
[image: Oracle Corporation]

Oracle® Fusion Middleware

Administering Oracle User Messaging Service

12c (12.2.1.2.0)

E79115-01

October 2016

Documentation for administrators that describes how to administer Oracle User Messaging Service (Oracle UMS). This includes how to configure and deploy user messaging drivers and other components, how to enable security in Oracle User Messaging Service, and how to monitor Oracle User Messaging Service using Oracle Enterprise Manager Fusion Middleware Control.

Oracle Fusion Middleware Administering Oracle User Messaging Service, 12c (12.2.1.2.0)

E79115-01

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Megha Sharma

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

The information contained in this document is for informational sharing purposes only and should be considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and Oracle and with which you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in Oracle User Messaging Service

	New and Changed Features for Release 12c (12.2.1)

1 Introduction to Oracle User Messaging Service

	1.1 Overview
	1.1.1 Components
	1.1.2 Architecture

	1.2 Introduction to Oracle User Messaging Service Configuration
	1.3 Deprecated Features

2 Getting Started with Oracle User Messaging Service

	2.1 Installing User Messaging Service
	2.2 Upgrading User Messaging Service
	2.3 Scalability and High Availability
	2.4 Moving from a Test to a Production Environment

3 Oracle User Messaging Service Drivers

	3.1 Email Driver
	3.1.1 Scalability notes
	3.1.2 High Availability notes
	3.1.3 Compatibility notes
	3.1.4 UMS API Programmer notes

	3.2 SMS (SMPP) Driver
	3.2.1 Scalability notes
	3.2.2 High Availability notes
	3.2.3 Compatibility notes
	3.2.4 UMS API Programmer notes

	3.3 XMPP Driver
	3.3.1 Scalability notes
	3.3.2 High Availability notes
	3.3.3 Compatibility notes
	3.3.4 UMS API Programmer notes

	3.4 Extension Driver
	3.4.1 Scalability notes
	3.4.2 High Availability notes
	3.4.3 Compatibility notes
	3.4.4 UMS API Programmer notes

	3.5 Twitter Driver
	3.5.1 Scalability notes
	3.5.2 High Availability notes
	3.5.3 Compatibility notes
	3.5.4 UMS API Programmer notes

	3.6 APNS Driver
	3.6.1 Scalability notes
	3.6.2 High Availability notes
	3.6.3 Compatibility notes
	3.6.4 UMS API Programmer notes
	3.6.4.1 Send Push Notification
	3.6.4.2 Send Push Notification With Additional Data
	3.6.4.3 Send Push Notification With Additional Custom Data
	3.6.4.4 Send Push Notification With Raw JSON data
	3.6.4.5 Send Push Notification With Raw JSON data, MDM payload
	3.6.4.6 Receive unreachable device tokens
	3.6.4.7 Send Push Notification With Unicode Characters

4 Configuring Oracle User Messaging Service

	4.1 Accessing User Messaging Service Configuration Pages
	4.2 Configuring User Messaging Server
	4.3 Configuring User Messaging Service Drivers
	4.3.1 Configuring a Driver
	4.3.1.1 Introduction to Driver Properties
	4.3.1.2 Securing Passwords
	4.3.1.3 Configuring the Messaging Extension Driver
	4.3.1.4 Configuring the Email Driver
	4.3.1.5 Configuring the SMPP Driver
	4.3.1.6 Configuring the XMPP Driver
	4.3.1.7 Configuring the Twitter Driver
	4.3.1.8 Configuring the APNS Driver

	4.4 Configuring User Messaging Service Access to the LDAP User Profile
	4.5 Using Oracle User Messaging Service for Group Messaging
	4.6 Configuring Automatic Message Resend
	4.7 Securing the Oracle User Messaging Service
	4.7.1 Web Service Security on Notification
	4.7.2 Enabling UMS Web Service Security
	4.7.3 Enabling Client Security
	4.7.4 Keystore Configuration
	4.7.5 Client Aliases
	4.7.6 Securing JMS Resources

5 Monitoring Oracle User Messaging Service

	5.1 Monitoring Oracle User Messaging Service
	5.1.1 Using Message Status
	5.1.2 Deregistering Messaging Client Applications

	5.2 Viewing Log Files
	5.2.1 Configuring Logging

	5.3 Viewing Metrics and Statistics

6 Managing Oracle User Messaging Service

	6.1 Deploying Drivers
	6.1.1 Deploying Drivers Using the Fusion Middleware Configuration Wizard

	6.2 Using UMS Schema Purge Script
	6.2.1 Purging UMS DB Schema Records

7 Troubleshooting Oracle User Messaging Service

A Upgrading User Messaging Service from 11g to 12c

B Configuring User Messaging Service with AQ JMS

Preface

This guide describes how to administer Oracle User Messaging Services (UMS). This includes how to configure and deploy user messaging drivers and other components, how to enable security in UMS, and how to monitor UMS using Oracle Enterprise Manager Fusion Middleware Control.

Audience

This document is intended for UMS administrators, who are responsible for configuring and monitoring UMS.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents:

	
Release Notes for Oracle Fusion Middleware Infrastructure

	
Developing Applications with Oracle User Messaging Service

	
User Messaging Service Java API Reference

	
WLST Command Reference for Infrastructure Components

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in Oracle User Messaging Service

This chapter describes the features and improvements in Oracle User Messaging Service (UMS). The following topics introduce the new and changed features of UMS and other significant changes in this guide, and provides pointers to additional information.

New and Changed Features for Release 12c (12.2.1)

	
Support for Multiple Configuration: UMS supports multiple configuration for a single instance of the deployed driver. This makes it possible to have one instance of a particular driver configured differently in a domain without having to deploy several instances of that driver. For more information about this feature, refer to Section 4.3, "Configuring User Messaging Service Drivers".

	
Cluster and Domain Level Configuration of Drivers: UMS supports the configuration of drivers at the server level as well as the cluster level. Cluster is the finest level of configuration that UMS supports. For more information about this feature, see Section 4.2, "Configuring User Messaging Server".

	
Deploying Drivers Using User-Expandable Server Groups: You can deploy additional drivers by using the expandable server groups in the Fusion Middleware Configuration Wizard while updating your domain. For more information, see Section 6.1.1, "Deploying Drivers Using the Fusion Middleware Configuration Wizard".

	
Test Driver: UMS supports the "Test" button in 12.2.1 on the driver configuration page. Before saving the configuration, you can click on this button to validate the configuration properties are in correct format.

	
Resend message status: In 12.2.1, you can resend the unsent messages.

	
Enhanced option for multiple Email ID and password: UMS supports multiple incoming IDs and passwords for the email driver.

	
Apple Push Notification Service Driver (APNS): In 12.2.1, UMS supports the APNS Driver. It provides support for sending a UMS message as a notification to Apple iOS devices such as an iPhone or an iPad. For more information, see Section 3.6, "APNS Driver".

	
Automatic Service Migration (ASM): In 12.2.1, UMS supports the WebLogic feature Automatic Service Migration (ASM).

	
WhiteList: In 12.2.1, UMS Whitelist is used for outgoing messages and makes it possible to block all sends except to those recipients that are explicitly listed in the UMS Whitelist. The UMS Whitelist is provisioned, enabled, or disabled, using the WLST commands.

	
Using alphanumeric sender address in SMPP Driver: in 12.2.1, for SMPP Driver, the sender address can also be an alphanumeric address, used for instance to have the company name as the sender.

1 Introduction to Oracle User Messaging Service

This chapter introduces you to Oracle User Messaging Service (UMS), and includes the following topics:

	
Section 1.1, "Overview"

	
Section 1.2, "Introduction to Oracle User Messaging Service Configuration"

	
Section 1.3, "Deprecated Features"

1.1 Overview

UMS enables two-way communication between users and deployed applications. Key features include:

	
Support for a variety of messaging channels: Messages can be sent and received through various channels, for instance, email, instant messaging (IM) (XMPP), short message service (SMS) (SMPP).

	
Two-way messaging: In addition to sending messages from applications to users (referred to as outbound messaging), users can initiate messaging interactions (inbound messaging). For example, a user can send an email or text message to a specified address; the message is routed to the appropriate application that can then respond to the user or invoke another process according to its business logic.

	
User messaging preferences: End users can use a web interface to define preferences for how and when they receive messaging notifications. Applications immediately become more flexible; rather than deciding whether to send to a user's email address or IM client, the application can simply send the message to the user, and let UMS route the message according to the user's preferences.

	
Note:

The User Messaging Preferences UI is available at http://host:port/sdpmessaging/userprefs-ui , or https://host:sslport/sdpmessaging/userprefs-ui.

	
Robust message delivery: UMS keeps track of delivery status information provided by messaging gateways, and makes this information available to applications so that they can respond to a failed delivery. Or, applications can specify one or more failover addresses for a message in case delivery to the initial address fails. Using the failover capability of UMS frees application developers from having to implement complicated retry logic. This retry logic is also supported by the automatic resend feature that is introduced in 12c.

	
Pervasive integration within Oracle Fusion Middleware: UMS is integrated with other Fusion Middleware components providing a single consolidated bi-directional UMS.

	
Integration with Oracle BPEL Process Manager: Oracle JDeveloper includes prebuilt BPEL activities that enable messaging operations. Developers can add messaging capability to a SOA composite application by dragging and dropping the desired activity into any workflow.

	
Integration with human workflow: UMS enables the human workflow service engine to send actionable messages to and receive replies from users over email.

	
Integration with Oracle BAM: Oracle BAM uses UMS to send email alerts in response to monitoring events.

	
Integration with Oracle WebCenter Portal: UMS APIs are available to developers building applications for Oracle WebCenter Portal: Spaces. For more information on Oracle WebCenter Portal, please refer to Oracle Fusion Middleware Building Portals with Oracle WebCenter Portal.

1.1.1 Components

There are three types of components that comprise UMS. These components are standard Java EE applications, making it easy to deploy and manage them using the standard tools provided with Oracle WebLogic Server.

	
UMS Server: The UMS Server orchestrates message flows between applications and users. The server routes outbound messages from a client application to the appropriate driver, and routes inbound messages to the correct client application. The server also maintains a repository of previously sent messages in a persistent store, and correlates delivery status information with previously sent messages.

	
UMS Drivers: UMS Drivers connect UMS to the messaging gateways, adapting content to the various protocols supported by UMS. Drivers can be deployed or undeployed independently of one another depending on what messaging channels are available in a given installation.

	
UMS Client applications: UMS client applications implement the business logic of sending and receiving messages. A UMS client application might be a SOA application that sends messages as one step of a BPEL workflow, or a WebCenter Portal Spaces application that can send messages from a web interface.

In addition to the components that comprise UMS itself, the other key entities in a messaging environment are the external gateways required for each messaging channel. These gateways are not a part of UMS or Oracle WebLogic Server. Since UMS Drivers support widely-adopted messaging protocols, UMS can be integrated with existing infrastructures such as a corporate email servers or XMPP (Jabber) servers. Alternatively, UMS can connect to outside providers of SMS services that support SMPP.

1.1.2 Architecture

The system architecture of UMS is shown in Figure 1-1.

In 12c, UMS is available as a part of JRF. This enables easier upper stack integration. For more information about configuring your domain using JRF templates, refer to chapter Configuring your Oracle Fusion Middleware Infrastructure Domain in Oracle Fusion Middleware Installing and Configuring the Oracle Fusion Middleware Infrastructure.

For maximum flexibility, the components of UMS are separate Java EE applications. This allows them to be deployed and managed independently of one another. For example, a particular driver can be stopped and reconfigured without affecting message delivery on all other channels.

Exchanges between UMS client applications and the UMS Server occur as SOAP/HTTP web service requests for UMS Web Services API clients, or through remote Enterprise JavaBeans (EJB) and JMS calls for UMS Java API clients. Exchanges between the UMS Server and UMS drivers occur through JMS queues.

Figure 1-1 UMS Architecture

[image: Description of Figure 1-1 follows]

1.2 Introduction to Oracle User Messaging Service Configuration

To enable UMS to send and receive messages, use Oracle Enterprise Manager Fusion Middleware Control to set the UMS environment by configuring the appropriate drivers in the domain or cluster. See Figure 1-2. UMS includes drivers that support messaging through various channels, for instance, email, IM, SMS. For more information about configuring UMS, see Chapter 4, "Configuring Oracle User Messaging Service"

Figure 1-2 Oracle Enterprise Manager Fusion Middleware Control

[image: Description of Figure 1-2 follows]

For workflow participants to receive the notifications, they must register the devices that they use to access messages through User Communication Preferences. For more information, see chapter User Communication Preferences in Oracle Fusion Middleware Developing Applications with Oracle User Messaging Service.

	
Note:

Some details in the API may vary between the underlying protocols. Study the driver description chapter in the Administration Guide (http://docs.oracle.com/middleware/1213/ums/administer/ns_descriptions.htm#UMSAG97610) and in particular the UMS API Programmer Notes sections.

1.3 Deprecated Features

Following are the Deprecated features in 12.2.1 release:

	
UMS Proxy Driver

	
UMS VoiceXML Driver

	
UMS Worklist Driver

	
UMS EJB API

	
UMS Parlay X Multimedia Messaging API

2 Getting Started with Oracle User Messaging Service

This chapter helps you get started with Oracle User Messaging Service (UMS). It discusses how to install and upgrade UMS. It also discusses the procedures needed for achieving high availability and moving from a test to a production environment.

This chapter includes the following sections:

	
Section 2.1, "Installing User Messaging Service"

	
Section 2.2, "Upgrading User Messaging Service"

	
Section 2.3, "Scalability and High Availability"

	
Section 2.4, "Moving from a Test to a Production Environment"

2.1 Installing User Messaging Service

For detailed information about installing and configuring UMS, see Oracle Fusion Middleware Installing and Configuring the Oracle Fusion Middleware Infrastructure. The installation of UMS includes the following main procedures:

	
Running the Repository Creation Utility (RCU) to create the database schemas

When running the RCU, select User Messaging Service in the list of components. For information about creating the database schemas, see Configuring your Oracle Fusion Middleware Infrastructure Domain in Oracle Fusion Middleware Installing and Configuring the Oracle Fusion Middleware Infrastructure.

	
Extending your domain using the UMS template

The UMS templates are located at ORACLE_HOME/oracle_common/common/templates/wls. For more information about UMS templates, see Oracle Fusion Middleware Domain Template Reference. In the WebLogic Server Configuration Wizard, extend the domain using oracle.ums.basic_template.jar to set up the UMS JDBC properties and target the UMS server along with the chosen drivers to your managed servers or clusters. The Oracle User Messaging Service Basic template is a quick start template that defines the managed server, ums_server1, and targets all UMS components to that server.

	
Note:

The UMS Client API is packaged in a shared library that an UMS client application must reference. The shared library is available where the UMS Server and the JRF template has been installed. However, when the client application is running on a managed server other than UMS, and uses the UMS Web Services API, and if the JRF template is not used then the client shared library must be deployed explicitly. This can be achieved by extending the domain where the client application is deployed with the UMS Client API template available at $ORACLE_HOME/common/templates/wls/oracle.ums.client_template.jar. The UMS Client API shared library is called oracle.sdp.client.

2.2 Upgrading User Messaging Service

For detailed information about upgrading to UMS 12c, see Oracle Fusion Middleware Upgrading to the Oracle Fusion Middleware Infrastructure.

UMS provides a Schema Upgrade plug-in and a Config Upgrade plug-in to the Oracle Fusion Middleware Upgrade Assistant. The config upgrade plug-in handles the change from application level configuration in 11g to domain level configuration in 12c. This includes copying the application configuration from remote managed servers to the Administration Server and merging it into the UMS domain level configuration file. For more information, refer to Appendix A, "Upgrading User Messaging Service from 11g to 12c". For information about upgrading from 11g to 12c using Upgrade Assistant, see Oracle Fusion Middleware Upgrading with the Upgrade Assistant.

2.3 Scalability and High Availability

You can achieve a highly scalable environment for UMS. To achieve high scalability, UMS scales horizontally by adding new identically configured nodes. This means, the same type of drivers and UMS applications are deployed on each node. This gives UMS linear scalability up to the point where the scalability of JMS or the scalability of data storage becomes the limiting factor.

Since the WS-UMS Server application component is deployed on the UMS node, it scales the same way as UMS does. On the other hand, since the WS-UMS Client application is deployed on separate machines, the scalability is up to the design of that component.

UMS supports the following deployment scenarios for scaling up your environment:

	
Instances of UMS deployed in a domain are configured identical and deployed identical. No limitation on the number of servers or how the domain/clusters are set up.

	
Instances of UMS deployed in a domain that have different configuration (server and/or driver) must be deployed in separate clusters.

For detailed information about scaling up your environment, see Oracle Fusion Middleware Administering Oracle Fusion Middleware.

Whole Server Migration is a key High Availability feature that UMS supports. For more information about Whole Server Migration, see Oracle Fusion Middleware Administering Clusters for Oracle WebLogic Server.

High availability for UMS can be achieved through the following ways:

	
Automatic reconnects to external gateways

	
Message resends and failover chains

	
Persistence layer recovery handling database connections problems

For detailed information about high availability, see Oracle Fusion Middleware High Availability Guide.

2.4 Moving from a Test to a Production Environment

This framework eases the moving of Oracle Fusion Middleware components from a test environment to a production environment. For details about the procedures used for moving Oracle Fusion Middleware from a test environment to a production environment, see Oracle Fusion Middleware Administering Oracle Fusion Middleware.

Most configuration in a test environment is handled automatically by this framework. Components that require custom actions implement these in the T2P plug-ins. UMS provides a T2P plug-in to this framework. Some User Preferences data is stored in a database and requires the T2P plug-in to move that data from a test database to a production database. Also, the T2P plug-in extracts preselected driver configuration properties, like host names and ports to the moveplan.xml file so that the settings can be prepared for the production environment before the production system is started.

For detailed information about moving from a test to a production environment, see Oracle Fusion Middleware Administering Oracle Fusion Middleware.

3 Oracle User Messaging Service Drivers

This chapter describes the purpose, features and limitations of Oracle User Messaging Service (UMS) drivers. It discusses the following UMS drivers:

	
Section 3.1, "Email Driver"

	
Section 3.2, "SMS (SMPP) Driver"

	
Section 3.3, "XMPP Driver"

	
Section 3.4, "Extension Driver"

	
Section 3.5, "Twitter Driver"

	
Section 3.6, "APNS Driver"

UMS drivers contain protocol specific implementation to connect UMS to various messaging gateways, for instance, email servers, or short message service centers (SMSC), and so on. Drivers can be deployed or undeployed, independently of one another, depending on the availability of messaging channels in a given installation.

3.1 Email Driver

The Email Driver sends and receives messages. It supports all relevant email protocols, SMTP for sending emails, and IMAP and POP3 for receiving emails, to be able to communicate with every standard mail server. Support is implemented for enabling the security protocols, TLS or SSL, to protect email contents on the wire. The Email Driver uses JavaMail v1.4, which is the standard Java component that implements the required protocols and clients, to create, access, send, and receive emails.

The Email Driver uses a multi-threaded design to be able to poll multiple mail boxes (over IMAP or POP3 protocol). One limitation is that if there is only one mail box to poll, this leads to only one thread working on that box.

	
Note:

POP3 is deprecated protocol and should be avoided.

3.1.1 Scalability notes

The Email Driver can be scaled out to multiple nodes.

3.1.2 High Availability notes

When the connection to the Email Server fails, the Email Driver will wait and retry. The wait period and maximum retries are configurable.

3.1.3 Compatibility notes

The Email Driver is compatible with these protocols: POP3, IMAP4, and SMTP. Table 3-1 lists the Email Driver gateway vendors and their versions.

Table 3-1 Email Driver Gateway Vendors and Versions

	Vendor	Version
	
Oracle Beehive

	
Release 1 (1.4.3)

	
Oracle Collaboration Suite

	
10g Release 1 (10.1.2)

	
Microsoft Exchange

	
2003

	
Dovecot (IMAP4/POP3)

	
0.99.11

	
sendmail (SMTP)

	
8.13.1

The UMS Message API Priority Levels are translated into the Email message header "X-Priority" as follows:

MessagePriorityType.LOWEST => header value "5"
MessagePriorityType.LOW => header value "4"
MessagePriorityType.NORMAL => header value "3"
MessagePriorityType.HIGH => header value "2"
MessagePriorityType.HIGHEST => header value "1"

3.1.4 UMS API Programmer notes

The Email Driver handles transformation of a UMS message to an email message (and vice versa), including headers, content type and charset encoding, MIME multipart and body parts. For an incoming message, the UMS Message recipient is the email address of the email box that received the mail. You can tell if the recipient was in the email To, CC or BCC field, by looking at the Address metadata.

When an outbound email is not deliverable, a Delivery Status Notification (DSN) can be created by the recipient's mail server and sent back to the sender's email address. The Email Driver tries to match a received DSN to the outbound email which the DSN is referring to and create a ”failed to deliver” status of that outbound message. In such a case, a successful delivery status may, after some time, be changed to a failed delivery status.

3.2 SMS (SMPP) Driver

The Short Message Peer-to-Peer (SMPP) protocol is a TCP/IP based industry protocol for exchanging SMS messages between SMS peer entities such as short message service centers (SMS-C) and/or External Short Messaging Entities (ESME). The UMS SMPP Driver is implemented as an ESME. It is based on SMPP protocol v3.4.

If the sending feature is enabled, the SMPP driver opens one TCP connection to the SMS-C as a transmitter for sending. If the driver's receiving feature is enabled, it opens another connection to the SMS-C as a receiver for receiving. Only two TCP connections (both initiated by the driver) are needed for all communication between the driver and the SMS-C.

3.2.1 Scalability notes

The SMPP Driver can be scaled out to multiple nodes. There would be a limitation only if the SMS-C does not allow multiple login by the same account.

3.2.2 High Availability notes

If the connection to the SMS-C is lost, the SMPP driver will periodically attempt to reconnect.

3.2.3 Compatibility notes

The SMPP driver is based on SMPP Protocol v3.4. Table 3-2 lists the SMPP Driver gateway vendors.

Table 3-2 SMPP Driver Gateway Vendors

	Vendor
	
Syniverse

	
Clickatell

	
Logica CMG

	
OpenSMPP (simulator)

3.2.4 UMS API Programmer notes

The outgoing text message is a concatenation of the UMS Message Subject and Content. The incoming SMS Content is put in the UMS Message Content. The UMS Message Subject will be empty.

The UMS Message API Priority Levels are translated into SMPP Priority as follows:

MessagePriorityType.LOWEST, MessagePriorityType.LOW, MessagePriorityType.NORMAL => Smpp Priority: 0

MessagePriorityType.HIGH => Smpp Priority: 1

MessagePriorityType.HIGHEST => Smpp Priority: 2

However, the Smpp Priority may be limited by the SMPP Driver configuration parameter ”PriorityAllowed”.

The SMPP Driver honors the UMS API MessageInfo ”expiration” data and passes that information with the message to the SMS-C.

3.3 XMPP Driver

The XMPP Driver provides unidirectional or bidirectional access from Oracle Fusion Middleware to end users for real-time IM through the Extensible Messaging and Presence Protocol (XMPP). This driver enables end users to receive alert notifications or interactively chat with applications through the IM client of their choice.

XMPP is an open XML-based protocol for IM and consists of a client/server architecture, which resembles the ubiquitous email network. Recipients are addressed by an XMPP ID (or Jabber ID or JID) with the following form: [username]@domain[/resource]. To use the XMPP Driver in UMS, you must have access to a Jabber/XMPP server and an XMPP account for the UMS XMPP Driver instance with which to log in.

An end user of XMPP connects to an XMPP server using an XMPP client to send instant messages to other XMPP users. XMPP, however, is not the only protocol network available for IM. XMPP has an extensible and modular architecture. It integrates with proprietary IM networks, enabling XMPP users to communicate with those on other networks.

3.3.1 Scalability notes

An XMPP Driver cannot be scaled out to multiple servers since the XMPP server does not allow multiple drivers (i.e. clients) to access the same account. When the second driver logs in, the XMPP server disconnects the first driver. The first driver, then, reconnects after a while and then the second driver is disconnected and so on. In this setup, outgoing messages work only if the driver that handles the message is connected at that particular moment.

3.3.2 High Availability notes

When there are connection problems towards the XMPP server, the XMPP driver keeps attempting to reconnect to the remote server, but, increases the delay to avoid tight loops.

3.3.3 Compatibility notes

lists the XMPP Driver gateway vendors and versions.

Table 3-3 XMPP Driver Gateway Vendors and Versions

	Vendor	Version
	
ejabberd

	
2.1.3

	
jabberd2

	
2.2.14

	
jabberd14

	
1.6.1.1-p1

	
Oracle Beehive

	
2.0.1.2.1

3.3.4 UMS API Programmer notes

XMPP has a concept of Subject and Body which corresponds to the UMS Message Subject and Content.

3.4 Extension Driver

The Extension Driver sends messages to the configured Endpoint URL that implements the Notification WebServices interface defined by UMS. A messaging gateway, or an adapter to a gateway, can implement this Web Service, thereby, extending UMS with no changes in UMS.

The Extension driver also supports sending messages to any ADF Business Components web application, for instance, the ATK Popup Service which is one of Oracle's workflow and collaboration products. At runtime, the Extension Driver detects if the configured Endpoint URL is the Notification WebService or the ATK Popup Service and acts accordingly.

The Extension Driver is used for outgoing messages only.

3.4.1 Scalability notes

The Extension Driver can be scaled out to multiple nodes.

3.4.2 High Availability notes

The driver communicates with the external system via WebServices calls and the host part in the Endpoint URL is a virtual IP, that is, the external system is behind a load balancer.

3.4.3 Compatibility notes

Not applicable

3.4.4 UMS API Programmer notes

The UMS Message content must be textual, not binary. To enable a new protocol in UMS using the Extension Driver, perform the following tasks:

	
Implement and deploy a web service listener endpoint based on the MessagingNotifyService WSDL (umsnotify.wsdl):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://xmlns.oracle.com/ucs/messaging/extension"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 name="MessagingNotifyService"
 targetNamespace="http://xmlns.oracle.com/ucs/messaging/extension">

 <wsdl:types>

 <xsd:schema targetNamespace="http://xmlns.oracle.com/ucs/messaging/extension">
 <xsd:element name="notification">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageId" type="xsd:string" minOccurs="0"
 maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation>Unique message identifier from User
 Messaging Service.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="sender" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>The sender address.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="recipient" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>The recipient address (typically
 username).</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="subject" type="xsd:string" minOccurs="0"
 maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation>The subject of the message, if
 available.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="contentType" type="xsd:string"
 default="text/plain">
 <xsd:annotation>
 <xsd:documentation>The MIME type of the message. e.g.
 text/plain, text/html, text/xml.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="content" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>The main body of the message. Textual
 content only (no binary content).</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="parameters" type="tns:parameter" minOccurs="0"
 maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>Additional key-value pairs. This interface
 does not define any specific key-value pair meanings. Use of such parameters
 is defined on a private basis by particular implementations of this interface.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="parameter">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>Parameter name</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="value" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>Parameter value</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="notificationResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageId" type="xsd:string" minOccurs="0"
 maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation>A message identifier returned in response to
 successfully accepting the message. If returned, the identifier should be
 unique. Note: A fault is raised if the message cannot be
 accepted.</xsd:documentation>
 </xsd:annotation></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="notificationFault">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="code" type="xsd:string"/>
 <xsd:element name="message" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="notifyRequest">
 <wsdl:part element="tns:notification" name="parameters" />
 </wsdl:message>
 <wsdl:message name="notifyResponse">
 <wsdl:part element="tns:notificationResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="notifyException">
 <wsdl:part element="tns:notificationFault" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="Notify">
 <wsdl:operation name="invoke">
 <wsdl:input message="tns:notifyRequest"/>
 <wsdl:output message="tns:notifyResponse"/>
 <wsdl:fault message="tns:notifyException" name="NotifyException"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="NotifySOAPBinding" type="tns:Notify">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="invoke">
 <soap:operation
 soapAction="http://www.oracle.com/ucs/messaging/extension" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 <wsdl:fault name="NotifyException">
 <soap:fault name="NotifyException" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="NotifyService">
 <wsdl:port binding="tns:NotifySOAPBinding" name="Notify">
 <soap:address location="http://localhost:8001/NotifyService"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

	
Configure the extension driver by performing the following tasks:

	
Target the predeployed extension driver called usermessagingdriver-extension (or a new deployment) to the appropriate server where UMS (usermessagingserver) is running and start the driver.

	
In Enterprise Manager Fusion Middleware Control, navigate to the usermessagingserver home page.

	
Click User Messaging Service and navigate to Driver Properties.

	
Select and edit the driver usermessagingdriver-extension or create a new driver with the same name as your new driver deployment.

	
Under Driver-Specific Configuration, add a new extension endpoint configuration group and specify the properties. EndpointURL is the URL to the web service listener endpoint that you created in Step one. Protocol is the value of the new messaging channel for which you want to add notification support (for example, myProtocol).

	
Under Common Configuration, update Supported Protocols with a comma-separated list of protocols defined in each Extension Endpoint group.

	
Click OK to save the configuration.

This completes the configuration and integration of a new messaging channel (protocol) in UMS using the extension driver.

To send notifications to this new channel (protocol), recipients must be specified for the URI delivery type using the following URI addressing format:

URI:scheme:scheme-specific-address-value

where, scheme is the protocol. The URI delivery type is optional. For example, if the extension driver was configured to support the protocol, myProtocol, an application can compose a message to myProtocol:john.doe@example.com.

End users can also declare their messaging preferences by creating a new messaging channel for the new channel type in the User Communication Preferences UI. Note that user preferences are only applied when applications send user-based notifications (that is, to recipients of the form USER:username).

3.5 Twitter Driver

The Twitter driver is a UMS driver that communicates with the Twitter API server. It provides a bi-directional messaging service to, or from the Twitter server. Thus, the Twitter driver enables the application users to publish their Twitter feed and receive response for the same.

The following are some features of the Twitter driver:

	
Multiple Authentication Modes: The Twitter REST API allows the following two forms of authentication:

	
OAuth: This is a Single Sign-On type of authentication mode. You can enable this authentication mode from the Fusion Middleware Control (EM) page. On the driver specific EM page, you must set the Authentication Mode parameter to Oauth, and configure two pairs of keys, namely, Customer key, Customer Secret, Access Token, and Access Token Secret. For more information about these keys, see Table 4-12, "Custom Properties of the Twitter Driver".

	
xAuth: This authentication mode is based on OAuth. The Twitter driver grants xAuth only to those applications that do not meet the requirements of OAuth. The user must provide the username and password at each request in order to enable this authentication mode.

	
Mutiple Options for Messaging: The following are the two categories of messages that a user comes across when using the Twitter driver:

	
Outbound Message: The messages sent from a UMS client application to the Twitter server are called Outbound messages. These messages could be treated as Tweets or Direct Messages.

	
Tweets: The messages sent to the username, that is configured with the Twitter driver, are posted as tweets. For instance, if the Twitter driver is configured with the credentials of user TW, then all messages sent to URI:twitter:TW will be posted as tweets from user TW.

	
Direct Message: The messages sent from the username of the configured user to another Twitter user can be treated as Direct messages. Twitter allows a configured user to send direct messages to his direct followers only. If the recipient of a direct message is not a registered user of Twitter and is not a direct follower of the sender, then the delivery of the message will fail and an error message will be displayed.

	
Inbound Message: The messages received by the Twitter driver from the Twitter server are called Inbound messages. Inbound messages can be of the following types:

	
Timeline Message: This is a list of tweets posted by the configured user or a Twitter user who is followed by the configured user.

	
Direct Message: This is a private message sent to the configured user by a Twitter user, who is followed by the configured user.

	
Limited Size of the Tweet: Twitter limits the length of each tweet to 140 bytes. Any tweet exceeding this limit is rejected by the Twitter server. The Twitter driver truncates long tweets before sending them to the Twitter server.

	
Limited Rate of Tweets: Twitter limits the usage of tweets per user. For information about all Twitter limits, see the About Twitter Limits page. If the rate limit of a user exceeds the rate limit of that Twitter user, then the delivery of outbound messages fail and the reception of inbound messages are ceased.

If you are using UMS behind a firewall, then you must configure proxy settings for WebLogic Server. For information about configuring proxy settings for WebLogic Server, see "Using System Properties to Specify the Proxy Server" in Oracle Fusion Middleware Getting Started With JAX-RPC Web Services for Oracle WebLogic Server.

3.5.1 Scalability notes

The Twitter Driver can be scaled out to multiple nodes.

3.5.2 High Availability notes

When there are connection problems towards the Twitter server, the Twitter Driver polls the server with reduced frequency ranging from once every 4 minutes to once every 16 minutes until the Twitter server is back to its normal state. During normal operations, the driver polls the Twitter server with a frequency ranging from once every minute to once every 4 minutes.

Twitter actively monitors the usage of their services. If the limit of a user is reached, it may refuse to provide services requested by that client with an error message that states the reason. All limits are listed on the current limits page. When usage is limited by the Twitter server, the driver first waits for 30 minutes then it polls the server with a reduced frequency ranging from once every 4 minutes to once every 16 minutes.

3.5.3 Compatibility notes

The Twitter Driver was introduced in 12.1.2.0.0.

3.5.4 UMS API Programmer notes

For outgoing messages, that is, when posting a tweet or sending a direct message, the tweet text is the UMS Message Subject concatenated with the UMS Message Content. For incoming tweets and direct messages, the text is placed in the UMS Message Content.

Table 3-4 lists the metadata used for outbound messages

Name space: ”UMS-TWITTER”

Table 3-4 Metadata used by Twitter Driver for Outbound Messages

	Name	Description	Note
	
retweet_id

	
The twitter id of the message to be retweeted. This id is available when receiving a message/tweet.

	
This metadata is for the recipient Address object.

	
reply_to_id

	
The twitter id of the message to reply to. This id is available when receiving a message/tweet.

	
This metadata is for the recipient Address object.

	
geo_location

	
Latitude and longitude expressed as latitude,longitude where latitude and longitude will be converted to the java primitive data type, double.

	
This metadata is for the Message object.

3.6 APNS Driver

The APNS driver is available in User Messaging Service (UMS) 12.2.1 and onwards. It provides support for sending a UMS message as a notification to Apple iOS devices such as an iPhone or an iPad.

The following are some features of the APNS driver:

	
Otbound Message: Messages sent from a UMS client application to an Apple Device via APNs are called outbound messages in the UMS terminology. In Apple terminology, it is a notification. A Message sent to recipient "uri:apns:token" is handled by the UMS APNS driver. The UMS APNS driver extracts the token from the recipient address and creates an empty Apple Push Notification Payload. Given the information in the UMS Message, Apple Push Notification Payload is populated and finally sent to APNs.

	
Delivery Type Supported

Delivery type URI is supported. Protocol apns is supported.

	
Mime types supported

Mime types of text/plain and application/json are supported.

	
Delivery status types supported

The UMS API defines various status types. The APNS driver uses the following:

	
DELIVER_TO_DRIVER_SUCCESS

The message has been received by the driver for further processing.

	
DELIVERY_TO_GATEWAY_FAILURE

The notification could not be sent to APNs.

	
DELIVERY_TO_GATEWAY_SUCCESS

The notification was sent to APNs. However, note that since APNs does not guarantee delivery and UMS does not know if the message was sent to the device or not, the APNS driver can never return DELIVERY_TO_DEVICE_SUCCESS.

	
DELIVERY_TO_DEVICE_FAILURE

The APNS driver has for instance found out that the address used is invalid. Typically the user has unregistered the application on its device.

	
Mapping to external protocol

Table 3-5 shows how UMS Message properties maps to the APNs protocol.

Table 3-5 GCM Metadata for Outbound Messages

	UMS message property	APNs protocol	Value Type	Description
	
Recipient address e.g. 'uri:apns:token'

	
device token

	
UMS address

	
The token part of the recipient address is used as device token towards the APNs.

	
Content

	
alert

	
string

	
UMS Message text content is used as payload in the alert message. If the content type is text/plain then the content will be used in the alert. Metadata properties (see table below) are added to the payload. If content type is application/json the content is passed as is to APNs and the metadata properties will be ignored.

	
Expiration (on the MessageInfo) in seconds. Default zero.

	
expiry

	
integer

	
UMS property Expiration specifies a time to live in seconds; zero or negative means that the message shall never expire. If Expiration is negative or zero then expiry will be set to MAX_INT otherwise expiry property will be calculated as current time in seconds + Expiration.

Push notifications that expire before being delivered are not considered a failed delivery and don't impact the feedback service.

	
Subject

	
-

	
-

	
Subject on the UMS message will be ignored.

Table Table 3-6 lists the optional UMS Message metadata.

Table 3-6 Optional UMS Message Metadata

	Name	Description
	
badge

	
The number to display as the badge of the application icon. If this property is absent, the badge is not changed. To remove the badge, set the value of this property to 0.

	
sound

	
The name of a sound file in the application bundle. The sound in this file is played as an alert. If the sound file doesn't exist or default.aiff is specified as the value, the default alert sound is played.

	
action-loc-key

	
If a string is specified, displays an alert with two buttons. However, iOS uses the string as a key to get a localized string in the current localization to use for the right button's title instead of 'View'. If the value is null, the system displays an alert with a single OK button that simply dismisses the alert when tapped.

	
loc-key

	
A key to an alert-message string in a Localizable.strings file for the current localization (which is set by the user's language preference). The key string can be formatted with %@ and %n$@ specifiers to take the variables specified in loc-args

	
launch-image

	
The filename of an image file in the application bundle; it may include the extension or omit it. The image is used as the launch image when users tap the action button or move the action slider. If this property is not specified, the system either uses the previous snapshot, uses the image identified by the UILaunchImageFile key in the application's Info.plist file, or falls back to Default.png.

	
custom

	
To add custom values to the Apple Push Payload use metadata name 'custom' and a JSON formatted String as value. The JSON object will be passed as is to the device application. Custom values must use the JSON structured and primitive types: dictionary (object), array, string, number and boolean. The JSON object will be appended to the payload.

	
Driver specific message validation

The device token and the message size will be validated. If the device token is not of proper length the message will not be sent and a fail status will be generated. If the message size exceeds 256 bytes the message will not be sent and a failed status will be generated.

In case of content type application/json or that a custom JSON object is added in the metadata property, a JSON sanity check is done to see if the JSON object is parsable, if not the message will not be sent and a failed status will be generated.

	
Send raw JSON

By setting the content type to application/json the complete APNs message can be set. UMS will handover the JSON data as is to APNs. When the content type is set to application/json all driver specific metadata properties are ignored.

This will also allow other message types to APNs, like MDM (Mobile Device Management) messages.

	
Multiple application support

The APNS driver supports multi configuration so that multiple independent application can use the APNS driver. In order to select the proper APNS driver for a message the UMS core feature of driver selection is used. The preferred way is to use the SupportedApplicationNames or the SupportedCarriers driver configuration properties.

The message must in case of SupportedCarriers have the corresponding Carrier property set on the message's info object (oracle.sdp.messaging.MessageInfo).

message.getMessageInfo().setCarrier("myapp");

In case of SupportedApplicationNames, the default value for the application name property is the application's deployment name so in normal cases that can be used. If for some reason some other value must be used the application name property can be set when the MessagingClient is created, like this:

Map<String, Object> parameters = new HashMap<String, Object>();

parameters.put(ApplicationInfo.APPLICATION_NAME, "myapp");

messagingClient = MessagingClientFactory.createMessagingClient(parameters);

	
Inbound Message - Feedback service: Inbound message consists of reports from the APNs feedback service. The feedback service will report devices that are not reachable any more due to for instance that the user has uninstalled the iOS application. The APNS driver will poll the feedback service for invalid device tokens for this device application and report those in an inbound message to the provider application. In order for the provider application to receive those messages it needs to register an access point with the same values as the driver is configured with e.g. 'uri:apns:myapp'

The feedback service will return all unreachable device tokens for the device application that the TLS connection indicates. It is not possible to only retrieve a subset of device tokens.

Apple APNs documentation strongly recommends using the feedback service. By using this information to stop sending push notifications that will fail to be delivered, the application will reduce unnecessary message overhead and improve overall system performance. APNs monitors providers for their diligence in checking the feedback service and refraining from sending push notifications to non-existent applications on devices.

The format of the message will be in JSON. The message is an array of JSON objects with device token and expiry date (in Epoch milliseconds as long):

[
 {
 "deviceToken" : "ad123e45f6f78c9041dd234e5a6f7890",
 "expiry" : 134567878222112333
 },
 {
 "deviceToken" : "bb223e45f6f78c9041dd234e5a6f1234",
 "expiry" : 133577878222123456
 }
]

	
Same Information Provider Application for different customers: In case the provider application is to be used by several customers (installed on premises or in the cloud) then the client side of the application (the device application) cannot be directly reused. The device application needs to be delivered to the customers using unique bundle identities. This is due to the fact that different TLS certificates needs to be used for each customer when the feedback service is to be polled for unreachable device tokens. The APNS driver needs to use different TLS certificates for each customer, otherwise unreachable device tokens for some other customer will be retrieved.

to add more text.

3.6.1 Scalability notes

The APNS Driver supports as many messages sending as a resource adapter can handle given the JEE platform.

The scalability of the driver is limited by the scalability of the JMS solution. UMS, and the driver, can be deployed on multiple nodes.

3.6.2 High Availability notes

If the call to APNs fails then the message is marked as delivery to gateway failure.

UMS, and the APNS driver, can be deployed on multiple nodes.

	
Note:

Delivery of Push Notification is not guaranteed by APNs! Data transfer should not be performed using Push Notifications, only send a notification saying that data is available.

3.6.3 Compatibility notes

The APNS Driver is introduced in 12.2.1.0.0.

3.6.4 UMS API Programmer notes

When the UMS APNS driver is deployed into a mid-tier server, the 'uri:apns' delivery channel should be available to all UMS clients. For more information, refer to the code samples below:

3.6.4.1 Send Push Notification

To send a push notification, just send a message to the device token. Suppose the token is '1234567890…1234567890'. The following java snippet will push a notification to that device:

String recipient = "uri:apns:1234567890..1234567890";
Message message = MessagingFactory.createTextMessage("New Lenny K clips");
message.addRecipient(MessagingFactory.createAddress(recipient));
String id = mMessagingClient.send(message);

3.6.4.2 Send Push Notification With Additional Data

To send a push notification specifying badge number and sound file, add meta data to the UMS Message as shown in following java snippet:

String recipient = "uri:apns:1234567890..1234567890";
Message message = MessagingFactory.createTextMessage("New Lenny K clips");
message.addRecipient(MessagingFactory.createAddress(recipient));
message.setMetaData("UMS-APNS", "badge", "3");
message.setMetaData("UMS-APNS", "sound", "Rocknroll.aiff");
String id = mMessagingClient.send(message);

To send a push notification specifying localized alert text with arguments, add meta data to the UMS Message as shown in following java snippet:

String recipient = "uri:apns:1234567890..1234567890";
Message message = MessagingFactory.createTextMessage("New Lenny K clips");
message.addRecipient(MessagingFactory.createAddress(recipient));
message.setMetaData("UMS-APNS", "loc-key", "GAME_PLAY_REQUEST_FORMAT");
message.setMetaData("UMS-APNS", "loc-args", "Jenna,Frank");
String id = mMessagingClient.send(message);

The above will result in a notification payload looking like this:

{
 "aps" : {
 "alert" : {
 "loc-key" : "GAME_PLAY_REQUEST_FORMAT",
 "loc-args" : ["Jenna", "Frank"]
 }
 }
}

3.6.4.3 Send Push Notification With Additional Custom Data

To send a push notification specifying custom data, create a JSON formatted String representing the custom data and add it as metadata "custom" to the UMS Message as shown in following java snippet:

String customDataAsJson = "{\"myCustomDataSection\":{\"mykey1\":\"value1\",\"mykey2\":\"value2\"}, \"section2\":4711}";
String recipient = "uri:apns:1234567890..1234567890";
Message message = MessagingFactory.createTextMessage("New Lenny K clips");
message.addRecipient(MessagingFactory.createAddress(recipient));
message.setMetaData("UMS-APNS", "custom", customDataAsJson);
String id = mMessagingClient.send(message);

The resulting notification payload will look like this:

{
 "aps" : {
 "alert" : "New Lenny K clips",
 },
 "myCustomDataSection" : {
 "mykey1" : "value1",
 "mykey2" : "value2",
 },
 "section2" : 4711
}

	
Note:

JSON formatted Strings can be created from various objects, for instance using the com.fasterxml.jackson package already available in WebLogic.

3.6.4.4 Send Push Notification With Raw JSON data

To send a push notification specifying the APS payload data, create a JSON formatted String representing the payload:

String rawJson = "{\"aps\":{\"alert\":\"UMS rocks\"}}";
String recipient = "uri:apns:1234567890..1234567890";
Message message = MessagingFactory.createMessage();
message.addRecipient(MessagingFactory.createAddress(recipient));
message.setContent(rawJson,"application/json; charset=\"UTF-8\"");
String id = mMessagingClient.send(message);

3.6.4.5 Send Push Notification With Raw JSON data, MDM payload

To send a push notification specifying the MDM payload data, create a JSON formatted String representing the payload:

String rawJson = "{\"mdm\":\"the_push_magic_token\"}";
String recipient = "uri:apns:1234567890..1234567890";
Message message = MessagingFactory.createMessage();
message.addRecipient(MessagingFactory.createAddress(recipient));
message.setContent(rawJson,"application/json");
String id = mMessagingClient.send(message);

3.6.4.6 Receive unreachable device tokens

The APNS driver will poll the feedback services regularly to get a list of unreachable device tokens. Once the list of device tokens is retrieved the feedback service clears its information about the device tokens. So it is not possible to retrieve the same device token again (unless it has registered again and then again become unreachable).

The application needs to register an UMS access point that corresponds to the access point that the APNS driver is configured with.

import com.fasterxml.jackson.databind.*;
String address = "uri:apns:myapp";
AccessPoint accessPoint = AccessPointFactory.createAccessPoint(MessagingFactory.createAddress(address));
messagingClient.registerAccessPoint(accessPoint);
Message[] messages = messagingClient.receive();
byte[] content = (byte[]) messages[0].getContent();
JsonNode devices = new ObjectMapper().readTree(content);
for (JsonNode device : devices) {
 System.out.println("deviceToken: " + device.get("deviceToken").asText());
 System.out.println("expiry: " + new Date(device.get("expiry").asLong()));
}

3.6.4.7 Send Push Notification With Unicode Characters

If non-ASCII characters shall be used then the charset on the UMS message must be set accordingly, e.g. to UTF-8. Below is a sample code that illustrates creating messages with the character 'ä' and the emoticon [image: Emoticon].

// message with 'ä'
Message message1 = MessagingFactory.createTextMessage("\u00e4", "UTF-8");
// message with SMILING FACE WITH SUNGLASSES (U+1F60E)
Message message2 = MessagingFactory.createTextMessage("\ud83d\ude0e", "UTF-8");

4 Configuring Oracle User Messaging Service

This chapter describes how to configure and secure Oracle User Messaging Server (UMS) in your environment.

This chapter includes the following topics:

	
Section 4.1, "Accessing User Messaging Service Configuration Pages"

	
Section 4.2, "Configuring User Messaging Server"

	
Section 4.3, "Configuring User Messaging Service Drivers"

	
Section 4.4, "Configuring User Messaging Service Access to the LDAP User Profile"

	
Section 4.5, "Using Oracle User Messaging Service for Group Messaging"

	
Section 4.6, "Configuring Automatic Message Resend"

	
Section 4.7, "Securing the Oracle User Messaging Service"

4.1 Accessing User Messaging Service Configuration Pages

You can configure UMS through Oracle Enterprise Manager Fusion Middleware Control. For more information, see Administering Oracle Fusion Middleware with Fusion Middleware Control.

Alternatively, you can also use WebLogic Scripting Tool (WLST) to configure UMS. For more information, see WLST Command Reference for Infrastructure Components.

4.2 Configuring User Messaging Server

UMS is deployed as one enterprise archive for the server and one enterprise archive per driver type. The configuration can be defined at the managed server level or cluster level, where cluster level overrides domain level. It is possible to configure the server and drivers using WebLogic Scripting Tool (WLST) and Enterprise Manager (EM).

If the User Messaging Server configuration is defined at the cluster level, then the cluster name along with all the following properties must be specified.

Table 4-1 Properties for Configuring User Messaging Server

	Name	Description	Mandatory
	
AppReceivingQueuesInfo

	
The default set of queues from which the application will dequeue received messages.

	
Y

	
DuplicateMessageRetryDelay

	
The delay period for deferring processing of a possible duplicate message

	
Y

	
EngineCommandQueuesInfo

	
The set of queues from which the engine will dequeue command messages sent by other messaging components

	
Y

	
EnginePendingReceiveQueueInfo

	
The queue from which the engine will dequeue pending messages. The format for this value is JNDIQueueConnectionFactoryName:JNDIQueueName

	
Y

	
EngineReceivingQueuesInfo

	
The set of queues from which the engine will dequeue received messages

	
Y

	
EngineSendingQueuesInfo

	
The set of queues from which the engine will dequeue sent messages

	
Y

	
JpsContextName

	
The name of the Java Platform Security (JPS) context to use when getting an Identity Store Service instance. Empty value leads to default JPS context

	
Y

	
ReceivedmessageStatusEnabled

	
Enable received message status reporting - if false, client library does not return delivery status to engine

	
Y

	
ResendDefault

	
The default number of automatic resends upon delivery failure. You can override this property programmatically on a per message basis. The upper limit is the value specified in the configuration parameter ResendMax.

	
Y

	
ResendDelay

	
The delay in seconds between automatic resends

	
Y

	
ResendMax

	
The max number of automatic resends upon delivery failure

	
Y

	
SecurityPrincipal

	
The default system user used

	
Y

	
SessionTimeout

	
The duration to wait before a session timeout when the session flag is set by a Driver or Messaging Client Application

	
Y

	
SupportedDeliveryTypes

	
The set of delivery types supported by this server

	
Y

4.3 Configuring User Messaging Service Drivers

UMS supports multiple configurations. This means that, one deployed driver instance can handle more than one configuration. This makes it possible to have one instance of a particular driver configured differently in a domain without having to deploy several instances of that driver. All the drivers support multiple configuration. You can create multiple configurations of a single deployment of the drivers using a unique name at each configuration. Though possible, it is recommended not to use the same configuration name while creating multiple configurations for a particular driver instance, as this may lead to unintended results.

Since UMS can be deployed in a cluster or a server, the configuration of drivers can be done at the cluster or server level. It is recommended that the configuration be done at the same level as that of the deployment. However, exceptional scenarios might justify creating configuration at a level different from that of the deployment level.

You can configure UMS drivers by using Oracle Enterprise Manager Fusion Middleware Control. Alternatively, you can configure the UMS drivers by using the WLST command configUserMessagingDriver. For more information about this command, see WLST Command Reference for Infrastructure Components.

This section discusses the following topics:

	
Configuring a Driver

	
Configuring the Messaging Extension Driver

	
Configuring the Email Driver

	
Configuring the SMPP Driver

	
Configuring the XMPP Driver

	
Configuring the Twitter Driver

	
Configuring the APNS Driver

	
Note:

UMS drivers can be configured at the cluster level or server level. For more information, see Section 4.2, "Configuring User Messaging Server" to ensure that you select the appropriate configuration level.

4.3.1 Configuring a Driver

You can navigate to the driver configuration page from any one of the following:

	
Associated Drivers table on the User Messaging Service home page

	
Driver Properties menu for the driver target in the Target Navigation pane

	
Driver Properties menu on the User Messaging Service home page

To configure a driver, perform the following tasks:

	
Log in to Oracle Enterprise Manager Fusion Middleware Control as an administrator.

	
Navigate to the User Messaging Service home page.

[image: Description of ns_login.gif follows]

	
Click usermessagingserver(AdminServer). The Associated Drivers page appears as shown in the following figure.

[image: Description of ns_assoc_drv.gif follows]

	
Select the Local tab to access the drivers collocated with the UMS server instance. These drivers may or may not be registered with the UMS server depending on whether they are properly configured. The ALL tab lists all drivers that are deployed in the domain and registered to all the UMS server instances.

	
Choose a driver from the list, and click the corresponding Configure Driver icon.

The configuration page that lists all the configurations applied to this driver deployment will be displayed, and the administrator can create, edit, or delete a configuration. User Messaging drivers are configured differently in the following scenarios:

	
For the email driver (only email driver supports multiple configuration in 12.1.3), the configuration depends on whether the driver is deployed in a clustered or a non-clustered environment.

	
If the driver is deployed in a cluster, for instance a_ums_cluster, then all the email configurations for cluster a_ums_cluster and also for the whole domain will be listed. The cluster-level configuration will override the domain-level configuration, if they have the same configuration name.

	
For a driver deployed in a non-clustered managed server, the configuration will be at the server level.

For information about support for multiple configuration, and the relationship between cluster level and domain level configuration, refer to Section 4.2, "Configuring User Messaging Server" and Section 4.3, "Configuring User Messaging Service Drivers".

	
Click Create, or select a driver configuration from the list and click Edit. The Driver Properties page is displayed as shown in the following figure. You can create a new configuration or update the existing one.

[image: Description of ns_configdriver_latest.gif follows]

	
If needed, expand the Driver-Specific Configuration section and configure the driver parameters. For more information, see Section 4.3.1.1, "Introduction to Driver Properties."

	
To validate if the configuration properties are in correct format and valid in the deployment environment, you can 'test' the driver configuration parameters that you have entered. Click the Test button on the page. Click OK to continue.

	
Note:

Even if the testing does not succeed, you can still save the configuration.

4.3.1.1 Introduction to Driver Properties

UMS drivers share common properties (listed in Table 4-2) that are used by the Messaging Engine when routing outbound messages.

Table 4-2 Common Driver Properties

	Name	Description	Mandatory Property
	
Capability

	
Sets the driver's capability to send or receive messages. The values are SEND, RECEIVE, and BOTH.

	
Yes

	
Cost

	
Only used for driver configuration selection between multiple driver configurations of the same type, and only when required by the client application, The cost level of the driver (from 0 - 10). 0 is least expensive; 10 is most expensive. If the value is not in this range, cost is considered to be 0.

	
No

	
DefaultSenderAddress

	
If the UMS Message has no Sender Address of the specific DeliveryType that the driver supports, then the driver may use the DefaultSenderAddress as the Sender Address. The sample DefaultSenderAddress is EMAIL:alice@example.com.

	
No

	
SenderAddresses

	
The list of sender addresses that the driver is configured to handle. A driver with specified SenderAdresses will be selected only for an outgoing message that has a matching Sender Address. A driver that has not specified any SenderAdresses is considered to be able to handle any outgoing message regardless of the Sender Address of the message. The list should consist of UMS addresses separated by comma, for example EMAIL:alice@example.com or EMAIL:alice@example.com,EMAIL:bob@example.com. The matching is case insensitive.

	
No

	
Speed

	
Only used for driver configuration selection between multiple driver configurations of the same type, and only when required by the client application. The speed level of the driver (from 0-10, with 10 being the fastest).

	
No

	
SupportedCarriers

	
A comma-delimited list of supported carriers.

	
No

	
Configuration Level

	
Enables driver configuration at the server level or at the cluster level. If Server level is selected, then the server name must be specified. If Cluster level is selected, then the cluster name must be specified.

	
Yes

	
SupportedContentTypes

	
The content type supported by the driver.

	
Yes

	
SupportedDeliveryTypes

	
The delivery types supported by the driver.

	
Yes

	
SupportedProtocols

	
A comma-delimited list of supported protocols.

	
No

	
SupportedStatusTypes

	
The status types supported by the driver.

	
No

	
Supported Application Names

	
The application name supported by the driver.

	
No

4.3.1.2 Securing Passwords

Sensitive driver properties (namely, passwords) can be stored securely in the credential store using Oracle Enterprise Manager Fusion Middleware Control. Properties are marked with the flag Encoded Credential and have a custom entry form field.

To store a sensitive driver property securely, perform the following tasks:

	
Log in to Oracle Enterprise Manager Fusion Middleware Control, and navigate to the driver configuration page of the selected driver.

The configuration page that lists all the configurations applied to this driver deployment will be displayed, and the administrator can create, edit, or delete a configuration.

	
Click Create to create a new configuration or select a configuration and click Edit to edit an existing configuration.

The Driver properties page appears.

	
In the Driver-Specific Configuration table, locate the properties with the Encoded Credential flag set.

	
Select the credential type from the Type of Password drop-down list in the adjoining Value column as shown in the following figure.

[image: Description of driver_securingpass.gif follows]

	
Depending on the selected credential type, you are prompted to enter the username and/or password. There are the following three options:

	
Indirect password, create new user (default option): specify the username and real password; the password is stored in the credential store with the username as part of the key. The key and a fixed folder (map name) are stored in the driver deployment's file.

	
Indirect password, use existing user: choose an existing indirect username/key in the credential store (to reference the password you stored previously).

	
User a clear text password: specify the password, and it is stored directly in the driver deployment file.

	
Click OK to save changes.

	
Restart the driver application or the container for the changes to take effect.

You can check the password in the driver deployment directory's file. For an indirect password, the format is:

value="->mapName:keyName" (mapName can be any name of the user's choice, and the key is <parameter_name>.<username>)

4.3.1.3 Configuring the Messaging Extension Driver

The extension driver extends the messaging capability of UMS by enabling support for arbitrary administrator-defined channels (protocols) and delivering the notifications for such channels to an administrator-defined web service listener endpoint.

	
Note:

An instance of this driver is deployed, but not targeted to any servers in the default. To enable this driver instance, it must be targeted to the appropriate servers where UMS (usermessagingserver) is running.

4.3.1.3.1 Common Properties

These are common driver properties that are indicative of the capabilities of this driver for use by the messaging engine when routing outbound messages. Some properties are set by the driver developer and do not normally require modification, while others can be modified by the administrator to change the routing behavior. Table 4-3 lists the common properties of the Extension driver. For detailed description of these properties, refer to Table 4-2. For the complete list of available values, see User Messaging Service Java API Reference.

Table 4-3 Extension Driver Common Properties

	Name	Mandatory	Default Value
	
InstanceName

	
Yes

	
Extension-Driver

	
Capability

	
Yes

	
SEND

	
SupportedDeliveryTypes

	
Yes

	
URI

	
SupportedContentTypes

	
Yes

	
text/plain, text/html, text/xml

	
SupportedStatusTypes

	
No

	
DELIVERY_TO_GATEWAY_SUCCESS, DELIVERY_TO_GATEWAY_FAILURE

	
Cost

	
No

	

	
Speed

	
No

	

	
SupportedCarriers

	
No

	

	
Configuration Level

	
Yes

	
Server/Cluster

	
SupportedProtocols

	
No

	
popup

	
SenderAddresses

	
No

	

	
DefaultSenderAddress

	
No

	

	
Supported Application Names

	
No

	
Empty

4.3.1.3.2 Custom Properties

Table 4-4 lists properties specific to this driver and generally associated with configuring a remote endpoint at which to deliver extension notifications:

Table 4-4 Extension Driver Custom Properties

	Name	Description	Mandatory
	
Group Name

	
The name of this extension endpoint configuration group.

	
Yes

	
Endpoint URL

	
Remote endpoint listener URL.

	
Yes

	
Mapped Domain

	
The extension endpoint used to deliver messages where the domain part of the recipient URI matches this value.

	
No

	
Protocol

	
The extension endpoint used to deliver messages where the protocol (scheme) part of the recipient URI matches this value.

	
Yes

	
Security Policies

	
Comma-separated list of WS-Security policies to apply to this endpoint.

	
No

	
Username

	
Username to propagate through WS-Security headers.

	
No

	
Keystore Alias

	
Keystore alias to use for looking up WS-Security policy public keys.

	
No

	
Credential Store Key

	
Key to use for looking up the WS-Security username and password from the Oracle Web Services Management credential store map.

	
No

4.3.1.3.3 Extension Driver Security

If the remote extension endpoint is secured using WS-Security, then additional configuration of the extension driver is required. There are two typical WS-Security configurations that are supported. The extension driver can either use SAML tokens or username tokens.

To use extension driver security:

	
To use SAML tokens, the Security Policies configuration property should contain value oracle/wss11_saml_token_identity_switch_with_message_protection_client_policy, and the Keystore Alias configuration property should contain a valid alias for keystore entries that is accepted by the remote extension endpoint.

	
To use username tokens, the Security Policies configuration property should contain value oracle/wss11_username_token_with_message_protection_client_policy, and the Credential Store Key configuration property should contain a valid alias for a credential store entry that is accepted by the remote extension endpoint.

For more details about using WS-Security policies and configuring OWSM, see Oracle Fusion Middleware Administering Web Services.

4.3.1.4 Configuring the Email Driver

The email driver both sends and receives messages (that is, its capability property is set to both by default). The email driver sends messages over SMTP and uses either IMAP or POP3 for receiving messages.

4.3.1.4.1 Common Properties

Table 4-5 lists common driver properties that are indicative of the capabilities of this driver for use by the messaging engine when routing outbound messages. Some properties are set by the driver developer and do not normally require modification, while others can be modified by the administrator to change the routing behavior. For detailed description of these properties, refer to Table 4-2. For the complete list of available values, see User Messaging Service Java API Reference.

Table 4-5 Common Email Properties

	Name	Mandatory	Default Value
	
InstanceName

	
Yes

	
Email-Driver

	
Capability

	
Yes

	
Both

	
SupportedDeliveryTypes

	
Yes

	
Email

	
SupportedContentTypes

	
Yes

	
text/plain, text/html, multipart/mixed, multipart/alternative, multipart/related

	
SupportedStatusTypes

	
No

	
DELIVERY_TO_GATEWAY_SUCCESS, DELIVERY_TO_GATEWAY_FAILURE, USER_REPLY_ACKNOWLEDGEMENT_SUCCESS, USER_REPLY_ACKNOWLEDGEMENT_FAILURE

	
Cost

	
No

	
N/A

	
Speed

	
No

	
N/A

	
SupportedCarriers

	
No

	
N/A

	
Configuration Level

	
Yes

	
Server/Cluster

	
Supported Protocols

	
No

	
N/A

	
SenderAddresses

	
No

	
N/A

	
DefaultSenderAddress

	
No

	
N/A

	
Supported Application Names

	
No

	
Empty

4.3.1.4.2 Email Custom Properties

Table 4-6 lists properties specific to this driver and generally associated with configuring access to the remote gateway and certain protocol or channel-specific behavior.

Table 4-6 Custom Email Properties

	Name	Description	Mandatory	Default Value
	
MailAccessProtocol

	
Email receiving protocol. The possible values are IMAP and POP3. Required only if email receiving is supported on the driver instance.

	
No

	
IMAP

	
AutoDelete

	
This value indicates if the driver should mark the messages deleted after they have been processed. The default is Disabled. For the POP3 protocol, the messages are always deleted right after they are processed.

	
No

	
Disabled

	
Debug

	
This value indicates if the driver is running in Debug mode. When enabled, JavaMail prints out requests and responses between the email driver and the mail server to Fusion Middleware Control. The default is Disabled.

	
No

	
Disabled

	
CheckMailFreq

	
The frequency with which to retrieve messages from the mail server. The unit is in seconds and the default value is 30 seconds.

	
No

	
30

	
ReceiveFolder

	
The name of the folder from which the driver is polling messages. The default value is INBOX.

	
No

	
INBOX

	
OutgoingMailServer

	
The name of the SMTP server. This is mandatory only if email sending is required.

	
No

	
N/A

	
OutgoingMailServerPort

	
The port number of the SMTP server; typically 25.

	
No

	
25

	
OutgoingMailServerSecurity

	
The security setting used by the SMTP server. Possible values are None, TLS, and SSL. The default value is None.

	
No

	
None

	
OutgoingDefaultFromAddr

	
The default FROM address (if one is not provided in the outgoing message).

Note: The OutgoingDefaultFromAddr property is deprecated, use DefaultSenderAddress instead. For more details about the DefaultSenderAddress property, see Common Properties.

	
No

	
N/A

	
OutgoingUsername

	
The username used for SMTP authentication. Required only if SMTP authentication is supported by the SMTP server.

	
No

	
N/A

	
OutgoingPassword

	
The password used for SMTP authentication. This is required only if SMTP authentication is supported by the SMTP server. This includes Type of Password (choose from Indirect Password/Create New User, Indirect Password/Use Existing User, and Use Cleartext Password) and Password.

	
No

	
N/A

	
IncomingMailServer

	
The hostname of the incoming mail server. Required only if email receiving is supported on the driver instance.

	
No

	
N/A

	
IncomingMailServerPort

	
Port number of IMAP4 (that is, 143 or 993) or POP3 (that is, 110 or 995) server.

	
No

	
N/A

	
IncomingMailServerSSL

	
Indication to enable SSL when connecting to IMAP4 or POP3 server. The default is Disabled.

	
No

	
Disabled

	
IncomingMailIDs

	
The email addresses corresponding to the user names. Each email address is separated by a comma and must reside in the same position in the list as their corresponding user name appears on the usernames list. Required only if email receiving is supported on the driver instance.

	
No

	
N/A

	
IncomingUserIDs

	
The list of user names of the mail accounts from which the driver instance is polling. Each name must be separated by a comma, for example, foo,bar. This is required only if email receiving is supported on the driver instance.

	
No

	
N/A

	
IncomingUserPasswords

	
The list of passwords corresponding to the user names. Each password is separated by a comma and must reside in the same position in the list as their corresponding user name appears on the usernames list. This is required only if email receiving is supported on the driver instance. This includes Type of Password (choose from Indirect Password/Create New User, Indirect Password/Use Existing User, and Use Cleartext Password) and Password.

	
No

	
N/A

	
ProcessingChunkSize

	
The number of messages processed during each message polling. The default is 100.

	
No

	
100

	
Disconnect After Poll

	
Whether or not to disconnect from the email server after message poll. Effective only for IMAP, as POP3 always disconnects.

	
No

	
False

	
ImapAuthPlainDisable

	
Indication to disable or enable plain text authentication (AUTHENTICATE PLAIN command) for IMAP user authentication. The default is Disabled.

	
No

	
Disabled. When this property is disabled, that means that plain text is allowed.

	
Note:

Multiple Incoming Email IDs/User IDs/Passwords will be added through a popup dialog (import from a CSV file or add in table), so that hundreds of ID/Passwords can be added.

4.3.1.5 Configuring the SMPP Driver

Short Message Peer-to-Peer (SMPP) is a popular GSM SMS protocols. UMS includes a prebuilt implementation of the SMPP protocol as a driver that can send and receive short messages. If the sending feature is enabled, the SMPP driver opens one TCP connection to the Short Message Service Center (SMS-C) as a transmitter for sending. If the driver's receiving feature is enabled, it opens another connection to the SMS-C as a receiver for receiving. Only two TCP connections (both initiated by the driver) are needed for all communication between the driver and the SMS-C.

	
Note:

The SMPP Driver implements Version 3.4 of the SMPP protocol and only supports connections to an SMS-C or an SMS gateway that supports this version.

4.3.1.5.1 Common Properties

Table 4-7 lists common driver properties that are indicative of the capabilities of this driver for use by the messaging engine when routing outbound messages. Some properties are set by the driver developer and do not normally require modification, while others can be modified by the administrator to change the routing behavior. For detailed description of these properties, refer to Table 4-2. For the complete list of available values, see User Messaging Service Java API Reference.

Table 4-7 Common SMPP Properties

	Name	Mandatory	Default Value
	
InstanceName

	
Yes

	
SMPP-Driver

	
Capability

	
Yes

	
Both

	
SupportedDeliveryTypes

	
Yes

	
SMS

	
SupportedContentTypes

	
Yes

	
text/plain

	
SupportedStatusTypes

	
No

	
DELIVERY_TO_GATEWAY_SUCCESS, DELIVERY_TO_GATEWAY_FAILURE

	
Cost

	
No

	
N/A

	
Speed

	
No

	
N/A

	
SupportedCarriers

	
No

	
N/A

	
Configuration Level

	
Yes

	
Server/Cluster

	
Supported Protocols

	
No

	
N/A

	
SenderAddresses

	
No

	
N/A

	
DefaultSenderAddress

	
No

	
N/A

	
Supported Application Names

	
No

	
Empty

4.3.1.5.2 SMPP Custom Properties

Table 4-8 lists properties specific to this driver and generally associated with configuring access to the remote gateway and certain protocol or channel-specific behavior.

Table 4-8 Custom SMPP Properties

	Name	Description	Mandatory	Default Value
	
SmsAccountId

	
This value indicates the addresses that the SMPP driver is requesting messages for from the server. The value is specified as a UNIX Regular Expression. For example, "555" would specify a single address, and "^123|^789" would indicate all addresses starting with 123 or 789.

	
Yes

	
N/A

	
SmsServerHost

	
The name (or IP address) of the SMS-C server.

	
Yes

	
N/A

	
TransmitterSystemId

	
The account ID that is used to send messages.

	
Yes

	
N/A

	
ReceiverSystemId

	
The account ID that is used to receive messages.

	
Yes

	
N/A

	
TransmitterSystemType

	
The type of transmitter system. The default is Logica.

	
Yes

	
The default value is Logica.

	
ReceiverSystemType

	
The type of receiver system. The default is Logica.

	
Yes

	
The default value is Logica.

	
TransmitterSystemPassword

	
The password of the transmitter system. This includes Type of Password (choose from Indirect Password/Create New User, Indirect Password/Use Existing User, and Use Cleartext Password) and Password.

	
Yes

	
N/A

	
ReceiverSystemPassword

	
The password for the receiver system. This includes Type of Password (choose from Indirect Password/Create New User, Indirect Password/Use Existing User, and Use Cleartext Password) and Password.

	
Yes

	
N/A

	
ServerTransmitterPort

	
The TCP port number of the transmitter server.

	
Yes

	
N/A

	
ServerReceiverPort

	
The TCP port number of the receiver server.

	
Yes

	
N/A

	
DefaultEncoding

	
Used for incoming messages. If the SMS-C specifies the encoding to SMSC Default Alphabet, then this is the encoding that SMPP driver will assume.

Choose from the drop-down list among the following: IA5, UCS2, GSM_DEFAULT, ISO-8859-1

	
No

	
IA5

	
PreferredEncoding

	
Used for outgoing messages. If set, the text will be encoded according to the PreferredEncoding parameter. If the encoding fails (i.e. a character cannot be encoded using the specified encoder) then the driver uses the 16-bit encoding UCS2.

If not set, the driver will attempt to derive an encoding from the UMS Message Content-Type header.

Choose from the drop-down list among the following: IA5, UCS2, GSM_DEFAULT, ISO-8859-1

	
No

	
IA5

	
LocalSendingPort

	
The local TCP port used by the SMPP driver to send messages to the SMS-C.

	
No

	
N/A

	
LocalReceivingPort

	
The local TCP port used by the SMPP driver to receive messages from the SMS-C.

	
No

	
N/A

	
LocalAddress

	
The hostname (or IP address) of the server that hosts the SMPP driver.

	
No

	
N/A

	
WindowSize

	
The window size for SMS. This value must be a positive number. Default is 1.

	
No

	
1

	
EnquireInterval

	
The interval, in seconds, to send an enquire message to the SMS-C. The default is 30 seconds.

	
No

	
30

	
ThrottleDelay

	
The delay, in seconds, between throttles. Default is 30.

	
No

	
30

	
BindRetryDelay

	
The minimum delay, in seconds, between bind entry attempts. Default is 30.

	
No

	
30

	
ResponseTimer

	
Time lapse allowed between SMPP request and response, in seconds. The default is 30.

	
No

	
30

	
RegisteredDeliveryMask

	
The registered delivery bit mask. The default is 0xFF, which does not change the delivery flag value.

	
No

	
0xFF

	
RangeSetNull

	
Set to true to set the address range field of BIND_RECEIVER to null. Set to false (the default value) to set the address range field to SmsSystemId. The default is Disabled.

	
No

	
Disabled

	
PriorityAllowed

	
The highest priority the SMPP Driver will set on a message to the SMS-C. The UMS Message priority set by the client application is translated into SMPP priority, but limited by PriorityAllowed. The range is 0 (normal) to 3 (highest). The default is 0.

	
No

	
0

	
BulkSending

	
Setting this value to enabled (the default) enables sending messages in bulk to the SMS-C.

	
No.

	
Enabled

	
PayloadSending

	
If you enable this property, the SMPP driver always uses the message_payload parameter that is defined in the SMPP specification, while sending a message to the SMS-C. The default is Disabled.

	
No

	
Disabled

	
SourceTon

	
The type of number (TON) for ESME address(es) served through SMPP receiver session. The default is 0.

	
No

	
0

	
SourceNpi

	
The numbering plan indicator (NPI) for ESME address(es) served through the SMPP receiver session. The default is 0.

	
No

	
0

	
DestinationTon

	
The TON for destination. The default is 0.

	
No

	
0

	
DestinationNpi

	
The NPI for destination. The default is 0.

	
No

	
0

	
MaxChunks

	
The maximum SMS chunks for a message. The default is -1 (no maximum).

	
No

	
-1 (no maximum)

	
ChunkSize

	
The maximum size of each SMS message chunk. Default is 160.

	
No

	
160

	
LongMessageSending

	
Supports sending long messages by setting the optional SMPP parameters sar_msg_ref_num, sar_total_segments and sar_segment_seqnum for fragmented messages. The default value is Enabled.

	
No

	
Enabled

	
DatagramMessageMode

	
Supports datagram message mode. The default is Disabled.

	
No

	
Disabled

4.3.1.6 Configuring the XMPP Driver

The XMPP Driver provides unidirectional or bidirectional access from Oracle Fusion Middleware to end users for real-time IM through the Extensible Messaging and Presence Protocol (XMPP). This driver enables end users to receive alert notifications or interactively chat with applications through their IM client of choice.

4.3.1.6.1 Common Properties

Table 4-9 lists common driver properties that are indicative of the capabilities of this driver for use by the messaging engine when routing outbound messages. Some properties are set by the driver developer and do not normally require modification, while others can be modified by the administrator to change the routing behavior. For detailed description of these properties, refer to Table 4-2. For the complete list of available values, see User Messaging Service Java API Reference.

Table 4-9 Common XMPP Properties

	Name	Mandatory	Default Value
	
InstanceName

	
Yes

	
XMPP-IM-Driver

	
Capability

	
Yes

	
Both

	
SupportedDeliveryTypes

	
Yes

	
IM

	
SupportedContentTypes

	
Yes

	
text/plain

For the XMPP driver to be able to send messages, one part in the multipart/alternative message must be text/plain.

	
SupportedStatusTypes

	
No

	
DELIVERY_TO_GATEWAY_SUCCESS, DELIVERY_TO_GATEWAY_FAILURE

	
Cost

	
No

	
N/A

	
Speed

	
No

	
N/A

	
SupportedCarriers

	
No

	
N/A

	
Configuration Level

	
Yes

	
Server/Cluster

	
Supported Protocols

	
No

	
N/A

	
SenderAddresses

	
No

	
N/A

	
DefaultSenderAddress

	
No

	
N/A

	
Supported Application Names

	
No

	
Empty

4.3.1.6.2 XMPP Custom Properties

The XMPP Driver includes the custom properties shown in Table 4-10.

Table 4-10 Custom XMPP Properties

	Name	Description	Mandatory	Default Values
	
IMServerHost

	
Jabber/XMPP server hostname.

	
No

	
N/A

	
IMServerPort

	
Corresponding Jabber/XMPP server port. The default is 5222.

	
Yes

	
5222

	
IMServerUsername

	
Jabber/XMPP username with which you log in. You may also enter a complete Jabber ID if its domain name is different from the Jabber/XMPP server hostname (for example: myUserName or myUserName@xmpp-domain).

Note: An attempt is made to register this user account if it does not exist and the server supports account registration.

	
No

	
N/A

	
IMServerPassword

	
Corresponding password for the username listed above. Includes Type of Password (choose from Indirect Password/Create New User, Indirect Password/Use Existing User, Use Cleartext Password) and Password.

	
No

	
N/A

	
SecurityMode

	
Security mode to use when making a connection to the server. Available options are: None (Security is disabled and only unencrypted connections are used), TLS (Security through TLS encryption is used whenever it is available), and SSL (Security through SSL encryption is used). The default is TLS.

	
No

	
TLS

	
SASLAuthenticationEnabled

	
Whether to use SASL authentication when logging into the server. If SASL authentication fails, then the driver tries to use non-SASL authentication. By default, SASL is enabled.

	
No

	
Enabled

4.3.1.7 Configuring the Twitter Driver

The Twitter driver is a UMS driver that communicates with the Twitter API server. It provides a bi-directional messaging service to/from the Twitter server. Thus, the Twitter driver enables the application users to publish their Twitter feed and receive response for the same.

4.3.1.7.1 Common Properties

Table 4-11 shows common driver properties that are indicative of the capabilities of this driver for use by the messaging engine when routing outbound messages. Some properties are set by the driver developer and do not normally require modification, while others can be modified by the administrator to change the routing behavior. For detailed description of these properties, refer to Table 4-2. For the complete list of available values, see User Messaging Service Java API Reference.

Table 4-11 Common Properties of the Twitter Driver

	Name	Mandatory	Default Values
	
InstanceName

	
Yes

	
usermessagingdriver-twitter

	
Capability

	
Yes

	
SEND, RECEIVE

	
SupportedDeliveryTypes

	
Yes

	
URI

	
SupportedContentTypes

	
Yes

	
text/plain, text/html, text/xml

	
SupportedStatusTypes

	
Yes

	
DELIVERY_TO_GATEWAY_SUCCESS, DELIVERY_TO_GATEWAY_FAILURE

	
Cost

	
No

	
N/A

	
Speed

	
No

	
N/A

	
SupportedCarriers

	
No

	
N/A

	
Configuration Level

	
Yes

	
Server/Cluster

	
Supported Protocols

	
No

	
N/A

	
SenderAddresses

	
No

	
N/A

	
DefaultSenderAddress

	
No

	
N/A

	
Supported Application Names

	
No

	
Empty

4.3.1.7.2 Twitter Custom Properties

Table 4-12 lists configurable properties specific to the Twitter driver.

Table 4-12 Custom Properties of the Twitter Driver

	Name	Description	Mandatory	Default Values
	
Authentication Mode

	
This property specifies the authentication mode that the Twitter driver must use. Valid values are OAuth and xAuth.

	
Yes

	
xAuth

	
Username

	
The user name of the Twitter user.

	
This field is mandatory if the selected authentication mode is xAuth.

	

	
Password

	
The password of the Twitter user.

	
This field is mandatory if the selected authentication mode is xAuth.

	

	
Consumer Key

	
The public key of the Twitter user.

	
This field is mandatory if the selected authentication mode is OAuth.

	

	
Consumer Secret

	
The private key of the Twitter user.

	
This field is mandatory if the selected authentication mode is OAuth.

	

	
Access Token

	
The public key of a registered Twitter application.

	
This field is mandatory if the selected authentication mode is OAuth.

	

	
Access Token Secret

	
The private key of a registered Twitter application.

	
This field is mandatory if the selected authentication mode is OAuth.

	

4.3.1.8 Configuring the APNS Driver

The (Apple Push Notification Service) APNS driver is a UMS driver that communicates with the APNS API server. The certificates that you get from Apple for your application needs to be saved in the WLS server, in the OPSS subsystem. For more information on pre-requisites for configuring the APNS driver, see Section 4.3.1.8.1, "Pre-requisites for configuring APNS driver".

4.3.1.8.1 Pre-requisites for configuring APNS driver

In order to send push notification using the APNS driver, the driver needs access to the iOS application-specific certificates. The certificates (public and private keys) are obtained from Apple's developer portal.

Task 1: Installing a Trust certificate from the Entrust:

To establish a TLS session with APNs, an Entrust CA (2048) root certificate must be installed in the OPSS Keystore trust store in the domain. The missing certificate can be imported from the JDK instead.

WLST command to import the certificate into the keystore service:

import os
connect()
jdkCAcerts = os.path.join(os.getenv("JAVA_HOME"), "jre/lib/security/cacerts")
getOpssService(name='KeyStoreService').importKeyStore(appStripe='system', name='trust', password='changeit', aliases='entrustevca,entrustrootcag2,entrust2048ca', keypasswords='', type='JKS', permission=True, filepath=jdkCAcerts)

syncKeyStores(appStripe='system', keystoreFormat='KSS'

See http://docs.oracle.com/middleware/1212/idm/JISEC/kssadm.htm#JISEC10119

Task 2: Importing the certificate in the domain:

The certificates are packaged in a PKCS #12 file (file extension p12 or pfx). Before the certificates can be imported into the Keystore service, (http://docs.oracle.com/middleware/1212/idm/JISEC/kssadm.htm#JISEC9596) the the archive has to be converted to a JavaKeyStore file (file extension jks).

To convert the archive using the "keytool" command (which is part of the JDK) (https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html) use the following command:

JAVA_HOME/bin/keytool -importkeystore -destkeystore <com.example.myapp.jks> -srckeystore <com.example.myapp.p12> -srcstoretype pkcs12 -destalias <com.example.myapp> -deststorepass <mySecret> -srcstorepass <mySecret> -alias <the_friendly_name_in_p12_file>

Replace the parameters with the real values for the application and certificate that is required.

To import the jks file into the Keystore service there are two options:

	
Use Fusion Middleware Control - Oracle Fusion Middleware Securing Applications with Oracle Platform Security Services

	
Use WLST Infrastructure Security Custom WLST Commands - Oracle Fusion Middleware Infrastructure Security WLST Command Reference

UMS comes with a predefined keystore called 'apns' which should be used for the imported certificates.

Below is a sample using WLST on how the certificate can be imported into the Keystore service:

use empty string for the password since the keystore is permission protected (permission=true)
connect()
getOpssService(name='KeyStoreService').importKeyStore(appStripe='ums', name='apns', password='', aliases='com.example.myapp', keypasswords='mySecret', type='JKS', permission=True, filepath='path_to/com.example.myapp.jks')

	
Note:

The value aliases parameter (in the above command) must match the alias property in the APNS driver configuration and, also match the keystore name.

If a different keystore than 'apns' is used, then UMS must be granted additional permission using the same appstripe value used to create the new keystore.

The UMS shared library 'oracle.sdp.client' must be granted the oracle.security.jps.service.keystore.KeyStoreAccessPermission permission using the very same appstripe.

4.3.1.8.2 Common Properties

Table 4-13 shows common driver properties that are indicative of the capabilities of this driver for use by the messaging engine when routing outbound messages. Some properties are set by the driver developer and do not normally require modification, while others can be modified by the administrator to change the routing behavior. For detailed description of these properties, refer to Table 4-2. For the complete list of available values, see User Messaging Service Java API Reference.

Table 4-13 Common Properties of the APNS Driver

	Name	Mandatory	Default Values
	
InstanceName

	
Yes

	
usermessagingdriver-apns

	
Capability

	
Yes

	
SEND, RECEIVE

	
SupportedDeliveryTypes

	
Yes

	
URI

	
SupportedContentTypes

	
Yes

	
text/plain, application/json

	
SupportedStatusTypes

	
Yes

	
DELIVER_TO_DRIVER, DELIVERY_TO_GATEWAY_FAILURE,DELIVERY_TO_GATEWAY_SUCCESS,DELIVERY_TO_DEVICE_FAILURE

	
Cost

	
No

	
N/A

	
Speed

	
No

	
N/A

	
SupportedCarriers

	
Yes

	
N/A

	
Configuration Level

	
Yes

	
Server/Cluster

	
Supported Protocols

	
No

	
N/A

	
Supported Application Names

	
No

	
Empty

	
Driver Type

	
No

	
False

	
SenderAddresses

	
No

	
N/A

	
DefaultSenderAddress

	
No

	
N/A

4.3.1.8.3 APNS Custom Properties

Table 4-14 lists configurable properties specific to the APNS driver.

Table 4-14 Custom Properties of the APNS Driver

	Name	Description	Mandatory	Default Values
	
Service Mode

	
Determines the APNs production environment

	
Yes

	

	
Keystore Name

	
Name of the keystore in KSS which holds the private key and certificated used for communication with APNs.

	
Yes

	
apns

	
Alias

	
Alias for the private key certificate pair in the keystore.

	
Yes

	

	
Feedback Access Point

	
Name of the access point used for the inbound feedback messages. Must be of delivery type URI and protocol apns. Recommended value is 'uri:apns:<applicationName>', e.g. 'uri:apns:myapp'.

	
No

	
N/A

	
Feedback Poll Interval

	
Indicates how often the driver shall poll the feedback service in seconds. Values range from 1-172800 seconds.

	
No

	
7200

4.4 Configuring User Messaging Service Access to the LDAP User Profile

As part of the LDAP provider setup in a UMS deployment, you configure the User Name Attribute through the WebLogic Server Administration Console. If you configure that attribute with a value other than the default cn or if the user's email address is stored in an LDAP attribute which is different from mail, you must make an additional configuration change in Oracle Platform Security Services (OPSS) for UMS to successfully access the user profile to obtain the list of communication channels provisioned in LDAP, such as business email.

For more information about Oracle Platform Security Services (OPSS), see Securing Applications with Oracle Platform Security Services.

To configure access to the LDAP user profile, perform the following tasks:

	
Configure the Identity Store to use LDAP by following instructions in http://docs.oracle.com/middleware/11119/bisuite/BIEDG/toc.htm.

	
Note:

You may have other properties defined in the same section.

	
To use the value of the User Name Attribute while searching the back-end LDAP server for user profile, add the following element:

<property name="username.attr" value="username_attribute_value"/>

where username_attribute_value is the value of the User Name Attribute property in the LDAP provider configuration. For instance, if the value of the User Name Attribute is mail, add the following line:

<property name="username.attr" value="mail"/>

The following sample code shows the above line inserted in the jps-config.xml file:

<!-- JPS WLS LDAP Identity Store Service Instance -->

<serviceInstance name="idstore.ldap" provider="idstore.ldap.provider">

 <property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvide
r"/>

 <property name="CONNECTION_POOL_CLASS"
value="oracle.security.idm.providers.stdldap.JNDIPool"/>

 <property name="username.attr" value="mail"/>

</serviceInstance>

If the LDAP attribute containing the user's business email addresses is something other than the mail attribute, add the following element:

<property name="PROPERTY_ATTRIBUTE_MAPPING" value="BUSINESS_EMAIL=attr_containing_email"/>

where attr_containing_email is the attribute name in the LDAP provider that contains the user's email address. For instance, if the user attribute containing the email address is externalEmail, add the following line:

<property name="PROPERTY_ATTRIBUTE_MAPPING" value="BUSINESS_EMAIL=externalEmail"/>

The following sample code shows the above line inserted in the jps-config.xml file:

<!-- JPS WLS LDAP Identity Store Service Instance -->

<serviceInstance name="idstore.ldap" provider="idstore.ldap.provider">

 <property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvide
r"/>

 <property name="CONNECTION_POOL_CLASS"
 value="oracle.security.idm.providers.stdldap.JNDIPool"/>

 <property name="PROPERTY_ATTRIBUTE_MAPPING" value="BUSINESS_
EMAIL=externalEmail"/>

</serviceInstance>

	
Restart your domain.

4.5 Using Oracle User Messaging Service for Group Messaging

In addition to supporting bi-directional mutli-channel messaging through a variety of channels, UMS supports group messaging. This feature includes sending a message to a group of users by sending it to a group URI, or sending a message to LDAP groups (or enterprise roles) and application roles.

The group messaging feature enhances the capability of UMS by providing support for the following:

	
Sending messages to a group

	
Sending messages to a group through a specific channel

	
Sending messages to an application role

	
Sending messages to an application role through a specific channel

For more information about sending messages to groups and application roles, see "Sending Group Messages" in Developing Applications with Oracle User Messaging Service.

The group messaging feature does not require any new configuration of UMS. It reuses the UMS utility to access the User Role API. Since the User Role API configuration is not possible in UMS, any such configuration is done outside UMS. The User Role API is automatically configured to use the first Oracle Weblogic Server authenticator and does not require any special configuration.

	
Note:

For UMS to be able to resolve an application role, specific security grants are required. The application deployer must configure these security grants using WLST commands as shown in the following example:

connect('weblogic','welcome1','t3://host.example.com:7601')

grantPermission(codeBaseURL="file:MW_HOME/user_projects/domains/DOMAIN_NAME/servers/SERVER_NAME/tmp/_WL_user/usermessagingserver/-",permClass="oracle.security.jps.service.policystore.PolicyStoreAccessPermission",permTarget="context=APPLICATION,name=<appStripe>",permActions="getApplicationPolicy"
)

For more information about the security commands, see Infrastructure Security WLST Command Reference.

4.6 Configuring Automatic Message Resend

In 12c, the automatic resend feature can be configured to automate the administrator's resend. This means that when a message send attempt is classified as a complete failure, then the message is automatically scheduled for resend. This is repeated until the message is successfully sent or the configured number of resends is achieved. The delay time and the maximum number of resends can be configured. Functionally, this is the same as an administrator manually resending the messages when the delay time has expired. The purpose of the automatic resend is to resolve temporary network problems or temporary unavailability of backend services.

The UMS server configuration parameters, ResendDefault, ResendDelay, and ResendMax have been introduced for configuring this feature. For more information about these parameters, see Table 4-1.

The number of resend attempts is configured for the server, but may be overridden programmatically per message by the client. The client can specify the number of resends to be used per message to override the ResendDefault server configuration parameter. Note that although overridden, it is limited by the ResendMax configuration parameter.

For more information about setting the number of resend attempts programmatically, see sections "Using UMS Java API to Specify Message Resends" and "Using UMS Web Service API to Specify Message Resends" in Developing Applications with Oracle User Messaging Service.

	
Note:

If message resend fails even after automatically trying to resend the message the maximum number of times, then the administrator can send it manually from the Enterprise Manager. The resend counter will be reset. If the maximum number of resends is configured to 0, then the behaviour will be identical to that in 11g, that is an administrator will have to manually select the failed message and resend it using the Enterprise Manager.

4.7 Securing the Oracle User Messaging Service

The User Communications Preferences User Interface can be secured at the transport-level using Secure Sockets Layer (SSL). By default, all deployed web services are unsecured. Web Service Security should be enabled for any services that are deployed in a production environment.

	
To enable SSL in the Oracle WebLogic Server, see "Configure SSL for Oracle WebLogic Server" in the Administering Oracle Fusion Middleware. This step is sufficient to secure the User Communication Preferences User Interface.

UMS supports the use of Oracle Web Services Manager WS-Security policies to protect UMS web services. For more information about Oracle Web Services Manager, see "Using Oracle Web Services Manager Security Policies", in Securing WebLogic Web Services for Oracle WebLogic Server.

The recommended security configuration for web services uses Security Assertion Markup Language (SAML) tokens to pass identities between web service clients and UMS. With SAML tokens, instead of the web service client passing a username and password to UMS, a trust relationship is established between the client and UMS because of exchanging certificates. Once this keystore configuration is in place, the web service client passes only the user identity, and vouches for the fact that it has authenticated the user appropriately.

The recommended policies to use for UMS web services are:

	
oracle/wss11_saml_token_with_message_protection_service_policy (server-side)

	
oracle/wss11_saml_token_with_message_protection_client_policy (client-side)

	
oracle/wss11_saml_token_identity_switch_with_message_protection_client_policy (client-side)

	
Note:

The choice of client-side policy depends on the security context in which your application is executing.
	
If the thread that is making the web service call has the intended Subject associated with it (for example, from a web application that performs user authentication, or a Java EE module with a run-as identity defined), then use the policy oracle/wss11_saml_token_with_message_protection_client_policy.

The current thread Subject is passed through using the SAML Policy WS-Security headers. In this case you should not specify the parameter javax.xml.ws.BindingProvider.USERNAME_PROPERTY when creating your web service client instance.

	
If the thread that is making the web service call has an undefined Subject associated with it, or if you must programmatically supply a different identity, then use the policy oracle/wss11_saml_token_identity_switch_with_message_protection_client_policy, and specify the parameter javax.xml.ws.BindingProvider.USERNAME_PROPERTY when creating your web service client instance. If you want to perform dynamic identity switching, you must grant additional code permissions to your application. For more information, see Administering Web Services.

4.7.1 Web Service Security on Notification

The different web services include corresponding notification web services (MessageNotification) that run on the client side and receive notifications (message delivery status, message receipt, presence status change) when the appropriate event occurs.

4.7.2 Enabling UMS Web Service Security

To enable a policy for a UMS web service, follow the steps in "Attaching OWSM Security Policies Using the Administration Console" in Securing WebLogic Web Services for Oracle WebLogic Server, selecting policy oracle/wss11_saml_token_with_message_protection_service_policy. This configuration must be repeated for each service that you want to secure.

4.7.3 Enabling Client Security

Web service client security must be enabled programmatically. When using the client libraries described in Developing Applications with Oracle User Messaging Service, WS-Security policy configuration is provided when a client object is constructed. The client constructors take an argument of type Map<String, Object>. In general when using SAML authentication, the key/value pairs (Table 4-15) should be added to the configuration map in addition to other required properties such as the endpoint address.

Table 4-15 Client Security Keys

	Key	Typical Value
	

oracle.ucs.messaging.ws.ClientConstants.POLICIES

	

oracle/wss11_saml_token_
with_message_protection_
client_policy

	

javax.xml.ws.BindingProvider.ENDPOINT_ADDRESS_PROPERTY

	
Endpoint URL for the remote UMS WS. This is typically "http://<host>:<port>/ucs/messaging/webservice".

	

javax.xml.ws.BindingProvider.USERNAME_PROPERTY

	
(Optional) <valid username>

Note: Do not specify this key while using oracle/wss11_saml_token_with_message_protection_client_policy.

	

oracle.wsm.security.util.SecurityConstants.Conf
ig.KEYSTORE_RECIPIENT_ALIAS_PROPERTY

	
(optional) keystore alias for target service. See Client Aliases.

	

oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_CSF_KEY

	
Used for OWSM policy attachment. Specifies a credential store key to use for looking up remote username/password information from the Oracle Web Services Management credential store map.

Example 4-1 Web Service Client Security

HashMap<String, Object> config = new HashMap<String, Object>();
config.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://example.com:8001/ucs/messaging/webservice");
config.put(oracle.ucs.messaging.ws.ClientConstants.POLICIES, new String[]
 {"oracle/wss11_saml_token_with_message_protection_client_policy"});

mClient = new MessagingClient(config);

4.7.4 Keystore Configuration

To use the recommended WS-Security policy, you must configure a keystore containing the public and private key information required by OWSM. Refer to "Configuring the Credential Store" in Securing Web Services and Managing Policies with Oracle Web Services Manager for information on how to configure the keystore and corresponding credential store entries.

	
If both your web service client and UMS server are in the same domain, then they share a keystore and credential store.

	
If your web service client and UMS server are in different domains, then you must import the UMS public key into your client domain's keystore, and must import your client domain's public key into the UMS keystore.

4.7.5 Client Aliases

When using certain WS-Security policies such as the SAML policy recommended here, the client must use the server's public key to encrypt the web service request. However, there is generally only one keystore configured per domain. Therefore, if you have a domain in which there are web service clients that communicate with web services in multiple other domains, then you may be required to override the default keystore entry used by OWSM.

For example, if you have a domain in which application "A" is a web service client to a UMS web service, and application "B" is a web service client to a web service in another domain, then A's requests must be encrypted using the public key of the UMS domain, and B's requests must be encrypted using the public key of the other domain. You can accomplish this goal by overriding the keystore alias used by OWSM for each request:

	
Import (for example) the UMS public key with alias "ums_public_key", and the other public key with alias "other_public_key".

	
When creating an UMS Web Service client, specify the recipient keystore alias parameter, setting the key to oracle.wsm.security.util.SecurityConstants.Config.KEYSTORE_RECIPIENT_ALIAS_PROPERTY and the value to "ums_public_key" as shown in Example 4-2.

Example 4-2 Client Aliases

HashMap<String, Object> config = new HashMap<String, Object>();
config.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://example.com:8001/ucs/messaging/webservice");
config.put(ClientConstants.POLICIES, new String[] {"oracle/wss11_saml_token_
identity_switch_with_message_protection_client_policy"});
config.put(BindingProvider.USERNAME_PROPERTY, "user1");
config.put(oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_
LOCATION, oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_LOC_
SUBJECT);
config.put(oracle.wsm.security.util.SecurityConstants.Config.KEYSTORE_RECIPIENT_
ALIAS_PROPERTY, "ums_public_key");
config.put(MessagingConstants.APPLICATION_NAME, "MyUMSWSApp");
mClient = new MessagingClient(config);

	
The other web service client similarly must override the keystore alias, but the exact mechanism may differ. For example if using a JAX-WS client stub directly, then you can add the override property to the JAX-WS request context. See "Overriding the Policy Configuration for the Web Service Client" in Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server for more details.

4.7.6 Securing JMS Resources

This (optional) procedure enables administrators to restrict access to the UMS' JMS resources (such as queues) for enhanced security.

To secure the JMS system resources, lock all JMS sub-deployments that start with the name UMSJMSSystemResource (there may be multiple automatically-created resources for UMS in a multi-server or cluster deployment) with the role OracleSystemRole. Do this using the Oracle WebLogic Server Administration Console, or you may run a WLST script (available at MIDDLEWARE_HOME/oracle_common/communications/bin/secure_jms_system_resource.py) as follows:

MIDDLEWARE_HOME/oracle_common/common/bin/wlst.sh
./secure_jms_system_resource.py
-userConfigFile=<UserConfigFile>, -userKeyFile=<UserKeyFile>
-url=<AdminServer_t3_url> -jmsSystemResource=<JMSSystemResourceName> -role=<SecurityRoleToUse>

The UserConfigFile shall contain encrypted username and password for the AdminUser. The key for the encrypted data shall be in UserKeyFile.

By default, the UMS system runs as the user OracleSystemUser for accessing JMS resources. If the user OracleSystemUser does not exist, or you secure the UMS JMS resources with any other role that some other user has been granted, you must override the default user identity used by the UMS system by specifying an alternate username.

5 Monitoring Oracle User Messaging Service

This chapter describes how to monitor Oracle User Messaging Service (UMS) by using Oracle Enterprise Manager Fusion Middleware Control.

This chapter includes the following topics:

	
Section 5.1, "Monitoring Oracle User Messaging Service"

	
Section 5.2, "Viewing Log Files"

	
Section 5.3, "Viewing Metrics and Statistics"

5.1 Monitoring Oracle User Messaging Service

You can monitor UMS logs and metrics using Oracle Enterprise Manager Fusion Middleware Control.

To monitor UMS:

	
Log in to Oracle Enterprise Manager Fusion Middleware Control as an administrator.

[image: Description of ns_login.gif follows]

	
Expand the User Messaging Service folder. You will see a User Messaging server, and a list of User Messaging drivers.

	
Select the server or driver of your choice.

If you select a driver, quick statistics are displayed that indicate the state and performance of the driver.

If you select a server, you see a list of associated drivers, in addition to the quick statistics. You can select one of the drivers to view its statistics, or you can click the Configure Driver icon to configure it. For more information on configuring drivers, see Chapter 4, "Configuring Oracle User Messaging Service."

	
You can perform a series of actions on the server. Right-click the server to select any of the actions as shown in Figure 5-1. Table 5-1 lists the selection and their resultant actions.

Figure 5-1 Server Actions

[image: Description of Figure 5-1 follows]

Table 5-1 Server Selection and Actions

	Selection	Action
	
Home

	
The home page lists the quick statistics for the selected driver

	
Control

	
Start Up or Shut Down driver

	
Logs

	
View and configure message logs for the selected driver

	
Performance Summary

	
Displays performance statistics on a customizable metrics page. Use this page to view statistics for this driver. Customize this page using the Metric Palette. The Metric Palette enables you to choose from all of the available metrics so that you see only the information that is most valuable to you

	
Message Status

	
Check the delivery status of messages sent and received, and resend selected messages. You can filter the search by adding more search fields and setting the desired operator and search value. Some fields can be added multiple times to use them with different and complementary operators, or with the Contains operator

	
Messaging Client Applications

	
Messaging client applications registered with UMS can be manually deregistered in cases where the applications have been undeployed and are holding onto access points that must be made available to other applications

	
Server Properties

	
Configure message storage method and business terms for message filter creation. For more information, see Chapter 4, "Configuring Oracle User Messaging Service".

	
System MBean Browser

	
System MBean Browser and its configuration settings

	
Target Information

	
Target Information displays the version, Middleware Home, Domain Home, Host and Deployed On details for the selected driver

5.1.1 Using Message Status

You can check the delivery status of messages sent and received, delete messages, and resend selected messages.

Checking message status

To check message status, perform the following tasks:

	
From the navigation tree, navigate to the server page. On the server page, select Message Status from the drop-down list that appears at the top of the page.

The Message Status page appears.

	
Click Search to search the messages using the default criteria. The search returns a listing for the messages.

[image: Description of ns_msgstatus.gif follows]

Customizing the Search

You can customize the search by adding more search fields and setting the desired operator and search value. Some fields can be added multiple times to use them with different and complementary operators, or with the Contains operator. To customize the search, perform the following tasks:

	
Click Add Fields.

	
Select the field(s) on which you want to search.

	
Choose operators and fill in variables as needed.

	
Click Search. The customized search is done and results returned.

	
If you want to resend a message, select the message in the list and click Resend.

[image: Description of ns_msgcust.gif follows]

Deleting Messages

You can delete selected messages or delete messages in bulk by setting the option for deleting all messages older than a specific date.

	
To delete a selected message, select the message in the list and click Delete Selected.

	
To delete all messages older than a specific date, click Delete with Options. In the pop-up window that appears, you must specify a date that is older than 7 days, and click OK. All messages before the specified date will be deleted.

	
Note:

If you choose to delete messages using the date feature in the EM UI, ensure that you do not have more than 2000 messages to be deleted at any given time. If there are more than 2000 messages to be deleted, you will see the following error message:
The specified options result in the deletion of more than 2000 messages. Please narrow your query and try again.

To delete more than 2000 messages, you must use the DB purge script for Oracle database.

5.1.2 Deregistering Messaging Client Applications

You can manually deregister Messaging Client Applications after the applications have been undeployed and are holding onto access points that must be made available to other applications. To deregister Messaging Client Applications, perform the following tasks:

	
Right-click a target in the navigation tree, and select Messaging Client Applications. The Messaging Client page appears as shown in the following figure.

[image: Description of ns_mca.gif follows]

	
Select the message to deregister and click De-register.

A confirmation box appears asking you to confirm. Confirm your choice.

5.2 Viewing Log Files

You can view log files.

To view log files:

	
Right-click the driver (or server) for which you want to view log information, then choose Logs > View Log Files.

The Log Messages page appears.

[image: Description of ns_logme.gif follows]

Use this page to query for log information about a driver (or server). Fields and lists are used to customize the query.

	
After entering your search criteria, click Log Files. The Log Files page appears.

[image: Description of ns_five.gif follows]

	
View log information or download the log.

5.2.1 Configuring Logging

Use Oracle Enterprise Manager Fusion Middleware Control to configure log levels, as shown in Figure 5-2.

Figure 5-2 Configuring Log Levels

[image: Description of Figure 5-2 follows]

For each logger, set the notification level, as shown in Figure 5-3.

Figure 5-3 Select Notification Level

[image: Description of Figure 5-3 follows]

5.3 Viewing Metrics and Statistics

The performance of your applications is reflected in metrics and statistics.

To view metrics and statistics:

	
Select the Performance Summary for a driver (or server).

The Performance Summary page appears as shown in Figure 5-4.

Figure 5-4 Performance Summary

[image: Description of Figure 5-4 follows]

Many metrics are available for capture and display. To get the most valuable, focused information, use Metric Palette.

	
Click Show Metric Palette to display the Metric Palette.

	
Choose the metrics in which you are most interested. As you select or deselect metrics from the palette, the metrics display is automatically updated as shown in Figure 5-5.

Figure 5-5 Metric Palette

[image: Description of Figure 5-5 follows]

6 Managing Oracle User Messaging Service

This chapter describes how to manage Oracle User Messaging Service (UMS). It discusses how to deploy, undeploy and register UMS drivers by using Oracle Enterprise Manager Fusion Middleware Control using the configuration wizard. It also describes the procedure used to purge database records that are no longer need by the UMS DB schema.

This chapter includes the following topics:

	
Section 6.1, "Deploying Drivers"

	
Section 6.2, "Using UMS Schema Purge Script"

6.1 Deploying Drivers

When you install Oracle UMS, preinstalled drivers are included (Email, XMPP, SMPP, and Twitter). Among these drivers, only one or a few drivers are deployed to the WebLogic Server, depending on the template that is used when creating the domain.

You can deploy additional drivers by using the expandable server groups in the Fusion Middleware Configuration Wizard while updating your domain.

6.1.1 Deploying Drivers Using the Fusion Middleware Configuration Wizard

Follow the instructions on this section to deploy drivers using the Configuration Wizard.

	
Task 1, "Starting the Configuration Wizard"

	
Task 2, "Selecting a Configuration Type"

	
Task 3, "Updating an Existing Domain Using Product Templates"

	
Task 4, "Assigning User-Expandable Server Groups to Managed Servers"

	
Task 5, "Completing the Configuration"

	
	Task 1 Starting the Configuration Wizard
	
Start the Configuration wizard as described in "Starting the Configuration Wizard" in Oracle Fusion Middleware Creating WebLogic Domains Using the Configuration Wizard. The Configuration Type screen is displayed.

	
	Task 2 Selecting a Configuration Type
	
On the Configuration Type screen, select Update an Existing Domain.

Select the domain directory from the Domain Location drop-down list, or click Browse to navigate to and select the domain directory. Click Next to continue. The Templates screen appears.

	
	Task 3 Updating an Existing Domain Using Product Templates
	
On the Templates screen, select Update Domain Using Product Templates and then select the check box for JRF template to add to your domain as shown in the following figure.

Click Next and follow the configuration wizard screens till the Managed Servers screen appears, as described in "Updating WebLogic Domains" in Oracle Fusion Middleware Creating WebLogic Domains Using the Configuration Wizard.

[image: FMW Config Wizard to update an existing domain]

	
	Task 4 Assigning User-Expandable Server Groups to Managed Servers
	
On the Managed Servers screen, for each managed server, select the check box for the server group that corresponds to the driver that shall be targeted to that managed server. It is possible to select multiple drivers as shown in the following figure.

For more information about user-expandable server groups, see "Configuration Wizard Screens" in Oracle Fusion Middleware Creating WebLogic Domains Using the Configuration Wizard.

	
Note:

A new driver called GCM (Google Cloud Messaging) Driver is included in UMS in release 12.2.1. This driver is included as a preview feature in the release and, is not generally available.

[image: FMW Config wizard to specify server groups]

	
	Task 5 Completing the Configuration
	
Complete the configuration by following the configuration wizard screens described in "Updating WebLogic Domains" in Oracle Fusion Middleware Creating WebLogic Domains Using the Configuration Wizard.

6.2 Using UMS Schema Purge Script

ums_cleanup.purge is a PL/SQL procedure used to purge records that are no longer needed by the UMS DB schema. The procedure purges DB records from Oracle databases based on their age. It is highly recommend that the first two or three runs of the procedure be performed by a certified DBA.

	
WARNING:

This procedure will delete DB records from the UMS DB tables and commit instantly. It is impossible to rollback. The deleted records cannot be recovered. It is recommended to backup these tables before purging.

The purge reduces inbound and outbound message entries from UMS tables. Table 6-1 shows the tables in which records are purged:

Table 6-1 Records purged in UMS DB tables

	Name of the Table	Records Purged
	
MESSAGE

	
Outbound/Inbound messages and their attributes

	
ADDRESS

	
Sender and recipient addresses

	
DELIVERY_ATTEMPT

	
Records of deliveries

	
STATUS

	
Statuses of message deliveries

	
DELIVERY_CONTEXT

	
Records of deliveries

6.2.1 Purging UMS DB Schema Records

ums_cleanup.purge() takes a single parameter, that is, days_of_retention.The value of this parameter is a positive integer or a float number that signifies the number of days. The procedure deletes any records that are older than the specified number of days from the UMS DB schema. For example, ums_cleanup.purge(30.5) will delete all records that are older than 30 days and 12 hours.

	
Note:

The value of days_of_retention must be greater than or equal to seven days.

To purge records in UMS DB schema, perform the following tasks:

	
Shut down all Mid-tier servers that are using the UMS schema.

	
Set SQL Plus Options as shown below:

set serveroutput on
set autocommit off

	
Invoke the procedure with the desired days_of_retention parameter from SQL Plus to purge records that are no longer needed. To delete entries older than 100 days, run the following command:

SQL> call ums_cleanup.purge(100);

	
Note:

If the UMS schema has not been cleaned up for a long time and there are many rows in the tables, it is recommended that you purge it in multiple small steps. For example, if the instance has been heavily used for six months and you want to keep records from the last 30 days, purge the schema gradually in small steps: 170, 160, …, 30.

	
Start all Mid-tier servers that were shut down during the purging process.

7 Troubleshooting Oracle User Messaging Service

To debug Oracle User Messaging Service (UMS), first check the server diagnostic logs. The logs may contain exception, error, or warning messages that provide details about incorrect behavior along with actions to remedy the problem. Table 7-1 describes additional methods for debugging common UMS problems.

Table 7-1 Troubleshooting UMS

	Symptom	Possible Causes	Solutions
	
SSL handshake error.

	
The default keystore (DemoTrust.jks) for WebLogic Server may cause this error.

	
Change the default keystore for WebLogic Server. Configure the Custom Identity and Java Standard Trust keystore for the WebLogic Server.

For more information about configuring the keystore using WebLogic Server Administration Console, see the "Configuring Keystores" in Oracle WebLogic Server Administration Console Online Help.

	
Email notification is not being sent.

	
The Outgoing (SMTP) Mail Server settings in the UMS Email Driver are incorrect.

	
Check the following settings in the UMS Email Driver using Oracle Fusion Middleware Control:

	
OutgoingMailServer

	
OutgoingMailServerPort

Note: Validate the values by using them in any email client for connecting to the SMTP server.

	
	
The SMTP server requires authentication or a secure connection (TLS or SSL).

	
Check the following settings in the UMS Email Driver using Oracle Fusion Middleware Control:

	
OutgoingUsername

	
OutgoingPassword

	
OutgoingMailServerSecurity

	
Notifications are not being sent because of error message: No matching drivers found for sender address = <address>

	
The UMS Driver for the appropriate channel is configured with a specific list of SenderAddresses, and the message sent by the application has set a non-matching Sender Address.

Note: UMS Server matches the outbound message's sender address, if set, against the available drivers' SenderAddresses to find a matching driver to use for delivering the message. If a driver has set one or more SenderAddresses, then the UMS Server only sends messages with the matching sender address to it.

	
	
Check the following settings in the appropriate UMS Driver using Oracle Fusion Middleware Control:

SenderAddresses

Note: The format for SenderAddresses is a comma-delimited list of <DeliveryType>:<Address>.

For example:

EMAIL:sender@example.com, EMAIL:sender@example2.com

	
Leave this property blank, if you want this driver to service outbound messages for all sender addresses for this channel (delivery type).

	
If there are multiple driver instances deployed for the same channel (delivery type) with different configurations, use the SenderAddresses to differentiate the driver instances. For example, one instance can be set with a value in SenderAddresses to only service outbound messages with that matching sender address, while the other instance can keep the SenderAddresses blank to service all outbound messages that do not specify any sender address or one that does not match that of the first driver instance.

	
SenderAddresses that are configured with the incorrect syntax (such as missing <DeliveryType>:) are ignored by the UMS Server for driver selection.

	
The email client inconsistently receives notifications.

	
The Incoming Mail Server settings in the UMS Email Driver are configured with the same email account to which notifications are being sent.

If the notification is sent to the same account, the UMS Email Driver may download and process the email before the email client can display it.

	
Use an exclusive email account for Incoming Mail Server settings. Check the following settings in the UMS Email Driver using Oracle Fusion Middleware Control:

	
IncomingMailIDs

	
IncomingUserIDs

	
The application does not receive emails.

	
The Incoming Mail Server settings in the UMS Email Driver are incorrect.

	
Check the following settings in the UMS Email Driver using Oracle Fusion Middleware Control:

	
MailAccessProtocol (IMAP or POP3, in uppercase)

	
ReceiveFolder

	
IncomingMailServer

	
IncomingMailServerPort

	
IncomingMailServerSSL

	
IncomingMailServerSSL

	
IncomingUserIDs

	
IncomingUserPasswords

	
ImapAuthPlainDisable

Note: Validate the values by using them in any email client for connecting to an IMAP or POP3 server.

	
	
The mail access protocol is incorrect.

	
Check the following settings in the UMS Email Driver using Oracle Fusion Middleware Control:

	
MailAccessProtocol (IMAP or POP3, in uppercase)

	
	
The email server is SSL-enabled.

	
Check the following settings in the UMS Email Driver using Oracle Fusion Middleware Control:

	
IncomingMailServerSS

	
	
The receive folder name is incorrect.

	
Check the following settings in the UMS Email Driver using Oracle Fusion Middleware Control:

	
ReceiveFolder

Note: Some email servers may expect the value INBOX to be inbox or Inbox (that is, case-sensitive). Based on your email server, use an appropriate value.

	
	
The application did not register the corresponding AccessPoint.

	
Register an AccessPoint using the UMS API.

For more information, see Oracle Fusion Middleware Developing Applications with Oracle User Messaging Service.

	
The connection succeeds but gets closed immediately since there is a mismatch in the subject

	
The certificate used is incorrect for the environment.

	
Each environment (dev, test, production, etc.) needs to be provisioned with its own certificate. Verify that the correct certification is used for the remote environment.

	
APNS notifications are not delivered

	
A device token retrieved for production environment is likely being used for non-production.

	
Use the correct device token retrieved for each environment. For more information, see https://developer.apple.com/library/ios/technotes/tn2265/_index.html

A Upgrading User Messaging Service from 11g to 12c

This appendix shows the location of the User Messaging Service (UMS) configuration files that are copied from the remote managed server nodes to the Admin server while upgrading UMS from 11g to 12c. The Upgrade Assistant automatically copies the remote configuration files, if all necessary prerequisites are met and the required login information is provided. For more information about using Upgrade Assistant to copy configuration files, see "UMS Configuration" in Oracle Fusion Middleware Upgrading with the Upgrade Assistant.

Only if the Upgrade Assistant fails to automatically copy these files, you must manually copy the configuration files.

You must copy the configuration files from the remote managed server to the same location on the Admin server. The configuration files that must be copied includes, the UMS server configuration files (appconfig.xml, driver configuration files (driverconfig.xml), and the user preferences files (businessterms.xml). These files are located in the applications folder for each managed server, as shown in Table A-1.

After manually copying the configuration files from the managed server to the Admin server, you must run the Upgrade Assistant again.

Table A-1 Configuration File locations

	Configuration file	Location
	
UMS Server (appconfig.xml)

	
<DOMAIN_HOME>/config/fmwconfig/servers/<MANAGED_SERVER_NAME>/applications/usermessagingserver/configuration/appconfig.xml

	
Driver Configuration (driverconfig.xml)

	
<DOMAIN_HOME>/config/fmwconfig/servers/<MANAGED_SERVER_NAME>/applications/usermessagingdriver-<DRIVER_NAME>/configuration/driverconfig.xml

	
User Preferences (businessterms.xml)

	
<DOMAIN_HOME>/config/fmwconfig/servers/<MANAGED_SERVER_NAME>/applications/usermessagingserver/configuration/businessterms.xml

	
Note:

If there are multiple drivers deployed in a domain, then you must ensure that configuration files for all drivers are copied. This can be achieved by replacing the <DRIVER_NAME> with as many drivers deployed in that domain.

B Configuring User Messaging Service with AQ JMS

This appendix describes how to configure UMS to use AQ JMS instead of WLS JMS. This can be achieved through the WebLogic Server Administration Console.

User Messaging Service (UMS) can be configured to use Oracle Streams Advanced Queuing (AQ) JMS. AQ JMS uses a database connection and stores JMS messages in a database that is accessible to an entire WebLogic Server cluster, thus enabling the use of database features and tooling for data manipulation and backup. A typical use case would be enhanced high availability (HA), where the standard whole server migration support is not sufficient. If one UMS node in a cluster fails, then the other nodes will pick messages from the database for the failing UMS node, causing no loss of messages.

The following tasks describe how to configure UMS with AQ JMS through the WebLogic Server Administration Console.

	
Log into Oracle WebLogic Server Administration Console.

Shutdown all Managed servers in the domain.

	
In the Change Center on the left panel, click Lock and Edit to lock the domain for configuration changes.

	
In the domain structure on the left, expand the Services node and navigate to JMS Modules under the Messaging node. A page listing the JMS system modules created for this domain is displayed, as shown in the following figure.

[image: Description of jms_modules.gif follows]

	
Select UMSJMSSystemResource and navigate to the Subdeployments tab. Navigate to the UMSJMSServer running on the cluster you want to reconfigure and un-target all the UMSJMSServer_auto_x servers as shown in the following figure. Click Save.

[image: Description of jms_untarget.gif follows]

	
Navigate to the Targets tab for UMSJMSSystemResource. Un-target the UMSJMSSystemResource cluster(s) by deselecting the cluster check box as shown in the following figure. Click Save.

[image: UMSJMSSystemResources page]

	
Navigate to UMSAQJMSSystemResource from the JMS Modules table as shown in the first figure.

	
Navigate to the Targets tab for UMSAQJMSSystemResource and target the UMSAQJMSSystemResource to the same cluster from which you un-targeted the UMSJMSSYstemResource, as shown in the following figure.

[image: UMSAQJMSSystemResource page]

Save the settings.

	
In the Change Center, click Activate Changes and start all Managed servers in the domain.

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2013, Oracle and/or its affiliates. All rights reserved.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
[image: Oracle Logo]
OEBPS/img/ns_rightclick.gif
Home
Control

Loos

Performance Summary
Message Status

Messaging Client Applcations
Server Properties

Driver Propertes

Web Services

System MBean Browser

Target Information

OEBPS/img/jms_untarget.gif
Settings for UMSIMSServer742914744
'Domain Structure
base_domain - Save.

Use this page to select the targets fo the subdeployment, You can reconfigure targets
later i you wish.

Foreign INDI Providers
ok Contexts.

‘servers i th custer
fowdo L, E Part of the dluster
s ums_servert
 Configure subdeployments in JMS system -ums_S
Corfar o lums _server2
— o) [P
Hesthof g severs Partof the lster
b ums.server
Failed (0) ("] b_ums_server1
Critical (0)
Overloaded (0) s,
Warning (0)

O (1)

UMSIMSServer_auto_1

| umsamsServer_auto_11272778251_auto_1

[umsIMsServer_auto_11272778251_auto_2

OEBPS/img/ns_three.gif
{+ usermessagingserver ®
2 User Messagng Serice +

Log Configuration

Page Refreshed Aug 23, 2012 2:

Use this page to configure basic and advanced log configuration settings,

Loglevels LogFles

Logged in as weblogic| (] adc2191096 us.orac

1 AMPDT

Tt e o e e e epens & omad heloa o s e eSSy mponere e | Rovet |
T et el o i L e e A A e i

ok persisted across companent restarts
view [Runtine Loggers

Search Al Categories v

Logger Name.

(Oracle Diagnostic Logging Level (ava
Level)

LogFie

Persistent Log Level State

> oradle.sdp.messagng

NOTIFICATION: L (NFO) [inherk: ¥ od-handler
INCIDENT ERROR:1 (
ERROR:1 (SEVERE)
WARNING:1 (WARNING)
OTIFICATION: 1 (INFO)
OTIFICATION: 16 (CONFIG)
KOTIFICATION:32

TRACE:1 (FINE)

TRACE:16 (FINER)

TRACE 32 (FINEST)
NOTIFICATION:1 (NFO) [Inherted from parent]

OEBPS/img/umsag_dt_002.png
‘WebLogic Server Instance

ion |

(Java API)

i

ing Server

L ??JMS

[Titer rver | Emai river | swPP e | APNS Drver

SMS Center
(sMS-C)

OEBPS/img/ns_loglevels.gif
usermessagingserver & usermessagingserver @

2 User Messaging Senice v

Log Configuration N

LogLevels Log Files

Runtime Loggers are created during runtime and become active when a particular feature area is exercised. For sxample, oracle j22= ejb.deployment Logger s runtime logger that becomes aciive when an EJB module is deployed. Ifyou change the log level ofa
Runtime Logger, your change will not persist fthe componentis restarted. Ifyou change the Iog level of a Logger with Persistent Log Level State, your change will persist i the component i restarted

View Runtime Loggers. v

Search All Categories v

Logger Name

» oracle sdp
oracle.sdpinternal

oracle.ucs,
oracle ucsinternal

[Persist log level state across component restarts

Oracle Diagnostic Logging
Level (Java Level)

NOTIFICATION:1 (INFO) inherit
NOTIFICATION:1 (INFO) inherit
NOTIFICATION:1 (INFO) inherit

NOTIFICATION:1 (INFO) inherit

Log File

od-handler
od-handler
od-handler

odihandier

Persistent Log Level State

Logged in as weblogic

Augs, 2015 6:

(@ adc2120875.u5 oracte.com

a3 anp0T &

Apply Revert

OEBPS/img/ns_emone_latest.gif
Enterprise Manager Fusion Middle: ntrol 1

bLogic Domain ~

Target Navigation 1 usermessagingserver ® Logged n as weblogicl [F] adc2120876.us.orade.com
o e 2 Use Messaging Service » Page Refeshed Apr 28,2014 5:1033 AH POT &
> (3 Application Deployments
23 weblogic Doman Ve e & B v |+
5] uvsvaTS pomAY
o5 achingerver Messages Sent Successfuly Unavaiable
B e severt Messages Sent Faied Unavalable
(23 User Messaging Senice Messages Received Faied Unavaiable E
i usermessagingdriveremail (ums_server1)
28 usermessagingdriver extension (ums_server1) > Resource Center oy L
i usermessagingdriver smpp (ums_server1) “ N
5 usermessagingdriver titter (ums_server) LD &R
2 usermessagingdriver -voicexml (ums_server 1) 3 5
hiusermessagingserver (ums_serveri)
= == Sending Latency (ne)
MReceiving Latency (ms)
Table View
4 Associated Drivers e,
Local | Al
Name Driver Type
[Pomain_UMSMATS_ DOMAIN/UMSMATS DOMAINms_server fusermessagi... User Messaging Emai Driver
/Domain_UMSMATS_DOMAIN/UMSMATS_DOMAIN/ums._server 1/usermessagi... User Messaging Twitter Drive |+

OEBPS/img/ns_fifteen.gif
= (MessagesfSecond)
SIS Sending Thoushput
B (essagesiSecon)

 Recehing Throughiout

(essages/Secont)

EMAIL Receiving Throughput
¥ (essagesiSecond)

SIS Receiing Throughput
¥ (iessages/Second)

g E7or et for Sert EMAIL Messages
%)

Error Rato for Sent SHS Messages
M)

o Rato for Receive Messages
0
Erar Rato for Recehved EMAL

W essages (%)
Ervr Reto for Received SHS

W hessages (%)

M Error Ratio for Sert Messages (%)

Table View

4| Metric Palette

View + | Search

7 8 usemessagngserver
> 3 Connector Connection ol Hetris

err Ratio for Received Messages (%)

Error Ratio for Sent Messages (%)
[Receiving Letency (ms)

Receiving Throughput (essagesfSecond)

[sendng Latency (ms)

Sending Throughp (MessagesfSecond)
fessaging Delivery Type

EHAIL Receiing Throughpu (Messages(second)
EMAIL Sending Throughput (MessagesiSecond)
Errr Ratio fo Received EMAIL Messages (%)
[JError Ratio fo Received I Messages (%)
Ervr Ratiafor Received S5 Messages (%)
[JErrer Ratio for Received VOICE Messages (%)
[JError Ratio for Received WORKLIST Messages (%)
Err Ratio for Sent EVALL Messages (%)
[JErrer Ratio for Sent 1M Messages (%)

Ervr Rati for Sent 515 Messages (%)
[CJErrer Ratio for Sent VOICE Messages (%)
[CJError Ratio for Sent WORKLIST Messages (%)
M Receiving Throughput (Messages/Second)
[Sending Throughput (MessagesiSecond)
5115 Receiving Throushput (Messages/Second)

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware
Administering Oracle
User Messaging Service,
12¢ (12.2.1.2.0)

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware
Administering Oracle
User Messaging Service,
12¢ (12.2.1.2.0)

OEBPS/img/ns_fourteen.gif
4t usermessagingserver ® Loggedin as weblogic|

] user Messaging ervce = Page Refshed Apr 5,209 a1 15 A1 o 3
Performance Summary @2
Past 15 minutes 15minutes D sider @

View v Overlay | Show Metric Palette

m
3 08 - M Sending Throughput
g 08 EMAIL Sending
Jao sl
@ ending
g 02 = Throughput
o
B
8 08 M Receiving Throughput
{6
E‘ 04 m EMAL Receiving
£ 02 Throughput 0
£

1 SIS Receiving

0 D TN
0801 AM 0803 0805 0807 0809 0811 0813 0515 ™ Throughput

OEBPS/img/jms-target.gif
'Domain Structure Settings for UMSIMSSystemResource
base_domain

| || configuraton | Subdeployments | Targets | security | Notes

Save.

Use this page to select the server or duster on which you would ke to deploy this JMS
L] | systemmodle. You can reconfigure targets later f you wish.

oreign JNDI Providers.
jork Contexts.

HowdoL. El

 Target S system modues.

System Status a
Health of Running Servers.

I Fakd®
[L)
[Overlaced
[wamng@
O ()

OEBPS/img/ns_configdriver_latest.gif
® usermessagingdriver-email ® Logged in as weblogic | B adc2120876.us.oracle.com

& User Messaging Email Driver 20128, 2015 2434 A FPOT €

Create Driver PropertlCreate Driver Properics | Test oK Cancel

4 Common Configuration

* Name ‘Supported Protocols SMTP.
Driver Type User 000 LA DR Supported Carriers
Supported Application
o Server Names
ums_servert ® Use Sender Addresses.
Configuration Level
Cluster
Sender Address
Use Default Sender Address
Supported Delivery Types EMAIL
* Capability SEND.RECEIVE v Cost. v
Speed v

‘Supported Content Types * v

Supported Status Types DELIVERY_TO_GATEWAY_SUCCESS,
DELIVERY_TO_GATEWAY FAILURE.
USER_REFLY_ACKNOWLEDGEMENT_SUCCESS,
USER_REPLY_ACKNOWLEDGEMENT_FALURE 2

4 Driver-specific Configuration

Encoded oy o

Name Description Mandatory £1e00%0,

E-mail receiving protocol. The

ErEREE L possible values are IMAP and POP3.

AP v
Whether the driver should mark the
‘messages deleted afer hey have.
been processed. The defaultis

QIR disabled. For the POP3 protocol. the
messages are always deleted right -

OEBPS/img/jms_modules.gif
ORACLE' WebLogic Server administiation Console 12c - <

Change Center
View changes and restarts
Configuration eciting s enabled. Future

changes uill automaticaly be actvated as you
modify, add or delete items i this domain

Domain Structure

>

base_domain

I

« Configure VS system modes.

o Configure resources for M system modules

@ Home Log out Preferences [Record el | .|

Hame »Summary of Savers >Summary o JMS Modus >UMSAQIMSSyserResource »Summary of JMS
Modus > UMSIHSS, semasource > Summary of JMS odules:

‘Summary of JMS Modules

M5 system resources are configured and stored as modues simiar o standard J2EE modules. Such
resources include queues, topcs, connection factories, tempiates, destinaton keys, quota, dstrbuted
‘queues, dstrbuted topics, foreign servers, and JMS store-and-forward (SAF) parameters. You can
‘adminisiratiely configure and manage JMS system modes a5 dobal system resources.

“This page summarizes the VS system modues that have been reated for this domain.

P Customize this table

M Modules
New | [Deete Showing 1o 20f2 Previous | Next
[]| name & Type
[T | uMsAQIMSSystemResource System
[| umsamsSystemResource System
New | [Delete Showing 110 20F 2 Previous | Next

OEBPS/dcommon/oracle.gif

OEBPS/img/ns_assoc_drv.gif
4 Associated Drivers

Local | Al

Name.

/Domain_UMSMATS_DOMAINIUMSMATS_DOMAIN/ums_servert/usermessagingdriver-extension

/Domain_UMSMATS_DOMAINUMSMATS_DOMAIN/ums_servert/usermessagingdriver-gem

/Domain_UMSMATS_DOMAINUMSMATS_DOMAIN/ums_servertusermessagingdriver-xmpp

/Domain_UMSMATS_DOMAINUMSMATS_DOMAIN/ums_servertusermessagingdriver-email

/Domain_UMSMATS_DOMAINIUMSMATS_DOMAIN/ums_servert/usermessagingdriver-apns

Cluster

Driver Type =

User Mssaging Extension Driver
User Messaging GCM Driver
User Messaging XHMPP Diver
User Messaging Email Diver

User Messaging APNS Driver

Status

L2 N

Configuration
Level

Server

Unconfigured

Configure
Driver

A ALY

OEBPS/img/ns_mca.gif
usermessagingserver & usermessagingserver @

& Uselessaging Sevice v

Messaging Client Applications

Logged in as weblogic | [2dc2120876.us oracle.com
Aug5, 2015 6:46:04 AMPDT €
Messaging client applications registered with the User Messaging Service can be manually de-registered in cases where the applications have been undeployed and are holding onto access points that need to be made available to other applications.
View v De-register
Name Version Client Typi Listener End Point Receiving Queues
No Client Applications Found

Access Point

OEBPS/img/config_userexpand.gif
Managed Servers

Update Domain
Templates
Database Configuration Type

Component Datasources

[s [Bycen || Rose |

_ORACLE"
FUSION MIDDLEWARE

%)

[oisgara changes |

Server Name

Listen Address

Listen Port

Enable SSL

o

SsiListen
Port

Server Groups

IDBC Test
Advanced Configuration
Managed Servers
Clusters

Conerence Clusters
Machines

Configuration Summary.

Configuration Progress

O F———C—F)

End Of Configuration

Help

ums_serverl

[All Local Address...v |

7003

a

Disabl

RE-MANS_~

RE-MAN-SVR
[1RF-WS-CORE-MAN-5VR.

[[] UMS -DRIVER-APNS-MCD-SVR
2

UNS-DRIVER-EXTENSION-MCD-SVR|
UNS-DRIVER-GCH-MCD-SVR

/] UMS -DRIVER-SHMPP-MGD-SVR

] UMS -DRIVER-TWITTER-MGD-SVR.

<Back

Enish

Cancel

OEBPS/img/driver_securingpass.gif
Message Retrieval Frec

Disconnect After Poll

Message Folder

‘Outgoing Mail Server

‘Outgoing Mail Server P

Outgoing Mail Server S

Default From Address

Outgoing Usemame

Outgoing Password

‘The frequency with which to retrieve.
messages ffom the mail server. The.
unitis in seconds and the default
value is 30 seconds.

Whether o not o disconnect from
the email server after message pol.
Efiective only for IMAP, as POP3
always disconnects.

Message Folder

“The name of the SMTP server.
Mandatory only ife-mail sending is
required

‘Outgoing Mail Server Port

‘The security used by SMTP server
Possible values are None, TLS and
‘SSL. Defaultvalue is None.

Deprecated. Use Default Sender
Address instead. The default FROM
‘address (ifone is not provided in the.
outgoing message).

“The username used for SMTP.
authentcation. Required only if
'SMTP authentication is supported by
the SMITP server.

‘The password used for SMTP.
authentcation. Required only if
'SMTP authentication is supported by
the SMITP server.

“The host name of the incoming mail

INBOX.

2

None. v

Type of Password

Indirect Username/Key

Password

Indirect Password, Create New User v

OEBPS/img/ns_five.gif
ORACLE Enterprise Manager Fusion Middleware Control 12c

* usermessagingdriver-smpp @

1 User Messaging SMPP Driver v
-] - . -

Message Message

Time av Type D

Message

Aug 13,2015 2:16:01 AM PD Warning SDP-26150 lllegal data length value from SMSC received and ignored: 1213486160
Aug 13,2015 2:16:01 AM PD Warning SDP-26150 An exception was caught
Aug 13,2015 2:16:01 AM PD Warning SDP-26159 lllegal data length value from SMSC received and ignored: 1213486160

Aug 13, 2015 2:15:45 AM PD oError SDP-26153 Failed to connect to server, host: localhost, port: 20,104 (local address: localhost/127.0.0.1, local port: 0)

Aug 13,2015 2:15:45 AM PD @Error SDP-26153 Failed to connect to server, host: localhost, port: 20,104 (local address: localhost/127.0.0.1, local port: 0)

Aug 13,2015 2:15:30 AM PD Warning SDP-26150 An exception was caught
Aug 13,2015 2:15:30 AM PD Warning SDP-26159 lllegal data length value from SMSC received and ignored: 1213486160

Rows Selected 1 Columns Hidden 22

4 Aug 13,2015 2:16:01 AM PDT (Warning)
Message D SDP-26159

Message Level 1 Host adc2120876

ﬂ WebLogic Domain v weblogic ¥

Logged in as weblogic | [adc2120876.us.oracle.com Auto Refresh Off

B

Aug 13, 2015 2:04:01 AM PDT s

Execution Context

Relationship L0d File

ECID D

9e263f71-096e- 0:1:7 ums_server1-di

9e263f71-096e- 0:1:1 ums_server1-di
9e263f71-096e- 0:1:1 ums_server1-di
9e263f71-096e- 021 ums_server1-di
9e263f71-096e- 027 ums_server1-di
9e263f71-096e- 017 ums_server1-di

9e263f71-096e- 017 ums_server1-di

Total Rows

Module ~ oracle sdp.internal. messaging.driver.smpp.NetworkConnection

OEBPS/img/jms-aqjms.gif
'Domain Structure

base_domain

« Target JMS system modues

System Status
Health of Running Servers.

I Fakd®
[L)
[Overkaced
[wamng@
O ()

‘Settings for UMSAQIMSSystemResource
Configuration | Subdeployments | Targets | Security | Notes.

Save.

Use this page to select the server or duster on which you would ke to deploy this JMS system mode. You
‘can reconfigure targets ater if you wish.

OEBPS/img/ns_login.gif
Target Navigation

View v

» 2 Application Deployments |y
» B2 WebLogic Domain
» B3 Conerence Clusters
» [Metadata Repositories
4 [User Messaging Service
&1 usermessagingdriver-apns (ums_servert)
&1 usermessagingdriver-email (ums_server1)
&1 usermessagingdriver-extension (ums_servert)
&1 usermessagingdriver-gem (ums_server1)
&1 usermessagingdiver-smpp (ums_server1)
& usermessagingdriver-twitter (ums_server1)
&1 usermessagingdiver-xmpp (ums_server1)

& Esermessagingeerver ums_server)

OEBPS/img/ns_msgcust.gif
{} usermessagingserver ® Logged in as weblogic| (3] adc2191096 us.oracle.con
& User Messaging Service + Page Refreshed Aug 22, 2012 4:34:42 AMPDT
Message Status

Checkthe deivery status of messages sent and receved, and esend selected messages. Fike the search by acling more search fieds and setting

the desired operator and search value. Some fieds can be added multil tines i oder o use them with dFferent and complementary operators, or

with the “Cantaing”cperator,

~ISearch Message Status

* Required
* Maximum Messages Displayed |Equals % | 100 W0 Recipent [Equals ¥ | <Enter Recpient> x
*Operation [Equals [Any % Driver Instance Name [Equals % | <Enter Driver Instance Name> 3§

* overal status [Equals 1 [Any ¥

Search | Reset | AddFields +

View v | Resend | 9 Delete Selected... 9§ Delete vith Options

[essage b (Reciient) [Recipient [Operation | Overalstatus [Timestamp o]
e poe T TSR R ttteridhest_i2 Send v Aug21,20125:59:42 PM DT
o e SEAFETS e titerid testt Receive v Aug2l, 20125:59:42 PUPDT
e PO titerid testt Receive v Aug2l, 20125:59:42 PUPDT
oy 127028 titerid testt Receive v Aug21,20125:59:42 PMPDT
e EETE iterid testt Receive v Aug21,20125:59:42 PM DT
e Ty 24653 ntitersd testt Receive v Aug2l, 20125:59:42 PUPDT

OEBPS/img/config_templates.gif
Fusion Middleware Configuration Wizard - Page 2 of 9.

Templates

Y

i
i
1
¢
T

Update Damain
Templates

Database Configuration Type
Component Datasources
IDBC Test

Advanced Configuration
Configuration Summary.
Configuration Progress

End Of Configuration

Help

_ORACLE"
FUSION MIDDLEWARE

) Update Domain Using Product Templates:
Template Categories: [All Tempiates
Avallable Templates
Basic WebLogic Server Domain - 122.1 [wiserver] ”
Oracle Enterprise Manager - 12.2.1 [em]
Oracle User Messaging Service Basic - 12.2.1 [oracle_common]
Oracle WsM Policy Manager - 12.2.1.0 [oracle_common]
Oracle RAS Session Service - 12.2.1.0 [oracle_common]
Oracle JRF SOAP/JMS Web Services - 12.2.1 [oracle_common]
Oracle Enterprise Manager-Restricted JRF - 12.2.1 [em]
Oracle JRF - 12.2.1 [oracle_common]
Oracle Restricted JRF - 12.2.1 [oracle_common]
WebLogic Coherence Cluster Extension - 12.2.1 [wiserver]
WebLogic Advanced Web Services for JAX-WS Extension - 12.2.1 [oracle_common]
Oracle OPSS REST Service Application - 12.2.1.0 [oracle_common]
Wehl anic Advanced Weh Services far 1AX-RPC Fytension - 122 1 faracle_common]

Update Domain Using Custom Template:

<Back

Cancel

OEBPS/img/emoticon.gif

OEBPS/img/ns_logme.gif
{} usermessagingdriver-xmpp @ Logged in as weblogic| (3] adc2191096.us.oracke.cor
& User Messaging XMPP Drver ~ Page Refreshed Aug 22, 2012 11:46:11 PMPDT ()

oracle_sdpmessagingdriver_xmpp: fums_0%6_base_domainjbase_domain/dminserverfusermessagingdiver-smpp > Loq Hessanes
Log Messages

Search

03 + _TargetlogFies.. | [ManualRefresh v
Date Range [Host Recent v B

Days v
* Hessage Types

rror [Jwarning [ntification [Trace

Message | contains v

Search | addFieids

vew - | show [Vessazes G _venretodessages [« Esportisssaestorie |«

. oo I Executon Contot -
me essage D |wessage e e
hom 2L ZDIZ 51651 PHPDT [Eve [S0P26203 [XVPP Driver mot configred. Confire are restart ths v, Requirod propertios: IM5ervel60223027-fe30479]0

Adming,

OEBPS/img/ns_msgstatus.gif
{} usermessagingserver ® Logged in as weblogic| (3] adc2191096 us.oracle.con
2 User Messaging Serice +

Page Refreshed Aug 22, 2012 315642 AMPDT G

Message Status
Check the delivery status of messages sent and received, and resend selected messages. Fier the search by adding more search ieds and setting the
desired operator and search value, Some fieds can be added mulipl ks in order to use them with iferent and complementary operators, o with the
*Contains” opercto.

~ISearch Message Status

* Required
* Maximum Messages Displayed [Equals 1 [100 91 * overal status [Equals ¥ [Any v

* Operation [Equals ¥ [Any v

Search | Reset | AddFields ~

View v | | Resend | 9 Delete Selected... 9§ Delete vith Options

[essage Io (Reciient) [Reciien: [Operation | Overalstatus [Tmestamp =]
e poee T TSR R ttteridhest_i2 Send v Aug2t, 20125:59:42 PMPDT 3;
et ioackh ISARTS e tes f— v mez, eSSl
e PO titerid testt Receive v Aug2l, 20125:59:42 PHPDT
ey 127028 iterid testt Receive v Aug21, 20125:59:42 PMPDT
e RO titerid testt Receive v Aug2t, 20125:59:42 PMPDT
e Ty P26 ntiterid testt Receive v Aug2l, 20125:59:42 PUPDT .

Columns Hidden 8 Total Rows: 43

