have if you were to deploy the application to an EAR file. JDeveloper
then follows the standard deployment procedures to register and deploy the
"exploded EAR" files into the integrated application server. The "exploded EAR"
strategy reduces the performance overhead of packaging and unpackaging an actual
EAR file.

In summary, when you select the run target and run the application in the integrated
application server, JDeveloper:

• Detects the type of Java EE module to deploy based on the artifacts in the project
and application

• Creates a default deployment profile (that is, without customizations) in memory

• Copies project and application files into a working directory with a file structure
that simulate the "exploded EAR" file of the application.

• Performs the deployment tasks to register and deploy the simulated EAR into the
integrated application server

• Automatically migrates identities, credentials, and policies. If you plan to deploy
the application to a standalone Oracle WebLogic Server instance, you will need to
migrate this security information.

Note:

When you run the application in the integrated application server, JDeveloper
ignores the deployment profiles that have been created for the application.

Running Java EE Applications in the Integrated Application Server

Deploying Applications 22-7

The application will run in the base domain in the integrated application server. The
base domain has the same configuration as a base domain in a standalone Oracle
WebLogic Server instance. In other words, this base domain is the same as if you had
used the Configuration Wizard to create a base domain with the default options in a
standalone Oracle WebLogic Server instance.

JDeveloper extends this base domain with the necessary domain extension templates,
based on the JDeveloper technology extensions. For example, if you have installed
JDeveloper Studio, JDeveloper will automatically configure the integrated application
server environment with the ADF runtime template (JRF Fusion Middleware runtime
domain extension template).

You can use the Application Server Properties dialog to edit the port you want the
application to use. However you cannot specify a port number lower than 1024. This
setting can be found on the Configuration page of the Application Server Properties
dialog. Open the Application Server Navigator, right-click IntegratedWebLogicServer
and choose Properties, then click the Configuration tab and enter the desired port
number (1024 or greater) in the Preferred Port field.

You can explicitly create additional default domains for the integrated application
server which you can use to run and test your applications in addition to using the
default domain. Open the Application Servers window, right-click
IntegratedWebLogicServer and choose Create Default Domain.

Understanding the Integrated Application Server Log Window
The output messages generated when running or debugging an application in the
integrated application server are displayed in a log window which has a title of either
Running: IntegratedWebLogicServer or Debugging: IntegratedWebLogicServer.

The content of the Integrated WebLogic Server Log Window includes:

• Status log messages about the server and the applications running on the server

• Output from the integrated application server instance's console (in color)

• Messages generated from deploying the application to the integrated application
server

• Messages that log the Java EE archives (EAR, WAR, and EJB JAR) as they are
created. You can click on the links in the log window to browse the generated
archives.

The generated log files are located at jdeveloper-user-home/DefaultDomain/
server/DefaultServer/logs.

You can configure diagnostic logging parameters in the logging.xml file. Transient
loggers can only be added while the server is running in debug mode.

You can control the level of information sent to the log file using the -verbose
element in the jsp-descriptor and logging elements of weblogic.xml. For
more information, see the weblogic.xml descriptor elements information in Oracle
Fusion Middleware Developing Web Applications, Servlets, and JSPs for Oracle WebLogic
Server

Rules Governing Deployment to the Integrated Application Server
Deployment to the integrated application server uses default deployment profiles
which rely on project metadata for the default mappings. Default contributors to the
profiles are based on project dependencies, and the rules governing dependencies are:

Running Java EE Applications in the Integrated Application Server

22-8 Developing Applications with Oracle JDeveloper

1. If project A depends on the build output of project B, then the build output of
project B is merged into project A. If project A is a web application, this means the
build outputs of project A and project B are both copied into WEB-INF/classes
of the resulting WAR.

Merging implies that you can only have one copy of any particular URI, because it
can only exist once within WEB-INF/classes.

2. If project A depends on the deployment profile of project B, for example a JAR
profile, then the result of that deployment profile is included in the WEB-INF/lib
of the resulting WAR.

3. A project containing a WEB-INF/web.xml is recognized as a web project and a
default WAR profile is created for it.

4. A project that contains at least one session EJB bean is recognized as an EJB project
and a default EJB JAR profile is created for it.

5. All libraries marked Deploy by Default for a web project are deployed as a web
application library (in the WEB-INF/lib of the WAR).

6. All libraries marked Deploy by Default for an EJB project are deployed as an
application library (in the lib of the EAR).

7. If an EJB Project A depends on the build output of Project B, the build output (e.g.
classes directory) of Project B is merged with the build output of Project A and
deployed in the root directory of the EJB JAR.

Working with Integrated Application Servers
The definition of an integrated application server controls the interaction of the
instance with JDeveloper and your computer system.

JDeveloper is bundled with an integrated application server called Integrated
WebLogic Server, and a default instance called IntegratedWebLogicServer is
defined for it. All applications are bound by default to
IntegratedWebLogicServer.

You can modify the properties of the integrated application server that an application
is bound to.

Note:

WebLogic Server domains used as integrated application servers must be
collocated on the same host as the JDeveloper process.

To modify the properties of the integrated application server that an application is
bound to:

1. In the Applications window, select a project.

2. Choose Application > Application Properties.

3. Select Run from the left panel.

4. Select an existing integrated application server in Bind Application to Server
Instance, or click Application Server Properties to open the Application Server

Running Java EE Applications in the Integrated Application Server

Deploying Applications 22-9

Properties dialog, where you can change some properties for the integrated
application server.

5. Define the other options for the integrated application server, including startup
and shutdown options. For more information, press F1 or click Help from within
the dialog.

You can create a new integrated application server instances.

How to Create a New Integrated Application Server Connection

To define an integrated server connection:

1. In the Application Servers window, right-click Application Servers and choose
New Application Server. The Create Application Server Connection wizard opens.
For more information at any time, press F1 or click Help from within the wizard.

2. On the Usage page, select Integrated Server. If you want to manage the server
from within JDeveloper, select Let JDeveloper manage the lifecycle for this Server
Instance on the Name and Domain page, and provide the Domain and Server
Instance directories.

3. Complete the wizard.

How to Run and Debug with an Integrated Application Server

By default, the integrated application server is automatically started when you run or
debug an EJB, servlet, HTML, web service, or JSP project. Alternatively, you can start
the integrated application server by clicking Start Server Instance or Debug Server
Instance from the Run menu.

After it has been started, an integrated application server does not terminate
automatically when you terminate a running Java EE application. Therefore, you can
select an object, such as a JSP or a servlet in the Applications window, and choose an
option from the Run menu.

You can run or debug a working set, which is a group of files created by applying a
named filter to a project, by choosing the Use Current Working Set (Java JEE Only)
option from the Run menu.

Once this is enabled, when you select Run or Debug from the context menu of the
source editor or from a node in the Applications window, it is the current working set
that is run or debugged.

Only a single integrated application server can be run at any given time. Thus, if you
attempt to start another instance of the server, JDeveloper will shut down the previous
instance and restart the instance in order to perform the requested task on the selected
icon in the Applications window. After an integrated application server is started,
multiple applications can run on it independently of each other. If an application is
running, rerunning the application redeploys the up-to-date version of the application.

To run in an integrated application server, an application must be bound to a server
instance. JDeveloper is supplied with a WebLogic Server domain, and a default server
instance named DefaultServer is defined for it. The unique integrated application
server connection defined for this integrated application server is called
IntegratedWebLogicServer, and has the Domain Home defined as the system
directory $SYSTEM_ROOT/DefaultDomain. All applications are bound by default to
IntegratedWebLogicServer.

Running Java EE Applications in the Integrated Application Server

22-10 Developing Applications with Oracle JDeveloper

Working with the Default Domain

If you have not explicitly created the integrated application server's default domain, it
will automatically be created with default settings when you start the server by
running or debugging an application.

Alternatively, you can explicitly create the default domain from the Application
Servers window.

If necessary, you can delete the existing default domain so that you can create it again
to use new values.

To explicitly create the integrated application server's default domain:

1. If necessary, open the Application Servers window by choosing Window >
Application Servers.

2. Right-click the integrated application server connection
IntegratedWebLogicServer and choose Create Default Domain. The
Configure Default Domain dialog opens, where you can accept the defaults, or
explicitly set other values, such as choosing a different listen address. For more
information at any time, click Help or press F1 from the Configure Default
Domain dialog.

When you install extensions to JDeveloper you may have to update the integrated
application server's default domain.

To update the integrated application server's default domain:

1. If necessary, open the Application Servers window by choosing Window >
Application Servers.

2. Right-click the integrated application server connection
IntegratedWebLogicServer and choose Update Default Domain.

If you have already created the default domain, but you need to use specific settings
you can delete the existing default domain and create it again.

To delete the integrated application server's default domain, With JDeveloper closed,
locate the system folder in the file system and delete it. When you restart JDeveloper,
you can create a new default domain for the integrated application server.

After the server has started, select Processes from the Window menu to display the
integrated application server process.

Note:

You can run more than one application simultaneously on a server in run
mode, however you can only debug one application at a time in debug mode.
To return JDeveloper back into non-debug editing mode, the integrated
application server must be shut down.

One-Click Running of Applications in the Integrated Application Server

You can test an application by running it in the integrated application server. You can
also set breakpoints and then run the application with the integrated application
server in debug mode. For more information about running and debugging, see
Running and Debugging Java Projects .

Running Java EE Applications in the Integrated Application Server

Deploying Applications 22-11

To run an application in the integrated application server:

1. In the Applications window, select the run target, for example a project, web
service, unbounded task flow, or JSF page.

2. Right-click the run target and choose Run or Debug. Alternatively, choose Run or
Debug from the main menu.

The first time you start the integrated application server by running or debugging
an application, a dialog is displayed where you enter a password for the default
user weblogic on the default domain. When you click OK, the default domain is
created. You only need to do this once.

Application-level and Global Data Sources

If you are deploying to an integrated application server, you can use application level
data sources or global data sources.

For both one-click deployment to an integrated application, JDeveloper ensures that
your web application web.xml, or EJB application ejb-jar.xml, contains the
necessary <resource-ref> entry to identify an application resource name. The
name is jdbc/connection-nameDS, where connection-name is the name of the
application resources connection.

The application looks up this data source using the application-specific resource JNDI
namespace of java:comp/env/jdbc/connection-nameDS, and it finds this
resource because web.xml contains the <resource-ref> entry for jdbc/
connection-nameDS.

To use application level data sources in one-click deployment to Integrated WebLogic
Server, select Auto Generate JDBC Connections When Running Application in
JDeveloper on the WebLogic page of the Application Properties dialog (available from
the Application menu). This:

• Generates a file called connection-name-jdbc.xml in the /META-INF
directory of the application's EAR file

• Creates a corresponding <module> entry in the weblogic-application.xml
file in META-INF that references this JDBC module

If the application uses more than one application resources database connection, then
a connection-name-jdbc.xml file will be created for each, and there will be a
similar number of <module> entries in the weblogic-application.xml file.

To use global data sources in one-click deployment to Integrated WebLogic Server,
deselect Auto Generate JDBC Connections When Running Application in
JDeveloper on the WebLogic page of the Application Properties dialog (available from
the Application menu), and:

1. Connect to the Integrated WebLogic Server Administration Console, described in
How to Log In to the Integrated WebLogic Server Administration Console.

2. Create the global data source in a similar manner to creating one on Oracle
WebLogic Server, see Setting Up JDBC Data Sources on .

How to Start the Integrated Application Server

By default, the integrated application server is automatically started when you run or
debug an EJB, servlet, or JSP project. Therefore, you can select an object, such as a JSP
or a servlet in the Applications window, and choose an option from the Run menu.

Running Java EE Applications in the Integrated Application Server

22-12 Developing Applications with Oracle JDeveloper

Note:

The first time you start the integrated application server by running or
debugging a project, file, or web service, a dialog is displayed where you enter
a password for the administrator ID on the default domain. When you click
OK, the default domain is created. You only need to do this once.

Only a single integrated application server can be run at any given time. Thus, if you
attempt to start another instance of the server, JDeveloper will shut down the previous
instance and restart the instance in order to perform the requested task on the selected
icon in the Applications window.

After the server has started, open the Processes window to display the integrated
application server process. You can open the Processes window by choosing Window
> Processes from the main menu.

To start an integrated application server:

1. If necessary, open the Application Servers window by choosing Window >
Application Servers.

2. Right-click the Integrated WebLogic Server connection and choose Start Server
Instance.

Alternatively, choose Run > Start Server Instance from the main menu.

To start an integrated application server in debug mode:

1. If necessary, open the Application Servers window by choosing Window >
Application Servers.

2. Right-click the Integrated WebLogic Server connection and choose Debug Server
Instance.

Alternatively, choose Run > Debug Server Instance from the main menu.

How to Cancel a Running Deployment

If you are running a large application on the integrated application server, you can
cancel it before it has finished deploying.

To cancel a running deployment, In the Log Window, click the Terminate button and
choose the profile or application you want to cancel.

How to Terminate an Integrated Application Server

After an integrated application server has started, the integrated application server
process appears in the Processes window. For more information, see Understanding
the Processes Window.

You can open the Processes window by choosing Window > Processes from the main
menu.

Note:

Applications deployed on an integrated application server are automatically
undeployed whenever the integrated application server is terminated.

Running Java EE Applications in the Integrated Application Server

Deploying Applications 22-13

The default behavior is to undeploy all the applications, but you can change the
behavior.

To shutdown the running integrated application server, do one of the following:

• Choose Run > Terminate > IntegratedWebLogicServer (or the integrated
application server connection name) from the main menu.

• Select the integrated application server name from the Terminate dropdown list in
the toolbar.

• Choose Window > Processes from the main menu. Right-click the integrated
application server name and choose Terminate.

• Choose File > Exit to exit JDeveloper. Click Yes when prompted to terminate the
instance's process.

• In the Application Servers window, right click on the integrated application server
connection and select Terminate Server Instance.

To force shutdown of Integrated WebLogic Server:

• If you need to force shutdown of Integrated WebLogic Server, press the Terminate
button twice.

How to Configure Startup and Shutdown Behavior for Integrated Application Servers

You can configure startup and shutdown behavior for integrated application server
connections.

To configure the startup and shutdown behavior for an integrated application server:

1. If necessary, open the Application Servers window by choosing Window >
Application Servers.

2. Right-click the integrated application server connection and choose Properties to
open the Application Server Properties dialog. For more information at any time,
press F1 or click Help from within the dialog.

If you are viewing the properties of the default integrated application server, you
can only change settings on the Configuration, Shutdown and Launch Settings tabs
in the dialog. Otherwise, you can edit everything except the connection name.

How to Log In to the Integrated WebLogic Server Administration Console

The integrated application server is an implementation of Oracle WebLogic Server and
as such you can connect to the server's Administration Console.

Note:

To log in to the Administration Console, you must have the integrated
application server running from JDeveloper, for example:

• By starting Integrated WebLogic Server from the Application Servers
window.

• By running an application.

To launch and log in to the integrated application server Administration Console:

Running Java EE Applications in the Integrated Application Server

22-14 Developing Applications with Oracle JDeveloper

1. If necessary, open the Application Servers window by choosing Window >
Application Servers.

2. Right-click IntegratedWebLogicServer and select Launch Administrative
Console. A browser instance opens at the login page, which is http://
host:port/console.

For example, if the default configuration is used, the browser uses http://
localhost:7001/console.

3. Log in using the username for the default domain and password you used when
the integrated application server was launched for the first time.

The integrated application server is an implementation of Oracle WebLogic Server, so
for more information about the integrated application server Administration Console
refer to the Administration Console Online Help, which is available from the
WebLogic Server online documentation in your JDeveloper installation, or from the
Administration Console.

Connecting and Deploying Java EE Applications to Application Servers
Before you deploy an application to a standalone application server, you must
perform prerequisite tasks within JDeveloper to prepare the application for
deployment.

Figure 22-2 show the process flow to prepare the application for deployment. After the
application has been prepared and the application server has been prepared, you can
proceed to deploy the application.

Figure 22-2 Preparing the Application for Deployment Flow Diagram

How to Create a Connection to the Target Application Server
You can deploy applications to the application server via JDeveloper application
server connections.

This section describes how to generically create a connection to an application server.
For information about connecting to a specific type of application server, see
Connecting to Specific Application Server Types.

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 22-15

Before you begin:

• Ensure that the application server is installed and started.

• If you are working behind a proxy server you may want to be check the proxy
settings that JDeveloper is using.

1. Choose Tools > Preferences to open the Preferences dialog and navigate to the
Web Browser and Proxy page. For more information at any time, press F1 or
click Help in the Web Browser and Proxy page of the Preferences dialog.

2. On the Proxy Settings tab you can see the proxy settings that JDeveloper is
using, and if necessary change them. By default, JDeveloper uses the system
default proxy settings. You can override these by choosing No Proxy, Use
Automatic Configuration Script, or Manual Proxy Settings and entering your
settings as appropriate. See Configuring Proxy Settings.

To create a connection to an application server:

1. Launch the Application Server Connection wizard in one of the following ways:

• In the Application Servers window, right-click Application Servers and
choose New Application Server.

• In the New Gallery, expand General, select Connections and then Application
Server Connection, and click OK.

• In the Resources window, choose New > New Connection > Application
Server.

2. If the Usage page of the wizard is displayed, ensure that Standalone Server is
selected and click Next.

3. In the Name and Type page, enter a name for your new connection.

4. In the Connection Type dropdown list, choose the type of application server you
want to create a connection to. The options are:

• WebLogic 10.3 or WebLogic 12.x to create a connection to Oracle WebLogic
Server

• GlassFish 3.1 to create a connection to Oracle GlassFish Server or GlassFish
Open Source Edition

• JBoss 5.x to create a connection to JBoss

• Tomcat 7.x to create a connection to Tomcat

• WebSphere Server 8.x to create a connection to IBM WebSphere Server

• Oracle Cloud to create a connection to Oracle Java Cloud Service

5. Click Next.

6. On the Authentication page, enter a user name and password for the
administrative user authoriweblogic1zed to access the application server.

7. Click Next.

Connecting and Deploying Java EE Applications to Application Servers

22-16 Developing Applications with Oracle JDeveloper

8. On the Configuration page, enter the parameters to create a connection to the
application server:

9. Click Next.

10. If you have chosen WebSphere, the JMX page appears where you enter JMX
configuration values needed for deploying SOA applications.

11. Click Next.

12. On the Test page, click Test Connection to test the connection.

JDeveloper performs several types of connections tests. The JSR-88 test must pass
for the application to be deployable. If the test fails, return to the previous pages
of the wizard to fix the configuration.

13. Click Finish.

How to Launch Oracle WebLogic Server Administration Console

You can launch and connect to the Oracle WebLogic Server Administration Console
from the Application Servers window.

Note:

To log in to the console, the server must be started.

1. In the Application Servers window, right-click the name of the connection to the
Oracle WebLogic Server instance, and choose Launch Admin Console. A browser
instance opens at the login page, which is http://host:port/console.

For example, if the default configuration is used, the browser uses http://
localhost:7001/console.

2. Log in using the username and password you used when creating the connection
to the Oracle WebLogic Server instance. If you are launching the Administration
Console for Integrated WebLogic Server, the default user is weblogic and the
password you entered when the default domain was created.

For more information about the WebLogic Server Administration Console, refer to the
Administration Console Online Help, which is available from the WebLogic Server
online documentation in your JDeveloper installation, or from the Administration
Console.

Connecting to Specific Application Server Types
This section contains the specific information for accounting to different types of
application server.

JDeveloper supports deploying to server clusters, but you cannot use JDeveloper to
deploy to individual managed servers that are members of a cluster.

Connecting to Oracle WebLogic Server

To connect to Oracle WebLogic Server:

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 22-17

• The Oracle WebLogic host name is the name of the WebLogic Server instance
containing the TCP/IP DNS where your application (.jar,.war,.ear,.gar)
will be deployed.

• In the Port field, enter a port number for the Oracle WebLogic Server instance on
which your application (.jar,.war,.ear,.gar) will be deployed.

If you do not specify a port, the port number defaults to 7001.

• In the SSL Port field, enter an SSL port number for the Oracle WebLogic Server
instance on which your application (.jar,.war,.ear,.gar) will be deployed.

Specifying an SSL port is optional. It is required only if you want to ensure a secure
connection for deployment.

If you do not specify an SSL port, the port number defaults to 7002.

• Select Always Use SSL to connect to the Oracle WebLogic Server instance using
the SSL port.

• Optionally enter a WebLogic Domain only if Oracle WebLogic Server is configured
to distinguish non administrative server nodes by name.

Connecting to GlassFish

If you are creating a secure connection to a GlassFish server, you must use the host
name, for example localhost, instead of an IP address in Host name on the
Configuration page, otherwise, the connection will fail. This is because the host name
in the URL used to create the connection the server must match the host name in the
certificate.

Connecting to JBoss

For JBoss:

• Enter or browse to the location of the JBoss deploy directory, where your
application files (.jar,.war,.ear,.gar) are.

• If you are using JMX, Select Enable JMX for this connection. (optional).

Note:

JMX configuration is optional and is not required for connecting to the JBoss
Application Server. JMX is only needed for deploying SOA applications.

You must use the Oracle JMX RMI connector (oracle-jboss-
remoting.sar) on the JBoss server; the standard JBOSS JMX connector
(jmx-remoting.sar) does not work with JDeveloper.

• In the Host Name field, enter host name of the target server. The default is the
machine name.

• In the RMI Port field, enter the port number of JBoss's RMI connector port. The
default is 19000.

Connecting to Tomcat

For Tomcat:

Connecting and Deploying Java EE Applications to Application Servers

22-18 Developing Applications with Oracle JDeveloper

• In the Webapps Directory field enter or browse to the location of the webapps
directory where you place the application .war files.

Connecting to WebSphere Server

For WebSphere:

• In the Host Name field, enter the name of the WebSphere server containing the
TCP/IP DNS where your Java EE applications (.jar, .war, .ear, [.gar]) are
deployed. If no name is entered, the name defaults to localhost

• In the SOAP Connector Port field, enter the port number. The host name and port
are used to connect to the server for deployment. The default SOAP connector port
is 8879

• In the Server Name field, enter the name assigned to the target application server
for this connection.

• In the Target Node field, enter the name of the target node for this connection. A
node is a grouping of Managed Servers. The default is machineNode01, where
machine is the name of the machine the node resides on

• In the Target Cell field, enter the name of the target cell for this connection. A cell
is a group of processes that host runtime components. The default is
machineNode01Cell, where machine is the name of the machine the node
resides on.

• In the Wsadmin script location field, enter, or browse to, the location of the
wsadmin script file to be used to define the system login configuration for your
IBM WebSphere application server connection. Note that you should not use the
wsadmin files from the ORACLE_HOME/oracle_common/common/bin directory,
which are not the correct version. The default location is websphere-home/bin/
wsadmin.sh for Unix/Linux and websphere-home/bin/wsadmin.bat for
Windows.

Note:

When the script file is specified you can encounter problems if the path
contains a space. For example, C:\Program Files (x86)\IBM
\WebSphere\AppServer\profiles\AppSrv01\bin\wsadmin.bat To
work around this problem, use an OS short name for the directory with a
space in the name (for example, Progra~1), or create a WebSphere application
server instance in a path that does not have spaces and refer to the batch file
there.

• If you have chosen WebSphere, the JMX page appears. On the JMX page, enter the
JMX information (optional):

Note:

JMX configuration is optional and is not required for connecting to the
WebSphere Application Server. JMX is only needed for deploying SOA
applications.

– Select Enable JMX for this connection to enable JMX.

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 22-19

– In the RMI Port field, enter the port number of WebSphere's RMI connector
port. The default is 2809.

– In the WebSphere Runtime Jars Location field, enter or browse to the location
of the WebSphere runtime JARs.

– In the WebSphere Properties Location (for secure MBEAN access) field, enter
or browse to the location of the file that contains the properties for the security
configuration and the mbeans that are enabled. This field is optional.

Connecting to Oracle Java Cloud Service

After you sign up for Oracle Java Cloud Service, you will receive information about
the data center, the identity domain, and the service name which you use to establish a
connection to your Oracle Java Cloud Service instance:

To connect to the Oracle Java Cloud Service, you need to enter the following
information:

• On the Authentication page, enter the administration username and password.

• On the Configuration page, choose the data center and enter the identity domain
and service name for your Oracle Java Cloud Service instance.

How to Create and Edit Deployment Profiles
A deployment profile defines the way the application is packaged into the archive that
will be deployed to the target environment. The deployment profile:

• Specifies the format and contents of the archive file that will be created

• Lists the source files, deployment descriptors, and other auxiliary files that will be
packaged

• Describes the type and name of the archive file to be created

• Highlights dependency information, platform-specific instructions, and other
information

About Deployment Profiles

Deployment to application servers uses deployment profiles which rely on project
metadata for the default mappings. Default contributors to the profiles are based on
project dependencies, although you can customize the deployment profiles to change
them.

The rules governing dependencies are:

1. If project A depends on the build output of project B, then the build output of
project B is merged into project A. If project A is a web application, this means the
build outputs of project A and project B are both copied into the WEB-INF/
classes of the resulting WAR.

Merging implies that you can only have one copy of any particular URI, because it
can only exist once within WEB-INF/classes.

2. If project A depends on the deployment profile of project B, for example a JAR
profile, then the result of that deployment profile is included in the WEB-INF/lib
of the resulting WAR.

Connecting and Deploying Java EE Applications to Application Servers

22-20 Developing Applications with Oracle JDeveloper

3. All libraries marked Deploy by Default for a web project are deployed as a web
application library (in the WEB-INF/lib of the WAR).

4. All libraries marked Deploy by Default for an EJB project are deployed as an
application library (in the lib of the EAR).

5. All libraries marked Deploy by Default at the application level are deployed as an
application library (in the lib of the EAR).

6. If an EJB Project A depends on the build output of Project B, the build output (for
example, classes directory) of Project B is merged with the build output of Project
A and deployed in the root directory of the EJB JAR.

Application level deployment profiles are:

• EAR files: Used to deploy the Java EE enterprise archive (EAR) file. The EAR file
consists of the application's assembled WAR, EJB JAR, and client JAR files.

• MAR files: Used for deploying metadata archive files for seeded customizations or
base metadata in an MDS repository in the application server. For more
information about MAR files, refer to the appropriate developer's guide for the
product you are using.

Project level Java EE deployment profiles are:

• Business Components Archive: Creates a simple archive file for deploying ADF
Business Components.

• Business Components Service Interface: Creates a profile for deploying ADF
Business Components as a service interface.

• Client JAR File: Used for deploying the standard Java EE client JAR file.

• EJB JAR File: Used to deploy the Java EE EJB module (EJB JAR). The EJB JAR
contains the EJB components and the corresponding deployment descriptors.

• Extension JAR: Creates a profile for deploying an extension as a JAR file.

• JAR file: Creates a simple JAR archive from a project.

• GAR file: Creates an Oracle Coherence grid archive file. The GAR contains the
artifacts of a Coherence application and includes a deployment descriptor.

• MOF Model Library: Creates MOF (Meta-Object Facility) Model Library JAR files
which enable UML objects from one project to be reused by another.

• OSGi Bundle: Creates an OSGi bundle that can be deployed to an OSGi container.
You use this when you create extensions to JDeveloper.

• RAR file: Creates a profile for deploying a Java EE connector RAR file.

• Shared Library JAR file: Creates a profile for deploying a simple archive, which
can be a JAR of ZIP file, to the file system or as a shared library to a remote server.

• Taglib JAR file: Creates a profile for deploying custom tag libraries to a JAR file.

• WAR files: Used to deploy the JAVA EE web module (WAR). The WAR consists of
the web components (JSPs and servlets) and the corresponding deployment
descriptors.

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 22-21

Creating Deployment Profiles

To create a deployment profile, select an application or a project then choose File >
New > From Gallery, and from the General category, choose Deployment Profile. To
create application level profiles, invoke the New Gallery at application level.

Other methods can be used to create a deployment profile:

• Use the Application Properties Deployment dialog:

– From the JDeveloper toolbar, select Application > Deploy > New Deployment
Profile...

– Right-click on an application and select Deploy > New Deployment Profile...
from the context menu.

– In the Applications window, open the dropdown list on the Applications
window toolbar. and choose Deploy.

• Use the Project Properties Deployment dialog:

– Select the project in the Applications window, then from the menu, choose
Application > Project Properties. Choose Deployment, and in the Deployment
panel on the right, click the New Profile icon on the menu bar.

– The context menu of a project in the Applications window.

To modify an existing deployment profile:

• Right-click the project in the Applications window and choose Project Properties
then choose Deployment in the tree structure in the wizard, then select the
deployment profile and choose Edit.

• Right-click the application in the Applications window and choose Application
Properties then choose Deployment in the tree structure in the wizard, then select
the deployment profile and choose Edit.

To activate profile deployment:

• For a project level deployment profile, right-click the project in the Applications
window then choose Deploy > deployment profile.

• For an application deployment profile, right-click the application in the
Applications window then choose Deploy > deployment profile. Alternatively,

– Right-click the application in the Applications window then choose Deploy >
deployment profile.

– Choose Deploy > deployment profile from the context menu of an application.

– Choose Deploy > deployment profile from the dropdown list on the
Applications window toolbar.

The project and any projects on which it depends will be compiled and packaged.

You may find that the application you created already contains the deployment profile
you need, for example if you create a web-based project you should already have a
default WAR deployment profile which includes the dependent model projects it
requires.

Connecting and Deploying Java EE Applications to Application Servers

22-22 Developing Applications with Oracle JDeveloper

To create a deployment profile:

1. For an application level deployment profile, in the Applications window, right-
click the application and choose New.

For a project level deployment profile, in the Applications window, right-click the
project that you want to deploy and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then choose
the deployment profile type you want, and click OK.

If you don't see Deployment Profiles in the Categories tree, click the All Features
tab.

3. Choose the deployment profile type you want to create, and click OK. For example,
for an EAR deployment profile:

• Select Application Assembly and then in the Java EE Modules list, select all the
project profiles that you want to include in the deployment, including any WAR
profiles.

• (Optional) Select Platform, select the application server you are deploying to,
and then select the target application connection from the Target Connection
dropdown list.

By default, deployment will set this platform at deployment time to match the
server you are deploying to. When you are deploying to a file, the default will
be the "default platform" which is the latest Oracle Weblogic server release, in
this case, Oracle WebLogic Server 12.x.

4. In the Edit Deployment Profile Properties dialog, configure the profile by setting
property values. For example, you may want to change the file groups that are
included in the profile. When you have finished, click OK.

Deployment profiles are available from the Application Properties dialog, for
application level deployment profiles, or from the Project Properties dialog, for project
level deployment profiles, and you can edit them or delete them.

Viewing and Changing Deployment Profile Properties

After you have created a deployment profile, you can view and change its properties.

To edit or delete a deployment profile:

1. For an application level deployment profile, choose Application > Application
Properties to open the Application Properties dialog.

For a project level deployment profile, choose Application > Project Properties to
open the Project Properties dialog.

2. Click Deployment in the left panel to open the Deployment page.

3. Choose the deployment profile you want to edit or delete, and click:

• Edit to open the Edit Deployment Profile Properties dialog.

• Delete to delete the deployment profile.

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 22-23

Configuring Deployment Profiles

Configuring is the process of assembling an archive file from its component files.
Configuring is specified in the File Groups branch of deployment profile properties
dialogs.

The File Groups branch consists of a list of file groups, each specifying some
components. The packaged archive will be the union of all the file groups. The order
of the file groups resolves name collisions: if two files have the same name, the one
from the file group higher in the list is included, and the one from the lower file group
is omitted.

A newly created deployment profile will include one or more predefined file groups.
You can add, delete, and edit file groups.

File groups are defined by a set of contributors pruned by a set of filters. Contributors
are source files, JAR files, and directories that are selected for inclusion. Filters are
rules that are applied to the contributors or contributor's component subdirectories
and files to identify the set and files that will be packaged. There are three kinds of file
groups:

• The Packaging file group type allows you to select contributors, project directories
and other directories and JAR files, and filters. The file group mechanism is flexible
and transparent, and is appropriate for most projects.

• The Libraries file group type allows you to select contributors that are project
libraries. A libraries file group is created for WAR deployment profiles. Libraries
files groups are useful in other projects that need to repackage existing JAR files.

How to Create and Edit Deployment Dependencies
Deployment dependencies between the components of an application are stated in
their project's deployment profiles. In a project's deployment profile, name the profiles
for the projects that are immediately upstream. When a deployment profile is
activated for deployment, its dependencies will first be deployed.

Set deployment profile dependencies on the deployment profile's Profile
Dependencies page. Only deployment profiles in the current application are listed and
available for selection. Click the Help button for more information. The various profile
dependencies you can select include:

• Profile-to-profile dependency

• Profile-to-JAR dependency

• Profile-to-WAR dependency

• Profile-to-RAR (Resource Archive) dependency

When deploying a profile contained in a project that has project-to-profile
dependencies on other profiles, at deploy-time the profile incorporates the
dependencies specified in the project. For example, if Project1.jpr contains
Servlet1.java and depends on ejb1.jar, and project2.jpr contains
MySessionEJB and ejb1.jar, then deploying the first project will result in an EAR
file containing both webapp1.war and ejb1.jar.

When creating profile dependencies between JAR, WAR, and EJB JAR modules that
share common JAR files, you can use the META-INF/MANIFEST.MF Class-Path
attribute to link JAR files together at deploy-time. From the deployment profile

Connecting and Deploying Java EE Applications to Application Servers

22-24 Developing Applications with Oracle JDeveloper

properties JAR options page, select Include Manifest File (META-INF/
MANIFEST.MF). Doing so causes a single shared copy of any common JARs to be
included in the EAR file.

Dependency projects can have dependencies of their own, but cyclical dependencies
should be avoided. When JDeveloper encounters a circular dependency it will attempt
to deploy anyway, but a warning will be displayed in the log window.

About Library Dependencies

Dependent libraries are any library needed for a module to compile and run. In the
Libraries and Classpath page of the Project Properties dialog for the project containing
the library, dependent libraries are shown as available for export.

In an application, dependent libraries can be in the following projects:

• Projects of the current module's profile, that is the profile container.

• Projects that the profile container depends on.

• Projects associated with any profile dependency for this module's profile
(recursively to its profile and project dependencies).

The example below illustrates project dependencies (arrows on the left) and profile
dependencies (arrows on the right).

Figure 22-3 Dependencies Between Projects and Deployment Profiles

Project dependencies are recursive at deployment time, even though they are not at
compile time, which is why the libraries from JavaProject are considered
dependent libraries. WebProfile, which represents a web module, has the following
dependent libraries:

• EjbDepLib (a library from a project dependency to WebProject)

• EjbDep.jar (a library jar from a project dependency to WebProject)

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 22-25

• JavaDepLib (a library from a recursive project dependency to JavaProject)

• JavaDep.jar (a library jar from a recursive project dependency to
JavaProject)

• SampleLib (a library from a profile dependency)

• Sample.jar (a library jar from a profile dependency)

• OtherLib (a library from a recursive profile dependency)

• Other.jar (a library jar from a recursive profile dependency)

Resolved and Unresolved Libraries

Dependent Libraries can either be resolved or unresolved. Dependent libraries are
considered unresolved until they are included in an archive and placed on the
classpath, thereby making the library content available to classes that need to reference
it.

For example, a WAR profile resolves libraries by selecting those libraries in a library
file group contributor where the target output directory is WEB-INF\lib. This
ensures that the WAR archive created will include those libraries in the archive's WEB-
INF\lib directory and thereby including the library content on the WAR archive's
classpath.

When a library is not resolved by a deployment profile, this profile will expose the
unresolved library in the application hierarchy so that it can be resolved at a higher
level. Consider the situation where libraries contained in an EJB project remain
unresolved from the EJB profile's perspective. This information will be exposed so that
an EAR profile can ensure that those libraries are resolved at the EAR level (in the
EAR profile's library file group).

In the illustration above, WebProject has a project dependency to JavaProject, and
JavaProject includes a library called JavaDepLib. You can define a web application
which creates a WAR deployment profile on WebProject. You can then resolve
JavaDepLib in the web module by ensuring that this library is selected in the WEB-
INF\lib library file group of the WAR deployment profile.

Manifest Entries for Libraries

When libraries are included in an EAR archive in a directory other than the standard
\lib or APP-INF\lib, JDeveloper automatically inserts the required manifest
entries into the modules that refer to those libraries.

How to Create and Edit Deployment Descriptors
Deployment descriptors are server configuration files that define the configuration of
an application for deployment and that are deployed with the Java EE application as
needed. The deployment descriptors that a project requires depend on the
technologies the project uses and on the type of the target application server.
Deployment descriptors are XML files that can be created and edited as source files,
but for most descriptor types, JDeveloper provides dialogs or an overview editor that
you can use to view and set properties. If you cannot edit these files declaratively,
JDeveloper opens the XML file in the source editor for you to edit its contents.

In addition to the standard Java EE deployment descriptors (for example,
application.xml and web.xml), you can also have deployment descriptors that
are specific to your target application server. For example, if you are deploying to

Connecting and Deploying Java EE Applications to Application Servers

22-26 Developing Applications with Oracle JDeveloper

Oracle WebLogic Server, you can also have weblogic.xml, weblogic-
application.xml, and weblogic-ejb-jar.xml.

The essential descriptors are created by the wizards that create deployment profiles.
Add other descriptors only if you wish to override default behavior. In some cases
descriptors will be created and included in archive files as they are deployed.

Deployment descriptors can also be created from the New Gallery. Deployment
descriptors are placed in a META-INF subfolder of a project's Application Sources or
WEB-INF subfolder of a project's Web Contents folders.

Each Java EE standard deployment descriptor is extended by a corresponding Oracle
WebLogic Server-specific descriptor. Table 22-1 provides a description of these files
and illustrates how they relate to one another.

Table 22-1 Deployment Descriptors

Java EE Standard Descriptors Oracle WebLogic Server Proprietary Descriptors

application-client.xml

Describes the EJB modules and other resources used
by a Java EE application client deployed as an
archive.

weblogic-appclient.xml

The file format is defined in weblogic-
appclient.xsd.

For more information, see the chapter about client
application deployment descriptor elements in Oracle
Fusion Middleware Developing Standalone Clients for Oracle
WebLogic Server.

application.xml

Specifies the components of a Java EE application,
such as EJB and web modules, and can specify
additional configuration for the application as well.
This descriptor must be included in the /META-INF
directory of the application's EAR file.

weblogic-application.xml

The file format is defined in weblogic-
application.xsd.

For more information, see Oracle Fusion Middleware
Developing XML Applications for Oracle WebLogic Server.

ejb-jar.xml

Defines the specific structural characteristics and
dependencies of the Enterprise JavaBeans within a
JAR, and provides instructions for the EJB container
about how the beans expect to interact with the
container.

weblogic-ejb-jar.xml

The format of this file is defined in weblogic-ejb-
jar.xsd.

persistence-configuration.xml

For EJB 3.x modules. The format of this file is defined in
persistence-configuration.xsd.

For more information, see Oracle Fusion Middleware
Developing Enterprise JavaBeans for Oracle WebLogic Server.

weblogic-cmp-rdbms-jar.xml

ra.xml

Contains information on implementation code,
configuration properties and security settings for a
resource adapter packaged within a RAR file.

weblogic-ra.xml

The format of this file is defined in weblogic-ra.xsd.

For more information, see tOracle Fusion Middleware
Developing Resource Adapters for Oracle WebLogic Server.

web.xml

Specifies and configures a set of Java EE web
components, including static pages, servlets, and JSP
pages. It also specifies and configures other
components, such as EJBs, that the web components
might call. The web components might together
form an independent web application and be
deployed in a standalone WAR file.

weblogic.xml

The format of this file is defined by weblogic-web-
app.xsd.

For more information, see Oracle Fusion Middleware
Developing XML Applications for Oracle WebLogic Server.

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 22-27

Table 22-1 (Cont.) Deployment Descriptors

Java EE Standard Descriptors Oracle WebLogic Server Proprietary Descriptors

None. module-name-jdbc.xml

Defines data sources to be used in the deployed
application.

The format of this file is defined by weblogic-
jdbc.xsd.

For more information, see Oracle Fusion Middleware
Administering JDBC Data Sources for Oracle WebLogic
Server.

plan.xml

The format of this file is defined by deployment-
plan.xsd.

Contains a list of name/value pairs, and a description of
the various deployment descriptors in an application. It
allows administrators to override values in deployment
descriptors.

For more information, see Oracle Fusion Middleware
Deploying Applications to Oracle WebLogic Server.

weblogic-diagnostics.xml

The format of this file is defined by weblogic-
diagnostics.xsd.

Used in the WebLogic Server Administration Console to
create or modify diagnostic monitors in the diagnostic
application module.

For more information, see Oracle Application Server 10g
Release Notes for AIX Based Systems.

weblogic-jms.xml

The format of this file is defined by weblogic-jms.xsd.

Used to configure JMS drivers in the Oracle WebLogic
Server.

For more information, see Oracle Fusion Middleware
Developing JMS Applications for Oracle WebLogic Server.

weblogic-webservices.xml

The format of this file is defined by weblogic-
webservices.xsd.

For more information, see Oracle Fusion Middleware
WebLogic Web Services Reference for Oracle WebLogic Server.

Creating Deployment Descriptors

JDeveloper automatically creates many of the required deployment descriptors for
you. If they are not present, or if you need to create additional descriptors, you can
explicitly create them.

Before you begin:

Check to see whether JDeveloper has already generated deployment descriptors.

To create a deployment descriptor:

1. In the Applications window, right-click the project for which you want to create a
descriptor and choose New.

Connecting and Deploying Java EE Applications to Application Servers

22-28 Developing Applications with Oracle JDeveloper

2. In the New Gallery, expand General, select Deployment Descriptors and then a
descriptor type, and click OK.

If you cannot find the item you want, make sure that you chose the correct project,
and then choose the All Features tab or use the Search field to find the descriptor.
If the item is not enabled, check to make sure that the project does not already
have a descriptor of that type. A project is allowed only one instance of a
descriptor.

JDeveloper starts the Create Deployment Descriptor wizard and then opens the
file in the overview or source editor, depending on the type of deployment
descriptor you choose.

Note:

For EAR files, do not create more than one of any type of deployment
descriptor per application. Only the application resources descriptors or
descriptors generated at the EAR level will be used by the runtime. If multiple
projects in an application have the same deployment descriptor, the one
belonging to the launched project will supersede the others. This restriction
applies to application.xml, weblogic-jdbc.xml, jazn-data.xml, and
weblogic.xml.

The best place to create an application-level descriptor is in the Descriptors
node of the Application Resources panel in the Applications window. This
ensures that the application is created with the correct descriptors.

To inspect or change deployment descriptor properties:

1. In the Applications window, select the deployment descriptor.

2. Right-click and choose Open.

The file will open in an overview editor specific to that descriptor type, or in an
XML editor window.

How to Create a Web Service Policy Reference

Follow these steps to create a web service policy reference:

1. Select File > New > WebLogic Deployment Descriptor. From the General
category, select Deployment Descriptors; choose the Weblogic item in the right‐
hand pane and click OK. The wizard opens.

2. On the Select Descriptor page, scroll down to select webservice-policy-
ref.xml.

3. On the Select Version page, select the Deployment Descriptor version and click
Next.

4. On the Summary page, click Finish.

5. The new configuration file opens in the editor.

The tabs on the left allow you to edit the Policy Reference Name, the Port Policy, and
the Operation Policy separately. The wizard provides Overview, Source, and History
views for each setting. See the online help.

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 22-29

Viewing or Modifying Deployment Descriptor Properties

After you have created a deployment descriptor, you can change its properties by
using JDeveloper dialogs or by editing the file in the source editor. The deployment
descriptor is an XML file (for example, application.xml) typically located under
the Application Sources node.

To view or change deployment descriptor properties:

1. In the Applications window or in the Application Resources panel, double-click the
deployment descriptor.

2. In the overview editor, select either the Overview tab or the Source tab, and
configure the descriptor by setting property values.

If the overview editor is not available, JDeveloper opens the file in the source
editor.

How to Configure Global Deployment Preferences
You can set global deployment options in the Deployment page of the Preferences
dialog.

To configure the deployment preferences:

1. Choose Tools > Preferences from the main menu.

2. Select the Deployment node. Configure the deployment options as required. For
more information, click Help.

3. Click OK.

Note:

Set application-specific and project-specific deployment profile options via the
application properties or project properties. The Application Properties and
Project Properties dialogs are available from the Application menu

How to Configure Applications for Deployment
This section describes the tasks you may have to perform for the application to deploy
successfully to an application server.

How to Configure an Application for Deployment to Oracle WebLogic Server

When you create applications in JDeveloper You can deploy the packaged application
to Oracle WebLogic Server through an application server connection. A packaged
application will contain a deployment profile that names the files to be deployed,
describes their organization, and specifies the target server. The target Oracle
WebLogic Server instance must be installed locally or mapped to a network drive.

To configure an application for deployment to Oracle WebLogic Server:

1. Set up any JDBC data sources you need on the server. For more information, see
Setting Up JDBC Data Sources on .

2. For clients that access EJBs on Oracle WebLogic Server, the following code is
required in the client.

Connecting and Deploying Java EE Applications to Application Servers

22-30 Developing Applications with Oracle JDeveloper

env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "system");
env.put(Context.SECURITY_CREDENTIALS, "welcome1");
env.put(Context.PROVIDER_URL, "t3://localhost:7001");

3. When deploying to Oracle WebLogic Server, if you use the same EJB in two or
more different applications, the second deployment will usually cause a JNDI
name collision. Therefore, you must rename the JNDI name of the EJB for the
second and any subsequent deployments:

• Right-click weblogic-ejb-jar.xml, and choose Open.

• Under Enterprise Java Beans, select the relevant ModuleBM bean. The EJB tab is
displayed on the right.

• In the EJB tab, change the JNDI Name so that it is different from any other JNDI
Name in weblogic-ejb-jar.xml and any other EJBs that are already
deployed to Oracle WebLogic Server.

• Deploy the application accessing the EJB to Oracle WebLogic Server. During
deployment, the IDE automatically fills in weblogic.xml with appropriate EJB
references.

How to Configure a Client Application for Deployment

A Java EE Client module is packaged as a client JAR file which contains one or more
Java application components and a client deployment descriptor file named
application-client.xml. After you have created the deployment profile and the
deployment descriptor file, you can deploy the client JAR to the application server.

To package a client application for deployment:

1. Create a Client JAR File deployment profile for your project.

A profile may have already been created for your project. If you wish to deploy to
multiple targets, create a separate profile for each.

2. Create the application-client.xml deployment descriptor file, if not already
present in your project.

Normally, this file is created with the application client.

How to Configure an Applet for Deployment

A standalone applet is packaged as a web archive (WAR) file which contains the
applet, the Applet HTML file, as well as the standard Java EE web deployment
descriptor, web.xml and possibly target-specific deployment descriptors, as well. After
you have created the deployment profile and the appropriate deployment descriptor
files, you can deploy the application to an application server, or as an archive file.

To configure a web application for deployment:

1. Create a WAR file deployment profile for your project.

A profile may have already been created for your project. If you wish to deploy to
multiple targets, create a separate profile for each.

2. Add a web.xml deployment descriptor to your project, if it is not already present.

Normally, this file is created with the WAR file deployment profile.

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 22-31

Note:

If you encounter problems when deploying a Swing applet (JApplet), for
example, the error Class not found is displayed, this may indicate that
JDeveloper cannot locate the Swing libraries. Your clients may need to use
Sun's Java SE browser plugin or bundle the Swing libraries for JVMs version
1.1 with your applet. Deployed applet files must reside in a separate location
from any other web application files you have deployed.

Setting Up JDBC Data Sources on Oracle WebLogic Server

To avoid passwords being present in plain text in deployed files, JDeveloper uses
password indirection, which means that passwords for the data sources must be set on
the server before the application will run correctly.

You do this using global data sources, which are set up in the Oracle WebLogic Server
Administration Console using the Data Sources link under JDBC.

JDeveloper ensures that your web application web.xml, or EJB application ejb-
jar.xml, contains the necessary <resource-ref> entry to identify an application
resource name. The name is jdbc/connection-nameDS, where connection-name is
the name of the application resources connection.

The application looks up this data source using the application-specific resource JNDI
namespace of java:comp/env/jdbc/connection-nameDS, and it finds this
resource because web.xml contains the <resource-ref> entry for jdbc/
connection-nameDS.

An important control for the files that are generated is the Auto Generate and
Synchronize weblogic-jdbc.xml Descriptors During Deployment field on the
WebLogic page of the Application Properties dialog.

When the Auto Generate field is selected, JDeveloper does the following:

• Generates an application-name-jdbc.xml file for each connection in the
application resources, and sets the indirect password attribute

<jdbc-driver-params>
<use-password-indirection>true</use-password-indirection>
</jdbc-driver-params>

Upon deployment, JDeveloper determines the JDBC connection password from the
username in application-name-jdbc.xml, and populates the JDBC connection
password using an Mbean.

• weblogic-application.xml is updated to add each application-name-
jdbc.xml as a module.

• web.xml (if it exists) has a resource reference to each JDBC JNDI name.

How to Create a Global Data Source on Oracle WebLogic Server

You create a global data source on Oracle WebLogic Server Administration Console.

To set up a global data source:

1. Login to the Oracle WebLogic Server Administration Console. For more
information, see How to Create a Connection to the Target Application Server.

Connecting and Deploying Java EE Applications to Application Servers

22-32 Developing Applications with Oracle JDeveloper

2. Click on the Data Sources link under JDBC.

3. On the Summary of JDBC Data Sources page, click New.

4. In the Create a New JDBC Data Source page, enter details of the data source.

The name can be anything.

The JNDI name must be of the form jdbc/connection-nameDS. For example, if
the application has a connection name connection1, the JNDI name is jdbc/
connection1DS.

5. Ensure that the database type is Oracle and that the driver is Oracle's Driver
(Thin) for Service Connections;Version 9.0.1,9.2.0,10,11.

6. Click Next twice to navigate to the Create a New JDBC Data Source page, where
you enter the connection details.

The database name is the Oracle SID.

The host name is the name of the machine the database is on.

The default port is 1521.

7. Enter the user name and password, for example hr/hr.

8. Click Next and click Test Configuration.

9. Click Next to navigate to the Select Targets page, where you select a target for this
data source. If you fail to select a target, the data source is created but not
deployed.

10. Click Finish.

Example 22-1 Deploying to an EAR File to Run on Oracle WebLogic Server

To deploy an application to an EAR file to run on Oracle WebLogic Server, you can:

• Select the Auto Generate and Synchronize weblogic-jdbc.xml Descriptors During
Deployment field, and set up passwords using application level credential
mapping.

• Alternatively, you can deselect the Auto Generate and Synchronize weblogic-
jdbc.xml Descriptors During Deployment field and set up passwords by creating
a global data source on Oracle WebLogic Server.

If you are deploying using ojdeploy:

• You can use the -nodatasources switch, in which case you can set up passwords
on Oracle WebLogic Server by either:

– Creating a global data source.

– Manually creating application level data sources.

For more information about ojdeploy, see Deploying from the Command Line.

• If you do not use the -nodatasources switch, you can only set up passwords
using application level credential mapping.

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 22-33

Preparing an Application for Deployment to a Third Party Server

There may be specific tasks that you have to perform so that your application will run
on a third party server.

Deploying to Tomcat:

• Stop and restart the Tomcat server after deployment.

• Make sure that you have the tools.jar library in the Tomcat classpath, located
in jdeveloper_install/jdk/lib. This file must be the same version of the
JDK being used to run Tomcat. Otherwise, you may encounter problems when
running applications in Tomcat.

• The recommended deployment for web applications is tomcat_install/
webapps/subdirectory. Set this option in the General page of the WAR File
deployment profile.

• The system administrator of the Tomcat application server must assign a context
path to your application in the conf/server.xml file:

<DefaultContext crossContext="true"/>

See Tomcat system administration documentation for more information.

• You may get the following error message when running a JSP application deployed
to Tomcat:

Only one of the two parameters ... or ... should be defined.

Because Tomcat does not release tags after pooling, subsequent uses of the same
tag with incompatible attributes defined will cause this error.

To avoid the error, you must disable tag pooling in Tomcat:

1. Open the file tomcat_home/conf/web.xml in a text editor.

2. Find the following element:

<init-param>
 <param-name>enablePooling</param-name>
 <param-value>true</param-value>
</init-param>

Change the value of <param-value> to false

Deploying to WebSphere

WebSphere deployment on Windows does not work when the directory containing
the JDeveloper generated EAR contains spaces.

You can directly access the target application server connection in order to pass
command line options. For example, you can specify the client JAR which contains the
necessary stubs and skeletons on the client side to support RMI-IIOP deployment.
These options would overwrite or bypass the server's default settings.

To pass options to target application server connections when deploying:

1. If not already done, create the appropriate deployment profile.

2. In the Applications window, right-click the project, then choose Properties.

Connecting and Deploying Java EE Applications to Application Servers

22-34 Developing Applications with Oracle JDeveloper

3. Select Deployment in the panel on the left of the Project Properties dialog.

4. Select the deployment profile you want to edit, and click Edit.

5. Open the page which corresponds to the target connection type for which you
want to pass command options.

6. Edit the page, or click Restore Default to revert to the default settings for the
target server.

For instructions click Help.

7. Click OK when you are finished editing the deployment profile properties.

How to Use Deployment Plans
You can use deployment plans to override deployment values. One reason you might
want to do this is to change settings so that an application that has finished testing can
be run in a production environment without having to change the deployment
profiles.

When an EAR, WAR, or EJB JAR archive configured to use a deployment plan is
deployed, both the archive and the deployment plan are sent to the application server.
You can use multiple deployment plans in an application.

For more information, see the section about deployment plans in the chapter about
configuring applications for production deployment in Oracle Fusion Middleware
Deploying Applications to Oracle WebLogic Server.

The following is an example of a deployment plan for an EAR called
application.ear. Note that the module-name element must contain the name of
the deployment profile that it is associated with.

<deployment-plan xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.oracle.com/technology/weblogic/10.3/deployment-plan
http://www.oracle.com/technology/weblogic/10.3/deployment-plan/1.0/deployment-
plan.xsd"
xmlns="http://www.oracle.com/technology/weblogic/10.3/deployment-plan">
 <application-name>DeployPlan</application-name>
 <variable-definition>
 <variable>
 <name>SessionDescriptor_timeoutSecs</name>
 <value>888</value>
 </variable>
 <variable>
 <name>SessionDescriptor_invalidationIntervalSecs</name>
 <value>888</value>
 </variable>
 <variable>
 <name>SessionDescriptor_cookieMaxAgeSecs</name>
 <value>888</value>
 </variable>
 </variable-definition>
 <module-override>
 <module-name>application.ear</module-name>
 <module-type>ear</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-application</root-element>
 <uri>META-INF/weblogic-application.xml</uri>
 <variable-assignment>
 <name>SessionDescriptor_timeoutSecs</name>

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 22-35

 <xpath>/weblogic-application/session-descriptor/timeout-secs</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>SessionDescriptor_invalidationIntervalSecs</name>
 <xpath>/weblogic-application/session-descriptor/invalidation-interval-secs</
xpath>
 </variable-assignment>
 <variable-assignment>
 <name>SessionDescriptor_cookieMaxAgeSecs</name>
 <xpath>/weblogic-application/session-descriptor/cookie-max-age-secs</xpath>
 </variable-assignment>
 </module-descriptor>
 </module-override>
</deployment-plan>

When an EAR, WAR, or EJB JAR archive configured to use a deployment plan is
deployed, both the archive and the deployment plan are sent to the application server.
You can use multiple deployment plans in an application.

How to Create and Use Deployment Plans

You can create a deployment plan from the New Gallery and edit it in the XML editor.

Once created, a deployment plan can be associated with an EAR, WAR, or EJB JAR
archive.

Alternatively, you can generate a deployment plan in Oracle WebLogic Server, then
use it in JDeveloper.

To create a deployment plan:

1. In the Applications window, select the project for which you want to create a
deployment plan.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand General and select Deployment Descriptors. In the
Items list, select WebLogic Deployment Descriptor and click OK.

4. In the Select Descriptor page of the Create WebLogic Deployment Descriptor
wizard, choose plan.xml.

If this is the first deployment descriptor you are creating in the application, you can
choose Finish to create a deployment plan with the default name of plan.xml.

If you already have a deployment plan called plan.xml in the application,
navigate to the Select Name page and enter a new name for the deployment plan,
then click Finish. The deployment plan will be created and added to the project,
and it will be opened in an XML editor window.

5. Open the Deployment Profile Properties of the EAR, WAR or EJB JAR.

6. Enter the path to the deployment plan in the Deployment Plan field.

How to Generate Deployment Plans

Deployment plans enable you to export an application's configuration for deployment
to multiple WebLogic Server environments.

You can create a deployment plan from scratch in JDeveloper.

Connecting and Deploying Java EE Applications to Application Servers

22-36 Developing Applications with Oracle JDeveloper

Alternatively, you can generate a deployment plan which you can then add to your
application in JDeveloper and edit it to suit your purposes, described in this topic.
There are two ways to do this:

• Deploy the application to a Oracle WebLogic Server, make changes to the
application using the Administration Console, and save the resulting deployment
plan. You can then copy the deployment plan back into your source in JDeveloper,
and if necessary you can modify it. For more information, see the section about
deployment plans in the chapter about configuring applications for production
deployment in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic
Server.

• Use the weblogic.PlanGenerator command-line tool to generate a deployment plan
for an application that uses an EAR. For more information, see the reference
chapter about weblogic.PlanGenerator command line tool in Oracle Fusion
Middleware Deploying Applications to Oracle WebLogic Server.

To generate a deployment plan using WebLogic Server Administration Console:

1. Deploy the application to Oracle WebLogic Server.

2. Open the WebLogic Server Administration Console.

The WebLogic Server Administration Console automatically generates (or
updates) a valid deployment plan for an application when you interactively
change deployment properties for an application that you have installed to the
domain. You can use the generated deployment plan to configure the application
in subsequent deployments, or you can generate new versions of the deployment
plan by repeatedly editing and saving deployment properties.

To use the weblogic.PlanGenerator command-line tool to generate a deployment plan:

1. From the command line, navigate to install/wlserver_10.3/server/bin/
and run either setWLSEnv.sh or setWLSEnv.cmd script, to add the WebLogic
Server classes to the CLASSPATH environment variable on your machine, and
ensure that the correct JDK binaries are available in your PATH.

2. From the command line, navigate to the location of the EAR file, and run java
weblogic.PlanGenerator -plan plan.xml application-name.ear -
all.

The switch -all specifies that the deployment plan is generated containing
elements for all possible attributes in your EAR file. If you remove this switch, the
generated deployment plan will only contain elements for the existing attributes in
your descriptor files.

Deploying Java Applications
JDeveloper supports deployment of applications containing a variety of technologies
to a variety of application servers. This section provides instructions for deploying an
application to an executable JAR file on your file system. If you wish to deploy an
application containing Java EE technologies, or you wish to deploy to the integrated
application server, Oracle WebLogic Server, or another supported application server,
be sure to verify that you have performed the necessary configuration and preparation
steps as outlined in Connecting and Deploying Java EE Applications to Application
Servers.

Deploying Java Applications

Deploying Applications 22-37

Deploying to a Java JAR
Applications can be deployed indirectly by choosing an archive file as the deployment
target. The archive file can subsequently be installed on a target Java EE application
server

JDeveloper has various deployment modes for different applications. However, you
may want to quickly and simply deploy your application as a JAR file to your file
system.

Note:

Before deploying an executable JAR file you must first create a deployment
profile.

To deploy a simple archive in JDeveloper:

1. Select and right-click the project in the Applications window.

2. Choose Deploy deployment profile, where deployment profile is the deployment
profile that you created earlier.

3. In the Deployment Action page of the Deploy dialog, choose Deploy to JAR file,
and finish the wizard.

You can make your simple archive or Java EE Client Module into an executable JAR
file that you can launch with the java command.

Note:

Before deploying an executable JAR file you must first create a deployment
profile.

To deploy an executable JAR file:

1. Right-click the project in the Applications window and choose Project Properties.

2. Select the name of the profile in the Deployment section of the Project Properties
dialog and click Edit.

3. Click JAR Options in the tree.

4. Select Include Manifest File (META-INF/MANIFEST.MF).

5. In the Main Class field, enter the fully qualified name of the application class that is
to be invoked.

6. Click OK.

7. Create the JAR file by deploying the profile to file (see previous section). This
creates the JAR file, for example, myapp.jar.

8. Launch the executable JAR file from the command line

java -jar myapp.jar

Deploying Java Applications

22-38 Developing Applications with Oracle JDeveloper

Deploying to an OSGi Bundle
Applications can be deployed as OSGi bundles which can then be deployed to an
OSGi container.

JDeveloper has various deployment modes for different applications. However, you
may want to quickly and simply deploy your application as a JAR file to your file
system.

Note:

Before deploying an OSGi bundle you must first create a deployment profile.
For more information, see How to Create and Edit Deployment Profiles.

To deploy an OSGi bundle in JDeveloper:

1. Select and right-click the project in the Applications window.

2. Choose Deploy > deployment profile, where deployment profile is the OSGi
bundle deployment profile that you created earlier.

3. In the Deployment Action page of the Deploy dialog, choose Deploy to OSGi
bundle, and finish the wizard.

Deploying Java EE Applications
You can use JDeveloper to deploy Java EE applications directly to the standalone
application server or create an archive file and use other tools to deploy to the
application server.

How to Deploy to the Application Server from JDeveloper
The Java EE Enterprise Archive (EAR) deployment profile provides you with
centralized control over the process of application assembly. This assembling task
involves selecting which already-configured Java EE deployment profiles to include
with the EAR file. You can mix and match any combination of configured WAR, EJB
JAR, and/or client JAR profiles in projects within the same application. When you
deploy an application to an application server connection, JDeveloper assembles a
minimal EAR file which includes the profile combinations and deploys it with the
EAR file to the target application server.

To deploy an application as a Java EE Enterprise Archive (EAR File):

1. Create an EAR File deployment profile.

2. Create a connection to the target application server.

3. Right-click the project in Applications window and choose Deploy > deployment
profile.

4. In the Deployment Action page of the Deploy dialog, choose one of the deployment
options:

• Deploy to application server connection to package the web module as an EAR
file, and deploy it to the application server connection you select or create on the
Select Server page of the Deploy dialog.

Deploying Java EE Applications

Deploying Applications 22-39

• Deploy to EAR file to package the web module as an EAR file and save to the
location specified in the EAR deployment profile.

To reopen the EAR deployment profile later to make changes, right-click the
application in the Applications window toolbar and choose Application Properties,
then select the name of the profile in the Deployment section of the Application
Properties dialog and click Edit.

• If you have an existing EAR file, you can use the JDeveloper EAR import facility to
import the EAR into any project.

• JAR, WAR, and GAR files to be included in an EAR file must be created before the
EAR file is deployed. For the included application's deployment profiles, choose
Deploy to JAR file, Deploy to GAR, or Deploy to WAR file in the Deploy dialog to
create these subordinate archives.

• The EAR file does not contain passwords so if, for example, you are creating an
EAR file to run on Oracle WebLogic Server, you must set up a data source on the
server.

How to Deploy a RAR File
Stored in a Resource Adapter Archive (RAR) file, a resource adapter may be deployed
on any Java EE server, much like the EAR file of a Java EE application. A RAR file may
be contained in an EAR file or it may exist as a separate file

To deploy a resource adapter archive in JDeveloper:

1. Create a deployment profile.

Note:

To reopen a project deployment profile later to make changes, right-click the
project in the Applications window and choose Project Properties, then select
the name of the profile in the Deployment section of the Project Properties
dialog and click Edit.

2. Right-click the project in the Applications window, then choose Deploy >
deployment profile.

3. In the Deployment Action page of the Deploy dialog, choose Deploy to RAR file.

How to Add a Resource Adapter Archive (RAR) to the EAR
The EAR profile supports Resource Adapter Archive files (RAR or .rar) in a
JDeveloper project. A RAR file is typically provided by an Enterprise Intelligence
Server (EIS) vendor, similar to a JDBC driver. Java EE developers may need to package
a RAR file into their EAR file if their Java EE application makes use of the EIS services
supported by the RAR. JDeveloper does not directly support RAR file creation, but
RAR files can be assembled using the File Groups feature of a JAR file deployment
profile.

The ra.xml file is the deployment descriptor for the RAR file for the J2EE Connector
Architecture (JCA). For more information, see:

http://www.oracle.com/technetwork/java/javaee/tech/
entapps-138775.html

Deploying Java EE Applications

22-40 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technetwork/java/javaee/tech/entapps-138775.html
http://www.oracle.com/technetwork/java/javaee/tech/entapps-138775.html

To add a RAR to an EAR deployment profile:

1. In JDeveloper, add an existing RAR file to a project.

2. Create an EAR deployment profile in the same project as the RAR file.

3. Right-click the project in the Applications window and choose Project Properties.

4. Select the name of the profile in the Deployment section of the Project Properties
dialog and click Edit.

5. Click the Application Assembly node to display all the Java EE modules (WAR
and EJB JAR) currently available and saved in your project.

6. Select the checkbox next to the RAR (.rar) file that you want to assemble and
package with the EAR file.

7. Click OK.

8. Deploy the Java EE EAR.

At deploy-time, the EAR file's application.xml contains a <connector> element which
is automatically added to the RAR file.

How to Deploy a Metadata Archive (MAR) File
Metadata Archive (MAR) profiles are application level deployment profiles which are
used to package seeded customizations or place base metadata in the MDS repository.
In a MAR profile, selections can only be done at the package level, not at the file level.

There are two uses for a MAR profile

• The first use is to create a MAR profile. Once you have created it you can include it
in an application's EAR for deployment.

• The second use is to export MAR contents to MDS repository configured for a
deployed application in a remote server. This procedure is for applying ADF
Library customizations changes to an application that has already been deployed to
a remote application server. It is not for the initial packaging of customizations into
a MAR that will eventually be a part of an EAR.

For more information, see How to Package and Deploy Customized Applications in
Oracle Fusion Middleware Developing Fusion Web Applications with Oracle Application
Development Framework.

How to Deploy an Applet as a WAR File
You can deploy web application components including applets as a WAR or EAR file
to the target application server.

To deploy an applet as a WAR file:

1. If not already done, configure the applet for deployment.

2. If not already done, create an application server connection.

3. In the Applications window, right-click the project and choose Deploy and select
the deployment profile.

Deploying Java EE Applications

Deploying Applications 22-41

4. Deploy to application server connection to create the archive type specified in the
deployment profile, and deploy it to the application server connection you select or
create on the Select Server page of the Deploy dialog.

• Deploy to application server connection to create the archive type specified in
the deployment profile, and deploy it to the application server connection you
select or create on the Select Server page of the Deploy dialog.

• Deploy to EAR file to deploy the project and any of its dependencies (specified
in the deployment profile) to an EAR. JDeveloper puts the EAR file in the
default directory specified in the deployment profile.

• Deploy to WAR file to deploy the project to a WAR. JDeveloper puts the WAR
file in the default directory specified in the deployment profile.

Note:

The deployed applet files must reside in a separate location from any other
web application files you have deployed.

You can test the deployed web application by running it in a browser. For more
information, see Testing the Application and Verifying Deployment.

If you encounter problems when deploying a Swing applet (JApplet), for example, the
error "Class not found" is displayed, this may indicate that JDeveloper cannot locate
the Swing libraries. You may need to force your clients to use Sun's Java SE browser
plugin or bundle the Swing libraries for JVMs version 1.1 with your applet.

How to Deploy a Shared Library Archive
Shared Java EE libraries provides an easy way to share one or more different types of
Java EE modules among multiple Enterprise Applications. You can deploy shared
libraries as JAR files to the application server.

For more information, see Chapter 9 "Creating Shared Java EE Libraries and Optional
Packages" in Oracle Fusion Middleware Developing Applications for Oracle WebLogic
Server.

To create and deploy a shared library archive:

1. Create a shared library deployment profile, (Shared Library JAR file). For more
information, see Creating Deployment Profiles.

2. Add the libraries to the profile in the Edit JAR Deployment Profile Properties
dialog. Choose File Groups, and click New to open the Create File Group dialog,
where you define a new file group.

3. Create a connection to the target application server.

4. Right-click the project in Applications window and choose Deploy > shared
library deployment profile.

5. On the Deployment Action page of the Deploy shared library dialog, choose
Deploy to a Weblogic Application Server and click Finish.

Deploying Java EE Applications

22-42 Developing Applications with Oracle JDeveloper

How to Deploy to a Managed Server That Is Down
For successful deployment, the Administration Server for the WebLogic Server
domain has to be up as it is handling the deployment process. When you deploy to a
server that is down, the deployment log window messages indicate that the server is
currently down but the application will be installed when it is brought back up. The
log messages will be similar to:

[02:27:21 PM] ---- Deployment started. ----
 [02:27:21 PM] Target platform is (Weblogic 10.3).
 [02:27:23 PM] Retrieving existing application information
 [02:27:23 PM] Running dependency analysis...
 [02:27:23 PM] Building...
 [02:27:26 PM] Deploying 2 profiles...
 [02:27:26 PM] Wrote Web Application Module to /scratch/.../jdev/mywork/
Application1/Project1/deploy/webapp1.war
 [02:27:26 PM] Wrote Enterprise Application Module to /scratch/.../jdev/mywork/
Application1/application1.ear
 [02:27:26 PM] Deploying Application...
 [02:27:27 PM] [Deployer:149195]Operation 'deploy' on application 'application1'
has been deferred since 'Server-2' is unavailable
 [02:27:27 PM] [Deployer:149034]An exception occurred for task [Deployer:
149026]deploy application application1 on Server-2.: .
 [02:27:27 PM] Application Deployed Successfully.
 [02:27:27 PM] Elapsed time for deployment: 5 seconds
 [02:27:27 PM] ---- Deployment finished.

One situation that can occur is that deployment appears to succeed, but as the server is
brought back up the deployment cannot successfully terminate, for example, because
some validation that is part of the deployment process was not performed, or because
a library that needs to be present for deployment to be successful is missing. In these
cases, when the server is brought back up and deployment resumes, it fails.

You can only deploy an application once to a server that is down. If you attempt to
redeploy the same application to the same down server a second time, an error is
displayed.

Post-Deployment Configuration
After you have deployed your application to Oracle WebLogic Server, you can migrate
it from one Oracle WebLogic Server to another.

You may need to perform some of the same steps you did for a first time deployment.

In general, to migrate an application to another application server, you would:

• Configure the target application server with the correct database or URL
connection information.

• Migrate security information, for example JDBC data sources, from the source to
the target.

• Deploy the application to the new server.

Testing the Application and Verifying Deployment
After you deploy the application, you can test it from Oracle WebLogic Server.

Post-Deployment Configuration

Deploying Applications 22-43

The deployment log window displays the context root URLs for any Web applications
deployed. You can access a deployed web application by entering the application URL
in a browser. The URL of the deployed web application appears in the deployment log
window, for example:

[03:08:20 PM] The following URL context root(s) were defined and can be used as a
starting point to test your application:
[03:08:20 PM] http://12.345.678.912:7101/Project1
[03:08:21 PM] Elapsed time for deployment: 7 seconds
[03:08:21 PM] ---- Deployment finished. ----

You can copy the URL and paste it into a browser to test the deployed web
application.

Depending on your browser proxy settings, you may need to specify the full domain
name of the host machine. If the servlet engine and the browser used to view a
deployed application are on the same machine, you may use localhost for the host
name.

Deploying from the Command Line
JDeveloper deployment is built around a Design-Time data structure called a profile.
A common implementation is an ArchiveProfile that describes the structure of a JAR
archive. Deployment profiles can be created as part of a JDeveloper project or
workspace. JDeveloper a offers a command-line tool, ojdeploy that allows deployment
of ArchiveProfile(s) without invoking the JDeveloper GUI. This is the simplest form of
deployment. It has the following characteristics:

ojdeploy can run a deployment locally in-process, or submit to a background server,
ojserver. For more information, see Using ojserver.

Before deploying from the command line, you need to run JDeveloper at least once to
create a deployment profile for either the application or the project.

Deployment profiles are stored as part of either the application or project properties.

ojdeploy
ojdeploy is available from the command line at jdeveloper_install/
jdeveloper/jdev/bin, and the usage is

ojdeploy <commandId>

For additional details, type:

ojdeploy <commandId> -help

Currently the only available commands is deployToArchive (the default). This
command deploys to an Archive File.

Usage:

ojdeploy -profile <name> -workspace <jws> [-project <name>] [<options>]
ojdeploy -buildfile <ojbuild.xml> [<options>]
ojdeploy -buildfileschema

You can use the following arguments with ojdeploy.

Deploying from the Command Line

22-44 Developing Applications with Oracle JDeveloper

Table 22-2 Arguments That Can be Used With ojdeploy

Argument Description

-buildfile Full path to a build file for batch deploy.

-buildfileschema Print XML Schema for the build file.

-profile The name of the Profile to deploy.

Deployment profiles can be classified into two broad categories, those that are
defined at the application (workspace) level, and those defined at the project level.
To deploy an application profile, ojdeploy takes the application location, and the
name of the profile. To deploy a project profile it takes an additional -project
argument.

-project Name of the JDeveloper project within the .jws where the profile can be found. If
omitted, the profile is assumed to be in the Workspace.

-workspace Full path to the JDeveloper workspace file(.jws).

You can use the following options with ojdeploy.

Table 22-3 Options Available to Use with ojdeploy

Option Description

-address The listen address for ojserver if not using default (localhost:2010). The
default parts of the address may be omitted, for example, -address :2001 or -
address fasup-pls01

-basedir Lets Workspace path names be interpreted relatively. The built-in macro ${base.dir}
captures the value of -basedir.

-clean Clean output directories before compiling

-datasources Deprecated For JEE applications, the -nodatasources option prevents the data-
sources.xml file from being updated with connection information found in the
IDE. This is ignored for non-JEE applications

-define Define variables as comma separated name=value pairs

-failonwarning Prevents the build system from being invoked. This is useful if a workspace or
project just needs to be packaged, and not compiled at this time. Adding -clean
will delete all files from the project output directory before compiling. Deployment
will stop for that profile, if a file or directory could not be deleted.

-forcerewrite Output file is rewritten even if the contents have not changed in this run of ojdeploy.

-nocompile Prevents the build system from being invoked. This is useful if a Workspace or
Project just needs to be packaged, and not compiled at this time. Adding -clean
will delete all files from the Project output directory before compiling. Deployment
will stop for that profile, if a file or directory could not be deleted.

-nodatasources Does not include datasources from IDE.

-nodependents Tells ojdeploy not to navigate to project and profile dependencies. This means
dependent projects will not be automatically compiled and dependent profiles will
not be automatically deployed. This is useful in situations where the dependencies
between projects and profiles are being calculated externally or when multiple
instances of ojdeploy(s) are working on the same set of projects and workspaces.

Deploying from the Command Line

Deploying Applications 22-45

Table 22-3 (Cont.) Options Available to Use with ojdeploy

Option Description

-ojserver Runs the deployment job on an ojserver. All paths referenced by the other options
should be accessible on the server.

-outputfile Redirects any JAR files created from the profile. The default is within a \deploy
directory inside the Project or Workspace.

Automatic file extension: If the -outputfile parameter does not specify a file
extension, ojdeploy will figure out the extension by looking at the original file
name in the profile.

-project If specified, tells ojdeploy to look for the profile in the project. Specify the name
only, without the path or .jpr extension

-statuslogfile Creates an XML file that stores a list of all the profiles processed and the status of
each. A summary section at the end can be checked to quickly determine the exit
status for the entire script.

-stderr Lets these respective streams be redirected to a file for each profile and project.
Macros are allowed in the name or path of the files.

-stdout Redirect stdout to file

-timeout Lets the user specify the number of seconds after which deployment of a single
profile should be aborted. If the profile is dependent on other profiles that also need
to be deployed, they all have to complete within this time.

-updatewebxmlejbrefs Updates EJB references in web.xml

-workspace Deployment profiles can be classified into two broad categories, those that are
defined at the Application or Workspace level, and those defined at the Project level.
To deploy a Workspace-profile, ojdeploy takes the workspace location, and the
name of the profile. To deploy a Project-profile, it takes an additional -project
argument.

You can use the following built-in Macros with ojdeploy.

Table 22-4 Built-in Macros Available to Use with ojdeploy

Macro Description

${workspace.name} Name of workspace (excluding .jws)

${workspace.dir} Directory containing the .jws file

${project.name} Name of project (excluding .jpr)

${project.dir} Directory containing the .jpr file

${profile.name} Defined name of the profile

${deploy.dir} Default deploy directory (usually ${project.dir}/deploy or $
{workspace.dir}/deploy for project-level and workspace-level
profiles respectively)

${base.dir} Value of the -basedir parameter, or current directory.

Deploying from the Command Line

22-46 Developing Applications with Oracle JDeveloper

Note:

${project.name} and ${project.dir} are only available when a project-level
profile is being deployed.

Examples:

Deploy a project-level profile:

ojdeploy -profile webapp1 -workspace /usr/jdoe/Application1/Application1.jws
 -project Project1
ojdeploy -profile webapp1 -workspace Application1/Application1.jws
 -basedir /usr/jdoe -project Project1

Deploy a workspace-level profile:

ojdeploy -profile earprofile1 -workspace /usr/jdoe/Application1/Application1.jws

Deploy all profiles from all projects of a workspace:

ojdeploy -workspace /usr/jdoe/Application1/Application1.jws
 -project * -profile *

Build in batch mode from a ojbuild file:

ojdeploy -buildfile /usr/jdoe/ojbuild.xml

Build using ojbuild file, pass into, or override default variables in, the build file:

ojdeploy -buildfile /usr/jdoe/ojbuild.xml -define myhome=/usr/jdoe,mytmp=/tmp
ojdeploy -buildfile /usr/jdoe/ojbuild.xml -basedir /usr/jdoe

Build using ojbuild file, set or override parameters in the default section:

ojdeploy -buildfile /usr/jdoe/ojbuild.xml -nocompile

ojdeploy -buildfile /usr/jdoe/ojbuild.xml
 -outputfile '${workspace.dir}/${profile.name}.jar'
ojdeploy -buildfile /usr/jdoe/ojbuild.xml -define mydir=/tmp
 -outputfile '${mydir}/${workspace.name}-${profile.name}'

More examples:

ojdeploy -workspace Application1/Application1.jws,Application2/Application2.jws
 -basedir /home/jdoe -profile app*
ojdeploy -buildfile /usr/jdoe/ojbuild.xml
 -define outdir=/tmp,rel=11.1.1
 -outputfile'${outdir}/built/${workspace.name}/${rel}/${profile.name}.jar'
ojdeploy -workspace Application1/Application1.jws -basedir /home/jdoe -nocompile
 -outputfile '${base.dir}/${workspace.name}-${profile.name}'
ojdeploy -workspace /usr/jdoe/Application1.jws -project * -profile *
 -stdout /home/jdoe/stdout/${project.name}.log
ojdeploy -buildfile /usr/jdoe/ojbuild.xml -ojserver

Using ojdeploy from Mac OS X Platforms
If you are using ojdeploy on a on Mac OS X platform, you must set the variable
SetSkipJ2SDKCheck in the file jdev_install/jdeveloper/jdev/bin/
jdev.conf to true. Your entry should look like this:

Deploying from the Command Line

Deploying Applications 22-47

SetSkipJ2SDKCheck true

Using ojdeploy
JDeveloper currently supports deployment in Ant scripts. For more information, see
How to Deploy from the Command Line Using Ant .

Deploying from the command line using ojdeploy is especially useful where you need
to deploy existing projects or applications using a batch file or other script.

How to Override Without Editing a Build Script

To pass in macro values or override the ones defined in a build script, use the -
define option to supply a new value:

ojdeploy -buildfile /home/jdoe/ojbuild.xml -define "mycustomdir=/tmp"

This adds the mycustomdir variable to the <defaults> section of the build script,
or replace it if it already is defined with the value /tmp.

To pass in parameter values or override the ones defined in a build script, use the
appropriate parameter option, for example:

ojdeploy -buildfile /home/jdoe/ojbuild.xml -nocompile -nodatasources

This adds the -nocompile and -nodatasources parameters to the default section
of the build file.

How to Deploy Multiple Profiles from the Command Line

Command-line deployment supports deployment of multiple applications in a single
invocation. If more complex control is required, ojdeploy can take an XML build script
and process it, running all deploy tasks found in it. Macros and wild cards can be used
both in command-line and batch mode. Macros can be strung together or nested.

Each profile to be deployed is qualified by an application and a project. In addition
each profile's output can be directed to a different output file/location. Further to this,
the calling script assumes no knowledge of the projects within am application, only
deploying all or a subset of them matching a criteria. The command-line syntax for
specifying such inputs and criteria can quickly become cumbersome and inflexible.

A build file can be passed to ojdeploy. The build file will contain multiple
<deploy> tasks, along with a shared <defaults> section which allows for setting
up an environment. Each deploy-task specifies the type of deployment (the set
mentioned before) and customizes any defaults as required. Each task also allows wild
cards as applicable within parameter arguments that apply to the scope of that task. A
pre-processor will parse the build file and pass it to ojdeploy, expanding wild cards
and substituting variables as necessary.

The build file approach has the following advantages over the command-line syntax:

• It lets more parameters be added to ojdeploy without forcing the implementor
for that parameter to be aware of a batch-build concept.

• It keeps the command-line syntax simple, for the degenerate case.

• It allows parameters to be dynamically evaluated based on the current context, and
access to a predefined list of pre-processor macros. For example, OutputFile
location may be specified as c:\temp\${profile.name} where the macro $
{profile.name} is added automatically.

Deploying from the Command Line

22-48 Developing Applications with Oracle JDeveloper

A sample build file is shown below. To invoke all of these deploy actions, the
command-line would be ojdeploy ojdeploy-build.xml. The file is processed
from top to bottom.

<?xml version="1.0" encoding="US-ASCII" ?>
<ojdeploy-build basedir="/usr/jdoe/">
 <!-- Defines default parameters for all deploy tasks.
 Also defines some variables strictly for use within this file
 in macros
 -->
 <defaults>
 <parameter name="profile" value="*"/>
 <parameter name="nocompile" />
 <-- define a macro -->
 <variable name="customdir" value="/var/projects/fin/"/>
 </defaults>
 <!-- Select all .jws files in location ${customdir} called absoluteFile1.jws, absoluteFile2.jws.
 Open all projects.
 Deploy profiles p1, p2, p3 in each project, in each workspace.
 -->
 <deploy>
 <parameter name="workspace" value="${customdir}/absoluteFile1.jws,${customdir}/
absoluteFile2.jws"/>
 <parameter name="project" value="*"/>
 <-- Override default profile parameter -->
 <parameter name="profile" value="p1,p2,p3"/>
 </deploy>
 <!--
 Open relativeFile1.jws in the base directory
 Open all projects.
 Deploy all profiles (default for "profile" parameter is "*")
 -->
 <deploy>
 <parameter name="workspace" value="relativeFile1.jws"/>
 <parameter name="project" value="*"/>
 </deploy>
 <!--
 Open relativeFile2.jws in base directory.
 Open all Projects
 Deploy profiles matching the patter "web*"
 -->
 <deploy>
 <parameter name="workspace" value="relativeFile2.jws"/>
 <parameter name="project" value="*"/>
 <parameter name="profile" value="web*"/>
 </deploy>
</ojdeploy-build>

How to Use Wildcard Samples

Project and profile names can be specified as "*" or "name*" or
"name1,name2,name3,..." or any combination of these. Application names need to be
enumerated, so "*" is not allowed in application names, but application names can be
specified as "application1" or "application1,application2,application3".

For example:

• adf* (Profile)

• View* (Project)

Deploying from the Command Line

Deploying Applications 22-49

• *Controller (All Controller Projects)

An example of using wild cards with an application:

<ojdeploy-build basedir= "/home/jdoe" >
 <deploy>
 <parameter name= "workspace" value= "Application1.jws,Application2.jws" />
 <!-- above pattern gets /home/jdoe/Application1.jws and /home/jdoe/
Application2.jws -->
 . . .
 </deploy>
/ojdeploy-build>

How to Create a Log File for Batch Deployment

The -statuslogfile parameter lets the user create a build summary for the entire
deployment batch. An absolute path should be specified without macros.

The log file contains a list of the deployment tasks processed and the status from each
task in XML format. The status will be either SUCCESS or FAILED and includes an
exitcode attribute. Possible values for exitcode are:

• 0 - Success

• 1 - Fatal error (NPE, OutOfMemory, etc.)

• 2 - JDeveloper configuration error (missing extensions, etc.)

• 4 - Deployment Error (compilation, deployment exception, etc.) All exit codes are
bitwise OR-ed.

A combined status is available in a summary section at the end of each log.

The following is an example of batch deployment log output.

<?xml version="1.0"?>
 <ojdeploy-log>
 <deploy-task>
 <target>
 <profile>webapp1</profile>
 <workspace>/scratch/jdoe/jdev/mywork/Application3/Application3.jws</workspace>
 <project>Project1.jpr</project>
 </target>
 <exception msg="**** One or more compilation errors prevented deployment from
continuing.">
 oracle.jdeveloper.deploy.DeployException: **** One or more compilation errors
prevented deployment from continuing.
 at
oracle.jdevimpl.deploy.common.ModulePackagerImpl.compileDependents(ModulePackagerImpl
.java:143)
 at oracle.jdeveloper.deploy.common.ModulePackager.compile(ModulePackager.java:65)
 at
oracle.jdeveloper.deploy.common.ModulePackager.prepareImpl(ModulePackager.java:52)
 at
oracle.jdeveloper.deploy.common.AbstractDeployer.prepare(AbstractDeployer.java:69)
 at oracle.jdevimpl.deploy.fwk.WrappedDeployer.prepareImpl(WrappedDeployer.java:
32)
 at
oracle.jdeveloper.deploy.common.AbstractDeployer.prepare(AbstractDeployer.java:69)
 at oracle.jdevimpl.deploy.fwk.WrappedDeployer.prepareImpl(WrappedDeployer.java:
32)
 at
oracle.jdeveloper.deploy.common.AbstractDeployer.prepare(AbstractDeployer.java:69)

Deploying from the Command Line

22-50 Developing Applications with Oracle JDeveloper

 at
oracle.jdevimpl.deploy.fwk.DeploymentManagerImpl.deploy(DeploymentManagerImpl.java:
411)
 at oracle.jdevimpl.deploy.fwk.DeploymentManagerImpl
$1.run(DeploymentManagerImpl.java:281)

 </exception>
 <status exitcode="4">FAILED</status>
 </deploy-task>
 <deploy-task>
 <target>
 <profile>archive1</profile>
 <workspace>/scratch/jdoe/jdev/mywork/Application3/Application3.jws</workspace>
 <project>Project1.jpr</project>
 </target>
 <exception msg="**** One or more compilation errors prevented deployment from
continuing.">
 oracle.jdeveloper.deploy.DeployException: **** One or more compilation errors
prevented deployment from continuing.
 at
oracle.jdevimpl.deploy.common.ModulePackagerImpl.compileDependents(ModulePackagerImpl
.java:143)
 at oracle.jdeveloper.deploy.common.ModulePackager.compile(ModulePackager.java:65)
 at
oracle.jdeveloper.deploy.common.ModulePackager.prepareImpl(ModulePackager.java:52)
 at
oracle.jdeveloper.deploy.common.AbstractDeployer.prepare(AbstractDeployer.java:69)
 at oracle.jdevimpl.deploy.fwk.WrappedDeployer.prepareImpl(WrappedDeployer.java:
32)
 at
oracle.jdeveloper.deploy.common.AbstractDeployer.prepare(AbstractDeployer.java:69)
 at oracle.jdevimpl.deploy.fwk.WrappedDeployer.prepareImpl(WrappedDeployer.java:
32)
 at
oracle.jdeveloper.deploy.common.AbstractDeployer.prepare(AbstractDeployer.java:69)
 at
oracle.jdevimpl.deploy.fwk.DeploymentManagerImpl.deploy(DeploymentManagerImpl.java:
411)
 at oracle.jdevimpl.deploy.fwk.DeploymentManagerImpl
$1.run(DeploymentManagerImpl.java:281)

 </exception>
 <status exitcode="4">FAILED</status>
 </deploy-task>
 <deploy-task>
 <target>
 <profile>ejb1</profile>
 <workspace>/scratch/jdoe/jdev/mywork/Application3/Application3.jws</workspace>
 <project>Project3.jpr</project>
 </target>
 <status exitcode="0">SUCCESS</status>
 </deploy-task>
 <summary>
 <start-time>2007-12-19 12:10:42 PST</start-time>
 <end-time>2007-12-19 12:10:45 PST</end-time>
 <total-tasks>3</total-tasks>
 <failures>2</failures>
 <status exitcode="4">FAILED</status>
 </summary>
 </ojdeploy-log>

Deploying from the Command Line

Deploying Applications 22-51

Timeouts

The -timeout parameter can be used for terminating runaway deployments. It
specifies an upper limit on how much time deployment can take.

Timeout is for each Profile, not for the entire batch.

How to Deploy from the Command Line Using Ant
JDeveloper deployment is built around deployment profiles. A common
implementation is an ArchiveProfile that describes the structure of a JAR archive.

Deployment profiles can be created as part of a project or application. With ojdeploy
you can deploy ArchiveProfile(s) without invoking the JDeveloper IDE.

Command line deployment requires a JDeveloper installation. but this installation is
invoked in 'headless mode', not displaying the JDeveloper IDE, loading all extensions
defined for headless mode. This form of deployment can read JDeveloper applications
and projects and their meta-data.

Ant scripts to invoke command line deployment must be created manually. The
resulting deployed archive depends on the version of JDeveloper used, and which
extensions are enabled when command line deployment is invoked.

Note:

It is a best practice to generate an .ear file from JDeveloper for the
application. The .ear file will be generated with all the right class
dependencies required to deploy it. Deploying with Ant by referring to an
application directly (without generating an .ear file) may require
dependencies for the classes and JAR files to be resolved manually.

The ojdeploy task is an extension of the Ant <exec> task, so any valid attributes of
that task can be used with ojdeploy, such asarg and failonerror.

For example, to have a deployment stop when it reaches an error, add
failonerror="true".

For more information see the Exec tasks section of the Apache Ant Manual at http://
ant.apache.org/manual.

How to Generate an Ant Build Script

To make it easier to create an Ant build script for command line deployment, you can
generate an Ant script from JDeveloper.

1. In the Projects window select a project or an application, and select File > New >
From Gallery. In the General category, choose Ant. In the Items pane select the
Buildfile type, then click OK.

Deploying from the Command Line

22-52 Developing Applications with Oracle JDeveloper

http://ant.apache.org/manual
http://ant.apache.org/manual

2. Complete the Create Buildfile from Project dialog and click OK. To invoke
ojdeploy from this script enable Include Packaging Tasks.

The generated file has the structure shown in the build.properties file in About The
build.properties File.

About The build.xml File

The build.properties file, which is generated along with build.xml, defines the
additional variables needed for command line deployment.

The following is an example of build.xml.

#Fri Feb 15 10:45:22 PST 2008
 #Sun Feb 24 18:47:36 PST 2008
 javac.nowarn=off
 javac.debug=on
 build.compiler=oracle.ojc.ant.taskdefs.OjcAdapter

Deploying from the Command Line

Deploying Applications 22-53

 output.dir=classes
 oracle.home=../../oracle/
 javac.deprecation=off
 oracle.jdeveloper.ant.library=/scratch/jdoe/oracle/jdev//lib/ant-jdeveloper.jar
 oracle.jdeveloper.deploy.dir=/scratch/jdoe/Application7/Project1/deploy/
 oracle.jdeveloper.ojdeploy.path=/scratch/jdoe/oracle/jdev//bin/ojdeploy
 oracle.jdeveloper.workspace.path=/scratch/jdoe/Application7/Application7.jws
 oracle.jdeveloper.project.name=Project1
 oracle.jdeveloper.deploy.profile.name=*
 oracle.jdeveloper.deploy.outputfile=/scratch/jdoe/Application

About The build.properties File

The Ant build script can be run outside of JDeveloper by simply changing to the
directory containing build.xml and running Ant. It can also be run from within
JDeveloper, by right-clicking on the build.xml node in the Applications window and
selecting the "all" or the "deploy" targets.

Note:

By default, the command line deployment task has the nocompile option
enabled as the task has dependency on the compile task. If this dependency is
removed then the nocompile option can be removed.

It is a best practice to generate an .ear file from JDeveloper for the application. The .ear
file will be generated with all the right class dependencies required to deploy it.
Deploying with Ant by referring to an application directly without generating an .ear
file may require that dependencies for the classes and jars files must be resolved
manually.

The following is an example of the build.properties file.

Buildfile: /scratch/jdoe/Application7/Project1/build1.xml

init:

compile:
deploy:
 [ora:ojdeploy]
 [ora:ojdeploy] Oracle JDeveloper Deploy 11.1.1.0.0
 [ora:ojdeploy] Copyright (c) 2008, Oracle. All rights reserved.
 [ora:ojdeploy]
 [ora:ojdeploy] ----build file----
 [ora:ojdeploy] <?xml version = '1.0' standalone = 'yes'?>
 [ora:ojdeploy] <ojdeploy-build>
 [ora:ojdeploy] <deploy>
 [ora:ojdeploy] <parameter name="workspace"
value="/scratch/jdoe/Application7/Application7.jws"/>
 [ora:ojdeploy] <parameter name="project" value="Project1"/>
 [ora:ojdeploy] <parameter name="profile" value="*"/>
 [ora:ojdeploy] <parameter name="nocompile" value="true"/>
 [ora:ojdeploy] <parameter name="outputfile"
value="/scratch/jdoe/Application7/Project1/deploy/${profile.name}"/>
 [ora:ojdeploy] </deploy>
 [ora:ojdeploy] <defaults>
 [ora:ojdeploy] <parameter name="buildfile"
value="/scratch/jdoe/Application7/Project1/deploy/ojdeploy-build.xml"/>
 [ora:ojdeploy] <parameter name="statuslogfile"
value="/scratch/jdoe/Application7/Project1/deploy/ojdeploy-statuslog.xml"/>

Deploying from the Command Line

22-54 Developing Applications with Oracle JDeveloper

 [ora:ojdeploy] </defaults>
 [ora:ojdeploy] </ojdeploy-build>
 [ora:ojdeploy] ------------------
 [ora:ojdeploy] ---- Deployment started. ---- Feb 24, 2008 6:49:51 PM
 [ora:ojdeploy] Target platform is (WebLogic 10.3).
 [ora:ojdeploy] Running dependency analysis...
 [ora:ojdeploy] Wrote JAR file to
/scratch/jdoe/Application7/Project1/deploy/archive1.jar
 [ora:ojdeploy] Elapsed time for deployment: less than one second
 [ora:ojdeploy] ---- Deployment finished. ---- Feb 24, 2008 6:49:51 PM
 [ora:ojdeploy] ---- Deployment started. ---- Feb 24, 2008 6:49:51 PM
 [ora:ojdeploy] Target platform is (Java Enterprise Edition 1.5).
 [ora:ojdeploy] Running dependency analysis...
 [ora:ojdeploy] Wrote WAR file to
/scratch/jdoe/Application7/Project1/deploy/WindowMobile.war
 [ora:ojdeploy] Elapsed time for deployment: less than one second
 [ora:ojdeploy] ---- Deployment finished. ---- Feb 24, 2008 6:49:52 PM
 [ora:ojdeploy] Status summary written to
/scratch/jdoe/Application7/Project1/deploy/ojdeploy-statuslog.xml

BUILD SUCCESSFUL
 Total time: 19 seconds

ojdeploy for Extension Developers

The ojdeploy command offers a framework that allowed extensions to plug into the
ojdeploy process. Prior to the new framework, ojdeploy only allowed deployment to
archives. The new framework is designed to handle the creation and execution of any
DeployCommand implementation. The framework allows, for example, any extension
to define ojdeploy support for its DeployCommand.

The new framework allows extensions the freedom to:

• Define their own OJDeploy arguments and parsing rules.

• Define their own Command Parser and Model (optional).

• Define their own argument expansion and wildcard logic via ContextIterators.
(optional)

• Control the exact makeup of their DeployCommand Context.

• Control the creation and setup of their DeployCommand instances.

The framework is designed to allow a great deal of flexibility while offering extension
writers a mechanism that is easy to use because it provides many built-in components;
for example, AbstractCommandSupport and AbstractContextIterator.

Table 22-5 Class Lexicon

Class Name Description

Arguments Represents command line arguments passed into the ojdeploy process. Note that
Buildfiles parameters/variables are also converted into Arguments for processing.

BuildScript A BuildScript represents the buildfile that is the input of the OJDeploy process.
Note that a BuildScript can be created from a buildfile or by parsing command line
arguments. Regardless, a BuildScript is always created during the OJDeploy
process.

Deploying from the Command Line

Deploying Applications 22-55

Table 22-5 (Cont.) Class Lexicon

Class Name Description

OJBuildScriptSupport This class converts the BuildScript into an ojdeploycommanditerator. As shown in
the sequence diagram below, this class controls the OJCommandSupport creation,
parsing of arguments and the creation of OJContextIterators.

OJCommandSupport This class is used to support the proper creation of a given DeployCommand. For
example, the DeployToArchiveCommandSupport is one implementation that
allows Deployment of Profiles to an archive file. This is where the bulk of the logic
will be implemented for your own ojdeploy command extension. You can refer
to the following HOW To section for instructions on How to write your own
OJCommandSupport implementation.

Context An IDE Context. The context is critical because it is used in order to create any
DeployCommand instance via the DeployCommandFactory. As an ojdeploy
extension, you will be required to construct the Context necessary to instantiate
your DeployCommand instances.

OJContextIterator An Iterator of Contexts. Note that various Context Iterators have been pre-built for
you to use. For example, the ojdeploy framework includes iterators that will
populate Context instances based on a given Workspace
(WorkspaceContextIterator), Project (ProjectContextIterator) and Profile
(ProfileContextIterator). You likely will not need to create your own
ContextIterator but in the event that you do, the framework also includes an
AbstractContextIterator that you can extend for that purpose (more on this in the
following section on How to write your own OJContextIterator.).

DeployCommand The entire purpose of the ojdeploy process is to create DeployCommand instances
and run them. A DeployCommand is an extension of the IDE Command.

DeployService The DeployService is invoked by the ojdeploy process to control creation and
execution of a DeployCommand in the ojdeploy process. It is in effect the client of
the OJDeploy Framework API as shown in the sequence diagram below.

OJCommandModel An OJCommandModel is an extension to the IDE CommandModel. It holds the
arguments parsed into the OJCommandParser.

OJCommandParser The OJCommandParser is used to parse Arguments and create the
OJCommandModel.

OJCommand Not to be confused with the DeployCommand, the OJCommand is a simple class
which simply holds the CommandID (for example, "Deployment.DeployToFile")
and Command Label (DeployToArchive). The CommandID is used by the
DeployCommandFactory in order to create the DeployCommand. The Command
Label is what is used as the DeployCommand identifier on the command line or
buildFile. The Command Label is simply a user friendly representation that
corresponds to the CommandID. There is therefore a one to one relationship
between the two.

OJDeployCommandIterator The OJDeployCommandIterator is used to iterate all DeployCommand instances
of a given BuildScript. Note that the OJDeployCommandIterator in conjunction
with the OJContextIterators allow for lazy loading of all DeployCommand context
objects (Workspace, Project, Profile etc) and also releases those objects
automatically after each command execution for proper resource management
during the ojdeploy process.

Deploying from the Command Line

22-56 Developing Applications with Oracle JDeveloper

Figure 22-4 Sequence Diagram

Current Limitations

• To recreate a deployed module with ojdeploy just as if it were being deployed from
within the IDE in GUI mode, the exact same JDeveloper installation should be
used. A change in the Jdeveloper installation means a possible change in the
extensions that are loaded, or their versions, and thus the end result may also
change.

• Startup time of ojdeploy is dependant on startup time for a headless JDeveloper.
All the extensions that are registered for this mode, need to be initialized. This time
could be shortened by each Extension optimizing itself for the headless mode. For
large builds, the -ojserver option can submit a deploy job to a server running in
the background. See OJServer

Deploying from the Command Line

Deploying Applications 22-57

Using the headless Attribute

ojdeploy runs JDeveloper in headless (non-GUI) mode, which enables all the various
extensions that support this mode.

• To ensure IDE Addins (oracle.ide.Addin) are loaded when running in
headless mode they should be marked with the "headless=true" tag. Addins
that are not marked as such, should not be referred to from these headless Addins.

During Addin.initialize() all the IDE contexts are available, including the
current Active Workspace and Project.

• All Deployment Toolkits provided by the extension that need to run in ojdeploy
also need to be marked with the "headless=true" attribute

Using ojserver
ojserver is a headless version of JDeveloper that runs in server mode, listening to
remote client requests. Clients and submit service requests to the server using RMI.
ojserver's main purpose is to reduce the startup time incurred when using command-
line tools in batch scripts that run JDeveloper in headless mode. ojserver can be found
in the oracle/jdeveloper/jdev/bin directory.

To see the usage, parameters, options, and examples for ojserver, at the command line
for jdeveloper_install/jdeveloper/jdev/bin type ojserver.

ojdeploy can run a deployment locally in-process, or submit to a background
OJServer using the -ojserver option. When using -ojserver, ojdeploy blocks
till the deployment is complete, and exit codes are set depending on how deployment
fared on the server.

All the options for local deployment are also available when running on ojserver,
however, if any absolute paths are being used, they have to be accessible on the server.

Deploying Using Java Web Start
Java Web Start is included in the Java Runtime Environment (JRE) as part of Java SE 6
and later: http://www.oracle.com/technetwork/java/javase/tech/index-
jsp-136112.html.

JDeveloper supports the creation of the XML-based JNLP (Java Network Launching
Protocol) definition upon which the Java Web Start technology is based. Java Web
Start allows you to deploy Java applications so that they can be launched from an
internet browser. Java Web Start lets you maintain Java client applications and applets
on the web server, which users download and run on their client machines.With the
Create Java Web Start-Enabled wizard in JDeveloper, you can set up applications and
applets to be maintained on the web server, but downloaded and run on client
machines.

Note:

Double-check this note on next review

Starting with Java SE 7 Update 21 in April 2013 all Java Applets and Web Start
Applications are encouraged to be signed with a trusted certificate. And
starting with 7u25, all files must be added to JARs prior to signing. For more
details, refer to the Java web site at http://www.oracle.com/technetwork/
java/javase/tech/java-code-signing-1915323.html.

Deploying Using Java Web Start

22-58 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html

The process of developing a Java Web Start application can be summarized as:

1. Develop the Java application.

2. Simulate the user's experience of running the application with Java Web Start
within the JDeveloper IDE.

3. Use the JDeveloper Java EE Web deployment process to move the production
application to the web server.

Note:

To launch applications and applets with Java Web Start in JDeveloper, you
must download and install the Java Web Start software. Users of your
application or applet will also be required to install the software on their
machines.

For more information on Java Web Start and to download the Java Web Start software,
see: http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html.

Purpose of the Java Web Start Technology
Although Java Web Start and applets may appear to be similar technologies, there are
several differences:

• Unlike the applet approach to deploying web-centric Java applications, Java Web
Start does not rely on the web browser to perform the downloading of the
application JAR files. Instead, Java Web Start downloads the application resources
after the Java Web Start JNLP descriptor is downloaded through the web browser.
The JNLP descriptor causes Java Web Start to launch and perform the actual
downloading.

• While users of the application may experience the applet identically in Java Web
Start, they are not tied to the web browser as they would be with applets. Once the
application is running, the web browser can be closed, and the application
continues to run in Java Web Start.

With the Java Web Start software installed once on the client machine, the application
user can run applications and applets simply by clicking on a web page link. If the
application is not present on their computer, Java Web Start automatically downloads
all necessary files from the web server where the application libraries reside. It then
caches the files on the client computer so the application is always ready to be
relaunched anytime either from an icon on your desktop or from the browser link. The
most current version of the application is always presented to the user since Java Web
Start performs updates as needed.

Files Generated by the Create Java Web Start-Enabled Wizard

Application users can use Java Web Start to run applications and applets on client
machines, while you maintain the application on the web server. To support Java Web
Start and web server downloading, the Create Java Web Start-Enabled wizard
generates these files:

• The Java Network Launching Protocol (JNLP) definition required by Java Web
Start to download and launch the application. The .jnlp file describes the archive
files and whether this instance includes an applet or an application.

Deploying Using Java Web Start

Deploying Applications 22-59

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html

• An HTML file that contains the URL to initiate the downloading from the web
server to the client. Although HMTL file creation is optional, it is highly
recommended unless you intend to create the file manually.

Users can use Java Web Start to run applications and applets on client machines, while
you maintain the application on the web server. To support Java Web Start and web
server downloading, the Create Java Web Start-Enabled wizard generates these files:

Role of the Web Server in JDeveloper

JDeveloper provides an Integrated WebLogic Server web server. You can use it to
simulate the process of deploying the Web Application Archive and downloading for
use with Java Web Start. JDeveloper follows the J2SE deployment profile conventions
for archiving components that run on the client machine (simple archive) and
components that are deployed to the web server (Web Application Archive).

How to complete the Java Web Start setup:

1. Create a simple Java Archive (.jar) file that contains the application source files
to be downloaded and run on the client machine.

2. Launch the Create Java Web Start-Enabled wizard in JDeveloper to create the
HTML and JNLP files that will enable the application or applet to be downloaded
and run on the client machine.

3. .Create a Web Application Archive (.war) file which you deploy to the web
server. It will contain the contents of the public_html directory in your
JDeveloper mywork folder, including the JAR, HTML and JNLP files.

Note:

You will not be required to deploy the application to use the JDeveloper-
embedded web server. JDeveloper provides a default web.xml definition to
locate the contents of the public_html directory in your JDeveloper mywork
folder.

Once you have set up the web server, you can launch the Java Web Start software in
JDeveloper using the generated .html file. Java Web Start relies on your web browser
to download the components identified by the .jnlp file. Another definition in
the .jnlp file determines whether it will run as an application or a secure applet.
Once you have launched Java Web Start and the downloading is complete, you can
close your web browser and continue to run the application or applet.

How to Create a Java Web Start File
A Java Network Launching Protocol definition file, application-name.jnlp, is
automatically created when you use the Create Java Web Start-Enabled wizard to
create Java clients to download and run Java applications and applets on client
machines. However, if you want to control the contents of the application-
name.jnlp, you can manually create your own file to use.

Deploying Using Java Web Start

22-60 Developing Applications with Oracle JDeveloper

Note:

If this item appears grayed out, this indicates that there is an application-
name.jnlp file already created in the project. You can have only one of each
deployment descriptor type per project.

To manually create a Java Web Start (.jnlp) file:

1. In the Categories tree, expand General and select Deployment Descriptors. In the
Items list, double-click Java Web Start (JNLP) Files.

2. If the category or item is not found, make sure the correct project is selected, and
choose All Technologies in the Filter By dropdown list.

3. Click OK.

4. The newly created file opens in the Code Editor. Edit this file to add the
configuration settings as appropriate.

For more information on Java Web Start, see http://www.oracle.com/technetwork/
java/javase/tech/index-jsp-136112.html.

How to Create a Java Client Web Archive for Java Web Start
You can use the JDeveloper Java EE web deployment process to set up the server
before downloading and running the application using Java Web Start.

Once the application resides on the web server, it becomes very easy to maintain. Java
Web Start takes care of identifying and downloading application updates each time
the user runs the application.

To create Java client applications for deployment to the web server:

1. Create a simple JAR archive of your Java client application.

2. Create a Web Start JNLP Definition for Java Clients to generate the JNLP file and
HTML file for use with Java Web Start.

3. In the Applications window, select the project in which you want to create the
WAR deployment profile.

4. Choose File > New to open the New Gallery.

5. In the Categories tree, expand General and select Deployment Profiles. In the
Items list, double-click WAR File.

6. If the category or item is not found, make sure the correct project is selected, and
choose All Technologies in the Filter By dropdown list. Enter the name of the new
deployment profile then click OK.

7. The WAR Deployment Profile Properties panel displays. Configure the settings for
each page as appropriate. Click OK when you have finished defining the
properties.

The newly created web.xml deployment descriptor appear in the Applications
window below the specified project.

8. Deploy the Java Client Web Archive for Java Web Start.

Deploying Using Java Web Start

Deploying Applications 22-61

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html

9. (Optional) If you want to edit the web.xml deployment descriptor, right-click the
web.xml file in the Applications window and choose Open.

10. (Optional) To reopen a project deployment profile later to make changes, right-
click the project in the Applications window and choose Project Properties, then
select the name of the profile in the Deployment section of the Project Properties
dialog and click Edit.

When you are ready to deploy the resulting WAR or EAR to the target application
server, make sure to create an application server connection.

Note:

The web module is deployed to the target deployment directory.

Make sure that the web application deployment descriptor is located inside
the Web Application Archive (WAR) file WEB-INF/web.xml.

How to Create a Java Web Start JNLP Definition for Java Clients
You use the Create Java Web Start-Enabled wizard to create the XML-based JNLP
(Java Network Launching Protocol) definition file that the Java Web Start software
uses to download and run Java applications and applets on client machines.

Note:

You must download and install the Java Web Start software to launch
applications and applets with Java Web Start in JDeveloper. Users of your
application or applet will also be required to install the software on their
machines. See

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html

The application or applet must be delivered in a set of JAR files and all application
resources, such as images, configuration files and native libraries, must be included in
the JAR files. The resources must be looked up using the ClassLoader getResource
or another method. Java Web Start only transfers JAR files from the web server to the
client. for additional information, see http://www.oracle.com/technetwork/
java/javase/tech/index-jsp-136112.html

The wizard adds a JNLP file and (optionally) an HTML file to your project. Java Web
Start will use these generated files to determine what application source to download
from the web server:

• The Java Network Launching Protocol (JNLP) definition is required by Java Web
Start to download and launch the application. The .jnlp file describes the archive
files and whether this instance includes an applet or an application.

• An HTML file. Although HMTL file creation is optional, it is highly recommended
unless you intend to create the file manually. The HTML file contains the URL to
initiate the downloading from the web server to the client.

Before you launch the Create Java Web Start-Enabled wizard to create the JNLP and
HTML files, you must create a simple archive (JAR) file for it. You must also know in
which class the main function can be found, as you will be asked to specify this.

Deploying Using Java Web Start

22-62 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136112.html

To create the JNLP definition for your application or applet:

1. In the Applications window, select the project in which you want to generate a
JNLP definition. Choose File > New to open the New Gallery.

2. In the Categories tree, expand Client Tier and select Swing/AWT. In the Items list,
double-click Java Web Start (JNLP) Files to open the Create Java Web Start-
Enabled wizard.

Click Next in the Welcome page.

3. In the Application Information page, enter the file name, the name and location of
the JAR file that you created, and the class that you want to use to run your
application.

4. For detailed help in using the Create Java Web Start-Enabled wizard, press F1 or
click Help from within the wizard.

5. Check Create Homepage to create the optional HTML file. Click Next after
specifying the desired options.

6. In the Web Start page, specify information to document the JNLP file. Complete the
wizard and click Finish.

You can also use a JSP file or servlet with Java Web Start; however, you will have to
manually configure the file and change the content type. Here is an example JNLP
with contentType = application/x-java-jnlp-file, specified in the first
line:

<%@ page contentType="application/x-java-jnlp-file" %>
<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0+" codebase="http://192.168.1.102:8888" href="jnlpfile.jnlp">
<information>
<title>Test</title>
<vendor>Oracle</vendor>
<homepage href="Test.html"/>
<description>Encryption Tool</description>
<icon href="images/frontpage.gif"/>
<offline-allowed/>
</information>
<security><all-permissions/></security>
<resources>
<j2se version="1.3"/>
<jar href="/apps/archive1.jar" main="true" download="eager" />
</resources>
<application-desc main-class="oracle.Ide">
</application-desc>
</jnlp>

How to Deploy a Java Client Web Application Archive for Java Web Start
You can use the JDeveloper simple Java EE web deployment process to set up the web
server before downloading and running the application using Java Web Start.

Once the application resides on the web server, it becomes very easy to maintain. Java
Web Start takes care of identifying and downloading application updates each time
the user runs the application.

To deploy Java client applications to the web server:

Deploying Using Java Web Start

Deploying Applications 22-63

1. If not already done, create a Java Client Web Archive for Java Web Start.

2. If not already done, create an application server connection.

3. Create a simple JAR archive of your Java client application.

4. Create a Web Start JNLP Definition for Java Clients to generate the JNLP file and
HTML file for use with Java Web Start.

5. Select and right-click project in the Applications window. The context menu
displays these deployment options:

• Deploy > deployment profile > to most-recent to deploy the project to the
application server or archive file you previously chose.

• Deploy > deployment profile > to application server connection creates the
archive type specified in the deployment profile, and deploys it to the selected
application server connection.

• Deploy > deployment profile > to EAR file to deploy the project and any of its
dependencies (specified in the deployment profile) to an EAR. JDeveloper puts
the EAR file in the default directory specified in the deployment profile.

• Deploy > deployment profile to > WAR file the web module is packaged as a
WAR file and saved to the local directory you specified earlier in the
deployment profile settings.

6. (Optional) If you want to edit the web.xml deployment descriptor, right-click the
web.xml file in the Applications window and choose Open.

7. (Optional) To reopen a project deployment profile later to make changes, right-
click the project in the Applications window and choose Project Properties, then
select the name of the profile in the Deployment section of the Project Properties
dialog and click Edit.

Note:

Make sure that the web application deployment descriptor is located inside
the Web Application Archive (WAR) file, WEB-INF/web.xml.

Deploying Using Weblogic SCA Spring
The Oracle JDeveloper Weblogic SCA Spring Extension provides integrated support
for WebLogic SCA and for the open-source Spring framework.

The extension allows you to create:

• WebLogic SCA enabled projects that can be deployed as a JAR file which can then
be included in an EAR file for deployment, or as a WAR file.

• Spring framework projects.

About WebLogic SCA
The extension provides support for creating WebLogic SCA applications in JDeveloper
and deploying them in Oracle WebLogic Server. WebLogic SCA is based on a subset

Deploying Using Weblogic SCA Spring

22-64 Developing Applications with Oracle JDeveloper

of the OASIS Service Component Architecture Spring Component Implementation
Specification. For more information, see https://www.oasis-open.org.

Service Component Architecture (SCA) provides a model for building enterprise
applications and systems as modular business services that can be integrated and
reused. WebLogic SCA provides support for developing and deploying SCA
applications using POJOs (Plain Old Java Objects). In SCA, the implementation of a
component and its communication are separate. In WebLogic SCA, you can write Java
applications using POJOs and, through the different protocols available, expose
components as SCA services and access them via references. You do this using SCA
semantics configured in a Spring application context. In SCA terms, a WebLogic
Spring SCA application is a collection of POJOs plus a Spring SCA context file that
declares SCA services and references with the appropriate bindings. WebLogic Spring
SCA applications can be used without modification as components in Oracle SOA
composites.

In , WebLogic Spring SCA applications run in the WebLogic SCA Runtime. The
runtime must be deployed to WebLogic Server as a shared Web application library
before applications can be deployed to it. For more, see How to Deploy WebLogic
SCA Applications to Integrated WebLogic Server.

For more information about Oracle WebLogic SCA, see Oracle Fusion Middleware
Developing WebLogic SCA Applications for Oracle WebLogic Server.

About Spring
Spring is an open-source framework that simplifies development of enterprise Java
applications. The Spring framework includes models for various layers and
functionality areas of Java applications. It focuses on using POJOs, leverages inversion
of control concepts and dependency injection, and implements aspect oriented
programming.

The Weblogic SCA Spring Extension provides integrated support for creating open
source Spring projects in JDeveloper that can be used in Java EE applications. It adds
the Spring JAR files as a library to JDeveloper, and it adds a wizard and editing
features for creating Spring Bean configuration files. The extension creates: Adds the
Spring JAR files as the Spring 2.5 library to JDeveloper. Adds a wizard for creating
Spring Bean configuration files Registers the relevant XSDs and DTDs with the IDE to
provide a productive editing experience for Spring definitions.

For more information about Spring, see Oracle Fusion Middleware Developing and
Administering Spring Applications.

Installing the Weblogic SCA Spring Extension
To use the Oracle JDeveloper Weblogic SCA Spring Extension, you must download it
and install it. The extension adds the following to JDeveloper:

• The Spring category to the Business Tier in the New Gallery. The options for
creating the Spring Bean Configuration file and the WebLogic SCA Configurations
are available here.

• The Spring 2.5 library is added to JDeveloper, along with the JAR files of the Spring
framework and support for WebLogic SCA.

Deploying Using Weblogic SCA Spring

Deploying Applications 22-65

https://www.oasis-open.org

Using Oracle WebLogic SCA
You can use the Weblogic SCA Spring Extension to create WebLogic SCA enabled
projects that can be deployed as a JAR file which can then be included in an EAR file
for deployment, or as a WAR file.

How to Create WebLogic SCA Projects

You begin developing a WebLogic SCA project by creating the WebLogic SCA
Configuration file which acts as the control file for the application. As part of this
process, JDeveloper configures either the JAR or WAR deployment descriptor for
WebLogic SCA so that the necessary libraries are deployed to the server.

To create a WebLogic SCA application:

1. Create a Java application and project.

2. Choose File > New > New Gallery > Business Tier > Spring.

3. Choose either:

• WebLogic SCA Configuration for JAR deployment to create a project that
includes a JAR file that can be included in an EAR file for deployment.

• WebLogic SCA Configuration for WAR deployment to create a project that
includes a WAR file.

Example 22-2 What the WebLogic SCA Wizard Does

When you run the WebLogic SCA Configuration wizard, the following happens:

• An SCA definition file called spring-context.xml is created in META-INF/jsca and
opened in the JDeveloper XML source editor. You can use the advanced XML
editing framework to assist you as you edit it.

• If the project does not already contain a web.xml file one is created.

• Depending on the option you choose in the New Gallery:

– A JAR deployment descriptor is added to the project, and a dependency on the
weblogic-sca shared library is added at application level.

– A WAR deployment descriptor is added to the project, and a dependency on the
weblogic-sca shared library is added at web application level.

Example 22-3 Next Steps

Once you have created an SCA project, you can:

• Deploy the application to Oracle WebLogic Server.

• Test the application with the JDeveloper Integrated WebLogic Server.

How to Edit Oracle WebLogic SCA Definition Files

The SCA definition file created when you create a WebLogic SCA project is called
spring-context.xml, and it is created in META-INF/jsca and opened in the XML
source editor.

The following example shows the outline spring-context.xml file.

Deploying Using Weblogic SCA Spring

22-66 Developing Applications with Oracle JDeveloper

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee/spring-jee-2.5.xsd
http://www.springframework.org/schema/lang
http://www.springframework.org/schema/lang/spring-lang-2.5.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
http://www.springframework.org/schema/tool
http://www.springframework.org/schema/tool/spring-tool-2.5.xsd
http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
 <!--Spring Bean definitions go here-->

</beans>

The comment shows where you enter the bean definitions.

Use the XML source editor features, Structure window features, the Components
window, and the Properties window to navigate the hierarchy of the XML file and edit
it.

Source Editor Features

The source editor has a number of features which help you to edit an XML file.

• XML Code Insight, the XML-specific implementation of completion insight. Type <
and wait for a second, and JDeveloper will pop-up the possible entries appropriate
for that location. If the tag you chose has mandatory attributes, JDeveloper will
automatically add them.

• The XML source editor provides many features to help, for example, errors are
underlined with a curly red line.

• You can choose options from the context menu such as Find Usages, which will
display all the usages of the element in the Usages log window. You can also use
Find Usages from the Structure window.

Structure Window Features

The Structure window allows you to quickly navigate the hierarchy of the XML file,
and it also offers editing features.

• Right click on nodes in the Structure window to add more components.

• Error messages are displayed in the Structure window.

Deploying Using Weblogic SCA Spring

Deploying Applications 22-67

Components Window Features

You can select tags from the Components window and drag and drop them directly
into the source editor or the Structure window to build spring-context.xml files.

Note:

You can only drop tags in places that are correct in terms of syntax.

By default, the Components window displays all the available tags. Click All Pages
and choose just the type of tags you want to reduce the number of tags displayed. For
example, to use WebLogic SCA Bindings, choose that option at the top of the
Components window and the components listed are EJB Binding and Webservice
Binding.

Properties Window Features

The Properties window allows you to edit the properties of tags.

• Changes in the Properties window are synchronized with the source editor view.

• Lists of values are shown when they are relevant for a specific property.

How to Deploy WebLogic SCA Applications to Integrated WebLogic Server

Once you have created a WebLogic SCA project you can test the application by
quickly deploying it to the Integrated WebLogic Server.

To deploy to Integrated WebLogic Server, In the Applications window right-click
spring-context.xml under the project node in the Applications window and choose
Run, or Debug, or one of the Profiler options.

What Happens When You Run the Application in Integrated WebLogic Server

If Integrated WebLogic Server has not yet been started, the default domain is
automatically created with default settings and the server is started.

The application is deployed to Integrated WebLogic Server and the Log Window
displays messages that show the progress of the deployment.

In the Application Servers window, you can see the services deployed under the Web
Services and EJB nodes under IntegratedWebLogicServer.

How to Deploy WebLogic SCA Applications to Oracle WebLogic Server

Once you have created a WebLogic SCA project you can deploy it to Oracle WebLogic
Server.

The process is slightly different depending on whether you chose to create a JAR or a
WAR file.

Note:

Before you deploy a WebLogic SCA application to Oracle WebLogic Server,
you must install WebLogic SCA on the server. For more information, see the
chapter about deploying WebLogic SCA Runtime to WebLogic Server in the
Oracle Fusion Middleware Developing and Administering Spring Applications.

Deploying Using Weblogic SCA Spring

22-68 Developing Applications with Oracle JDeveloper

To deploy an Application Containing a WebLogic SCA WAR File to WebLogic Server,
Deploy the application as usual.

To deploy an Application Containing a WebLogic SCA JAR File to WebLogic Server:

1. Set the location of the JAR file to be either lib or APP-INF/lib and deploy it into
an EAR file.

Note:

The EAR file must contain at least one other Java EE artifact, for example a
WAR file or EJB-JAR or the deployment will fail.

2. Deploy the application as usual.

Example 22-4 What Happens When You Deploy the Application to WebLogic Server

If necessary, an EAR file is created.

The application is deployed to the WebLogic Server connection and the Log Window
displays messages that show the progress of the deployment.

In the Application Servers window, you can see the services deployed under the Web
Services and EJB nodes under the connection node for the application server.

Using Spring
The Weblogic SCA Spring Extension provides integrated support for the open-source
Spring framework. The extension adds a number of libraries to JDeveloper, and adds
support for creating Spring framework projects

How to Create Spring Bean Applications

The Weblogic SCA Spring Extension adds libraries to JDeveloper containing the JAR
files of the Spring framework. You begin developing a Spring framework application
by creating the Spring Bean Configuration file, which acts as the control file for the
application.

To create a Spring Bean Configuration file:

1. Create a Java application and project.

2. Choose File > New > New Gallery > Business Tier > Spring > Spring. Enter the
file name and directory for the Spring Bean definition file and click OK.

What Happens When You Create a Spring Bean Configuration File

When you create a Spring Bean Configuration from the Spring category in the
Business Tier of the New Gallery, the Spring 2.5 and Commons Logging 1.0.4 libraries
are automatically added to the project. You can access the library definitions by
choosing Project Properties from the context menu of the project in the Applications
window, and then choosing Libraries and Classpath.

The Spring Bean Configuration file, beans.xml, is created in META-INF/jsca and
opened in the XML source editor. You can use the advanced XML editing framework
to assist you as you edit it.

Deploying Using Weblogic SCA Spring

Deploying Applications 22-69

Troubleshooting Deployment
There a number of common problems that you may come across when deploying
applications. This topic describes them and their solutions. It is divided into issues that
may arise when deploying to both Integrated WebLogic Server and Oracle WebLogic
Server, and issues that are specific to one or other type of deployment

Common Deployment Issues
This section contains information about issues that may arise when deploying to both
Integrated WebLogic Server and Oracle WebLogic Server.

[Deployer: 149164] The domain edit lock is owned by another session in exclusive
mode - hence this deployment operation cannot proceed

Oracle WebLogic Server instances use the domain edit lock to make sure that only one
user can deploy applications and change configurations at one time, and this message
is displayed when another deployment is going on at the same time (only one
deployment at a time is allowed), or some change has been made in the WebLogic
Server Administration Console that has not been activated. Rarely, this message may
also appear when you are running an application on Integrated WebLogic Server.

To activate a change in the WebLogic Server Administration Console:

1. Log in to the Administration Console.

2. In the Change Center, at the upper left of the console, click View changes and
restarts.

3. In the Changes and Restarts section, ensure that the Change List tab is selected, and
activate any pending changes.

4. Select the Restart Checklist tab, and select the server to restart, and click Start.

To enable or disable the domain configuration locking feature, see the section about
enabling and disabling the domain configuration lock in the Administration Console
Online Help, which is available from the WebLogic Server online documentation in
your JDeveloper installation, or from the Administration Console.

If the error has appeared when you are deploying to Integrated WebLogic Server, you
can check the Administration Console to determine what the problem is.

How to Troubleshoot Deployment to Integrated Application Servers
This section contains information about issues that are specific to running on
integrated application servers.

Stopping Integrated Application Server

If you need to stop integrated application server, for example, to clear out an
orphaned WebLogic Server instance that was created and left running from an earlier
JDeveloper session, and you are unable to do so from within JDeveloper, go to
jdeveloper-user-home/DefaultDomain/bin, and run stopWebLogic.cmd (on
Windows) or stopWebLogic.sh (on Linux). This gracefully shuts down the
integrated application server so that it will not conflict with subsequent attempts to
launch the integrated application server from JDeveloper.

Troubleshooting Deployment

22-70 Developing Applications with Oracle JDeveloper

You can force shutdown of an instance that is still actively under the JDeveloper
control (that is, not orphaned) by pressing the Terminate button twice.

Running Out of Memory

If you run multiple applications on Integrated WebLogic Server, you may run out of
memory and see the java.lang.OutOfMemoryError: PermGen space exception.
To avoid this, increase the MEM_MAX_PERM_SIZE from the default of 128m to 256m,
512m, or higher. This is set in setStartupEnv.cmd (Windows) or
setDomainEnv.sh (Linux), which is located at jdeveloper-user-home/
DefaultDomain/bin.

You first need to stop Integrated WebLogic Server using one of the methods described
above.

Reinstalling JDeveloper in a Different Location

If you reinstall JDeveloper into a new location, you may find that you have problems
because the integrated application server uses some hard-coded references to
JDeveloper. You must do one of:

• Set JDEV_USER_DIR to use a new system directory. This is described in "Setting
the User Home Directory" in the Oracle Fusion Middleware Installing Oracle
JDeveloper.

• Delete the old system directory, so that JDeveloper regenerates a new system
directory.

• In the Application Servers window, right-click on IntegratedWebLogicServer and
select Delete Default Domain.

How to Troubleshoot Deployment to Oracle WebLogic Server
This section contains information about issues that are specific to deploying to Oracle
WebLogic Server.

ORA-01005: null password given; logon denied

This is usually caused by a blank password in the <encrypted-password> entry of
the application-name-jdbc.xml file or no <encrypted-password> entry at all.

ORA-01017: invalid username/password; logon denied

This is usually caused by the wrong password in the <encrypted-password> entry
of the application-name-jdbc.xml file.

[Oracle JDBC Driver] Kerberos Authentication was requested, but is not supported
by this Oracle Server

This will cause logon to be denied, and it is due to using the Oracle WebLogic Server
database driver, weblogic.jdbcx.oracle.OracleDataSource. This driver is not certified
by Oracle and should not be used.

Application Does Not Work After Creating a Global Data Source from the Oracle
WebLogic Server Administration Console

Make sure there is a target domain selected for the data source. If you clicked Finish
before the last panel of the wizard, then this was not done.

Troubleshooting Deployment

Deploying Applications 22-71

Also, make sure that the Java naming lookup call is correct if you are using a lookup in
Java code. For example, if the connection name is connection1, the naming lookup
should be java:comp/env/jdbc/connection1DS.

Redeploying an Application to a Server that is Down

You can only deploy an application once to a server that is down.

If you attempt to redeploy the same application to the same down server a second
time, deployment fails with the following log message:

[03:29:47 PM] ---- Deployment started. ----
[03:29:47 PM] Target platform is (Weblogic 10.3).
[03:29:47 PM] Retrieving existing application information
[03:29:47 PM] Running dependency analysis...
[03:29:47 PM] Building...
[03:29:50 PM] Deploying 2 profiles...
[03:29:50 PM] Wrote Web Application Module to /path/oracle/jdeveloper/jdev/mywork/
Application1/Project1/deploy/webapp1.war
[03:29:50 PM] Wrote Enterprise Application Module to /path/oracle/jdeveloper/jdev/
mywork/Application1/application1.ear
[03:29:50 PM] Redeploying Application...
[03:29:50 PM] [Deployer:149034]An exception occurred for task [Deployer:
149026]deploy application application1 on Server-1.: [DeploymentService:
290049]Deploy failed for id '1,244,759,390,503' since no targets are reachable..
[03:29:50 PM] Weblogic Server Exception: java.lang.Exception: [DeploymentService:
290049]Deploy failed for id '1,244,759,390,503' since no targets are reachable.
[03:29:50 PM] See server logs or server console for more details.
[03:29:50 PM] java.lang.Exception: [DeploymentService:290049]Deploy failed for id
'1,244,759,390,503' since no targets are reachable.
[03:29:50 PM] #### Deployment incomplete. ####
[03:29:50 PM] Remote deployment failed

Attempting to Deploy to a Server that No Longer Exists

When you have successfully deployed an application to a Managed Server, the
deployment wizard saves this deployment action in its history so that you can perform
the same action later. However, if the Managed Server is removed from your Oracle
WebLogic Server domain and you subsequently deploy using the deployment history
action, deployment fails with the following log message:

[02:38:40 PM] ---- Deployment started. ----
[02:38:40 PM] Target platform is (Weblogic 10.3).
[02:38:40 PM] Retrieving existing application information
[02:38:40 PM] #### Deployment incomplete. ####
[02:38:40 PM] [J2EE Deployment SPI:260013]Target array passed to DeploymentManager
was null or empty.

Deploying to a remove server fails with HTTP Error Code 502

If you are deploying to a server running on a machine that is not known to the
network DNS server, and you have set a proxy for JDeveloper, deployment will fail
with a 502 HTTP error code. This is because the proxy does not know where to
forward the request. This will also happen if you are deploying to a server on the
localhost that is referred to by its machine name, which typically happens with SOA
development.

To avoid this happening either add the machine to the Exceptions list in the proxy
settings in the Web Browser and Proxy page of the Preferences dialog, or choose not to
use a HTTP Proxy Server for any connections.

Troubleshooting Deployment

22-72 Developing Applications with Oracle JDeveloper

No Credential Mapper Entry Found

If you see the following message, it usually means that an EAR using password
indirection did not have the passwords injected via mbeans before deployment.

weblogic.common.ResourceException: No credential mapper entry found for password
indirection user=scott for data source Connection1

This usually happens when trying to deploy an EAR manually from the console or
from an ant script.

How to Troubleshoot Deployment to IBM WebSphere
This section contains information about issues that may arise when deploying to both
Integrated WebLogic Server and Oracle WebLogic Server.

Deployment Fails When EAR Contains Spaces

WebSphere deployment on Windows does not work when the directory containing
the EAR generated by JDeveloper contains spaces.

Deployment Fails When the Path to the WebSphere Server Contains Spaces

WebSphere deployment on Windows does not work when the path to wsadmin.bat
contains spaces. See Connecting to WebSphere Server.

Application Displays Administrative Console User Name

When you deploy your application to IBM WebSphere application servers and use the
same machine to log into the WebSphere administrative console, your application may
display the name of the user logged into the administrative console, instead of the
name of the user who logs into the application.

Troubleshooting Deployment

Deploying Applications 22-73

Troubleshooting Deployment

22-74 Developing Applications with Oracle JDeveloper

23
Getting Started with Working with

Databases

This chapter describes how to get started using JDeveloper to work with databases.

This chapter includes the following sections:

• About Working with Databases

• Getting Started With Oracle Database Express Edition

• How to Manage Database Preferences and Properties

About Working with Databases
JDeveloper enables you to work with Oracle and non-Oracle databases directly, and to
design, create, and edit databases by working with offline database definitions.

Refer to the following documentation to quickly get started with using Oracle
databases in JDeveloper:

• Using Oracle Database 11g Express Edition. For more information, see Getting
Started With Oracle Database Express Edition.

• Creating connections to Oracle and non-Oracle databases. For more information,
see Connecting to Databases.

• Working in the Databases window. For more information, see Using the Databases
Window.

• Database Development with JDeveloper. For more information, see "Database
Development" at http://docs.oracle.com/cd/E18941_01/tutorials/
toc.htm.

Connecting to and Working with Databases
Usually you start working with a database by creating a connection to it, or by
importing an existing connection. JDeveloper helps you quickly to create connections
to Oracle databases, and you can also connect to and work with a number of non-
Oracle databases. Once you have a database connection you can search for database
objects in the Databases window, or use the search tools to find specific objects, or
compare databases and their contents. You can also edit data and import and export
data, and you can create reports about the database and objects in it.

Designing Databases
You can work directly with databases through a database connection using the
integrated tools in JDeveloper which include SQL Worksheet and the database object

Getting Started with Working with Databases 23-1

http://docs.oracle.com/cd/E18941_01/tutorials/toc.htm
http://docs.oracle.com/cd/E18941_01/tutorials/toc.htm

editors. Alternatively, you can create an offline database and working either in the
Applications window or the database modeler you can work with offline database
definitions to model the database and then generate the results to a database through a
database connection.

Database connections can be listed in the Applications window or Databases window,
where they are available to applications you are working on, or in the Resources
window, where they are available for reuse in other applications.

Once you have a database connection, you can:

• Browse and search databases for specific objects.

• Produce reports about databases and their contents.

• Import and export data.

• Copy, compare and export databases.

You can work with offline databases, which you can model on the database modeler
or work with in the Applications window.

You can create, edit, and drop objects in a database or in an offline database.

You can write and execute Java programs using JDBC that access Oracle and non-
Oracle databases.

If you are new to using databases with JDeveloper, one of the easiest ways to get
started is to try out Oracle Database 11g Express Edition (Oracle Database XE).

Getting Started With Oracle Database Express Edition
If you are new to using databases with JDeveloper, one of the easiest ways to get
started is to try out Oracle Database 11g Express Edition (Oracle Database XE). Oracle
Database XE is an entry-level, small-footprint database based on the Oracle Database
11g Release 2 code base. It is free to develop, deploy, and distribute; fast to download;
and simple to administer. You can download it from Getting Started: Oracle Database
Express Edition (XE), which is available at http://www.oracle.com/
technetwork/database/express-edition/overview/index.html

After you have downloaded and installed Oracle Database XE, use the Oracle
Database Express Edition and Oracle Application Express documentation to create
and administer users, and unlock the sample user, HR. You may want to grant
additional privileges, for example to create tables and materialized views. Now you
can create a database connection from JDeveloper to the sample user. How?

In the Create Database Connection dialog, use the following values. Leave blank any
fields that are not mentioned.

Table 23-1 Connection details for Oracle Database Express Edition

Field Value

Create Connection In Choose Application resources. The connection will be
displayed in the Applications window, under Application
Resources.

Connection Name Enter a meaningful name for this connection.

Connection Type Oracle (JDBC) (default).

Getting Started With Oracle Database Express Edition

23-2 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technetwork/database/express-edition/overview/index.html
http://www.oracle.com/technetwork/database/express-edition/overview/index.html

Table 23-1 (Cont.) Connection details for Oracle Database Express Edition

Field Value

Username HR to use the sample user. If you have created a new database
user, enter the name of that user.

Password Enter the password you entered when you unlocked the sample
user or created a new user.

Save Password Selected (default).

Driver thin (default)

Host Name When Oracle Database XE is installed on the local system use
the default of localhost or 127.0.0.1. Otherwise enter the
IP address or resolvable hostname of the machine where it is
installed.

JDBC Port 1521 (default)

SID XE (default)

Click Test Connection at the bottom of the dialog. Success! indicates that you have
a connection to the database. If you get any other message, check that you have
entered the values above correctly, and check that the Oracle Database XE has started.

How to Manage Database Preferences and Properties
There are a number of preferences that allows you to control how to use the database
functionality in JDeveloper. These are available in the Preferences dialog, available
from the Tools menu:

Table 23-2

Node in Preferences
Dialog

Values that can be set

Database Choose not to have date and time default values validated.

Set the default path for export DDL files.

Database: Advanced Set options such as the SQL array fetch size and display options
for null values.

Database: Autotrace/
Explain Plan

Specify the information to be displayed on the Autotrace and
Explain Plan pages in the SQL Worksheet.

Database: Drag and Drop Specify the type of SQL statement created in the SQL
Worksheet when you drag an object from the Databases
window into the SQL Worksheet.

How to Manage Database Preferences and Properties

Getting Started with Working with Databases 23-3

Table 23-2 (Cont.)

Node in Preferences
Dialog

Values that can be set

Database: Licensing Some JDeveloper features require that licenses for specific
Oracle Database options be in effect for the database connection
that will use the feature. This page enables you to specify, for
each defined connection, whether the database has the Oracle
Change Management Pack, the Oracle Tuning Pack, and the
Oracle Diagnostics Pack.

For each cell in this display (combination of license and
connection), the value can be true (checked box), false (cleared
box), or unspecified (solid-filled box).

If an option is specified as true for a connection in this pane,
you will not be prompted with a message about the option
being required when you use that connection for a feature that
requires the option.

Database: Navigation Filter Specify the type of SQL statement created in the SQL
Worksheet when you drag an object from the Databases
window into the SQL Worksheet.

Control the types of objects that appear in the Databases
window for connections to Oracle and third-party databases.

Select Enable Navigation Tree Filtering to choose the tab for
the database type you want. For each type you can select the
types of objects to appear in the hierarchy for connections to
that type of database.

Database: JDBC Driver
Options

Register and manage JDBC drivers for the BI JDBC driver, and
the WebLogic JDBC drivers for DB2, Informix, SQL Server and
Sybase.

Database: NLS Specify globalization support parameters, such as the language,
territory, sort preference, and date format.

Database: ObjectViewer Specify whether to freeze object viewer windows, and display
options for the output.

Database: PL/SQL
Compiler

Specify options for compilation of PL/SQL subprograms.

Database: Reports Choose that database reports in JDeveloper are closed when the
database is disconnected.

Select the limit for the number of rows for a chart. The default is
1,000.

Database: SQL*Plus Set the path to the SQL*Plus command line tool.

Database: SQL Editor Code
Templates

View, add, and remove templates for editing SQL and PL/SQL
code. Code templates assist you in writing code more quickly
and efficiently by inserting text for commonly used statements.

How to Manage Database Preferences and Properties

23-4 Developing Applications with Oracle JDeveloper

Table 23-2 (Cont.)

Node in Preferences
Dialog

Values that can be set

Database: SQL Formatter Allows you to control how statements in the SQL Worksheet
are formatted.

Database: User Defined
Extensions

(Not used by JDeveloper.)

Database: Utilities Provides default values for utility wizards and editors

Database: Worksheet Specify options for the SQL Worksheet.

Diagrams: Database Set preferences that control how diagrams are displayed.

To manage database preferences in the Preferences dialog:

1. Choose Tools > Preferences.

2. From the Preferences page, select the page you want. For more information at any
time, press F1 or click Help from within the dialog.

To manage properties in the Project Properties dialog:

1. Choose Application > Project Properties (to change or specify a property for just
the current project), or Default Project Properties (to set default properties).

2. In the dialog, choose the page you want. For more information at any time, press
F1 or click Help from within the dialog.

As well as managing these preferences and properties, you can also filter schemas or
objects in a database connection to just see the ones you want.

How to Manage Database Preferences and Properties

Getting Started with Working with Databases 23-5

How to Manage Database Preferences and Properties

23-6 Developing Applications with Oracle JDeveloper

24
Using the Database Tools

This chapter provides an introduction to the various tools that JDeveloper uses to help
you work with and manage databases.

This chapter includes the following sections:

• Using the Databases Window

• Using the Database Cart

• Using the Structure Window

• Using the Database Reports Window

• Using the Find Database Object Window

• Using the SQL Worksheet

• Using the SQL History Window

• Using the Snippets Window

• Using the Database Object Viewer

• Using the PL/SQL Source Editor

• Using SQL*Plus

• DBMS Output Window

• OWA Output Window

Using the Databases Window
The Databases window provides you with a complete editing environment for online
databases. You can create, update and delete database objects using the Databases
window.

The Databases window is integrated with:

• The SQL Worksheet. More

• The Database Object Viewer. More

• The Database Cart. More

You can drag database objects from a database connection onto a database diagram to
either:

• Model the database objects on the diagram.

Using the Database Tools 24-1

• Reverse engineer database objects to a project, and model the offline database
objects on the diagram.

For more information about database modeling, see Modeling with Database
Diagrams .

When you first open the Databases window, it appears in the default docked position,
which is in the upper left-hand corner, flush with the main work area of JDeveloper.
When more than one window is open in the same position, each appears with a tab
displaying its name.

The top-level nodes in the Databases window are:

• IDE Connections. These are globally defined connections available for reuse, and
the connections are also listed in the IDE Connections panel of the Resources
window from where you can copy IDE connections to the Applications window to
use them within an application. More

• Application Connections. These are connections defined for use in the applications
named in the connection node.

• Cloud Connections. These are connections to Oracle Database Cloud Service
instances.

Right-click on a node within the Databases window to bring up a context-sensitive
menu of commands. The menu commands available depend on the node selected. You
can open nodes in their default editors, as well as other editors common to that node
type, using the context menu.

Table 24-1 Databases Window Toolbar Icons

Icon Name Function

New
Connection

Click to open the Create Database Connection wizard, where you
enter the details to create a connection to a database.

Refresh Click to synchronize the display in the Databases window with the
contents of the connection.

Apply
Filter

Click to filter which objects will be displayed for a given
connection. To enable the icon, select a node within the connection
in the Databases window and wait for the connection to be
established.

Collapse
All

Click to collapse all expanded nodes.

You can perform various tasks from the context menus in the Databases window.
Right-click the IDE Connections node (for globally defined connections) or an
application name node (for connections that are locally-scoped, and just available
within the application) and select the appropriate menu item to:

• Create a new database connection.

• Import an XML file with connection definitions.

• Export current connections.

You can perform the following operations from a database connection node:

Using the Databases Window

24-2 Developing Applications with Oracle JDeveloper

• Connect to and disconnect from the database.

• Delete the database connection.

• Generate SQL from database objects.

• Reverse engineer database objects as offline database objects to a project.

• Run SQL*Plus.

• Filter the objects displayed in the connection.

• Edit the database connection properties.

• Open the SQL Worksheet.

• Generate DB doc

• Remote Debug

• Gather Schema Statistics

• Recompile Schema

• XML DB Protocol server configuration

• Perform remote debugging if you are using the Java Platform Debugger
Architecture (JPDA) using a debugger to listen so that a debuggee can attach to the
debugger.

There are additional options available from database object type nodes (for example,
Tables, Indexes, or Procedures) or from database object nodes (such as a specific table,
or a specific view). The options available depend on the node selected.

Using the Database Cart
The Database Cart allows you to deploy Oracle Database objects from one or more
database connections to an Oracle Database Service instance, or to a ZIP file.

Note:

You cannot use the Database Cart to work with offline database objects.

You can choose to deploy:

• Just the DDL defining database objects

• DDL defining the database objects and the associated data

• Just data, for database objects that already exist in the Oracle Database Service
instance

You add objects to the cart by dragging objects from the Databases window and
dropping them into the Database Cart window. Alternatively, you can use the
contents of a cart that you have previously saved.

From the cart, specify any desired options, and do one of:

Using the Database Cart

Using the Database Tools 24-3

• Click Deploy to Cloud button to display the Deploy Objects to Cloud dialog, where
you choose the connection to deploy the objects to.

• Click the Deploy button to display the Deploy Objects dialog where you specify
details of the deployment file to generate.

Before you use the Database Cart, ensure that you have correctly set the preferences
you want to use.

From any cart tab, you can right-click and choose:

• Close: Closes the current cart tab.

• Close Others: Closes all cart tabs except the current one.

• Close All: Closes all cart tabs.

• Rename: Renames the current cart tab (for example, if you wanted to change
Cart_1 to HR_objects).

Table 24-2 describes the operations you can perform from the Database Cart Window
toolbar.

Table 24-2 Database Cart Window Toolbar

Element Description

Click to open a new empty cart.

Click to open a saved cart by specifying the XML file that
specifies the cart contents. How?

If the cart currently contains any objects, you are asked if you
want to remove the current objects from the cart before opening
a saved cart.

• Yes

Empties the current cart and fills the cart with objects from
the cart you are opening.

• No

Does not empty the current cart, but adds the objects from
the cart you are opening to the current cart objects.

Click to open the Save as Cart dialog, where you can save the
contents of a cart as an XML file which you can later open and
use again.

Click to open the Save as Cart dialog, where you can save the
contents of a cart as an XML file which you can later open and
use again.

Click to open a Save as Cart dialog for each currently open cart.

Click to bring the cart to the left to the front.

Click to bring the cart to the right to the front.

Click to refresh the cart and validate the objects in the cart
against those in the Databases window.

Using the Database Cart

24-4 Developing Applications with Oracle JDeveloper

Table 24-2 (Cont.) Database Cart Window Toolbar

Element Description

Click to deploy the selected objects in the cart to an Oracle
Database connection.

The Deploy Objects to dialog opens where you can specify
additional information.

Click to create a deployment file.

The Export Objects dialog opens where you can specify
additional options, generate the deployment scripts, and
optionally generate a .zip file that contains them.

Click to open the Diff Objects dialog, which allows you to
compare the selected objects with the objects in another
currently open cart tab or a database connection that has access
to the destination objects to be compared.

Click to open the Copy Objects dialog, which allows you to
copy the selected objects to a database connection.

Table 24-3 describes the operations you can perform from the Selected Objects toolbar.

Table 24-3 Selected Objects Toolbar

Element Description

Click to add an initial script to be run before the object is
created.

Alternatively, click the down arrow next to the icon and choose
from:

• Add Initial Script
• Add Final Script, which is run after the object is created.
Alternatively, you can open a scripts dialog by moving the
cursor to the Scripts field on the row for the object, and clicking

the button.

Click to remove the selected row from the cart.

Initially database objects are shown in order of type, by owner, by name. You can
reorder the rows using the shuttle buttons. Table 24-4 describes the content of the
table.

Table 24-4 Selected Objects Table

Element Description

Include Either select or deselect objects row by row, or select or deselect
in the column header for all objects.

Selected objects will be included in the deployment action.

Type The type of the database object.

Owner The owning schema of the database object.

Using the Database Cart

Using the Database Tools 24-5

Table 24-4 (Cont.) Selected Objects Table

Element Description

Name The name of the database object.

DDL Either select or deselect objects row by row, or select or deselect
in the column header for all objects.

Selected objects will be included in the DDL generated by the
deployment action.

Data Either select or deselect objects row by row, or select or deselect
in the column header for all objects. Only objects that have
associated data have an entry in this column, for example
tables, views.

Selected objects will be included in the DDL generated by the
deployment action.

Where You can add a WHERE clause. Click in the cell for the
appropriate row, then click the edit button. The Data Where
dialog opens where you can specify the WHERE conditions.

Connection The connection from which the object was selected.

Scripts Optionally specify a SQL script to be executed first in the
generated master deployment script (before the other generated
scripts).

Using the Structure Window
The database view of the Structure window displays details of a connection or
database object selected in the Databases window, or an offline database object
selected in the Applications window.

For an offline database, the Structure window displays details of offline database
objects such as tables, views, synonyms. When you select the object in the Applications
window, details of the object are shown in the Structures window, as shown in Figure
24-1.

Using the Structure Window

24-6 Developing Applications with Oracle JDeveloper

Figure 24-1 Structure Window View of Offline Database Object

From the context menu of the offline database object, you can perform the following
actions:

• Find Usages

• Use as Template

• Properties

• Go to Declaration

When you are working with database objects that have been reverse engineered from
a database connection the Structure window can show you information about the
original objects. For example, a table reverse engineered from an online database
connection will display details of the source object and the connection used, as shown
in Figure 24-2.

Using the Structure Window

Using the Database Tools 24-7

Figure 24-2 Reverse Engineered Object in Structure Window

When you select a database object such as a table in a database connection in the
Databases window or an offline database object such as a table in an offline database
in the Applications window, a node for that object is shown in the Structure window.
You can expand the node to see details of the sub objects that make up the database
object. In the case of a table, these include sub objects such as columns, constraints,
and indexes.

You can perform the following operations from the database view of the Structure
window:

• View properties or edit properties (offline database objects only) by choosing
Properties from the context menu of an appropriate node. The Edit dialog for the
object type opens. It is read only for database objects.

• Use a database object or offline database object such as a table as a template to
create a new object by choosing Use as Template from the context menu. The
Create dialog for the object type opens.

• Find usages of an offline database object such as a table by choosing Find Usages
from the context menu.

Using the Database Reports Window
Use the Database Reports window to view reports about the database and its objects.

You can also create your own user defined reports.

Using the Database Reports Window

24-8 Developing Applications with Oracle JDeveloper

To open a pre-defined report, expand Data Dictionary Reports and navigate to the
report you want. Double-click the report name to run it. A number of dialogs may be
displayed before the report is opened in the Reports Results window:

• Select Connection dialog (all reports), where you can choose an existing database
connection or create a new database connection. Once you have chosen the
connection, the same connection is used for subsequent reports you run.

• Enter Bind Values dialog (All Objects reports), where you can enter values for each
bind variable. Bind variables enable you to restrict the output.

• Diagnostic Pack Required dialog (ASH and AWR reports). You must have a
licensed copy of Oracle Diagnostic Pack running on the database to run these
reports, and the dialog allows you to confirm that you have one.

You can create your own reports and store them in folders and sub-folders under the
User Defined Reports node.

Some reports may take some time to run, and the time is affected by the number and
complexity of objects involved, and by the speed of the network connection to the
database.

From the Data Dictionary Reports node you can:

• Export a report into an XML file that can be imported later by right-clicking the
report name and choosing Export.

• Create a shared report from an exported report.

User Defined reports are any reports that are created by JDeveloper users.

Information about user defined reports, including any folders for these reports, is
stored in UserReports.xml in the directory for user-specific information.

You can perform the following operations from the User Defined Reports node:

• Create a user defined report by choosing Add Report from the User Defined
Reports context menu.

• Organize user defined reports in folders, and create a hierarchy of folders and
subfolders. Choose Add Folder from the User Defined Reports context menu.

• Import a report that had previously been exported. Select report folder in which to
store the imported report, right-click, and select Import.

The Shared Reports node is displayed once you have defined the first shared report in
the Preferences dialog.

For more information about creating and sharing database reports, see Working with
Database Reports.

Using the Find Database Object Window
The Find Database Object Window allows you to search for and work on database
objects within a live database.

The Find Database Object Window is fully integrated with the online database
functionality, including the SQL Worksheet and the Database Object Viewer.

While you are using the Find Database Object Window these features are available:

Using the Find Database Object Window

Using the Database Tools 24-9

• Open any currently closed window, or bring a currently open window to the
foreground, using Window > window-name.

• Move, resize, float, minimize, maximize, restore or close the Find Database Object
Window using the context menu available by right-clicking its tab or by pressing
Alt+Minus.

Table 24-5 Find Database Object Toolbar

Name Function

Connection Choose the database connection to search in from the
dropdown list. You must already have a connection to the
database.

Name Enter the search term. You can use the wildcard % to return a
number of matching objects.

Type Choose the type of database object to restrict the search to. The
default is ALL OBJECTS.

Usage Only for certain types of object. Choose the usage of the object,
for example ALL.

Lookup Click to display the results of the search. The results of the
search are displayed in the panel. Double-click on an object to
open it in the appropriate editor.

You can perform the following tasks from the Find Database Object window:

• Close or open the panel by clicking its bar.

• Change the area used by the panel by grabbing its bar and moving it up or down.

• Remove the panel from view by opening its dropdown menu (panel bar, far right)
and choosing Minimize. Restore it by clicking the three dots at the very bottom of
the Applications window and then clicking Recent Files.

• Open an object, or the parent object that contains the specified object, in its default
editor, or bring the default editor into focus, by selecting the object in the list.

Using the SQL Worksheet
Use to enter and execute SQL, PL/SQL, and SQL*Plus statements. You can specify any
actions that can be processed by the database connection associated with the
worksheet, such as creating a table, inserting data, creating and editing a trigger,
selecting data from a table, and saving that data to a file.

You enter SQL statements in the SQL Statement area, and use the buttons on the
toolbar to perform actions.

Table 24-6 describes the icons and fields in the toolbar above the SQL Worksheet
statement area.

Using the SQL Worksheet

24-10 Developing Applications with Oracle JDeveloper

Table 24-6 Icons in the SQL Worksheet Toolbar

Icon Name Function

Run
Statement
(Ctrl+Enter)

Click to execute the statement at the mouse pointer in the SQL
statement area. The SQL statements can include bind variables
and substitution variables of type VARCHAR2. If necessary,
VARCHAR2 is automatically converted to NUMBER. If you use
variable values, a window is displayed for you to enter them.

Run Script
(F5)

Click to execute all statements in the SQL statement area. The
SQL statements can include bind variables and substitution
variables of type VARCHAR2. If necessary, VARCHAR2 is
automatically converted to NUMBER. If you use variable values, a
window is displayed for you to enter them.

Autotrace
(F6)

Click to generate trace information for the statement. To see trace
information, click the Autotrace tab.

SQL Tuning
Advisor (Ctrl
+ F12)

Opens a window that runs the SQL Tuning Advisor, which is
SQL diagnostic software in the Oracle Database Tuning Pack. The
Overview and Details tabs include advice or recommendations
for how to tune the specified statement, along with a rationale
and expected benefit.

Explain Plan
(F10)

Click to generate the execution plan for the statement, which
internally executes the EXPLAIN PLAN statement. Trace
information is shown in the Explain Plan Results window.

Commit (F11) Click to write any changes to the database. This ends the
transaction and clears any output in the Results and Script
Output tabs.

Rollback
(F12)

Click to discard any changes without writing them to the
database. This ends the transaction and clears any output in the
Results and Script Output tabs.

Unshared
SQL
Worksheet
(Ctrl+Shift
+N)

Click to open a new unshared SQL Worksheet for a different
connection.

To Upper/
Lower/Inicat
(Ctrl+Quote)

Click to switch the selected text between upper case, lower case,
and initial capitals.

Clear (Ctrl
+D)

Click to erase the statement or statements in the Enter SQL
Statement area.

Cancel (Only displayed while a script is running) Click to stop execution
of the script.

SQL History Click to open the SQL History window.

(Only displayed once a statement or script has run) Displays the
time it took to execute a statement or run a script. This can be
used with Explain Plan to provide useful tuning information.

Using the SQL Worksheet

Using the Database Tools 24-11

Table 24-6 (Cont.) Icons in the SQL Worksheet Toolbar

Icon Name Function

Use to choose a different database connection.

The results area has a number of tabs:

• Results tab, Displays the results of clicking Run Statement.

• Script Output tab, which displays the results of clicking Run Script.

• Autotrace tab, which displays output as a result of clicking Autotrace.

• Explain tab, which displays output as a result of clicking Explain Plan.

The SQL Worksheet provides code insight for SQL code. When you type a word, a
dropdown menu of valid code appears. For example:

• If you type select, SELECT is displayed.

• If you type select *, a list containing BULK, FROM, and INTO is displayed.

• If you are connected to the HR schema and type select * from em, a list
containing the table employees and the view emp_details_view is displayed.

To configure Code Insight for the SQL Worksheet:

1. Select Tools > Preferences > Code Editor > Code Insight.

2. In the Code Insight page, adjust font size or font type, and completion insight and
parameter insight timing.

3. Click OK. Your changes are active the next time you use the editor.

To open the SQL Worksheet:

1. Choose Window > Database > Databases window.

2. Expand IDE Connections or Application Connections.

3. Right-click the connection in the window, and choose Open SQL Worksheet.

Alternatively, click the SQL Worksheet button on the JDeveloper toolbar.

For more information at any time, press F1 or choose Help from within the SQL
Worksheet.

Alternatively, from the main toolbar, click and choose the database connection from
the Choose Connection dialog.

You can create a SELECT statement by dragging and dropping table and view names,
and by graphically specifying columns and other elements of the query using Query
Builder. You can run the statement within Query Builder to see the results, and when
you close Query Builder, the resulting SELECT statement is inserted into the SQL
Worksheet.

To use Query Builder:

1. Open the SQL Worksheet.

Using the SQL Worksheet

24-12 Developing Applications with Oracle JDeveloper

2. Select the Query Builder tab. For more information at any time, press F1 or click
Help from within the SQL Worksheet.

3. Select the schema you want, and drag the table you want to base the query on
onto the main pane of the dialog. There will be a delay of a few seconds while
Query Builder connects to the database and loads information about the table.

4. The first time, you are prompted to choose the type of statement you want to use.

5. Use the SQL Worksheet buttons to perform the action you want, for example to
run a query.

To execute a SQL statement:

1. Enter a SQL statement in the worksheet's upper pane.

2. Do any one of the following:

• Press Ctrl+Enter.

• Click the Execute the statement button on the toolbar.

• Right-click, and select Execute SQL Statement from the context menu.

3. View the data returned by the statement in the lower pane.

For more information, see "Using the SQL Worksheet" in the Oracle® Database SQLJ
Developer's Guide.

Using Execution Plan
An execution plan is the sequence of operations that will be performed to execute the
statement, and you can use the SQL Worksheet to inspect the execution plans chosen
by the Oracle optimizer for SQL SELECT, UPDATE, INSERT, and DELETE statements.
You can also view explain plan for the SQL code for the query part of a view
definition.

An execution plan shows a row source tree, which is the hierarchy of operations that
comprise the statement. For each operation it shows the following information:

• An ordering of the tables referenced by the statement

• An access method for each table mentioned in the statement

• A join method for tables affected by join operations in the statement

• Data operations such as filter, sort, or aggregation

In addition to the row source tree, the plan table displays the following information
about selected operations:

• Optimization, such as the cost and cardinality of each operation

• Partitioning, such as the set of accessed partitions

• Parallel execution, such as the distribution method of join inputs

For more information, see "Using EXPLAIN PLAN" in the Oracle® Database SQL
Tuning Guide.

Using the SQL Worksheet

Using the Database Tools 24-13

An additional source of information that can be used to tune SQL queries is the
elapsed time that is displayed in the toolbar of the SQL Worksheet when statements
are executed or scripts are run.

To view a SQL statement's execution plan:

1. If necessary, open the SQL Worksheet.

2. Enter a SQL statement in the worksheet's upper pane.

3. Do one of the following:

• Click the Explain Plan button on the toolbar.

• Right-click to open the context menu, and select Execute Explain Plan.

The Explain Plan tab shows the explain plan information for the SQL statement.

How to Recall Statements from the SQL Worksheet History
The statements executed in a session with the SQL Worksheet are preserved in a
history list. You can retrieve previous statements from the history, and re-execute
them or view their execution plans.

To recall a statement from the SQL Worksheet history:

1. Do either of the following:

• Click the SQL History button.

• Right-click in the SQL Worksheet to open the context menu, and select History.

A window showing the list of the statements previously entered is displayed.

2. Select the desired statement from the window.

3. Click OK.

The statement is displayed in the upper pane of the worksheet.

Using the SQL History Window
The SQL History Window allows you to reuse statements previously executed in a
session with the SQL Worksheet.

SQL statements and scripts that you have executed are listed in the window, and you
can select one or more statements to have them either replace the statements currently
on the SQL Worksheet or be added to the statements currently on the SQL Worksheet.

While you are using the SQL History Window these features are available:

• Open any currently closed window, or bring a currently open window to the
foreground, by choosing it from the Window menu.

• Move, size, float, minimize, maximize, restore or close the Find Database Object
Window using the context menu available by right-clicking its tab or by pressing
Alt+Minus.

Using the SQL History Window

24-14 Developing Applications with Oracle JDeveloper

Table 24-7 SQL History Toolbar Icons

Icon Name Function

Append Click to append the selected statement or statements to any
statements currently on the SQL Worksheet. You can also append
the selected statement or statements by dragging them from the
SQL History window and dropping them at the desired location on
the SQL Worksheet.

Replace Click to replace any statements currently on the SQL Worksheet
with the selected statement or statements.

Clear
History

Click to remove all statements from the SQL history.

Filter Use to filter the SQL statements visible in the SQL History
window. Type a string in the text box and click Filter. Only SQL
statements containing that string are listed. To remove the filter,
delete the string in the field and click Filter again.

Using the Snippets Window
Snippets are code fragments, such as SQL functions, Optimizer hints, and
miscellaneous PL/SQL programming techniques. Some snippets are just syntax, and
others are examples. The Snippets Window is integrated with the SQL Worksheet and
when you are creating or editing a PL/SQL function or procedure.

In the Snippets Window, the snippets are organized in categories in the drop-down
list, such as Aggregate Functions or Character Functions. You can create new snippets
and add them to an existing category, or to a new category. To see a brief description
of a snippet, hover the mouse pointer over the function name.

To insert a snippet into your code in a SQL Worksheet or in a PL/SQL function or
procedure, drag the snippet from the snippets window and drop it into the desired
place in your code; then edit the syntax so that the SQL function is valid in the current
context.

For example, you could type SELECT and then drag CONCAT(char1, char2) from
the Character Functions group. Then, edit the CONCAT function syntax and type the
rest, as in this example:

SELECT CONCAT(title, ' is a book in the library.') FROM books;

Table 24-8 Snippets Window Toolbar Icons

Icon Name Function

Add
Snippets

Click to open the Save Snippet dialog where you can create a new
snippet and save it in an existing group or in a new group.

Edit User
Snippets

Click to open the Edit Snippets dialog which lists user snippets.
You can create, edit and delete snippets in this dialog.

From the Snippets window, you can:

• Display snippets by choosing the category from the list.

Using the Snippets Window

Using the Database Tools 24-15

• Add a snippet to the cursor position in a file such as a SQL file by double-clicking
it.

Using the Database Object Viewer
The Database Object Viewer allows you to manage the structure and contents of
objects in a database. The tabs available depend on the type of object being viewed.

You can edit the value in any of the cells by double-clicking the cell to select it, then
clicking ... to open the Edit Value dialog.

Information about the object is contained in a number of tabs.

• Columns, which shows the columns comprising the object.

• Data, which shows the data in this object. You can edit the value in any of the cells
by double-clicking the cell to select it, then clicking ... to open the Edit Value dialog.

• Constraints, which shows the details of any constraints.

• Grants, which shows privilege details.

• Statistics, which shows statistical information.

• Triggers, which shows information about triggers.

• Dependencies, which shows information about references.

• Indexes, which displays details of any indexes.

• Details, which displays details of the object.

• SQL, which displays the SQL that represents this object.

Database Object Viewer Tabs Toolbars
The specific buttons on the toolbar vary from tab to tab.

Table 24-9 Database Object Viewer Tabs Toolbar Icons

Icon Name Function

Freeze and
Unfreeze
View

Use to toggle freezing the table viewer on the current view.

Edit Click to open the Edit Table dialog.

Refresh Click to refresh the data.

Insert Row Click to insert a new blank row below the row where the focus is.

Using the Database Object Viewer

24-16 Developing Applications with Oracle JDeveloper

Table 24-9 (Cont.) Database Object Viewer Tabs Toolbar Icons

Icon Name Function

Delete
Selected
Row(s)

Click to delete the selected rows of data.

Commit Click to commit the changes to the database. The changes are
logged in the Data Editor log window, and commit will fail if there
is an error, such as a unique constraint violation.

Rollback Click to rollback database changes already made. The Data Editor
log window reports on whether the rollback has succeeded.

Click to open the Sort dialog where you specify the columns to sort
by and the sort order.

Enter a value to reduce the number of records displayed, for
example DEPARTMENT_ID>20.

Click to perform one of a range of common table actions.

Using the PL/SQL Source Editor
The PL/SQL Source Editor displays PL/SQL code for database objects such as
procedures and functions. In addition to the PL/SQL-specific features of the PL/SQL
Source Editor, you can also use many of the common set of features that JDeveloper
provides to enhance coding across all domains. These features are available through
the context menu or the Source menu. For more information, see Using the Source
Editor.

In addition, there are some PL/SQL specific features which are described below.

Table 24-10 describes the operations available from the PL/SQL Source Editor toolbar.

Table 24-10 PL/SQL Source Editor Toolbar

Element Operation

Keeps that subprogram's tab and information in the window
when you click another object in the Databases window; a
separate tab and display are created for that other object. To
unfreeze, click the pin again.

Use to toggle between write mode and read-only mode.

Enter a string and click Enter.

To choose from a list of search options, click the down arrow.

Using the PL/SQL Source Editor

Using the Database Tools 24-17

Table 24-10 (Cont.) PL/SQL Source Editor Toolbar

Element Operation

(Database only) Performs a PL/SQL compilation of the
subprogram.

Click the arrow to choose from:

• Compile for Debug, which performs a PL/SQL compilation
of the subprogram so that it can be debugged.

• Compile, which performs a PL/SQL compilation of the
subprogram.

The results are displayed in the Log window.

(Offline only) Performs a PL/SQL compilation of the
subprogram.

To enable, you must create or choose a database connection
against which the subprogram will be compiled.

When you click this button, the subprogram is saved to the
offline database, and the program is submitted for compilation.

(Offline only) Compile for Debug, which performs a PL/SQL
compilation of the subprogram so that it can be debugged.

To enable, you must create or choose a database connection
against which the subprogram will be compiled.

When you click this button, the subprogram is saved to the
offline database, and the program along with debug
information is submitted for compilation.

Opens the Run PL/SQL window which allows you to specify
arguments when running or debugging PL/SQL functions,
procedures, and packages.

Starts execution of the subprogram in debug mode, and
displays the Debugging - Log tab, which includes the
debugging toolbar for controlling the execution.

Code highlight. For example, clicking on the declaration of, or
any usage of p_column_name, and selecting this button will
highlight all usages of p_column_name.

Note that this is not a purely textual match, but is explicitly
usages of the variable, obeying all scoping rules.

If this button is not enabled when you have selected some code,
expand the Search menu on the JDeveloper toolbar, and
deselect Auto Code Highlight.

Clear all code highlighting.

The database connection is used for compilation. Use to choose
a different database connection.

Once you have chosen a connection, it is persisted and used in
future instances of the PL/SQL Source Editor.

Using the PL/SQL Source Editor

24-18 Developing Applications with Oracle JDeveloper

Using Test Query
For SELECT statements in PL/SQL, you can test a query against a live database to
check that the correct rows are returned. Any PL/SQL variables are replaced in the
test query with bind variables and clauses such as INTO are ignored.

To test the query, right-click in the SELECT statement of the PL/SQL and choose Test
Query, as shown in Figure 24-3.

Figure 24-3 Context Menu of Select Statement

The query is run and the Test Query dialog is displayed, as shown in Figure 24-4.

If you do not have a connection to a database defined, you must first create one. You
can do this from the Test Query dialog. To choose a different database connection,
choose from the list in the Test Query dialog.

Using the PL/SQL Source Editor

Using the Database Tools 24-19

Figure 24-4 Test Query Dialog

Synchronizing Package Specifications and Bodies
You can use Synchronize Specification and Body to:

• Create the initial body for a package. Right click in the specification and choose
Synchronize Specification and Body from the context menu. A new package body
is created.

• Identify methods that are specified in the specification which are not in the package
body. Right click in the specification and choose Synchronize Specification and
Body from the context menu. The Synchronize Specification and Body dialog
opens, as shown in Figure 24-5.

Figure 24-5 Synchronize Specification and Body

Using the PL/SQL Source Editor

24-20 Developing Applications with Oracle JDeveloper

This lists all methods that can be synchronized, and all those in the specification
that are not in the body are pre-selected. Select the methods you want
synchronized and click OK.

Using SQL*Plus
SQL*Plus is an interactive and batch query tool that is installed with every Oracle
Server or Client installation. It has a command-line user interface. You can launch
SQL*Plus from within JDeveloper. For more information, see the SQL*Plus® User's
Guide and Reference.

In most cases, using SQL Worksheet is preferable to using SQL*Plus as it is fully
integrated with JDeveloper, and you can use SQL Worksheet to enter and execute
SQL, PL/SQL, and some SQL*Plus statements.

SQL*Plus can use parameter substitution. The default escape character is '&', thus any
comments that have '&' in them may cause an error. Additionally, the character used
in the SQL*Plus session that runs the script can be changed from the default using SET
DEFINE, so JDeveloper cannot look for the parameter substitution character in
comments and warn you. If you encounter this error in a script, you can use SET
DEFINE OFF to ignore the parameter substitution character or remove the character
from the comment. For more information, see "'Using Scripts in SQL*Plus'" in the
SQL*Plus® User's Guide and Reference.

In order to launch SQL*Plus from JDeveloper, you must have SQL*Plus installed on
your machine. For information about installing a SQL*Plus client, see the information
about Oracle Database Instant Client at http://www.oracle.com/technetwork/
database/features/instant-client/index-100365.html.

You can launch SQL*Plus from:

• The Tools menu

• A database connection in the Databases window

• A SQL file in the Applications window

If you have not already specified the SQL*Plus executable in JDeveloper, you will able
to do so when you launch SQL*Plus. Alternatively, you can specify the SQL*Plus
executable in the Preferences dialog. You only need to perform this task once.

To specify the SQL*Plus executable:

1. Choose Tools > SQL*Plus, and select Database Connections.

2. Specify the path to the SQL*Plus executable.

3. Click OK to close the dialog. Now the SQL*Plus item is active in the Tools menu.

4. Select a database connection in the Databases window, then choose Tools >
Database > SQL*Plus. If the path specified in step 2 is correct, a SQL *Plus
command window will open.

Note:

On Unix, use xterm to create a terminal window to run the SQL*Plus
command in.

Using SQL*Plus

Using the Database Tools 24-21

http://www.oracle.com/technetwork/database/features/instant-client/index-100365.html
http://www.oracle.com/technetwork/database/features/instant-client/index-100365.html

To launch SQL*Plus from a connection:

1. Choose Window > Database > Databases window.

2. Right-click the connection, and choose SQL*Plus.

To launch SQL*Plus from a SQL file:

1. In the Applications window, navigate to a SQL file.

2. Right-click the SQL file, and choose Run in SQL*Plus.

3. In the submenu, select the connection you wish to use. If you have not already
specified the location of the SQL *Plus executable, you will be prompted for that
first.

DBMS Output Window
The PL/SQL DBMS_OUTPUT package enables you to send messages from stored
procedures, packages, and triggers. The PUT and PUT_LINE procedures in this
package enable you to place information in a buffer that can be read by another
trigger, procedure, or package. In a separate PL/SQL procedure or anonymous block,
you can display the buffered information by calling the GET_LINE procedure. The
DBMS Output window is used to display the output of that buffer.

Add New DBMS Output Tab: Prompts you to specify a database connection, after
which a tab is opened within the DBMS Output pane for that connection, and the SET
SERVEROUTPUT setting is turned on so that any output is displayed in that tab. (To
stop displaying output for that connection, close the tab.)

Table 24-11 DBMS Output Window Toolbar Icons

Icon Name Function

Enable
DMBS
Output

Click to toggle the SET SERVEROUTPUT setting between ON and
OFF. Setting server output ON checks for any output that is placed
in the DBMS_OUTPUT buffer, and any output is displayed in this
tab.

Clear Click to erase the content of this tab.

Save File Click to open the Save dialog where you can enter a filename to
save the results in this tab.

Print Click to open the Print dialog, where you can choose the printer to
print the content of this tab.

Buffer Size For databases before Oracle Database 10.2, click to limit the
amount of data that can be stored in the DBMS_OUTPUT buffer.
The buffer size can be between 1 and 1000000 (1 million).

Poll Move the slider to set the interval (in seconds) at which JDeveloper
checks the DBMS_OUTPUT buffer to see if there is data to print.
The poll rate can be between 1 and 15.

Choose DB
Connection

Change to a different database connection by choosing it from the
list.

DBMS Output Window

24-22 Developing Applications with Oracle JDeveloper

OWA Output Window
OWA (Oracle Web Agent) or MOD_PLSQL is an Apache (Web Server) extension
module that enables you to create dynamic Web pages from PL/SQL packages and
stored procedures. The OWA Output window enables you to see the HTML output of
MOD_PLSQL actions that have been executed in the SQL Worksheet.

Table 24-12 OWA Output Window Toolbar Icons

Icon Name Function

Enable
OWA
Output

Click to toggle the SET SERVEROUTPUT setting between ON and
OFF. Setting server output ON checks for any output that is placed
in the DBMS_OUTPUT buffer, and any output is displayed in this
tab.

Clear Click to erase the content of this tab.

Save File Click to open the Save dialog where you can enter a filename to
save the results in this tab.

Print Click to open the Print dialog, where you can choose the printer to
print the content of this tab.

Choose DB
Connection

Change to a different database connection by choosing it from the
list.

OWA Output Window

Using the Database Tools 24-23

OWA Output Window

24-24 Developing Applications with Oracle JDeveloper

25
Connecting to and Working with Databases

This chapter describes how to create and work with database connections.

This chapter includes the following sections:

• About Connecting to and with Working with Databases

• Configuring Database Connections

• Browsing and Searching Databases

• Connecting to Databases

• Connecting and Deploying to Oracle Database Cloud Service

• Importing and Exporting Data

• Copying_ Comparing_ and Exporting Databases

• Working with Oracle and Non-Oracle Databases

• Working with Database Reports

• Troubleshooting Database Connections

About Connecting to and with Working with Databases
You can connect to and work with Oracle databases and a number of non-Oracle
databases.

Database connections can be available in the Applications window or Databases
window, where they are available to applications you are working on, or in the
Resources window, where they are available for reuse in other applications.

Once you have a database connection, you can:

• Browse for database objects

• Search for specific database objects

• Import and export data

• Copy a database objects from one database schema to another

• Compare one database schema to another

• Export some or all objects of one or more database types to a DLL file

• Use pre-defined reports and create new reports to provide information about a
database and its objects

Connecting to and Working with Databases 25-1

If you are new to using databases with JDeveloper, one of the easiest ways to get
started is to try out Oracle Database Express Edition (Oracle Database XE). For more
information, see Getting Started With Oracle Database Express Edition.

Configuring Database Connections
You can define and manage connections to external data sources using the Create
Database Connection dialog. Database connections are shown in:

• The Resources window, where they can be added to catalogs to facilitate
collaborative working or to make them available to more than one application.

• The Databases window, where you can create, edit, and modify objects in the
database.

• Application Resources panel in the Applications window, where they are available
in the current application.

When you delete a connection, JDeveloper does not warn you that a project may be
dependent upon it. For this reason, it is best to use caution when deleting connections.

Connection Scope
In JDeveloper you have two ways of creating and managing database connections.
You can define database connections for an application (called an Application
Resource connection) or for the IDE as a whole (called an IDE connection). You use the
same dialog to define these, but their scope within JDeveloper is different.

When you first create a database connection, you choose the connection scope which
you cannot subsequently change.

What Happens When You Create a Database Connection
When you create a database connection, JDeveloper creates a node for the connection
in the Databases window, and an additional node in either the Resources window or
in the Application Resources panel of the Applications window depending on the
scope of the connection.

Team level database connections are also available when JDeveloper is configured to
work with teams.

In the Applications window and Databases window, you can expand the database
connection node to view and work with database objects. In the Resources window,
you can only work with a database connection after you have added it to the
application.

Database Connections Created as Application Resources

Database connections created as application resources are only available to the
application in which they are created.

In the Databases window, the node for the connection is under the node with the same
name as the application.

In the Applications window, the node for the connection is under Connections in the
Applications Resources panel. Connection information is stored in
connections.xml, which is under the Descriptors node, under ADF META-INF.
You can open the file in the XML editor by double-clicking it, and you can discover the
file path by hovering the mouse over the filename.

Configuring Database Connections

25-2 Developing Applications with Oracle JDeveloper

The file system location for the connection descriptor definition information is
application_folder/.adf/META-INF/connections.xml where
application_folder is the path for the selected application.

Database Connections Created as IDE Connections

These database connections are globally defined connections.

You can copy an IDE connection to the Applications window to use it in an
application by:

• From the Resources window, dragging the connection and dropping it on the
Connections node in the Applications window under Application Resources.

• From the Resources window, right-clicking the connection and choosing Add to
Application.

• In the Databases window, dragging the connection under the IDE Connections
node to the Application Connections node under the node for the application.

The file system location for the connection descriptor definition information is sys-
dir/jdeveloper/system11.1.x.x.nn.nn.nn/
o.jdeveloper.rescat2.model/connections/connections.xml.

About Connection Properties Deployment
A connections.xml file is included with JDeveloper deployments, and in the
application it is in the folder .adf\META-INF. This file contains the connection
information necessary for deployment and the runtime connection execution.

How to Create Database Connections
To create a database connection:

1. If necessary load database features by choosing Window > Database.

2. Open the Databases window by choosing Window > Database > Databases. Right-
click IDE Connections or application, and choose New Connection to open the
Create Database Connection dialog.

Alternatively, from the main menu, choose File > New to open the New Gallery. In
the Categories list, expand General and select Connections. In the Items list,
double-click Database Connection to open the Create Database Connection dialog,
as shown in Figure 25-1.

Configuring Database Connections

Connecting to and Working with Databases 25-3

Figure 25-1 Create Database Connection Dialog

For more information at any time, press F1 or click Help from within the dialog.

3. Enter the appropriate connection information, then click Test Connection. You
may have to briefly wait while JDeveloper connects to the database.

If the test succeeds, a success message appears in the status text area. For example:

Success!
Connected To: Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 -
Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
Recognized As: Oracle11g Database Release 2

Or:

Success!
Connected To: MySQL 5.6.10
Recognized As: MySQL Database Server 5.x

If the test does not succeed, an error appears. In this case, change any previously
entered information as needed to correct the error, or check the error content to
determine other possible sources of the error.

After you have defined a connection, you can return to the dialog and edit its
attributes, however you cannot change the connection type after the database
connection has been created.

Defining Additional JDBC Parameters
If you need to use additional parameters for the JDBC connection, for example, for
JDBC encryption support, you can enter them in the same connection dialog.

To define additional parameters:

Configuring Database Connections

25-4 Developing Applications with Oracle JDeveloper

1. In the Create or Edit Database Connection dialog, click JDBC Parameters to open
the JDBC Parameters dialog.

2. The dialog allows you to enter any property name/value pairs you require in order
to create the connection. For more information at any time, press F1 or click Help
from within the dialog.

3. To add a new parameter Click . A new row is displayed. Where the driver
supports it there may be a list of possible parameters that you can select from, as
shown in Figure 25-2.

Figure 25-2 JDBC Parameters Dialog

Choose or enter the parameter you want to use and enter a default value for it.

4. Click OK on the dialog, then OK on the Database Connection dialog.

Using Different Drivers
For some types of database connection, you can choose from more than one available
driver. For example, if you choose DB2 UDB, as shown in Figure 25-3 you can choose
either of the available drivers.

Configuring Database Connections

Connecting to and Working with Databases 25-5

Figure 25-3 Drivers Available

Connecting to Oracle Database Using OCI8
The recommended way of connecting to Oracle Database is using the thin driver,
however you can connect using OCI8 (thick connection).

To connect using OCI8:

• Define the jar location using the system property jdbc.library. For example:

jdev -J-Djdbc.library=/jdev_install/jdeveloper/ojdbc6.jar

How to Edit Database Connections
To edit a database connection:

1. Choose Window > Database > Databases.

2. Expand IDE Connections or application, and select a database connection.

Configuring Database Connections

25-6 Developing Applications with Oracle JDeveloper

3. Right-click the connection and choose Properties to open the Edit Database
Connection. For more information at any time, press F1 or click Help from within
the Create Database Connection dialog.

Note:

You can filter which schemas appear in the connection.

How to Export and import Database Connections
You can import and export database connections, described below.

Exporting Database Connections

When you export connections, selected connection descriptors are copied to an XML
file. The file can be imported by other users to easily create connections.

To export a database connection:

1. Choose Window > Database > Databases.

2. Right-click either IDE Connections or application and choose Export Connections.

3. In the Select Connections page of the Export Connection wizard, select the
connections you want to export details of, and click Next. For more information at
any time, press F1 or click Help from within the wizard.

4. In the Destination File page of the wizard, specify a fully qualified filename for the
file to be generated. The generated content of the file is XML, and you must use a
filename with the suffix xml. Click Next.

5. If the connections contain passwords, you can encrypt the passwords in the
generated file in the Password Handling page of the wizard. If you choose not to
encrypt the passwords, they are not included in the generated file. Click Next.

6. The summary page of the wizard displays details of the export connections file.
Click Finish.

The connection information for the selected connections is saved in the file and can
be imported for use by others.

An alternative way of exporting connections, including database connections that are
IDE Connections, is to use the Resources window. For more information, see
Importing and Exporting Catalogs and Connections.

Importing Database Connections

You can import connection descriptors that have previously been exported.

To import a database connection:

1. Choose Window > Database > Databases.

2. Right-click either IDE Connections or application and choose Import Connections.

3. In the Source File page of the Import Connection wizard, enter the file name of
your exported connection file or click Browse to locate it, and click Next. For more
information at any time, press F1 or click Help.

Configuring Database Connections

Connecting to and Working with Databases 25-7

4. On the Password Handling page of the wizard, if a password has been used to
encrypt the connection passwords in the export file, enter it here. Otherwise, select
Remove all passwords from the exported connections. Click Next.

5. On the Select Connections page of the wizard, choose the connections that you
want to import information for. Click Next.

6. The Summary Page summarizes information about the connections will be
imported. Click Finish.

An alternative way of importing connections that can include database connections is
to use the Resources window. For more information, see Importing and Exporting
Catalogs and Connections.

How to Open and Close Database Connections
You can manually connect to a database connection already defined in JDeveloper, or
disconnect a database connection.

To open a database connection:

1. Choose Window > Database > Databases.

2. Expand IDE Connections or application, and select a database connection.

3. Expand the node.

Alternatively, right-click the closed connection and choose Connect.

To close a database connection:

1. Choose Window > Database > Databases.

2. Expand IDE Connections or application, and select a database connection.

3. Right-click the connection and choose Disconnect.

How to Delete Database Connections
Deleting connections removes them from the Databases window and the installation
of JDeveloper.

When you delete a connection, JDeveloper does not warn you that a project may be
dependent upon it, and removes the connection from all of JDeveloper, not just a
application or project. It is best to use caution when deleting connections.

To delete a database connection:

1. Choose Window > Database > Databases.

2. Expand IDE Connections or application, and select a database connection to
delete.

3. Right-click the connection and choose Delete.

4. In the confirmation dialog, click Yes.

Configuring Database Connections

25-8 Developing Applications with Oracle JDeveloper

How to Register a New Third-Party JDBC Driver
If you plan to use a third-party JDBC driver for DB2, Informix, SQL Server and Sybase,
you must register it with JDeveloper so that it will be available when you define the
connection.

To register a new third-party JDBC driver:

1. Choose Tools > Preferences.

2. In the Preferences dialog, select JDBC Driver Options.

3. The list of third-party JDBC drivers currently registered with JDeveloper is
displayed. To add a new entry to the list, click New.

A new entry appears in the list and in the Driver Class field, with a default driver
class name.

4. In the Driver Class field, alter the new entry to reflect its fully qualified class name.

Make sure that the correct entry is still selected in the Registered JDBC Drivers
list.

5. Select a library to associate the driver with. You can browse to an existing library,
or enter the fully qualified path to the library. The classpath for the library is
displayed in Classpath.

Be sure to include this library in any project that uses the third-party driver.

6. Click OK.

The driver will now appear in the list of available third-party JDBC drivers both in
this dialog (after you return to it) and in the Create Database Connection dialog.

Alternately, if you are already in the Create Database Connection dialog, you can
register a third-party JDBC driver without leaving the dialog. Choose Generic JDBC
as the Connection Type, and click New to open the Register JDBC Driver dialog where
you provide the class name and library for the driver.

How to Create User Libraries for Non-Oracle Databases
To connect to a non-Oracle database, you first have to create a library containing the
JDBC drivers.

After you have created a user library, you can create a database connection.

To create a user library:

1. Choose Tools > Manage Libraries.

2. In the Manage Libraries dialog, select the Libraries tab, then select the User node,
and click New.

3. In the Create Library dialog, enter a library name, select the Class Path node, and
click Add Entry. In the Select Path Entry dialog, browse to the location of the
drivers for the database you are connecting to. Select the driver files, and click
Select.

4. In a similar way, in the Create Library dialog, enter a library name, select the
Source Path node, and click Add Entry. In the Select Path Entry dialog, browse to

Configuring Database Connections

Connecting to and Working with Databases 25-9

the location of the drivers for the database you are connecting to. Select the driver
files, and click Select.

5. In the Create Library dialog, click OK, and in the Manage Libraries dialog, click
OK.

The library containing the JDBC drivers will be available for you to select when you
create a connection to the non-Oracle database.

Reference: Connection Requirements for Oracle's Type 2 JDBC Drivers (OCI)
When you create connections using Oracle's JDBC/OCI drivers, be aware of the
following platform-specific requirements:

• You must have the required native libraries (.dll files on Windows,
and .so/.sl files on UNIX).

With the Oracle Type 2 driver (JDBC/OCI), the version of the JDBC driver must
match the version of the Oracle home. For example, the Oracle JDBC Driver version
11 requires that Oracle home contain version 11 of ocijdbc11.dll, as well as the
Oracle Network software and Required Support Files.

You can download drivers from the JDBC Driver Downloads page at http://
www.oracle.com/technetwork/database/features/jdbc/
index-091264.html.

If you are connecting to a local database which is a different version from the JDBC
driver you are using, then you must install the Oracle client software into a
separate Oracle home, and connect via the Oracle Net Listener.

• You must place the ORACLE_HOME directory in which the client-side file for the
required native libraries resides into a directory listed in your PATH environment
variable.

– On Windows: In your PATH environment variable list the %ORACLE_HOME%
\bin directory in which the client-side DLL file resides. If you have multiple
Oracle homes installed on your machine, use the Oracle home Switch utility to
choose the correct Oracle home.

– On UNIX: List the {ORACLE_HOME}/lib directory in which the client-
side .so/.sl file resides in your PATH environment variable.

• If your Oracle home for the OCI driver is not the same as the Oracle home in which
JDeveloper is installed, you must set the ORACLE_HOME environment variable.

• If your Oracle home for the OCI driver is not the same as the Oracle home in which
JDeveloper is installed and you have no other OCI drivers listed in
java.library.path, you can edit {$ORACLE_HOME}/jdeveloper/
jdev/bin/jdev.conf with a line similar to the following, replacing the path
shown with the full path to your Oracle home:

On Windows: AddNativeCodePath C:/ORACLE/ORAnn/BIN

On UNIX: AddNativeCodePath /u01/app/oracle/product/n.n.n/lib

AddNativeCodePath adds to java.library.path the directory name in which
the Java VM searches for shared libraries.

Configuring Database Connections

25-10 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Note:

Because AddNativeCodePath only appends the directory to the path, if you
have an OCI driver path already in the PATH environment variable, set
ORACLE_HOME instead of editing PATH with AddNativeCodePath.

Browsing and Searching Databases
You can control how much of the data source you view and how you view it, and
search for database objects.

Browsing Databases
You can browse online databases and offline database objects.

Browsing Online Databases

You can browse online databases by opening JDBC connections accessible in the
Databases window.

JDBC connections permit access to PL/SQL objects and blocks and the Java classes
that implement those objects. Any database can be browsed; however only Oracle
Database permits access to the full range of database objects.

Database connections are shown in the Databases window, under the IDE Connections
node or the node for the application. Expand the connection to show the database's
schemas. By default, the connection only allows the schema of the user identified in
the connection to be browsed. Other schemas can be browsed as well, if the user has
the required privileges. Expanding a schema shows nodes for the object types that the
schema contains. Expanding the node for an object type show the individual objects it
contains. When you have expanded a node as far as it can be expanded, you can
double-click an object (or right-click and choose Open) to display its content.
Depending on the type of the object, its structure may also be displayed in the
structure pane.

Browsing Offline Database Objects

You can browse offline database objects using the Applications window.

How to View Online and Offline Database Objects

You can view database objects:

• To view database objects through a real time connection (online database), use the
Databases window.

• To view offline database objects, use the Applications window.

Changes to database objects in projects (i.e. visible via Applications window) can
be reconciled against a live database, but until reconciliation, no changes to the
offline objects affect online databases.

To open the Applications window or Databases window:

1. Choose Window from the main toolbar.

2. To open:

Browsing and Searching Databases

Connecting to and Working with Databases 25-11

• The Applications window, choose Applications.

• The Databases window, choose Database > Databases.

How to Browse online Database Objects
You can browse schemas and the objects they contain via a JDBC connection to an
online database.

To browse live database connections:

1. Choose View > Database > Databases window.

2. Expand a connection to view the schemas available.

3. Expand a schema to view all the object types visible.

4. If necessary, apply a filter at the connection, schema, or database object type level.

Note:

By default, a filter is set on tables to exclude those in the recycle bin for an
Oracle database.

How to Browse Offline Databases and Schemas
Browse offline databases and schemas in the Applications window to find objects such
as offline tables or views.

To view offline schemas and the objects they contain:

1. In the Applications window, expand the project containing your offline schemas.

2. Expand Offline Database Sources and then expand the database and schema you
want to browse.

How to Use Database Filters
You can filter schemas, database object types, and database objects within a type, so
that a subset that you define is displayed under the connection node. This is useful in
environments where there may be thousands of schemas accessible from a connection.

Note:

When you create a connection to Oracle Database, objects for the schema
named in the connection are shown. To see the contents of other schemas,
expand the Other Users node and then expand the node for the schema you
want.

If you connect via Generic JDBC or JDBC-ODBC connections, all schemas are
shown.

You can define a filter for schemas in a connection, or for any set of object types
(Tables, Views, etc.) within a schema, or for any set of objects within an object type
node (for example, display only the tables that begin with DB).

Browsing and Searching Databases

25-12 Developing Applications with Oracle JDeveloper

Figure 25-4 Filtered Objects in Databases Window

To use filters:

1. Choose Window > Database > Databases.

2. Expand IDE Connections or application, and select a database connection.

3. Expand the connection if it has not yet been loaded. Filtering is not available until
the connection has been loaded (once per connection per JDeveloper session).
Select a connection, schema within a connection, or node within a schema:

4. If a filter is currently applied to the selection, a filter icon appears on the node of
the selected object, and (filtered) appears next to the node name, as shown in
Figure 25-4.

With the object still selected, click the Apply Filter button in the Databases
window toolbar and a dialog appears, showing the current selection, if any. From
this dialog, you can change the filter currently applied.

How to Enable and Disable Database Filters
JDeveloper provides filters so that you can view defined sets of schemas, tables, views,
or other objects.

To create filters for online database objects:

1. Choose Window > Database > Databases.

2. Expand IDE Connections or application.

3. Select the connection, schema within a connection, or node within a schema, then
perform either of these actions:

• Right-click your selection and choose Apply Filter.

• In the Databases window toolbar, click the Apply Filter button in the Databases
window toolbar.

4. A filter dialog appears, appropriate to the object you selected. For connections and
schema, a selection box appears. For other objects, type in the text (case-sensitive)
which JDeveloper matches to object names in the selected node. You can use the
wildcard character %.

5. Click OK. Notice that the list of objects is now filtered to display only those names
that match the criteria you selected.

Browsing and Searching Databases

Connecting to and Working with Databases 25-13

How to Open a Database Table in the Database Object Viewer
You can open a table in a live database connection in the Database Object Viewer.

There are a number of tabs along the bottom of the Database Object Viewer that allow
you to examine and change the structure of the table and the data contained in the
table.

To view and edit the structure of the table in the object viewer:

1. Open the table in the Database Object Viewer by selecting it in the Databases
window and double-clicking it. Alternatively, you can right-click the table and
choose Open.

2. Select the tab that contains the information you are interested in, for example,
Columns. For more information at any time, press F1 or click Help from within the
Database Object Viewer.

An alternative way of viewing and editing the structure of a table is in the Edit Table
dialog.

You can edit the data in a table.

How to Edit Table Data
You can change the data in a database table, for example to test the functionality of an
application you are developing. You can change the value in a single cell, and add and
delete rows. When you have finished you can choose to commit your changes to the
database, or to rollback the changes and leave the database table unchanged.

To edit data in a table:

1. Display the table in the Database Object Viewer by double-clicking it in the
Databases window.

2. Click the Data tab to display the contents of the table.

3. Position the cursor in the cell you want to change and type the new value.

• To add a new record, click the Insert Row button.

• To delete one or more records, select them and click the Delete Selected Row(s)
button.

4. When you have finished, either:

• Click the Commit Changes button to commit your changes to the database.

• Click the Rollback Changes button to rollback your changes.

How to Find Objects in the Database
You can search for database objects in Oracle Database which has a connection to
JDeveloper using the Find Database Object Window.

You must already have a connection to the database.

To find database objects:

Browsing and Searching Databases

25-14 Developing Applications with Oracle JDeveloper

1. From the main menu, choose Window > Database > Find DB Object to open the
Find Database Object Window.

For more information at any time, press F1 or click Help from within the window.

2. Select the connection name from the Connection list.

3. Enter search terms in the Name field. You can use the wildcard % to return a
number of matching objects. For example, enter EM% to return all objects with
names starting with EM.

4. If necessary, click More to enter more search criteria.

5. Click Lookup. The results are returned in the Search window. To view or edit one
of the objects (or the parent object that contains the specified object), double-click or
right-click its name in the results display.

Connecting to Databases
This section describes how to connect to Oracle and non-Oracle databases.

What Happens When You Create a Connection to a Database
When you create a database connection using the Create Database Connection dialog,
the new connection is created and a node representing the connection is displayed in
the:

• Databases window.

• Applications window.

• Resources window.

How to Create Connections to Oracle Databases
You can connect to and work with Oracle databases. For information about the specific
versions that are supported, see "JDeveloper Certification Information" at http://
www.oracle.com/technetwork/developer-tools/jdev/documentation/
index.html.

How to Create a Connection to Oracle Database

JDeveloper allows you to connect to a number of Oracle and non-Oracle databases.

To create a database connection to Oracle Database:

1. Use a connection type of Oracle (JDBC).

2. Enter appropriate username, role, and password values for the database
connection.

3. By default the Save Password field is checked so that you will not be prompted to
enter it again.

4. Select the thin driver.

5. If the database is on the local machine, use the default of localhost. Otherwise enter
an IP address or a host name that can be resolved by TCP/IP, for example,
myserver.

Connecting to Databases

Connecting to and Working with Databases 25-15

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

6. Enter either the SID or service name for the database.

7. Test the connection by clicking Test Connection. You may have to briefly wait
while JDeveloper connects to the database.

If the test succeeds, a success message appears in the status text area. If the test does
not succeed, an error appears. In this case, change any previously entered information
as needed to correct the error, or check the error content to determine other possible
sources of the error.

How to Create a Connection to MySQL

JDeveloper allows you to connect to MySQL 4.1 or, 5.0, or to emulate MySQL 4.1 or,
5.0 for offline database operations. For more information about MySQL, see http://
www.oracle.com/us/products/mysql/index.htm.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with MySQL. You can:

• Create tables:

– Add column(s) specifying data types, NOT NULL constraints, default values
and column comments

– Add primary key and foreign key constraints

• Alter tables:

– Add column(s)

– Drop column(s)

– Add index

– Drop index

– Add constraint (primary key, unique key, and foreign key)

– Drop constraint (primary key, unique key, and foreign key)

• Rename table

• Drop table

To create a database connection to MySQL:

1. From http://mysql.com/downloads, download and install MySQL
Connector/J 3.1.

2. Set up the user library to contain the following mysql-connector-
java-3.1.8-bin.jar.

3. Create a database connection to MySQL. Use the following values:

• Connection Type: MySQL

• Username and Password: enter the appropriate values for the connection.

• Driver Class: com.mysql.jdbc.Driver

• Library: the library you created for the driver.

Connecting to Databases

25-16 Developing Applications with Oracle JDeveloper

http://www.oracle.com/us/products/mysql/index.htm
http://www.oracle.com/us/products/mysql/index.htm
http://mysql.com/downloads

• JDBC URL: jdbc:mysql://machine-name/database-name

How to Create a Connection to Oracle TimesTen In-Memory Database

Oracle TimesTen In-Memory Database is a memory-optimized relational database that
provides applications with extremely fast response time and very high throughput as
required by many application in a wide range of industries. Deployed in the
application tier, TimesTen databases reside entirely in physical memory with
persistence to disk storage for recoverability.

JDeveloper allows you to connect to Oracle TimesTen In-Memory Database 6.0, 7.0, or
11g, or to emulate TimesTen databases for offline database operations. For more
information about Oracle TimesTen In-Memory Database 11g, see http://
www.oracle.com/technetwork/database/timesten/overview/
index.html.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with TimesTen databases. You can:

• Create tables.

– Add columns

– Add primary keys and foreign keys

• Alter tables.

– Add columns

– Drop columns

– Add primary keys and foreign keys

– Drop primary keys and foreign keys

• For Oracle TimesTen In-Memory Database v6.0, a current limitation is that in order
to see constraints such as primary keys, you must ensure that your connection
username is the same as the name of the schema you are connecting to.

To create a database connection to Oracle TimesTen In-Memory Database:

1. Create a database connection to the TimesTen database.

2. Use the following values:

• Connection Type: Generic JDBC

• Username and Password: leave blank

• Driver Class: com.timesten.jdbc.TimesTenDriver

• Library:

– Release 6.0.1: timesten-install\tt60\lib\classes14.jar

– Release 7.0.5: timesten-install\tt70_32\lib\ttjdbc5.jar

– Release 11.2.1: timesten-install\tt1121_32\lib\ttjdbc5.jar

• JDBC URL:

Connecting to Databases

Connecting to and Working with Databases 25-17

http://www.oracle.com/technetwork/database/timesten/overview/index.html
http://www.oracle.com/technetwork/database/timesten/overview/index.html
http://www.oracle.com/technetwork/database/timesten/overview/index.html

– Release 6.0.1: jdbc:timesten:client:RunDataCS60

– Release 7.0.5: jdbc:timesten:client:RunDataCS_tt70_32

– Release 11.2.1: jdbc:timesten:client:cachealone1_CS

How to Create Connections to Non-Oracle Databases
You can connect to and work with non-Oracle databases. For information about the
specific versions that are supported, see "JDeveloper Certification Information" at
http://www.oracle.com/technetwork/developer-tools/jdev/
documentation/index.html.

In general, you can:

• Import database objects to JDeveloper.

• Create offline database objects.

• Edit offline database objects.

Creating a database connection:

1. Create a library containing the JDBC drivers.

2. Create a database connection.

3. In the Create Database Connection dialog, enter the appropriate values for the
database. For more information, refer to the help topic for the database you are
connecting to.

4. Finally, you must configure your projects to use the correct data types.

In the descriptions below for specific types of connection the JDBC URL is shown,
however if you prefer you can enter details of the server, port, and database in the
fields of the Create Database Connection dialog.

How to Create a Connection to Java DB/Apache Derby

Apache Derby is an open source relational database implemented entirely in Java. Java
DB is Oracle's supported distribution of the Apache Derby open source database.
JDeveloper allows you to connect to Apache Derby 10.5, or to emulate Apache Derby
10.5 for offline database operations. For more information about Apache Derby, see
http://db.apache.org. For more information about Java DB, see http://
www.oracle.com/technetwork/java/javadb/overview/index.html.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with Apache Derby. You can:

• Create tables:

– Add column(s)

– Add primary key and foreign key constraints

• Alter tables:

– Add column(s)

– Drop column(s)

Connecting to Databases

25-18 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://db.apache.org
http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://www.oracle.com/technetwork/java/javadb/overview/index.html

– Add constraint

– Drop constraint

Note:

Column default values are not supported

You can connect to Apache Derby using Derby's embedded JDBC driver or you can
create a connection as a client.

To connect to Apache Derby using the embedded driver:

1. Create a database connection to the Apache Derby database.

Use the following values:

• Connection Type: Generic JDBC

• Username and Password: enter the appropriate values for the connection.

• Driver Class: org.apache.derby.jdbc.EmbeddedDriver

• Library: lib/derbyclient.jar

• JDBC URL: jdbc:derby://machine-name:port/databases/
database-name

To connect to Apache Derby as a client:

1. Create a database connection to the Apache Derby database.

Use the following values:

• Connection Type: Generic JDBC

• Username and Password: enter the appropriate values for the connection.

• Driver Class: org.apache.derby.jdbc.ClientDriver

• Library: lib/derbyclient.jar

• JDBC URL: jdbc:derby://machine-name:port/databases/database-
name

How to Create a Connection to IBM DB2 Universal Database

JDeveloper allows you to connect to IBM DB2 Universal Database 10.1 or 9.5, or to
emulate IBM DB2 Universal Database 10.1 or 9.5 for offline database operations. For
more information about IBM DB2 Universal Database, see http://www.ibm.com.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with IBM DB2, and working with IBM DB2 databases is
subject to the following limitations:

• Create tables, and add columns specifying Datatypes, NOT NULL constraints and
default values, add primary and foreign keys, and create indexes.

• Alter tables, and add and drop columns, add and drop indexes, add and drop
constraints (primary keys, unique keys, check and foreign keys).

Connecting to Databases

Connecting to and Working with Databases 25-19

http://www.ibm.com

• Rename tables.

• Drop tables.

Note:

IBM DB2 Universal Database 9.5 syntax of DROP column and ALTER
COLUMN is supported for IBM DB2 Universal Database 9.5.

You can connect to IBM DB2 using the WebLogic JDBC driver or using IBM's native
driver.

To connect to IBM DB2 using the WebLogic JDBC driver:

1. Create a database connection to the IBM DB2 database.

Use the following values:

• Connection Type: Generic JDBC

• Username and Password: enter the appropriate values for the connection.

• Driver Class: weblogic.jdbc.db2.DB2Driver

• JDBC URL: jdbc:weblogic:db2://machine-
name:port;DatabaseName=database-name

To connect to IBM DB2 using the native driver:

1. Download the Type 4 JDBC driver for IBM DB2.

2. Set up the user library to contain the following files.

• db2jcc.jar

• db2jcc4.jar

3. Create a database connection to IBM DB2.

Use the following values:

• Connection Type: DB2 UDB

• Username and Password: enter appropriate values for the database connection.

• Driver Class: com.ibm.db2.jcc.DB2Driver

• Library: the library you created for the driver.

• JDBC URL: jdbc:db2://machine-name:50000/database-name

How to Create a Connection to IBM Informix Dynamic Server

JDeveloper allows you to connect to IBM Informix DS 10 or 11.5, or to emulate IBM
Informix DS 10 or 11.5 for offline database operations. For more information about
IBM Informix DS, see www.IBM.com.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with IBM Informix DS. You can:

Connecting to Databases

25-20 Developing Applications with Oracle JDeveloper

• Create tables, and add columns.

• Add primary key and foreign key constraints.

• Alter tables, add columns, and drop columns.

You can connect to IBM Informix DS using the WebLogic JDBC driver or using IBM's
native driver.

To connect to IBM Informix DS using the WebLogic JDBC driver:

1. Create a database connection to the IBM Informix DS database.

Use the following values:

• Connection Type: Generic JDBC

• Username and Password: enter the appropriate values for the connection.

• Driver Class: weblogic.jdbc.informix.InformixDriver

• JDBC URL: jdbc:weblogic:informix://machine-
name:port;informixServer=server-
name;databaseName=database-name

To connect to IBM Informix DS using native drivers:

1. From www.IBM.com, download and install the appropriate Informix JDBC Driver:

• For IBM Informix DS 10, choose v2.21.JC5 or later.

• For IBM Informix DS 11.5, choose v3.00.JC3 or later.

2. Set up the user library to contain install-directory\lib\ifxjdbc.jar.

3. Create a database connection to IBM Informix DS.

Use the following values:

• Connection Type: Generic JDBC

• Username and Password: enter the appropriate values for the connection.

• Driver Class: com.informix.jdbc.IfxDriver

• Library: the library you created for the driver.

• JDBC URL: jdbc:informix-sqli://machine-name:port/database-
name:INFORMIXSERVER=machine-name

How to Create a Connection to Microsoft SQL Server

JDeveloper allows you to connect to Microsoft SQL Server 2005, or 2008, or to emulate
Microsoft SQL Server 2005, or 2008 for offline database operations. For more
information about Microsoft SQL Server, see http://www.microsoft.com.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with Microsoft SQL Server. You can:

• Create tables:

– Add column(s) specifying data types, NOT NULL constraints, default values
and column comments

Connecting to Databases

Connecting to and Working with Databases 25-21

http://www.microsoft.com

– Add primary key and foreign key constraints

– Create indexes

• Alter tables:

– Add column(s)

– Drop column(s)

– Add indexes

– Drop indexes

– Add constraint (primary key, unique key, and foreign key)

– Drop constraint (primary key, unique key, and foreign key)

• Drop tables

You can connect to Microsoft SQL Server using the WebLogic JDBC driver or using
Microsoft's native driver.

To connect to Microsoft SQL Server using the WebLogic JDBC driver:

1. Create a database connection to the Microsoft SQL Server database.

Use the following values:

• Connection Type: Generic JDBC

• Username and Password: enter the appropriate values for the connection.

• Driver Class: weblogic.jdbc.sqlserver.SQLServerDriver

• JDBC URL: jdbc:weblogic:sqlserver://machine-name
\MSSQLSERVER:port;databaseName=database-name

To connect to Microsoft SQL Server:

1. From www.microsoft.com, download and install the appropriate Microsoft SQL
Server driver:

• For Microsoft SQL Server 2005, choose Microsoft SQL Server 2005 Driver.

• For Microsoft SQL Server 2008, choose Microsoft SQL Server 2008 Driver.

2. Set up the user library to contain install-directory\sqljdbc.jar.

3. Create a database connection to Microsoft SQL Server. Use the following values:

• Connection Type: SQLServer

• Username and Password: enter the appropriate values for the connection.

• Driver Class: com.microsoft.sqlserver.jdbc.SQLServerDriver

• Library: the library you created for the driver.

• JDBC URLs: jdbc:sqlserver://machine-
name:port;DatabaseName=database-name, where the section
DatabaseName=database-name is optional

Connecting to Databases

25-22 Developing Applications with Oracle JDeveloper

Example 25-1 What you May Need to Know

If you are using Windows Authentication credentials to connect to Microsoft SQL
Server, you need to add do the following:

• Add the connection property integratedSecurity=TRUE and the username
and password values to the JDBC URL, for example

jdbc:sqlserver://machine-name:port;DatabaseName=database-
name;username=USERNAME;password=PASSWORD;integratedSecurity=TRUE

• Add the location of sqljdbc_auth.dll to your PATH variable:

– For 32bit JVM, this is installation-directory\sqljdbc_version
\language\auth\x86

– For 64bit JVM, this is installation-directory\sqljdbc_version
\language\auth\x64

For more information, see Building the Connection URL, which is available as part of
Connecting to SQL Server with the JDBC Driver at the Microsoft MSDN website.

How to Create a Connection to SQLite

SQLite is a relational database management system represented by a platform-
independent file that resides on a host computer, for example, smartphone platforms.
JDeveloper allows you to connect to a SQLite 3.6 database file, or to emulate SQLite 3.6
for offline database operations. For more information about SQLite, see http://
www.sqlite.org.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with SQLite. You can:

• Create tables, and add columns.

• Alter tables, and add columns.

• Copy To Project, where you copy tables and their columns and primary keys from
a connection to a SQLite database to an offline database which emulates SQLite.

• Constraints, indexes and the column properties can be modeled in an offline
database, but DDL is only generated for tables and columns; there is no support for
generating constraints (including primary keys) on tables, or generating any other
object type (for example, indexes, views, triggers). This means that for tables in an
online SQLite database, the Create/Edit Table dialog only shows the columns
panel.

To create a database connection to SQLite:

• Download a Java JDBC driver for SQLite and create a library for it.

• Create a database connection to SQLite.

• Use the following values:

– Connection Type: Generic JDBC

– Username and Password: leave blank

– Driver Class: org.sqlite.JDBC

Connecting to Databases

Connecting to and Working with Databases 25-23

http://www.sqlite.org
http://www.sqlite.org

– Library: the library you created for the driver.

– JDBC URL: jdbc:sqlite://path/database-name, where path is the path
of the database file and database-name is the name of the SQLite database at the
specified location. If the database does not exist at specified location, it will be
created when the connection is made.

How to Create a Connection to Sybase ASE

JDeveloper allows you to connect to Sybase Adaptive Server Enterprise 12.5 or 15, or
to emulate Sybase ASE 12.5 or 15 for offline database operations. For more information
about Sybase Adaptive Server Enterprise, see www.sybase.com.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with Sybase ASE. You can:

• Create tables:

– Add column(s)

– Add primary key and foreign key constraints

Add column(s)

• Alter tables:

– Add column(s)

– Drop column(s)

– Add constraint

– Drop constraint

Note:

Column default values are not supported

You can connect to Sybase ASE using the WebLogic JDBC driver or using Sybase's
native driver.

To connect to Sybase ASE using the WebLogic JDBC driver:

1. Create a database connection to the Sybase ASE database.

Use the following values:

• Connection Type: Generic JDBC

• Username and Password: enter the appropriate values for the connection.

• Driver Class: weblogic.jdbc.sybase.SybaseDriver

• JDBC URL: jdbc:weblogic:sybase://machine-
name:port;DatabaseName=databas-name

To connect to Sybase ASE using the native driver:

1. From www.sybase.com, download and install the appropriate Sybase JDBC driver:

Connecting to Databases

25-24 Developing Applications with Oracle JDeveloper

• For Sybase ASE 12.5, choose jConnect Version:5.5 or later.

• For Sybase ASE 15, choose jConnect Version: 6.0.5 or later.

2. Set up the user library to contain the following:

install-directory\jConnect-5_5\classes\jconn2.jar install_directory\
\jConnect-5_5\classes\jTDS2.jar

3. Create a database connection to Sybase ASE.

Use the following values:

• Connection Type: Generic JDBC

• Username and Password: enter the appropriate values for the connection.

• Driver Class:

– For Sybase ASE 12.5, use com.sybase.jdbc2.jdbc.SybDriver

– For Sybase ASE 15 use com.sybase.jdbc3.jdbc.SybDriver

• Library: the library you created for the driver.

• JDBC URL: jdbc:sybase:Tds:machine:port/database-name

Connecting and Deploying to Oracle Database Cloud Service
You can connect to and deploy Oracle Database objects to Oracle Database Cloud
Service. For more information about Oracle Database Cloud Service, see https://
cloud.oracle.com.

Types of JDeveloper Connection to Oracle Database Cloud Service
JDeveloper connects to an Oracle Database Cloud Service instance using two types of
connection:

• Database Connection: This connection is made using the Service Home URL
(identified in the "Welcome to Oracle Cloud" email). This URL connects to Oracle
Application Express and you can browse database objects and deployments on
your Oracle Database Cloud Service instance from a node in the Databases
window. The connection is not validated until you connect to the Oracle Database
Cloud Service instance, when you are prompted to provide a password.

• Secure FTP connection: The Secure FTP hostname and SFTP user identified in the
"Welcome to Oracle Cloud" email are used in this connection to upload the
deployment ZIP file to your Oracle Database Cloud Service instance using SFTP. At
the Oracle Database Cloud Service end, there is a background job which runs to
download these files and put them onto the Oracle Database Cloud Service
instance.

Once you have entered the Secure FTP hostname and user, either in the Create or
Edit Cloud Connection Dialog or the Deploy Objects to Cloud Dialog, the
information is saved and will be present the next time you deploy objects to your
Oracle Database Cloud Service instance.

If you have just signed up for Oracle Database Cloud Service, there are some steps
you have to carry out before trying to create a connection from JDeveloper. For

Connecting and Deploying to Oracle Database Cloud Service

Connecting to and Working with Databases 25-25

https://cloud.oracle.com
https://cloud.oracle.com

example, the Identity Domain Administrator has to create new passwords for the
Service Home and for the Secure FTP Site. The information you need is in the
"Welcome to Oracle Cloud" email.

Also, you have to create users who can create database connections to Oracle
Database Cloud Service instances. For more information, see "Managing Service
Users" available as part of the documentation available from the Resources menu at
https://cloud.oracle.com.

Creating an Oracle Database Cloud Service Connection

After you sign up for the Oracle Database Cloud Service, you will receive the
connection information you need.

To create a connection:

1. If necessary, open the Databases window by choosing Window > Database >
Databases.

2. Either click the New Connection button, or right-click the Cloud Connections node
and choose New Cloud Connection.

3. In the New Cloud Connection dialog, enter the following information. For more
help at any time, press F1 or click Help.

• A name for the connection

• The username of a user able to make a connection to Oracle Database Cloud

• The Service Home URL

• The Secure FTP username

• The Secure FTP hostname

The connection is created and listed in the Databases window, but the information is
not validated until you connect to Oracle Database Cloud Service.

Editing an Oracle Database Cloud Service Connection

You can only edit a connection when it is disconnected.

To create a connection:

1. If necessary, open the Databases window by choosing Window > Database >
Databases.

2. Right-click the node for the Cloud connection under the Cloud Connections node
and choose Properties.

3. In the Edit Cloud Connection dialog, make the changes that you want. For more
help at any time, press F1 or click Help.

Connecting and Disconnecting from an Oracle Database Cloud Service Connection

To connect:

1. If necessary, open the Databases window by choosing Window > Database >
Databases.

Connecting and Deploying to Oracle Database Cloud Service

25-26 Developing Applications with Oracle JDeveloper

https://cloud.oracle.com

2. Expand the Cloud Connections node and either:

• Click on + next to the Cloud connection node.

• Or right-click the Cloud connection node and choose Connect.

3. In the Authentication dialog enter the password for the Cloud connection user. For
more help at any time, press F1 or click Help.

The Cloud connection node expands to show the database objects present in the
Oracle Database Cloud Service instance, and below those nodes previous deployments
to the Oracle Database Cloud Service instance.

If an error message is displayed, check the connection properties.

To disconnect:

• Expand the Cloud Connections node, right-click on the Cloud connection node and
choose Disconnect.

Using the Database Cart
The Cart is a convenient tool for collecting Oracle Database objects from one or more
database connections, and deploying, exporting, comparing, or copying those objects.
You can put objects into one or more carts, each with its own tab. When the Cart
window is opened, it contains an empty cart, although you can create new carts and
open previously saved carts in new or existing cart tab.

Objects in the Cart are not automatically synchronized with database activity; to
update the contents of the cart with the current state of the database, click the Refresh
icon. If an object does not exist after a refresh, the object is disabled in the Cart and is
underlined to indicate the error

You can put database objects into a cart tab in several ways:

• Drag and drop objects from the Databases window into the Cart window.

• Select one or more objects in the Databases window, right-click, and select Add to
Cart.

• Open a previously saved Cart XML file.

• Add scripts By using the Scripts icon drop-down (Add Initial Script, Add Final
Script). (If you use a Cart tool that does not support scripts, they are ignored.)

Setting the Default Directories Used By the Database Cart

You can change the default directly used by the Database Cart, and the default
directory used by scripts.

To set the cart directory:

1. Choose Tools > Preferences.

2. From the Preferences page, navigate to the Database: Utilities: Cart page and
change the directory for the Default Cart or the Open Script directory. For more
information at any time, press F1 or click Help from within the dialog.

Connecting and Deploying to Oracle Database Cloud Service

Connecting to and Working with Databases 25-27

Configuring Database Cart Tools

For each of the Cart database utilities (Export, Diff [compare], Copy), you can create,
save, and open utility-specific configuration settings.

You can change the default locations used by the cart in the Database: Utilities: Cart
page of the Preferences dialog (available from the Tools menu).

To create and save configuration settings:

1. From the database cart dialog (either Export, Database Diff, or Copy), click the
Save Configuration button.

2. In the Save Tool Configuration dialog, the default location for the configuration
file is shown. If necessary, browser to a different location.

3. Click Apply.

A configuration file is created at the location you have selected with a name that
reflects the tool you invoked the dialog from:

• export_cart.xml

• diff_cart.xml

• copy_cart.xml

To use previously saved configuration settings:

1. From the database cart dialog (either Export, Database Diff, or Copy, click the
Open Configuration button.

2. In the Open Tool Configuration dialog, the appropriate configuration file at the
default location is displayed:

• export_cart.xml

• diff_cart.xml

• copy_cart.xml

If necessary, browse to a different location and click Apply.

Deploying to Oracle Database Cloud Service

This section describes how to deploy to the Oracle Database Cloud Service. As well as
just deploying database objects, you can specify a script to run before and another to
run after the generated scripts.

To deploy database objects to Cloud:

1. If necessary, create a Cloud connection.

2. If necessary, set database cart preferences appropriately.

3. If necessary, open the Database Cart. Choose Window > Database > Database
Cart. For more information at any time, press F1 or click Help from within any of
the windows or dialogs.

4. If necessary, open the Databases window by choosing Window > Database >
Databases.

Connecting and Deploying to Oracle Database Cloud Service

25-28 Developing Applications with Oracle JDeveloper

5. In the Databases window, expand the database connection or connections
containing the database objects you want to add to the cart. Select the objects (hold
down Ctrl to select more than one at a time) and drag them to the cart.

You can only use database objects in database connections. You cannot use offline
database objects in a Cloud connection.

6. In the Database Cart choose which objects you want to deploy, and if appropriate
the data you want to deploy too.

7. In the Database Cart, click Deploy to Cloud and in the Deploy Objects to Cloud
dialog choose the options you want, then click Apply.

You can change the default deployment location in the Utilities: Cart page of the
Preferences dialog (available from the Tools menu)

8. If the Cloud connection is not currently connected, the Authentication window
appears where you enter the password for the username associated with this
connection.

JDeveloper creates the ZIP file at the location you specified in the Deploy Objects to
Cloud dialog, then connects to the Oracle Database Cloud Service instance by Secure
FTP and transfers the ZIP file containing the deployment files.

You can examine the status of the deployment using the Log tab of the deployment
object under the cloud database connection's Deployments node. After deployment,
you will be able to see the deployed database objects under the Cloud Connections
node in the Databases window.

Deploying to a Database Deployment File

You can create a ZIP file containing the DDL and optionally the data for database
objects from one or more database connections.

JDeveloper creates a ZIP file which contains:

• A number of SQL scripts containing DDL for the database objects.

• Scripts to deploy any associated data that you want to deploy.

• A master script that has a name of the form Generated-yyyymmddhhmmss.sql.

Once the ZIP file has been created, you can use it to deploy the database objects to a
database connection by running the master script.

To deploy database objects to a ZIP file:

1. If necessary, open the Database Cart. Choose Window > Database > Database
Cart. For more information at any time, press F1 or click Help from within any of
the windows or dialogs.

2. If necessary, open the Databases window by choosing Window > Database >
Databases.

3. In the Databases window, expand the database connection or database connections
containing the database objects you want to add to the cart. Select the objects (hold
down Ctrl to select more than one at a time) and drag them to the cart.

4. In the Database Cart choose which objects you want to deploy, and if appropriate
the data you want to deploy too.

Connecting and Deploying to Oracle Database Cloud Service

Connecting to and Working with Databases 25-29

5. In the Database Cart, click Deploy and in the Deploy Objects dialog choose the
options you want, then click Apply.

JDeveloper creates the ZIP file at the specified location.

You can change the default deployment location in the Utilities: Cart page of the
Preferences dialog (available from the Tools menu).

Saving a Database Cart

You can save the contents of the database cart to reuse later.

To save the contents of a cart:

1. If necessary, open the Database Cart. Choose Window > Database > Database
Cart. For more information at any time, press F1 or click Help from within any of
the windows or dialogs.

2. If necessary, open the Databases window by choosing Window > Database >
Databases.

3. In the Databases window, expand the connection or connections containing the
database objects you want to add to the cart. Select the objects (hold down Ctrl to
select more than one at a time) and drag them to the cart.

4. Click Save Cart on the Database Cart toolbar and in the Save Cart dialog, check the
location and click Apply.

JDeveloper saves the contents of the cart as an XML file at the specified location.

Opening a Saved Database Cart

You can open the saved contents of a database cart. You can either empty the cart so
that it will contain just the contents of the saved cart, or add them to the existing
contents of the cart.

1. If necessary, open the Database Cart. Choose Window > Database > Database
Cart. For more information at any time, press F1 or click Help from within any of
the windows or dialogs.

2. Click Open Cart on the Database Cart toolbar. For more information at any time,
press F1 or click Help from within any of the windows or dialogs.

3. If there are objects already present in the Cart, a dialog asks whether you want to
remove current objects from the cart before opening the saved cart.

Yes empties the current cart and fills the cart with the objects from the cart you are
opening.

No does not empty the current cart, but adds the objects from the cart you are
opening to the current cart contents. If one or more objects is a duplicate of the
current cart contents it is not added (only one version of an identically named
object can be present in a cart).

4. In the Open dialog, navigate to the saved XML file and click Open.

Examining Deployments in an Oracle Database Cloud Service Connection

You can examine deployments to an Oracle Database Cloud Service instance.

To examine a deployment:

Connecting and Deploying to Oracle Database Cloud Service

25-30 Developing Applications with Oracle JDeveloper

1. If necessary, open the Databases window by choosing Window > Database >
Databases.

2. Under the Cloud Connections node expand the Cloud connection node you want
and then expand the Deployments node.

3. Double-click the deployment you want to examine. The Deployment Object Viewer
window opens.

• The Details tab shows information about the deployment.

• The Log tab shows log information about the deployment.

To see information that is larger than the cell, hover the mouse over the cell.
Alternatively, you can double-click the cell. The contents of the cell are displayed in a
Details window. This is particularly useful for information like SQL*Loader files.

You can re-run a deployment, delete the log for a deployment, or delete a deployment
from the Oracle Database Cloud Service instance.

To re-run a deployment:

• Right-click the deployment and choose Restart. The scripts contained in the
original deployment are run again.

To clear the deployment logs:

• Right-click the deployment and choose Clear Logs. The information in the Log tab
of the Deployment Object Viewer is deleted.

To delete a deployment:

• Right-click the deployment and choose Delete. The deployment is removed from
the list of deployments.

Note:

This does not remove the database objects deployed to the Oracle Database
Cloud Service instance. To do this, specify a deployment which uses a Before
Script which contains the appropriate DROP statements for the objects you
want to drop and deploy that.

Importing and Exporting Data
You can import data into tables in a database through a database connection.

Note:

You cannot import data into offline tables as offline tables are just
representations of database tables.

You can import data from:

• csv, a file containing comma-separated values including a header row for column
identifiers.

Importing and Exporting Data

Connecting to and Working with Databases 25-31

• xls, a file in Microsoft Excel format (only for import into existing and new tables).

You can import the data into:

• An existing table in the database.

• A new table that you create as part of the import process.

• Using a SQL*Loader control file.

• An external table.

Importing Data Using SQL*Loader
When you choose the SQL*Loader option in the Data Import Wizard, JDeveloper
creates the following files in the same location as the import file containing the data:
table.ctl, which contains information about the file containing the data and the table
into which it can be imported. table.bat and table.sh, to run the import.

For more information, see "SQL*Loader Concepts" in Oracle® Database Utilities.

Importing Data Into an External Table
You can import data into an external table, which is a flat file in which you can query
data as though it were an Oracle table.

When you choose the External Table option, JDeveloper creates the SQL and displays
it in the SQL Worksheet where you can examine it and make any necessary changes
before running the script.

For more information, see "External Table Concepts" in Oracle® Database Utilities.

How to Import Data into Existing Tables
You can import data into a table in a database through a database connection.

The following import file formats are supported:

• csv, a file containing comma-separated values including a header row for column
identifiers.

• xls, a file in Microsoft Excel format.

To import data to an existing database table:

1. From the main menu, choose Window > Database > Databases to open the
Databases window.

2. If necessary, create a connection to the database.

3. Expand the node for the database connection, the schema, Tables, and select the
table node you want to import data to.

4. Right-click and choose Import Data and in the Open dialog enter or browse to the
location of the file.

Click OK to launch the Data Import Wizard.

For more information at any time, press F1 or click Help from within the wizard.

Importing and Exporting Data

25-32 Developing Applications with Oracle JDeveloper

How to Import Data to New Tables
You can import data into a database table that you create as part of the import process.

To import data to a new database table:

1. From the main menu, choose Window > Database > Databases to open the
Databases window.

2. If necessary, create a connection to the database.

3. Expand the node for the database connection and the schema. Right-click the
Tables node and choose Import Data.

4. In the Open dialog enter or browse to the location of the file. Click OK to launch
the Data Import Wizard.

For more information at any time, press F1 or click Help from within the wizard.

5. On the Column Definition page of the Data Import wizard, enter the name of the
new table.

How to Import Data Using SQL*Loader
You can create a SQL*Loader control file which can be used to import data.

To import data to a SQL*Loader control file:

1. From the main menu, choose Window > Database > Databases to open the
Databases window.

2. If necessary, create a connection to the database.

3. Expand the node for the database connection, the schema, Tables, and select the
table node you want to import data to.

4. Right-click and choose Import Data and in the Open dialog enter or browse to the
location of the file.

Click OK to launch the Data Import Wizard.

For more information at any time, press F1 or click Help from within the wizard.

5. On the Data Preview page of the Data Import wizard, choose SQL*Loader Table.

6. On the Options page of the Data Import wizard, choose the options for the
generated file.

7. When you complete the Data Import wizard, the SQL*Loader control file called
table.ctl is created in the same location as the data file, along with a table.bat
and table.sh files which allow you to run it. If you selected Send to worksheet on
the Finish page of the Data Import wizard, the SQL defining the table is displayed
in the SQL Worksheet.

How to Import Data Using External Tables
You can import data into tables in a database through a database connection.

To import data to an external table:

Importing and Exporting Data

Connecting to and Working with Databases 25-33

1. If necessary, create a connection to the database.

2. Expand the node for the database connection and the schema. Right-click the
Tables node and choose Import Data and in the Open dialog enter or browse to the
location of the file.

3. Click OK to launch the Data Import Wizard.

For more information at any time, press F1 or click Help from within the wizard.

4. On the Data Preview page of the Data Import wizard, choose External Table.

5. On the Options page of the Data Import wizard, choose the options for the
generated file. When you complete the Data Import wizard, the SQL is displayed in
the SQL Worksheet, where you can examine it and make any changes. When you
are satisfied, right-click in the Worksheet, and choose Run in SQL*Plus.

Exporting Data from Databases
You can export data from tables in a database through a database connection.

The data can be saved to a file or to the clipboard. The following formats are
supported:

• csv, to create a file containing comma-separated values including a header row for
column identifiers.

Note:

You can choose a different delimiter.

• fixed, to create a file where records are the same byte length.

• html, to create an HTML file containing a table with the data. insert, to create a file
containing SQL INSERT statements.

• loader, to create a SQL*Loader control file. For more information, see
"SQL*Loader Concepts" in Oracle® Database Utilities.

• text, to create a text file.

• ttbulkcp, to create a data files to be used with the TimesTen ttbulkcp command
line utility. For more information, see Oracle TimesTen In-Memory Database 11g at
http://www.oracle.com/technology/products/timesten/index.html.

• xls, to create a Microsoft Excel .xls file. The file will contain two worksheets,
Export Worksheet, which contains the data, and SQL which contains the SQL
statement used to export the data.

• xml, to create a file containing XML tags and data.

In the Export Data dialog, you can limit the data to be exported by selecting only some
columns, and by entering a WHERE clause.

Importing and Exporting Data

25-34 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technology/products/timesten/index.html

Note:

If you encounter problems exporting large tables to Microsoft Excel files, try
adding the following line to the jdeveloper.conf file to increase heap size,
and then restarting JDeveloper:

AddVMOption -Xmx1024M

If the number of table rows exceeds 65,536, JDeveloper writes the rows to
multiple worksheets within the .xls file.

You can also export data from a database using the Export Database wizard.

How to Export Data to Files
You can export data from tables in a database through a database connection.

To export data from a database table:

1. From the main menu, choose Window > Database > Databases to open the
Databases window.

2. If necessary, create a connection to the database.

3. Expand the node for the database connection, the schema, Tables, and select the
table node you want to export data from.

4. Right-click and choose Export Data to open the Export Data dialog.

For more information at any time, press F1 or click Help from within the wizard.

Copying, Comparing, and Exporting Databases
You can copy database objects from a source schema to a destination schema. You can
export database objects and data to a DDL file.

How to Copy Databases
You can copy database objects from a source schema to a destination schema, subject
to any restrictions depending on the type of operation, which determines the behavior
if objects of the same name exist in the destination schema.

You must have the source and the destination database connections already defined.

To copy a database:

1. From the main menu, choose Tools > Database > Database Copy to open the New
Copy wizard.

For more information at any time, press F1 or click Help from within the wizard.

How to Compare Database Schemas
You can find differences between objects of the same type and name (for example,
tables named CUSTOMERS) in two different schemas, and optionally update the
objects in one schema (destination) to reflect differences in the other schema (source).

Using the Diff wizard requires the licensing of the Oracle Change Management option
for Oracle Database. To purchase a license, contact your Oracle sales representative or

Copying, Comparing, and Exporting Databases

Connecting to and Working with Databases 25-35

authorized Oracle Reseller, or go to the Oracle Store to buy online at https://
shop.oracle.com

You must have the source and the destination database connections already defined.

To compare database schemas:

1. From the main menu, choose Tools > Database > Database Diff to open the Diff
wizard.

For more information at any time, press F1 or click Help from within the wizard.

How to Export Databases
You can export some or all objects of one or more types of database objects to a file
containing SQL data definition language (DDL) statements to create these objects.
Export Database wizard allows you to: Specify details of the DDL file that is
generated. Select the database object objects to be exported. Choose to export data, and
apply filters to specify the data to be included in the generated file.

You must have already defined a connection to the database you want to export.

To export a database:

1. From the main menu, choose Tools > Database > Database Export to open the
Export Database wizard.

For more information at any time, press F1 or click Help from within the wizard.

Working with Oracle and Non-Oracle Databases
This section describes how to work with Oracle Database, as well as with non-Oracle
databases. There are limitations on what you can do with JDeveloper with different
databases. For more information, see the relevant information in How to Create
Connections to Oracle Databases and How to Create Connections to Non-Oracle
Databases.

Working with Database Reports
JDeveloper provides many reports about a database and its objects. You can also
create your own user-defined database reports.

You can also run reports on offline database objects.

Using Database Reports
JDeveloper provides many reports about a database and its objects. You can also
create your own user-defined database reports.

For some reports, you are prompted for bind variables before the report is generated.
These bind variables enable you to further restrict the output. The default value for all
bind variables is null, which implies no further restrictions.

The Database Reports window allows you to run reports which query the database for
the latest information. The time required to display specific reports will vary, and may
be affected by the number and complexity of objects involved, and by the speed of the
network connection to the database.

There are a number of predefined reports about the database and its objects.

You can also create your own user-defined reports.

Working with Oracle and Non-Oracle Databases

25-36 Developing Applications with Oracle JDeveloper

https://shop.oracle.com
https://shop.oracle.com

You can examine the underlying SQL for a report, for example, to help you create your
own report.

Database reports are organized in folders, and reports and folders can be exported.

You can share reports by exporting them.

The person who wants to share the report then adds it to their instance of JDeveloper
using the Preferences dialog. Reports that have been exported can be imported into
folders under the User Defined Reports node.

How to Run Database Reports

The Database Reports window allows you to run reports which query the database for
the latest information. The time required to display specific reports will vary, and may
be affected by the number and complexity of objects involved, and by the speed of the
network connection to the database.

Running a database report:

1. If it is not open, open the Database Reports window. In the main menu, choose
Window > Database > Database Reports.

2. Locate the report you want to run, right-click and choose Open, which will
overwrite any previous results in the Reports Viewer window, or Open New to
open a new instance of the Reports Viewer.

3. If the Bind Variables dialog is displayed, enter the bind variables you want to use.
For more information at any time, click F1 or Help in the Bind Variables dialog.

The report results are displayed in the Reports Viewer.

How to View the SQL for a Report

You can view the underlying SQL for a database report in the SQL Worksheet.

To view the SQL for a database report:

1. If it is not open, open the Database Reports window. In the main menu, choose
Window > Database > Database Reports.

2. Run the report.

3. In the Reports Viewer, click the Run Report in SQL Worksheet button. The SQL
Worksheet opens displaying the SQL code for the report.

How to Create User-Defined Database Reports

You can define your own reports for database features and objects.

To create user-defined reports:

1. If it is not open, open the Database Reports window. In the main menu, choose
Window > Database > Database Reports.

2. Right-click the User Defined Reports node, or a folder that you have created under
this node, and choose Add Report.

3. In the Create Report dialog, enter a name and the SQL for the report. For more
information at any time, click F1 or Help in the Create Report dialog.

Working with Database Reports

Connecting to and Working with Databases 25-37

How to Edit User-Defined Database Reports

You can edit user-defined reports.

To edit a user-defined report:

1. If it is not open, open the Database Reports window. In the main menu, choose
Window > Database > Database Reports.

2. Open the User Defined Reports node, and right-click on the report you want to
edit, and choose Edit.

3. In the Create Report dialog, enter a name and the SQL for the report. For more
information at any time, click F1 or Help in the Create Report dialog.

How to Create Reports Folders

You can organize user-defined reports in folders.

To create a folder:

1. If it is not open, open the Database Reports window. In the main menu, choose
Window > Database > Database Reports.

2. Right-click the User Defined Reports node, and choose Add Folder.

3. In the Create Folder dialog, enter a name for the folder. For more information at
any time, click F1 or Help in the dialog

How to Export User-Defined Reports

You can export database reports or folders of database reports.

If you are sharing a report, you export it, and users who want to share the report, then
make it available in their instance of JDeveloper.

To export a database report or folder:

1. If it is not open, open the Database Reports window. In the main menu, choose
Window > Database > Database Reports.

2. Right-click the report or folder you want to share, and choose Export.

3. Enter a location for the report in the Save dialog. The default name for the report is
explain.xml.

How to Import User-Defined Reports

After you have exported database reports and folders, you can import them to a user-
defined folder.

You need to first create the folder to hold the report.

This can also be a simple way to share database reports.

To import a database report or folder:

1. If it is not open, open the Database Reports window. In the main menu, choose
Window > Database > Database Reports.

2. Under the User Defined Reports node, right-click the folder you want to add the
report to, and choose Import.

Working with Database Reports

25-38 Developing Applications with Oracle JDeveloper

3. In the Open dialog, enter or browse to the location for the exported report in the
Save dialog. The default name for the report is explain.xml.

How to Share Database Reports

You can share database reports. The report is exported, then you add it to your
invocation of JDeveloper.

Before a report can be shared:

• The report must be run.

• The report must then be exported.

To share a database report:

1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select Database > User-Defined Extensions. For more
information at any time, press F1 or click Help from within the Preferences dialog.

3. Click Add Row, and under Type select REPORT, and under Location enter or
browse to the location of the exported report.

4. Restart JDeveloper.

5. Choose Window > Database > Database Reports to open the Database Reports
window. The shared report is listed under the Shared Reports node in the
Databases window.

Reference: Pre-Defined Database Reports
This section describes the pre-defined reports available under the Data Dictionary
Reports node in the Database Reports window.

The reports are grouped into categories, with one or more different reports available
in that category.

• About Your Database Reports

These reports list release information about the database associated with the
connection. The reports include Version Banner (database settings) and National
Language Support Parameters (NLS_xxx parameter values for globalization
support).

• All Objects Reports

These reports list information about all objects accessible to the user associated
with the specified database connection, not just objects owned by the user.

– All Objects: For each object, lists the owner, name, type (table, view, index, and
so on), status (valid or invalid), the date it was created, and the date when the
last data definition language (DDL) operation was performed on it. The Last
DDL date can help you to find if any changes to the object definitions have been
made on or after a specific time.

– Collection Types: Lists information about each collection type. The information
includes the type owner, element type name and owner, and type-dependent
specific information.

Working with Database Reports

Connecting to and Working with Databases 25-39

– Dependencies: For each object with references to it, lists information about
references to (uses of) that object.

– Invalid Objects: Lists all objects that have a status of invalid.

– Object Count by Type: For each type of object associated with a specific owner,
lists the number of objects. This report might help you to identify users that
have created an especially large number of objects, particularly objects of a
specific type.

– Public Database Links: Lists all public database links.

– Public Synonyms: Lists all public synonyms.

• Application Express Reports

These reports list information about Oracle Application Express 3.0.1 (or later)
applications, pages, schemas, UI defaults, and workspaces. If you select a
connection for a schema that owns any Oracle Application Express 3.0.1 (or later)
applications, the Application Express reports list information about applications,
pages, schemas, UI defaults, and workspaces. For more information, see Oracle®

Application Express Administration Guide.

• ASH and AWR Reports

These reports list information provided by the Active Session History (ASH) and
Automated Workload Repository (AWR) features.

• Database Administration Reports

These reports list usage information about system resources. This information can
help you to manage storage, user accounts, and sessions efficiently. (The user for
the database connection must have the DBA role to see most Database
Administration reports.)

– All Tables: Contains the reports that are also grouped under Table reports,
including Quality Assurance reports.

– Cursors: Provide information about cursors, including cursors by session
(including open cursors and cursor details.

– Database Parameters: Provide information about all database parameters or
only those parameters that are not set to their default values.

– Locks: Provide information about locks, including the user associated with each.

– Sessions: Provide information about sessions, selected and ordered by various
criteria.

– Storage: Provide usage and allocation information for tablespaces and data files.

– Top SQL: Provide information about SQL statements, selected and ordered by
various criteria. This information might help you to identify SQL statements
that are being executed more often than expected or that are taking more time
than expected.

– Users: Provide information about database users, selected and ordered by
various criteria. For example, you can find out which users were created most
recently, which user accounts have expired, and which users use object types
and how many objects each owns.

Working with Database Reports

25-40 Developing Applications with Oracle JDeveloper

• Data Dictionary Reports

These reports list information about the data dictionary views that are accessible in
the database. Examples of data dictionary views are ALL_OBJECTS and
USER_TABLES.

– Dictionary View Columns: For each Oracle data dictionary view, lists
information about the columns in the view.

– Dictionary Views: Lists each Oracle data dictionary view and (in most cases) a
comment describing its contents or purpose.

• Jobs Reports

These reports list information about jobs running on the database.

– All Jobs: Lists information about all jobs running on the database. The
information includes the start time of its last run, current run, and next
scheduled run.

– DBA Jobs: Lists information about each job for which a DBA user is associated
with the database connection. The information includes the start time of its last
run, current run, and next scheduled run.

– Your Jobs: Lists information about each job for which the user associated with
the database connection is the log user, privilege user, or schema user. The
information includes the start time of its last run, current run, and next
scheduled run.

• PLSQL Reports

These reports list information about your PL/SQL objects and allow you to search
the source of those objects.

– Program Unit Arguments: For each argument (parameter) in a program unit,
lists the program unit name, the argument position (1, 2, 3, and so on), the
argument name, and whether the argument is input-only (In), output-only
(Out), or both input and output (In/Out).

– Search Source Code: For each PL/SQL object, lists the source code for each line,
and allows the source to be searched for occurrences of the specified variable.

– Unit Line Counts: For each PL/SQL object, lists the number of source code lines.
This information can help you to identify complex objects (for example, to
identify code that may need to be simplified or divided into several objects).

• Security Reports

These reports list information about users that have been granted privileges, and in
some cases about the users that granted the privileges. This information can help
you (or the database administrator if you are not a DBA) to understand possible
security issues and vulnerabilities, and to decide on the appropriate action to take
(for example, revoking certain privileges from users that do not need those
privileges).

– Auditing: Lists information about audit policies.

– Encryption: Lists information about encrypted columns.

– Grants and Privileges: Includes the following reports:

Working with Database Reports

Connecting to and Working with Databases 25-41

◆ Column Privileges: For each privilege granted on a specific column in a
specific table, lists the user that granted the privilege, the user to which the
privilege was granted, the table, the privilege, and whether the user to which
the privilege was granted can grant that privilege to other users.

◆ Object Grants: For each privilege granted on a specific table, lists the user
that granted the privilege, the user to which the privilege was granted, the
table, the privilege, and whether the user to which the privilege was granted
can grant that privilege to other users.

◆ Role Privileges: For each granted role, lists the user to which the role was
granted, the role, whether the role was granted with the ADMIN option, and
whether the role is designated as a default role for the user.

◆ System Privileges: For each privilege granted to the user associated with the
database connection, lists the privilege and whether it was granted with the
ADMIN option.

– Policies: Lists information about policies.

– Public Grants: Lists information about privileges granted to the PUBLIC role.

• Streams Reports

These reports list information about stream rules.

– All Stream Rules: Lists information about all stream rules. The information
includes stream type and name, rule set owner and name, rule owner and name,
rule set type, streams rule type, and subsetting operation.

– Your Stream Rules: Lists information about each stream rule for which the user
associated with the database connection is the rule owner or rule set owner. The
information includes stream type and name, rule set owner and name, rule
owner and name, rule set type, streams rule type, and subsetting operation.

• Table Reports

These reports list information about tables owned by the user associated with the
specified connection. This information is not specifically designed to identify
problem areas; however, depending on your resources and requirements, some of
the information might indicate things that you should monitor or address.

For table reports, the owner is the user associated with the database connection.

– Columns: For each table, lists each column, its data type, and whether it can
contain a null value. Also includes:

– Data type Occurrences: For each table owner, lists each data type and how
many times it is used.

– Comments for tables and columns: For each table and for each column in each
table, lists the descriptive comments (if any) associated with it. Also includes a
report of tables without comments. If database developers use the COMMENT
statement when creating or modifying tables, this report can provide useful
information about the purposes of tables and columns

– Constraints: Includes the following reports related to constraints:

Working with Database Reports

25-42 Developing Applications with Oracle JDeveloper

– All Constraints: For each table, lists each associated constraint, including its
type (unique constraint, check constraint, primary key, foreign key) and status
(enabled or disabled).

– Check Constraints: For each check constraint, lists information that includes the
owner, the table name, the constraint name, the constraint status (enabled or
disabled), and the constraint specification.

– Enabled Constraints and Disabled Constraints: For each constraint with a status
of enabled or disabled, lists the table name, constraint name, constraint type
(unique constraint, check constraint, primary key, foreign key), and status. A
disabled constraint is not enforced when rows are added or modified; to have a
disabled constraint enforced, you must edit the table and set the status of the
constraint to Enabled (see the appropriate tabs for the Create/Edit Table (with
advanced options) dialog box).

– Foreign Key Constraints: For each foreign key constraint, lists information that
includes the owner, the table name, the constraint name, the column that the
constraint is against, the table that the constraint references, and the constraint
in the table that is referenced.

– Primary Key Constraints: For primary key constraint, lists information that
includes the owner, the table name, the constraint name, the constraint status
(enabled or disabled), and the column name.

– Unique Constraints: For each unique constraint, lists information that includes
the owner, the table name, the constraint name, the constraint status (enabled or
disabled), and the column name.

– Indexes: Includes information about all indexes, indexes by status, indexes by
type, and unused indexes.

– Organization: Specialized reports list information about partitioned tables,
clustered tables, and index-organized tables.

– Quality Assurance: (See Quality Assurance reports.)

– Statistics: For each table, lists statistical information, including when it was last
analyzed, the total number of rows, the average row length, and the table type.
In addition, specialized reports order the results by most rows and largest
average row length.

– Storage: Lists information about the table count by tablespace and the tables in
each tablespace.

– Triggers: Lists information about all triggers, disabled triggers, and enabled
triggers.

– User Synonyms: Displays information about either all user synonyms or those
user synonyms containing the string that you specify in the Enter Bind
Variables dialog box (deselect Null in that box to enter a string).

– User Tables: Displays information about either all tables or those tables
containing the string that you specify in the Enter Bind Variables dialog box
(deselect Null in that box to enter a string).

– Quality Assurance reports: These are table reports that identify conditions that
are not technically errors, but that usually indicate flaws in the database design.
These flaws can result in various problems, such as logic errors and the need for

Working with Database Reports

Connecting to and Working with Databases 25-43

additional application coding to work around the errors, as well as poor
performance with queries at run time.

– Tables without Primary Keys: Lists tables that do not have a primary key
defined. A primary key is a column (or set of columns) that uniquely identifies
each row in the table. Although tables are not required to have a primary key, it
is strongly recommended that you create or designate a primary key for each
table. Primary key columns are indexed, which enhances performance with
queries, and they are required to be unique and not null, providing some
automatic validation of input data. Primary keys can also be used with foreign
keys to provide referential integrity.

– Tables without Indexes: Lists tables that do not have any indexes. If a column in
a table has an index defined on it, queries that use the column are usually much
faster and more efficient than if there is no index on the column, especially if
there are many rows in the table and many different data values in the column.

– Tables with Unindexed Foreign Keys: Lists any foreign keys that do not have an
associated index. A foreign key is a column (or set of columns) that references a
primary key: that is, each value in the foreign key must match a value in its
associated primary key. Foreign key columns are often joined in queries, and an
index usually improves performance significantly for queries that use a column.
If an unindexed foreign key is used in queries, you may be able to improve run-
time performance by creating an index on that foreign key.

• XML Reports

These reports list information about XML objects.

– XML Schemas: For each user that owns any XML objects, lists information about
each object, including the schema URL of the XSD file containing the schema
definition.

Troubleshooting Database Connections
This section contains information to help you if you have problems connecting to a
database.

Deploying to a Database that Uses an Incompatible JDK Version
If you get the following ORA-29552: verification warning:
java.lang.UnsupportedClassVersionError when deploying Java to the
database you need to change the version of the JDK used for that project to a version
compatible with that used by the database.

For information about the JDK, see "JDeveloper Certification Information" at http://
www.oracle.com/technetwork/developer-tools/jdev/documentation/
index.html.

For information about the JDK used by the database, consult your database
documentation.

For information about changing the Java SE on a project by project basis, see the
section on setting the target Java SE in How to Set Properties for Individual Projects.

You can download previous releases of Java SE from http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

Troubleshooting Database Connections

25-44 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

26
Designing Databases Within Oracle

JDeveloper

This chapter describes how to work with database objects in a database connection. It
also contains information about working with offline databases in JDeveloper to create
and edit offline database objects that can then be generated to a script database
connection.

This chapter includes the following sections:

• About Designing Databases Within Oracle JDeveloper

• Creating, Editing, and Dropping Database Objects

• Creating Scripts from Offline and Database Objects

About Designing Databases Within Oracle JDeveloper
You can use JDeveloper to:

• Create, edit, or delete database objects

• Create, edit, or delete offline database objects

• Work with offline versions of database definitions, and then generate those
definitions figgeroisd to a file that is processed immediately or at a time you choose
to create a table or other database objects via the database connection

• Model offline databases, and model database objects in a live database connection
on a diagram. For more information about modeling databases, see Modeling with
Database Diagrams .

Creating, Editing, and Dropping Database Objects
You can create database objects and offline database definitions, you can edit those
objects, and you can delete them or drop them from a database connection.

Working with Offline Database Definitions
This section describes how to work with database objects, such as tables, views,
constraints, outside the context of a database schema. Offline database is a technology
in JDeveloper that allows you to create and edit database object definitions within a
project, saved as .xml files, using the same editors that are used to create and edit
database objects on live database connections.

You can create new offline database objects. Alternatively, you can have a connection
to a live database and reverse engineer database objects. After you have finished

Designing Databases Within Oracle JDeveloper 26-1

working with them, you can generate DDL that can be used to create and update
database definitions in online database schemas.

The JDeveloper Offline database supports the following object types:

• Function

• Index (as part of a table)

• Database Link

• Materialized View

• Materialized View Log

• Package

• Procedure

• Sequence

• Synonym

• Table

• Tablespace

• Trigger

• Type

• View

For more information about Oracle Database support of any of these object types, see
the Oracle® Database SQL Reference.

How to Work with Offline Database Definitions

When you work with offline database definitions in JDeveloper, you work with objects
that are stored as XML files, but which provide a model of objects in live database
connections. You can generate offline database definitions to live database connections
to create, alter, or drop database objects.

JDeveloper provides the tools you need to create and edit database objects such as
tables and constraints outside the context of a database. For example

• You can create new tables and views and generate the information to a database.

• You can create new tables and views and generate the information to a file, which
you can edit and later run on a database connection.

• You can reverse engineer tables and views from a database schema, make the
changes you want and then generate the changes back to the same database
schema, to a new database schema, or to a file that you can run against a database
at a later date. JDeveloper allows you to manually reconcile changes before
committing them to a database.

• You can use the modeling tools in JDeveloper to visualize your offline database
objects on a diagram. For more information about modeling databases, see
Modeling with Database Diagrams .

Creating, Editing, and Dropping Database Objects

26-2 Developing Applications with Oracle JDeveloper

How to Set Paths for Offline Database Files

You can configure a project's settings to specify the root locations for offline database
objects available to that project. The database path is configured by default, so you
only need to change it if you want to:

• Include offline database objects that are stored in another project

• Store new offline database object files somewhere else.

Offline database objects can be shared between projects by adding their file system
location to the database path for a project. The order in which file system locations are
entered in the database path signifies the order in which the directories are searched
for offline database objects. The first location in the database path is the location in
which new offline database object files are stored.

If you are modeling database objects, the model path (located on the Modelers
preferences page in the Project Properties dialog) is used to specify the file location for
the diagram.

Note:

When you are adding another database path to a project, you should save
your work before proceeding. When you change the database path, the project
reloads the offline database object definitions so any unsaved work for
example, changes to tables, views, schemas or new objects that you have not
yet saved, may be lost.

You can set a default root directory for database objects that will be used for all new
projects.

To set the default root directory for database objects for new projects:

1. Choose Application > Default Project Properties.

2. Select Project > Source Paths > Offline Database, and enter the root directory.

You can change the database path for an existing project.

To set the database path for an existing project:

1. Right-click the project and choose Project Properties.

2. Select Project > Source Paths > Offline Database, and enter the file system
location for your project's offline database objects. Separate multiple file system
locations using semicolons (;).

3. You can selectively include and exclude subfolders using the Included and
Excluded tabs. For more information, press F1 or click Help from within the
dialog.

Offline Databases

JDeveloper works with offline database definitions in the context of offline databases
that act as containers in a similar way to packages. In the Applications window, the
offline database is shown below the Offline Database Sources node, shown in Figure
26-1.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 26-3

Figure 26-1 Offline Database in the Applications Window

In this case, a Java class and a database diagram have been created in the package
project1, which is under the Application Sources node, and some offline database
definitions have been created in an offline database called DATABASE1, which is under
the Offline Database Sources node.

When you create an offline database, you choose the database emulation of the offline
database.

Configuring Offline Database Emulation

You can specify the type of database an offline database emulates. This determines the
data types supported in the project.

For information about which database versions are compatible with JDeveloper, see
the JDeveloper Certification Information at http://www.oracle.com/
technetwork/developer-tools/jdev/documentation/index.html

How to Create Offline Databases

An offline database is a node in the Applications window that contains offline
schemas and offline database object definitions.

To create an offline database:

1. In the Applications window, locate the project you want to work in.

2. Right-click a project or anything in it, and choose New to display the New Gallery.

3. From the New Gallery, expand Database Tier, and select Offline Database
Objects, and select Offline Database.

4. In the Create Offline Database dialog, enter a name for the offline database and
choose the database type to emulate.

For more information at any time, press F1 or click Help from within Create Offline
Database dialog.

Creating, Editing, and Dropping Database Objects

26-4 Developing Applications with Oracle JDeveloper

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

Offline Schemas

JDeveloper works with offline database definitions in the context of offline databases.
Within the offline databases, offline schemas are the equivalent of schemas (or users)
in live database connections. In the Applications window, the offline schema is shown
below the Offline Database Sources node, illustrated in Figure 26-2.

Figure 26-2 Offline Schema in Applications Window

In this case, a Java class and a database diagram have been created in the package
project1, which is under the Application Sources node, and some offline database
definitions have been created in a schema called SCHEMA1, which is in an offline
database called DATABASE1 under the Offline Database Sources node.

How to Create Offline Schemas

To create an offline schema:

1. In the Applications window, locate the project you want to work in.

2. Right-click a project or anything in it, and choose New to display the New Gallery.

3. From the New Gallery, expand Database Tier, and select Offline Database
Objects, and select Schema.

4. In the Offline Database dialog, choose the offline database to create the schema in.

5. In the Create Schema dialog, enter a name for the offline schema. For more
information at any time, press F1 or click Help from within Create Schema dialog.

Example 26-1 Context Menu Shortcut:

In the Applications window, right-click the offline database, and choose New Schema.

How to Create Offline Database Objects

There are a number of ways that you can create offline database objects:

• You can always create offline database objects from the New Gallery.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 26-5

• You can always create a database diagram, a table or a view from the context menu
of a project configured for offline database development, or from a node under that
project.

• Once you have created an offline database object, you can create another from the
context menu of a project configured for offline database development, or from a
node under that project.

About Tables

The types of tables that are available are:

• Normal. This is a regular database table which can be partitioned. A partitioned
table is a table that is organized into smaller and more manageable pieces called
partitions. SQL queries and DML statements do not need to be modified in order to
access partitioned tables; however, after partitions are defined, DDL statements can
access and manipulate individual partitions rather than entire tables or indexes.
Also, partitioning is entirely transparent to applications.

• External. An external table is a read-only table whose metadata is stored in the
database but whose data is stored outside the database. Among other capabilities,
external tables enable you to query data without first loading it into the database.

• Index Organized. An index-organized table is a table in which the rows, both
primary key column values and non-key column values, are maintained in an
index built on the primary key. Index-organized tables can be used to store index
structures as tables in Oracle Database. Index-organized tables are best suited for
primary key-based access and manipulation.

• Temporary. The temporary table definition persists in the same way as the
definition of a regular table, but the table segment and any data in the temporary
table persist only for the duration of either the transaction or the session, and the
table is not stored permanently in the database. Temporary tables cannot be
partitioned or index organized.

Note:

You can only create and use relational table definitions in offline schemas, you
cannot create and use object relational table definitions.

About Partitions

You can partition a table, an index, or a materialized view. A partitioned table or
materialized view is a table or materialized view that is organized into smaller and
more manageable pieces called partitions. SQL queries and DML statements do not
need to be modified in order to access partitioned tables; however, after partitions are
defined, DDL statements can access and manipulate individual partitions rather than
entire tables or indexes. Also, partitioning is entirely transparent to applications.

Temporary tables cannot be partitioned.

A partitioned index consists of partitions containing an entry for each value that
appears in the indexed column(s) of the table.

There are three types of partitions:

Creating, Editing, and Dropping Database Objects

26-6 Developing Applications with Oracle JDeveloper

• RANGE, which partitions the table on ranges of values from the column list. For an
index-organized table this must be a subset of the primary key columns of the
table.

• HASH, which partitions the table using the hash method. Rows are assigned to
partitions using a hash function on values found in columns designated as the
partitioning key.

• LIST, which partitions the table on lists of literal values from a column. This is
useful for controlling how individual rows map to specific partitions.

You can combine two partitioning methods, called composite partitioning, to further
divide the data into subpartitions. Composite partitioning is supported for:

• Range-Range

• Range-Hash

• Range-List

• List-Range

• List-Hash

• List-List

You can define subpartition templates which will be used in any partition for which
you do not explicitly define subpartitions.

Note:

A table or index in Oracle Database which uses a hash partition by quantity
will be displayed in JDeveloper as having individual hash partitions. You can
either specify your individual partitions manually using the Create or Edit
Table or Materialized View dialog, or define them by quantity and let the
database do the work for you. Whichever way you choose to define your
partitions, when you edit the database table or materialized view in
JDeveloper, they will be displayed as individual partitions.

About Indexes

You can create indexes on columns in tables in order to speed up queries. Indexes
provide faster access to data for operations that return a small portion of a table's
rows. In general, you may want to create an index on a column in any of the following
situations:

• The column is queried frequently.

• A referential integrity constraint exists on the column.

• A unique key integrity constraint exists on the column.

You can create an index on any column; however, if the column is not used in any of
these situations, creating an index on the column does not increase performance and
the index takes up resources unnecessarily. Although the database creates an index for
you on a column with an integrity constraint, explicitly creating an index on such a
column is recommended. You can use the SQL Worksheet's execution plan to show a
theoretical execution plan of a given query statement.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 26-7

Index types are non-unique, unique, or bitmap, or they can be domain indexes.

In a non-unique normal index, the index can contain multiple identical values. In a
unique normal index, no duplicate values are permitted. Use a unique normal index
when values are unique in the column. In a bitmap normal index, rowids associated
with a key value are stored as a bitmap. These are useful for systems in which data is
not frequently updated by many concurrent systems, or where there is a small range
of values.

Domain indexes are user-defined indexes, each of which indexes data in an
application-specific domain. They are built using the indexing logic supplied by a
user-defined indextype. An indextype provides an efficient mechanism to access data
that satisfy certain operator predicates. Typically, the user-defined indextype is part of
an Oracle option, like the Spatial option.

Working with User-Defined Data Types

JDeveloper allows you to define your own data types, which can be either object types
or collection types.

Object types are abstractions of the real-world entities—for example, purchase orders
—that application programs deal with. An object type is a schema object with three
kinds of components:

• A name, which serves to identify the object type uniquely within that schema.

• Attributes, which model the structure and state of the real world entity. Attributes
are built-in types or other user-defined types.

• Methods, which are functions or procedures written in PL/SQL and stored in the
database, or written in a language like C and stored externally. Methods implement
operations the application can perform on the real world entity.

An object type is a template. A structured data unit that matches the template is called
an object.

JDeveloper allows you to create an object type specification, or an object type
specification and body.

When you create a new object type spec, it is similar to

TYPE TYPE1 AS OBJECT (a null);

When you create an object type body, it is similar to

CREATE TYPE BODY TYPE1 AS VARRAY(1) OF null;

Collection types are different. Each collection type describes a data unit made up of an
indefinite number of elements, all of the same data type. The collection types are array
types and table types.

Array types and table types are schema objects. The corresponding data units are
called VARRAYs and nested tables. When there is no danger of confusion, we often
refer to the collection types as VARRAYs and nested tables.

Collection types have constructor methods. The name of the constructor method is the
name of the type, and its argument is a comma-separated list of the new collection's
elements. The constructor method is a function. It returns the new collection as its
value.

Creating, Editing, and Dropping Database Objects

26-8 Developing Applications with Oracle JDeveloper

An expression consisting of the type name followed by empty parentheses represents
a call to the constructor method to create an empty collection of that type. An empty
collection is different from a null collection.

JDeveloper allows you to create array types and table types.

An array type is similar to

TYPE TYPE1 AS VARRAY(1) OF null;

A table type is similar to

TYPE TYPE1 AS TABLE OF null;

Note:

In order to use data types when the project is configured for database
emulation other than Oracle Database, the database it emulates must support
type creation.

About Materialized Views

Materialized views are database objects that contain the results of a query. The FROM
clause of the query can name tables, views, and other materialized views. You can
model, create, and edit materialized views in a live database connection, and offline
materialized views in an offline database in JDeveloper.

When reverse engineering materialized views from Oracle Database to a JDeveloper
project:

• If a materialized view on the database specifies WITHOUT REDUCED
PRECISION, when it is reverse engineered into JDeveloper it will use reduced
precision, and the Reduced Precision option on the Properties page of the Edit
Materialized View dialog is selected. If it is important that the materialized view
does not reduce precision, select No Reduced Precision in the dialog.

• If a materialized view on the database specifies USING ROLLBACK SEGMENT
and USING TRUSTED CONSTRAINTS, when it is reverse engineered into
JDeveloper no rollback segment is selected on the Properties page of the Edit
Materialized View dialog, and the constraint is shown as Enforced. If necessary,
change the options in the Edit Materialized View dialog

To create an offline type definition:

1. In the Applications window, expand the application and project you want to work
in.

2. Right-click a project or a node under it such as an offline schema, and choose New
> From Gallery to display the New Gallery.

3. From the New Gallery, expand Database Tier, and select Offline Database Objects.

4. Select Type to launch the Create Offline Type dialog.

5. Enter parameters and select options to define the type.

For more information at any time, press F1 or click Help from within the Create
Offline Type dialog.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 26-9

You can edit user-defined types by double-clicking the type in the Applications
window. The SQL comprising the type opens in the source editor.

To create offline database object definitions:

Note:

You can only create and use relational table definitions in offline schemas, you
cannot create and use object relational table definitions.

1. In the Applications window, right-click a project or anything in it, and choose
New to display the New Gallery.

2. From the New Gallery, expand Database Tier, and select Offline Database
Objects.

3. Select the offline database object you want to create to launch the Create dialog or
wizard.

For more information at any time, press F1 or click Help from within the Create
Offline Type dialog.

Context Menu Shortcut:

In the Applications window, right-click the offline schema, select New Database
Object, then select object you want to create.

To drop an offline database definition:

• In the Applications window, expand the project, offline database, and offline
schema containing the offline object. Right-click the offline object, and choose
Delete.

Alternatively, right-click the offline table and choose File > Delete.

Note:

If the offline table has any dependencies, the Confirm Delete dialog warns you
and allows you to see the usages. If you still choose to delete the offline table,
the Cascade Confirm Delete dialog warns you which objects will also be
deleted.

How Reverse Engineer Database Definitions Based on Database Objects

You can drag tables, views, materialized views, synonyms, and sequences from an
online database schema onto a database diagram, where they become accessible as
offline database objects.

To drag objects onto a database diagram:

1. Create a new database diagram.

Alternatively, open an existing diagram.

2. Choose the database connection. Go to either:

• Window > Database > Databases window.

Creating, Editing, and Dropping Database Objects

26-10 Developing Applications with Oracle JDeveloper

• Application Resources in the Applications window.

Expand IDE Connections or application, and select a database connection.

3. In the connection, expand the schema and expand the node you want: Tables,
Views, Materialized Views, Sequences, or Synonyms.

4. Select the object you want to model, and drag it onto the database diagram. This
opens the Specify Location dialog. Ensure that Copy Objects to Project is selected,
and click OK. The object is now displayed on the diagram and listed in the
Applications window.

You can drag more than one object of the same type onto a database diagram, by
holding down the Ctrl key as you select them.

Note:

If you reverse engineer the same object more than once a warning message is
displayed. If you are using Copy to Project and choose to proceed, you can
replace or delete the existing object. If you drag a database object onto the
diagram and choose to proceed the new object overwrites the existing one.

How to Reverse Engineer Database Objects and Offline Database Definitions to
Projects

You can reverse engineer database objects from a database schema to an offline
database where they become available as offline database objects. You can also copy
offline database objects to a project.

If you try to reverse engineer database objects to an offline database which emulates a
different database version you will see an error message giving you guidance on how
to proceed. In general, it is a good idea to make sure that the offline database uses the
same database emulation as the source database.

You can apply filters in the wizard to only display the objects you are interested in,
and when there are a large number of objects in the schema you can turn off auto-
query so that the wizard does not refresh every time you type a filter character.

You can apply filters to select the objects that are displayed as available for reverse
engineering. In the Object Picker page (step 3 of the wizard), you can:

• Enter characters in Name Filter to filter the list of available objects by name. Name
Filter is case sensitive.

• When there are a large number of objects, you can turn off Auto-Query, and click
Query after you have entered the filter you want to use.

To reverse engineer database objects:

1. In the Applications window, select the project you want to work in.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Database Tier and select Offline Database Objects.

4. In the Items list, double-click Offline Database Objects from Source Database to
launch the Offline Database Objects from Source Database wizard.

For more information at any time, press F1 or click Help from within the wizard.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 26-11

Offline Tables and Foreign Keys

When you reverse engineer a table from a live database schema to JDeveloper,
information about any foreign keys will not necessarily be available. The following
sections discuss how foreign key information is treated in different cases.

Reverse Engineering Tables at Both Ends of a Foreign Key

This is the simplest case. When JDeveloper reverse engineers tables that have foreign
keys between them, information about the foreign key is also reverse engineered.
Therefore the foreign key is correctly shown on a database diagram and on the
Constraint Information page of the Edit Offline Table dialog.

After you have finished working on the tables you can choose to generate your
changes directly back to the database.

Best Practice

From the information above you can see that if you are reverse engineering tables to
act as the basis of a new database schema, then you do not need to worry about
foreign keys to tables that you are not interested in. You can safely make your changes
and generate the online tables in a new schema.

However if you are reverse engineering tables so that you can make the changes you
want and then generate the changes back to the same database schema you should
reverse engineer all tables that have a foreign key relationship, whether you intend to
change them or not, so that you generate the correct information about the foreign
keys to a SQL file or directly to the database. The Specify Operation page of the Offline
Database Objects from Source Database wizard allows you to reverse engineer
dependencies.

How to Refresh Offline Database Objects

You can refresh any reverse engineered offline object from the database connection it
was originally reverse engineered from. Note that if you reverse engineer the object,
you will lose any changes you have made in the offline object.

Note:

You cannot refresh an object that was created as an offline object in JDeveloper
and then generated to the database. If you make changes to the object in the
database and want those changes to be reflected in the offline object, you must
reverse engineer the object from the database and overwrite the offline object
by selecting the Replace on the Specify Operation page.

To reverse engineer an object from a database connection a second time:

1. Right-click the offline object in the Applications window, and choose Refresh from
db-connection.

2. When the Confirm Offline Object Overwrite dialog appears, check that you want to
reverse engineer the object and then click Yes. Otherwise click No. This may take a
few seconds.

How to Create Objects from Templates

You can create offline database objects based on templates, for example:

Creating, Editing, and Dropping Database Objects

26-12 Developing Applications with Oracle JDeveloper

• To use a default set of storage options for all tables created.

• To use a default set of user property values for all tables created.

• To use a set of default columns for all tables created.

A template table can create a default primary key, a column sequence, and a trigger.

When you create a new object using the template, the properties that are set on the
template are copied to the new object and therefore pre-populate the options in the
create dialog. When the namespace of owned objects is not the parent object, the name
must be unique within the schema, not just within the parent object. For example,
Index and Constraint names must be unique within the schema, not just within the
owning Table, Materialized View, or View.

How to Create Offline Templates

You can create offline database objects from templates.

To create default templates for an offline database:

1. Create a new offline database.

2. In the Create Offline Database dialog, select Initialize Default Templates. When
you click OK, the offline database is created, along with default template objects
which have the name TEMPLATE_object. You can edit the template database
objects by right-clicking the one you want and choosing Properties, which opens
the Edit object dialog.

To edit the default templates for an existing offline database:

• In the Applications window, navigate to the template object and choose Open from
the context menu. The template object opens in the appropriate editor where you
an edit it.

How to Create Offline Database Objects from Templates

You can create offline database objects from templates as offline database objects in the
Applications window, or as modeled offline database objects on a database diagram.

Before creating offline database objects based on templates, you first need to create the
templates.

To create an offline database object based on a template:

1. In the Applications window, right-click a project or anything in it, and choose New
to display the New Gallery.

2. From the New Gallery, expand Database Tier, and select Offline Database
Objects.

3. Select Database Object from Template to launch the Choose Template Object
dialog. For more information at any time, press F1 or click Help from within the
Create object dialog.

4. Choose the object type to create from a template. When you click OK, the Create
object dialog opens, pre populated with the values in the template. For more
information at any time, press F1 or click Help from within the Create object
dialog.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 26-13

When you click OK the object is created and listed in the Applications window
under the offline database and schema.

Working with User Property Libraries

You can add user defined properties to database objects. For an instance of a database
object; these user defined properties can be assigned specific values.

You can work with libraries that can limit the properties you can define for an offline
database object. For example, you can determine that all tables must have a column of
a particular type, or that only certain values are allowed, or that a property is
mandatory.

User property libraries are defined in the context of an offline database. First you have
to define user properties for the types of offline database objects you want to use. Then
you can use the user property libraries when creating offline database objects.

User property libraries can contain properties defined for:

• Tables, columns, constraints, indexes

• Database links

• Functions, packages, procedures

• Materialized Views

• Materialized View Logs

• Sequences

• Synonyms

• Tablespaces

• Triggers

• Types

• Views

How to Create and Edit User Property Libraries

User property libraries are independent of offline databases, but can be added to them
using the offline database edit dialog.

To create or use a user property library:

1. In the Applications window, expand the project, right-click the offline database and
choose Properties.

2. In the Edit Offline Database dialog, choose User Property Libraries.

3. You can:

• Create a new library. In this case, you enter a filename and location for the
library.

• Add a library that exists in the file system. In this case, you browse to the library
location on the file system.

• Edit an existing library by selecting it from the list.

Creating, Editing, and Dropping Database Objects

26-14 Developing Applications with Oracle JDeveloper

4. Enter values for the user properties in the Edit User Property Library File dialog.
For more information at any time, click F1 or press Help in the dialog.

Once you have created a user property library for an offline database object type, you
can use it to store user property values.

You can provide validation for the user defined property value to validate the
database objects by writing your own validation code. This is an advanced procedure
which is outside the scope of this user guide. For more information see
UserPropertyValidationManager in Oracle Fusion Middleware Java API Reference
for Oracle Extension SDK. For information about using the Extension SDK, see Oracle
Fusion Middleware Developing Extensions for Oracle JDeveloper.

How to Use User Property Libraries

Use user properties for database objects.

Before you can use user properties in offline database objects, you must define the user
property libraries.

To use user properties in an offline database object:

1. Create the offline database object.

2. Navigate to the User Properties page or tab of the offline database object dialog,
and enter values for the user properties.

How to Generate Offline Database Objects to the Database

The Generate SQL from Database Objects wizard allows you to choose how to update
a database schema with the offline objects that you have created or edited. You can:

• Create or replace the objects in the database.

If you choose to generate a SQL file, it will contain CREATE and DROP statements.

• Update existing database schema objects with the changes you have made to the
offline database objects. JDeveloper first reconciles the offline database definitions
against the objects in the database schema to identify the changes necessary. You
can choose to do a manual reconcile and select only some of the changes.

If you choose to generate a SQL file, it will contain ALTER statements.

Whether you are generating changes to a database, or reconciling changes, you can
choose to:

• Generate a SQL file that you can examine, and run against the database later.

• Make the changes directly to the database.

Alternatively, if you just want to generate one or more offline tables back to the
database connection they were originally reverse engineered from, you can do this
directly from the Applications window.

Note:

If you have made changes to tables that have foreign keys, it is possible that
the foreign keys will be dropped when you generate your changes to the
database.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 26-15

Reconciliation issues

This section contains information about problems you may come across when
reconciling.

Cannot modify constraints

Constraints can be created or dropped during reconciliation; they cannot be modified.
The only ALTER TABLE reconciliations that can be performed are ADD CONSTRAINT,
DROP CONSTRAINT, ADD COLUMN, DROP COLUMN, and WIDEN COLUMN.

Cannot reconcile renamed tables

You can change the name of a table when you reverse engineer it or while you are
editing it offline. If you try to reconcile the renamed table back to the database, you
will receive an error message because the database does not have a record of the table
with its new name.

To avoid this, create the renamed table in the database, do not reconcile or replace it.

How to Generate Database Definitions to a File

Create a SQL file containing the CREATE and DROP statements that you can run
against an online database schema.

Note:

If you have made changes to tables that have foreign keys, it is possible that
the foreign keys will be dropped when you generate your changes to the
database.

If you have one or more offline database definitions containing information
that you want to generate to a database, you can use this method. However if
you want to quickly generate one or more offline database definitions back to
their original database connection, you can do this from the Applications
window.

When you have an offline version of an online database table, JDeveloper
keeps track of the information comprising the offline database table columns
behind the scenes. When the database is updated outside JDeveloper, for
example when the generated SQL script is run in a SQL session, or when
another user updates the database, JDeveloper cannot track the link between
the offline database table and the table in the database. To get around this, you
must refresh the offline schema objects from the database.

To create the file:

1. In the Applications window, expand the application and project.

2. Right-click an offline schema and choose New to display the New Gallery.

3. From the New Gallery, expand Database Tier, and select Database Files.

4. Select SQL File from Source Database to launch the Generate SQL from Database
Objects wizard.

5. On the page specify details for the generated file, then click Next.

Creating, Editing, and Dropping Database Objects

26-16 Developing Applications with Oracle JDeveloper

6. On the Finish page, click Finish to create the file.

Context Menu Shortcut:

In the Applications window, right-click one or more offline database definitions and
choose Generate to

or

On the database diagram select one or more modeled database definitions, right-click
and choose Synchronize with Database > Generate To.

Renaming Offline Database Objects

JDeveloper has a limited ability to keep track of renamed offline database objects such
as tables and sub objects such as columns or constraints. In some circumstances
JDeveloper will drop the database object with the unchanged name and create a new
database object with the new name, which can lead to loss of data. You need to be
aware of the situations when this can arise so as to avoid them.

This can occur when an offline database object is generated to a database connection. If
you then change the name of the offline database object or of a sub object such as a
column or index, and then generate the changed offline database object to a database
connection, in the database the object with the original name is dropped and a new
object using the new name is created.

A different situation which can lead to loss of data is when an object is reverse
engineered from a database connection, then the name of an offline database sub
object is changed. In this case, the first time you generate to a database connection the
database sub object is correctly updated. However if you attempt to generate to the
database connection a second time the sub object with the original name is dropped
and a new database sub object with the new name is created. The reason that this
happens is because Copy to Project uses the original name in an internal reference to
the online sub object.

Using Offline Database Reports

JDeveloper provides many reports about an offline database and its objects. You can
also create your own user-defined reports for offline database objects.

Offline Database Reports

JDeveloper comes with a set of pre-built report definitions, and you can also define
your own report definitions.

You can use the pre-built reports directly to provide information about an offline
database, or you can alter them to create a report tailored to your specific
requirements.

Once you have created a pre-built report, you can examine the SQL that makes up the
query for the report, and if necessary change it. You can also set parameters in the
report query that are called when the report is run.

How to Use Pre-built Reports

The pre-built reports quickly provide useful reports which provide the following
queries for an offline database:

• OBJECT_COUNT, which lists the number of schema objects of each object type.

• OBJECT_LIST, which lists all schema objects in the offline database.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 26-17

• TABLE_COLUMNS, which lists all tables with their column information.

• TABLE_COLUMN_COUNT, which lists all tables with their column count.

• TABLE_NO_PKS, which displays all tables that do not have a primary key.

When you run the Pre-Built Reports wizard, a separate file is generated for each of the
pre-built reports that you choose to the location that you specified, and the file is listed
in the Applications window under Resources.

Note:

If you specify a location that is outside the current project the reports are
generated, but they are not listed in the Applications window. The files have
the file name pre-built-report.report, and they are structured as XML files.

How to use predefined reports:

1. In the Applications window, expand the application and project.

2. Right-click an offline database and choose New to display the New Gallery.

3. From the New Gallery, expand Database Tier, and select Offline Database
Objects.

4. Select Pre-Built Reports to launch the Pre-Built Reports wizard.

5. Choose the reports you want to generate and if necessary click Next to change the
offline database that you want to run the report on.

6. Click Finish. The reports you have chosen are listed in the Applications window
under the offline database node.

To edit a predefined report:

1. In the Applications window, expand the application, project and offline database.

2. Right-click the report and choose Properties to open the Edit Report dialog, where
you can examine and change the properties.

3. On the Report Definition page, change the name of the report. Change other details
as required, for example, you can change the offline database that the report is to
run on.

4. To change the SQL query for the report, either change the SQL on the Query
Definition page, or expand the Query Definition node and declaratively define the
SQL query. You can use the Check Syntax button on the Query Definition page to
check that the SQL parses.

5. To add parameters to the query, use the Report Parameters page.

6. To change the format that the report is published in, use the Publish Report page.

To run a pre-built report:

• In the Applications window, right-click the report and choose Run. The report is
run against the offline database you specified. The results are either displayed in
the Reports Log window (default), or in the location and format that you have
chosen in the Publish Report page of the Edit Report dialog.

Creating, Editing, and Dropping Database Objects

26-18 Developing Applications with Oracle JDeveloper

How to Define Report Definitions

You can define your own report definitions. You can either define a query from
scratch, or you can base the new report definition on an existing report or on one of
the pre-built reports.

You can specify that just the report definition is produced, or you can specify that
when the report definition is run a comma-separated file is produced, or that a
formatted HTML document is produced.

If you choose to generate an HTML document, you can optionally specify that a CSS
file is used, and you can edit the default boilerplate text that formats the body of the
HTML document.

How to create a report:

1. In the Applications window, expand the application and project.

2. Right-click an offline database and choose New to display the New Gallery.

3. From the New Gallery, expand Database Tier, and select Offline Database
Objects.

4. Select Reports to launch the Create Report wizard.

5. Enter a name for the report, and choose whether to copy report details from a pre-
built report, from an existing report, or whether to create a new report from
scratch.

6. Change the offline database the report is to run on in the Offline Database page.

7. Create or examine the SQL query for the report in the Query Definition page. You
can use the pages under the Query Definition node to declaratively create the SQL
Query.

8. If you want to use parameters with the report, enter them in the Report Parameters
page.

9. Click Finish. The new report is listed in the Applications window under the offline
database node.

To run a report:

• In the Applications window, right-click the report and choose Run. The report is
run against the offline database you specified. The results are either displayed in
the Reports Log window (default), or in the location and format that you have
chosen in the Publish Report page of the Edit Report dialog.

How to Use Boilerplate Text with HTML Reports

JDeveloper provides some boiler-plate code to help you to format the report, and it
includes three new HTML tags:

• <report/>, which defines the report output.

• <query/>, which defines the text of the query used to generate the report.

• <rows/>, which is the number of rows in the report.

The boiler-plate code provided is:

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 26-19

<h1>Table Report</h1>
<p>Query used:</p>
<pre><query/></pre>
<p>The report output is:</p>
<report/>
<p>Report complete. <rows/> row(s) returned.</p>

You can edit this in the Create or Edit Report dialog to customize the report.

How to Edit User-Defined Reports

You can change the properties of defined reports:

• Change the name of the report, or the directory where it is stored.

• Change the database connection you want to use.

• Use parameters to define a query for the report.

• Choose the format that the report should be published in.

To edit a report:

1. In the Applications window, expand the application, project and offline database.

2. Right-click the report and choose Properties to open the Edit Report dialog, where
you can examine and change the properties.

Transforming from a UML Model

You can transform a UML Class model to an offline database model using the Offline
Database Objects from UML Class Model wizard. For more information, see UML-
Offline Database Transformation

Working with Offline Database Objects in Source Control Systems

JDeveloper provides a number of features for developing in teams, including several
version control software systems. These are described in Versioning Applications with
Source Control.

Offline database definitions can be version controlled and shared using a source
control system. JDeveloper provides a compare tool optimized for working with
offline table definitions:

• You can compare any offline db object. You can either compare with previous
version, or get a full version history and compare any two versions.

• You can track name changes and the identity of objects.

• You can check for consistency, for example:

– Ensuring that a column which is used in a key is not dropped.

– That a constraint which uses an absent column is not added.

– That a primary key column cannot be optional.

Creating, Editing, and Dropping Database Objects

26-20 Developing Applications with Oracle JDeveloper

Note:

While you can only compare versions of offline database objects using a
source control system, for example to see the dependency of a constraint on a
column, you can manually reconcile changes before committing them to a
database using the Generate SQL from Database Objects wizard. For more
information, see How to Generate Offline Database Objects to the Database .

Working with Database Objects
You can create database objects in a database connection in the Databases window.

You must have a database connection in order to create database objects, and the user
name used to create that connection must have the privilege to create the database
object, either by having been granted the appropriate privileges (CREATE, DROP, and
so on) or having been granted a role such as administrator that contains the privilege.

For more information about Oracle Database objects, see the Oracle® Database SQL
Reference.

To create a database object in the Databases window:

1. If necessary, choose Window > Database > Databases window.

2. Expand IDE Connections or application, and expand the database connection.

3. Navigate to the node for the database object type you want to create. Right-click
and choose New object from the context menu.

Alternatively, click File > New to open the New Gallery. In the New Gallery,
expand Database Tier, and select Database Objects. Select the offline database
object type you want to create to launch the Create dialog or wizard.

4. Complete the Create object dialog.

For more information at any time, press F1 or click Help from within the Create
object dialog.

To edit a database object:

1. If necessary, choose Window > Database > Databases window.

2. Expand IDE Connections or application, and expand the database connection, and
navigate to the node and database object you want to edit.

3. Right-click and choose Edit to open the Edit object dialog.

For more information at any time, press F1 or click Help from within the Create
object dialog.

To drop a database object:

1. If necessary, choose Window > Database > Databases window.

2. Expand IDE Connections or application, and expand the database connection, and
navigate to the node and database object you want to drop.

3. Right-click and choose Drop.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 26-21

Using Database Reports
JDeveloper provides a number of predefined reports about the database and its
objects. You can also create your own user-defined database reports.

Database reports that query the database for latest information are run from the
Database Reports window. For more information, see Using the Database Reports
Window.

Validating Date and Time Values
When you create offline table definitions or tables in a database and use date and time
default values, JDeveloper validates these values. For a date, you can use:

• Oracle date functions

• A quoted string of the form DD-MON-RR, where:

– The month can be spelled out in full.

– The year can be written in full, e.g., 2011.

– The separators (-) can be absent, or any non-alphanumeric character combined
with spaces.

For a time stamp, you can use a quoted string of the form DD-MON-RR HH.MI.SSXFF
AM TZR, where:

• The month can be spelled out in full.

• The year can be written in full, e.g., 2011.

• The hours and minutes must be present.

• Seconds, fractions of second, AM/PM, and time zone are optional.

• The separators (-) can be absent, or any non-alphanumeric character combined with
spaces.

When you reverse engineer tables from a database, date and time values are validated
according to the rules above. If the validation prevents you from reverse engineering a
table from Oracle Database, you can turn it off.

To turn off date and time validation:

1. Choose Tools > Preferences > Database.

2. Uncheck Validate date and time default values.

Creating Scripts from Offline and Database Objects
You can generate database objects and offline database definitions to SQL scripts,
Oracle MetaBase (OMB) files which can be imported into Oracle Warehouse Builder,
or SXML files.

How to Create SQL Scripts
You can create SQL scripts from offline database definitions or from database objects.

Creating Scripts from Offline and Database Objects

26-22 Developing Applications with Oracle JDeveloper

The script is generated with the default name script1.sql. It is opened in the SQL
Worksheet, and listed in the Applications window under the Resources node for the
current project.

To create a SQL script from the Databases window or Applications Window:

1. Choose Window > Database > Databases window, expand the database
connection and schema, and right-click the database object you want to create the
script from.

or

Choose Window > Applications, navigate to the offline database definition you
want to create the script from, and right-click the database object you want to
create the script from.

2. Choose Generate to > SQL script.

3. The Generate SQL from Database Objects wizard opens where you specify the
details of how to create the script. For more information at any time, press F1 or
click Help in the dialog.

4. When you click Finish, the script is created and opened in the source editor.

To create a SQL script from the New Gallery:

1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, under Database Tier, select Database
Files.

3. In the Items list, double-click SQL Script from Source Database.

4. In the Generate SQL Script from Database Objects wizard, enter details of the
script, the source and the objects.

For help with the wizard, press F1 or click Help.

5. When you click Finish, the script is created and opened in the source editor.

How to Create OMB Scripts from Tables
You can create files formatted as Oracle MetaBase (OMB) scripts for Oracle Warehouse
Builder from offline tables in the Applications window.

The file is generated with the default name omb_scriptn.tcl. It is opened in the
source editor, and listed in the Applications window under the Resources node for the
current project.

To create a OMB script from the Applications window:

1. Choose Window > Applications, navigate to the offline table or tables you want
to create the file from.

2. Right-click and choose Generate to > OMB script.

The file is created and opened in the source editor.

To create a OMB script from the New Gallery:

1. Open the New Gallery by choosing File > New.

Creating Scripts from Offline and Database Objects

Designing Databases Within Oracle JDeveloper 26-23

2. In the New Gallery, in the Categories tree, under Database Tier, select Database
Files.

3. In the Items list, double-click OMB File from Source Database.

4. In the Generate OMB Script from Database Objects wizard, enter a name for the file
and select the source offline database and click Next.

For help with the wizard, press F1 or click Help.

5. On the Select Objects page, choose the offline objects to include in the file, then
click Finish.

The file is created and opened in the source editor.

How to Create SXML Scripts
You can create SXML files from offline tables in the Applications window.

A script is generated for each offline database object with the name object-
name_object-type.xml. The scripts are opened in the XML Source Editor, and
listed in the Applications window under the offline database node.

To create SXML files from the Applications window:

1. Choose Window > Applications, navigate to the offline table or tables you want
to create the script from.

2. Right-click and choose Generate to > SXML.

The files are created and opened in the source editor.

To create SXML files from the New Gallery:

1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, under Database Tier, select Database
Files.

3. In the Items list, double-click SXML File from Source Database.

4. In the Generate SXML File from Database Objects wizard, enter a name for the
script and select the source offline database and click Next.

For help with the wizard, press F1 or click Help.

5. On the Select Objects page, choose the offline objects to include in the file, then
click Finish.

The file is created and opened in the source editor.

Creating Scripts from Offline and Database Objects

26-24 Developing Applications with Oracle JDeveloper

27
Using Java in the Database

JDeveloper supports features that allow you to write and execute Java programs that
access Oracle Databases.

This chapter includes the following sections:

• About Using Java in the Database

• Choosing SQLJ or JDBC

• Accessing Oracle Objects and PL/SQL Packages using Java

• Using Java Stored Procedures

About Using Java in the Database
There are three aspects to using Java in the database:

• Using SQLJ or JDBC, both of which can be used to embed SQL in Java programs.

• Accessing database objects and PL/SQL packages from Java programs.

• Using Java stored procedures, which are Java methods that reside and run inside
the database.

Choosing SQLJ or JDBC
JDeveloper supports two mechanisms for embedding SQL in Java programs:

• SQLJ: If you know the PL/SQL tables and columns involved at compile time (static
application), you can use SQLJ. SQLJ is an industry standard for defining
precompiled SQL code in Java programs.

SQLJ allows you to code at a higher level than JDBC, by embedding SQL
statements directly in your Java code. The SQLJ precompiler that is integrated into
JDeveloper translates the SQL into Java plus JDBC code for you. SQLJ with
JDeveloper lets you write and debug applications much faster than you can using
just JDBC.

• JDBC: If you require fine-grained control over database access, or if you are
developing an application that requires precise information about database (or
instance) metadata, you can code your application entirely in Java using the JDBC
API.

You can mix JDBC calls with SQLJ statements in your program. One way to do this is
through connection context sharing.

Using Java in the Database 27-1

Using SQLJ
SQLJ is a standard way to embed static SQL statements in Java programs. SQLJ
applications are portable and can communicate with databases from multiple vendors
using standard JDBC drivers.

SQLJ provides a way to develop applications both on the client side and on the
middle-tier that access databases using Java. Developing in SQLJ is fast and efficient,
and JDeveloper completely supports SQLJ development. You can create or include
SQLJ files in your JDeveloper projects. When you compile a project that contains SQLJ
source files, JDeveloper automatically calls the SQLJ translator, or precompiler. The
translator produces completely standard Java source code, with calls to JDBC methods
to provide the database support. JDeveloper then compiles the Java that the SQLJ
translator generates.

For more information, see the Oracle® Database SQLJ Developer's Guide.

Using Oracle JDBC Drivers
JDBC provides Java programs with low-level access to databases.

Oracle JDBC drivers can be grouped into two main categories with the following
attributes:

• Java-based drivers (thin client / Type 4 driver):

– are implemented entirely in Java

– are highly portable

– can be downloaded from the server system to a web browser

– can connect using the TCP/IP protocol

– are the only option for applets (due to security restrictions)

• OCI-based drivers (Type 2 driver):

– are implemented using native method libraries (OCI DLLs)

– have OCI libraries that must be available on the client system

– cannot be downloaded to a browser

– can connect using any Net8 protocol

– deliver high performance

The following figure illustrates how JDBC components and the driver run in the
same memory space as an applet.

Choosing SQLJ or JDBC

27-2 Developing Applications with Oracle JDeveloper

Figure 27-1 JDBC Components

The following figure illustrates how the Oracle JDBC OCI drivers run in a separate
memory space from your Java application. These JDBC drivers make OCI calls to a
separately loaded file.

Figure 27-2 Oracle JDBC OCI Drivers

Note:

Take care not to confuse the terms JDBC and JDBC drivers. All Java
applications, no matter how they are developed or where they execute,
ultimately use the JDBC-level drivers to connect to Oracle. However, coding
using the pure JDBC API is low-level development, akin to using the Oracle
Call Interface (OCI) to develop a database application. Like the OCI, the JDBC
API provides a very powerful, but also very code-intensive, way of
developing an application.

Choosing SQLJ or JDBC

Using Java in the Database 27-3

SQLJ versus JDBC
How does SQLJ compare to JDBC? Here are some of the advantages that SQLJ offers
over coding directly in JDBC:

• SQLJ programs require fewer lines of code than JDBC programs. They are shorter,
and hence easier to debug.

• SQLJ can perform syntactic and semantic checking on the code, using database
connections at compile time.

• SQLJ provides strong type-checking of query results and other return parameters,
while JDBC values are passed to and from SQL without having been checked at
compile time.

• SQLJ provides a simplified way of processing SQL statements. Instead of having to
write separate method calls to bind each input parameter and retrieve each select
list item, you can write one SQL statement that uses Java host variables. SQLJ takes
care of the binding for you.

However, JDBC provides finer-grained control over the execution of SQL statements
and offers true dynamic SQL capability. If your application requires dynamic
capability (discovery of database or instance metadata at runtime), then you should
use JDBC.

Embedding SQL in Java Programs with SQLJ
You have to perform a number of tasks to embed SQL in Java programs with SQLJ.

How to Create SQL Files

You can create a new SQL (.sql) file and add it to the current project.

To create a SQL file:

1. In the Applications window, select the project.

2. From the main menu, choose File > New to open the New Gallery.

3. In the New Gallery, in the Categories tree, select Database Tier then Database
Files. In the Items list, double-click SQL File.

4. In the Create SQL File dialog, provide the details to describe the new file.

For more information at any time, press F1 or click Help from within the dialog.

5. Click OK.

An empty SQL file is added to the current project and opened for editing.

How to Create SQLJ Classes

Create a new SQLJ (.sqlj) file and add it to the current project.

To create a new SQLJ file:

1. In the Applications window, select the project.

2. From the main menu, choose File > New to open the New Gallery.

Choosing SQLJ or JDBC

27-4 Developing Applications with Oracle JDeveloper

3. In the Categories tree, expand Database Tier and select Database Files.

For more information at any time, press F1 or click Help from within the dialog.

4. In the Items list, double-click SQLJ Class to open the Create SQLJ Class dialog.

5. In the Create SQLJ File dialog, provide the details to describe the new file.

For more information at any time, press F1 or click Help from within the dialog.

6. Click OK.

A skeleton SQLJ class will be added to the current project and be opened for editing.

How to Compile SQLJ Classes

You can compile SQLJ classes into Java .class files.

To compile a SQLJ class:

1. Set the project's SQLJ translator options to control how the file is compiled in the
Compiler > SQLJ page of the Project Properties dialog.

2. In the Applications window, locate and select the SQLJ class.

3. Right-click the class, and choose Make.

The status bar at the bottom of the JDeveloper window shows the result of the
compilation. Errors, if any, are listed in the log window.

How to Use Named SQLJ Connection Contexts

A SQLJ executable statement can designate a connection context object that specifies
the database connection where the SQL operation in that clause will execute. If the
SQLJ statement omits the connection context clause, then the default connection
context is used.

How to Declare a SQLJ Connection Context Class

A connection context is an object of a connection context class, which you define using
a SQLJ connection declaration.

To declare a context class:

1. Declare a context class.

Named connection contexts are not required: SQLJ statements that omit the
connection context name use the default connection context.

For example, this statement declares the context class MyConnectionContext:

#sql context MyConnectionContext;

Context classes extend sqlj.runtime.ref.ConnectionContextImpl and
implement sqlj.runtime.ConnectionContext.

After you have declared a context class, create a context object.

How to Create a Connection Context Object

Before it can be used in an SQLJ statement, a declared connection context must be
created.

Choosing SQLJ or JDBC

Using Java in the Database 27-5

To create a context object:

1. Named connection contexts are not required: SQLJ statements that omit the
connection context name use the default connection context.

For example, use this statement to create an instance thisCtx for the connection
context class MyConnectionContext:

MyConnectionContext thisCtx = new MyConnectionContext (myPath, myUID, myPasswd,
autocommit

How to Debug SQLJ Classes

You debug SQLJ code by debugging the SQLJ source directly, not the generated Java
code.

SQLJ is debugged in JDeveloper in the same manner as other source code.

For more information, see the Oracle® Database SQLJ Developer's Guide.

How to Set SQLJ Translator Options

You can control the translation of SQLJ classes through the controls in the Project
Properties dialog:

• Provide syntactic as well as semantic checking of SQL code.

• Provide syntax and type checking on the SQL statements.

• Test the compatibility of Java and SQL expressions at compile time.

• Specify a connection to a database server.

• Check the semantics of your SQL statements against the database schemas
specified by connection contexts.

To set the SQLJ translator options:

1. In the Applications window, select the project that contains the SQLJ file.

2. Choose Application > Project Properties > Compiler and select SQLJ.

3. In the SQLJ panel, set the compilation options. These include:

• The level at which translater warnings should be set.

• Type of code generation.

• Whether you want to perform SQL semantic checking against a database
schema.

• Additional options to be used in the SQLJ translator.

4. Click OK.

You can set SQLJ translator properties for all projects by choosing Default Project
Properties from the Application menu

How to Use SQLJ Connection Options

SQLJ connection options specify the database connection for online checking. The
general form for connection options is

Choosing SQLJ or JDBC

27-6 Developing Applications with Oracle JDeveloper

-option@context=value

where option is one of the four options listed below.

The context tag is a connection context type, which permits the use of separate
exemplar schemas for each of the connection contexts. If you omit the connection
context type, the value will be used for any SQL statements that use the default
connection context. The driver option does not allow a context tag.

The options are:

• user This option specifies the user name for connecting to a database in order to
perform semantic analysis of the SQL expressions embedded in a SQLJ program. It
contains the user name, for example:

-user=hr

The user command line option may include a connection context type. For
example:

-user@Ctx1=hr

Whenever a user name is required for the connection to a database context Ctx1,
SQLJ uses the user option that was tagged with Ctx1. If it can not find one, SQLJ
issues a message and looks for an untagged user option to use instead.

Specifying a user value indicates to SQLJ that online checking is to be performed. If
you do not specify the user option, SQLJ does not connect to the database for
semantic analysis. There is no default value for the user option.

If you have turned on online checking by default (by specifying, for example, -
user=hr), then in order to disable online checking for a particular connection
context type Ctx2, you must explicitly specify an empty user name, for example:

-user@Ctx2Z

• password This option specifies a password for the user. The password will be
requested interactively if it is not supplied. This option can be tagged with a
connection context type. Examples of the two forms are:

-password=hr
-password@Ctx1=hr

• url This option specifies a JDBC URL for establishing a database connection. The
default is jdbc:oracle:oci9:@. This option can be tagged with a connection
context type. For example:

-url=jdbc:oracle:oci8:@ -url@Ctx1=jdbc:oracle:thin:@<local_host>:1521:orcl

• driver This option specifies a list of JDBC drivers that should be registered in
order to interpret JDBC connection URLs for online analysis. The default is
oracle.jdbc.driver.OracleDriver. For example:

-driver=sun.jdbc.odbc.JdbcOdbcDriver,oracle.jdbc.driver.OracleDriver

This option cannot be tagged with a connection context type.

Embedding SQL in Java Programs with JDBC
JDBC provides Java programs with low-level access to databases.

For more information, see the Oracle® Database SQLJ Developer's Guide.

Choosing SQLJ or JDBC

Using Java in the Database 27-7

How to Choose a JDBC Driver

JDBC uses a driver manager to support different drivers, so that you can connect to
multiple database servers. To connect your database application to a data server, you
must have available the appropriate JDBC driver. JDeveloper provides the Oracle Thin
and OCI JDBC drivers. OCI for Oracle is the default driver. If you wish you may
install a non-default JDBC driver.

Consider the following when choosing a JDBC driver to use for your application or
applet:

• If you are writing an applet, you must use the JDBC Thin driver. JDBC OCI-based
driver classes will not work inside a Web browser, because they call native (C
language) methods.

Note:

When the JDBC Thin driver is used with an applet, the client browser must
have the capability to support Java sockets.

• If you are writing a client application for an Oracle client environment and need
maximum performance, then choose the JDBC OCI driver.

• For code that runs in an Oracle server acting as a middle tier, use the server-side
Thin driver.

Note:

JDeveloper does not supply the server-side Thin driver.

• If your code will run inside the target Oracle server, then use the JDBC server-side
internal driver to access that server. You can also access remote servers using the
server-side Thin driver.

Note:

JDeveloper does not supply the server-side Thin driver.

• If performance is critical to your application, you want maximum scalability of the
Oracle server, or you need the enhanced availability features like TAF (Transparent
Application Failover) or the enhanced proxy features like middle-tier
authentication, then choose the OCI driver.

How to Modify a Project to Use a Non-Default JDBC Driver

If your JDeveloper programming environment has been modified to allow the use of a
non-default JDBC driver, you can modify the current project to use the new driver by
performing these steps.

To modify the project:

1. In the Applications window, select the project.

2. Choose Application > Project Properties > Profiles > Development > Libraries.

Choosing SQLJ or JDBC

27-8 Developing Applications with Oracle JDeveloper

3. Select the driver's library from the list displayed, and transfer it to the Selected
Libraries list. The driver's library was created when you registered the driver.

4. If necessary, order the list of selected libraries so that the library you have just
added appears before other driver libraries, or libraries that pull in other driver
libraries. These include:

• Oracle JDBC

• Enterprise Java Beans

If necessary, select the library you added and drag it up to the top of the list.

5. Click OK to save your changes and close the dialog.

How to Code a JDBC Connection

You can establish a database connection in pure JDBC code.

A summary is given here, but for more information, see "Getting Started" in the
Oracle® Database SQLJ Developer's GuideOracle® Database SQLJ Developer's Guide.

To code a JDBC Connection:

1. Import the JDBC classes using the statement

import java.sql.*;

This statement is required for all JDBC programming.

2. Register the JDBC drivers. If you are using an Oracle JDBC driver and use a
constructor that uses the static Oracle.connect() method to set the default
connection, the Oracle JDBC drivers are automatically registered.

Alternatively, if you are using an Oracle JDBC driver, but do not use
Oracle.connect(), then you must manually register the Oracle Driver class
using the statement

DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

If you are not using an Oracle JDBC driver, then you must register an appropriate
driver class:

DriverManager.registerDriver(new mydriver.jdbc.driver.MyDriver());

In any case, you must also set your connection URL, user name, and password.

3. Get a connection to a data server using a getConnection() method, for example

Connection conn = DriverManager.getConnection(parameters...);

Accessing Oracle Objects and PL/SQL Packages using Java
Use to access Oracle objects and PL/SQL packages from your Java programs. lets you
specify and customize the mapping of Oracle object types, reference types, and
collection types to Java classes in a strongly typed paradigm

You can use JPublisher to access Oracle objects and PL/SQL packages from your Java
programs. JPublisher lets you specify and customize the mapping of Oracle object
types, reference types, and collection types to Java classes in a strongly typed
paradigm.

Accessing Oracle Objects and PL/SQL Packages using Java

Using Java in the Database 27-9

Also, SQLJ programmers who want to call stored procedures declared in PL/SQL
packages can use JPublisher to generate SQLJ wrapper classes for the packages. The
SQLJ wrapper classes let you invoke the PL/SQL stored procedures, and pass and
return values from them, directly from your SQLJ program.

To access Oracle objects and PL/SQL packages using Java:

1. Create the desired object data types (Oracle objects) and PL/SQL packages in the
database. It is recommended that any custom classes or interfaces you use in Oracle
Database implement the oracle.sql.CustomDatum interface.

2. Use JPublisher to generate source code — Java and SQLJ files — that represents the
Oracle objects, PL/SQL packages, user-defined types, and REF types.

3. Import these classes into your application code.

4. Use the methods in the generated classes to access and manipulate the Oracle
Objects and their attributes.

5. Compile all classes (the code generated by and your code). The SQLJ compiler
compiles the .sqlj files, and the Java or SQLJ compiler compiles the .java files.

6. Run your compiled application.

This process is illustrated in the following figure:

Figure 27-3 Oracle Objects and PL/SQL Packages

How to Use JPublisher
increases your productivity by letting you access Oracle objects and PL/SQL packages
from your Java programs. lets you specify and customize the mapping of Oracle object

Accessing Oracle Objects and PL/SQL Packages using Java

27-10 Developing Applications with Oracle JDeveloper

types, reference types, and collection types (VARRAYs or nested tables) to Java classes
in a strongly typed paradigm

JPublisher

JPublisher increases your productivity by letting you access Oracle objects and
PL/SQL packages from your Java programs. JPublisher lets you specify and customize
the mapping of Oracle object types, reference types, and collection types (VARRAYs or
nested tables) to Java classes in a strongly typed paradigm.

SQLJ programmers who want to call stored procedures declared in PL/SQL packages
can use JPublisher to generate SQLJ wrapper classes for the packages. The SQLJ
wrapper classes let you invoke the PL/SQL stored procedures, and pass and return
values from them, directly from your SQLJ program.

For more information, see the Oracle Database JPublisher User's Guide.

Object Types and JPublisher

JPublisher allows your Java language applications to use user-defined object types in
Oracle Database. These objects can be user-defined objects, VARRAYs, nested tables,
index-by tables, or REFs to object types. If you intend to have your Java-language
application access object data, then it must represent the data in a Java format.
JPublisher helps you do this by creating the mapping between object types and Java
classes, and between object attribute types and their corresponding Java types.

The mapping is determined by both:

• The selected Java mapping option.

• The object's data type category.

Additionally, JPublisher generates get and set accessor methods for each of the object's
attributes, and optionally generates a wrapper method for each of the object's stored
procedures. A wrapper method is a method that invokes a stored procedure that
executes in the database. Wrapper methods generated by JPublisher are always
instance methods even when the original object methods are static.

The following table summarizes the types of Java classes that JPublisher generates for
objects.

Table 27-1 Mapping SQL Type to Java Class

SQL type Java class mapping

user-defined object type Java class with accessor methods to get and set each attribute of
the object, and optional wrapper methods to call the object's
stored procedures.

VARRAY,

nested table,

index-by table.

Java classes that can get and set the following:

• The entire array
• A subset of the array
• An individual element of the array

REF to an object type Java class to get and set the object to which the REF refers.

Classes generated by JPublisher implement either the oracle.sql.CustomDatum
interface or the java.sql.SQLData interface. Either interface makes it possible to
transfer object type instances between the database and your Java program. It is
recommended that you use the oracle.sql.CustomDatum interface.

Accessing Oracle Objects and PL/SQL Packages using Java

Using Java in the Database 27-11

PL/SQL Packages and JPublisher

You might want to call stored procedures in a PL/SQL package from your Java
application. The stored procedure can be implemented in PL/SQL, or it can be a Java
method that has been published to PL/SQL. Java arguments and functions are passed
to and returned from the stored procedure.

To help you do this, you can direct JPublisher to create a class containing a wrapper
method for each subprogram in the package. Like object methods, the wrapper
methods generated for each subprogram are always instance methods even when the
original method is static. The wrapper methods that JPublisher generates provide a
convenient way to invoke PL/SQL stored procedures from Java code or to invoke a
Java stored procedure from a client Java program.

JPublisher lets you generate Java wrappers by selecting an individual package, or by
selecting the Packages node to select all of the packages in the schema. If you call
PL/SQL code that includes subprograms at the top-level, JPublisher generates a single
class containing a wrapper method for each top-level subprogram.

For PL/SQL functions, whether you generate Java for a single PL/SQL function or
multiple functions, JPublisher generates a single class. For a single function, the class
contains a single wrapper method for the function. For multiple functions, the class
contains a wrapper method for each function.

For PL/SQL procedures, whether you generate Java for a single PL/SQL procedure or
multiple procedures, JPublisher generates a single class. For a single procedure, the
class contains a single wrapper method for the procedure. For multiple procedures,
the class contains a wrapper method for each procedure

Java Mapping Options

The mapping options you select for data type categories determine the set of type
mappings that JPublisher uses to translate object types and PL/SQL packages into
Java classes:

• For object types, JPublisher applies the mappings to the object's attributes and to
the arguments and results of any methods included with the object. The mappings
control the types that the generated accessor methods should support, that is, what
types the get methods should return and the set methods should require.

• For PL/SQL packages, JPublisher applies the mappings to the arguments and
results of the methods.

• For a collection type (that is, nested tables and VARRAYs), JPublisher applies the
mappings to the element type of the collection.

• For user-defined types (usertypes category) JPublisher generates CustomDatum
classes or SQLData classes and generates code for collection and REF types.

You may select from the following mapping options:

• Oracle Mapping represents data in PL/SQL format.

• JDBC Mapping represents simple data types as Java primitive types.

• Object JDBC Mapping represents simple data types as Java wrapper classes.

• BigDecimal Mapping uses a common class to represent all numeric types.

For more information, see the Oracle Database JPublisher User's Guide.

Accessing Oracle Objects and PL/SQL Packages using Java

27-12 Developing Applications with Oracle JDeveloper

Mapping Built-in Types

Syntax: jpub.builtintypes={jdbc|oracle}

The builtintypes parameter (and its JPublisher wizard equivalent Built-in Types)
controls type mappings for all the built-in database types except the LOB and BFILE
types (controlled by the lobtypes parameter) and the different numeric types
(controlled by the numbertypes parameter). The following table lists the database
types affected by the builtintypes parameter, and shows their Java type mappings
for builtintypes=oracle and for builtintypes=jdbc (the default).

Table 27-2 Built In Mapping Types

PL/SQL Data Type Oracle Mapping
Class

JDBC Mapping

CHAR

CHARACTER

LONG

STRING

VARCHAR

VARCHAR2

oracle.sql.C

HAR

java.lang.Str

ing

RAW

LONG RAW

oracle.sql.R

AW

byte[]

DATE oracle.sql.D

ATE

java.sql.Time

stamp

Mapping LOB Types

Syntax: lobtypes={jdbc|oracle}

The lobtypes parameter (and its JPublisher wizard equivalent LOB Types) controls
type mappings for the LOB types. The following table shows how these types are
mapped for lobtypes=oracle (the default) and for lobtypes=jdbc.

Table 27-3 LOB Type Mapping

PL/SQL Data Type Oracle Mapping
Class

JDBC Mapping
Class

CLOB oracle.sql.C

LOB

java.sql.CLOB

BLOB oracle.sql.B

LOB

java.sql.BLOB

The BFILE type does not appear in this table, because it has only one mapping. It is
always mapped to oracle.sql.BFILE, because there is no java.sql.BFILE class.

Mapping Numeric Types

Syntax: jpub.numbertypes={jdbc|objectjdbc|bigdecimal|oracle}

The numbertypes parameter (and its JPublisher wizard equivalent Number Types)
controls type mappings for numeric PL/SQL types. Four choices are available:

Accessing Oracle Objects and PL/SQL Packages using Java

Using Java in the Database 27-13

• The jdbc mapping maps most numeric database types to Java primitive types such
as int and float, and maps DECIMAL and NUMBER to java.math.BigDecimal.

• The objectjdbc mapping (the default) maps most numeric database types to Java
wrapper classes such as java.lang.Integer and java.lang.Float, and
maps DECIMAL and NUMBER to java.math.BigDecimal.

• The bigdecimal mapping maps all numeric database types to
java.math.BigDecimal. The oracle mapping maps all numeric database types
to oracle.sql.NUMBER.

• The oracle mapping maps all numeric database types to oracle.sql.NUMBER.

The following table lists the PL/SQL types affected by the numbertypes option, and
shows their Java type mappings for numbertypes=jdbc and
numbertypes=objectjdbc (the default).

Table 27-4 Numeric Type Mapping

PL/SQL Data type JDBC Mapping Class Object JDBC Mapping

BINARY_INTEGER

INT

INTEGER

NATURAL

NATURALN

PLS_INTEGER

POSITIVE

POSITIVEN

SIGNTYPE

int java.lang.Integer

SMALLINT short java.lang.Float

REAL float java.lang.Double

Mapping User-Defined Types

Syntax: jpub.usertypes={oracle|jdbc}

The usertypes parameter (and its JPublisher wizard equivalent User Types)
controls whether JPublisher generates CustomDatum classes or SQLData classes for
user-defined types:

• When usertypes=oracle (the default), JPublisher generates CustomDatum
classes for object, collection, and REF types.

• When usertypes=jdbc, JPublisher generates SQLData classes for object types.
JPublisher does not generate anything for collection or REF types. Use
java.sql.Array for all collection types, and java.sql.Ref for all REF
types.

JPublisher Output
JPublisher generates a Java class for each object type that it translates. For each object
type, JPublisher generates a type.java file (or a type.sqlj file if wrapper methods
were requested) for the class code and a typeRef.java file for the code for the REF

Accessing Oracle Objects and PL/SQL Packages using Java

27-14 Developing Applications with Oracle JDeveloper

class of the Java type. For example, if you define an EMPLOYEE PL/SQL object type,
JPublisher generates an employee.java file and an employeeRef.java file.

For each collection type (nested table or VARRAY) it translates, JPublisher generates a
type.java file. For nested tables, the generated class has methods to get and set
the nested table as an entire array and to get and set individual elements of the table.
JPublisher translates collection types when generating CustomDatum classes but not
when generating SQLData classes. JPublisher does not generate a typeRef.java file
for nested tables or VARRAYs. This is because PL/SQL does not allow a REF to be
made to these types.

For PL/SQL packages, JPublisher generates classes containing wrapper methods as
SQLJ files. JPublisher also generates method wrappers in your class that invoke the
associated package methods executing in the server. This is specified by the Include
Methods option.

Note:

Since version 8.1.6, the wrapper methods that JPublisher generates to invoke
stored procedures are in SQLJ only. Classes generated by JPublisher that
contain wrapper methods must be compiled by SQLJ.

Properties Files
A properties file is an optional text file where you can specify frequently used
parameters or parameters that you cannot specify in the JPublisher wizard. Note that
if you need only the default output of JPublisher, then you do not need a properties
file.

The properties file is designated in the JPublisher wizard.

In a properties file, you enter one (and only one) parameter and its associated value on
each line. Each parameter name must be preceded with the prefix "jpub." and you
cannot use any white space within a line. You can enter any parameter except the
props parameter in the properties file. JPublisher processes the parameters, in order,
from the top of the list to the bottom. If you specify a parameter more than once,
JPublisher uses the last encountered value.

A properties file might contain the following:

jpub.case=lower
jpub.package=package1
jpub.numbertypes=jdbc
jpub.lobtypes=jdbc
jpub.builtintypes=jdbc
jpub.usertypes=jdbc
jpub.omit_schema_names
jpub.methods=true
jpub.input=mySchema.txt
jpub.sql=employee:oracleEmployee

How to Enhance JPublisher-Generated Classes
You can enhance the functionality of a custom Java class generated by JPublisher by
adding methods and transient fields to it. For example:

• Extend the class. That is, treat the JPublisher-generated class as a superclass, write a
subclass to extend its functionality, and then map the object type to the subclass.

Accessing Oracle Objects and PL/SQL Packages using Java

Using Java in the Database 27-15

• Write a new class that delegates the functionality provided by the JPublisher-
generated class to a field whose type is the generated class.

• Add methods to the class. This is not recommended if you anticipate running
JPublisher at some future time to regenerate the class. If you regenerate a class that
you have modified in this way, your changes (that is, the methods you have added)
will be overwritten. Even if you direct JPublisher output to a separate file, you will
still need to merge your changes into the file.

How to Extend JPublisher-Generated Classes
The Declaration Name and Use Name fields in the JPublisher wizard give you the
flexibility of extending generated classes. In the Declaration Name field, enter the
name of the class that you want JPublisher to generate from the given database object.
In the Use Name field, enter the name of the class that your Java program will use to
represent the database object.

When publishing an object type where Use Name is different from Declaration Name,
JPublisher creates a declaration_name.sqlj file and a use_nameRef.java file,
where use_name represents the object type in your Java program.

JPublisher expects that you have written the class use_name, which extends
declaration_name. If you do not provide this class, then the use_nameRef.java
file will not compile.

For example, suppose you want JPublisher to generate the class JAddress from the
PL/SQL object type ADDRESS. You have also written a class, MyAddress, to represent
ADDRESS objects, where MyAddress either extends the functionality provided by
JAddress or has a JAddress field.

Under this scenario, select ADDRESS in the Database Browser and right-click Generate
Java. In the JPublisher wizard, enter JAddress in the Declaration Name field and
MyAddress in the Use Name field. JPublisher will generate the custom Java class
JAddress, and map the ADDRESS object to the MyAddress class—not to the
JAddress class. JPublisher will also produce a reference class for MyAddress, not
JAddress.

This is how JPublisher will alter the code it generates:

• JPublisher generates the REF class MyAddressRef rather than JAddressRef.

• JPublisher uses the MyAddress class, instead of the JAddress class, to represent
attributes whose database type is ADDRESS. This situation occurs in classes
generated by JPublisher, or in classes written by the user.

• JPublisher uses the MyAddress class, instead of the JAddress class to represent
VARRAY and nested table elements whose database type is ADDRESS.

• JPublisher will use the MyAddress factory, instead of the JAddress factory, when
the CustomDatumFactory interface is used to construct Java objects whose
database type is ADDRESS. This situation will occur both in classes generated by
JPublisher, and in classes written by the user.

The class that you create (for example, MyAddress.java) must have the following
features:

• The class must have a no-argument constructor. The easiest way to construct a
properly initialized object is to invoke the constructor of the superclass, either
explicitly or implicitly.

Accessing Oracle Objects and PL/SQL Packages using Java

27-16 Developing Applications with Oracle JDeveloper

• The class must implement the CustomDatum interface. The simplest way to do this
is to inherit the toDatum() method from the superclass.

• You must also implement the CustomDatumFactory interface, either in the same
class or in a different one. For example, you could have a class Employee that
implements CustomDatum and a class EmployeeFactory that implements
CustomDatumFactory.

JPublisher Options
JPublisher options can be set for these types of PL/SQL subprograms in your schema.

How to Set JPublisher Options

JPublisher options can be set for these types of PL/SQL subprograms in your schema:

• Functions

• Package Bodies

• Packages

• Procedures

For more information, see the Oracle® Database JPublisher User's Guide.

To set JPublisher options for PL/SQL subprograms in a schema:

1. In the Connection Manager, navigate a schema to find and select the node for the
subprogram type

2. Right-click and choose Generate Java to launch the JPublisher wizard. For more
help at any time, press F1 or click Help in the wizard.

How to Generate Classes for Packages and Wrapper Methods for Methods

Set the JPublisher methods option in the JPublisher wizard by checking Include
Methods

The value of the methods option determines whether JPublisher generates classes for
PL/SQL packages and wrapper methods for methods in packages and object types.

If selected, JPublisher generates PL/SQL classes and methods. This is default
behavior.

If not selected, JPublisher does not generate PL/SQL classes and methods.

How to Omit the Schema Name from Generated Names

Set the JPublisher omit_schema_names option in the JPublisher wizard by checking
the Omit Schema Names box.

The value of the omit_schema_names option determines whether certain object type
and PL/SQL wrapper names generated by JPublisher include the schema name. If an
object type or wrapper name generated by JPublisher does not include the schema
name, the type or wrapper is looked up in the schema associated with the current
connection when the code generated by JPublisher is executed. This makes it possible
for you to use classes generated by JPublisher with a connection other than the one
used when JPublisher was invoked. However, the type or package must be declared
identically in the two schemas.

Accessing Oracle Objects and PL/SQL Packages using Java

Using Java in the Database 27-17

If selected, an object type or wrapper name generated by JPublisher is qualified with a
schema name only if either:

• You declare the object type or wrapper in a schema other than the one to which
JPublisher is connected; or

• You declare the object type or wrapper with a schema name in the properties file or
INPUT file.

That is, an object type or wrapper from another schema requires a schema name to
identify it, and the use of a schema name with the type or package in the properties
file or INPUT file overrides the omit_schema_names option.

If not selected, every object type or wrapper name generated by JPublisher is qualified
with a schema name. This is default behavior.

How to Set the Package Name for Generated Classes

The package option specifies the name of the Java package JPublisher generates. The
name of the package appears in a package declaration in each Java file. The directory
structure also reflects the package name. An explicit name in the INPUT file, after the
sql option, overrides the value given to the package option.

To set the package option:

1. Set the JPublisher package option in the JPublisher wizard by providing a name in
the Package field.

Using Java Stored Procedures
A Java stored procedure is a Java method that resides and runs in a database. Stored
procedures can help improve the performance of database applications because they
are efficient: they are stored in the RDBMS in executable form, and run in the RDBMS
(rather than the client) memory space.

Use JDeveloper to write methods in Java for new stored procedures and deploy them
to Oracle Database. When you deploy a Java class to Oracle, you can select the
methods that you want to publish to PL/SQL for use as stored procedures. Methods
can be deployed together in a package or separately.

For more information, see "Developing Java Stored Procedures" in the Oracle® Database
JPublisher User's Guide.

A stored procedure is a program that resides and runs in a database. Application
developers can use stored procedures to help improve the performance of a database
application. Procedure calls are quick and efficient because a stored procedure is
compiled once and stored in an executable form. Because a stored procedure runs in
the RDBMS memory space, complex functions run faster than a routine run by a client.
You can also use stored procedures to group PL/SQL statements so that they are
executed in a single call. This reduces network traffic and improves round-trip
response times. By designing applications around a common set of stored procedures,
you can avoid redundant coding and increase your productivity.

A Java stored procedure contains Java public static methods that are published to
PL/SQL and stored in Oracle Database for general use. To publish Java methods, you
write call specifications, that map Java method names, parameter types, and return
types to their PL/SQL counterparts. This allows a Java stored procedure to be
executed from an application as if it were a PL/SQL stored procedure. When called by
client applications, a Java stored procedure can accept arguments, reference Java
classes, and return Java result values.

Using Java Stored Procedures

27-18 Developing Applications with Oracle JDeveloper

Figure 27-4 Java Stored Procedure Deployment

Any Java class can be deployed to Oracle Database and the conforming methods of the
class can be published to PL/SQL as stored procedures. These Java stored procedures
can then be executed from an application as if they were PL/SQL stored procedures.
Java stored procedures can be an entry point for your application into other (Java and
non-Java) procedures deployed to Oracle Database.

Deploying and publishing Java stored procedures to Oracle Database generates call
specifications that act as PL/SQL wrappers for each of the methods selected for
publishing. The PL/SQL wrappers allow the stored procedures to be accessible from
SQL*Plus, JDBC, or any other Oracle application environment.

The call specifications (the PL/SQL wrappers) for Java stored procedure packages and
methods deployed to a database schema can be inspected through Oracle Database
connection. Only published Java stored procedures appear as PL/SQL blocks, and
only public static methods in Java classes can be published to PL/SQL when
deployed. Java classes can be deployed without being published, in which case they
are not seen in the PL/SQL nodes.

Depending on how Java stored procedures were published, they appear in one of the
following nodes under a schema:

• Packages include call specs for Java stored procedures deployed in packages.

• Functions include call specs for Java stored procedures deployed as functions (that
return a value).

• Procedures include call specs for Java stored procedures deployed as procedures
(that do not return a value).

To view a Java stored procedure's call specification, find its node in the schema's
hierarchy, and double-click it.

Using Java Stored Procedures

Using Java in the Database 27-19

How to Create Java Stored Procedures

You create Java stored procedures by first developing business application logic in a
Java class file. Declare methods that are to become stored procedures as public static.

Use the editor in JDeveloper to add and edit business logic in the Java class. During
deployment to Oracle Database, all public static methods included in the class file are
available to be published to PL/SQL as stored procedures. You can choose which
public static methods in the class to be published to PL/SQL.

There are different JDeveloper Java stored procedure creation scenarios:

• Use an existing Java class and make any necessary edits to the public static
methods in the class that will be deployed to Oracle Database. The existing class
could include public static methods used for validation or database triggers. The
methods in the class might also be in local use by several applications. These
methods could be deployed to Oracle Database and used by multiple applications
from the database. The deployed methods could also supplement existing PL/SQL
stored procedures and functions.

• Create a new class with methods designed for publishing as stored procedures. Use
the editor in JDeveloper to create the public static methods that will be exposed as
stored procedures. Write in industry-standard Java and use the original Java class
for other application deployments. In Oracle Database, this programming could
supplement existing PL/SQL stored procedures.

For example, assume the following Java package Welcome was created with the public
class Greeting and the public static method Hello().

package Welcome;
 public class Greeting {
 public static String Hello() {
 return "Hello World!";
 }

When this package is deployed to Oracle Database and the Hello() method is
published there, the call spec for the package as viewed in the source editor looks like
this:

PACKAGE WELCOME AS
FUNCTION HELLO RETURN VARCHAR2
AS LANGUAGE JAVA
NAME 'Welcome.Greeting.Hello() return java.lang.String'
END WELCOME;

How to Deploy Java Stored Procedures

You create a deployment profile for Java stored procedures, then deploy the classes
and, optionally, any public static methods in JDeveloper using the settings in the
profile.

Deploying to the database uses the information provided in the Deployment Profile
wizard and two Oracle Database utilities:

• loadjava loads the Java class containing the stored procedures to Oracle
Database.

• publish generates the PL/SQL call spec wrappers for the loaded public static
methods. Publishing enables the Java methods to be called as PL/SQL functions or
procedures.

Using Java Stored Procedures

27-20 Developing Applications with Oracle JDeveloper

To deploy Java stored procedures in JDeveloper:

1. If necessary, create a database connection in JDeveloper.

2. If necessary, create a deployment profile for Loadjava and Java stored procedures.

3. Deploy the objects.

How to Create a Deployment Profile for Loadjava and Java Stored Procedures

The Loadjava and Java stored procedure deployment profile is very similar to the
simple archive profile, except that the selected contents of the profile will be uploaded
into Oracle Database via the command-line tool loadjava or in the case of Java stored
procedures, they are stored in Oracle Database for general use.

Note:

Make sure that you have configured a database connection in JDeveloper
before you complete this task.

To create a deployment profile for Loadjava or Java stored procedures in JDeveloper:

1. In the Applications window, select the project in which you want to create the
deployment profile.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Database Tier and select Database Files. In the
Items list, double-click Loadjava and Java Stored Procedures.

If the category or item is not found, make sure the correct project is selected, and
select All Technologies in the Filter By dropdown list.

4. In the Create Deployment Profile dialog, specify a location for the deployment
profile or accept the defaults. The deployment profile is named with
a .dbexport filename extension.

5. Click Save to display the Loadjava and Java Stored Procedures Deployment
Profile Settings dialog. Configure the settings for each page as appropriate, and
click OK when you are done.

The newly created storedProc.dbexport deployment profile appears in the
Applications window below the specified project.

6. Select and right-click storedProc.dbexport in the Applications window.
Choose from the available context menu options.

7. (Optional) If you choose Add Stored Procedure Package, choose the methods you
want to load as a stored procedure. For each Java method callable from SQL a call
spec is required, which exposes the method's top-level entry point to the database.
Typically, only a few call specs are needed. JDeveloper generates the call spec for
you from this page.

8. Select a method and click Settings.

If a method on the list is dimmed, this indicates a problem with deploying this
method as a Java stored procedure. Click Why not? for an explanation.

Using Java Stored Procedures

Using Java in the Database 27-21

For more information, see "Developing Java Stored Procedures" in the Oracle®

Database JPublisher User's Guide.

9. Configure the Method Settings as required. These settings allow you to customize
the parts of the CREATE PROCEDURE and CREATE FUNCTION SQL statements
that are used to customize the stored procedure.

10. (Optional) Right-click and choose Preview SQL Statements to display a dialog
that shows the SQL statements used to load the specifically selected item in the
Applications window. In the case of top-level procedures or functions and
packages, you will see complete SQL statements. In the case of packaged
procedures or functions, you will only see fragments of SQL statements which
represent the portion of the CREATE PACKAGE BODY statement corresponding to
the packaged procedure or function.

• (Optional) If you choose Add PL/SQL Package, enter the name of a PL/SQL
package that you want to start building.

• (Optional) Right-click and choose Preview SQL Statements to display a dialog
that shows the SQL statements used to load the specifically selected item in the
Applications window. In the case of top-level procedures or functions and
packages, you will see complete SQL statements. In the case of packaged
procedures or functions, you will only see fragments of SQL statements which
represent the portion of the CREATE PACKAGE BODY statement corresponding
to the packaged procedure or function.

• To deploy the profile, see Deploying Loadjava and Java Stored Procedures
Profile.

How to Deploy to Oracle Databases

If necessary:

• Create a database connection in JDeveloper.

• Create a deployment profile for Loadjava and Java stored procedures.

Note:

If you are deploying to Oracle9i Database release 2 (9.2) or later, set the
compiler's target to 1.1 or 1.2. in the Project Properties dialog, available from
the Application menu.

To deploy Loadjava and Java stored procedures in JDeveloper:

1. Right-click storedProc.deploy which appears in the Applications window
below the specified project.

2. From the context menu, choose Export to and select one of the already existing
database connections; the Java application's source files are uploaded directly into
the selected database.

Or, choose New Connection to display the Create Database Connection Wizard.

3. (Optional) If you want to edit the deployment profile, right-click
storedProc.deploy in the Applications window below the specified project
and choose Settings.

Using Java Stored Procedures

27-22 Developing Applications with Oracle JDeveloper

Note:

If you are deploying your files as both compiled files and source files and you
have selected either -resolve or -andresolve in the Resolver page, then
the deployment profile will only upload the source files. The reason is that
when loadjava resolves the uploaded .java source files, loadjava also compiles
the .java source files into .class files. You will only see the source files when
previewing the loadjava deployment profile settings.

How to Invoke Java Stored Procedures

The SQL CALL statement lets you call Java stored procedures.

To invoke a Java Stored Procedure using SQL:

1. In SQL*Plus, execute the CALL statement interactively to invoke a Java stored
procedure, using the syntax:

CALL [schema_name.][{package_name | object_type_name}][@dblink_name]
 { procedure_name ([param[, param]...])
 | function_name ([param[, param]...]) INTO :host_variable};
where param represents this syntax:
{literal | :host_variable}

Host variables, that is variables declared in a host environment, must be prefixed
with a colon. The following examples show that a host variable cannot appear
twice in the same CALL statement, and that a subprogram with no parameters
must be called with an empty parameter list:

CALL swap(:x, :x); -- illegal, duplicate host variables

CALL balance() INTO :current_balance; -- () required

To invoke a Java stored procedure using JDBC:

1. Java stored procedures invoked from JDBC must be encapsulated in
CallableStatement objects.

Create a callable statement object:

• Declare a callable statement object. For example:

private CallableStatement checkIn;

• Initialize the callable statement object by calling prepareCall on the
connection with a SQL CALL statement for the stored procedure. For example:

checkIn = connection.prepareCall(quot;{call NPL.CHECKIN(?, ?, ?)}");

Note:

The number of parameters in the stored procedure is represented by the
number of place-holders in the SQL call.

2. Register the callable statement object's output parameters. Call
registerOutParameter for each output parameter, identifying it by position,
and declaring its type. For example, if the second parameter is an SQL INTEGER
(which maps to a Java int), and the third is a SQL VARCHAR (which maps to a
Java String), then:

Using Java Stored Procedures

Using Java in the Database 27-23

newCustomer.registerOutParameter(2, Types.INTEGER);
newCustomer.registerOutParameter(3, Types.VARCHAR);

3. Execute the callable statement object:

• Provide the callable statement object's input parameters by calling a set
method, identifying the parameter by position, and assigning it a value. For
example, if the first parameter is an int input parameter:

checkIn.setInt(1, bookID);

• Execute the callable statement object. For example:

checkIn.execute();

• Extract the callable statement object's output parameters. Call a get method for
each output parameter, identifying the parameter by position. The get methods
return values of corresponding Java types. For example:

int daysLate = checkIn.getInt(2);
String title = checkIn.getString(3);

To invoke a Java stored procedure using SQLJ:

1. Declare and initialize input and in-out variables. For example, if the first
parameter is an int input parameter:

int bookID = scanID();

2. Declare output variables. For example:

int daysLate; String title;

3. Invoke the stored procedure in a SQLJ statement. In the statement identify the
parameters by name, and designate them as :in, :out, or :inout. For example:

#sql { call NPL.CHECKIN (:in bookID, :out daysLate, :out title)}

Return values will be assigned to output and input variables.

To Invoke a Java Stored Procedure using PL/SQL

1. Use a CALL statement in the trigger body clause of a PL/SQL statement to invoke
a stored procedure, and pass arguments to it.

The CALL statement's arguments can be:

• Literal values.

• SQL expressions, but not bind variables.

• Column references, qualified by correlation names.

Correlation names are prefixes to column references. Use these names to qualify
whether the reference applies to the existing column value of the row being
processed by the trigger or the value being written by the triggering event:

• OLD refers to the value of the column prior to the triggering operation.

• NEW refers to the value being assigned to the column by the triggering
operation. It is possible for the trigger body to redefine this value before the
triggering operation occurs.

An example of a complete trigger definition:

Using Java Stored Procedures

27-24 Developing Applications with Oracle JDeveloper

CREATE TRIGGER check_salary
BEFORE UPDATE OF salary ON employee
CALL salaryCheck(:new.job, :old.salary, :new.salary, :old.employee

CREATE TRIGGER check_salary

BEFORE UPDATE OF salary ON employee

CALL salaryCheck(:new.job, :old.salary, :new.salary, :old.employeeID)

How to Test Java Stored Procedures

For stored procedures deployed in packages, access the stored procedure by the
package name and/or the stored procedure name set during deployment. The
package name may be the default name taken from the project or another name
entered during deployment. The stored procedure name may be the default name
taken from the method name or a name chosen for the stored procedure during
deployment. Stored Procedures may also be deployed without packages.

For example, assume a public static method hello()is in the Java package Welcome
and the public class Greeting. Further assume it is deployed in a package
Openings.

You could execute a PL/SQL query to the deployed stored procedure that executes the
public static method deployed there and returns the result. To invoke SQL*Plus from
within JDeveloper, right-click a connection or select it from the Tools menu.

With a working connection to the database, your SQL*Plus client could execute the
following:

package Welcome;
 public class Greeting {
 public static String Hello() {
 return "Hello World!";
 }
 }

You could execute a PL/SQL query to the deployed stored procedure that executes the
public static method deployed there and returns the result. To invoke SQL*Plus from
within JDeveloper, right-click a connection or select it from the Tools menu.

With a working connection to the database, your SQL*Plus client could execute the
following:

select Hello() from dual;Hello()

Executing the code displays:

Hello World!

Note:

The reference to the stored procedure call spec uses package.method syntax;
the name of the class from which the method originated is not part of the call.

For stored procedures deployed separately (not in packages), access the stored
procedure by the stored procedure name set during deployment. The stored
procedure name may be the default name taken from the method name or a name
chosen for the stored procedure during deployment.

Using Java Stored Procedures

Using Java in the Database 27-25

For example, for a public static method hello() that was deployed as hello from a
class greeting and package welcome, you could execute a PL/SQL query to the
deployed stored procedure that returns the result.

Assume the above hello() method as the example method, but this time assume it
was deployed without a package.

With a working connection to the database, your SQL*Plus client could execute the
following:

select Openings.Hello() from dual;

Openings.Hello()

The executed code displays:

Hello World!

How to Debug Java Stored Procedures
Debug Java stored procedures through a database connection.

To debug PL/SQL:

1. Choose Window > Database > Databases window.

2. Expand IDE Connections or application, and select a database connection.

3. Expand a schema, and find a node with the name of the object type (for example,
Package), and expand the node.

4. In the node, right-click the PL/SQL program, and choose Debug.

5. A Debug PL/SQL window opens. Select a target and parameter(s), and click OK.

6. JDeveloper debugs the program. Check status windows for progress and
information.

Additional information is available in Debugging PL/SQL Programs and Java Stored
Procedures.

How to Remove Java Stored Procedures
To drop a stored procedure:

1. Choose Window > Database > Databases window.

2. Expand IDE Connections or application, and select a database connection.

3. Expand the connection and select a schema.

4. Expand the schema and locate the object you wish to remove. Depending on how
Java stored procedures were published, they appear in one of these nodes:

• Packages includes call specs for Java stored procedures deployed in packages.

• Functions includes call specs for Java stored procedures deployed as functions
(that return a value).

• Procedures includes call specs for Java stored procedures deployed as
procedures (that do not return a value).

Using Java Stored Procedures

27-26 Developing Applications with Oracle JDeveloper

5. Select the object and right-click to display the context menu and choose Drop.

Using Java Stored Procedures

Using Java in the Database 27-27

Using Java Stored Procedures

27-28 Developing Applications with Oracle JDeveloper

28
Running and Debugging PL/SQL and Java

Stored Procedures

This chapter describes how to run and debug PL/SQL and Java stored procedures.

This chapter includes the following sections:

• About Running and Debugging PL/SQL and Java Stored Procedures

• Running and Debugging Functions_ Procedures_ and Packages

• Debugging PL/SQL Programs and Java Stored Procedures

About Running and Debugging PL/SQL and Java Stored Procedures
A Java stored procedure is a Java method that resides and runs in a database. Stored
procedures can help improve the performance of database applications because they
are efficient: they are stored in the RDBMS in executable form, and run in the RDBMS
(rather than the client) memory space.

When you deploy a Java class to the database, you can select the methods that you
want to publish to PL/SQL for use as stored procedures. Methods can be deployed
together in a package or separately.

Running and Debugging Functions, Procedures, and Packages
JDeveloper lets you run and debug PL/SQL program units. For example, you can
specify parameters being passed or return values from a function giving you more
control over what is run and providing you output details about what was tested.

Note:

The procedures or functions in Oracle Database can be either standalone or
within a package.

To run or debug functions, procedures, and packages:

1. Choose Window > Database > Databases window.

2. Expand IDE Connections or application, and select a database connection.

3. Expand a schema and expand the appropriate node depending on what you are
debugging (Procedure, Function, or Package body):

• (Optional for debugging only) Right-click and choose Compile for Debug
from the context menu of the node for the object that you are debugging. This
compiles the PL/SQL program in INTERPRETED mode.

Running and Debugging PL/SQL and Java Stored Procedures 28-1

• (Optional for debugging only) Select the function, procedure, or package that
you want to debug and double-click to open it in the editor.

• (Optional for debugging only) Set a breakpoint in your PL/SQL code by
clicking to the left of the margin.

Note:

The breakpoint must be set on an executable line of code. If the debugger does
not stop, the breakpoint may have not been set on an executable line of code
(verify that the breakpoint was verified).

4. Make sure that either the editor or the procedure in the Databases window is
currently selected.

5. Click Debug, or if you want to run without debugging, click Run.

6. The Run PL/SQL dialog is displayed.

a. Select a Target which is the name of the procedure or function that you want
to debug. Notice that the content in the Parameters and PL/SQL Block boxes
change dynamically when the target changes.

Note:

You will have a choice of target only if you choose to run or debug a package
that contains more than one program unit

b. The Parameters box lists the target's arguments (if applicable).

c. The PL/SQL Block box displays code that was custom generated by
JDeveloper for the selected target. Depending on what the function or
procedure does, you may need to replace the NULL values with reasonable
values so that these are passed into the procedure, function, or package. In
some cases, you may need to write additional code to initialize values to be
passed as arguments. In this case, you can edit the PL/SQL block text as
necessary.

7. Click OK to execute or debug the target.

8. Analyze the output information displayed in the Log window. In the case of
functions, the return value will be displayed. DBMS_OUTPUT messages will also be
displayed.

Debugging PL/SQL Programs and Java Stored Procedures
In addition to debugging Java programs, the JDeveloper debugger enables you to
debug PL/SQL programs and Java stored procedures in Oracle Databases.

Debugging PL/SQL Objects
JDeveloper supports both PL/SQL and Java stored procedures debugging in a single
IDE tool. When debugging PL/SQL, the source code you are debugging must be
stored in Oracle Database. For Java stored procedures, the source code should be in
your JDeveloper project and the compiled code should be deployed in the database.

Debugging PL/SQL Programs and Java Stored Procedures

28-2 Developing Applications with Oracle JDeveloper

Also, the way the debug action is initiated is different depending on whether you are
performing local or remote debugging. When debugging PL/SQL, this distinction is
described as follows:

• Local debugging - JDeveloper automatically launches the program you want to
debug, also referred to as the debuggee process, and then attaches the debugger to
that program.

• Remote debugging - You must manually launch the program you want to debug
with an Oracle client such as SQL*Plus, Dbms_Job, an OCI program, or a trigger
firing. You must then establish the connection from the database debuggee process
to the JDeveloper debugger. After the debuggee is launched and the JDeveloper
debugger is attached to it, remote debugging is very similar to local debugging.

PL/SQL and Java stored procedure debugging information is displayed in the various
JDeveloper debugger windows including the Smart Data, Data, Watches, Inspector,
Stack, and Classes windows.

The Threads window, Heap window, and Monitors window are not applicable when
debugging PL/SQL code.

When debugging PL/SQL, the user can use PL/SQL expressions in the Watches and
Inspector windows as well as conditional breakpoints, including table element access;
for example, mytable(i*10). This capability includes tables which are declared in
functions, procedures, packages, and package bodies.

PL/SQL objects you can debug with JDeveloper

You can debug a PL/SQL program calling PL/SQL, PL/SQL calling a Java stored
procedure (Oracle9i Release 2 and later databases), and a PL/SQL program issuing a
SQL statement that fires a trigger.

You can initiate debugging PL/SQL from the following objects:

• Stand-alone procedures

• Stand-alone functions

• Packaged procedures

• Packaged functions

Any other PL/SQL object can be traced into as long as it meets the prerequisites, and
as long as it is invoked from one of the above. For more information, see Debugging
PL/SQL and Java Stored Procedures Prerequisites.

What You May Need to Know

Consider the following when debugging triggers, Java stored procedures, and Oracle
object types:

• Although you cannot initiate debugging for these objects, you can step into them.
For example, you cannot start debugging a trigger, but you can debug a procedure
that adds records. To debug a trigger, set a breakpoint in the trigger, then debug
the procedure that causes the trigger to fire. The debugger will stop at that
breakpoint.

• Debugging and stepping into Java stored procedures is supported in the Oracle9i
Release 2 and later databases. These procedures should be included in the
JDeveloper project and the source should be consistent with what is deployed in

Debugging PL/SQL Programs and Java Stored Procedures

Running and Debugging PL/SQL and Java Stored Procedures 28-3

Oracle Database. To debug a Java stored procedure, set a breakpoint in the Java
stored procedure, then debug the PL/SQL that calls the Java stored procedure.
Alternatively, you can debug the PL/SQL and step into the Java stored procedure.

Appearance of debug information in supported Oracle Database

The debugger uses the database's JPDA (Java Platform Debugger Architecture)
implementation. JPDA is the industry standard for Java debugging and the JPDA
implementation in the database allows you to seamlessly debug Java and PL/SQL.

What You May Need to Know

• If you want to configure the debugging behavior (for remote debugging or for
setting the Classes Include and Exclude lists), you must have an active application
and project to access the project's debugger settings in the Application > Project
Properties - Run/Debug/Profile page.

• The following command is used to connect the debuggee session to the debugger:

DBMS_DEBUG_JDWP.CONNECT_TCP(<host_name>, <port>)

For local debugging, JDeveloper issues this command for you. For remote
debugging, you will need to issue this command in the same session that you use
to call the PL/SQL you want to debug.

• When entering an expression in the Watches window, local variables can be
entered in any case; for example, v_value or V_Value. Package variables are also
case-insensitive, but the prefix leading up to the variable name is case-sensitive; for
example:

$Oracle.Package.SCOTT.MY_PACKAGE.g_var

The simplest way to add a package variable to the Watches window is to drag and
drop the variable from the Data Window or to drag and drop the package from the
Classes Window.

How to Specify the Database Debugger Port
When the database debugger is running, for example to debug PL/SQL through a
database connection, the ports used are randomly assigned. This can cause problems
with firewalls, and to avoid them you can edit the ide.properties file to ensure that a
specific port is used.

To specify the port:

1. If necessary, close JDeveloper.

2. In a text editor, open jdev_install/jdeveloper/jdev/system/
oracle.jdeveloper.release_number/ide.properties.

3. Type the following:

DatabaseDebuggerPortOverride=port_number

where port_number is the port number you want the debugger to use.

4. Save ide.properties. When you restart JDeveloper, the port you specified will
be used.

Debugging PL/SQL Programs and Java Stored Procedures

28-4 Developing Applications with Oracle JDeveloper

Debugging PL/SQL and Java Stored Procedures Prerequisites
You can debug PL/SQL and Java stored procedures in JDeveloper.

Refer to the appropriate section below for additional information.

Prerequisites for Debugging PL/SQL and Java Stored Procedures

Ensure that the following prerequisites have been met before performing PL/SQL
debugging:

• Your database user account must have these privileges:

DEBUG ANY PROCEDURE

DEBUG CONNECT SESSION

• The PL/SQL code must be compiled in INTERPRETED mode. You cannot debug
PL/SQL code that is compiled in NATIVE mode. You set this mode in the
database's init.ora file. See Oracle Database documentation for more
information about this file.

• If you do not have an active application and project, the debugger will use the
properties defined in the Default Project Properties dialog, available from the
Application menu. However, it is recommended that you create a application and a
project that you will use when you debug PL/SQL. In the Launch Settings page of
the Edit Run Configuration dialog (Edit button on the Run/Debug/Profile page of
the Project Properties dialog, which is available from the Application menu), you
should ensure that the Attempt to Run Active File Before Default check box is
selected (default setting). This will instruct the debugger to run the active file (for
example a PL/SQL procedure selected in the Applications window or open the
active file in the editor) when you start debugging.

• PL/SQL objects must be compiled with the DEBUG option enabled. Choose one of
these techniques to accomplish this task:

– Ensure that Generate PL/SQL Debug Information is selected in Database
Connections page of the Preferences dialog (available from the Tools menu),
then create or recompile the objects you want to debug.

– In SQL*Plus, execute ALTER SESSION SET PLSQL_DEBUG = true, then
create or recompile the object you want to debug.

– In SQL*Plus, execute ALTER <procedure, function, package> <name>
COMPILE DEBUG;

Prerequisites for Debugging Java Stored Procedures

Ensure that the following prerequisites have been met before performing Java stored
procedures debugging:

• The Java code must be deployed to the database and compiled with debug
information. From JDeveloper, make sure the Include Debug Information check
box is selected in the Compiler page of the Project Properties dialog (available from
the Application menu), then deploy the Java stored procedure.

• To step through a Java stored procedure, the Java source must be available in your
JDeveloper project and must be consistent with what is deployed to the database.

Debugging PL/SQL Programs and Java Stored Procedures

Running and Debugging PL/SQL and Java Stored Procedures 28-5

How to Locally Debug PL/SQL Programs
When locally debugging PL/SQL programs, the call to initiate debugging is made
directly from within JDeveloper. JDeveloper automatically launches the program you
want to debug, also referred to as the debuggee process, and then attaches the
debugger to that program.

Make sure that you've completed the prerequisites listed above.

To locally debug a PL/SQL program in JDeveloper:

1. Choose Window >Database > Databases window.

2. Expand IDE Connections or application, and select a database connection.

3. Expand a schema and expand the appropriate node depending on what you are
debugging: Procedure, Function, or Package Body.

4. Select the procedure, function, or package that you want to debug and double-click
to open it in the editor.

5. Set a breakpoint in the PL/SQL code by left-clicking in the margin.

Note:

The breakpoint must be set on an executable line of code. If the debugger does
not stop, the breakpoint may have not been set on an executable line of code
(check that the breakpoint was verified). Also, verify that the debugging
PL/SQL prerequisites were met. In particular, make sure that the PL/SQL
program is compiled in INTERPRETED mode.

6. Make sure that the PL/SQL program unit you want to debug is currently selected
in the Applications window.

7. Click the Debug toolbar button.

8. JDeveloper halts the execution at the first breakpoint (providing that this was set in
the Start Debugging Option in the Project Properties dialog) and displays the state
in the debugger windows.

9. Look at the debug information displayed in the JDeveloper debugger windows. For
more information, see Debugging Java Programs.

10. Resume debugging the PL/SQL program until you are satisfied.

How to Remotely Debug PL/SQL Programs
The main difference between remote debugging and local debugging PL/SQL
programs is how you start the debugging session. For remote debugging, you must
manually launch the program you want to debug with an Oracle client such as
SQL*Plus, Dbms_Job, an OCI program, or a trigger firing. You must then establish the
connection from the database program you want to debug (debuggee) to the
JDeveloper debugger. After the debuggee is launched and the JDeveloper debugger is
attached to it, remote debugging is very similar to local debugging.

You can use the remote debugger with PL/SQL programs and Java stored procedures
in Oracle Database.

Debugging PL/SQL Programs and Java Stored Procedures

28-6 Developing Applications with Oracle JDeveloper

Make sure that you've completed the documented prerequisites, listed in Debugging
PL/SQL and Java Stored Procedures Prerequisites.

To remotely debug a PL/SQL program using JDeveloper:

1. If you don't already have one, create a database connection.

2. If you don't already have one, create a project.

3. In the Applications window, right-click the project and choose Project Properties.

4. Choose Run/Debug/Profile.

5. Either select an existing run configuration or create a new one, and click Edit.

6. In the Edit Run Configuration dialog, select PL/SQL and choose the database
connection.

7. Select Tool Settings - Debugger - Remote and set the remote debugging
preferences.

8. In the Databases window, right click the connection and chose Remote Debug.

9. In the Databases window, expand the Database node and navigate to the
procedure, function, or package that you want to debug and double-click to open it
in the source editor.

10. In the source editor, set a breakpoint in your PL/SQL code by left-clicking in the
margin.

11. In the Applications window, right-click the project and choose Debug.

12. In the displayed dialog, enter the appropriate listening port number and click OK.
You can choose any valid port number that is not in use by another process. In this
example, the port number used is 4000.

Note:

If you want to bypass this dialog the next time you are debugging on this port,
select the Save Parameters check box from this dialog.

In the Processes window, you should see which indicates that the debugger is
listening for debugging connections.

13. Use an Oracle client such as SQL*Plus to issue the debugger connection command.
Whatever client you use, make sure that the session which issues the debugger
connection commands is the same session which executes your PL/SQL program
containing the breakpoints.

For example, if you are using SQL*Plus, issue the following commands to open a
TCP/IP connection to the designated machine and port for the JDWP session:

EXEC DBMS_DEBUG_JDWP.CONNECT_TCP('123.456.789.012', '4000')

where 123.456.789.012is the IP address or host name where JDeveloper is
running, and 4000 is the port number on which the debugger is listening.

From this point on, when you make a call to the PL/SQL code containing the
breakpoint, the JDeveloper debugger is activated.

Debugging PL/SQL Programs and Java Stored Procedures

Running and Debugging PL/SQL and Java Stored Procedures 28-7

14. When the debugger accepts a debugging connection, the new debugging process is
reflected in the Processes folder in the Processes window. Also, the Log window
should display a message similar to the following:

Debugger accepted connection from remote process on port 4000.

In addition, notice that the layout in JDeveloper has switched from Design layout
to Debugging layout (bottom-right of window). Also, the debugging windows
including Stack, Data, and Watches, should now be visible.

In the Processes window, an icon indicates that the port is continuing to listen and
can accept multiple debugging connections.

15. Back in the Oracle client, issue a command which invokes the PL/SQL program
unit containing your breakpoint. For example, in SQL*Plus, issue a command
similar to the following:

EXEC FOO;

where FOO is the name of a PL/SQL procedure.

16. JDeveloper halts the execution at the first breakpoint (providing this was set in the
Start Debugging Option in the Project Properties dialog, available from the
Application menu) and displays the state in the debugger windows. For more
information, see How to Set the Debugger Start Options.

17. Step into and resume debugging the PL/SQL procedure until you are satisfied. For
more information, see Debugging Java Programs.

18. When you are finished debugging, disconnect the debuggee using the disconnect
command. For example, from SQL*Plus, enter:

EXEC DBMS_DEBUG_JDWP.DISCONNECT;

The following message appears:

Debugger disconnected from remote process.

19. To terminate the listening port, right-click the Run icon in the Processes window
and choose Stop Listening.

Using Acceptable Legal PL/SQL Expressions in the Debugger
If you are debugging PL/SQL, then you can use PL/SQL expressions in the Watches
window, Inspector window, Breakpoint conditions, and Breakpoint Log expressions.

The following table lists examples of acceptable legal PL/SQL expressions that you
can use in the debugger.

Table 28-1 PL/SQL Expressions that can be used in the debugger

PL/SQL Expression Example

Simple variable name counter

Field Access myrecord.Dept_No

Table element mytable(3)

Debugging PL/SQL Programs and Java Stored Procedures

28-8 Developing Applications with Oracle JDeveloper

Table 28-1 (Cont.) PL/SQL Expressions that can be used in the debugger

PL/SQL Expression Example

Comparison operation myrecord.Dept_No = 100

mytable(3) > 7

counter IS NULL

counter IS NOT NULL

employee.salary BETWEEN 25000 AND 50000

Arithmetic operation counter * size

x + y + z

Logical operation employee.exempt AND employee.active

employee.exempt OR employee.active

Package variable name $Oracle.Package.HR.MyPackage.MyVariable

Fully-qualified Package
name

$Oracle.Package.HR

PackageBody variable
name

$Oracle.PackageBody.HR.MyPackage.MyVariable

Fully-qualified
PackageBody name

$Oracle.PackageBody.HR

Debugging PL/SQL Programs and Java Stored Procedures

Running and Debugging PL/SQL and Java Stored Procedures 28-9

Debugging PL/SQL Programs and Java Stored Procedures

28-10 Developing Applications with Oracle JDeveloper

	Contents
	Preface
	Audience
	Related Documents
	Conventions
	Documentation Accessibility

	What's New in This Guide
	New and Changed Features for 12c (12.2.1.2)

	1 Introduction to Oracle JDeveloper
	About Oracle JDeveloper
	Oracle JDeveloper Information Resources
	Configuring Proxy Settings
	Using an Automatic Configuration Script for Proxy Settings

	Migrating to Oracle JDeveloper 12c

	2 Oracle JDeveloper Accessibility Information
	Using a Screen Reader and Java Access Bridge with Oracle JDeveloper
	Oracle JDeveloper Features that Support Accessibility
	Keyboard Access
	Screen Reader Readability
	Flexibility in Font and Color Choices
	No Audio-only Feedback
	No Dependency on Blinking Cursor and Animation
	Screen Magnifier Usability
	How to Change the Editor or Tabbed View of a File
	How to Read Text in a Multi-line Edit Field
	How to Read the Line Number in the Source Editor
	How to Access Exception Stack HTML Links and Generated Javadoc Links in the Log Window

	Recommendations for Customizing Oracle JDeveloper
	How to Customize the Accelerators Keys
	How to Pass a Conflicting Accelerator Key to Oracle JDeveloper
	How to Change the Look and Feel of the IDE
	How to Customize the Fonts in Editors
	How to Customize Syntax Highlighting
	How to Display Line Numbers in Editors
	How to Change the Timing for Code Insight
	How to Specify the Columns in the Debugger

	Highly Visual Features of Oracle JDeveloper

	3 Working with Oracle JDeveloper
	About Working with Oracle JDeveloper
	Working with JDeveloper Roles
	How to Change the JDeveloper Role

	How to Manage JDeveloper Features and Installed Updates
	Working with Windows in the IDE
	How to Maximize Windows
	How to Minimize and Restore Dockable Windows in the IDE
	How to Dock Windows in the IDE
	How to Close and Reopen Dockable Windows in the IDE
	Opening a Closed Window
	Closing an Open Window

	How to Restore Window Layout to Factory Settings

	Keyboard Navigation in JDeveloper
	How to Work with Shortcut Keys in the IDE
	Loading Preset Keyboard Schemas
	Viewing JDeveloper Commands and Associated Keyboard Shortcuts
	Redefining a Keyboard Shortcut for a Command
	Importing and Exporting Keyboard Schemas

	Common Navigation Keys
	Navigation in Standard Components
	Navigating Complex Controls
	Navigation in Specific Components

	Customizing the IDE
	How to Change the Look and Feel of the IDE
	How to Customize the General Environment for the IDE
	How to Customize the Compare Window in the IDE
	How to Customize the Components window
	How to Add a Page to the Components Window
	How to Add a JavaBeans Component to the Components Window
	How to Remove a Page from the Components Window
	How to Remove a Component from the Components Window

	How to Change Roles in JDeveloper
	How to Associate File Types with JDeveloper

	Working with the Resources Window
	Using the Resources Window
	How to Open the Resources Window
	How to Refresh the Resources Window

	Working with IDE Connections
	Searching the Resources Window
	How to Perform a Simple Search
	How to Perform an Advanced Search
	How to Stop and Save a Search

	Filtering Resources Window Contents
	Importing and Exporting Catalogs and Connections
	Working with Resources Window Catalogs
	Creating Catalogs
	Renaming Catalogs

	Working with Catalog Folders
	How to Create Folders
	How to Create Dynamic Folders
	How to Add Resources to a Catalog

	Working with Source Files
	Working with Index Data
	Using the Source Editor
	Features Available From the Context Menu
	Using Mini-Maps
	Using Stepping Margin
	Using Multi Cursor
	Using Hyperlinking with Javadoc Comments
	Using the Find and Replace Toolbar

	How to Set Preferences for the Source Editor
	How to Set Indentation Size for the Source Editor
	How to Set Fonts for the Source Editor
	How to Set Caret Behavior for the Source Editor
	How to Set Display Options for the Source Editor
	How to Set Line Gutter Behavior for the Source Editor
	How to use the Save as HTML parameter in the Source Editor
	How to Set Options for Syntax Highlighting in the Source Editor
	How to Set Bookmark Options for the Source Editor

	How to Customize Code Templates for the Source Editor
	How to Manage Source Files in the Editor Window
	How to Change the View of a File
	How to Navigate Between Open Files in the Editor Window
	How to Display the List of All Currently Open Files
	How to Access a Recently Opened File
	How to Manage Multiple Editors for a File
	How to Work With Multiple Files
	How to Quickly Close Files in the Editor Window

	Working with Mouseover Popups
	How to Locate a Source Node in a Window such as the Applications Window, Databases Window, Applications Server Window
	How to Set Bookmarks in Source Files
	How to Edit Source Files
	How to Open Source Files in the Source Editor
	How to Edit Source Code with an External Editor
	How to Insert a Code Snippet from the Components Window into Source Files
	How to Record and Play Back Macros in Source Files
	How to Create Tasks

	How to Compare Source Files
	How to Revert to the Last Saved Version of a File
	How to Search Source Files
	How to Search Text in an Open Source File
	How to Search for a Single Text String
	How to Search All Files in a Project or Application

	How to Print Source Files
	Reference: Regular Search Expressions

	Working with Extensions
	How to Install Extensions with Check for Updates
	How to Install Extensions from the Provider's Web Site
	How to Install Extensions Directly from OTN
	How to Install Extensions Using the JDeveloper dropins Directory

	Using the Online Help
	Using the Help Center
	How to Open the Online Help
	How to Search the Documentation
	How to Add Bookmarks to the Favorites Page
	How to Customize the Online Help Display
	How to Open and Close Multiple Help Topics
	How to Print Help Topics

	Common Development Tools
	Application Overview
	Checklist
	File Summary Pages

	File List
	File List Tab Header
	Search Criteria Area
	Search Results Table

	Compare Window
	Toolbar
	Source and Target Areas

	Applications Window
	Applications Window Toolbar
	Application Operations
	Projects Panel Operations
	Application Resources Panel Operations
	Data Controls Panel Operations
	Recent Files Panel Operations

	Application Servers Window
	Structure Window
	Structure Window Toolbar
	Structure Window Views

	Applications Window - Data Controls Panel
	Log Window
	Issues Window
	Documents Dialog
	Dependency Explorer

	Adding External Tools to JDeveloper
	How to Find All External Programs Supported by JDeveloper
	How to Add Access to an External Program from JDeveloper
	How to Change the Appearance of an External Program

	Working with Tasks
	About Task Repositories
	Working with Tasks
	Finding and Opening Tasks
	Creating and Saving Task Queries
	Reporting New Tasks
	How to Add a Task Repository

	Working with the Tasks Window
	How to View Tasks
	How to Organize Tasks

	4 Getting Started with Developing Applications with Oracle JDeveloper
	About Developing Applications with Oracle JDeveloper
	Creating Applications and Projects
	How to Create an Application
	How to Create a Custom Application
	How to Create a Project
	Creating a New Custom Project

	Managing Applications and Projects
	How to Open an Existing Application
	How to Open an Existing Project
	How to Quickly Add Items to a Project Using the New Menu
	How to Import Existing Source Files into JDeveloper
	How to Import Existing Files into a New JDeveloper Project
	How to Import a WAR File into a New JDeveloper Project
	How to Import an EAR File into a New JDeveloper Application

	How to Import Files into a Project
	Managing Folders and Java Packages in a Project
	How to Create a Folder or Java Package
	How to Delete a Folder or Java Package

	How to Manage Working Sets
	How to Group Objects into a Working Set
	How to Create a Working Set by Defining File and Directory Filters
	How to Create a Working Set From Search Results in the Log Window
	How to Identify the Current Working Set
	How to Change the Active Working Set
	How to Edit Files and Projects in a Working Set
	How to Show All Files in the Applications window
	How to Run and Debug a Working Set

	How to Browse Files in JDeveloper Without Adding Them to a Project
	How to View an Archive
	How to View an Image File in JDeveloper
	Setting Default Project Properties
	How to Set Default Project Properties
	How to Set Properties for Individual Projects
	How to View or Change the Current Output Path for an Individual Project
	How to Set the Target Java SE for a Project
	How to Manage Project Dependencies
	How to Associate Features with a Project Via a Template
	How to Associate Features with an Individual Project
	How to Set Javadoc Properties for a Project

	How to Manage Libraries
	How to Add Application-level Libraries and Classpaths
	How to View the Current Libraries in a Project
	How to Add an Existing Library to a Project
	How to Create a New Library and Add it to a New Project
	How to Edit an Existing Library in a Project
	How to Remove Libraries from a Project
	How to Import Libraries or Java SEs Outside the Project Scope
	How to Create Libraries or Java SEs Outside the Project Scope
	How to Edit Libraries or Java SEs Outside the Project Scope
	How to Delete Libraries or Java SEs Outside the Project Scope

	How to Manage Application and Project Templates
	How to Define a New Application Template
	How to Define a New Project Template
	How to Share Application and Project Templates
	How to Edit an Existing Application or Project Template
	How to Delete an Existing Application or Project Template

	How to Manage File Templates
	Available File Template Variables

	How to Save an Application or Project
	How to Save an Individual Component or File
	How to Rename an Application, Project, or Individual Component
	How to Relocate an Application, Project, or Project Contents
	How to Close an Application, Project, or Other File
	How to Remove a File from a Project
	How to Remove a Project from an Application
	How to Remove an Application

	5 Developing Applications Using Modeling
	About Modeling with Diagrams
	UML Diagrams
	Business Services Diagrams
	Transformations

	Creating, Using, and Managing Diagrams
	Creating a New Diagram
	Working with Diagram Elements
	How to Locate an Element on a Diagram
	How to Select Specific Elements on a Diagram
	How to Select All Elements on a Diagram
	How to Select All Elements of the Same Type
	How to Deselect an Element in a Group of Selected Elements
	How to Group Elements on a Diagram
	How to Manage Grouped Elements
	How to Change Semantic Properties
	How to Change Element Properties Using the Properties window
	How to Change the Element Color or Font
	How to Change the Visual Properties of New Diagram Elements
	How to Copy Visual Properties
	How to Resize Elements on a Diagram
	How to Display Related Classes on a Diagram
	How to Move Diagram Elements
	How to Undo the Last Action on a Diagram

	How to Copy Elements to Another Diagram
	How to Rename a Diagram
	How to Publish a Diagram as an Image
	How to Setup a Page for Printing
	How to Set the Area of a Diagram to Print
	How to See a Preview of Your Page Before Printing
	How to Clear a Diagram Print Area
	How to Zoom in and Out of a Diagram
	How to Display an Entire Diagram
	How to Display the Selected Elements at the Maximum Size
	How to Display a Diagram in its Original Size
	How to Delete a Diagram
	Working with Diagram Layout
	How to Use a Hierarchical Diagram Layout
	How to Use Layout Edges on a Diagram
	How to Use a Symmetrical Diagram Layout
	How to Use an Orthogonal Diagram Layout
	How to Use a Grid Diagram Layout
	How to Lay Out Diagram Elements
	How to Lay Out Diagrams Using the Grid
	How to Distribute Diagram Elements
	How to Align Diagram Elements

	Working with Diagram Nodes
	How to Create a Node on a Diagram
	How to Create Internal Nodes on a Diagram Element

	Working with Diagram Edges
	How to Hide Edges on a Diagram
	How to Show Hidden Edges on a Diagram
	How to Show all Hidden Edges on a Diagram
	How To List All Hidden Edges Together in the Structure Window
	How to Change Crossing Styles on a Diagram

	Annotating Your Diagrams
	How to Add a Note to a Diagram
	How to Attach a Note to an Element on a Diagram
	How to Change the Font on a Note

	Storing Diagrams

	Using UML
	Creating UML Elements Off a Diagram
	Storing UML Elements Locally
	Using UML Profiles
	How to Create a Profile
	How to Export a Profile
	How to Add a Profile
	How to Apply a Profile to a UML Package

	Importing and Exporting UML
	How to Import and Export UML Models Using XMI
	How to Export UML Models as XMI
	Typical Error Messages When Importing

	Using MOF Model Libraries
	How to Create an XMI Catalog File
	Create a MOF Model JAR File
	Add a MOF Model Library
	Use a MOF Model Library

	Using Transformations
	Transformation Types
	UML-Java Transformation
	Transform UML to Java
	Transform Java to UML

	UML-Offline Database Transformation
	Transform an Offline Database Diagram to UML
	Transform UML to Offline Database Objects
	Transform UML Classes on a Diagram to an Offline Database
	Set Hierarchy Options
	Transformation Settings
	Reuse Transform Settings
	Using DatabaseProfile for UML Transformations
	Use DatabaseProfile to Transform a Class Model
	Logging Options

	UML-ADF Business Components Transformation

	Modeling with UML Class Diagrams
	Creating a UML Class Diagram
	Working with the Class Diagram Features
	How to Create Classifiers, Constraints, and Packages
	How to Create Attributes
	How to Add Nested Classes and Nested Interfaces
	How to Add Attributes and Operations
	How to Hide Attributes and Operations
	How to Add Generalizations, Realizations, and Associations

	Modeling with Activity Diagrams
	Working with the Activity Diagram Features
	How to Create an Activity Diagram
	How to Create Initial and Final Nodes
	How to Show Partitions

	Modeling with Sequence Diagrams
	Working with the Sequence Diagram Features
	How to Add and Create a Sequence Diagram
	How to Start a Sequence Tracer
	How to Automatically Layout Elements in an Interaction
	How to Add Lifelines and Classifiers
	How to Create a Synch Call
	How to Work With Execution Specifications
	How to Add a Create Message
	How to Create a Delete Message
	How to Create a Reply Message
	How to Create an Async Call
	Using Combined Fragments

	Modeling with Use Case Diagrams
	Working with the Use Case Diagram Features
	Getting A Closer Look at the Use Case Diagram Elements
	How to Add a Subject to a Use Case Diagram
	How to Create Actors and Use Cases
	How to Represent Interactions Between Actors and Use Cases
	How to Represent Relationships Between Use Cases and Subjects

	Exporting a Use Case Model for the First Time
	Exporting a Changed Use Case Model
	Importing a Use Case Model from a Set of HTML Files
	Editing the HTML Files
	Importing from HTML files

	Modeling with Profile Diagrams
	Modeling with Java Class Diagrams
	How to Create Java Classes, Interfaces and Enums
	How to Model Inner Java Classes and Interfaces
	Modeling Composition in a Java Class Diagram
	Modeling Inheritance on a Java Class Diagram
	Extending Modeled Java Classes
	Implementing Modeled Java Interfaces
	Modeling Java Fields and Methods
	Refactoring Class Diagrams

	Modeling with EJB Diagrams
	Working with EJB/JPA Modeling Features
	Create a Diagram of EJB/JPA Classes
	How to Model EJB/JPA Relationships
	Reference Between Beans
	Properties on Modeled Beans
	Methods on Modeled Beans
	How to Model Cross Component References
	How to Display the Implementing Classes for Modeled Beans
	How to Display the Source Code for a Modeled Bean
	How to Change the Accessibility of a Property or Method
	How to Reverse Engineer a Diagrammed JPA Entity

	Modeling with Database Diagrams
	Working with the Database Modeling Features
	How to Create a Database Diagram
	How to Create an Offline Database Object
	How to Create a Foreign Key
	How to Use Templates to Create Database Objects
	How to Add and Create Private and Public Synonyms
	How to Add and Create a Sequence
	How to Add and Create Tables
	How to Change the Database or Schema
	How to Create Database Views and Add Database Objects
	How to Define a Base Relation Usage
	How to Create Join Objects

	6 Versioning Applications with Source Control
	About Versioning Applications with Source Control
	Downloading Source Control Extensions in Oracle JDeveloper
	Setting Up and Configuring Source Control
	Setting Up Subversion and JDeveloper
	Installing Subversion Client Software
	Checking the Subversion Client Installation
	Creating a Subversion Connection
	Editing a Subversion Connection
	Exporting Subversion Repository Connection Details
	Importing Subversion Repository Connection Details
	Connecting to a Subversion Repository Through a Proxy Server
	Exporting Subversion Controlled Files from the Working Copy
	Exporting Files from the Subversion Navigator

	How to Set Up and Configure a Git Repository
	How to Set Up CVS with JDeveloper
	Configuring CVS for Use
	Creating a CVS Connection
	Editing a CVS Connection
	Exporting a CVS Module
	Copying the CVSROOT Path to the Clipboard

	How to Configure CVS For Use with JDeveloper
	Choosing a Character Set (Local Client Only)

	How to Set Up Perforce with JDeveloper
	Installing Perforce Components for use with JDeveloper
	Perforce Client Installation
	JDeveloper Installation
	Configuring JDeveloper for Use with Perforce
	Selecting Perforce as the Version System

	How to Set Up Team System and JDeveloper
	Setting Up Team System for Use with JDeveloper
	Configuring JDeveloper for Use with Team System
	Selecting Team System as the Versioning System
	Setting the Team System Workspace to use JDeveloper
	Creating a JDeveloper Project for the Workspace Files
	Getting Versions of Files from the Team System Server
	Adding Files to Team System Control

	Versioning Applications With Mercurial
	About Mercurial Visualization Features
	How to Install Mercurial
	How to Set the Path to the Mercurial Executable
	How to Clone an External Mercurial Repository
	How to Place Projects Under Version Control
	How to Merge File Revisions
	How to Commit Changes

	Setting Up and Configuring a Source Repository
	How to Create a Source Repository
	Creating a Subversion Repository
	Initializing a New Git Repository
	Making a Local Copy of an Existing Git Repository
	Adding New Files to an Existing Git Repository
	Creating a Local CVS Repository
	Importing JDeveloper Project Files Into CVS
	Bringing Files Under Perforce Control

	How to Connect to a Source Control Repository
	Viewing Subversion Repository Content
	Logging In to CVS
	Accessing Local Files with CVS
	Handling CVS File Types

	Connecting to Perforce
	Making Multiple Connections to Perforce

	Configuring JDeveloper for the Source Repository
	How to Configure CVS For Use with JDeveloper
	Configuring for SSH Level 1 (SSH)
	Configuring for SSH Level 2 (SSH2)
	Editing and Watching Files in CVS

	How to Load the Repository with Content
	Importing JDeveloper Files Into Subversion
	Importing a Project to Subversion
	Adding a File to Subversion Automatically
	Adding Files Individually to Subversion
	Moving Files from Remote Repositories in Git
	Importing JDeveloper Files Into Perforce
	Updating a Project, Folder, or File in CVS

	How to Create a WebDAV Connection
	WebDAV Server Requirements
	Creating a WebDAV Connection
	Accessing a WebDAV-Enabled Server Via a Proxy Server
	Modifying a WebDAV Connection
	Refreshing a WebDAV Connection
	Deleting a WebDAV Connection

	Working with Files in Source Control
	How to Check Out Files
	Checking Out Files from the Subversion Repository
	Checking Out Files in Git
	Checking Out CVS Modules
	Editing Files in Perforce

	How to Update Files with Subversion
	Updating Files from the Subversion Repository
	Updating Individual Files in the Subversion Repository
	Removing Files from Subversion Control
	Working with Files in CVS
	Refreshing the Display of CVS Objects
	Refreshing the Status of Objects in JDeveloper
	Adding and Removing Files in CVS

	How to Work with New and Changed Files in Git
	Adding a File to a Git Repository
	Adding Multiple Files to a Git Repository
	Creating a Git Stash
	Committing a Change to the Git Repository
	Committing Multiple Files to the Git Repository
	Applying a Git Stash

	How to Work with Files in Perforce
	Synchronizing Local Files With the Controlled Versions in Perforce
	Synchronizing Files With the Perforce Navigator
	Filtering Files By Perforce Workspace
	Refreshing the Status of Files under Perforce Control
	Deleting Files from Perforce

	How to Lock and Unlock Files
	Locking and Unlocking Files in CVS
	Editing Files in Perforce
	Checking Out Files in Team System
	Viewing the Status of a File in Team System
	Refreshing the Status of Files in Team System

	How to Check In Changed Files
	Committing Files to the Subversion Repository
	Saving Work Item ID with the Oracle Team Productivity Center Extension

	Committing Changes to the Git Repository
	Committing Changes to CVS
	Submitting Changed Files to the Perforce Depot
	How to Check In Files to Team System

	How to Use Change Sets and Changelists
	Using Change Sets in Subversion
	Editing Change Sets

	Creating a Perforce Changelist
	How to Annotate a Perforce Revision or Changelist
	Adding Files to a Perforce Changelist
	Submitting a Perforce Changelist
	Using the Perforce Changelist Browser

	How to Use Comment Templates for Checkins
	Creating Templates
	Sharing Templates
	Selecting and Using Templates at Checkin
	Shelving and Unshelving Team System Files
	Deleting Team System Files

	Working with Branches and Tags
	How to Create Branches
	Working with Branches and Tags in Subversion
	Creating a New Branch in Git
	Creating a New Branch in CVS

	How to Use Branches
	Checking Out a Branch in Git
	Merging a Branch in Git
	Using Branches in CVS
	Switching the Branch or Version
	How to Choose a Branch while Updating
	Choosing a Branch While Checking Out

	How to Create Tags
	Creating Tags in Git
	Creating and Assigning CVS Tags
	Deleting CVS Tags

	How to Use Tags
	Using Tags in Git
	Using Tags in CVS
	Adding a Tag to a Project
	Applying Tags While Updating a Project or File
	How to Delete a Tag

	How to Use Properties in Subversion
	About Subversion Properties
	Working with Subversion Properties
	Viewing File and Property Status
	Resolving Property Conflicts in Subversion

	Working with File History, Status and Revisions
	File History
	Refreshing the Status of Files Under Subversion Control

	Replacing a File with the Subversion Base Revision
	How to Undo or Revert Changes
	Reverting Files to their Previous State in Subversion
	Reverting Changes to Files in Git
	Working with Revisions and Tags in CVS

	How to Merge Changes from Different Files
	Comparing Files in Subversion
	Resolving Conflicts in File Versions
	Using the Merge Tool to Resolve Conflicts
	Using the Subversion Merge Wizard

	Working with File Versions and History in CVS
	Merging Files in CVS
	Comparing Files in CVS
	Replacing a File with a CVS Revision
	Viewing the History and Status of a File in CVS

	Working with File Versions in Perforce
	Working with File Versions in Team System
	Resolving Conflicts in Team System File Versions
	Undoing Changes to Team System Files
	Replacing a File with the Team System Base Version
	Viewing the History of a File
	Comparing Files In Team System

	Using an External Diff Tool with CVS
	Integrating a Third Party Diff Utility
	Integrating other CVS Commands

	Working with Patches in Source Control
	How to Create and Apply Patches
	Creating Patches
	Applying Patches

	7 Getting Started with Developing Java Applications
	About Developing Java Applications
	Using the Java Source Editor
	Using Code Insight
	Using Code Insight to Add Annotations to Your Java Code

	Using Code Peek
	Using Scroll Tips
	Using InfoTips
	Searching Incrementally
	Using Shortcut Keys
	Bookmarking
	Browsing Java Source
	Using Code Templates
	Setting Preferences for the Java Source Editor
	How to Set Comment and Brace-Matching Options for the Java Source Editor
	How to Set Import Statement Sorting Options for the Java Source Editor
	How to Choose a Coding Style
	How to Edit a Coding Style
	How to Set Up a Coding Style Using an Extension

	Using Toolbar Options
	Using the Quick Outline Window
	Working with the Java UI Visual Editor
	Java Swing and AWT Components

	8 Working with Java Code
	About Working with Java Code
	Navigating in Java Code
	How to Browse Java Elements
	Browsing a Java Element Directly in JDeveloper

	How to Locate the Declaration of a Variable, Class, or Method
	How to Find the Usages of a Class or Interface
	How to Find the Usages of a Method
	How to Find the Usages of a Field
	How to Find the Usages of a Local Variable or Parameter
	Identifying Overridden or Implemented Method Definitions
	How to View the Hierarchy of a Class or Interface
	Viewing the Hierarchy of a Class or Interface in the Java Source Editor

	Stepping Through the Members of a Class

	Editing Java Code
	How to Create a New Java Class or Interface
	How to Implement a Java Interface
	How to Override Methods
	How to Convert an Anonymous Inner Class to a Lambda Expression
	How to Use Code Templates
	Using Predefined Code Templates
	How to Expand or Narrow Selected Text
	How to Surround Code with Coding Constructs
	How to Fold Code
	Adding an Import Statement
	How to Organize Import Statements
	Using ojformat
	Editing with the Java Visual Editor
	Protecting Code

	How to Add Documentation Comments
	How to Update Documentation Comments
	How to Set Javadoc Properties for a Project
	How to Customize Documentation Comment Tags
	How to View Javadoc for a Code Element Using Quick Javadoc
	How to Preview Documentation Comments
	How to Audit Documentation Comments
	How to Build Javadoc
	How to Create References to Missing Annotation Elements
	Using the JOT Structure Window
	How to Display Comments and Blank Lines in the JOT Structure Window
	How to Set the Refresh Mode in the JOT Structure Window

	Refactoring Java Projects
	Refactoring on Java Class Diagrams
	How to Invoke a Refactoring Operation
	How to Preview a Refactoring Operation
	How to Rename a Code Element
	How to Delete a Code Element
	Refactoring Classes and Interfaces
	How to Duplicate a Class or Interface
	How to Extract an Interface from a Class
	How to Extract a Superclass
	How to Use Supertypes Where Possible
	How to Convert an Anonymous Class to an Inner Class
	How to Move an Inner Class
	Refactoring Class Members
	Moving a Static Method
	Moving a Non-static Method

	How to Change a Method to a Static Method
	How to Change the Signature of a Method
	How to Pull Members Up into a Superclass
	How to Push Members Down into Subclasses
	How to Introduce a Field
	How to Inline a Method Call
	How to Introduce a Variable
	How to Introduce a Parameter
	How to Introduce a Constant
	How to Extract a Method
	How to Extract a Class
	How to Replace a Constructor with a Factory Method
	How to Encapsulate a Field
	How to Invert a Boolean Expression
	Refactoring XML Schemas

	9 Building Java Projects
	About Building Java Projects
	Building with Make and Rebuild Commands
	How to Set Compiler Preferences
	Compiling with Make
	Compiling with Rebuild

	Understanding Dependency Checking
	Compiling Applications and Projects
	How to Configure Your Project for Compiling
	How to Specify a Native Encoding for Compiling
	Compiling from the Command Line

	Cleaning Applications and Projects
	How to Clean
	Cleaning a Project
	Cleaning an Application
	Cleaning and Refreshing an Application

	Building with Apache Ant
	Create an Ant Build File at Application Level
	Create an Ant Build File at Project Level
	Create an Empty Ant Build File
	Running Ant on Project Buildfile Targets
	Using the Ant Tool in the IDE

	Building and Running with Apache Maven
	Understanding Repositories
	Understanding Maven Plugins
	Understanding Dependencies
	Understanding the Project Object Model
	Understanding the Settings File
	Selecting the POM File
	Installing Maven
	Before You Begin
	How to Create Maven POM Files
	Using the Context Menu in the POM file
	How to Specify and Manage Remote Repositories
	Populating the Repository
	Synchronizing POM and Project Files
	Customizing Maven Synchronization

	How to Match the Default Maven Structure When You Create an Application
	How to Create Maven Projects Using Maven Archetypes
	What Happens When You Create a New Maven Application
	How to Run Maven Goals on POM Files
	How to Create a Maven POM for a Project
	Auditing Maven Applications
	Configuring Test Settings
	Understanding Code Insight
	Using the WebLogic Maven Plugin in JDeveloper
	Using ojdeploy and ojmake

	Understanding Continuous Delivery and Continuous Integration

	10 Testing and Profiling Java Application Projects
	About Profiling Applications
	About Starting the Profiler
	Starting and Profiling JDeveloper Applications Simultaneously
	Attaching the Profiler to a Running JDeveloper Applications
	Profiling External Applications
	Profiling Telemetry
	Profiling Methods
	Profiling Specific Methods

	Profiling Objects
	Profiling Specific Objects

	Profiling Threads
	Profiling Locks
	Additional Functions when Running a Profiling Session
	Capturing Heap Dump Data
	Viewing UI Elements with Heap Walker
	Image Preview Use Cases

	How to Analyze a Heap Dump Using Object Query Language (OQL)
	OQL Examples
	OQL built-in objects and functions
	Selecting Multiple Values
	Other Examples

	Taking and Accessing Snapshots of Profiling Data
	Taking Snapshots at the End of a Profiling Session
	Taking Snapshots During a Profiling Session
	Starting and Stopping the Application Finished Dialog
	Accessing Snapshots

	How to Calibrate the Profiler
	How to Set Profiling Points
	Unit Testing with JUnit
	Creating a JUnit Test for a Java Project
	How to Create a JUnit Custom Test Fixture
	How to Create a JUnit JDBC Test Fixture
	Creating a JUnit Test Case
	How to Add a Test to a JUnit Test Case
	Creating a JUnit Test Suite
	How to Create a Business Components Test Suite
	How to Create a Business Components Test Fixture
	How to Update a Test Suite with all Test Cases in the Project
	How to Run JUnit Test Suites

	11 Auditing and Monitoring Java Projects
	About Auditing and Monitoring Java Projects
	Auditing Java Projects
	Understanding Audit Rules
	Understanding Audit Metrics
	Using the Auditing Tools
	Using the Audit Window Report Panel
	Using the Audit Window Toolbar
	Using the Audit Window Context Menu
	How to Audit Java Code in JDeveloper
	Auditing Java Code from the Command Line
	Working with Audit Profile
	Create an Audit Profiler
	Sealing a Profile
	Disabling Suppression Schemes

	How to Delete an Audit Profile
	How to Import or Export an Audit Profile
	How to Run Audit to Generate an Audit Report
	How to Audit Unserializable Fields
	How to Audit Serializable Fields That Do Not Have serialVersionUID
	Viewing an Audit Report
	How to Organize Audit Report Rows
	Using Filters with Reports
	How to Filter Audit Report Rows

	How to Save an Audit Report
	How to Fix an Audit Rule Violation
	How to Fix a Construct's Audit Rule Violations
	How to Hide Audit Rule Violations
	How to Hide Audit Report Measurements

	Monitoring HTTP Using the HTTP Analyzer
	How to Use the Log Window
	How to Use the Test Window
	How to Use the Instances Window
	What Happens When You Run the HTTP Analyzer
	How to Specify HTTP Analyzer Settings
	How to Use Multiple Instances
	How to Configure External Web Browsers
	Using SSL with the HTTP Analyzer
	How to Use SSL with the HTTP Analyzer

	How to Run the HTTP Analyzer
	How to Debug Web Pages Using the HTTP Analyzer
	How to Edit and Resend HTTP Requests
	How to Use Rules to Determine Behavior
	Using the Pass Through Rule
	Using the Forward Rule
	Using the URL Substitution Rule
	Using the Tape Rule

	How to Set Rules
	Using the HTTP Analyzer with Web Services
	Testing Web Services with the HTTP Analyzer
	Using the HTTP Analyzer with RESTful Web Services

	Using the HTTP Analyzer with WebSockets
	Using the HTTP Analyze with Fast Infoset
	Reference: Troubleshooting the HTTP Analyzer
	Running the HTTP Analyzer While Another Application is Running
	Changing Proxy Settings

	12 Running and Debugging Java Projects
	About Running and Debugging Java Programs
	Understanding the Processes Window
	Configuring a Project for Running
	How to Choose a Run Configuration
	How to Create a Run Configuration

	How to Run a Project or File
	How to Run a Project from the Command Line
	How to Change the Java Virtual Machine
	Macros

	Setting the Classpath for Programs
	Setting the CLASSPATH Environment Variable (for java.exe)
	Using the JDeveloper Library CLASSPATH
	Setting the CLASSPATH to Include Your Projects
	Setting the CLASSPATH Parameter (for java.exe)

	Debugging Java Programs
	Understanding the Debugger Icons
	Debugging an Application Deployed to Integrated WebLogic Server
	How to Debug a Project in JDeveloper
	How to Edit and Recompile
	Using FastSwap Deployment to Minimize Redeployment
	How FastSwap Deployment Works
	Supported FastSwap Application Configurations
	Enabling FastSwap In Your Application
	Overview of the FastSwap Process
	Application Types and Changes Supported with FastSwap
	Limitations When Using FastSwap
	Handling Unsupported FastSwap Changes

	How to Debug ADF Components
	How to Use JDeveloper Debugger to Execute a Program

	How to Configure a Project for Debugging
	How to Set the Debugger Start Options
	How to Launch the Debugger
	How to Export Debug Information to a File
	Using the Source Editor When Debugging
	Using Context Menu Items
	Using Tooltips
	Using Java Expressions in the Debugger
	Moving Through Code While Debugging
	How to Step Into a Method
	How to Step Over a Method
	Controlling Which Classes Are Traced Into
	How to Step Through Behavior as Guided by Tracing Lists
	How to Locate the Execution Point for a Thread
	How to Run to the Cursor Location
	How to Pause and Resume the Debugger
	How to Terminate a Debugging Session
	How to View the Debugger Log

	Using the Debugger Windows
	How to Open Debugger Windows
	How to Use the Breakpoints Window
	How to Use the Data Window
	How to View Array Elements in the Data Window

	How to Use the Smart Data Window
	How to Use the Watches Window
	How to Add a Watch from the Source Editor
	How to Watch a Static Field
	How to Edit a Watch
	How to Delete a Watch

	How to Use the Inspector Window
	How to Use the Heap Window
	Using the Stack Window
	How to Use the Stack Window
	How to View the Stack of a Tread

	How to Use the Classes Window
	How to Change the View Order

	How to Use the Monitors Window
	How to Use the Threads Window
	How to Set Preferences for the Debugger Windows
	How to Specify Which Columns Display in the Window

	Managing Breakpoints
	Understanding Verified and Unverified Breakpoints
	Understanding Deadlocks
	Understanding the Deadlock Breakpoint
	Understanding Grouped Breakpoints
	How to Edit Breakpoint Options
	Editing a Breakpoint
	How to Set Source Breakpoints
	How to Control Breakpoint Behavior
	How to Delete a Breakpoint
	How to Disable a Breakpoint
	How to Enable a Breakpoint

	How to Set Instance Breakpoints
	How to Set Exception Breakpoints
	How to Make a Breakpoint Conditional
	Using Pass Count Breakpoints
	How to Examine Breakpoints with the Breakpoints Window
	How to Manage Breakpoint Groups
	How to Create a Breakpoint Group
	How to Move a Breakpoint into a Breakpoint Group
	Enabling Disabling or Removing a Breakpoint Group

	Examining Program State in Debugger Windows
	How to Inspect and Modify Data Elements
	How to Inspect a Data Item
	How to Modify the Value of a Variable

	How to Modify Expressions in the Inspector Window
	How to Show and Hide Fields in the Filtered Classes List

	Debugging Remote Java Programs
	How to Start a Java Process in Debug Mode
	How to Use a Project Configured for Remote Debugging
	How to Configure JPDA Remote Debugging

	13 Implementing Java Swing User Interfaces
	About Applications Developed in Earlier Versions
	About Java Swing UI Components and Containers
	Designing Java GUIs
	About Guarded Blocks

	How to Create a Form
	Understanding the Forms You Can Create
	Adding Components
	How to Set Component Properties
	How to Select Components in Your User Interface
	How to Select a Single Components
	How to Select Multiple Components

	How to Align Components
	How to Size Components

	Working with Containers
	Reordering Components Within a Container

	Working with Layout Managers
	How to Set the Layout Manager
	Understanding FreeDesign Layout
	How to Set Layout Properties
	Understanding Layouts Provided with JDeveloper
	Using BorderLayout
	Using CardLayout
	Using FlowLayout
	Changing the Alignment
	Changing the Gap
	Changing the Order of Components

	Using GridBagLayout
	Adding Components to a GridBagLayout Container
	How to Set GridBagConstraints in the Properties Window
	How to Use the GridBag Customizer

	Using GridLayout
	Previewing a User Interface

	How to Create Accessible Forms
	Working with Event Handling
	How to Attach Event Handling Code to Menu Events
	How to Attach Event-Handling Code to a Component Event
	How to Quickly Create an Event Handler for a Component's Default Event

	How to Modify GUI Source Code
	Modifying GUI Form Code Outside of the IDE
	How to Modify Code Generation for a Property

	Working with the UI Debugger
	Working with UI Debugger Windows
	How to Start the UI Debugger
	Examining the Application Component Hierarchy
	How to Display Component Information in the Watches Window
	How to Inspect a UI Component in an Properties window
	How to Trace Events Generated by Components
	How to Show Event Listeners
	Remote Debugging GUI Applications
	How to Remote Debug GUI Applications
	How to start the JDeveloper IDE for Remote UI Debugging

	Automatic Discovery of Listeners

	14 Working with JavaBeans
	About Working with JavaBeans
	Using JavaBeans in JDeveloper
	How to Implement an Event-Handling Method
	What Happens When You Create an Event-Handling Method

	Understanding Standard Event Adapters
	How to Create an Event Set
	How to Make a Component Capable of Firing Events

	15 Getting Started with Developing Java EE Applications
	About Developing Java EE Applications
	Java EE and Oracle Application Developer Framework

	Using Web Page Tools
	Using Enterprise JavaBeans and Java Persistence Components
	Using Oracle TopLink
	Understanding Secure Applications
	Working With Applications That Use XML
	Working With Applications That Use Web Services

	16 Developing Applications Using Web Page Tools
	About Developing Applications Using Web Page Tools
	Using the Source Editor
	Source Editor Features
	Working in the Visual Editing Environment
	Primary Visual Editing Features
	Additional Editing Tools and Features
	Keystroke Commands
	How to Expand and Collapse Container Elements
	How to Change the Default Environment Settings
	How to Display Invisible Elements
	How to Execute JSP Tags
	How to Display JSP Tags by Name Only
	How to Change Keyboard Preferences
	How to Select an Element
	How to Select Multiple Elements
	How to Select a Range of Elements
	How to Select Text
	How to Select Insertion Points in the Visual Editor
	How to Select Insertion Points in the Structure Window
	How to Insert Elements from the Components Window
	How to Set and Modify Element Properties
	How to Set a Data Source for a Property
	How to Set Properties for Multiple Elements
	How to Cut Page Elements
	How to Delete Page Elements
	How to Copy Page Elements
	How to Move Page Elements
	How to Resize Page Elements
	How to Create and Edit a Data Table
	How to Work with Data Table Columns
	How to Work with Panel Grids
	How to Paste Markup Code
	How to View and Edit Web Page Head Content

	Using the Properties Window
	How to Edit Properties
	How to Write Custom Property Editors

	Using the Components Window
	Using the Components Window

	Using the Overview Editor for JSF Configuration Files
	How to Add, Delete, or Edit JSF Configuration Elements
	How to Work with JSF Configuration Child Elements

	Planning Your Page Flows With JSF Navigation Diagrams
	How to View Your Navigation Diagrams
	How to Add an Element to a JSF Navigation Diagram
	How to Add a JSF Navigation Case to a JSF Navigation Diagram
	How to Add a Note to a Navigation Diagram
	How to Attach Notes to Elements in a Navigation Diagram
	How to Set Layout Default Styles on a Navigation Diagram
	How to Refresh Your Navigation Diagram to Reflect Changes in the Configuration File.
	How to Use the Navigation Diagrammer to Manage JSF Pages
	Editing and Deleting Navigation Cases
	How to View Navigation Case Properties
	How to Publish a Diagram as a Graphic

	How to Use Code Insight For Faster Web Page Coding

	Developing Applications with JavaServer Faces
	Building Your JSF Application
	How to Build Your Application Framework
	How to Create Your JSF Pages and Related Business Services
	How to Choose a Business Services

	Building your JSF Business Component Framework
	Using the JSF Tag Libraries
	Using Standard JSF Component Tag Attributes
	How to Create Managed Beans
	Creating Managed Beans
	How to Create Managed Beans with the Overview Editor
	How to Add Methods to a Managed Bean
	How to Bind Components with EL Expressions
	Constructing an EL Expression
	How to Create Composite Components
	Using Automatic Component Binding
	Turning the Automatic Bind Option On and Off
	How to Set a Page to Auto Bind to Managed Beans
	How to Value Bind a Component to a Property
	How to Manually Bind Component Instances to Properties
	How to Bind an Existing Method with Auto Component Binding
	How to Bind a New Default Method with Auto Binding On
	How to Bind a New Default Method with Auto Binding Off
	Using Localized Resource Bundles in JSF
	How to Use Localized Resource Bundles in JSF
	How to Work with Facets
	How to Build JSF Views with Facelets
	Creating a Facelet
	How to Register a Standard Converter Using a Supplied Tag
	How to Register a Standard Converter That Does Not Have Tag
	How to Register a Standard Validator Using a Standard Tag
	How to Display a Message Next to the Component that Generated the Conversion or Validation Errors
	How to Register a Custom Converter or Validator in the JSF Application Configuration
	How to Edit a Custom Converter or Validator in a Configuration File
	How to Delete a Custom Converter or Validator in a Configuration File
	How to Register a Custom Converter on a Component Using a Converter Identifier
	How to Register a Custom Converter on a Component Using a Value Binding Expression
	How to Register a Custom Validator Instance on a Component
	How to Bind a Component to a New Validator Method
	Using the Standard Converter and Validator Tags and Syntax
	How to Display Error Messages
	How to Display All Error Messages Generated in a Page
	How to Replace the Standard Message Texts in JSF
	How to Add Information About a Form Field to Which a Message Refers
	How to Change the Appearance of Error Messages a JSF Page
	Configuring JSF Applications
	How to Use the Overview Editor to set the <application> Element
	How to Add a Bean to a JSF Configuration File
	How to Create a New JSF Configuration File
	How to Edit a JSF Configuration File

	Converting a Project to Facelets
	Things to Consider Before Converting
	Previewing your Conversion Status in the Log Windows
	How to Convert your Project to Facelets

	Running and Testing JSF Applications
	How to Run and Test Individual Packages
	How to Run and Test an Entire Project

	Developing Applications with HTML Pages
	Building Your HTML Pages
	How to Create an HTML Page
	Using the HTML Core Components
	How to Save JSP Files as HTML

	Working with HTML Text
	How to Add Text to an HTML Page
	How to Set Text Properties

	Working with HTML Images
	How to Insert an Image on a HTML File
	How to Delete an Image From an HTML File
	How to Resize an Image in an HTML File
	How to Use an Image as an HTML Background
	How to Move an Image in an HTML File By Dragging

	Working with HTML Tables
	How to Add Text to a Table Cell
	How to Remove Content from One or More Selected Cells
	How to Format Tables and Cells
	How to Set Table and Cell Properties
	How to Set Table and Cell Properties Using the Visual Editor Toolbar
	How to Resize a Table
	How to Change the Size of Rows and Columns
	How to Add Rows or Columns to a Table
	How to Remove Rows or Columns in a Table
	How to Merge Table Cells
	How to Split a Table Cell
	How to Change the Display Order in a Table Structure
	How to Change the Display Order of Rows Using the Structure Window
	How to Increase Row or Column Span in a Table
	How to Reduce Row or Column Span in a Table

	Working with HTML Forms
	How to Create an HTML Form
	How to Delete an HTML Form Element
	How to Insert an HTML Form Field or Button
	How to Change the Form Method from the Context Menu
	How to Set Form Processing Information Using the Properties window
	How to Delete a Form Field or Button

	Working with Cascading Style Sheets
	Selecting and Grouping CSS Elements
	Working with Grouped Elements
	How to Create a Simple Cascading Style Sheet
	How to Set or Modify CSS Selector Properties and Values
	How to Format Text with CSS Properties
	How to Edit a CSS File

	Working with Java Server Pages
	Building Your JSP Application
	JSP Core Components
	How to Create JSP Pages
	How to Register a Servlet Filter in a JSP Page

	Understanding Flow Control in JSPs
	How to Handle JSP Flow Control

	Debugging and Deploying JSPs
	How to Debug a JSP
	How to Create a Web Deployment Descriptor
	How to Edit Web Deployment Descriptor Properties
	How to Edit a Web Deployment Descriptor as an XML File

	Running a JSP
	How to Run a JSP
	Dynamically Modifying JSP Files While They are Running
	Running JSPs with ADF Business Components Application Modules
	Working with Timestamps on Source JSPs

	Understanding JSP Segments

	Developing Applications with Java Servlets
	Understanding Servlet Support in JDeveloper
	What You May Need to Know About Servlet Filters
	What You May Need to Know About Servlet Listeners
	How to Generate an HTTP Servlet

	Implementing Basic Methods for an HTTP Servlet
	How to Use the HTTPServletRequest Object
	How to Use the HTTPServletResponse Object

	How to Create a Servlet Filter
	How to Create a Servlet Listener
	Registering a Servlet Filter in a JSP Page
	How to Run a Servlet
	How to Debug a Servlet
	How to Deploy a Servlet

	Developing Applications with Script Languages
	How to Work with JavaScript Code Insight
	How to Use Breadcrumb Support
	Working with Script Languages
	How to Create a Script
	How to Add Script Language Elements to an HTML or JSP Page
	How to Set Syntax Highlighting
	How to Associate JavaScript File Extensions
	How to Create a JSON File

	How to Use Structure Pane Support
	Refactoring JavaScript Code
	Finding Usages of Code Elements
	Renaming a JavaScript Code Element
	Deleting a JavaScript Code Element
	How to Preview a Refactoring Operation
	How to Reformat JavaScript Code
	How to Change Code Formatting Preferences
	How to Use Code Folding
	How to Refactor and Move a File

	Working with JSP and Facelet Tag Libraries
	Using Tag Libraries with Your Web Pages
	How To Add, Delete or Edit Project Level Tag Libraries
	How to Browse to a JSP Tag Library Descriptor (TLD) File
	How to Browse Pages or Individual JSP Tags

	How to Work with Custom Tag Libraries
	How to Create a Custom JSP or Facelets Tag Library
	How to Add your Custom Tag Library to the Components Window
	How to Register a JSP or Facelet Tag Library
	How to Edit a TLD File in the XML Source Editor
	How to Add a Scripting Variable to a Tag
	How to Deploy Your Custom JSP/Facelets Tag Library as a JAR File

	17 Developing with EJB and JPA Components
	About Developing with EJB and JPA Components
	Support For EJB Versions and Features
	Building EJB 3.x Applications and Development Process
	EJB 3.x Application Development Process
	Creating Entities
	Creating Session Beans and Facades
	Deploying EJBs
	Testing EJBs Remotely
	Registering Business Services with Oracle ADF Data Controls

	How to Work with an EJB Business Services Layer
	Using Java EE Design Patterns in Oracle JDeveloper
	Using Java EE Contexts and Dependency Injection (CDI)
	beans.xml File
	Interceptor Binding Type
	Qualifier Type
	Scope Type
	Stereotype

	Building a Persistence Tier
	About JPA Entities and the Java Persistence API
	JPA Entities are POJOs
	Metadata Annotations for O-R Mapping
	Inheritance and Polymorphism Support
	Simplified EntityManager API for CRUD Operations
	Query Enhancements

	How to Create JPA Entities
	Using the Serializable Interface

	About SDO For EJB/JPA
	Using an EJB/POJO-based ADF-BC Service for Deployment to the SOA Platform
	How to Create an SDO Service Interface for JPA Entities
	How to Configure an EJB/POJO-based ADF-BC Service for Deployment to the SOA Platform
	File Types Created to Support Your SDO Architecture

	How to Generate Database Tables from JPA Entities
	Annotations for EJB/JPA
	EJB 3.x
	JPA 2.0

	How to Annotate Java Classes
	Representing Relationships Between Entities
	Java Persistence Query Language
	JPA Object-Relational Mappings
	How to Use Java Service Facades
	How to Define a Primary Key for an Entity

	Implementing Business Processes in Session Beans
	Using Session Facades
	How to Create a Session Bean
	How to Create Session Beans in EJB Modules
	How to Create Message-Drive Beans in EJB Modules
	How to Add, Delete, and Edit EJB Methods
	How to Add a Field to an EJB
	How to Remove a Field From an EJB
	Customizing Business Logic with EJB Environment Entries
	Exposing Data to Clients
	How to Identify Resource References
	How to Specify a Primary Key for ADF Binding
	How to Use ADF Data Controls for EJBs

	Modeling EJB/JPA Components on a Diagram
	Deploying EJBs as Part of an Web Application
	Deploying EJB Modules and JPA Persistence Units
	Deploying JPA Entity Beans
	About EJB Modules
	About JPA Persistence Units
	How to Create a JPA Persistence Unit
	How to Remove EJBs in a Module
	How to Import EJBs into JDeveloper

	Running and Testing EJB/JPA Components
	How to Test EJB/JPA Components Using the Integrated Server
	How to Test EJB/JPA Components Using a Remote Server
	How to Test EJB Unit with JUnit

	18 Developing Persistence in Applications Using Oracle TopLink
	About Developing Persistence in Applications Using TopLink
	Developing TopLink JPA Projects
	How to Specify the JPA Version
	How to Create Entities
	How to Create and Configure a JPA Persistence Descriptor (persistence.xml)
	How to Create Persistence Units
	How to Configure Persistence Units
	About Using JPA Mappings
	Using Metadata Annotations
	Using XML
	Defaulting Properties
	Configuring an Entity
	Declaring Basic Property Mappings
	Mapping Relationships
	Mapping Inheritance
	Mapping Embedded Objects

	How to Use JPA Mappings
	How to Create JPA Mapping Descriptors
	How to Configure Persistence Unit Defaults
	How to Set Access Type Defaults and Overrides

	How to Generate Unique IDs for Primary Keys
	How to Configure Queries
	How to Specify Derived Identifiers in Mappings
	Using TopLink Extensions

	Developing Native TopLink Mappings
	Designing Native TopLink Applications
	Using Native TopLink in Application Design
	Creating Native TopLink Metadata
	Creating Project Metadata
	Creating Session Metadata
	Using Native TopLink Descriptors
	Relational Descriptors
	EIS Descriptors
	XML Descriptors

	Using Native TopLink Mappings
	Relational Mapping Types
	EIS Mapping Types
	XML Mapping Types

	Understanding the TopLink Editor
	Managing TopLink Maps
	Managing TopLink Sessions
	Managing Persistence Configurations
	The TopLink Structure View Toolbar
	TopLink Project Elements in the Applications Window
	TopLink Editor Tabs in the Editor Window
	TopLink Project Elements in the Structure View
	Using the TopLink Structure View Toolbar
	TopLink Mapping Status Report in Message Log
	Configuring TopLink Preferences
	How to Create a Native TopLink Mapping Project
	How to Use Converter Mappings
	How to Automap TopLink Descriptors
	Data Source Login Information

	Developing Native TopLink Relational Projects
	How to Create Relational Projects and Object Maps
	How to Create Relational Descriptors
	How to Configure Relational Descriptors

	Developing Native TopLink XML Projects
	How to Create XML Projects and Object Maps
	How to Create XML Descriptors
	How to Add XML Schemas

	Developing Native TopLink EIS Projects
	How to Create EIS Projects and Object Maps
	How to Create EIS Descriptors
	Using EIS Data Sources

	Developing Native TopLink Sessions
	How to Create a New Native TopLink Sessions Configuration File
	How to Create Native TopLink Sessions
	Acquiring Sessions at Runtime
	How to Create Session Brokers
	How to Create Data Source Logins
	How to Create Connection Pools

	Developing Native TopLink Applications
	Using TopLink the Cache
	Object Identity
	Querying and the Cache
	Handling Stale Data
	Explicit Query Refreshes
	Cache Invalidation
	Cache Coordination
	Cache Isolation
	Cache Locking and Transaction Isolation

	How to Configure the TopLink Cache
	Using Queries
	TopLink Query Languages
	TopLink Query Types

	How to Create Queries
	Using Basic Query API
	Using Advanced Query API
	Redirect Queries
	Historical Queries
	Fetch Groups
	Read-Only Queries
	Interfaces
	Inheritance Hierarchy
	Additional Join Expressions
	EJB Finders
	Cursor and Stream Query Results

	How to Create TopLink Expressions
	Understanding TopLink Transactions
	TopLink Transactions and the Unit of Work

	19 Developing Secure Applications
	About Developing Secure Applications
	Understanding Java EE Applications and Oracle Platform Security Services for Java (OPSS)
	Understanding Fusion Web Applications and ADF Security
	Understanding Container-managed Security
	Additional Functionality

	Securing Applications in Phases
	About Web Application Security and JDeveloper Support
	Handling User Authentication in Web Applications
	About Authentication Type Choices
	BASIC authentication
	FORM authentication
	CLIENT-CERT authentication

	Encrypting Passwords for a Target Domain
	weblogic.security.Encrypt

	How to Create an Identity Store
	How to Add Test Users to the Identity Store
	Managing Enterprise Roles in the Identity Store
	How to Add Roles to the Identity Store
	How to Manage Users Assigned to User Roles
	How to View Assigned Enterprise Roles

	How to Create a Credential Store
	How to Add a Login Module
	How to Authenticate Through a Custom Login Module
	How to Add a Key Store
	How to Enable an Anonymous Provider
	How to Add Credentials to Users in the Identity Store
	How to Choose the Authentication Type for the Web Application

	Securing Application Resources in Web Applications
	How to Secure Application Resources Using the jazn-data.xml Overview Editor
	How to Secure ADF Resources Using ADF Security in Fusion Web Applications

	Configuring an Application-Level Policy Store
	How to Add Application Roles to an Application Policy Store
	How to Add Member Users or Enterprise Roles to an Application Role
	How to Create Custom Resource Types
	How to Add Resource Grants to the Application Policy Store
	How to Add Entitlement Grants to the Application Policy Store
	How to Create a Custom JAAS Permission Class
	How to Add Grants to the System Policy Store

	Migrating the Policy Stores
	How to Migrate the Policy Stores
	Migrating Application Policies
	Migrating Credentials
	Migrating Users and Groups

	Securing Development with JDBC

	20 Developing Applications Using XML
	About Developing Applications Using XML
	Using the XML File Editors
	Understanding XML Editing Features
	Understanding the XML Editor Toolbar
	How to Set Editing Options for the XML Editor

	Working with XML Schemas
	Working with Attributes in the XSD Visual Editor
	What Happens When You Create an XML Schema in the XSD Visual Editor
	Selecting XSD Components
	Choice Component
	All Component
	Sequence Component
	Cardinality and Ordinality
	ComplexType Component
	Attribute Group Component
	Union Component
	List Component
	Working with XML Schema Substitution Groups

	How to Import and Register XML Schemas
	How to Generate Java Classes from XML Schemas with JAXB
	Working with XSD Documents and Components
	How to Display a Schema in Both Editors
	How to Create an Image of the XSD Visual Editor Design Tab
	How to Navigate with Grab Scroll in the XSD Visual Editor
	How to Expand and Collapse the XSD Component Display
	How to Zoom In and Out in the XSD Visual Editor
	How to Select XSD Components
	Escalating a Single Component
	Selecting Multiple Components

	What Happens When You Select a Component in the XSD Visual Editor
	How to Select Target Positions for XSD Components
	How to Insert XSD Components
	Inserting XSD Components Using the Components Window
	Inserting XSD Components Using the Context Menu

	How to Cut XSD Components
	How to Copy XSD Components
	How to Delete XSD Components
	How to Paste XSD Elements
	How to Move XSD Components
	Moving Components by Dragging
	Moving Components by Cutting and Pasting

	How to Set and Modify XSD Component Properties
	How to Set Properties for Multiple XSD Components

	Localizing with XML
	What You May Need to Know About XLIFF Files

	Developing Databound XML Pages with XSQL Servlet
	Supporting XSQL Servlet Clients
	How Can You Use XSQL Servlet?
	How to Create an XSQL File
	How to Edit XML Files with XSQL Tags
	How to Check the Syntax in XSQL Files
	How to Create XSQL Servlet Clients that Access the Database
	Creating XSQL Servlet Clients for Business Components
	What You May Need to Know About XSQL Error JBO-27122
	How to Create a Custom Action Handler for XSQL
	How to Deploy XSQL Servlets
	How to View Output from Running XSQL Files as Raw XML Data
	How to Create an XSL Style Sheet for XSQL Files
	How to Format XML Data with a Style Sheet
	How to Modify the XSQL Configuration File
	Using XML Metadata Properties in XSQL Files
	Using XML_ELEMENT
	Using XML_ROW_ELEMENT
	Using XML_CDATA
	Using XML_EXPLICIT_NULL

	21 Developing and Securing Web Services
	About Developing and Securing Web Services
	Developing Java EE Web Services Using JDeveloper
	Securing Java EE Web Services Using JDeveloper
	Discovering and Using Web Services

	Using JDeveloper to Create and Use Web Services
	How to Use Proxy Settings and JDeveloper
	Using the Default Browser Proxy Settings
	Configuring Custom Proxy Settings
	Disabling the Use of a Proxy Server When Accessing the Internet

	How to Set the Context Root for Web Services
	How to Configure Connections to Use with Web Services
	How to Work with Type Mappings
	How to Choose Your Deployment Platform
	How to Work with Web Services Code Insight

	Working with Web Services in a UDDI Registry
	How to Define UDDI Registry Connections
	Creating UDDI Registry Connections
	Editing the UDDI Registry Connections
	Changing the View of UDDI Registry Connections
	Refreshing the UDDI Registry Connections
	Deleting the UDDI Registry Connections

	What You May Need to Know About Choosing the View for your UDDI Registry Connection
	Choosing the Business View
	Choosing Category View

	How to Search for Web Services in a UDDI Registry
	How to Generate Proxies to Use Web Services Located in a UDDI Registry
	How to Display Reports of Web Services Located in a UDDI Registry
	How to Publish Web Services to a UDDI Registry

	Creating JAX-WS Web Services and Clients
	How to Create JAX-WS Web Services (Bottom-up)
	Creating Java Web Services
	Using Web Service Annotations
	Using the Properties Window
	Creating TopLink Database Web Service Providers
	Regenerating Web Services from Source
	Using Handlers
	Handling Overloaded Methods

	How to Create JAX-WS Web Services from WSDL (Top-down)
	How to Create JAX-WS Web Service Clients
	Creating the Client and Proxy Classes
	Creating Client and Proxy Classes to Access a Web Service
	Creating Client and Proxy Classes to Access a Web Service Defined in JDeveloper

	Developing a JAX-WS Web Service Client Application
	Developing a Standalone Client Application
	Developing a Java Standard Edition (SE) Client Application
	Developing a Java EE Component Client Application Deployed to

	Referencing Web Services Using the @WebServiceRef Annotation
	Enabling Web Service Atomic Transactions in a Web Service Client
	Regenerating Web Service Client and Proxy Classes
	Editing the Web Service Clients
	Deleting the Web Service Clients

	How to Use Web Service Atomic Transactions
	Enabling Web Service Atomic Transactions in a Java Class
	Enabling Web Service Atomic Transactions in the Properties Window
	Enabling Web Service Atomic Transactions in a Web Service Client's Injectable Target

	How to Use SOAP Over JMS Transport
	Developing Web Services Using JMS Transport
	Enabling JMS Transport in the Properties Window
	Developing Web Service Clients Using JMS Transport

	How to Use Fast Infoset for Optimizing XML Transmission
	Configuring Fast Infoset on Web Services
	Configuring Fast Infoset in a Java Class
	Configuring Fast Infoset in the Web Service Wizard
	Configure Fast Infoset in the Properties Window

	Configuring Fast Infoset on Web Service Clients
	Disabling Fast Infoset on Web Services and Clients

	How to Use MTOM for Optimizing Binary Transmission
	Enabling MTOM on Web Services
	Enabling MTOM in a Java Class
	Enabling MTOM by Attaching a WebLogic Web Service Policy
	Enabling MTOM in the Web Service Wizard
	Enabling MTOM in the Properties Window

	Enabling MTOM on Web Service Clients
	Configuring MTOM on Web Services and Clients

	How to Manage WSDL Files
	Creating WSDL Documents
	Displaying the WSDL for a Web Service
	Adding a WSDL to a Web Service Project
	Saving a WSDL to Your Local Directory
	Viewing the WSDL Used to Create the Web Service Client
	Refreshing the Local Copy of the WSDL and Regenerating the Web Service Client Proxy and Classes
	Updating the Web Service WSDL Used by the Client at Run Time
	Using an XML Catalog File
	Using Web Service Injection (@WebServiceRef) and a Deployment Plan

	How to Edit JAX-WS Web Services
	How to Delete JAX-WS Web Services

	Creating RESTful Web Services and Clients
	How to Create RESTful Web Services
	Example of a Simple RESTful Web Service
	Creating a RESTful Web Service
	Defining the Relative URI of the Root Resource and Subresources
	Defining the @Path Annotation in the RESTful Service Wizard
	Defining the @Path Annotation in the Java Class
	Defining the @Path Annotation in the Properties Window
	What Happens at Runtime: How the Base URI is Constructed

	Mapping Incoming HTTP Requests to Java Methods
	Mapping HTTP Requests to Java Methods in the RESTful Service Wizard
	Mapping HTTP Requests to Java Methods in the Java Class
	Mapping HTTP Requests to Java Methods in the Properties Window

	Customizing Media Types for the Request and Response Messages
	Customizing Media Types in the RESTful Service Wizard
	Customizing Media Types in the Java Class
	Customizing Media Types in the Properties Window

	Extracting Information from the Request Message
	Extracting Information from the Request Message in the RESTful Service Wizard
	Extracting Information from the Request Message in the Java Class
	Enabling the Encoding Parameter Values in the Properties Window

	Mapping HTTP Request and Response Entity Bodies Using Entity Providers
	Accessing the RESTful Web Service WADL

	How to Create RESTful Web Service Clients
	Example of a Simple RESTful Client
	Creating RESTful Web Service Clients

	Creating WebSockets
	How to Configure WebSockets in the Properties Window
	How to Configure WebSockets Using Annotations
	How to Test the WebSocket Connection

	Attaching Policies
	What You May Need to Know About OWSM Policies
	What You May Need to Know About Oracle WebLogic Web Service Policies
	How to Attach Policies to JAX-WS Web Service and Clients
	Attaching Policies to JAX-WS Web Services
	Attaching Policies in the Web Service Wizard
	Attaching Policies Using Annotations
	Attaching Policies in the Properties Window

	Attaching OWSM Policies to JAX-WS Web Service Clients
	Attaching OWSM Policies in the Web Service Client and Proxy Wizard
	Attaching OWSM Policies Using Annotations
	Attaching OWSM Policies Using Feature Classes

	Overriding OWSM Policy Configuration Properties for the JAX-WS Web Service Clients
	Overriding OWSM Policy Configuration Properties in the Web Service Client and Proxy Wizard
	Overriding OWSM Policy Configuration Properties Using Annotations
	Overriding OWSM Policy Configuration Properties Using RequestContext

	Invoking JAX-WS Web Services Secured Using WebLogic Web Service Policies
	Editing or Removing Policies from JAX-WS Web Services
	Editing or Removing Policies Using the Web Service Editor
	Editing or Removing Policies Using Annotations in the Java Class
	Editing or Removing Policies Using the Properties Window

	How to Attach Policies to RESTful Web Services and Clients
	Attaching Policies to RESTful Web Services
	Attaching Policies to RESTful Web Service Clients
	Attaching OWSM Policies in the RESTful Client and Proxy Wizard
	Attaching OWSM Policies in the Client Policy Configuration Dialog
	Attaching OWSM Policies to RESTful Clients Programmatically

	Overriding OWSM Policy Configuration Properties for the RESTful Web Service Clients
	Overriding OWSM Policy Configuration Properties in the Web Service Client and Proxy Wizard
	Overriding OWSM Policy Configuration Properties for RESTful Clients Using Feature Classes

	Editing or Removing Policies from RESTful Web Services and Clients
	Editing or Removing Policies from RESTful Web Services
	Editing or Removing Policies from RESTful Web Service Clients

	How to Use a Different OWSM Policy Store
	How to Use Custom Web Service Policies
	Using Custom OWSM Policies
	Using Custom Oracle WebLogic Web Service Policies

	Deploying Web Services
	How to Deploy Web Services to Integrated WebLogic Server
	How to Deploy Web Services to a Standalone Application Server
	How to Undeploy Web Services

	Testing and Debugging Web Services
	How to Test Web Services in a Browser
	How to Debug Web Services
	Debugging Web Services Locally
	Debugging Web Services Remotely
	Using the Data Window for Debugging Web Services

	How to Test Web Services with JUnit
	How to View Web Service Message Logs for an Application Server

	Monitoring and Analyzing Web Services
	How to Download and Register a WS-I Analyzer
	How to Analyze Web Services in the Applications Window
	How to Create and Analyze Web Service Logs
	What You May Need to Know About Performing an Analysis of a Web Service
	When the Message section of the wsi-report.html is missing all inputs
	When the Discovery section of the wsi-report.html is missing all inputs

	How to Analyze Web Services Running in the Integrated Server
	Changing the Endpoint Address
	Changing the Endpoint Address Without Modifying the WSDL

	How to Examine Web Services using the HTTP Analyzer

	22 Deploying Applications
	About Deploying Applications
	Developing Applications with the Integrated Application Server
	Developing Applications to Deploy to Standalone Application Servers
	Developing Applications to Deploy to Oracle Java Cloud Service
	Understanding the Archive Formats
	Understanding Deployment Profiles
	Understanding Deployment Descriptors
	Configuring Deployment Using Deployment Plans
	Deploying from the Java Edition

	Running Java EE Applications in the Integrated Application Server
	Understanding the Integrated Application Server Log Window
	Rules Governing Deployment to the Integrated Application Server
	Working with Integrated Application Servers
	How to Create a New Integrated Application Server Connection
	How to Run and Debug with an Integrated Application Server
	Working with the Default Domain
	One-Click Running of Applications in the Integrated Application Server
	How to Start the Integrated Application Server
	How to Cancel a Running Deployment
	How to Terminate an Integrated Application Server
	How to Configure Startup and Shutdown Behavior for Integrated Application Servers
	How to Log In to the Integrated WebLogic Server Administration Console

	Connecting and Deploying Java EE Applications to Application Servers
	How to Create a Connection to the Target Application Server
	Connecting to Specific Application Server Types
	Connecting to Oracle WebLogic Server
	Connecting to GlassFish
	Connecting to JBoss
	Connecting to Tomcat
	Connecting to WebSphere Server
	Connecting to Oracle Java Cloud Service

	How to Create and Edit Deployment Profiles
	About Deployment Profiles
	Creating Deployment Profiles
	Viewing and Changing Deployment Profile Properties
	Configuring Deployment Profiles

	How to Create and Edit Deployment Dependencies
	About Library Dependencies
	Resolved and Unresolved Libraries
	Manifest Entries for Libraries

	How to Create and Edit Deployment Descriptors
	Creating Deployment Descriptors
	How to Create a Web Service Policy Reference
	Viewing or Modifying Deployment Descriptor Properties

	How to Configure Global Deployment Preferences
	How to Configure Applications for Deployment
	How to Configure an Application for Deployment to Oracle WebLogic Server
	How to Configure a Client Application for Deployment
	How to Configure an Applet for Deployment
	Setting Up JDBC Data Sources on Oracle WebLogic Server
	Preparing an Application for Deployment to a Third Party Server

	How to Use Deployment Plans
	How to Create and Use Deployment Plans
	How to Generate Deployment Plans

	Deploying Java Applications
	Deploying to a Java JAR
	Deploying to an OSGi Bundle

	Deploying Java EE Applications
	How to Deploy to the Application Server from JDeveloper
	How to Deploy a RAR File
	How to Add a Resource Adapter Archive (RAR) to the EAR
	How to Deploy a Metadata Archive (MAR) File
	How to Deploy an Applet as a WAR File
	How to Deploy a Shared Library Archive
	How to Deploy to a Managed Server That Is Down

	Post-Deployment Configuration
	Testing the Application and Verifying Deployment
	Deploying from the Command Line
	ojdeploy
	Using ojdeploy from Mac OS X Platforms
	Using ojdeploy
	How to Override Without Editing a Build Script
	How to Deploy Multiple Profiles from the Command Line
	How to Use Wildcard Samples
	How to Create a Log File for Batch Deployment
	Timeouts

	How to Deploy from the Command Line Using Ant
	How to Generate an Ant Build Script
	About The build.xml File
	About The build.properties File
	ojdeploy for Extension Developers

	Using ojserver

	Deploying Using Java Web Start
	Purpose of the Java Web Start Technology
	Files Generated by the Create Java Web Start-Enabled Wizard
	Role of the Web Server in JDeveloper

	How to Create a Java Web Start File
	How to Create a Java Client Web Archive for Java Web Start
	How to Create a Java Web Start JNLP Definition for Java Clients
	How to Deploy a Java Client Web Application Archive for Java Web Start

	Deploying Using Weblogic SCA Spring
	About WebLogic SCA
	About Spring
	Installing the Weblogic SCA Spring Extension
	Using Oracle WebLogic SCA
	How to Create WebLogic SCA Projects
	How to Edit Oracle WebLogic SCA Definition Files
	How to Deploy WebLogic SCA Applications to Integrated WebLogic Server
	How to Deploy WebLogic SCA Applications to Oracle WebLogic Server

	Using Spring
	How to Create Spring Bean Applications
	What Happens When You Create a Spring Bean Configuration File

	Troubleshooting Deployment
	Common Deployment Issues
	[Deployer: 149164] The domain edit lock is owned by another session in exclusive mode - hence this deployment operation cannot proceed

	How to Troubleshoot Deployment to Integrated Application Servers
	Stopping Integrated Application Server
	Running Out of Memory
	Reinstalling JDeveloper in a Different Location

	How to Troubleshoot Deployment to Oracle WebLogic Server
	ORA-01005: null password given; logon denied
	ORA-01017: invalid username/password; logon denied
	[Oracle JDBC Driver] Kerberos Authentication was requested, but is not supported by this Oracle Server
	Application Does Not Work After Creating a Global Data Source from the Oracle WebLogic Server Administration Console
	Redeploying an Application to a Server that is Down
	Attempting to Deploy to a Server that No Longer Exists
	Deploying to a remove server fails with HTTP Error Code 502
	No Credential Mapper Entry Found

	How to Troubleshoot Deployment to IBM WebSphere
	Deployment Fails When EAR Contains Spaces
	Deployment Fails When the Path to the WebSphere Server Contains Spaces
	Application Displays Administrative Console User Name

	23 Getting Started with Working with Databases
	About Working with Databases
	Connecting to and Working with Databases
	Designing Databases

	Getting Started With Oracle Database Express Edition
	How to Manage Database Preferences and Properties

	24 Using the Database Tools
	Using the Databases Window
	Using the Database Cart
	Using the Structure Window
	Using the Database Reports Window
	Using the Find Database Object Window
	Using the SQL Worksheet
	Using Execution Plan
	How to Recall Statements from the SQL Worksheet History

	Using the SQL History Window
	Using the Snippets Window
	Using the Database Object Viewer
	Database Object Viewer Tabs Toolbars

	Using the PL/SQL Source Editor
	Using Test Query
	Synchronizing Package Specifications and Bodies

	Using SQL*Plus
	DBMS Output Window
	OWA Output Window

	25 Connecting to and Working with Databases
	About Connecting to and with Working with Databases
	Configuring Database Connections
	Connection Scope
	What Happens When You Create a Database Connection
	About Connection Properties Deployment
	How to Create Database Connections
	Defining Additional JDBC Parameters
	Using Different Drivers
	Connecting to Oracle Database Using OCI8
	How to Edit Database Connections
	How to Export and import Database Connections
	Exporting Database Connections
	Importing Database Connections

	How to Open and Close Database Connections
	How to Delete Database Connections
	How to Register a New Third-Party JDBC Driver
	How to Create User Libraries for Non-Oracle Databases
	Reference: Connection Requirements for Oracle's Type 2 JDBC Drivers (OCI)

	Browsing and Searching Databases
	Browsing Databases
	Browsing Online Databases
	Browsing Offline Database Objects
	How to View Online and Offline Database Objects

	How to Browse online Database Objects
	How to Browse Offline Databases and Schemas
	How to Use Database Filters
	How to Enable and Disable Database Filters
	How to Open a Database Table in the Database Object Viewer
	How to Edit Table Data
	How to Find Objects in the Database

	Connecting to Databases
	What Happens When You Create a Connection to a Database
	How to Create Connections to Oracle Databases
	How to Create a Connection to Oracle Database
	How to Create a Connection to MySQL
	How to Create a Connection to Oracle TimesTen In-Memory Database

	How to Create Connections to Non-Oracle Databases
	How to Create a Connection to Java DB/Apache Derby
	How to Create a Connection to IBM DB2 Universal Database
	How to Create a Connection to IBM Informix Dynamic Server
	How to Create a Connection to Microsoft SQL Server
	How to Create a Connection to SQLite
	How to Create a Connection to Sybase ASE

	Connecting and Deploying to Oracle Database Cloud Service
	Types of JDeveloper Connection to Oracle Database Cloud Service
	Creating an Oracle Database Cloud Service Connection
	Editing an Oracle Database Cloud Service Connection
	Connecting and Disconnecting from an Oracle Database Cloud Service Connection

	Using the Database Cart
	Setting the Default Directories Used By the Database Cart
	Configuring Database Cart Tools
	Deploying to Oracle Database Cloud Service
	Deploying to a Database Deployment File
	Saving a Database Cart
	Opening a Saved Database Cart
	Examining Deployments in an Oracle Database Cloud Service Connection

	Importing and Exporting Data
	Importing Data Using SQL*Loader
	Importing Data Into an External Table
	How to Import Data into Existing Tables
	How to Import Data to New Tables
	How to Import Data Using SQL*Loader
	How to Import Data Using External Tables
	Exporting Data from Databases
	How to Export Data to Files

	Copying, Comparing, and Exporting Databases
	How to Copy Databases
	How to Compare Database Schemas
	How to Export Databases

	Working with Oracle and Non-Oracle Databases
	Working with Database Reports
	Using Database Reports
	How to Run Database Reports
	How to View the SQL for a Report
	How to Create User-Defined Database Reports
	How to Edit User-Defined Database Reports
	How to Create Reports Folders
	How to Export User-Defined Reports
	How to Import User-Defined Reports

	Reference: Pre-Defined Database Reports

	Troubleshooting Database Connections
	Deploying to a Database that Uses an Incompatible JDK Version

	26 Designing Databases Within Oracle JDeveloper
	About Designing Databases Within Oracle JDeveloper
	Creating, Editing, and Dropping Database Objects
	Working with Offline Database Definitions
	Offline Databases
	Configuring Offline Database Emulation
	How to Create Offline Databases
	Offline Schemas
	How to Create Offline Schemas
	How to Create Offline Database Objects
	How Reverse Engineer Database Definitions Based on Database Objects
	Offline Tables and Foreign Keys
	How to Refresh Offline Database Objects
	How to Create Objects from Templates
	Working with User Property Libraries
	How to Create and Edit User Property Libraries
	How to Use User Property Libraries

	How to Generate Offline Database Objects to the Database
	Reconciliation issues
	How to Generate Database Definitions to a File

	Renaming Offline Database Objects
	Using Offline Database Reports
	Offline Database Reports
	How to Use Pre-built Reports
	How to Define Report Definitions
	How to Use Boilerplate Text with HTML Reports
	How to Edit User-Defined Reports

	Transforming from a UML Model
	Working with Offline Database Objects in Source Control Systems

	Working with Database Objects
	Using Database Reports
	Validating Date and Time Values

	Creating Scripts from Offline and Database Objects
	How to Create SQL Scripts
	How to Create OMB Scripts from Tables
	How to Create SXML Scripts

	27 Using Java in the Database
	About Using Java in the Database
	Choosing SQLJ or JDBC
	Using SQLJ
	Using Oracle JDBC Drivers
	SQLJ versus JDBC
	Embedding SQL in Java Programs with SQLJ
	How to Create SQL Files
	How to Create SQLJ Classes
	How to Compile SQLJ Classes
	How to Use Named SQLJ Connection Contexts
	How to Declare a SQLJ Connection Context Class
	How to Create a Connection Context Object
	How to Debug SQLJ Classes
	How to Set SQLJ Translator Options
	How to Use SQLJ Connection Options

	Embedding SQL in Java Programs with JDBC
	How to Choose a JDBC Driver
	How to Modify a Project to Use a Non-Default JDBC Driver
	How to Code a JDBC Connection

	Accessing Oracle Objects and PL/SQL Packages using Java
	How to Use JPublisher
	JPublisher Output
	Properties Files
	How to Enhance JPublisher-Generated Classes
	How to Extend JPublisher-Generated Classes
	JPublisher Options

	Using Java Stored Procedures
	How to Debug Java Stored Procedures
	How to Remove Java Stored Procedures

	28 Running and Debugging PL/SQL and Java Stored Procedures
	About Running and Debugging PL/SQL and Java Stored Procedures
	Running and Debugging Functions, Procedures, and Packages
	Debugging PL/SQL Programs and Java Stored Procedures
	Debugging PL/SQL Objects
	PL/SQL objects you can debug with JDeveloper
	What You May Need to Know
	Appearance of debug information in supported Oracle Database

	How to Specify the Database Debugger Port
	Debugging PL/SQL and Java Stored Procedures Prerequisites
	Prerequisites for Debugging PL/SQL and Java Stored Procedures
	Prerequisites for Debugging Java Stored Procedures

	How to Locally Debug PL/SQL Programs
	How to Remotely Debug PL/SQL Programs
	Using Acceptable Legal PL/SQL Expressions in the Debugger

